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Abstract 
A new class of explicit finite-difference schemes for the coniputa- 

tion of weak solutions of nonlinear scalar conservation laws is presentcd 
and analyzed. These schemes are uniformly second-order accurate and 
nonoscillatory in the seinse that the number of extrema of the discrete 
solution is not increasing in time. 

1. Introduction 
It is well-known that TVD (total variation diminishing) scliciiics, 

see e.g., [4] and the references given there, can give high resolutioii to 
discontinuities of the sohtion. TVD schemes, however, have only first- 
order accuracy at estrerna. Of all second-order accurate TVD schenics, 
the Minmod scheme is the most diffusive. In [Z], Harten and Osher devise 
the concept of nonoscillatory piecewise-linear reconstruction and modify 
the Minmod scheme to the UNO2 scheme. Although this latter sclicmc is 
uniformly second-order accurate, it retains some of the diffusive charnctcr 
of the former. In this paper, we introduce a new class of schemes, nnmcd 
SONIC, that are unifornily second-order accurate and nonoscillatory. 

In section 2, we present TVD and UNO2 schemes from a geometric 
framework which is rather different from the original presentations. Our 
description and analysis of these schemes naturally lead to the SONIC 
schemes later in the section. In section 3, the SONIC schemes are applied 
to nonlinear scalar conservation laws. It is then shown that the conjecture 
of Harten and Osher that the midpoint rule is nonoscillatory is indccd 
correct not only for the UNO2 scheme but also for the SONIC schcmcs. 
In section 4, we present some computational results. We note in passing 
that R. Sanders [3] has recently developed a third-ordcr acciiratc TVD 
scheme which degenerates to second-order accuracy near estrema. Our 
approach, however, is different and appears to be simpler. 
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2. Advection equation 
Consider the initial value problem for the advection equation with 

constant speed a > 0: 
du du 
- + + a - - 0 ,  
a t  ax 

u(x ,O)  = u o ( x ) .  

The initial data u o ( x )  are assumed to be piecewise smooth functions that 
are either periodic or of compact support. Let uj" be an approximation 
to the solution u at xj = j A x  and the n-th time level. Equation (2.1) 
can be discretized in conservation form using the midpoint rule 

(3.2) 

n+1/2  where X = At/Ax and u J + 1 / 2  is an approximation t o  u at x,+1/2 = 
( j  + 1/2)A2- and t n S 1 / 2  = t" + 1/2At. 

I l + 1 / ?  Let u y + ] / 2  be an approximation of 21(5,+1/2, t") .  The value t l J + 1 / 2  

can be approximated by assuming that un is linear in [ .r , ,xJ+1/2] .  (See, 
e.g., [5].) At time t n + l I 2 ,  the profile propagates to the right a distance 
aAt/2. The corresponding face value is 

where T = u(At/Ax). Using (2.3), equa.tion (2.2) can be written as 

(The superscript n has been omitted here and will be omitted in the 
remainder of the paper.) Throughout this section, thc CFL niuiilicr is 
assumed to satisfy T 5 1. Our main task is to dcfinc. the face valucs 
t1,+1/2 from the data u,. The solution can then be obtnincd from (3 .4) .  

The following observation is useful for later proofs: let a ( ~ )  = J., - 

TAX and y ( ~ )  =RHS of (2.4). The points (x = T ( T ) , ~  = y(r)) lic on 
a parahola PI as  T varies (At varies, a and Ax are fixed). Clcarly, 
the points U, = ( x , , u , )  = (x(O),y(O)) and U,-I = ( X , - I , U , - I )  = 
( ~ ( l ) ,  y(1)) are on this parabola. The tangent TJ to PJ at UJ has slope 
( ~ i , + ~ p  - u, -1p ) /Ax ,  i.e., TJ is parallel to the line Uf-1/2U3+1/2 whcre 
U,-1 /2  = ( x J - l p , u J - l p ) .  Thus Pj is determined by U J , U J - l ,  and 
TJ.  The solution uj"+' in (2.2) is simply the y-component of the point 
(x(T), y ( ~ ) )  on the parabola PI where 0 5 T 5 1 as shown in Fig. 1. 

2.1 TVD schemes 
From a geometric point of view, we describe and prove some ini- 

portant properties of TVD schemes. Let I ( z 1 , .  . . , z k )  be the sinallcst 
closed iiitcrval containing 2 1 , .  . . , z k .  Observe that mrdian(r, y, z )  lies 
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in the interval defined by any two of the three arguments. Similarly, 
median(z1, z2, ~ 3 ~ ~ 4 ,  z 5 )  lies in the interval defined by any three of the 
five arguments, e.g., 

median( s, y, z )  E I( y, z ) ;  median( 21, . . . , ZS) E I( z1,zq , 2 3 )  (2.5a, b)  

To carry out the analysis, it is convenient to define the following central 
and upwind face values 

~:;:1/2 = uj + (uj - ~ ; - 1 / 2 ) ,  

21j+1/2 = uj + ( U j  - uj-1). 

(2.7) 

(2.8) UP2 

Notice that the Lax-Wendroff scheme corresponds to uj+1/2 = u ; + ~ , ~  
and the Warming-Beam scheme, to uj+1/2 = u;Tl/2. 

UP2 
UP2 

T. 
I 

FIGURE 1 

(A )  

FIGURE 2. 

The Minmod scheme, which is the simplest and the most diffusive of 
all second-order TVD xhemes, can now be described in our framework. 
The face value for this scheme is 

For the sake of explaining the terminology, one can observe that 

minmod(s, y) = median(x, y, 0)) 

median(z, y, z )  = x + minmod(y - x, z - s) = y + minmod(x - y, z - y). 

The Minmod scheme posesses the following upwind monotonic property 

uy+1 E q u j ,  uj-1). (2.10) 

To show (2.10), observe that from definition (2.9) and property (2.5a), 
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Properties (2.11) lead to the upwind monotonic property (2.10) by the fol- 
lowing reasoning. Another way to state (2.11) is that the point Uj-1/2 = 
( ~ j - 1 / 2 7  uj-1/2) lies on the line segment ( ~ j - 1 / 2 ,  u j - l ) ( X j - 1 / 2 ,  ~ j )  and 
Uj+1/2 lies on ( z j + l p ,  U~)U,!’$/~ where U,!’+”:/2 = ( z j + l p ,  u7:”,/,). Since 
the points (zj-lp, uj-l) ,  Uj and U,!’J:/2 are on the same line, the slope of 
Uj-l/2Uj+1/2 lies between 0 and s2 where s 2  = slope(UjU~~’/,).Because 
the tangent Tj of the parabola Pj at Uj is parallel to Uj-l/2Uj+1/2 by the 
observation following (2.4), slope(Tj) also lies between 0 and s:! (see Fig. 
2(A)). Let Q1, Q 2  be the parabo1a.s though Uj, Uj-1 such that at c T j l  Q1 

has horizontal tangent and Q 2  has tangent of slope s 2 .  It can be shown 
that Q 2  has horizontal tangent at Uj-1 (one can show this by using a 
linear change of coordinates such that Uj-1 = (0,O) and Uj = (1,l)). 
Q1, &2 form the boundary of the shaded region in Fig. 2(B). Since Pj 
also goes through Uj-1, Uj  and at Ujl its tangent lies between that of Q1, 

Q 2 ,  one can derive that the parabola Pj lies in the above shaded region. 
This completes the proof. 

Roe’s Superbee scheme can be interpreted in our fmmework a.s fol- 
lows: The face value for this scheme is 

The Superbee scheme is also upwind monotonic, t.hat is, it satisfics prop- 
erty (2.10). To show this, observe that from (2.5b), 

U P  As in the Minmod case, ujc-112 lies between uj-1 and z i j ,  uj+l/2 lies 
between u j  and u;$/~, thus (2.10) follows. 

To describe TVD schemes in general, let 

(see [4]). From definition (2.6), 1‘ = R. (However, this will not bc the 
case later when we redefine U J C + ~ ~ ~ . )  The face value 11,+1/2 is obtained 
by using a limiter function 4 
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The first-order upwind scheme corresponds to d, = 0, the Lax-Wendroff 
scheme to q5 = 1, and the Warming-Beam scheme to q5 = r .  

:mi \ 

1 r 1 r 
( A )  (B) 

F I G U R E  3. 

Next, it is shown th.at the fact that q5 satisfies the TVD condition is 
equivalent to the fact that the face value in eq. (2.15) satisfies properties 
(2.11). Indeed, the first half of (2.11) with index j replaced by index j + 1 
is U ~ + ~ / Z  E I ( ~ j , u j + ~ ) . T h i s  is equivalent to the condition 0 5 # ( r )  5 2 
for all r .  The second half of (2.11) is equivalent to #(r)  E I(0,2r). Thus 
(2.11) is equivalent to the condition that # lies in the intersection of 
the above two regions, which is the shaded region and the negative r- 
axis of Fig. 3(A). This it; the TVD region as defined by Sweby [4]. Since 
the Lax-Wendroff and the Warming-Beam schemes are both second-order 
accurate, to assure second-order accuracy away from extrema, the face 
value must lie between those of Lax-Wendroff and Warming-Beam,i.e., 
$ ( r )  E I(1, r ) .  The intersection of this region and the TVD region is 
named the TVD2 region and is shown in Fig. 3(B). Observe that the 
upper boundary of the TVD2 region corresponds to the Superbee scheme, 
and the lower, to the Minmod scheme. 

2.2 UNO2 schemes 
To resolve the problem of first-order accuracy at extrema of TVD 

schemes, Harten and Osher developed the UNO2 scheme in [2]. From 
our point of view, this scheme is the same as the Minmod scheme except 
that the central face value u;+l12 is now obtained by a nonoscillatory 
quadratic interpolation. 

Let Qj be the para'bola through Uj-1, U j ,  and Uj+l.  Since Qj and 
Qj+l have two points in common, they are either identical or have no 
other point in common. In the interval [xj,zj+l], consider the three 
curves Q j ,  Qj+l and the line segment UjUj+l. Let Qj+1/2 be the curve 
which lies between the other two (Fig. 4). Let Uj+l /2  = ( ~ j + 1 / 2 ,  U ~ C + ~ / ~ )  
be the intersection of the two tangents to Qj+1/2 at Uj and Uj+l (notice 
the x location). An easy calculation yields the central face value 

where 

(2.16) 
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Having defined u F + ~ / ~ ,  the face value of the UNO2 scheme can readily 
be obtained from eqs. (2.7) and (2.9). 

( A )  (B) 
"j t2 \ 

FIGURE 4. FIGURE 5 .  

The first essential property of this scheme is that the interpolation 
(2.17), (2.16) is nonoscillatory in the following sense: If u F + ~ / ~  is a strict 
local maximum (similarly for minimum), i.e., u j  < uF+1/2 and uj+l < 

then the data (uk) has a strict local maximum at x j  or ~ j + ~ ,  

i.e., uj-1 < u j  and uj+2 < uj+l. To prove this, observe that since 
ujc+1/2 is a strict local maximum, the parabola Qj+1/2 is concave down 
with the maximum value lying between x j  and xj+l. At least one of the 
two points Uj-1, Uj+2 lies on this parabola. If both of them belong to 
Qj+1/2, the above claim follows. If only one of them lies on Qj+1/2, then 
the other point belongs to the parabola Qg+1/2 which lies above Qj+1/2 

in the interval (z j ,  xj+l) by definition. Since two different parabolas can 
have at most two points in common, Q;+1/2 lies below Qj+1/2 outside of 
[zj ,xj+l]  as shown in Fig. 5(A). This completes the proof. The above 
property implies that the interpolation procedure does not increase the 
number of strict local extrema. 

The next property of the UNO2 scheme is that if ujc+1/2 is a strict 
local maximum (similarly for minimum), then 

(2.18a, b)  U '  3+1/2 = u;+1/2; u ' - uup 
3+3/2 - 3+3/2' 

Indeed, let 5-1 = (xj-l,Vj-l), 5 + 2  = (xj+g7vj+2) be on the parabola 
Qj+l/2 (see Fig. 5(B)). From the above proof, uj-1 5 vj-l and uj+2 5 
vj+2. Let y-1~2 = ( z ~ - ~ / ~ , v ; - ~ / ~ )  be on the line Uj U;+112. Then 
u;-1,2 I v;-1/2. This implies (2.18a). As for (2.18b), it follows from 
u;+1/2 - < uup 3+1/2'  

Let RQj-112 be the range of the parabola Qj-112 in [Sj-l, xj], that 
is, the interval formed by the values Qj-l/2(x) where x varies in [zj-l, xj]. 
We can now show that the UNO2 scheme posesses the following quadratic 
upwind monotonic property 

u j  n+l E 1(~j ,~;-1/2,uj- l ) .  (2.19) 

In fact, we will show urs l  E RQj-112 which implies (2.19). Observe 
first that (2.13) holds. If ujc-1/2 is not a strict local extremum then 
RQj-lp = I ( U ~ - ~ ,  uj)  and (2.19) follows exactly as in the Minmod case. 
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If uf-1/2 is a strict local extremum, say a maximum, then eqs. (2.18a,b) 
imply that the parabola, Pj is precisely Qj-112. This completes the proof. 

A quadratic upwind monotonic scheme is nonoscillatory in the sense 
that it can not create new strict local extrema. This follows from thc 
nonoscillatory property of the interpolation (2.16), (2.17). 

We next show a simple proof of the second-order accuracy of the 
UNO2 scheme. Denoting h = Ax, one obtains by using Taylor series 
expansions, 

(2.2Oa) ($+l/2 - uj)/(h/2) = u; + O(h2) ,  

( U j  -- $ 4 / ( h / 2 )  = u; + O(h2), (2.20b) 

("j -- ujUf11/2)/(h/2) = u; + O(h2). (2.20d) 

where u' denotes au/ai:. The last expression follows by writing ( 2 . 2 0 ~ )  
with index j replaced by j - 1 and then expanding and uj-1 a.round 
xj .  Since the face value uj+l/2 must lie between ujc+112 and uup ~ + 1 / 2 7  

Thus the scheme is second-order accurate. 
Itre have presented the UNO2 scheme as a modification of tlic Min- 

mod scheme by redefining t ~ ; + ~ ~ ~  using eq. (2.16) above. Will the same 
procedure yield a modifcation of the Superbee scheme? The answcr is 
yes as will be shown in the next section. 

2.3 SONIC (second-order nonoscillatory interpolating conser- 
vative) schemes 

We combine the names MUSCLE [6] with UNO2 and come up with 
;ONIC. Of all SONIC schemes, the UNO2 scheme above is the most diffu- 
be and the SONIC-B 01: Sonicbee scheme below is the most compressive. 
his scheme can be defined by eqs. (2.17a,b), (2.16), (2.8),(2.12), (2.3) 
d (2.2). It possesses all the properties of the UNO2 scheme that are 
btioned a.bove. To prove the second-order accuracy of the Sonicbee 

\ 

e, consider the following cases at face j + 1/2: 
1: z ~ j c + ~ / ~  is a strict local extremiim, then uj+1/2 = u ; + ~ / ~ ;  
2: uf-1!2 is a strict local extremum, then u 3+!/2 . = ujf1/2; 

!3: if neither of the above cases hold and if uj  is a, local estremuni, 
in other words, ( u j  - uj-l)(uj - uj+l )  2 0, then uj+l/2 = z l j  E 

1 if none of the above cases hold, then we a.re in t.hc regulw ca.se 
< 21 - J+1/2 - 3 + 1  

or descending order. The case RG1 corresponds t,o T = ( i " j  - 
~;-1/2)/(u;+1/;! - u j )  L 1; 

I( 5+1/2  7 uy! 1 / : I  ; 

of either ascending order U j - 1  5 uE-112 - < u. . < 21.C 
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RG2: this is the regular case where r > 1. 
In any of the above cases, uj+1/2 E I(uf+,/,,  uy!l/2) and the above 

claim follows. 
The Sonicbee scheme is also quadratic upwind monotonic and the 

proof is exactly the same as that of the UNO2 scheme. To describe the 
class of SONIC schemes, we need some more definitions. 

At each face j + 1/2, let the linear upwind monotonic interval I i + l / 2  
be the intersection of I ( u j ,  uj+l) and I(uj, u ; $ / ~ ) .  Then condition (2.11) 
is equivalent to uj+l/p E and, as shown in section 2.1, these are 
equivalent to the TVD condition in [4]. Similarly, let the quadratic up- 
wind monotonic interval q+1/2 be the intersection of I(.uj, u ; + ~ / ~ ,  ~ i ~ + ~ )  

and I ( i i l ,  ~ i y ; ~ , ~ ,  ~ j L f ; / ~ ) .  Then condition (2.13) is equivalent to 

Schemes satisfying (2.22) posess the quadratic monot,onic propert,y (2.19). 
The proof is similar to that of the UNO2 scheme and is omitted. Observe 
that Ij+1/2 is equal to except in the cases EX1 and EX2 above 
where strictly contains I j + 1 / 2 .  Enlarging I j+1 /2  to in these 
cases permits second-order accuracy at extrema. 

Let I;+1/2 = I(c1,  cp). Any high-order accurate scheme can be made 
nonoscillatory by defining 

where ‘ l l l + l p  is the face value of the scheme. 
We can now describe the SONIC schemes. Consider first the EX 

cases. In each of these cases, both the most diffusiw (UN02) aiid tlic 
most compressive (Sonicbee) members give the same face value. Thus 
all other SONIC schemes must also have the same face value. One can 
also come to the above conclusion by observing that t l i c a  inters(-ctioii of 

curate interval and the quadratic upwind monotonic interval, contains ex- 
actly one point. This point must be the face value of all SONIC schemes. 

Next, consider the regular case. In the cases RG1, RG2 above, 

I(uf+,!,,  u l + l / p )  U P  and I ;+1/2 ,  i.e., the intersection of the second-ordcr ac- 

respect,ively. Let qh(r) be a continuous function for r > 0. With 
defined by eq. (2.15), using (2.23) and (2.24a,b), one obtains 
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respectively. Schemes; defined as above are nonoscilla tory. They are 
second-order accurate if their face values lie between u;+ /2 and 1 ~ ; :  / 2 ,  

and this is the case if $ is chosen so that $(r) E I(1,r). Observc that 
the UNO2 schcme corresponds to $(r) = min(1,r) and the Sonicbee, to 
$(r) = max( 1, r). 

The SONIC scheme corresponding to vanleer’s MUSCLE scheme 
can be obtained by simply defining $ ( r )  = (1/2)(1 + r), or equivalently 

(2.26) 

We name it the SONIC-A scheme (“A” for “average”). 
In defining 

u;+112, the minmod function of eq.(2.17b) can be replaced by any TVD2 
limiter function. One then comes up with a class of schemes which 
posesses all the properties of SONIC schemes and admits SONIC schemes 
as a subclass. We will report on this enlarged class elsewhere. 

We conclude this section with the following remark. 

3. Conservation laws 
Consider the following scalar conservation law 

au af - + - = o  
at a x  

where f is a smooth convex function of u, that is, f lies above all its 
tangents. This implies that a(u) = d f / d u  is an increasing function of 
u. Using the 
simple change of variables v = u - ii and g(v) = f(u) - f(ii), one may 
assume without loss of generality that 6 = 0 and f(0) = 0. The simplest 
conservation law with all the above properties is the inviscid Burgers’ 
equation 

(3.2) -+- - -  - 0. 
at 2 a x  

Equation (3.1) can be discretized in conservation form using the midpoint 
rule 

Let ii be the unique sonic point of f ,  i.e., a(6)  = 0. 

au i a u 2  

p l y  = U; - ~ ( . f j + 1 / 2  - J j - 1 / 2 )  (3.3) 
- 

where, again, X = A t / A x  and f j + l / 2  = f(fij+l 2 )  and t,he ttilde replaces 
n+1 /z the superscript n + 1 /2 ,  e.g., i i j+1 /2  = u. For simplicity of the 

proofs, the CFL number p is assumed to satisfy 

The main problem is to define the face value f i j + l / z .  To avoid mix- 
ing up the numerics and the physics, we adopt the projection-evolution 
approach advocated by vanLeer [5 ] .  
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The projection stage is purely numerics. First, assuming that the 
flow comes from the left, using the SONIC schemes of the previous section, 
one can define face value uf+112. Then, on reversing the flow direction, 
a is now negative, one obtains uF+l12. This is the end of the projection 
stage. 

In the evohtion stage, physics enters. We have to decide the flow 
direction and define the face value i i3+1/2 properly. To do this, consider 
the following cases, (cf. section 6 of [2] and section 4 of [l]) 

1. L > 0 where a,+, / ,  L = a(uf++,/,). This is equivalent to uf+112 > 
0. We have two subcases: 

a. a , + 1 / 2  - > 0, then upwind direction corresponds to j ;  
b. a,+,/, < 0, we have a shock. 

a .  a,+l l2  < 0, then upwind direction corresponds to j + 1; 
b. a,+l l2  2 0, we have a sonic expansion fan. 

R 

2. a3L+l/2 5 0, equivalently 5 0. Again, we haw two subcases: 
R 

R 

In order to prove the nonoscillatory property later, the definitions of 

In case l a  above, assume that the approximations for u and n are 
i i , + 1 / 2  below are somewhat different from those in the literature. 

linear in [xJ, ~ , + ~ / 2 ] .  Then, using a characteristic argument, 

The ratio in the above expression is a more accurate approximation to 
iif+1/2. For Burgers' equation, iif+l/2 is of the same sign as u!+~/~. In 
general to assure that the sign has not been changed, with E a small 
positive number (say, lo-'), we define 

Ca.se 2a is similar to the above ca.se with proper sign changes. 

(3.8) 

(3.9) 

- R  
u j + 1 / 2  = min(-~,  ~:+1/2) 

U j + 1 / 2  = U j + l / 2  
- R  

In case lb ,  we define ii:+l/2 and iif+,/, as in eqs. (3.4), (3.5) and 
(3.7), (3.8) respectively. The upwind direction depcnds on the sign of 
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If A J + ~ / 2  2 0, f i j+1 /2  is obtniiicd from ('(1. (3.G) i I I i t l  if A , + 1 / 2  < 0, froill 

eq. (3.9). 
Case 2b for the sonic expansion fan is simple: 

i i j + l / Z  = 0. (3.11) 

The above definitions of face values are consistent in the sense that if 
i i j+1 /2  > 0, then ujL+1/2 > 0 imd the flow comes from the left. Conversely, 
if i i j+ l / z  < 0, then uf+1/2 < 0 and the flow comes from the right. Finally, 
i i j+1 /2  = 0 corresponds to a sonic expansion fan where uf+1/2 5 0 and 

Next, we show that SONIC schemes defined as above are nonoscilla- 
tory. The case i i j + 1 / 2  = U j - l / 2  is trivial. Assuming that Gj+1/2  # U j - 1 / 2 ,  

let 
Aj = ( f ( , c j + ~ / ~ )  - f ( G j - 1 / 2 ) ) / ( 6 j + 1 / 2  - c j - * / 2 ) ,  (3.12) 

up+1/2 2 0. 

t,lien eq. (3.3) can be written in a form siniilar to (2.2) 

If A j  = 0 there is nothing to prove. Consider the case Aj > 0. Similar 
arguments hold for Aj < 0. To show that these schemes are nonoscilla- 
tory, it suffices to show that they have the quadratic upwind monotonic 
property (2.19) where upwind direction corresponds to index j - 1 since 
Aj > 0. Indeed, with the CFL condition 5 1/2, we only have to show 

Notice that (3.14) is the same as (2.13) except that u J - 1 / 2  and 21,+1/2 

are replaced by U J - l p  and G J + 1 / 2 .  We use the above restricted CFL 
condition here. In the nonlinear case, the solution is no longer given by 
the parabola P, in the observation following (2.4) but by thc straiglit linc 
0 J - 1 / 2 U , + 1 / 2 .  Condition (3.14a) follows from the definition of face v;~lues. 
,4s for condition (3.14b), if 1;1~+1/2 > 0, then the consistency argtiments 
after eq. (3.11) assert that at face ~ j + 1 / 2 ,  the flow comes from the left, 
thus the above claim. Before considering the case GJ+1/2 5 0, we make a n  
essential observation. Condition (3.14b) can be replaced by the following 
condition and (2.19) still holds: 

See Fig. 6(A). Next, if U j + 1 / 2  = 0, then from the consistency arguments, 
11 ,+1 /2  ' 

0, it lies between f i j -1 /2  a.nd iif+1/2 which is (3.15). Finally, we consider 
the case U j + l / z  < 0, i.e., in the control interval [ z j - 1 / 2 ,  . ~ j + l / 2 ]  there is a 

- L  L 0. In order t*hat Aj > 0, Gj-1/2 > 0 (Fig. 6(B)). Since 21j+1/2 = 
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shock since Gj-1 /2  > 0 (Fig. 6(C)). The difficulty here is that i i j+1 /2  = 
iiP+,/, and yet we must show that (3.15) holds true. We need another 
definition. 

UP2 

- 
u j  - f 
e-- 

( A )  (B) 

FIGURE 6 .  

For each u ,  let v be of opposite sign such that f (v)  = f(u). In 
the case of Burgers’ equation, v = -u. Because of the assumption that 
Aj > 0, 

ijj--1/2 < i i j+1 /2  < 0 < ijj+1/2 < i i j - 1 / 2 -  (3.16) 

Rewrite (3.12) and (3.13) with f i j+1 /2  replaced by ijj+lp: 

ujn+l = uj” - AjX(ijj+l/2 - f i j b 1 / 2 ) .  (3.18) 

Observe that AjX is within the above CFL bound since 0 5 Aj 5 aj -112 .  

Thus instead of (3.15) it suffices to show that 

If iif+1/2 5 0, (3.19) follows from (3.16). If G:+1/2 > 0, we have a shock 
at face x j + 1 / 2  and since the flow comes from the right, 

The last inequality above and the last one in (3.16) implies (3.19). This 
completes the proof. 

4. Computational results 
In the first set of problems, we present computational results for ad- 

vection with constant speed. The initial profiles consist of a sin2 wave, 
a square wave, a triangular wave and a semi-ellipse wave. Each wave 
contains 20 grid points on a uniform grid of 200 points. Using periodic 
boundary conditions, the profile is advected one period with CFL num- 
ber 0.5. The results after 400 time steps are shown in Figs. 7 (A) for 
Minmod, (B) for UN02 ,  (C) for MUSCLE, (D) for SONIC-A, (E) for 
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Superbee, and (F) for Sonicbee schemes. The figures on the left corre- 
spond to TVD schemes, and those on the right, to SONIC schemes. One 
can observe that the SONIC schemes are more accurate than their TVD 
counterparts. The Minmod scheme, and to a lesser degree, the UNO2 
scheme are somewhat diffusive. The Sonicbee scheme can resolve the 
square wave and the triangular wave very accurately, however, it shares 
the compressive character of the Superbee scheme in the semi-ellipse wave 
and it has an overshoot in the sin2 wave. The SONIC-A scheme appears 
to be the best of the sc:hemes tested. Although it does not resolve the 
square wave as sharply as the Superbee and the Sonicbee schemes, it 
gives accurate solutions to the other three waves. 

2.0 

1.5 1 F 
" 

( A )  MlNMOD SCHEME. (B) UNO2 SCHEME. 

( C )  MUSCLE SCHEME. (D) SONIC-A SCHEME. 

( E )  SUPERBEE SCHEMI:. ( F )  SONIC-B SCHEME. 

FIGURE 7. - COMPARISON OF TVD ( L E F I )  AND SONIC (RIGHT) SCHEMES. 

In the second set of problems, results for Burgers' equation are pre- 
sented. The initial condit,ion is a sine wave of 20 grid points in the interval 
[-1,1]. The dots represent the numerical solutions and the curves, the 
exact solutions. With CFL number 0.5 and periodic boundary conditions, 
highly accurate results a.t time t = 0.4 are obtained in Figs. 8 (A) for 
UN02, (B) for SONIC-A, and (C) for Sonicbee schemes. Observe that 
a shock has formed at 2: = f l  and the solutions have no oscillations. 
The SONIC-A scheme is slightly more accurate than the UNO2 and the 
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Sonicbee schemes in this case. 

1.0 - . 5  0 .5 1.0 

( A )  UNO2 SCHEME. (B) SONIC-A SCHEME. ( C )  SONIC-B SCHEME. 

F IGURE 8.  - NUMERICAL SOLUTIONS FOR BURGERS’ EQUATION. t = 0.4 .  

5. Conclusion 
We have introduced the concept of upwind monotonicity which was 

used to show that the new class of schemes, named SONIC, is nonoscil- 
latory and second-order accurate. 
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