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The dynamic coefficients of seals are calculated for shaft movements around an 
eccentric position. The turbulent flow is described by the Navier-Stokes equations 
in connection with a turbulence model. The equations are solved by a 
finite-difference procedure. 

To model the dynamic behaviour of turbopumps properly it is very important to 
consider the fluid forces which are developed in the seals. This has been clearly 
demonstrated by some authors, like for example Diewald (1987). The fluid forces are 
normally described by the following equation. 

- [f:] = [-: :I[:] + [-: :I[:] + [: PI][.:] 
But this equation is only valid for a shaft moving around the center of the seal, 
which very seldom occurs in reality. In most machines the shaft will orbit around an 
eccentric position, so that the fluid forces must be described by 

The dynamic coefficients in such a case have been investigated by Jenssen (1970), 

Nelson and Nguyen (1987). To model the turbulent flow, all these have used so 
called "Bulk-Flow Theories" in which the shear stress at the wall is described as a 
function of the average fluid velocity relative to the wall. Because some authors 
affirm that in the case of great eccentricities recirculation in circumferential 
direction occurs (which can't be described by a bulk-flow model) and strongly 
effects the dynamic coefficients, we extended the theory of Dietzen and 
Nordmann (1987) and Nordmann (1987) to investigate the flow and the coefficients in 
the case of an eccentric shaft. In that theory the Navier Stokes equations in 
connection with the k-e turbulence model were used to calculate the dynamic 
coefficients of incompressible and compressible seals for a shaft motion around the 
centric position. 

Allaire et al. (1976) and recently in an excel lent paper by 



OOVERNING EQUATIONS 

In a turbulent flow, turbulent stresses occur which are often modeled like laminar 
stresses by introducing a turbulent viscosity. The turbulent and the laminar 
viscosity are then added to an effective viscosity. 

The turbulent viscosity must be described by a turbulence model. We use the k-e 
madel. but also much simpler mixing-length models will be appropriate for a 
straight seal. The turbulent viscosity is given by 

k2 
Pt = C’ P (4) 

So we have the Navier-Stokes equations, the continuity equation and the equations 
of the k-e model to describe the turbulent flow in a seal. These equations have the 
following form. 
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Table 1: The governing equations of the turbulent seal flow. 

(The constants of the k-e model are given in appendix A) 
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PERNRJUTION ANALYSIS 

Fig. 1 Geometry of the eccentric shaft 

To describe the flow if the shaft is moving around an eccentric position we follow 
the procedure of Dietzen and Nordnrann (1987) and use a similar transformation. 
(see Fig. 1) 

But now ra and C, are functions of 9. This is not so if the shaft moves around the 
center. d is the seal clearance. varying with angle 8 and time t. 

The radius r can be described by the following equation: a 

As result of this transformation the shaft orbiting around an eccentric position is 
transformed to the stationary eccentric position. 
If we introduce this transformation into our equations, we must obey the following 
relations. 
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To calculate the rotordynamic coefficients we assume that the shaft moves around 
the eccentric position on small orbits, so that we are allowed to introduce a 
perturbation analysis. 

6 = C, - eh, u = uo + eu, v = vo + ev, 
w = wo + ew, P = Po + ep1 

(9) 

If we introduce these expressions and the coordinate transformation in our 
governing equation, neglecting terms with power of e greater than 1 and separating 
the parts with and without e we will get a set of zeroth order and first order 
equations. The zeroth order equations describe the stationary flow for the 
eccentric shaft, the first order equations the perturbation of this flow, if the 
shaft moves around the stationary position. 

We assume that the shaft moves with the precession frequency R on a circular orbit 
with radius ro around the eccentric position. So the change of the clearance is 
given by 

eh, = ro(cosRt cos0 + sidt sine) ( 10) 

Because this change is periodic in time we introduce also periodic functions for 
the flow variables. 

(11 )  
cosnt + vi sidt 

wl = wic cosnt + w, sidt pi = pic cosRt + pi sidt 
Ul = UlC S vi = vic S 

cosnt + u, sidt 

S S 

By separating now in the first order equations the terms with cosRt and sidt we 
obtain two real equations for every first order equation. These equations are 
then arranged in a new form by introducing complex variables. 

A A 

(12) u, = UlC + iUiS vi = vlc + iv, 
S 

A A 

w, = wlc + iwls Pi = Pic + iPls 

Finally supplementary to our real zeroth order equations we have a set of complex 
first order equations. These equations have the following form. 
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Table 2: Source t e r m s  of zeroth and first order equations. 

A 

Only the first order continuity equation to calculate pi has a slightly different 
form. 

You get S , S , S S , if you replace in table 1 in the corresponding 
terms r by q and u.v.w.p.k.~ by uo.vo.wo.po.ko.~o. The terms Cu , C result 

from the perturbation of the convective terms in the Navier Stokes equations. 

D , D , D , D are constants resulting from the coordinate transformation, 

which are not functions of ul. vi. wl. pi. The terms with Q represent the time 
dependent par t s . 

uo vo wo' Sk; €0 

, C 
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uo vo wo Po 
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Because we assume that the viscosity pe remains constant for the small motions, we 

do not need a kl and el equation. 
h A 

, D D D , C , C , C are given in appendix B) 
'Duo VO' wo Po Ul VI Wl 

The zeroth order boundary conditions are 

= o  
wOS 

= o  
vOS 

stator : uos = o  
rotor : uor = o  vOr = o  WOr = Ri# 

is PRes is the average axial entrance velocity for every plane with 8 constant. 
the reservoir pressure and o the rotational frequency of the shaft. 

The first order boundary conditions are 
h h A 

stator : uls = (0.0) VIs = (0.0) WlS = (0.0) 

rotor : UIr = (0.0) 
A 

1 A 

vir = [cON(n -0) sine. x o N ( n  -0) case 

"E FINITE DI- HElTKll 

For solving these equations a finite-difference procedure is used which is based on 
the method published by Gosman and Pun (1974). The seal is discretized by a grid 
(Fig.2) and the variables are calculated at the nodes. The velocities uo.vo, wo 
(ul.vl.wl) are determined at points which lie between the nodeswhere the variables 

po.ko.eo (pi) are calculated (Fig.3) 

~ A A  

A 
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Fig. 2 3-dimensional grid 
in the seal. 

Fig. 3 Velocities and pressure 
in a staggered grid. 

To calculate the flow we proceed as follows: 

1 .  

2. 
We start our procedure with guessed values for all variables. 

First the velocities uo.vo.wo (ul,vl,wI) are calculated. 
h h h  

3. Then the velocities and the pressure are corrected to satisfy 
the continuity equation. 
To do that we use a modified version of the 'PISO' procedure 
of Benodekar et al. (1985). 

4. After this k and e are calculated (only for the zeroth order solution). 

We repeat step 2 to 4 until we reach a convergent solution. First we solve the 
zeroth order equations and then the first order equations. 

Of course we need a 3-dimensional finite-difference method to calculate the flow in 
the case of an eccentric shaft.while a two-dimensional method is sufficient for 
movements around the centric position. 

DEIERHINATIOIV OF THE DYNAWIC OOEFFIClFMs 

h 

By integration the pressure pi around the shaft we get forces in z and y directions. 
.. .. 

Then we introduce z. y. z. y, z. y from our circular orbit into equation (2). 
'This gives us the following equations: 
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+ d R - MzzR2) = CON (K,, zy 
cos0 RiN de dx 

00 
L2U 

J J  cos0 RiN de dx Pi S 
0 0  

sine RiN de dx = CON (K,,,, + d R - M n P )  
YZ 

0 0  

If we calculate the forces for several precession frequencies R of the shaft, we 
can obtain the coefficients by a ’Least-Square-Fit’. 

We compare our theory with the model of Nelson and Nguyen (1987) and some 
experimental results of Falco et al.(1986) which also have been published in the 
paper of Nelson and Nguyen (1987). 

In Fig. 4-10 dynamic coefficients are calculated as a function of the eccentricity. 

coefficients also with experimental and theoretical results of Falco et al. 
I We compare our results with Nelson and Nguyen’s theory and the stiffness 

The seal data are 

length : L =4o.omm pressure drop : 1.0 M p a  
shaft radius : RiN = 80.0 nnn 

nominal clearance 

dens i ty : p = 1000kg/m3 

shaft speed : 4OOO RPM 
: CON = 0.36 m 

preswirl ratio : W (o.e)mip = 0.3 

viscosity : Pl = 1 .W10-3 Ns/m2 
entrance lost-coefficient : E = 0.5 

I amausI0NS 
We have shown that it is possible to calculate the dynamic coefficients of 
eccentric seals by a finite difference method based on the Navier Stokes equations. 
This method can also be extended to calculate the coefficients of eccentric g a s  
seals by following the procedure of Nordmann (1987) and to calculate the dynamic 
coefficients of bearings by neglecting the turbulence model. 
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Forces on the shaft in z and y direction 
direct and cross-coupling stiffness 
direct and cross-coupled damping 
direct and cross-coupling inertia 
axial, radial and circumferential velocity 
pressure 
turbulence energy 
energy dissipation 
effective, laminar and turbulent viscosity 

dens i ty 
time 
axial. radial and circumferential coordinate 
rectangular coordinate directions 
rotor displacements from its steady-state position 
radial coordinate after transformation 
production term in k-€-model 
constants of the k-€-model 

constants of the k-e-model 

general variable standing for u,v.w,p.k e 
general source term 

nominal seal clearance 

steady-state clearance for an eccentric shaft 

varying seal clearance for orbiting shaft 
radius of the precession motion of the shaft 

perturbation parameter 

rotational frequency of the shaft = RF'Xm/30 
revolutions per minute 
precession frequency of the shaft 
entrance lost-coefficient 
Length of the seal 
stator radius (Fig. 1) 

nominal stator radius (Fig. 1) 

shaft radius (Fig. 1) 

change in the clearance 

eccentricity 

average circumferential velocity 
average axial velocity at the entrance 

sump pressure 
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-IX A: Constants of the k-E model. 

= 0.09 C i  = 1.44 C2 = 1.92 Crk = 1.0 0 = 1.3 cP e 

and G is a given by 

APPElYDIX B: Terms of first order source term. 

h h i a  A i a  n 

c = a &pwou1) + - - ( q p w o v i )  + qae\PWoW1) + h o v ,  
W l  V a l  q 

D 

D 

D 

D 

= ( ( ( r  v)DFC+RCS)Ul+) + i ( ( ( r a - q ) D F S + R S S ) U l ~ * U 2 ~ U 3 )  

= (((r -q)DFC+RCS)Vl+) + i ( ( ( r a - q ) D F S + R S S ) V l + C C W V 2 ~ V 3 )  

= (( (r -q)DFC+RCS)Wl+) + i( ( (ra-q)DFS+RSS)Wl+) 

= (( (r -q)DFC+RCS)Pl-P2) + i (( ( ra-q)DFS+RS)Pl-P2) 

"0 a 

V O  a 

WO a 

Po a 
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