
e

a SEVENTH SEMI-ANNUAL REPORT

ON
RESEARCH ON

CONTROL OF FREE-FLYING

SPACE ROBOT MANIPULATOR SYSTEMS

e
Submitted to

a
Dr. Henry Lum, Jr., Chief, Information Sciences Division

Ames Research Center, MoEett Field, CA 94035

a
The Stanford University Aerospace Robotics Laboratory

Department of Aeronautics and Astronautics
Stanford University, Stanford,. CA 94305

e

a

Research Performed Under NASA Contract NCC 2-333
During the period March 1988 through August 1988

Professor Robert H. Cannon Jr.
Principal Investigator

e

a

0

0

a

Contents

List of Tables V

List of Figures vii

1 Introduction 1

2 Fixed-B ase Cooperative Manipulation Experiment
2.1 Introduction . 3
2.2 Facility Development . 4
2.3 Multiprocessor Real-time Software Environment 6
2.4 Softwarestructure . 8
2.5 Strategic Control . 10
2.6 User Interface . 19
2.7 Dynamic Control . 27
2.8 Real-time Vision System . 49

3

3 Multiple Arm Cooperation on a FFee-Flying Robot 65
3.1 Introduction . 65
3.2 Motivation . 65
3.3 Free Flying Robot Jacobian . 66
3.4 Order n Inverse Dynamics . 71
3.5 Status . 72
3.6 FurtherResearch . 73

4 Navigation and Control of Free-Flying Space Robots 75
4.1 Introduction . 75
4.2 Summary ofprogress . 76
4.3 Experimental Hardware . 77

4.5 Modeling and Simulation . 82
4.6 Summary . 86
4.7 Future Work . 87

4.4 Real-Time Development System . 81

iii
PRECEDLNG PAGE BhAVK NOT FILMED t&IU€NUOHALIII BUNlr

5 Multiple-Vehicle Cooperation 89
5.1 Introduction . 89
5.2 ResearchGoals . 89
5.3 Experimental Hardware . 90
5.4 Modelling . 90
5.5 Controller . 91
5.6 Path and Motion Planning . 93
5.7 Simulations . 94
5.8 Summary 94
5.9 Future Work . 96

.

6 Locomotion Enhancement via Arm Pushoff (LEAP) 97

6.2 TheExperiment . 98
6.3 Fabrication . 99
6.4 Inertial Sensing Unit . 99
6.5 Futurework . 101

. 6.1 Introduction 97

7 Adaptive Control of LEAP 103
7.1 Introduction . 103
7.2 ControlLaw Development . 103
7.3 Adaptation Law . 106
7.4 Adaptation Law I1 . 106
7.5 Futurework . 108

Bibliography 109

iv

List of Tables

2.1 State Transition Table . 14

6.1 Fabrication Completed , 99
6.2 Angular Rate Sensor Specifications Model ARS-C131-1A. 100
6.3 Linear Servo Accelerometer Model 4310 . 101

V

e

0

List of Figures

2.1 Systemstructure . 8
2.2 Structure Chart Key . 9
2.3 State Transition Graph . Catch Task . 13
2.4 Synchronization Type Comparison . 15
2.5 Strategic Controller Software Structure . 17
2.6 Overall State Transition Graph for Experimental System 17
2.7 Automatic Mode Display with Previewing “Ghost” 22
2.8 Manual Mode Display with Virtual “Spring” 23
2.9 Example User Interface Screen Display . 24
2.10 Installation Demonstration Example: 1 .
2.11 Installation Demonstration Example: 2 .
2.12 Installation Demonstration Example: 3 .
2.13 Installation Demonstration Example: 4 .
2.14 Object Free-Body Diagram . 35
2.15 Desired Object Behavior .
2.16 Controller Structure . 38
2.17 Controller Block Diagram .
2.18 Intuitive Alternate Controller .
2.19 Experimental Dud Arm Manipulator System
2.20 Test Trajectory . 42
2.21 PD Controller Slew Performance . 43
2.22 Coordinated Endpoint Impedance Slew Performance
2.23 Object Impedance Controller Slew Performance
2.24 Estimated External Force . 45
2.25 Right Arm Force Sensor Output . 46
2.26 Remote Center Rotation .
2.27 Estimated Force for Remote Center Rotation 47
2.28 Vision System Software Structure .
2.29 Example Target . 51
2.30 Viewer Screen Dump .
2.31 New point identification algorithm . 53
2.32 Parallax Correction . 54
2.33 Body Identification Algorithm .

25
25
26
26

36

39
40
41

44
45

46

50

52

56

vii

PRECEDLNG PAGE BLANK NOT FILMED

2.34 Body Position Calculation .
2.35 Typical Point Position Calculation Noise .
2.36 Observer Performance . 60
2.37 A Two-handed Catch .
2.38 Gripper Schematic . 61
2.39 Catch Trajectory Matching . 62

Schematic diagram of satellite robot onboard gas subsystem
4.2 Distributed Realtime Computer System Network Topology 80

modelling .

manipulator motion under closed loop control

jectory shownabove . 87

57
59

61

4.1

4.3

4.4

4.5

78

Free body diagram of space robot indicating nomenclature used for dynamic

Time-lapse plot from simulation of space robot executing combined base and

Thruster and torque motor time histories used in executing space robot tra-

82

86

5.1 Modelling of single-arm vehicle . 91
5.2 Schmitt trigger used to determine thruster forces 93
5.3 Path found by the Visibility Graph path planner
5.4 Schematic of control loop . 95
5.5 Simulation of two-vehicle object manipulation 95

94

6.1 The LEAP Demonstration . 98

7.1 Tracking error using the control law . 105
7.2 Adaptation law parameter estimates . 107

I

viii

a ORIGINAL PAGE IS
Of POOR QUALITY

e

0

0

Chapter 1

Introduction

kraJd& u n d e r w c t i o n of Professor Robert H. C a n w T h e goal of this research is
to develop and test new control techniques for self-contained, autonomous free-flying space
robots. F'ree-flying space robots are envisioned as a key element of any successful long term
presence in space. These robots must be capable of performing the assembly, maintenance,
and inspection, and repair tasks that currently require astronaut extra-vehicular activity
(EVA). Use of robots will provide economic savings as well as improved astronaut safety
by reducing and in many cased eliminating the need for human EVA.

The focus ofolilr werk is to develop and carry out a set of research projects using labom
tory models of satellite robots. These devices use air-cushion-vehic

.&n Lurrent work is divided into six major projects or research are= - e a-

d a n alter-

d

. .

Fixed-base cooperative manipulation work represents our initial entry into multiple arm
cooperation and high-level control with a sophisticated user interface.

The floating-base cooperative manipulation project qtriv&? to transfer some of the RH
technologies developed in the fixed-base work onto a floating base. T- e

The global control and navigation experiment seeks to demonstrate simultaneous control

a 1

I

2 CHAPTER 1. INTRODUCTION

of the robot manipulators and the robot base position so that tasks can be accomplished
while the base is undergoing a controlled motion.

I rt Multiple-vehicle cooperation pro ' e c t t
to demonstrate multiple free-floating robots working

in teams to carry out tasks too difficult or complex for a single robot to perform. A-
under

C l h r e e . -c-cr
The LEAP a c t i v i t y i i g o a l s p r o v i e a viable

alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its
manipulators to throw itself from place to place. T: ' htly
r e s - - .

L d
Because the successful execution of the LEAP technique requires an accurate model of the
robot and payload mass properties, it was deemed an attractive testbed for adaptive control
technology. a ms .
T l roject-by-

* .

Is! - goalofskiegEejecks h

t w v w

l
. .

. .

. .

Q

Chapter 2

Fixed-Base Cooperative
Manipulation Experiment

S t a n Schneider

2.1 Introduction

To accelerate our development of multi-armed, free-flying satellite manipulators, we have
developed a fixed-base cooperative manipulation facility. Although the manipulator arms
are fixed to a rigid base, they manipulate free-flying objects. This facility allows us to
experiment quickly with cooperative algorithms, expediting our study of space-based ma-
nipulation and assembly. This section describes the progress made to date in our research
on cooperative manipulation.

2.1.1 Progress Summary

During this report period, much of the theory developed over the last three years was
implemented. In particular, the object impedance control, state table programming, real-
time vision, and graphical user interface modules were installed and demonstrated.

Our initial research effort into cooperative manipulation is now complete. The vision
system is capable of identifying, tracking, and capturing a moving object. We have demon-
strated high-performance cooperative control, both in “free” motion, and when the manip-
ulated object is in contact with its environment. Automatic capture, docking (connector
insertion), withdrawal, and throwing functions are supported by the strategic command
module. The mouse-based graphical user interface allows an operator to direct the activ-
ities of the system at the conceptual level. The operator commands only object motions;
the arm actions required to effect these motions need not be specified. This design allows
simple specification of many tasks; in particular, simple assembly operations can be easily
accomplished. Each of these functions has been fully demonstrated.

More specifically, the major accomplishments of the period March, 1988 through Au-
gust, 1988 were:

3 <
3 ‘,

4 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

0 Implemented and demonstrated dual arm cooperative object impedance control. This
was shown to be an effective dynamic control methodology for cooperative manipu-
lation.

0 Implemented the real-time vision system point tracking algorithm.

0 Developed algorithms for identification and tracking of moving objects. Demonstrated
vision-guided dual-arm intercept and capture.

0 Implemented and demonstrated a novel robot programming methodology-state table
programming. This forms the heart of the strategic control module.

0 Designed and installed an interactive graphical user interface to provide conceptual
level system command.

0 Demonstrated the operational cooperative system under user control.

Not all of our proposed approaches were successful; the client-server real-time software
structuring concept [6] was finally abandoned as impractical. A simpler-and more suc-
cessful-software structuring approach was implemented; it is outlined below.

2.1.2 Background: Research Goals

Space construction requires the manipulation of large, delicate objects. Single manipula-
tor arms are incapable of quickly maneuvering these objects without exerting large local
torques. Multiple cooperating arms do not suffer from this limitation. Unfortunately, co-
operative robotic manipulation technology is not yet well understood. The goal of this
project is to study the problem of cooperative manipulation in a weightless environment,
and to demonstrate experimentally a cooperative robotic assembly.

Four aspects are to be studied in detail:

0 The dynamic control of multiple arm manipulation systems

0 The utilization of video “vision” data for real-time control

0 Real-time software structuring for cooperative robotic systems

0 User interfacing: the acquisition and utilization of strategic commands

2.2 Facility Development

2.2.1 Mechanical Hardware

The fixed-base cooperation facility consists of a pair of two-link manipulators, affixed to
the side of a “small” granite table (4 feet x 8 feet). Each arm is of the popular SCARA
configuration-basically anthropomorphic, with vertical-axis, revolute “shoulder” and “el-
bow” joints. The arms are capable of motion in the plane of the table, and can interact

e

0

0

e

0

2.2. FACILITY DE VEL OPMEN T 5

with objects floating on air-cushions on the granite surface. This facility is essentially
complete-no major additions or modifications occurred during the report period.

2.2.2 Computer System

Our real-time computer system combines a proven UNIX development environment with
high-performance real- time processing hardware. Motorola 68020/68881 single board pro-
cessors running the pSOS real- time kernel provide inexpensive real-time processing power.
VME bus shared-memory communications permit efficient multiprocessor operation. The
real-time processors are linked, via the VME bus, to our Sun/3 engineering workstations.
Thus, we benefit from Sun’s superb programming environment, while providing the ca-
pacity for relatively cheap, unlimited processing expansion. This system is also essentially
complete. Only evolutionary modifications to the various software modules were performed
during the report period.

2.2.3 Calibration

During the last period, automated sensor calibration programs were developed for: joint
angular positions, joint pseudo-velocities, endpoint forces, and motor torque outputs. Dur-
ing this period, the vision system was installed as a major new sensor system. This posed
two new calibration problems: calibration of the vision system itself, and sensor fusion with
the endpoint information provided by the joint angle sensors. Since these are both logically
vision system issues, they are discussed in the vision system section below.

*

e

6 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

2.3 Multiprocessor Real-time Software Environment

During this report period, the client-server real-time structuring methodologV described in
the original proposal was abandoned. A simpler-and more successful-software structur-
ing approach was implemented. This section discusses the reasons for this action. This
section also presents an overview of the software structure as implemented in the “final”
operational system.

2.3.1 Real-time software environment

Each real-time processor runs the pSOS kernel. The pSOS kernel is a small, fast, priority-
driven multi-tasking kernel. The features used most heavily by our software structure are
the multi-tasking scheduler, the inter-process message facility, and the event-signal facility.
The interested reader should consult [35] for details.

2.3.2 Client-Server Structuring

According to the client-server paradigm, the real-time software is divided into small, in-
dependently executing modules, each with a well-defined function in the controller data
flow path. The modules communicate their data to other modules via message passing.
For example, one processor (the server) might be assigned to read and process the analog
inputs. This module is responsible for pre-processing the incoming data, and maintaining
its integrity. Client processes-possibly running on a remote CPU-request information of
the server when they require it. The pre-processed data is then sent via a message to the
client process. A significant advantage of this scheme is that changes to the analog (server)
environment are well isolated from the client code-the system is highly modular.

As noted in the previous report, the biggest disadvantage with this structure is the
loading on the server-the processor responsible for reading and pre-processing the analog
inputs. The fixed-base facility has a three-processor computer system. The processing load
divides naturally as one processor to calculate each arm’s dynamics, etc., and one processor
for “system” level tasks, such as vision, object dynamics, etc. With the vision system and
the object impedance controller active, the “system” processor is already heavily loaded.
Using it also to pre-process sensor data is simply not reasonable.

A second disadvantage is the communication overhead incurred. As noted in the last
report, we were able to reduce this to an acceptable level. However, the shared-memory
structure outlined below proved far superior regardless. The authors feel that client-server
structuring is still attractive for some situations: when independent processing power is
available to dedicate to sensor processing, sensors require significant pre-processing, small
delays in data presentation are not significant, and the extra overhead is tolerable. With
the exception of the vision system, none of these conditions exists for the processing Ioad of
this system. It was judged better to adapt the vision system to a simpler structure, rather
than diminish the performance of the entire system.

e

2.3. MULTIPROCESSOR REAL-TIME SOFTWARE ENVIRONMENT 7

e

e

e

0

2.3.3 S hared-Memory Structuring

Instead of the client-server data structuring, a much simpler global shared-memory struc-
ture was adopted. Under this paradigm, the controller data flow paths are always executed
by a single stream of execution, on a single processor. Thus, there is no data communica-
tion overhead within the loop. Data communications to external modules must still occur;
these are accomplished via simple global data structures. An interprocessor lock gate is
provided with each structure. Each communicating module is responsible for obtaining the
lock before accessing the data.

Note that command or temporal information flow is not efficient with shared data struc-
tures. This type of communication is handled via communication “channels,” described
below.

This scheme has several disadvantages. First, it obscures the responsibility for main-
taining the integrity of the data. This did not prove to be a significant problem for our
system. A more secure system (although not nearly as secure as the client-server system)
would result from installing active (i.e. callable subroutine) modules in each processor to
mediate the data access. This would result in some additional overhead; it should not be
significant.

Second, the shared-memory scheme is less modular. Changes to any part of the global
data structure affect every module that accesses any part of the structure. Worse, any
module that “breaks the rules” and, for instance, gets the lock and holds it, can bring the
whole system a halt. Of course, both these effects could be ameliorated by installing active
mediation modules.

This scheme does, however, have one redeeming quality; it’s fast. If each accessing
module keeps its access time small, communication overhead is practically eliminated. It
also fits the processing load of the fixed-base facility nicely-the “arm” processors are
relatively lightly loaded compared to the “system”processor, and can easily handle the
additional load of reading and processing the analog inputs.

2.3.4 Inter-processor Communications

While simple shared-memory structures are sufficient for data communication, other types
of information must also be transmitted. For instance, temporal information (“the data
in structure xxx is ready now”), and commands (“switch to independent arm operation
mode” or “catch that object”) are difficult to convey with global data structures. To handle
this type of information flow, we have also installed an inter-processor (or inter-process)
communications facility, called “channels”. A channel is simply a byte-stream two-way data
flow-analogous to Unix “sockets” or “pipes”-with optional interrupt notification.

Channels can be created by any process (on any processor) in the system, and attached
(opened) by any other process. Two mechanisms are available for a receiving process to
obtain data from a channel. First, if the data is temporally urgent, the receiving process
can indicate that it will monitor a pSOS kernel “event”, and check the channel immediately
when the event (and its associated interrupt) occurs. The sending process can then issue
a special command to the channel to cause the receiver to be activated. Second, the

8 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Dynamic Dynamic
Controller Controller

receiver may simply poll the channel at its leisure to determine if any new data is present.
This paradigm allows the receiver to control the rate of data flow. Combinations of these
techniques are explicitly allowed; the receiver may, for instance, wait for an event, but
only for a fixed period of time. The sender thus has the option of sending messages in the
background or indicating that an urgent need has arisen at any time.

2.4 Software structure

This section outlines the system software structure. The reader should refer to Figure 2.1
throughout this discussion.

The cooperating arms application software consists of four major modules. The modules
are: dynamic control, vision, strategic control, and user interface. Execution of these
modules is spread over three real-time 68020 processors, and the Sun graphical workstation.

The dynamic control module is responsible for reading the various sensors and calcu-
lating the actuator torques required to produce the desired system behavior. This module
is further divided into three sub-modules as shown in Figure 2.1: the object impedance
controller, and the two arm dynamic controllers.

The vision module is responsible for interpreting the incoming video pixel data, and
disseminating the object and arm endpoint positions.

The strategic control module is responsible for the overall command of the system. It
fields high-level requests from the user interface module, and translates them into sequences
of primitives that the dynamic control module can implement. It also monitors the various
conditions and activities of the system and directs appropriate response actions.

Finally, the user interface collect conceptual-level commands from the operator, and
communicate them to the strategic controller.

t
Use2

Strategic
Controller

Figure 2.1: System Structure

2.4. SOFTWARE STRUCTURE 9

0

e

0

0

2.4.1 Structure Chart Format

More detailed analysis of each module's structure is presented with the module descriptions.
below. The design is multi-process in nature; concurrency is employed to help modularize
the code and permit asynchronous operation. To aid the reader in understanding the
inter-process relationships, software structure charts will be presented in each section.

The structure charts utilize a common shape-encoding, presented in Figure 2.2. Rounded
corner boxes denote any general "module", any set of related subroutines. Module routines
may be accessed by many processes asynchronously. Square boxes with rounded tops denote
independently executing processes. Rounded tops with the letters "ISP" indicate execu-
tion flow within interrupt service procedures. Named square boxes indicate inter-processor
shared memory structures.

Example meanings of arrows connecting the boxes are also indicated in Figure 2.2. The
arrows may have different meanings in different contexts '. For instance, an arrow into a
module box indicates a subroutine call, a transaction representing flow of both information
and execution control. An arrow out of a process box indicates a routine call-out. Arrows
into process boxes indicate asynchronous information transfers: messages being sent to the
process or the signaling of an event. Arrows into data structures indicate writes into the
structure, arrows out of the structure indicate data reads. '

Routine
MOdUlC call-in

proass
AsyncA~~cmous
Acass (msg. event)

httrmpt
Service
procedure

S h a d structure Data TI-, Write Data

Figure 2.2: Structure Chart Key

'This is unfortunate, but multiple arrow types make the figures very complex.

10 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

2.5 Strategic Control

The strategic control module was also implemented during this report period2. The strate-
gic control module is based on a finite state machine programming technique. It provides
the user interface with a set of simple automated commands, allowing it to perform many
simple tasks.

2.5.1

The purpose of the strategic controller is to provide an interface between the conceptual
commands provided by the user interface3 and the dynamic control module. An effective
strategic control methodology has several important features: it encourages modular pro-
gramming design, it allows simple specification of the actions required to complete the
desired tasks, and it facilitates intuitive task programming. A strategic control module for
a cooperative system must also be able to synchronize the motions of the manipulators.
In addition, conceptual requests should be communicated as simply as possible, and the
results of those requests shouid be reported promptly.

To be effective, the strategic controller must have access to a large variety of system
data and activities. It must monitor the motions of the various objects in the workspace,
control the activities of the manipulators, and interact with the conceptual interface to the
user. In short, although strategic control clearly fits into the command hierarchy between
dynamic control and conceptual command, from a dabflow perspective it spans all the
levels.

Strategic Control as a Module in the Larger System

2.5.2 Traditional Robotic Programming Techniques

Traditional robot programming takes one of three forms: teach programming, specialized
robot programming languages, and explicit use of general-purpose languages. This section
examines some of the merits and problems associated with each method.

Teach programming Teach programming requires the programmer to move the robot
through the desired motions. The system then “plays back” the sequence of motions.
Teaching is only effective for position control tasks. It is impossible to specify synchro-
nization with other moving obstacles or manipulators. Several attempts to improve the
means of teaching have been made, including one with cooperating robots [15]. These all
still suffer from the basic weakness: it is very difficult to specify complex motions, time
dependencies, and interacting conditions.

Special robot programming languages Several robot-specific programming languages
are in use. Examples are VAL [33] and IBM’s AML [38]. These languages allow the
programmer to specify the manipulator’s motion as a series of instructions. Motions that
require waiting for a condition must be programmed as a loop, such as:

‘The underlying theory was developed over the last few years.
30r an artificially intelligent command module

e

e

e

0

e

e

0

a

a

0

2.5. STRATEGIC CONTROL

repeat {

} until (Force X exceeds 2 Newtons)
Move in the -X direction 0.01 meters;

11

This is a considerable improvement in the types of tasks that can be programmed; force
conditions are also specifiable. Note that force control is not available; the best that can
be done is to check for force levels that exceed given values.

Multiple conditions pose a more significant problem. The only recourse with standard
programming techniques is to test for aJl conditions in the loop, as in:

repeat {

} until ((Force X exceeds 2 Newtons) or (X < 0.2 meters))
Move in the -X direction 0.01 meters;

This quickly becomes unwieldy. If, for example, a sequence of moves must be completed
in a limited period of time, each move in the sequence must incorporate the time-out test
in its execution loop. As the tests become more sophisticated-and the sequences of moves
more complex-this results in very confusing, hard to maintain software. An even more
vexing problem is created if the condition test takes a long time to execute. The programmer
is left with two bad choices: execute the test every loop and slow the motion considerably,
or execute it every nth loop (another messy addition to the loop code), and produce uneven
motion.

IBM’s AML language does allow the setting of overall error condition tests. If the error
condition arises, a special code segment is executed to handle the condition. Unfortunately,
normal occurrences of multiple pending conditions must be dealt with as above; there is no
facility for changing the flow of execution asynchronously.

The LM robot programming system’ [23] implements a considerably more powerful set
of constructs to support concurrent execution. A facility is provided to start a motion while
the “main” execution flow continues. Synchronization primitives permit changing a motion
in progress, or waiting for completion. In addition, LM defines a “guarded command”
structure to address the multiple pending conditions problem. A parallel-execution facility4
is also provided. The intent is to provide the ability to specify multiple programs for multiple
robots.

While it is clear that LM provides a large set of parallel programming facilities, it does
not provide the programmer with a simple structure to assist in managing the concurrency
in the system. An integrated system involving multiple manipulators, real-time vision, and
interactive operator control is a complex, event-driven environment. With a fundamentally
sequential underlying programming paradigm, the burden of managing these asynchronous
events is left to the programmer. For instance, “guarded commands” allow changing of the
course of a trajectory. However, to change the flow of execution of the “main” program when
an outstanding pending condition occurs requires sprinkling conditional tests throughout

~ ~~~~~~ ~~

‘This implements a “cobegin { <blocklist> } coend;” structure, similar to Concurrent Pascal.

12 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

the “main” execution flow.
In addition, while the multiple-parallel-block execution structure is appropriate for coor-

dinating multiple robots, it is considerably less attractive for execution of a tightly-coupled
parallel control algorithm-such as a cooperative dynamic controller. Switching to a coop-
erative control mode upon the occurrence of some event is particularly awkward.

In summary, synchronization of multiple cooperating manipulators handling a single
object is very difficult with traditional robot programming languages. Although a few
attempts have been made [43], they consider only coordinated position control policies,
and thus are of little practical use.

General-purpose language programming There have also been several implemen-
tations of motion control libraries written to facilitate programming in general-purpose
languages [141. These libraries usually provide useful data structure definitions-such as
“transform”-and motion primitives to allow specification of motion sequences.

Although some concurrency issues are addressed, these libraries do not directly aid the
programmer in utilizing the concurrency in the system. All still rely on a basically sequentid
user-code execution model. In RCCL [14], for example, the robot program consists of
one main “user” process, and one background “control-task” process. The “user” process
executes a sequential series of instructions, and communicates them to the “control-task”
process, executing at the control loop sample rate. The only synchronization provided is
via a “waitfor” primitive; no support for independently executing user-written processes is
provided.

As a result, these implementations do not alleviate the multiple pending conditions
problem. None provide support for multiple loops, nor multiple sample rates.

In addition, no support is provided for direct interfacing with other large real-time
modules, such as sophisticated dynamic controllers, or vision systems5. These systems are
naturally concurrent in nature; complex asynchronous interactions must be managed. A
sequential execution stream model can not, for instance, deal effectively with multiple-
arm synchronization, especially if the arms are running different programs T different
processors.

2.5.3

This section presents an alternative programming methodology, referred to as state table
programming. It is a form of explicit programming in a general-purpose language, but
provides a structure the previous attempts lack.

TIL? state table programming technique provides a coherent structure to guide the
programmer in producing code that is easily interfaced to other real-time system modules.
It directly exploits the facile multiple-process generation and communications provided
by modern real-time kernels. In fact, management of multiple asynchronous processes is
central to the structure of the system; the programmer is actively encouraged to divide the

The state table programming technique

’There are several integrated vision positioning and inspection interfaces [42,24], but they do not address
the real-time vision issues.

2.5. STRATEGIC CONTROL 13

0

0

problem into small, independently executing programs. In addition, it is based on a very
intuitive task description technique.

The state table programming technique is not a replacement for a library of robot control
routines. Trajectory generation utilities and world modeling utilities are still required. The
technique merely provides a frame-work that weaves the multiple streams of execution in
the system into an easy-to-use structure.

State transition graphs State transition graphs provide a simple, intuitive means of vi-
sualizing the sequence of actions required to effect a task. A “state” is defined operationally:
the system is always in some state, a new state is entered whenever the set of conditions
(stimuli) the system can process changes. A state is usually characterized by the system
performing a single operation, and waiting for some indication of its completion6. State
transitions are indicated by arrows labeled with the event that causes the transition. When
an event occurs, a transition routine is executed. The result of that routine determines the
next state entered.

For example, Figure 2.3 presents a simplified series of steps required to catch a moving
object. The system starts out in the “Idle” state. The receipt of the “Acquire” stimulus,
presumably sent from the conceptual level, causes the system to enter one of two states:
“Waiting” if the object is out of reach, or “Reaching”, if not. While the system is in the
“Reaching” state, the arms are executing an intercept trajectory. When the trajectory
completes (“TrajComplete” event) , the arms track the object until the gripper endpoints
match the targeted grip ports precisely. At this point, the system enters the “Gripping”
state while the grippers engage. Finally, the catch is complete, and the “Manipulating”
state is active until a “Release” command is received.

Figure 2.3: State Transition Graph - Catch Task

‘The example below should help clarify this concept.

14 CHAPTER 2. FIXEDBASE COOPERATIVE MANIPULATION EXPERIMENT

State Stimulus Transition Routine Next States
Idle Acquire CheckRange Reaching Waiting
Waiting Time CheckRange Reaching Waiting
Reaching TrajComplete CoordinatedMode Tracking
Tracking InterceptOK GrippersDown Gripping

Time Abort Acquire Idle
Gripping Time CooperativeMode Manipulating
Manipulating Release Grippersup Idle

Table 2.1: State Transition Table

This is a rather simple example. Much more complex series of actions-with multiple
branches-are easily representable.

The state table programming technique The state table programming method pro-
vides c simple means to implement the series of actions indicated in the state transition
graph. A state table is constructed directly from the information in the state transition
graph. Associated with each state are the events (stimuli) understood in that state. Each
stimulus has a transition routine, and a list of “next states” that will be entered based on
the value returned by the transition routine.

The state table entries corresponding to the states of Figure 2.3 are presented in ta-
ble 2.1. The “Idle” state in this example understands only the “Acquire” stimulus. When
“Acquire” is received, the routine “CheckRange” will execute. If “CheckRange” finds the
object to be “in range”, then “Reaching“ will be the next,state, otherwise, the next state
will be “Waiting”. Note that the same transition routine, “CheckRange”, can be used in
several different contexts. Its job is simple: check on the location of the object, and report
the outcome. Note also that multiple pending conditions are handled very naturally, for
example, the “Tracking” state waits for either “InterceptOK” or “Time”.

Stimuli may be generated by any of the modules of the system, but most originate
from one of two sources: command stimuli from the user interface, and condition-event
stimuli from independently executing “helpers”. The “Acquire” and “Release” stimuli
are examples of the former. Several examples of the latter also occur in table 2.1. The
“Time” stimulus is created by a simple process that simply sleeps for a specified time before
sending its message. The “InterceptOK” stimulus is sent by a process that executes in the
background, and simply checks to see if both arms match the gripper port positions. Other
helpers (not shown in the table) perform “safety checks”; for example, the “OutOfRange”
stimulus is sent by a process that checks every so often to incure that the object being
acquired is not suddenly moved out of range.

Unexpected stimuli may be handled in either of two manners. First, if no stimulus
matches the incoming stimulus, a default error handling routine is executed. Second, the
special stimulus “AnyStimulus” may appear as the last entry in any state’s table entry. All
stimuli match this entry. The transition routine associated with “AnyStimulus” may then
process the unexpected stimulus as required.

0

2.5. STRATEGIC CONTROL 15

0

0

0

a

e

Advantages of state table programming State table programming provides an at-
tractive basis for a strategic control module.

First, i t strongly encourages modular program design. Each of the state transition
routines defined above perform a single, well-defined function. Multiple pending conditions
are easy to handle; in fact, they are encouraged by the stimulus list paradigm. The condition
testing “helper” routines are also encouraged to be independent modules, with a single
purpose. Note that even complicated tests may be performed at a slower rate as background
tasks, since they can execute asynchronously. Exception handling is also simplified, as
exception procedures can easily be specified on a state-by-state basis.

Second, the state table method provides an intuitive programming environment. State
transition graphs are a very natural means of describing a task. Since they also provide
a quick, visual overview of the entire program, they are easy to understand and modify.
Translating the graphs to the state table format is also simple; the table format makes
changes simple as well.

Third, synchronization of multiple manipulator actions, or of any concurrent events, is
natural; all events are treated as asynchronous, and are handled within the framework of
the implementation. Both polled conditions and transient events can be handled easily.
Conditions that are more easily tested periodically can be polled by a simple “helper”
process that sends a stimulus when the synchronizing event occurs. Conditions that are
more clearly modeled as discrete events can be handled by defining synchronization states.
An example of both types of synchronization is depicted in Figure 2.4. In both cases,
the state table method provides the programmer with a natural means of specifying the
relationship.

I

I

SyncAB

I

Figure 2.4: Synchronization Type Comparison

Finally, the stimulus event model directly supports a high-level request/response type
interface. This has proven to be a very attractive paradigm for conceptual-level command

16 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

interaction. The user interface section discusses this in detail.

Disadvantages of state table programming State table programming does have costs,
mostly because it naturally produces multiple-process programs. Understanding and debug-
ging a multiple-thread-of-execution program requires some exposure to operating system
and concurrent programming principles. This is unfortunate, but in some sense unavoidable;
a complex robotic system is a naturally concurrent system. Application of the hard-learned
lessons of Computer Science is entirely appropriate.

Also, events from various sources arise asynchronously, and must be woven into a syn-
chronous stream of state transitions. Fortunately, modern message-passing real-time kernels
provide exactly this service; if the stimuli are sent as messages to a state machine driver
process, the message queuing facility performs the synchronization.

2.5.4 Implementation

This section describes the strategic controller implementation for aur cooperating manipu-
lator system.

Software Structure The strategic controller structure is presented as Figure 2.5. The
heart of the system is the Finite State Machine (FSM) driver. The FSM driver is an
independently executing process. It acts as a central command post, receiving messages
from many sources in the system and taking the appropriate action. The user interface
daemon sends command stimuli from the user interface. The arms daemon may report
conditions detected by the arm dynamic controllers. The various helpers exist solely to
report specific conditions when they occur ’. Two helpers are shown: the time helper simply
reports time-out ‘events, and the range helper checks for unexpected object positions.

Each message contains a stimulus code; the FSM driver uses that code to reference the
state table, and select a state transition routine to execute. The state transition routines
perform the actual work: they change controller modej, start and stop helper processes,
and interact with the trajectory generation module.

State transition graph Figure 2.6 depicts an overview of the state transition graph
of the cooperative arms system. There are three states shown: Idle, Manipulating, and
Inserted. These three are the only states that the system can remain in for an indefinite
amount of times. “Idle” corresponds to the arms at rest under independent control. When
the arms are cooperatively moving an object in free space, the system is in the “Manipu-
lating” state. Finally, “Inserted” state corresponds to the arms holding the object with a
connector inserted into some other object, either just after completing the connection, or
just prior to disconnection.

Seven major tasks are supported. They are:

‘Helpers are transient; they are only active when needed.
‘Under normal operation.

2.5. STRATEGIC CONTROL 17

a

e

e

Control Mode.
Trpnsitian
Routines Trajectory IF u-

c) to
OIC

Figure 2.5: Strategic Controller Software Structure

Figure 2.6: Overall State Transition Graph for Experimental System

18 CHAPTER 2. FHED-BASE COOPERATIVE MANIPULATION EXPERIMENT

0 A q u i e performs the object capture

0 Swap exchanges the arm grip positions

0 Insert performs a connector insertion

0 Withdraw unlatches the connector

0 Throw releases the object on a controlled trajectory

0 Home releases the object and returns the arms to their idle positions

0 Trajectory supports point-to-point cooperative motions.

All these except “Trajectory” require a “chain” of state transitions; they are multi-step
operations.

2.5.5 Future Additions

The addition of callable state sub-chains would add considerable power to the state pro-
gramming implementation presented here. The implementation above actually uses several
sub-chain “calls”; for instance, the insert chain calls the “swap” sub-chain if the grip must
be re-adjusted. These itre implemented in the current version as simple “test and branch”
code segments. A more general facility would greatly facilitate sub-chain usage.

19

0

2.6. USER INTERFACE

2.6 User Interface

During the last report period, functionality of the graphical user interface was expanded
considerably. The user is now able to direct many system activities at a conceptual level.
For unexpected or unusual tasks, manual manipulation modes are still fully supported.

e

I

a

a

e

e

2.6.1

The purpose of the user interface is to gather conceptual commands from the user, and
communicate them to the strategic control module.

The most important function of the user interface is to present a clear and intuitive
means for the user to specify his wishes. Simple or often repeated motions should be
automated, or at least reduced to a few short steps. The progress of the system in executing
those commands should also be displayed in a simple, clear manner.

The user interface and the strategic controller are quite inter-dependent; design philoso-
phies adopted in one directly effect the effectiveness of the other. For instance, the set of
commands supported by the strategic controller should be designed to provide a powerful
set of primitives to accomplish most of what needs to be done. The user interface then
need only provide a simple means of specifying those command sequences.

The User Interface as a Module in the Larger System

2.6.2 Tele-operation versus Autonomous Control

Tele-operation and “autonomous” operation are the two main approaches to robotic miG
nipulation direction in the literature. In this section, we compare and contrast these ap-
proaches, and discuss their merits.

Tele-operation Tele-operation is defined here as control with the operator “in the loop”.
The operator is responsible for directly controlling the system activities at all times. Tele-
operation has two main advantages. First, since the system is under direct user control,
it is strategically capable of performing any operation that it can physically execute. This
makes tele-operation very flexible. All the reasoning abilities of the human operator are
immediately available. Second, the sensor and sensor processing systems can usually be
quite simple. The human user is amazingly adept at gleaning detailed system information
from whatever sensors are easily available.

Unfortunately, tele-operation also has several disadvantages. Since the user is in direct
control of each operation, it is difficult to get assistance from the computer. Even simple,
repetitive operations must be done manually. Precision work is difficult, or not possible.
Operators must usually train extensively, and then devote their complete attention to the
system operation. Finally, since the operator has complete system control, it is difficult to
build safe-guards into the system operation. Operator error is difficult to guard against.

’

Autonomous operation Autonomy is difficult to define. Perhaps the best definition
is by the commands it recognizes; a system is more autonomous if it can accept higher-
level conceptual commands with little supervision. It is less autonomous if it must be

a

20 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

constantly directed. Thus, we can characterize a system’s degree of autonomy by the types
of commands it requires, and how often it requires new user input.

The advantages of higher degrees of autonomy are obvious: the user is relieved of the
mundane decisions, and can concentrate on more complex strategic issues. Non-expert users
are able to utilize at least the simplest operational capabilities of the system. Also, since
much of the system capability is specified before its actual use, the experience and care
of the system designer can be used to program many actions. Thus, precise or dangerous
operations can be directly assisted by the computer control system.

Disadvantages of high degrees of autonomy are also clear. Foremost, complex au-
tonomous actions require a level of artificial intelligence (AI) proficiency that is not cur-
rently available. Alternatively, some autonomous actions can be pre-programmed. This is
quite effective for simple tasks, but rapidly becomes overwhelming when the tasks become
complex. It is also impossible to pre-conceive of all possible combinations of tasks.

Our approach We have tried, in this research, to take a centrist approach. The simple,
repetitive tasks required to effect an asseiably-acquiring a part, fastening a connector,
etc.-are pre-programmed, and therefore quite autonomous. More complex motions can
then be specified as sequences of these actions. In recognition of the need for unanticipatable
actions, a manual operation mode is also provided. This combination should allow the
completion of most assembly tasks.

Note that no attempt has been made at artificially intelligent assistance. This is inten-
tional; we are attempting to create an environment where the user is tapped only for his
reasoning and analysis abilities. This allows the study of the division of labor between pre-
programmed primitives and reasoned actions. It is our contention (and hope) that this will
also provide insight into a natural interface for AI interaction in the future, as a (perhaps
gradual) replacement for the user’s reasoning capacities.

2.6.3

The user interface must communicate with the vision system and the strategic controller.
However, these modules execute on different processors. The graphical user interface exe-
cutes on the Sun workstation, while the others reside on one of the real-time processors.

A special real-time process, the “user daemon”, exists solely to arbitrate communi-
cation requests between the real-time modules and the user interface. The user daemon
communicates with the user interfaice over a “channel” (see section 2.3.4) via the VME bus
shared memory. Although in reality all communications pass through the user daemon,
this transaction is transparent to the underlying modules. The remainder of this section
will describe the communications as if they were direct.

Interface to the Real-time System

2.6.3.1

The user interface interaction with the vision system is very simple. Whenever the user
interface is “idle”, it sends a request to the vision system for a screen update. The vision
system then simply sends a list of the status of all the objects currently being tracked. These

Interface t o the vision system

e

a

e

e

e

a

2.6. USER INTERFACE 21

positions axe used to update the user screen display. Thus, the user is always presented
with a current representation of the manipulator’s environment.

2.6.3.2 Interface to the Strategic Controller

This section presents the communications protocol between the user interface and strategic
controller.

The request / response model The nature of the protocol is a request/response pat-
tern; the user interface requests an action, and the strategic controller returns a status re-
sponse when the action completes. This very simple (and obvious) communication paradigm
allows considerable flexibility.

The design of the strategic control module directly supports this model. User requests
are simply passed directly to the finite state machine driver in the same manner as any
other system stimulus. Asynchronous requests do not pose a special case, since all stimuli
are assumed to be asynchronous. Typically, each stimulus causes one “state chain” (see
section 2.5.4) to execute. The responses to the user interface are the responsibility of the
state transition routines that exit the chain. Since there are usually only a few of these-
one for a successful exit, and one for each type of error exit-the status reporting code is
very simple.

An example: acquire A typical example of a request cycle is presented by the “Acquire”
task. To initiate an acquire operation, the user simply “clicks on” one of the objects
displayed on his screen. This action sends the name of the object, along with an acquire
stimulus, to the strategic controller. Consequentially, the acquire task chain is executed.
When the acquire operation is complete, an “object acquired” status message is returned.
If the stimulus is not recognized by the current system state, or an error occurs during the
operation, an “acquire failed” status is returned.

2.6.4 Modes of Operation

The user interface supports two modes of operation: automatic mode and manual mode.
The user can select either mode by clicking on a button displayed on the screen. The modes
effect only the manipulation functions of the system; the acquire and release functions are
identical.

Automatic mode The purpose of automatic mode is to facilitate the most common
operations. When automatic mode is active, two “views” of the object being manipulated
are displayed. The actual position of the object is displayed, as usual, by a solid-lined
figure. In addition, a “desired” position of the object is drawn with dashed lines. The user
can move the broken-line (ghost) object by clicking on it and dragging it around the screen.
A typical portion of a user display is shown in Figure 2.7.

22 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERJMENT

L

Figure 2.7: Automatic Mode Display with Previewing “Ghost”

At all times, the ghost object represents the state that the system will attempt to
produce if the mouse button is released. It is thus a one-move preview of the new state of
the system.

The user interface also helps the operator maneuver the object. For instance, if a male
connector on the ghost object is moved near to a female connector on another object, the
ghost object “snaps” to the connected position. To perform a connection operation, the
user can simply point to any connector on the object, and drag it to the matching connector
in the workspace. The display will show the ghost object in the final connected position.
When the move is confirmed, the system performs the sequence of actions required to make
the connection, and reports the status back to the user. This allows quick, simple assembly
operations.

Manual mode It is not possible to anticipate all possible actions a user may want to
perform. To allow completion of actions not anticipated, a manual “tele-operated” mode
is available. In manual mode, no ghost object is displayed. Instead, manual mode allows
direct access to the object impedance controller. When an object is being manipulated,
the zero point of the impedance “virtual spring” is displayed. The user can cause motion
to occur by simply dragging the zero point around the screen. An example screen display
is presented as figure 2.8.

Previewing (ghost display) is disabled during manual operation; each operator motion
is transmitted immediately to the real-time system. The object will thus follow the user’s
mouse commands in real-time.

Facilities are also provided to move the object’s effective center of mass and change the
impedance gainss. This permits the user to exercise direct control of the system dynamic

‘See section 2.7 for details.

2.6. USER INTERFACE 23

a

a

0

e

Springzero

Figure 2.8: Manual Mode Display with Virtual “Spring”

response.

2.6.5 A brief operational description

This section presents a brief description of the user interface operation, and steps through
an example application.

A typical screen display A typical screen display is presented as Figure 2.9. The screen
is divided into three sections. The large lower section depicts the manipulator workspace in
iconic form; the activities of the system are visually displayed here. The upper left window
displays the system status. The first line in this window gives a short verbal description of
the systems activity. A system control panel forms the upper right section.

In the example shown, there are three objects in the vision system’s field of view.
Scooter is the floating air-cushion object. Scooter has two gripper ports, and two male
connectors. Multibase and Dock are both stationary objects with female connectors. The
arms are currently holding Scooter, as evidenced by the presence of the Scooter ghost
image. The user has just dragged the ghost’s right connector over to Multibase’s rightmost
connector. The status line indicates that the insertion of one of Scooter’s connectors into
one of Multibase’s connectors is in progress.

An example task: install a part An example of a typical task sequence is depicted in
Figures 2.10 through 2.11. For the sake of this example, suppose that “Multibase” is &xed
to a mobile robot, and represents a series of attach points for holding miscellaneous items.
“Scooter” is a part that is to be installed into a remote module, represented by “Dock”.

24 CHAPTER 2. FLXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

DOCK: -8.213 8.198 1.374 Mode: RCC snap: Shortcuts: Names:
Multlbsoo: 8.22) -8.587 1.571 @manual aoff aof f a h i d e

O a u t o @on O o n @shorn

Dhck

.-.
Figure 2.9: Example User Interface Screen Display

In Figure 2.10, the part is approaching the robot systemlo. The operator has just
indicated Scooter is to be grasped, thus the "Acquiring Scooter" status message in the top
left corner. In Figure 2.11, the operator indicates that Scooter should be affixed to the
robot's base. Next, the robot is directed to navigate to the vicinity of Dock (navigational
control is not discussed here). When Dock is in view, the operator indicates that the new
part (Scooter) is to be installed. Figure 2.12 shows the first stage of that action. Finally,
in Figure 2.13, the part has been released, and the installation is complete.

This entire procedure was accomplished with only four simple mouse motions. (Click on
the approaching Scooter, connect Scooter to Multibase, connect Scooter to Dock, release.)
Most of the assembly details-such as how to attach and detach connectors, how fast to
approach the docking connector, etc.-are completely automated.

"Or, equivalently, the robot is approaching the part.

e

a

a

0

e

a

e

2.6. USER INTERFACE
ORIGINAL PAGE IS
OF POOR QUALITY

MUltlba60: 0.142 -0.587 1.571 Mode: RCC snap: Shortcuts: Names:
'amanual 8 o f f a o f f 8 h l d r

@auto O o n @on Oshou

u ti base r"l
.-

Figure 2.10: Installation Demonstration Example: 1

Multlba88: 8.142 -e.sw 1.571 Moda: RCC snap: Shortcuts: Names: '
a a a n u a l aoff ao f f a h l d e

O a u t o O o n O o n Oshor

0 Q ,P--..;
'-(i

I t

0
Figure 2.11: Installation Demonstration Example: 2

25

a

~ c a ~ r : [see] lee
Scooter: 8.222 -8.
Multlbase: 8.141 -8.589 1.571 Mode: RCC snap: Shortcuts: Names:

Dock: -8.213 8.163 1.838 (Elmanual (Eloff aoff a h l d e

@auto a o n W o n ashom

'I <;
%)F

cooter
I /

{ !
. . e

I

.._.
Figure 2.12: Installation Demonstration Example: 3

: ~3881 188 I] lee8
Scooter: -e.2e1 -8.871 18.763
Hultibase: 8.141 -8.589 1.571 Mode: RCC snap: Shortcuts: Names:

Dock: -8.213 8.163 1.838 a a a n u r l aoff (Eloff (Elhide

a a u t o m o n m o n a s h o u

.. -
Figure 2.13: Installation Demonstration Example: 4

e

2.7. DYNAMIC CONTROL 27

e

e

e

e

e

e

e

2.7 Dynamic Control

Many manipulative tasks are performed more easily with cooperative manipulators. For
example, single manipulator arms are incapable of manipulating large objects without ex-
erting large local torques. Precise manipulation of extended objects is difficult without
utilizing the large mechanical advantage offered by separating the grasp points. Multiple
cooperating arms do not suffer from these limitations.

Unfortunately, multiply-armed robotic systems are considerably more complex. The
dynamic equations of motion of the closed-chain system are considerably less tractable.
Strategic control of the system interactions is much more difficult; a consistent set of desired
motions must be specified. As of yet, no satisfactory method of precise dynamic control
coupled with a simple strategic command interface has been developed and experimentally
demonstrated.

This section outlines a strategy for the control of a cooperative robotic system that
permits high performance dynamic motion control, while also allowing direct control of
environmental interactions. This is accomplished by controlling the manipulated object to
react to external environmental stimuli with a programmable impedance. This facilitates
motion direction by presenting a simple yet powerful interface; the strategic controller need
only specify the impedance. Although “exact” inertial force compensation is achieved,
the control structure does not require explicit formulation of the closed-chain dynamic
equations of motion, and is amenable to parallel computation. Object internal forces are
explicitly controlled. The object impedance controller has been implemented on a multi-
processor real-time computer system. Experimental results for a dual two-link arm robotic
system axe presented to verify the controller’s performance, both for free-motion slews and
environmental contact.

28 CHAPTER 2. FLXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

2.7.1

This section discusses our philosophy of cooperative manipulation. We analyze the cooper-
ative manipulation control problem, and point out the desirable features of a cooperative
controller. Finally, we review the recent results and proposals in the literature.

Background, Philosophy, and Literature Review

2.7.1.1

In a complex robotic system, the dynamic controller is an interface between “mid-level”
commands (such as ”slew to 2.3, 4.2”) and the system’s sensors and actuators. As such,
the salient features of an effective controller are its dynamic performance capabilities, and
the language set of “mid-level” commands it presents to the strategic control module. Of
course, there are several ease of implementation issues of importance as well.

The dynamic controller as a module in the larger system

2.7.1.2

The distinction is made here between dynamic control policies and control implementations.
We define a control policy as the interface the dynamic controller presents to the next higher
level, the aforementioned “mid-level” instruction set. The policy determines the specifiable
ideal behavior of the system. The control implementation, on the other hand, is the method
by which controller actually causes the specified behavior to occur. Thus, for example,
a perfect implementation of a position control policy would maintain a desired position
regardless of external forces. While this division is somewhat artificial, it does provide a
framework to discuss the various techniques being used and proposed in the literature. It
also will lead us to several new approaches to the problem.

Control policies vs. control implementations

2.7.1.3 Policy objectives

A controller’s policy determines its method of directing motion. An effective policy for
specifying robotic motion should-at a minimum-provide for the specification of trajec-
tories for the manipulated object to follow. It should also allow for the specification of
the forces of interaction between the manipulated object and its environment. Lastly, and
most importantly, it should present a simple, intuitive interface to the strategic controller.
The instruction set should be powerful, yet easy to specify. The resulting interface will
then allow simple specification of the actions required to perform most tasks demanded of
a robotic system: transport, assembly, etc.

2.7.1.4 Implement at ion objectives

The controller’s implementation is the means by which its policy is enforced. Several as-
pects of an implementation determine its efficacy. First, to permit accurate trajectory
tracking performance, a control implementation should compensate for the inertia forces
of the manipulator/object system. Second, an implementation should resolve the natural
redundancy of the system in a beneficial manner. Two types of redundancy are present;

a

2.7. DYNAMIC CONTROL 29

a

a

a

0

a

a

a

a

a

the same object behavior may be maintainable with different internal forces (static redun-
dancy), and in multiple manipulator positions (kinematic redundancy). Third, a controller
that interacts with its environment should incorporate force sensing, to more accurately
control the forces of interaction. Fourth, a controller that is amenable to a parallel pro-
cessing approach allows better performance with less expensive computational resources.
Finally, an implementation should be verified experimentally.

2.7.1.5 A review of approaches

This section describes the various approaches to cooperative manipulation taken in previ-
ous work, as well as proposing several new approaches. The merits of both the policies
and implementations of each approach are discussed. We note here that our system does
not possess kinematic redundancy; thus we do not consider this type of redundancy resolu-
tion. We note also that several of these approaches were implemented on our experimental
manipulators; the experimental results section discusses their performance.

Single arm (endpoint) control policies Currently, there are three major policies in use
in traditional robotics-position control, hybrid position/force control, and impedance con-
trol. Simple position control policies are useful for transport problems, but often inadequate
for assembly tasks. Adding force control increases environmental interaction capabilities.
Hybrid control strategies [29] permit simultaneous intermixed force and position control
on orthogonal axes.

Impedance control differs from these policies in that instead of controlling one state
variable-position, velocity or force-it enforces a relation between them. This type of con-
trol has many desirable attributes; Neville Hogan’s definitive three-part paper [161 presents
them in detail. Chief among them are the ability to come into contact with a hard surface
without 1osip.g stability, and the ability to specify directly the behavior of mechanical inter-
actions with the environment. Impedance control is thus ideal for tasks requiring assembly
or other contact with external systems.

Multiple arm control policies Multiple arm control policies can be further divided
into three categories: coordinated motion, master/slave, and object motion policies. We
define any algorithm that controls the arms independently-but possibly on coordinated
trajectories-as coordinated arm control. The arms are “coordinated” rather than “coop-
erative” because they respond neither to each other’s actions nor inputs except through
the object’s dynamics. Master/slave policies distinguish the arms, designating one the
“master” and the other the “slave”. Object motion policies specify the behavior of the
manipulated object, the manipulators themselves are abstract motion generators. Each of
the endpoint control strategies can be extended to the multiple arm case in two manners:
as a coordinated motion strategy, or as an object motion strategy.

a

30 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Coordinated motion approaches Each of the endpoint control strategies can be ex-
tended to the multiple arm case as a coordinated motion policy. Unfortunately, no coordi-
nated motion policy presents an attractive cooperative control strategic interface. It is also
difficult to compensate for the full system dynamics with a coordinated motion strategy.

Coordinated position control is inadequate for even simple object positioning tasks; since
the closed-chain cooperative system is kinematically over-constrained, any minor endpoint
positioning error will cause the build-up of large internal forces. Zheng and Luh present a
coordinated motion approach [43], along with some preliminary experimental results. They
solve the kinematic over-constraint problem by manipulating a deformable object; they do
not consider inertial forces or environmental interactions.

Mason [26] developed constraint relations for multiple-armed coordinated hybrid con-
trol. His development solves the kinematic over-constraint problem, but presents a compli-
cated strategic interface. The arms must never be allowed to conflict in a single degree of
freedom-either both in position control mode or both in force control mode. Extension of
this requirement to more than two arms is completely unwieldy. His work does not consider
dynamic interactions, and no simulation or experimentd results are given.

Coordinated impedance control [28] presents a simpler interface, and is capable of good
performance in many tasks. Unfortunately, while the arm dynamic properties are easily
taken into account, it is difficult to compensate for the object dynamics with this control
scheme. It is also complex to specify external interaction forces.

Master/slave approaches Much of the pioneering work in cooperation utilized some
variation of master/slave control [17, 121. More recently, Alford and Belyeu [3] modified
the slave’s trajectory in real-time to minimize the error in the positions of the end effectors.
These techniques do not consider environmental interactions. They also suffer from the
artificially imposed asymmetry, and none take into account the dynamic behavior of the
system. Moreover, from a strategic viewpoint, master/slave control is a difficult policy to
direct. Free-space motions are the only simply specifiable actions.

Object motion approaches Object control policies specify the object’s behavior-no
independent arm action is specified. Each of the endpoint control policies can also be
extended to the multiple arm case as an object control policy. Object control policies
have the distinct advantage of providing the strategic controller with the ability to specify
the object motion without ‘regard to the manipulator details. Object control also raises
some difficult implementation issues-no previously published experimental results consider
inertial force compensation.

Several researchers propose object position control algorithms. Tarn, Bejczy, and Yun
[37] developed the closed-chain dynamic equations of motion, and utilized nonlinear de-
coupling feedback to control the object position. This treatment compensates for the full
system dynamics. However, it completely ignores the effect of external forces. Also, since it
utilizes the closed-chain equations of motion, it must be implemented serially. Nakamura,
Nagai, and Yoshikawa [27] develop a multi-fingered hand control scheme that specifies the
dynamic behavior of the manipulated object. Their formulation also allows specification

2.7. DYNAMIC CONTROL 31

0

e

of the object internal forces. They also propose a parallel dynamical compensation scheme
based on D’Alembert’s principle. However, they too assume the object is not in contact
with its environment. No simulated or experimental verification is offered.

Hybrid object force/position control permits interactions with the external environment.
Uchiyama, Iasawa, and Hakomori [39] present an experimental hybrid controller using
two arms to carry an object under compression. They define an interesting workspace
coordinate system that allows hybrid control of both external and internal positions or
forces. Their algorithm is based on static analysis; it is incapable of dynamic compensation.
The experimental task they present is a simple transport problem, with no environmental
interactions.

Hayati [13] presented a theoretical extension of hybrid force/position control to the
multiple manipulator case. He defines an arbitrary task reference frame, a useful concept
incorporated into the controller developed in this paper. Although a parallel implementa-
tion is proposed, his controller requires the closed-chain equations of motion and is compu-
tationally complex. It also specifies locally closed force loops on each arm; in practice, this
can make the control very sensitive to force offset errors.

Oussama Khatib, in [20], extends his operational space control methodology to incorpo-
rate multiple manipulators. His paper’s main thesis is a proposed dynamic implementation
technique based on summing the object inertia and the arms’ effective tip inertias. The
formulation allows utilizing operational space hybrid force/position control. The algorithm
takes into consideration the full system dynamic response, but is not particularly well suited
to parallel implementation. Internal forces are not controlled; the redundancy is used in-
stead to minimize the actuator loads amongst the manipulators. This approach has not yet
been experimentally verified.

Hybrid control does not, in the authors’ opinion, provide an attractive strategic-level
interface. Since separate force and position controlled subspaces must be maintained, con-
trol mode switching decisions must be made at many points during most tasks. Specifying
sequences of these mode switches is often not intuitive. Unexpected situations make these
decisions even more difficult; the set of ”natural” constraints may not be easily deter-
minable.

Impedance control provides compliant response at all times. Selection of significantly
differing stiffnesses in different directions must be done only when required by the situa,
tion. The more general impedance compliant response also eases interactions with moving
environments. l1

Object impedance control is the subject of the next section. It provides a simple, power-
ful interface for directing motion and environmental interaction. Allowing the specification
of an arbitrary task frame and effective object dynamic response permits intuitive and gen-
eral task sequence specification. A parallel implementation that compensates fully for the
system dynamics, and directly controls the object internal forces is presented below.

“This is especially important if the Yenvironment” is an object being controlled by another robotic
system-we are also concerned with extension to multiple teams of robots.

32 CHAPTER 2. FEED-BASE COOPERATIVE MANIPULATION EXPERIMENT

2.7.2 Object Impedance Controller Derivation

This section restates the motivation for object impedance control, then derives a dynamic
implementation.

2.7.2.1 Control objective

Hogan’s impedance control policy, described above, causes the endpoint of the manipulator
to react to external forces with a programmable impedance. The simplest example both
to understand and implement is a simple second order linear impedance-the endpoint
behaves as a mass attached via a virtual spring-damper to the environment. In this section,
we develop a controller that enforces a controlled impedance not of the arm endpoints, but
of the manipulated object itself. Intuitively, the object behaves as if it were attached to its
environment by linear spring-damper systems in the linear degrees of freedom, and also by
uncoupled torsional spring-dampers to control rotational orientation.

Policy
pedance) the relationship:

The object impedance controller enforces (for a simple linear second-order im-

Here z denotes the coordinate of any one degree of freedom of an arbitrary point of the
object. The constants md, IC, , and IC, are specifiable. The reference signal xdes denotes the
desired position (or orientation) of the chosen point. The xdes term represents acceleration
feed-forward. Thus, the programmable impedance force corrects deviations from the desired
trajectory.

Intuitively, this control policy completely supplants the actual dynamics of the object
with a “virtual” object, with specifiable mass and inertia properties. The “virtual” object
is attached at its (apparent) center of mass via an orthogonal set of imaginary damped
springs to a selectable point in the environment. Thus, the object can be manipulated by
simply moving the virtual spring endpoint. Controlled force interactions with environmental
obstacles can be done by simply pressing the “spring” against the obstacle.

We note here that a more general impedance can be modeled as:

mdx = fext + fimp

Here f imp is an imaginary impedance “force”, it is usually a function of only position and
velocity, but can be quite arbitrary. In particular, the non-linear “potential field” forces used
in many obstacle avoidance techiques [22] can be easily incorporated by simple summation
(for proof, see [16]).

This controller accomplishes all the policy objectives outlined above. The strategic
interface is quite simple and straight-forward. The strategic module directly selects the
object’s behavior-the arms are very much an abstract manipulation system. In addition,
to the bandwidth of the control system, the object dynamical properties are also selectable.
Critical damping can be enforced in all degrees of freedom simultaneously. Contact of

2.7. DYNAMIC CONTROL 33

a

a

0

0

the manipulated object with the environment is not a special case requiring control mode
switching; the impedance controller handles it in a natural manner. Thus, both free motion
slews and manipulation requiring contact can be done with the same strategic interface.

The position and orientation of the “virtual” object with respect to the actual object is
also selectable. Thus, this controller is also capable of pseudo remote center of compliance
(RCC) operation [41], permitting simple and efficient part mating and insertion operations.
A particularly useful example is for performing connector insertions-by placing the “vir-
tual’’ object frame at a fixed location in the connector frame, all assembly operations can be
specified as connector motions only. Multiple connectors arranged on an object in arbitrary
orientations can then be handled by the same simple connector insertion algorithm.

Implementation Implementation of this type of controller requires consideration of the
dynamics of the entire system: both arms and manipulated object. Utilization of the
full system equations of motion is one method of performing this control, but we have
developed an implementation based on Nakamura’s multi-fingered hand controller [27] that
isolates the system into three sub-systems: arml, arm2, and the common object. This
vastly simplifies the computations required at runtime; the closed-chain equations of motion
are not required, and the algorithm can easily be implemented by a parallel processor
architecture. In addition, the internal force in the object is directly specifiable.

Force information at the arm endpoints enhances performance on two counts: better
control of the internal forces and more accurate measurement of the forces of interaction
between the object and its environment.

a
2.7.2.2 Derivation

0
The derivation presented below is rather straight-forward: The desired object acceleration
is found, and substituted into the actual object equations of motion. The resulting accel-
erations and forces at the arm endpoints are found, and then implemented on the arms as
a “computed-torque” (CT) control law.

e

I 34 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

“k
bk
m
M
I
fext

Text

Y
r

X

Tk
w

g
u n
N
ai
Pi
p i k

fi
mi
qi
Ti

f i m p

T imp

Notation The symbols used are:
Symbol Type Description

inertial frame unit vector
i

3 x 1
3 x 1
scalar
3 x 3
3 x 3
3 x 1
3 x 1
3 x 1
3 x 1
3 x 1
3 x 1
3 x 1
3 x 1
n x n
scalar
3 x 1
3 x 1
scalar
3 x 1
3 x 1
nlinks x 1
nlinks x 1
3 x 1
3 x 1

object body frame unit vectors
mass of the manipulated object
m times the identity matrix
inertia matrix of the object relative to its center of mass for {bi)
external force on the object (not due to the arms)
external torque on the object (not due to the arms)
inertial frame position of the object center of mass
inertial frame position of the apparent center of mass
y - x (offset of apparent from actual center of mass)
r-nk
object angular velocity
gravity vector
identity qatr ix
total number of arms contacting object
inertial frame position of i th arm’s endpoint
body frame position of ith arm’s endpoint
pi ’ nk
force on object due to it“ arm’s endpoint
torque (moment) due to ith arm’s endpoint
vector of ith arm’s joint angles
vector of i th arm’s joint torques
imaginary impedance “force”
imaginary impedance “torque”

Actual object dynamics The object’s free-body diagram is shown in Figure 2.14. The
object’s center of mass is offset in the inertial frame by x. We assume there are N total
manipulators in contact with the object, two are shown. Arm i exerts a force f; and moment
m; at a point offset by the vector p; from the center of mass. A second arm, j , acts in a
similar manner. External forces and torques act on the object-they are modeled by their
resultant force fez* and torque Text acting at the object’s center of mass.

The object’s equations of motion are:

mji = fez* + Cf; + mg

Using y = x + cj x r + w x (w x r), the equations of motion can be expressed in matrix
form as:

C p i x fi + Ern;] = [fext] + [-mg - m(w x (w x r))
w x Iw Text

e

a

a

2.7. DYNAMIC CONTROL

I

f i

Figure 2.14: Object Free-Body Diagram

or, more compactly:
IoY + Bo = Fext + W F

where

and

35

1 0 -T3 T2 0 -Pi3 Pi2

Pi3 0 -Pi1

-Pi2 Pi1 0

Desired object behavior The desired object behavior is depicted in Figure 2.15. The
same external forces fext and T e x t act on the object. Point C, is the arbitrarily chosen
apparent center of mass. It is offset from the center of mass by r, and in the inertial
frame by y. The imaginary impedance “force” cmp and “torque” T i m p act at point C,.
The apparent object mass and inertia are also specifiable as md and Id. Thus, the desired
equations of motion are:

e

36 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Figure 2.15: Desired Object Behavior

The desired behavior in matrix form is:

Controller Derivation So, from 2.3, the desired acceleration is:

This requires (using 2.2):

WF = BO - Fezt + l o (r , - d [f e z t + Fimp - B o d]) (2-4)

To choose the commanded forces, Fmd, let

Fcmd = WWPi{Bo - F e z t + h (& ' [f e z t + Fimp - Bod])} + fintesnal (2.5)

where WwPi is a weighted pseudoinverse of W, and finternal is any vector in the null space
of W. The section A note on load balancing below details how these may be chosen.

We now have f i for each arm. To calculate the desired arm tip accelerations ai, use:

aicmd = x + c j x pi + w x (w x pi)

Then, letting Mi and Ji denote the individual arm mass matrix and Jacobian, use the arm
kinematics:

-1 ..
qicm,j = Ji [aicmd - j i q i]

2.7. DYNAMIC CONTROL 37

and the arm equations of motion:

to calculate the desired arm torques.

a

e

0

External force calculation We have yet to estimate F,t. We can use equation 2.2,
but we first need to estimate Y . We tried two approaches:

using the last commanded acceleration: Y = Y k - 1

and using the desired acceleration: Y = Y d e s

Each of these yielded acceptable experimental results. In practice, the accelerations are
small when the external forces are significant. Since the acceleration estimate is onZy used
to estimate the external force, it is only critical when the object is in contact with an
accelerating environment. This is a rare case, but may be useful, for example, to insert a
battery pack into a rotating satellite. We are investigating more sophisticated acceleration
estimation techniques.

A note on load balancing Equation 2.5 has two terms. The first term, Wwp'{- . . } ,
represents a particular solution to equation 2.4. This vector of forces produces the desired
motion while countering the inertial, gravitational, and external forces. The second term,
f in te tnal , is any member of the null space of W, the subspace of forces that produce only
internal loading on the object. Normally, finterncll can be chosen simply to provide the
desired internal object forces when the object is at rest.

Some latitude exists in choosing WwPi, the weighted right pseudoinverse:

Where Q is a diagonal matrix of task-space weights. If Q is the identity matrix, then the
solution will be the minimum norm vector of endpoint forces and torques-all degrees of
freedom will receive equal preference for loading. Since manipulators are usually capable
of generating considerably more force than torque at their endpoints, Q will usually be
used to weight the linear degrees of freedom more heavily. Task-space load distribution
(in a static environment) is studied more completely in [l]. A comparison with joint space
optimization techniques can be found in [36].

Controller structure The overall controller structure is depicted in figure 2.16. Note
that the system divides naturally into N + 1 parallel computations: one to calculate the
object dynamics, and one for each arm's dynamics12. Our experimental system employs
three processors, configured in exactly this manner.

12The arm calculations could be similarly subdivided, see chapter 3.

38 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Strategic Input
I

Figure 2.16: Controller Structure

Controller block diagram Figure 2.17 depicts the resulting controller block diagram.
First, measured and desired object position and velocity are used to calculate the impedance
uforce’9, and the incoming measured forces at each manipulator endpoint are used to esti-
mate the external force on the object. The desired behavior equations then produce a new
desired acceleration command. Simple object kinematics then provide arm endpoint accel-
erations, and the object equations of motion are used to calculate consistent commanded
endpoint forces. These commanded values are in turn used by each arm’s computed torque
controller to servo the arm actuators. Each of the three major boxes share no intermediate
values; thus they can be run in parallel. (In fact, our experimental implementation runs
the three loops at different, asynchronous rates.)

An intuitive alternate controller A slight variation in this derivation yields a con-
troller with different properties. When the r is non-zero, the controller derived above
above causes the object to behave as if its center of mass were moved to the impedance
force action point. Thus, the object dynamic behavior is completely specifiable-the actual
dynamics are completely canceled. This provides exact dynamic decoupling of all degrees
of freedom, even under RCC operation. A simple change in the desired motion equations
to:

Mdx = fezt + fimp

Id& + W x IdW = T e z t + 7 j m p + r x fjmp

leaves the object’s apparent center at the actual center of mass. This controller does not
completely decouple the object orientation from the linear motions. Although this is less
appealing from a mathematical viewpoint, experiments with both manual operation and
strategic programming showed that this controller is sometimes more intuitive to use. An

2.7. DYNAMIC CONTROL 39

*

0

e

Object Impedance Controller
I c
Y Y

1 Arm 1 CI’ Controller

~~ ~ ~

Figure 2.17: Controller Block Diagram

example is depicted in Figure 2.18. Users expect that the object pulled by a “spring”
attached at the end will rotate-the real world is dynamically coupled. Moving the center
of mass decouples these motions and results in a linear translation only. The strategic
control module permits the user (or strategic programmer) to select either controller.

The two controllers are identical when r = 0, and they have identical static behavior,
since static balance requires fezt = -fimp. The coupled controller does however, have
practical implementation advantages. It is less sensitive to biases in the force sensors (since
€imp does not depend on measured force). It also makes better use of the available actuator
authority, since moving the apparent center of mass often increases required (peak transient)
manipulation forces.

40 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Uncoupled Coupled

Figure 2.18: Intuitive Alternate Lvntroller

41

2.7.3 Experimental Results

2.7.3.1 Experimental Dual Manipulator System

The experimental system is designed to emulate a dual-armed space robotic manipulator.
The arms are each direct-drive, SCARA configuration, two-link manipulators. They are
equipped with pneumatic force-sensing grippers. The grippers connect to “ports” on the
floating object via a bearing pin joint. Thus, no torque can be delivered to the object by
a single arm. The manipulated object floats over the granite surface plate with negligible
friction. A picture of the experimental system is presented as Figure 2.19.

Figure 2.19: Experimental Dual Arm Manipulator System

2.7.3.2 Transport trajectory tracking

This section presents a comparison of the performance of three cooperative control algo-
rithms for a cooperative transport task. The three algorithms are: co-located proportional-
derivakive joint-space coordinated position control, coordinated endpoint impedance con-
trol, and object impedance control. The starting and ending positions for the test slew are
indicated in Figure 2.20. Note that all the arm joints undergo large angular changes, and
that both position and orientation are effected. The commanded reference is a fifth-order
trajectory of the center of mass of the object in each object degree of freedom: z,y, and

42 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

8 [lo]. The slew reference takes 1.7 seconds to complete its path-faster slews caused our
(rather weak) motors to saturate.

Final Position

I

Figure 2.20: Test Trajectory

All algorithms were provided with the correct coordinated position, velocity, and accel-
eration references for the entire slew path. The gains on all the controllers were set for fairly
stiff operation (to yield the best trajectory tracking), and are set as “fairly” as possible. For
example, the PD joint angle controller gains were calculated to provide the same corrective
force at the tip as the operational space controllers would provide for a similar positioning
error. Several other gain combinations were studied. Where appropriate, effects of this
variations are discussed below.

In the figures that follow, the upper-left plot depicts the motion of the center of mass
of the y direction. The lower-left is the corresponding velocity. The upper-right plots z
vs. y, and indicates the desired and actual object positions at 0.5 second intervals during
the motion. The lower-right plot shows the magnitude of the “tension” between the arms,
after being corrected for dynamic forces. All controllers are attempting to maintain zero
tension. Note that the force sensors exhibit some orientation-dependent bias (maximum
magnitude is approximately 0.2 Newtons), thus some “tension” is due to sensor error and
is unavoidable.

Coordinated PD control Figure 2.21 presents the performance of a simple joint-space
PD controller. Co-located PD control implements the algorithm:

for each joint.
This controller does a poor job of following the desired trajectory and offers no control

of the internal forces on the object. This controller also does not compensate for inertial

2.7. DYNAMIC CONTROL
rlcwl7cpd30

43

0

0

*

0

0 4

Tuna (M)

-0.2 -
0 2 4 6

T i c (sccondr)

0.4

a2

*
I o

-0.2

-0.4 ’ 1
-0.4 -0.2 0 0.2 0.4

a d

T i e (semnds)

Figure 2.21: PD Controller Slew Performance

forces. Reducing the gains caused the trajectory performance to deteriorate badly, while
failing to eliminate the tension buildup.

Coordinated endpoint impedance control Figure 2.22 depicts the performance of
coordinated endpoint impedance control. This controller implements the dynamic spring
relationship :

mdesired(pdesired - p) + Kv(pdesired - p) + Kp(Pdesired - p) = ft@

on each arm, where p is the tip position, and ftip is the measured force at the manipulator
endpoint.

Substituting p into the arm kinematic equation

q = J-yp - jq]

yields joint accelerations q. The arm equations of motion:

= ~q + c + ~ ~ f t ~ ~
then yields a dynamically compensated “computed torque’’ impedance controller. In this
relationship, ftip is the measured external force on the manipulator tip. This controller thus
incorporates force feedback to enforce the endpoint impedance relationship.

This controller exhibits much better trajectory tracking performance (Figure 2.22).
Although the object inertia forces are not compensated for, the feedback-coupled with
acceleration feed-forward-is sufficient to cause very little trajectory tracking error. Unfor-
tunately, to yield this level of performance, the impedance gains had to be fairly stiff. As a
result, the inter-arm tension is not controlled well. Slight kinematic errors are sufficient to
cause a large internal force at the end of the slew. Lowering the gains significantly reduced
the tension problem, but also detracted from the trajectory accuracy.

44 CHAPTER 2. F E E D - B A S E COOPERATIVE MANIPULATION EXPERIMENT

- anwl --- cmwL*

slcwl7cdyn30 coadinrtcd Dynamic Impdrncc
0.4

0.2

*
I o

-0.2

-0.4

-0.1

-0.4 -0.2 0 0.2 0.4 2 4 6
-0.2

0
Tunc (d) anx

- T C M ~
.7

i 'r I - 0.4 1 io.2p , / " l j i " , I
-- o s 0

-0.2 0 2 4 6 0 2 4 6
T i c (seconds) T i c (seconds)

Figure 2.22: Coordinated Endpoint Impedance Slew Performance

Object impedance control Figure 2.23 displays the results of the object impedance
controller. Since this controller correctly compensates for the object dynamics, the trajec-
tory tracking performance is quite impressive. The inter-arm tension is controlled well also.
Lower gains did not effect the trajectory accuracy much.

2.7.3.3 Force control performance

Figure 2.24 compares the response of the object impedance controller's external force mea-
surement with the expected response of an ideal impedance (equation (POLICY)). These
data were obtained by simply placing a hard, stationary object in the path of the object
during a slew (in the x direction). Raw versus filtered (lOHz 2-pole digital Butterworth fil-
ter) data from a single arm (the ri:h+ arm) is presented in Figure 2.25. The unfiltered data
exhibits some ringing-this is an impact between two very hard objects-but the force level
quickly settles to the desired. The important thing to note is that the object impedance
controller successfully controls the forces of interaction, without switching control modes,
even when it comes into contact with a very stiff environment.

2.7.3.4 RCC operation

Figure 2.26 shows a "strobe" picture of the object under control, with r non-zero. The point
C, is selected at the right edge of the object. The data used to generate this plot were
generated by pushing the object (manually) in the positive y direction, and then releasing.
The estimated external disturbance force is depicted in Figure 2.27. The "spring" gains
chosen for this experiment are stiffer in the linear directions than in orientation, thus the
object rotates about the point C, with very little translation.

2.7. DYNAMIC CONTROL 45

a

a

0

slew17oic30 object Impedance Caurol

-0.1

-0.2
0 2 4 6

o.2L 0 I
-0.2

0 2 4 6
T i s (recondr)

0.4

0.2

5 0

-0.2

-0.4 I i
-0.4 4.2 0 0.2 0.4

ala

"0 2 4 6
T i e (rcconds)

Figure 2.23: Object Impedance Controller Slew Performance

0.:

E

-0.5

E -1
t

-1.5

-2

-25
0 0.5 1 1.5 2 2.5 3 3.5

Time (sccandr)

Figure 2.24: Estimated External Force

46 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

c

- 1

I
0 0.5 1 15 2 2.5 3 3.5

Timc (d)

Figure 2.25: Right Arm Force Sensor Output

Rcc danarstration
_. .

0.3 -

0.2 -

0.1 -

X

Figure 2.26: Remote Center Rotation

2.7. DYNAMIC CONTROL

1

0.8

0.6

0.4

e
0.2

a

-0.2

47

1 2 3 4 5 6

Tim (recondr)

Figure 2.27: Estimated Force for Remote Center Rotation

48 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERTMENT

2.7.4, Conclusions

This section has presented a dynamic control policy and implementation for multiple-armed
manipulator systems that features:

0 A simple, powerful object behavior specification interface.

e Flexible control specification: both for free motion positioning and environmental
interaction.

e Good dynamic performance, both in free motion and in contact, without switching
controllers.

0 Exact dynamic compensation, without requiring closed-chain equations of motion.

e A naturally parallel structure, allowing simple implementation on a multiple processor
computer system.

e Remote-centered compliance operation, facilitating assembly operations.

This controller has been implemented experimentally, and proven to be an effective
dynamic control module in an overall cooperative manipulator system design.

2.8. REAL-TIME VISION SYSTEM 49

a

e

0

e

0

2.8 Real-time Vision System

During this report period, a high-speed television camera-based point-tracking vision sys-
tem was implemented. In addition, algorithms for identification and tracking of moving
two-dimensional objects were developed, and used to demonstrate vision-guided dual-arm
intercept and capture. This section discusses the results of that effort.

2.8.1

The vision system has a well-defined function: to interpret the video data, and report infor-
mation about the various objects in the workspace. This function is complicated somewhat
by the varying nature of the different modules’ need for the information. For example,
some modules-such as the user interface-may simply require position information at
rather slow update rates. On the other hand, the task of catching a moving object requires
not only position measurements, but also velocity estimates. Finally, control modules re-
quire object and arm endpoint information at very high rates and with minimal delay. The
vision system must provide the information in the proper form to each module.

The vision system as a module in the larger system

2.8.2 Vision System Structure

The vision system software structure chart is presented as Figure 2.28. Video information
from the CCD television camera is digitized and stored into a video frame buffer. A “UFO”
searcher process scans the video data, looking for new points to track. When a point is
located, it is “installed” with the point manager, which arranges for its being tracked in
the future.

The object managers are each responsible for managing one type of object in the system.
For example, the “body” manager is able to identify any of the various rigid bodies in the
view. It also can calculate the body’s position and orientation, given the location of its
targets. Object managers can optionally employ the observer service to implement a simple
Kalman filter, thus providing an estimate of the object’s velocity as well as its position.

The object manager manager acts as a liaison between the rest of the vision system and
the various object managers.

2.8.3 Sub-pixel real-time point tracking

Appendix A of the Fifth Semi-Annual Report presented the theoretical basis of a proposed
sub-pixel accuracy real-time point tracking system. In summary, this system allows de-
termining the location of special passive optical “targets”. Preliminary simulation results
suggested that the positions could be determined to approximately 1/20th of a pixel accu-
racy, at the full frame rate (60 Hz) of the camera. Our experimental findings have confirmed
this prediction.

The passive targets used vary in reflectivity, from black at the edges to white in the
center. An example target is presented as Figure 2.29. They span an area of approximately
8 by 8 pixels. Thus, each pixel in the 8 x 8 grid contains information about the location

8

50 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

FnunC r i

buffer Point .- Object manager
UFO- manager

ArmEndpoint
manages

Track C-

U

~

Figure 2.28: Vision System Software Structure

of the center. (In the noise-free case, one could calculate the distance to the center from
each pixel exactly.) A simple, fast, centroid (center-of-brightness) calculation then yields
an estimate of the actual center.

The point tracking module maintains a list of known target locations. At each frame
interrupt, the new target location is calculated. To track quickly moving points, a simple
digital filter is used to estimate each point’s velocity. The system can then generate a better
estimate of the target’s expected location in the next frame. Thus, points should be “lost”
only when they experience a high ~ce lera t ion’~ .

2.8.3.1 Viewer and the Vision Daemon

To assist in debugging the code, a program called “viewer” was deve’ryed. It is presented
here to assist the reader in understanding the concepts involved. The “viewer” program
runs on the Sun workstation. It opens a channel to the vision system; the “vision daemon”
process exists solely to interact with the viewer. Two fields of information are displayed:
the list of active point coordinates (in pixels), and the camera field of view. The active
points flash in the camera view, so they can be easily located. A typical screen display is
presented as Figure 2.30

2.8.4 bbUFO” Searcher

The function of the “UFO” searcher module is to locate and identify new points in the field
of view. The “UFO” searcher runs as a background task, completely asynchronously from
the rest of the system.

131n practice, several effects can cause the point to be “lost”. A more detailed analysis will be presented
in the next report.

D

2.8. REAL-TIME VISION SYSTEM 51

Figure 2.29: Example Target

b

B

To locate new points, it must first be able to distinguish the special optical targets from
the other clutter in the scene. The algorithm for this is rather simple. First, the scene is
scanned, looking for brightness transitions. When a transition is found, the coordinates are
tested to see if this is already a tracked point. Next, the point-tracking centroid algorithm
is executed once to find the center of the candidate point.

If the centroid algorithm returns a reasonable target center location, the following tests
are made to determine if the point is indeed a target. First, a small “box” is drawn around
the suspected target center. All pixels on this path (lightly shaded in Figure 2.31) should
be above a programmable threshold value. Next, a larger box is drawn around the center.
All pixels on this path (heavily shaded in Figure 2.31) should be below the threshold. If the
point passes both tests, it is declared a new point, and installed with the point manager.
This rather crude test only checks for points of a specified size, but suffices in our rather
controlled environment. More sophisticated tests, such as matching the target reflectivity
profile, could be easily performed if they were deemed necessary.

Scanning the camera’s field of view by this method takes about 30 seconds. To increase
the efficiency of the scanning process, the “UFO” searcher also accepts “hints” about where
to look for new points. Any module may request that a Region Of Interest (ROI) be quickly
scanned for a new point. All the ROI requests are serviced on a circular queue basis. Thus,
each ROI is scanned for a short time; then scanning attention is turned to the next ROI.
The entire view is always installed as one ROI to provide over-all scanning. With the
exception of the entire view ROI, all other ROIs have a limited lifetime; they are removed
from the circular list after a specified number of scans.

This scheme allows modules that have a good idea of “where to look” to install a
very small ROI, and ensure that the point(s) of interest are quickly located. For instance,
the arm endpoint managers install a small ROI around the location of the arm endpoint

52 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

255
e: 271.684, 12e.233

4: i e e . m , 121.299
2: 226.367, 143.879 I I: 221.e26, 1 2 9 . 7 ~

3: 236.851, 136.812
5: 145.325. 216.724

... - Figure 2.30: Viewer Screen Dump

calculated from the joint angle measurements. This point is known relatively well, thus it
is usually found in a fraction of a second.

This capability is critical to the moving object acquisition problem. During a “catch”
attempt, the object often passed beneath one of the approaching arm links. This obscures
the targets, and causes the object to be “lost” at a critical time-just before the grippers
are to engage. To remedy this, the body manager simply installs a ROI at the expected
location of the object, based on its last known position and velocity. When the object
comes back into view, it is located quickly and the grasping operation can continue.

2.8.5 The Point Manager

The function of the point manager is to maintain a list of tracked points, and ensure
their positions are updated each frame interrupt. The point manager also performs the
pixel-data-to-world-coordinates transformation, allowing all higher-level modules to work
in natural (metric) units.

New points are provided by the “UFO” searcher. These are maintained on a list of active
points. When installed, each new point is “unmanaged”. Whenever the list of unmanaged
points changes, the point manager passes it to the object manager manager for analysis
by the various object managers. If an object manager recognizes a point, it claims the
point (by setting its manager field). That point will then not be considered in future scene
analysis attempts.

The location of each point on the active list is updated each frame interrupt 14. When

‘*Actually, the point’s object manager can request less frequent updates if the point is not expected to
move much. This saves considerable processing time.

(1 a[*?$ - - -
M ’ f . ,> 7 3f’ , ~

SF F f n 5 I ,+,-
--.

. I.

e

e

e

0

a

2.8. REAL-TIME VISION SYSTEM

I

I

Figure 2.31: New point identification algorithm

53

a point is lost for some reason, the point manager notifies the point's object manager (if it
has one), and removes it from the active point list.

To transform pixel locations to world coordinates, two operations are required: the
pixel value must be converted to meters, and the effects of parallax must be corrected. At
this point, this transformation is very fast and simple; pixels are converted to world frame
coordinates via a simple scale and offset calculation, and the parallax effects are included in
the scale. Figure 2.32 shows the parallax correction technique in one dimension. By similar
triangles, each height above the table has a different pixel-to-meters conversion factor, given
by the formula:

(CameraHeight - height)
CameraHeight

ParallaxCorrectedScale = Scale AtTableH eight *

Since all points in our system have a fixed height, this calculation need only be done once,
when the point is identified.

2.8.6 The Object Managers

There are currently three object managers in the system: the body manager, the arm end-
point manager, and the point server. The body manager can identify and track rigid bodies
in three degrees of freedom: translation in z and y, and rotation in 6. The arm endpoint
manager is responsible for tracking the arm endpoints, and providing this information to
the dynamic control module. Any module on any processor can specify a single point to
be tracked by the point server. The point server is not used (yet) in this system (it will
soon supplant the arm endpoint managers), but it allows the vision system to serve point
location information to other experiments that share the vision system 15.

"In particular, the two-very-flexible-link endpoint control experiment.

54 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

/

Figure 2.32: Parallax Correction

Each object manager must register with the object manager manager (OMM) at start-
up time. The OMM then maintains a list of active object managers. Registration requires
providing four routines:

0 an identification procedure

0 alost point procedure

0 a frame interrupt procedure

0 and a report position procedure

The identification procedure is passed the list of unclaimed points when the “UFO” searcher
changes it. The lost point procedure is called wuen a point claimed by this object manager
is lost. The frame interrupt procedure is called each frame interrupt. Finally, the report
position procedure is called to request that the managed object’s positions be sent to the
user interface.

2.8.7 The arm endpoint manager

The joint angle sensors can be used to estimate the endpoint position of each arm. Un-
fortunately, this estimate does not exactly match the vision system estimate of the same
location. This is due to several effects, among them are angle measurement error, kinematic
parameter errors, and optical distortion. Since the measurements of interest to the system
(object locations, docking connector locations, etc.) are provided by the vision system, the
vision system estimate of the arm endpoints must also be used by the dynamic controller.
This endpoint control ensures that the controlled arm gripper position accurately matches
the positions of the gripper ports on the objects of interest. It is the function of the arm

2.8. REAL-TIME VISION SYSTEM 55

0

e

0

endpoint manager to provide the vision-sensed endpoint location to the dynamic control
module.

The arm endpoint manager object procedures are simple. The identification procedure
simply scans the unclaimed point list for a point near the kinematic estimate of the arm
endpoint. The lost point procedure installs a small ROI around the arm endpoint expected
position, and directs the dynamic controller to use the kinematic endpoint estimate. The
frame interrupt procedure reports the endpoint location to the dynamic controller. The
report position procedure is currently null, it will be added when the user interface is
expanded to allow direction of individual arm motions.

2.8.8 The Body Manager

The body manager is responsible for identifying and tracking all the rigid bodies in the
system’‘. At least three target points are affixed to each body. These points are in a
unique pattern on each different type of body. The body manager is provided a database
describing each body at initialization time, this database includes:

0 the body’s mass and inertia

0 the location (and height) of the targets on the body

0 the location of any gripper ports on the body

0 and the location and type of any connectors on the body

As an ancillary function, the body manager provides any needed data about the body to
other modules in the system. For instance, the dynamic controller requires the mass of any
object it manipulates; the body manager provides this information.

Identification The body identification algorithm exploits the fact that the target con-
figuration on each object is unique. When passed a list of unidentified points, the body
manager first constructs a “UFO” point map, specifying the distances between all the
points in the system. Figure 2.33 presents an example. This point map is then scanned for
matches with the known distances between the targets on each object. If a sufficiently close
match can be found for each target on an object, a quick consistency check is performed
to ensure the identification is correct. If the matches are consistent, then the object is
considered found.

Position and orientation update Each frame interrupt, the position and orientation of
the object is calculated. The algorithm is based on the fact that the “center of brightness”
of the targets is independent of orientation. More precisely, the average of the positions of
all the object’s targets can be calculated without regard to the object’s orientation. It can
then be used as a basis for determining the object’s orientation.

“The term body in this section refers to any single rigid body whose position and orientation are both of
interest. This includes the floating ‘object”, as well as the docking ports, etc.

e

56 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

I

Scootertarget description

tan 0.223 0.0 0.312
tar3 0.132 0.312 0.0

UFO Point Distance Map
ptl pt2 p w pt4 pt5

ptl 0.0 0.445 0.132 0.543 0312
pt2 0.446 0.0 0.744 0.433 0.633
pt3 0.132 0.746 0.0 0.534 0.223

pt4 0.541 0.431 0.532 0.0 0.117
pt5 0313 0.633 0.223 0.119 0.0
ut6 0.205 0.445 0.812 0.550 0.601

pt6
0.205
0.443
0.814
0.552
0.597
0.0

~ ~~ ~

Figure 2.33: Body Identification Algorithm

The algorithm is depicted schematically in figure 2.34. During initialization, the “center
of brightness” rcen of the object’s targets (in the object’s frame) is calculated. The vector
to each target a; in the body frame is also calculated.

To calculate the object position and orientation, the vector r and the angle 8 must be
found. When the target positions are known, the new “center of brightness” d is simply
the average of all the coordinates. Let bi be the vector from d to the it” target. i estimates
of cos(8) are then available as:

These estimates are combined in a weighted average to yield an estimate of cos(8). The
optimal weights to use are17:

The angle 8 is then calculated via a single arc cosine subroutine call.

note that:
This procedure will result in a 8 value in the range [O,?r]. To determine the sign of 8,

biz = cos(8) * - sin(8) * aiy

Since the sign of 8 is the same as the sign of sin(8), theta is positive if:

aiy > 0, and cos(8) * ais - b;, > 0

These equations, along with similar ones for b i y , yield 2i independent estimates of the sign
of 8. The estimates are combined via a simple voting method: if more estimates indicate
negative sign than positive sign, 8 is assigned the negative value.

1 7 P r ~ ~ f will be supplied in a future report.

e

2.8. REAL-TIME VISION SYSTEM 57

a

e
I

Figure 2.34: Body Position Calculation

Once @ has been calculated, the position of the center of mass is calculable as:

r = d - R * rcen

Where R is the rotation matrix:

1 cos(8) - sin(@)
sin(8) cos(8) R = [

a

Lost point procedure In a dynamically changing system, object points are often ob-
scured. Once a body’s points have been identified, it is possible to calculate it’s position and
orientation as long as any two points are visible. The body manager’s lost point algorithm
makes this possible. The technique is quite simple: at initialization time, the a; vectors
and uti weights are calculated not only for the “all targets visible” case, but also for every
possible configuration of two or more visible targets. This calculation is rather complex,
but it need only be done once, during initialization. The position and orientation algorithm
described above is then provided with a data structure which describes the currently visible
target configuration. This structure is updated as the body’s points are lost and re- found.
The entire set of points need only be visible long enough for the body to be identified. The
only effect of occluded points is a slight degradation in the accuracy of the position and
orientation estimates.

If fewer than two points are visible, then the body is truly lost. When this happens,
the lost point algorithm notifies the system that the body is lost, and installs a ROI at the
body’s last known position. The position of the ROI is updated for a short time, based on
the body’s last known velocity. In most cases, this causes the body to be re-found as soon
as it becomes visible again.

e

58 CHAPTER 2. FEED-BASE COOPERATIVE MANIPULATION EXPERIMENT

Reporting positions t o the user interface The final task of the body manager is
to provide position updates to the user interface. The names and positions of all tracked
objects are reported to the user interface whenever requested. This activity is executed as
a background task, as it is of low priority.

2.8.9 The Observer Service

The object managers convert the raw point positions to the more useful object positions.
However, many functions of the system require estimates of object velocities as well. The
observer service allows each body manager the option of installing a simple linear state
estimator [ll] to provide object position and velocity estimates. By utilizing a model of the
plant dynamics, the estimator also provides a one-step prediction of the object position,
thus compensating for the inherent delay in the CCD camera sensing system.

The observer system implements the equations:

Equation 2.6 is referred to as the measurement update, and equation 2.7 is the time update
equation. This is a predictive estimator; jc provides an estimate of the state one sample
period after the last measurement. One independent set of these equations is executed for
each degree-of-freedom for every moving object in the system. The plant dynamic model
for our frictionless rigid-body system is quite simple; each degree-of-freedom is a textbook
double-integrator plant. The observer gains L were chosen to provide a time constant of
approximately 0.5 second18. This value was chosen empirically; it provides fairly quick
recovery from unmodeled plant disturbances, yet provides low-noise estimated position and
velocity.

2.8.10 Experiment a1 Results

Point tracking performance The simulations reported in the Fifth Semi- Annual Re-
port predicted point tracking resolution on the order of 1/20th of a pixel (average case).
These predictions are well supported by the experimental data. A typical time history data
sample of a single stationary point location is presented in Figure 2.35. The ordinate axis
units are pixels in the vertical direction. The point's vertical position is indeed stable to
about 1/20th of a pixel.

Our simulation also predicted that resolution was a rather strong function of target size,
with the maximum obtained when the target radius was about 3 pixels. This prediction was
also confirmed. Since the camera's resolution, 440 x 240 pixels, is greater in the horizontal
direction, the circular targets cannot have the same pixel radius in both directions. While
the targets radius is about 2.8 pixels in the vertical direction, it is nearly 4.5 pixels in the

I

"The observer poles are Butterworth at 0.5 Hz

e

0

2.8. REAL-TIME VISION SYSTEM
V a t i u l Point Trrkinn Noise 129.9 1 I I 1 I

12981 1 j j 4 - . a
.2129.7 3 129.6

* 1295 i ; ; j 1 t

Horizmul Point Tracking Noise 221.21

0

e

.... (.

0 1 2 3 4 5 6

Figure 2.35: Typical Point Position Calculation Noise

59

horizontal direction. As a result, the horizontal resolution is slightly worse, about l / l O t h
pixel*s.

Since a vertical pixel corresponds to about 5 mm, and a horizontal pixel to about 3
mm, the actual resolution in both dimensions is about 0.3 mm. The field of view is about
1 square meter. Thus, this represents 3000 : 1 resolution-quite acceptable for our task.

The system’s global accuracy was not carefully measured, but is clearly limited by the
optical distortion in our rather wide-angle lens. The lens is advertised to suffer distortion
of about 1% over its field of view; this corresponds roughly to the distortion experienced.
Resolution is far more important to our tasks than global accuracy; precise manipulation
of adjacent objects requires only accurate difference measurements.

Observer performance The observer performance is depicted in Figure 2.36. These
data were produced by bouncing the object off a piece of rather stiff foam. This causes a
“step” change in the object velocity. Note that the recovery to the correct state is rather
quick, and exhibits the expected Butterworth overshoot characteristic response.

Changes in the estimated state values each sample are readily apparent in Figure 2.36.
The noise in the observed measurements is actually extremely small; velocity measurements
for the approach in Figure 2.36 vary by only 1.5 mm/second. It is this high accuracy that
permits the “catch” algorithm, described below, to predict accurately where the object will
be in the future. The trajectory still requires periodic updates; even the 1.5 mm/second
error, when projected 5 seconds forward, produces a 7.5 mm error in predicted position-
enough to miss the gripper port.

lgThere may be other effects at play here as well, such as horizontal sampling jitter. They were not
investigated.

60 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT
obsavu Pafomuna

4.4 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T-(=-W

Figure 2.36: Observer Performance

An example: the catch The most demanding task required of the vision system is
the interception and capture of a moving object. A “strobe” sequence picture of a typical
catch is presented as Figure 2.37. The vision system must provide high-speed data for
three subsystems to perform this task: the two arms, and the body manager. Each arm
is under vision-guided endpoint control. The desired trajectory for each arm takes it from
its initial “home” position, to an intercept state that matches the object’s gripper port in
both position and velocity.

To perform a successful capture, the arm endpoint must then be held over the gripper
port for the duration of the time required for the gripper mechanism to engage. The
positioning must be fairly accurate. A schematic side view of the gripper mechanism is
shown in Figure 2.38. To engage the port, the gripper is driven downward by a pneumatic
cylinder. Since the bevel in the port is only 4 mm, the position of the arm must track the
port accurately for the 0.5 seconds to 0.9 seconds required for the downward motion of the
gripper.

Figure 2.39 shows the vertical positions and velocities of the right arm and right gripper
port during the above catch. The object is being accelerated toward the arm system for
the first second. During the next second, the arm tip accelerates to match the port position
and velocity at about the 3.2 second mark. The gripper’s downward motion occupies the
next secoi.d, after which the object is brought to a halt. After the grippers have engaged
(at about 4.5 second mark) the observer has an incorrect plant model; this accounts for the
apparent difference in position and velocity after the capture.

This figure also underscores the importance of the predictive estimates; a 1/60th second
delay in the position estimate at the 0.2 meters/second intercept velocity is 3.3 mm. This
is nearly enough to cause the arm to miss its mark. Any additional accumulated errors
would ensure a missed attempt.

I

2.8. REAL-TIME VISION SYSTEM

a6

a4

i Y 02-
+ 0 -

-0.2

-0.4

e

-
-

-

-

0

e

0

1

-0.6 ' I
-0.8 -0.6 -0.4 4.2 0 0.2 0.4 0.6

X (m-)

Figure 2.37: A Two-handed Catch

t

61

Figure 2.38: Gripper Schematic

62 CHAPTER 2. FIXED-BASE COOPERATIVE MANIPULATION EXPERIMENT

I -0.31 0 I 2 3 4 5 6

T i

Figure 2.39: Catch Trajectory Matching

The task is complicated by the need for both arms to arrive at their intercept locations
simultaneously. The arm trajectories are also updated as the object position and velocity
estimates improve. The strategic control section below provides the details of both these
issues.

2.9. FUTURE WORK

2.9 Future Work

63

The fixed-base cooperative manipulation experiment is now essentially complete. During
the next report period, the technology developed on this facility will be transferred to the
floating base experimental apparatus.

We are also beginning the technology documentation process in earnest. During the
next period, we expect to publish several technical papers-as well as a Ph.D. thesis-n
the results of this effort.

e

a

e

a

a

0

a

a

0

a

0

e

Chapter 3

Multiple Arm Cooperation on a
Free-Flying Robot

Ross Koningstein

3.1 Introduction

This chapter summarizes the work performed on multiple arm cooperation on a free-flying
robot under NASA grant NCC-2-333 for the period February 1988 to August 1988. Mul-
tiple arm cooperation from a free-flying robot is one of the basic technologies required for
space based manipulation. Ongoing work at the Stanford Aerospace Robotics Laboratory
is yielding insights into the fundamental nature of free-flying manipulator robots, both in
the understanding of the dynamics, and the understanding of the control problem. Ex-
tensions have been made to previous work on the dynamic modelling of a typical space
robot configuration, the kinematic chain, to demonstrate the simple formulation of desired
endpoint accelerations for control purposes. Also, given the joint accelerations, the compu-
tation of the control torques can be computed via an efficient O(n) algorithm. The control
systems being considered for implementation are based on the computed torque formulation
introduced by Craig[9].

3.2 Motivation

Computed torque formulations of the past have found the redundant degrees of freedom
possessed by floating base robots awkward to deal with. Standard computed torque schemes
rely on the inverse and derivative of the system’s Jacobian, J as expressed by

Vendpoints - - Jq

where v is a vector of the speeds of the manipulator endpoints, measured in some coor-
dinate system and q are the derivatives of the system generalized coordinates. When this
conventional approach is taken to the formulation of the Jacobian of a free-flying robot,

66 CHAPTER 3. MULTIPLE ARM COOPERATION

it is non-square[2] and the standard techniques to solve for the desired joint accelerations
cannot be used. We will demonstrate that a square Jacobian for a floating based robot can
be formulated, and that the joint accelerations can be solved for in a manner similar to the
standard technique.

Continuing work in the analysis of robot dynamics by Rosenthal[31], Rodriguez[30] and
others have shown that robot dynamics can be solved in O(n) computations. The ability to
solve the inverse dynamics equations for control torques in O(n) computations would give
the controls engineer the same benefits available to the simulation community: tractability
of large problems. Our work has led us to develop an O(n) algorithm for control torque
calculation suitable for kinematic chain robots.

3.3 Free Flying Robot Jacobian

The space robot being considered falls into the class of objects called kinematic chains.
The mathematical model for kinematic chains has a special structure allowing an algorithm
to easily formulate endpoint acceleration equations. The work on the formulation of the
Jacobian for a free-flying robot draws on previous work[7], which formulated equations of
motion, endpoint accelerations and closed chain constraint equations. Notation used is that
introduced by Kane[l8].

This analysis is performed for a free-flying robot torso with one or more kinematic chain
manipulator arms. The derivations are for 3D systems, and have been specialized to 2D for
our experimental work. A generic free-flying robot has n degrees of freedom, which account
for the 3 degrees of freedom of each arm, and 6 degrees of freedom of the robot’s torso.
The robot’s torso’s degrees of freedom are not directly controllable by the arm torquers if
we wish to achieve arm endpoint control.

3.3.1 Concepts used in Analysis

This theory for serial chain manipulators is derived using Kane’s dynamical analysis tech-
niques. The analysis that follows assumes that the velocities v of points and angular
velocities w of bodies in the system under consideration can be expressed in a Newtonian
reference frame as follows:

D

s= 1
V

s= 1

where the generalized speeds UI..~ are linear combinations of the derivatives of the gener-
alized coordinates Q.l..n. This will be true if no part of the system is undergoing prescribed
motions. The partial angular velocities of bodies, and partial velocities of points, as defined
by Kane[l8], can be shown to be:

0

3.3. FREE FLYING ROBOT JACOBIAN 67

V
a

&
a

OUT

v, = -

w, = - W

e

a

e

a

e

3.3.2 Jacobian Element Equations

In this endpoint acceleration control specifications will be expressed in terms of joint speeds
and accelerations. The standard computed torque method, which relies heavily on the
Jacobian, will be briefly overviewed. We wish to be able to determine the Jacobian scalars
j,, which form a Jacobian matrix as follows:

vendpoint = JUl..n

The endpoint acceleration can then be expressed as:

and the joint accelerations are typically solved for by rearranging these equations:

This matrix equation can be broken down into components which are dependent upon
the partial velocities and partial angular velocities of the endpoint of the each kinematic
chain in the system. Each endpoint velocity can be expressed in terms of its partials as:

n
Vendpoint -

UT -
r=l

and therefore endpoint velocity can be expressed in terms of speeds along some established
inertial x,y and z directions, for example, along unit vectors which we define as x,y and z:

n

,endpoint .x =

,pdpoint .y =

p-tdpoint. =

the elements of the Jacobian due to the

r=l
n c vFndpoint * Y UT

,=l
n

q d p o i n t - 2 11,
,=l

endpoint velocity values are therefore:

j,, = V;ndpoint ax

j z r - - p d p o i n t r * Y
j,, = V;ndpoint .z

0

68 CHAPTER 3. MULTIPLE ARM COOPERATION

These partial velocities are the same as the ones used in the dynamical derivations,

Endpoint acceleration control specification can be expressed in terms of the Jacobian,
which were discussed in previous work[7],

its derivative, and the generalized speeds and their derivatives:

gadpoint - - J G 1 . n + J w n

The derivatives of the elements of the Jacobian can also be determined from quantities
used in the dynamical equation formulation:

endpoint .
h r = vr
j2? = +;ndpoint * Y

j3r = +;ndpoint .z

If we assume a system, S, consists of a free-floating kinematic chain, with robot arms
which possess 3 independent links with controls, then each endpoint will possess 3 trans-
lational degrees of freedom and the torso will possess 6 degrees of freedom, since it is free
to translate and rotate in space. We are able to specify the desired endpoint acceleration,
but not the torso motion. The joint accelerations cannot be solved for purely by knowing
the endpoint motion, as is possible on a fixed base robot. When controlling a free-flying
robot, the motions of the torso must be accounted for. These motions, expressed by the
generalized speeds and coordinates of the torso, need to be solved simultaneously with the
motions of the arms. This can be done by including additional equations which ensure
system consistency given its dynamic properties.

3.3.3 Jacobian Augmentatioll Equations

The Jacobian needs to be augmented with several equations to reflect the relations between
joint speeds in a free-floating kinematic chain. Constraint relations can be used in this
manner to solve joint accelerations in constrained systems (ie. closed chain), as reported
earlier[7], or they can be used to solve underdetermined systems, such as free-floating robots
with redundant degrees of freedom. In this section, we will add equations to the Jacobian in
order to be able to solve the case of the underdetermined system. Augmentation equations
equations could be taken directly from the system dynamics, however, they contain motor
torques which are not known a priori. Instead, we will investigate the linear and angular
momenta conservation equations. The linear and angular momenta in free flying robots are
either conserved quantities, or vary according to the settings of system thrusters. We will
assume that these thruster settings are known a priori.

First, the linear momentum, then the angular momentum of the system will be exam-
ined. The linear momentum of body i in the system is

*

a

0

a

0

e

3.3. FREE FLYING ROBOT JACOBIAN

s=l
n

= C L f U ,
s= 1

where the partial linear momentum of body i is defined by

A i ira L', = m v,

69

The linear momentum of system of a system of v bodies is the sum of the linear momenta
of each body i in the system:

k l s=l

i=l s=l
v n

i=l s=l
n

.9= I

where the partial linear momentum of the system is defined by

Y A L, = miv?
i=l

The partial linear momenta of the system can be formulated using the system masses
and center of mass partial velocities. The integration of these vector quantities into the
Jacobian is similar to the process used for the partial velocities discussed in the previous
section, and will be discussed further at the end of this section, after the angular momentum
terms are examined.

The angular momentum,of each body i, about its center of mass is:

70

where

CHAPTER 3. MULTIPLE ARM COOPERATION

a=l

he partial angular momentum of each body is

The angular momentum of the system, consisting of u bodies, about the sy
of mass point, is:

t m's center

Y Y

i=l i=l
Y

i=l

i=l s=l
n

s= 1

where the partial angular momentum of the system is then

The equations which describe the partial linear and angular momenta can now be used
to augment the system Jacobian. This will result in a full rank Jacobian, allowing the joint
accelerations to be solved for. The resultant Jacobian when the system's linear and angular
momenta are taken into consideration is:

a

3.4. ORDER N INVERSE DYNAMICS 71

0
J =

0

a

0

e

a

e

The partial linear momenta can be normalized by the sum of the masses of the bodies
in the system. These normalized quantities have the same dimensions as partial velocities,
and can be treated just like the partial velocities already forming part of the Jacobian. The
normalized partial linear momenta are defined as:

The convenient feature of this normalization is that these normalized partial linear
momenta of the system for the indices which describe the translation of the torso, s =
v, v + 1,v + 2, are unit vectors equal to those appearing in every endpoint partial velocity.
By performing simply subtracting the normalized partial linear momenta rows from the
endpoint partial velocity rows, the size of the Jacobian can be reduced by three rows,
creating a reduced set of q1..3v-3 to solve for.

3.4 Order n Inverse Dynamics

In this section we will demonstrate a simple and straightforward algorithm to solve the
inverse dynamics equation for the control torques along a serial chain. Traditional computed
torque control schemes have used the following equation to compute the joint torques:

MC = NU + P T

This method requires O(n2) computations, and requires that the mass matrix and non-
linear terms of the system S be computed, then desired joint accelerations and known joint
rates be used to generate a vector from which the control torques are easily derived. We will
present an alternate method of computing these joint torques in o(n) computations. This
method is based on the Newton-Euler method of formulating robot equations of motion,
but instead of generating equations symbolically, we will generate numerical values for
accelerations, joint forces and torques, and actuator torques as we traverse the robot's
chain manipulator.

72 CHAPTER 3. MULTIPLE ARM COOPERATION

The algorithm consists of two phases:
First, the joint accelerations are used to determine the accelerations of all the joints

and each of the center of mass points of the u bodies in the system. We can use the link
recursion relation that the acceleration at the end of a link is related to the acceleration at
the start of a link as follows:

send - astart link $tart to end link rstart to end - + a t w

where the following components are derived as follows:

The axis direction Xi is a positive rotation, in a right handed sense, along q;. The torso
center of mass acceleration can be constructed using u,,,+1,,+2, while the torso angular
acceleration can be constructed using 21,+3,,+4,,+5. All other accelerations in the system
can be determined using the torso accelerations and the link recursion relations.

Second, the forces and moments are propagated back from the end of each chain. We
assume the force and moment at the end of the chain is a known value (typically zero
at the end of the arm). We take moments about the joint at the start of the link, and
consider only the components along the joint's axis Xi. The moments due to the center
of mass acceleration and the link's angular acceleration are easily evaluated given its mass
properties. The joint motor torque will be the only unknown in the equation

T i . Xi = link end + rstart to end Fend - rstart to)(&*) . Xi

Now take moments about the link start point, which are the moments applied to the
end of the next link in. Likewise, the sum of the forces will yield the forces applied by
this link to the end of the next link in. The focus of reference can now be shifted to the
next link in, where this process can be repeated until all of the control torques have been
determined. If linear actuators are being used, then the actuator force solution is done
using the sum of forces along the actuator axis.

If the chain is closed, then a 'squeeze' force can be assumed as a starting internal force
at the link end by conceptually cutting the closed chain, and the same procedure can be
followed but with the two chains generated by the cut.

The process of solving for the joint control torques or forces is fairly straightforward,
and if the robot has two or more arms, the solution for the control values for the various
arms can be done in parallel.

3.5 Status

The Jacobian formulation method introduced here has been used to generate the joint ac-
celeration specification matrix equation necessary in order to solve the computed torque
control problem for the general 3D case of a free-flying robot with kinematic chain manip-
ulators. The O(n) inverse dynamics solution has also been derived for this general 3D case.
A specialized and partially optimized derivation for 2D has been done to allow testing on
our experimental free-flying robot model.

a

3.6. FURTHER RESEARCH 73

0

0

0

3.6 Further Research

The underlying theory will allow position control of the endpoints of robot arms on a free-
flying robot platform, for the purposes of positioning and reaching out to grasp and hold
an object. The methods presented here along with work previously presented(71 will yield a
controller capable of position and force control for the closed loop 'capture' configuration.
The algorithms presented generally require O(n) computations, except for the solution for
the values of the joint accelerations required for the desired control, which require O(n2)
computations. This last computational bottleneck will be examined over the course of
our further research. Our physical simulation, a two dimensional satellite robot simulator
which floats on an air bearing, is very near completion, with initial experimental results
being presented January 1989.

a

a

0

a

e

a

0

Chapter 4

Navigation and Control of
Free-Flying Space Robots

Marc Ullman

4.1 Introduction

This chapter summarizes the progress to date in our research on global navigation and
control of free-flying space robots. This work represents one of the key aspects of our
comprehensive approach to developing new technology for space automation. Ultimately,
we envision groups of fully-self contained mobile robots making up the core work force in
space.

4.1.1 Motivation

e

Although space presents us with an exciting new frontier for science and manufacturing,
it has proven to be a costly and dangerous place for people. Space is therefore an ideal
environment for sophisticated robots capable of performing tasks that currently require the
active participation of astronauts.

While earth based robots have not always proved to be cost effective solutions to man-
ufacturing inefficiencies (due to the abundance of cheap labor), the tremendous cost asso-
ciated with putting men in space, especially when EVA is required, makes the economics
of robots in space particularly attractive.

4.1.2 Research Goals

The immediate goals of this project are to:

0 demonstrate the ability to simultaneously control robot base position and arm orien-
tation so that a free-flying robot can navigate to a specified location in space while
manipulating its arm(s).

7 5 PRECEDING PAGE BLANK NOT FILMED

76 CHAPTER 4. NAVIGATION AND CONTROL

0 demonstrate the ability to capture a (possibly moving) free-floating target “on-the-
fly” using the manipulator arm while the base is in transit.

0 provide a suitable platform for the eventual addition of A.I. based path planning and
obstacle avoidance algorithms which will enhance the robustness of task execution.

4.1.3 Background

This work emphasizes the modeling of robot dynamics and the development of new control
strategies for dealing with problems of:

0 a non-inertially fixed base (i.e. free-floating base)

0 redundancy with dissimilar actuators

0 combined linear and non-linear actuators

0 highly non-linear dynamics

0 unstructured environments

Our laboratory work involves the use of a model satellite robot which operates in two-
dimensions using air-cushion technology. We have developed a series of satellite robots
which, in two dimensions, experience the drag-free and zero-g characteristics of space. These
robots are fully self-contained vehicles with onboard gas supplies, propulsion, electrical
power, computers, and vision systems. The latest generation of robots is also equipped
with a pair of two-link arms for acquiring and manipulating target objects.

4.2 Summary of Progress

The following advances have been achieved during the past report period:

0 The low pressure gas subsystem has been revised to incorporate two-stage regulation
in order to provide low pressure air for pneumatically actuated end effectors.

0 A revised version of the Power Control Unit (PCU) that corrects the problems asso-
ciated with the original implementation has been designed and built.

0 The Safety Cut-Out/Solenoid Drivers Board has been designed and manufactured.

0 The board level components for the on-board computer system have been obtained
along with the VxWorks real-time operating system. Successful operation of the
computer system has been demonstrated.

0 Initial device drivers have been written and tested to verify the functionality of the
1/0 system.

0 A VME-bus based version of the “point-grabber” vision system used in our earlier
work has been designed and is currently being fabricated.

a

I

~

la

I

l

a

a

0

a

a

a

a

4.3. EXPERIMENTAL HARDWARE 77

0 An enhanced network architecture incorporating gateways and subnets that facilitates
off-board processing using multiple parallel processors has been proposed and tested.

0 Our plan to migrate all of our design, analysis, and software development activities
to a network of Sun Workstations has been proceeding smoothly.

4.3 Experimental Hardware

4.3.1 Gas Subsystem

We have revised the on-board gas subsystem to incorporate several new features including
a miniature low pressure regulator, a corresponding pressure gauge, and a pair of two-
way solenoid valves. (See Figure 4.1). The solenoid valves are used for controlling the air
supply to a set of pneumatically actuated end effectors. These end effectors or grippers
are of essentially the same design as that used in the fixed base cooperation experiments
described in Chapter 1. They incorporate a simple z-axis plunger which is driven by a
double-acting piston. The new regulator provides the source of low pressure air (10-60
psi) for operating these pistons while also providing much better regulation of the flotation
air supply during thruster operation. This later benefit is derived by now using two-stage
regulation ahead of the flotation control flow meter whereby the second stage of regulation
isolates the flow meter from the step changes in supply pressure which occur as a result of
the bang-bang thruster operation.

4.3.2 Power Distribution Subsystem

Two new custom printed circuit boards were developed to facilitate operation of the robot.
The first was a new version of the Power Control Unit (PCU) which supports the following
improvements:

0 Simplified control circuitry implemented with discrete device logic for much improved
noise immunity from power-on transients.

0 More convenient operation including the addition of a master power-on switch.

0 Support for independent operation of the battery charging circuits even when the
remainder of the power distribution system is off.

The second was a new board that performs the combined functions of providing a
safety cut-out circuit and solenoid driver logic and amplifiers. The safety circuit operates
in several different switch selectable modes. In its nominal mode of operation, the absence
of a computer generated “heartbeat” (presumable signaling that the computer has crashed)
disables power to the manipulator motors and the thruster solenoids in order to prevent
damage to the robot or its surroundings. Manual overrides are possible to either enable or
disable the output circuitry. A capability for remote manual disable, i.e. a “kill switch,” is
also supported.

78 CHAPTER 4. NAVIGATION AND CONTROL

Figure 4.1: Schematic diagram of satellite robot onboard gas subsystem.

Printed circuit board implementations of these boards have been manufactured and
tested and are now operating properly on board the robot.

4.3.3 Real-Time Computer

The onboard computer subsystem is now essentially complete and operational. We have
connected a pair of horizontally mounted five-slot VME card cages via a 96 conductor
ribbon cable. The “I/O” card cage contains a 16 channel 12 bit A/D board, a 4 channel
12 bit D/A board, and a 32 bit digital 1/0 board while the “computer” card cage houses
a Motorola MVME 147 single board computer. This unit features a 68030 microprocessor
running at 20 MHz along with a 68882 Floating Point Coprocessor. It also contains 4 MB
of dynamic RAM, an Ethernet controller, a SCSI bus interface, four serial communications
ports, a Centronics parallel interface, and a complete VME bus controller.

We are using Wind River Systems’ VxWorksl as our realtime operating system and
now have a device driver customized for the MVME 147. The computer uses an EPROM
based boot monitor incorporating this device driver and configuration settings stored in

‘VxWorks is described in depth in Chapter 3 of our Sixth Semi-Annual Report

4.3. EXPERIMENTAL HARD WARE 79

a

EEPROM to boot over the Ethernet network connected to our Sun 3/160 file server.

4.3.4 1/0 Interface Modules

Device drivers incorporating basic functionality have been written and tested to demon-
strate the proper operation of the 1/0 system. These drivers are non-interrupt driven
C-callable routines. Each device driver typically has three callable functions: An initializa-
tion call, a read procedure, and a write procedure. The drivers for output devices (DO and
D/A) save the current state of the outputs (when the hardware does not) thus enabling the
read calls to return the current output states.

4.3.5 Point Grabber Vision System

A new version of the "point-grabber" vision system used in our earlier experiments has
been designed which incorporates the following new features:

0 A VME bus compatible interface.

0 The ability to handle up to four cameras simultaneously.

0 Jumper selectable generation of sync signals for cameras which allow for external
syncing.

0

0

0

0

0 Programmable adjustment of the threshold setting

A wire-wrap prototype has been built and debugged to the point of demonstrating basic
functionality; however, it has yet to been used with higher level code to preform actual
vision services.

A revised version is being designed using a schematic capture and PCB layout system.
As a PCB it will be feasible to produce boards for each robot as well as for possible off-board
vision.

4.3.6 Multilayer Network Architecture

In light of the fact that VxWorks supports a complete implementation of the TCP/IP
networking protocol including gateway and subnet capabilities, we have devised a multi-
layer network architecture that allows us to do parallel processing using both on-board and
off- board computers.

Figure 4.2 illustrates the topology of our three levels of subnets. Our main laboratory
network (ARL-Net) connects our diskless Sun Workstations and our VxWorks gateway
machine(s) to our central file server.2 Our VxWorks gateway machine consists of an open
frame 20 slot VME card cage and a pair of MVME 147 single board computers3 each with
an onboard Ethernet controller. A virtual network implemented in software using shared
memory transparently connects the two MVME 147s together (ACV-BP-Net). The second

2This fileserver also serves as a gateway to the campus wide network.
3These are the same computers as described above in the section entitled Real Time Computer.

80 CHAPTER 4. NAVIGATION AND CONTROL

MVME 147 serves as gateway to a third network (ACV-Net)4 connecting to the on-board
computer .

ACV-BP-NET 002
mdcpIane1

.I

Figure 4.2: Distributed Realtime Computer System Network Topology.

This topology offers a number of benefits:

0 Since these devices support TCP/IP as well as NFS, all communications between
processors are transparent at the socket, RPC, or NFS level. This means that software
can be constructed (except for timing considerations) without regard to whether two
processors are in the same card cage or even on the same network. Once the system
is configured, a l l routing though the gateway machines is completely transparent to
the user.

0 By isolating the communications between the on-board and off-board processors with
a private subnet, the likelihood of collisions is greatly reduced due to the limited

'This network is to be implemented using a fiber optic Ethernet to minimize the effects of the cable on
the robot dynamics. Ideally the link would be made using RF transmitters and receivers; however, we have
been unable to find a low cost system capable of handling the 10 Mbps bandwidth with an acceptable level
of reliability

4.4. REAL-TIME DEVELOPMENT SYSTEM 81

0

0

access hence improving the real-time performance of the network.’

0 As we extend our work from cooperating manipulators to cooperating robots it will be-
come necessary to provide a communications channel between the cooperating agents.
The proposed network topology supports this requirement in a very natural manner
via the simple addition of new nodes (one for each new robot) to the third level
(ACV-Net) network. The robots will then be able to communicate with each other
as well as with the off-board computers that may be providing global coordination
and planning.

0 A desire to do sophisticated planning and obstacle avoidance will naturally lead to a
requirement for greater off-board processing power. This need is also met in straight
forward manner through the addition of more processor boards to the second level
(ACV-BP-Net) or backplane network

0
The topology described above has been set up and configured and is now operating suc-
cessfully. As the first gateway processor boots, it is configured as a gateway machine. This
in turn allows the successive subnet computers to boot transparently through the higher
level gateway machines.

4.4 Real-Time Development System

e
Our entire laboratory has been in process of migrating all of our software development,
testing, downloading, and debugging activities to a network of Sun Microsystems diskless
workstations. The network environment, based on an Ethernet LAN, couples our com-
puters together so that all software and data can be shared transparently. This facilitates
technology transfer and enhances information sharing among the many different projects
in our laboratory.

The selection of the VxWorks realtime operating system software package is one of the
important corner pins making this consolidation possible. To date, the transition has been
proceeding smoothly. We have sold our pair of VaxStation 11’s and upgraded three Fujitsu
Eagle Disk Drives to a pair of new 2382 drives, thereby nearly doubling our on-line storage
capacity while improving performance and reducing maintenance costs. We hope to be
able to upgrade our server and continue to add new workstations to the network as our
computing requirements increase.

e
‘Because Ethernet is a CSMA/CD based network with uses a combined exponential and random backoff

algorithm to avoid collisions it offers no guaranteed upper limit on packet delivery time; however, as network
traffic is decreased, the statistical likelihood of an unresolvable collision is greatly decreased.

It should also be noted that it is our intent to use off board computers in a client/server paradigm whereby
a delayed response would not catastrophic. That is to say, asynchronous processes would be running on the
off board computers that would not be tied “lock-step” to the real-time control loops running on-board.

a2 CHAPTER 4. NAVIGATION AND CONTROL

4.5 Modeling and Simulation

The complete dynamic4 equations of motion have been derived and verified for a single-
armed version of the robot. These equations have been coded up and simulated for both
free and forced motion.

4.5.1 Analytical Model

The robot has initially been modeled with only one arm, since the global control and target
capturing problems can be addressed with this somewhat simpler configuration. (See the
section on Multi-Arm Cooperation for a derivation of the equations of motion for the t w e
armed version.) The model consists of three planar rigid bodies connected by two torque
motors. (See Figure 4.3). The base body is capable of translation and rotation in the plane
via eight on-off-on thrusters mounted as 90" opposed pairs on each of four corners.

Figure 4.3: Free body diagram of space robot indicating nomenclature used for dynamic
modelling .

a

e

4.5. MODELING AND SIMULATION 83

4.5.2 Equations of Motion

The equations of motion for this five-degree-of-freedom system were derived using Kane’s
method[l9] and for verification purposes were also derived using the symbolic equation
generation program SDEXACT[32]. The joint space equations of motion can be expressed
in terms of a vector of generalized coordinates q (corresponding to the joint positions and
angles) and a vector of generalized speeds u. They are of the form:

F, + F,? = 0

or

F - M(q)G - V(q, U)U = 0

where

M(q) is the configuration dependent mass matrix, V(q, u) is the configuration and velocity
dependent matrix of non-linear terms, and F is the vector of generalized active forces. The
u’s or generalized speeds are defined in terms of the state derivatives, 4, by the relation

where

Y =

u = y q

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 1 1 1

In order to implement a simulation, we must solve the previous set of equations to
obtain

G = M(q)-’ (F - V(q, u)u)

e

e

4.5.3

As discussed in our fifth Semi-Annual Report, a computed torque[9] controller was imple-
mented as a first cut at closed-loop control. This controller has since been extended to
operate in “operational space”[21] so that trajectories are now specified in terms of the
manipulator tip positions rather than in terms of joint angles. This later approach is much
preferred when one is generating trajectories with a path planning algorithm.

The extension of the computed torque controller into operational (or Cartesian) space is
fairly straight forward. We begin by defining a state vector of coordinates which describe

Operational Space Computed Torque Controller

e

84 CHAPTER 4. NAVIGATION AND CONTROL

the robot configuration in terms of variables we are directly interested in controlling. In
our case, we have selected

x = [Z B , ?/Bc OB Z t i p ?/ t ip I T
where (ZB, ,YB,) is the position of the center of the base in inertial space, OB is the orien-
tation of the base in inertial space, and (z t i p , y t i p) is the position of the end point of the
manipulator in inertial space. A set of basic kinematic equations relates this state vector
to our original set of generalized coordinates q so we can write:

x = K I N (q)

Typically one defines the relation between the time derivatives of these two state vectors
in inertial space as the Jacobian yielding:

K = Jq

However, since our equations have been cast in terms of generalized speeds, u , we find
it more convenient to make the following definition:

J = JY-’

so that

K = JY-’u = JU

Differentiating this relationship leads to

% j U + J h

from which we can solve for h

h = 3-y -ju + X)
We can replace X with a desired acceleration ades composec, of bo1 feed forward and

feedback terms resulting from our commanded trajectory and our feedback control law re-
spectively. With a simple proportional-derivative (PD) control law our desired acceleration
vector consists of the following terms

ades = g - d + Ku(&d - K) + Kp(x,d - x)

where K p and K,, are diagonal matrices containing the proportional and derivative
feedback gains respectively.

Substituting the resulting expression for i back into our original equations of motion
yields a set of generalized forces which represent our “inverse dynamics” control vector of
forces and torques.

4.5. MODELING AND SIMULATION 85

e

e

e

e

The resulting generalized forces can then be mapped onto the available actuators (thrusters
and arm torque motors) using the pseudo-inverse and thresholding techniques described in
our previous report[6].

4.5.4 Trajectory Generation

Currently we are using commanded trajectories in the form of time and amplitude scaled
unit step fifth order polynomials. Now that we have implemented an operational space
controller, these trajectories are described in our Cartesian work space rather than in joint
space as was required with our joint space controller. Fifth order polynomials were selected
so that we can match a desired position, velocity, and acceleration at both ends of the
trajectory. The trajectory specification is given as a matrix Tspec of the form:

The actual trajectories are then computed using the equations

where r = t / t f is normalized time and [a 6 c d e f] is a vector of coefficients
given by

[u 6 c d e f] = TspecC-'

where C is the matrix of constant coefficients that results from evaluating a generic fifth
order polynomial and its derivatives at 0 and 1.

4.5.5 Simulation Results

In order to verify the effectiveness of the control strategy outlined above, several,test cases
were run in simulation. The algorithm was coded up as a series of "M-files" using the
matrix manipulation program Matlab. Figure 4.4 shows a simulation run in which the
robot base was commanded to move from the origin to a location 1 meter to the right and
1 / 2 meter up while undergoing a 90 degree counter-clockwise rotation over a 10 second
time interval. At the same time the arm tip was commanded to move from (-0.25,-0.5)6
to (1.5,0.5) and to arrive with a velocity of lOcm/s in the positive y direction. Figure 4.5

'All coordinate pairs refer to dimensions in meters relative to the origin.

86 CHAPTER 4. NAVIGATION AND CONTROL

shows the time history of the actuator forces and torques used for this trajectory. It shows
the resulting pulse width modulation (PWM) of the eight thrusters along with the zero
order hold (ZOH) torque outputs for the manipulator motors. Thus these results show
that given a “reasonable” trajectory, we can control both the base and the manipulator
using the control formulation presented above.

1.5

1

0.5

0

-0.5

-1

I I I I I I I

2
-1.5’

-2 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.4: Time-lapse plot from simulation of space robot executing combined base and
manipulator motion under closed loop control.

4.6 Summary

Significant progress has been made during the past report period on both the hardware and
the analysis fronts. We now have an operational real-time computer system that supports
remote login, remote debugging, multiple processors, distributed processing, and transpar-
ent networking. We have demonstrated successful operation of the gas subsystem (with
its improvements), the power distribution system, the 1/0 subsystem, and the prototype
vision system.

4.7. FUTURE WORK 87

*

0.2
h

4

8

$3
3 0.15
c)

W

4)

8 0.1 LL

h

E z - 0.05
4)
1

c)

0

:.: :. ...
: : : . . . I i ; i : .: ... : ...

-0.05 ' 1 1 I I I

e

time (sec)

Figure 4.5: Thruster and torque motor time histories used in executing space robot trajec-
tory shown above.

4.7 Future Work

Our robot is ever closer to becoming operational. All major subsystem components are now
in place. The principle work remaining entails wiring and interconnecting the vast array of
components. Specific items yet to be completed include:

0 Completing the 1/0 Transition Module-an interface/patch board that provides a
generic connection between the 1/0 Subsystem and the Analog Subsystem while pro-
viding custom configuration and signal breakout/monitoring.

0 Wiring the sensors and actuators.

0 Installing the manipulator end effectors (grippers).

0 Mounting the onboard and off-board cameras.

0 Mounting the angular rate sensor and the x-y accelerometers which will serve as the
core of an onboard INS system for tracking vehicle position and orientation.

88 CHAPTER 4. NAVIGATION AND CONTROL

The modular design philosophy, which has been a guiding principle for this project since
its inception, will continue to apply as our focus begins to shift away from hardware toward
soft ware.

Chapter 5

Multiple-Vehicle Cooperation

William C. Dickson

0

e

e

e

0

5.1 Introduction

This chapter introduces a new line of research being conducted in the area of multiple-
vehicle cooperation. This work will eventually unite the various lines of research presently
being conducted in fixed- and floating-base cooperative manipulation, and in global navi-
gation and control of space robots. Our god is to demonstrate multiple free-floating robots
working in teams to carry out tasks too difficult or complex for a single robot to perform.
Achieving this cooperative ability will involve solving specialized problems in dynamics and
control, high-level path planning, and communication.

Progress Summary

Activities completed from March 1988 to August 1988 were:

0 Far-range research goals were defined

0 Initial model of the physical system was developed

0 Candidate path/motion planning algorithm was developed

0 Closed-loop control for tw*robot manipulation was successfully simulated

5.2 Research Goals

Some of the goals of this project are:

0 Cooperative manipulation and assembly by multiple robots

0 Fine cooperative manipulation in presence of on-off control

89

90

a

a

0

5.3

CHAPTER 5. MULTIPLE-VEHICLE COOPERATION

Development of control strategies for path following in presence of obstacles and large
disturbances

Path generation considering dynamic constraints and known geometric boundaries

Task planning for complex assemblies

Experimental Hardware
The vehicles to be used in this research are a pair of the two-armed free-floating robots used
in the LEAP experiment (see Chapter 6). As with the Navigation and Control research, only
one of the two arms on each of the robots will be used, removing the issue of cooperation
between arms on the same robot and allowing the research to focus on cooperation between
independent vehicles.

The vehicles will be manipulating a free-floating object having either two receptacles
for vehicle dockings (as with the object used in the fixed-base cooperation research) , or a
bar to be grasped by grippers similar to those used in the LEAP experiment. The mass
and inertia of the object will be adjustible so that studies can be made concerning a given
controller's performance over a range of these parameters.

Experiments will be performed on the 9' x 12' granite table. This large size is necessary
if the robots and manipulated object are to perform interesting configuration changes or
maneuvers (such as moving around obstacles).

5.4 Modelling

The robot is modelled as a three-link chain consisting of a free-floating base and a single
two-link arm-resulting in the five-degree-of-freedom system described by qi(i=l,. . .,5) as
shown in Fig. 5.1. The set of actuators consists of eight on-off thrusters (mounted as 90"
opposed pairs on each of four corners of the base), a momentum wheel on the base, and
torque motors at the shoulder and elbow of the arm. For modelling and control purposes,
the thrusters are grouped into two perpendicular, multi-directional, on-off-on sets. With
this simplification, base control forces and torques are conveniently separated between the
thrusters and momentum wheel, respectively. Thus, each vehicle has five controls-two
thruster forces (F1 and F2) for two-dimensional translation, and three torques (T I , T2, and
2'3) for orientation. fz and fy are manipulation forces.

using Kane's method [18] and can be written as:
The Equations Of Motion (EOM) for the five-degree-of-freedom system were derived .

Mii = b + G T + H f (5.1)
q = u

where q, u, 7, and f a r e defined as:

A
q = [41 42 43 44 45 IT,

5.5. CONTROLLER 91

0

e

e
5.5 Controller

Figure 5.1: Modelling of single-arm vehicle

e

4 X

Computed torque controllers solve systems' EOM for the forces and torques required to
produce desired accelerations. With the present system, given by the EOM in (5..1), G is
always invertible so that the T necessary to produce the desired acceleration vector
can be given as:

T = G - ' (M i d e , - b - Hf).

However, in our case, the first two elements of T , F1 and F2, are available only in the
discrete values of 0 and thus not all i d e s can be produced. More precisely, only
three linear combinations of the five terms in i d e 3 can be arbitrarily specified-the other
two vary discretly due to the on-off-on values of Fl and F2. This problem of specifying
desired accelerations was resolved as follows.

First, we define a new velocity vector v :

where v, and vy are the manipulator tip speeds in the x and y directions. Defining a as
the time derivative of v,

we find that a can be written as
a = R t i + s ,

92 CHAPTER 5. MULTIPLE-VEHICLE COOPERATION

and since R is invertible,

We can now rewrite (5.1) in terms of a:

G = R-'(a - s).

MR-'(a - s) = b +- GTtHf.

Using the substitutions

A

A
N = MR-',

c = b t N s ,

we arrive at a new set of EOM expressed in terms of a:

Na = c + GT t Hf. (5 4

The motivation for writing the EOM as in (5.2) is that the acceleration vector a now
contains terms that directly describe the motion of the manipulated object - namely a,
and ay, the manipulator tip accelerations in the x and y directions. Precise object control
requires that arbitrary values of these accelerations be achievable. As before, only three of
the five terms in a can be arbitrarily chosen. With two being the important tip accelerations
a, and ay, the remaining choice is the base angle acceleration u3 .

a = [al I a; lT = [i ~ 1 i(2 I ti3 a, ay lT.
Thus, a can be partitioned into determined and arbitrary parts:

T

T , N, and G are similarly partitioned:

N = [NlINZ],
G = [GlIG21.

We can recombine the equations in (5.2) according to these partitionings to arrive at:

Defining W and P as:
A

A
w = [N l I -G2],

p = [GI -N21,

we arrive at the EOM expressed in a convenient form for control purposes:

W [z] = c + F ' [i] t H f . (5.3)

0

5.6. PATH AND MOTION PLANNING 93

Schmitt Trigger I

a

0

1 - I I

Figure 5.2: Schmitt trigger used to determine thruster forces

Given the discrete thruster forces 7 1 and the desired accelerations 8 2 , we can determine
the resulting base accelerations a1 and the required control torque vector 7 2 :

The control problem is thus divided between the separate tasks of first determining 7 1

(F1 and F2), then using these values with the desired accelerations a2 (.iL3,u,, and uy) to
calculate the motor torques 7 2 and the resulting base accelerations 81.

The first candidate scheme under analysis for determining the base forces is to make
F1 and F2 the outputs of a Schmitt trigger, as shown in Fig. 5.2. The inputs to this
filter are the weighted sums of the errors in base position and velocity resolved in the two
perpendicular thrust directions:

The parameters a, ICq, and KU are chosen to yield desired response characteristics.

5.6 Path and Motion Planning

e

e

0

A path planner is required to find a viable corridor through the workspace to the desired
terminal location. The path generated by the path planner will then be used to define a
curvilinear coordinate system that a motion planner will use to describe the desired motion
of the vehicles and manipulated object. In order to accomodate the possibility of unforeseen
obstacles or a changing workspace geometry, the path will be frequently updated as the
vehicles and manipulated object move toward their destination.

The visibility graph (VG) [40] is the first path-planning algorithm under study. Given
a geometric representation of the workspace, the VG method searches for the shortest path
from an initial to final point. Fig. 5.3 shows the path found by the VG path planner in a
workspace with several obstacles that were "grown" by a safety margin to prevent collisions.

94 CHAPTER 5. MULTIPLE- VEHICLE COOPERATION

8

Safety Margin ‘y

I

i

Figure 5.3: Path found by the Visibility Graph path planner

A motion planning algorithm has been developed that generates desired positions and
speeds for the vehicles and object along a path found by the path planner. Where the path
planner was concerned only with the workspace geometry, the motion planner takes into
consideration performance limitations due to dynamic factors such as the vehicles’ mass,
inertia, and thrust levels. Other important factors are the vehicles’ fields of view and the
presence of unknown obstacles.

Fig. 5.4 shows a schematic of the control loop for the multiple-vehicle manipulation
system.

5.7 Simulations

Simulations of a two-vehicle object manipulation have been successfully carried out using
the matrix manipulation program Pro-Matlab [8]. One such manipulation task, shown in
Fig. 5.5 , utilizes two single-armed robots transporting a beam along a straight path from
A to B. An object impedance controller assigns values of a,, uy , fz, and fy to each of the
two robots, then the control forces and torques are determined as discussed in Section 5.5.

At present, the .path-planning algorithm has not been implemented in software, so
Fig. 5.5 represents closed-loop control along a predefined path. However, since the method
of generating the path is transparent to the controller, the motion of the vehicles and object
along the predefined path will be identicle to the motion along the same path generated by
the visibility graph or any other path planner. This independence between path planning
and control will be convenient for developing both aspects of the closed-loop system.

5.8 Summary

Work has begun on the problem of multiple-vehicle cooperation. Far-range goals have
been defined to give direction for progressing research. An initial control scheme has been

5.8. SUMMARY

I ... Object Robot 1

Task Planner Path Planner Workspace

Robot n

L I I I

xlda I -1
n

xn

- - - -
Object

Figure 5.4: Schematic of control loop

0
0

0

0

95

Figure 5.5: Simulation of two-vehicle object manipulation

96 CHAPTER 5. MULTIPLE-VEHICLE COOPERATION

successfully simulated, and candidate path- and motion-planning algorithms are being de-
veloped.

5.9 Future Work

The next major step in software development is to implement revised versions of the sim-
ulation code in C for eventual use with our real-time system.

The path-planning algorithm is near completion. Once the planner is operational, a
study will be undertaken to determine the stability issues associated with the vehicles
following a periodically changing path.

a

a

0

e

Chapter 6

Locornot ion Enhancement via
Arm Pushoff (LEAP)

Warren J. Jasper

6.1 Introduction

To perform complex assembly tasks, an autonomous vehicle needs to move from one place
to another. There is a high premium on the use of propellants, for every kilogram of
propellant is provided in space only at extreme ‘cost. Also, the use of thrusters may disturb
the environment by impacting a target which the robot is trying to grasp. Our proposal
for reducing substantially the use of propellant is an approach called LEAP: Locomotion
Enhancement via Arm Pushoff. In LEAP, the vehicle pushes itself off from a large space
object and “leaps” to the desired resting place or simply “crawls” along an object. This is
the common mode of locomotion used by the astronauts while in the Space Shuttle.

We believe that space robots can use this idea to good advantage. That is why this new
project was added to investigate the problems and issues involved in autonomous space
locomotion. The first phase of the project involves: devising the experiment, deriving the
equations of motion and candidate control laws, and then simulating the model to size
physical parameters for the actual experiment. The second phase encompasses design and
fabrication of the vehicle, while the third phase is to verify experimentally the theoretical
development. The following paragraphs describe the progress on phase two. Phase one is
already completed.

Progress Summary

The major activities started or completed during the period March, 1988 through August,
1988 were:

e

0 Completion of “Ballerina Bar” around the granite table.

97

98 CHAPTER 6. LOCOMOTION ENHANCEMENT VIA ARM PUSHOFF (LEAP)

0 Completed assembly of high pressure plumbing.

0 Completed fabrication of major hardware (machined) components. This includes
battery packs, battery racks, analog racks, mounting plates, posts and a variety of
mounting brackets. About 90% of the parts have been machined for two air cushion
vehicles.

0 Ordered digital electronics. This includes the CPU boards, A/D and D/A boards,
and a Parallel 1/0 board.

0 Started assembly of low pressure plumbing, thruster subsystem, and power system.
Also began wiring vehicle.

6.2 The Experiment

A new air-cushion vehicle is being designed to study LEAP. This vehicle should simulate
the motions that an autonomous space robot would perform while in the space station or
maneuvering out in space. The experiment will consist of the vehicle pushing off a bar
located on one side of the granite table, rotating 180 degs, and catching itself by grasping
a bar located at the other end of the table. Ideally, one would like to complete this task
without the use of thrusters. However, at the point of initial release from the bar, errors
in the velocity of the center of mass of the vehicle can only be corrected using thrusters.
To enhance the robustness of this approach, thrusters will be incorporated into the control
laws for midcourse correction. Figure 6.1 shows the robot in three configurations: pushing
off the bar, rotating, and catching itself at the other end. By incorporating crawling and
leaping, the robot can position itself anywhere on the table with a minimum amohnt of
propellant. This investigation complements current work done at the Stanford Aerospace
Robotic Laboratory [5, 71 by incorporating global navigation and object I- xipulation into
a general study of locomotion.

Figure 6.1: The LEAP Demonstration

a

0

-
Task Layer

Ballerina Bar
Robotic Arms
High Pressure Plumbing I
Low Pressure Plumbing I

Thruster System I1

Battery Packs I11
Battery Rack I11
Analog Rack I11
Digital Euro Card Cage IV
Vision System V

Base Plate Fabrication I

Momentum Wheel System I1

I

e

0

0

a

6.3. FABRICATION 99

6.3 Fabrication

Fabrication and assembly of two vehicles was the major emphases during the past six
months. As mentioned in the Fourth semi-annual report [5] , the overall design objective
was to create a modular vehicle which consists of cylindrical layers. Each layer incorporates
a major system, with five layers in all. Table 6.1 describes the systems in each layer and the
fabrication/assembly status. This table only includes the progress/status for mechanical
fabrication, and not wiring, testing or system integration.

The completion of the “ballerina bar” was another interesting task. To attach the bar
to the granite table, plastic nodules with heli-coil inserts were glued to the side of the
table. This was by far the cheapest method and preferable to drilling holes in the side of
the table. Unfortunately, the first attempt using Loctite 401, a cyanoacrylate, failed. This
is because the glue was too brittle, and fractured when a torque was applied to the nodules.
The nodules were then glued using Epoxy 2216 and tightened down with strap clamps. It
appears that this second approach works fine.

Started
J
J
J
J
J
J
J
J
J
J
J

Table 6.1: Fabrication Completed

6.4 Inertial Sensing Unit

Completed
J
J
J

J

J
J
J
J

One areaof concern was sensing the inertial position and rates of the robot base with respect
to the inertial or lab frame. Although a vision system is being explored, it is unclear at this
time whether velocity and acceleration values can be derived at a high enough bandwidth
from a vision system, which essentially measures position. Acceleration data is needed to
determine the amount of velocity or Av imparted to the robot during thruster firing, while
angular rate information is directly used in the computed torque control law. To sense
these quantities, an accelerometer and an angular rate sensor were acquired. The angular
rate sensor, made by Watson Industries, is a solid state electronic device which produces

100 CHAPTER 6. LOCOMOTION ENHANCEMENT VIA ARM PUSHOFF (LEAP)

Power supply:

Sensitivity:
Output current:
System frequency:
Scale factor error:
Linearity:
Frequency response:
Output noise:
Life:
Shock:
Weight:

output:
f15 VDC f5% 20 mA maximum
f 10 VDC at full scale angular rate
f l O O “/second full scale
f10 mA maximum
360 Hz nominal
2%
.e 0.1% full scale
DC to 30 Hz
5mV RMS maximum
50,000 hours MTBF minimum
200G
110 grams

Table 6.2: Angular Rate Sensor Specifications Model ARS-C131- 1A

an output voltage when Coriolis forces causes bending in a piezoelectric bender element.
This rate sensor, also known as a “tuning fork gyro” has the advantages over conventional
gyros of low cost and high reliability. Table 6.2 gives some important specifications for the
instrument.

The accelerometers used on the LEAP vehicle are two Systron Donner 4310 liner servo
accelerometers. As Table 6.3 shows, these are high quality instruments. The output will
be filtered for scale factor and bias, and integrated twice to give velocity and position. At
this time, it is unclear whether the integration will be done in hardware or software.

One of the challenges will be to detect acceleration on the order.of O.lmg to lOmg
in a l g environment. Although accelerations in the x and y directions are orthogonal and
theoretically decoupled from each other and the l g gravity force in the z axes, there is some
cross axis coupling on the order of <O.O02g/g of applied acceleration. The major source
of error will occur in detecting these small accelerations in a l g environment. By way of
example, if the accelerometers are set to read lOmg full scale, a tilt in the base of 20 arc
seconds (which corresponds to a change in height of the base with respect to the granite
table of 0.0009 inches) causes an error of 1% or O.lmg. This will only become a problem if
one integrates acceleration twice to derive position, for errors in acceleration grow as t2 in
position.

0

a

6.5. FUTURE WORK 101

Power supply:
output:
Sensitivity:
Output current:
Zero Output (Null):
Linearity:
Natural frequency:
Output noise:
Resolution
Shock:
Weight:

f15 VDC &lo% at 10 mA maximum
f7.5 VDC at full range
f l g full scale
f3 mA maximum
< 0.05% full range
< 0.05% full scale

< 7.5mV RMS
< 0.001% full range
lOOG llmsec
128 grams

50 - 250 HZ

Table 6.3: Linear Servo Accelerometer Model 4310

6.5 Future Work

The robotic vehicles should be near completion in the next five months. The major tasks
yet to be completed are wiring, system integration and test. Fortunately, many of these
tasks can be done in parallel and so experiments should begin by the summer of 1989.

e

e

e

e

a

0

a

a

0

Chapter 7

Adaptive Control of LEAP

Roberto Ernest0 Zanutta

7.1 Introduction

A major task of free-flying robots is to aid in the construction, maintenance and repair of
space structures (e.g. the space station and satellites) while in orbit. Because of the high
costs of placing mass into orbit, it is desirable to reduce the amount of propellant consumed
by the free-flying robots while carrying out their tasks. Typical tasks performed by the
robots will require them to transport and retrieve various objects. To minimize the amount
of propellant required, the robots will have to know accurately the inertia properties of
the objects they carry. Since it is not practical to specify the object mass properties each
time a robot performs a task, some method of identification is necessary. This can be done
through the use of adaptive control.

The investigation of adaptive control for a two-armed free-flying robot is a recent project.
The previously reported work has been in the investigation of adaptive control schemes and
vehicle modeling and simulation. A major part of this was a literature search. The following
is a summary of the work done on the project during the last six months. This work consists
mainly of control law and adaptation law simulation and analysis. Also included is a brief
description of future work.

7.2 Control Law Development

The first step in the development of an adaptive controller for the vehicle is the determina-
tion of a suitable control law. This has been the main thrust of the recent research on this
project. As was reported in the previous semi-annual report two approaches were found in
the literature which had desireable characteristics for real-time applications. These were
presented by Slotine and Li of MIT [34] and Wen and Bayard of JPL [4]. These approaches
must be extended and modified for implementation on a two-armed free-flying robot. The
following is a description of the modifications made and preliminary simulation results.

104 CHAPTER 7. ADAPTIVE CONTROL OF LEAP

The control law chosen to command the robot is one proposed by Slotine and Li [34].
It is:

r = M(q)& + C(q,4)& - K,s (7.1)

where

A and KV are positive definite diagonal matrices. q is the vector of the system states
(vehicle position and arm orientations). q d is the vector of desired states. is the vector
of tracking errors. 7 is the vector of forces and torques associated with the system states
(applied forces and torques). M is the estimated system mass matrix. C(q,q)& is the
estimated system non-linear terms.

This control law does not consider the closed-loop kinematic condition that occurs when
the robot is holding an object with both arms. To deal with this problem the non-holonomic
equations of motion were used [18].

The control law was modified by treating the sliding mode term (7.4) as an applied force
and incorporating the closed-loop kinematic constraints (see Appendix C of the Fifth Semi-
Annual Report) forming the non-holonomic equations of motion. The resulting control law
is:

7s + AT,., =
+

Cs - Kvss + AT,(Cr - Kvsr) + (Msr + AT,Mrr)Br
(Mss + MsrArs + AT,Mrs + ATsMrrArs)3s (7.5 1

The s and r subscripts refer to the independent and dependent degrees of freedom respec-
tively.

The choice of independent degrees of freedom is fairly arbitrary. The independent
degrees of freedom were chosen to be the base orientation, shoulder angles and momentum
wheel orientation (s = 3,4,6,8). This choice results in the applied torque distribution:

These equations provide the relationship between the torques required to achieve the
desired motion, but do not give a unique solution. There is still some freedom in how the
torques can be distributed.

As a first cut the two shoulder motor torques were set equal. Simulation results using
the control law (7.1) are shown on the next page. The graphs show the error between the
desired and actual position of the left shoulder and elbow motors (tracking error). The
tracking errors are less than 0.03 degrees. Similar results were obtained for the right arm
and momentum wheel. These results demonstrate that, under ideal conditions the control
law works well.

7.2. CONTROL LAW DEVELOPMENT 105

e

e

left shoulder motor

0 1 2 3 4 5 6 7 8 9 10
time (sec)

left elbow motor

0 1 2 3 4 5 6 7 8 9 10

time (sec)

Figure 7.1: Tracking error using the control law

106 CHAPTER 7. ADAPTIVE CONTROL OF LEAP

7.3 Adaptation Law

The control law and adaptation laws are closely related. The first adaptation law simulated
is also one proposed by Slotine and Li. The adaptation law is:

This law has some strong and weak points. Its main advantage is that it is very simple to
implement using the control law (7.1). It uses the tracking error which is readily available
and therefore adds to the simplicity of the algorithm. At the same time tracking error
presents a problem in identification because it is small when good tracking is achieved,
.regardless of the parameter estimation. As a result when the desired trajectory is accurately
tracked the parameter estimates will not change even when they are off the true values.
In order to obtain a good parameter estimation a rough "sufficiently exciting" trajectory
is desired. This presents a conflict with good tracking which requires smooth trajectories.
Because of this conflict and the importance of good parameter identification a two-phase
approach appears desireable. In the first phase the robot will "shake" itself about to
determine its inertial parameters. During the second phase the robot will perform the
desired task using a smooth trajectory.

This adaptation law with the control law (7.1) was simulated. Various trajectories and
control parameters were tried. Two cases are presented: the first when adapting to one
parameter (total mass) and the second when adapting to eight parameters (the minimum
number when adding a mass to the base). The trajectory used for adaptation was generated
using filtered random torques for the actuators. This generated a trajectory which was
"exciting" and therefore good for identification.

As can be seen the scheme worked well when adapting to one parameter, but failed
when adapting to eight parameters. In both cases the tracking error was small (less than
2.5 degrees). But, in the eight parameter case the parameters did not adapt well. The
following figure shows the mass estimates to be off by more than an order of magnitude.
The motors saturated when large adaptation gain values were used to try to improve the
performance of the adaptation law. Once the motors saturate little, if any improvement is
achievable.

More effort is required to improve this adaptation scheme. But, considering the past
results there appears little hope that the scheme will yield promising results. An alternate
method is presently being investigated. This new method will require either more hardware
or a more complicated adaptation law.

7.4 Adaptation Law I1

A new approach for adaptation, as suggested by Li and Slotine [25] is being considered.
The method uses prediction error in addition to tracking error to drive the adaptation
process. As a result twice as much information is used during the identification phase. The
method has some very desireable properties. The approach has exponential convergence
for persistently exciting trajectories and guarantees bounded parameter estimates. The

7.4. ADAPTATION LAW I1

80

M 6 0
3
n

g 40-
3
3 20-

0-‘

107

- 1 I I I I I I

8 - - * - - .
1-8 0’ ,. _-- *- ---- ------ a

8 _ , ‘-’ %*.. . _ _ _ _ _ - _ _ - - - - 0 - - - . . - _ ; ’.
8

I

-- ---__--
f I

; -
I
I - true total mass ------- mass estimate I

;
8’

-
I

I I I I I I I I

0

e

e

i n M 6 0
3
’v)

B 401

I d
cd E 20

true tot4 mass
.------ mass esmate

time (sec)

Figure 7.2: Adaptation law parameter estimates

108 CHAPTER 7. ADAPTIVE CONTROL OF LEAP

method is based on the standard least-squares and exponential forgetting least-squares
methods. But, as in the case of the control law, modifications have to be made.

There are two approaches which are being considered for modifying the adaptation law.
The first is to use force sensors at the robot arm tips and to treat the system constraints
only through these forces. The second approach uses the constrained system equations
directly in the identification scheme. This latter method does not require force sensors,
but the unknown parameters appear as non-linear terms in the control and identification
equations. This will slow down the rate of convergence and may even prevent parameter
convergence. The necessary modifications have been made to the algorithm for simulation.

7.5 Future Work

The simulation studies on the adaptation laws must be completed. These studies will
determine the next step of research since it may be necessary to add force sensors to the
arm tips. Upon completion of the simulation studies the real- time implementation aspects
of the chosen algorithm will be addressed. Ongoing work in the hardware development will
continue.

I

a

e

Bibliography

[l] T. E. Alberts and D. I. Soloway. Force control of a multi-arm robot system. In
Prwceedings of the International Conference on Robotics and Automation, pages 1490
- 1496, Philadelphia, PA, April 1988. IEEE.

[2] Harold L. Alexander. Experiments in Control of Satellite Manipulators. PhD the-
sis, Stanford University, Department of Electrical Engineering, Stanford, CA 94305,
December 1987.

131 Alford and Belyeu. Coordinated control of two robot arms. In Proceedings of the
International Conference on Robotics and Automation, Atlanta, GA, 1984. IEEE.

[4] David S. Bayard and John T. Wen. Simple adaptive control laws for robotic manip-
ulators. In Proceedings of the Fifth Yale Workshop on the Applications of Adaptive
Systems Theory, pages 244-251, 1987.

[5] Robert H. Cannon, Jr., Harold Alexander, Marc Ullman, and Ross Koningstein. NASA
Semi-Annual Report on Control of Free-Flying Space Robot Manipulator Systems.
Semi-Annual Report 4, Stanford University Aerospace Robotics Laboratory, Stanford,
CA 94305, February 1987.

[SI Robert H. Cannon, Jr., Marc Ullman, Ross Koningstein, Stan Schneider, Warren
Jasper, and Roberto Zanutta. NASA Sixth Semi-Annual Report on Control of Free-
Flying Space Robot Manipulator Systems. Semi-Annual Report 6, Stanford University
Aerospace Robotics Laboratory, Stanford, CA 94305, February 1988.

[7] Robert H. Cannon, Jr., Marc Ullman, Ross Koningstein, Stan Schneider, Warren
Jasper, and Roberto Zanutta. NASA Semi-Annual Report on Control of Free-Flying
Space Robot Manipulator Systems. Semi-Annual Report 5, Stanford University
Aerospace Robotics Laboratory, Stanford, CA 94305, August 1987.

[8] Cleve Moler, John Little, Steve Bangert, and Steve Kleiman. PRO-MATLAB User’s
Guide for Sun Workstations. The Mathworks, Inc., Sherborn, MA, August 1987.
Version 3.2-SUN.

[9] John J. Craig. Introduction to Robotics Mechanics and Control. Addison- Wesley,
Reading, MA, 1986.

109

110 BIBLIOGRAPHY

[lo] Tamar Flash and Neville Hogan. The coordination of arm movements: An experi-
mentally confirmed mathematical model. A. I. Memo 786, MIT Artificial Intelligence
Laboratory, November 1984.

[ll] Gene F. Franklin and J. David Powell. Digital Control of Dynamic Systems. Addison-
Wesley, Reading, MA, 1980.

[12] S. Fuji and S. Kurono. Co-ordinated computer control of a pair of manipulators.
Industrial Robot, pages 155-161, December 1975.

[13] S. Hayati. Hybrid position/force control of multi-arm cooperating robots. In Proceed-
ings of the International Conference on Robotics and Automation, pages 82 - 89, San
Francisco, CA, April 1986. IEEE.

[14] Vincent Hayward and Richard P. Paul. Robot manipulator control under unix rccl:
A robot control “c” library. International Journal of Robotics Research, 5(4):94-111,
Winter 1986.

1151 G. Hirzinger and J Dietrich. Multisensory robots and sensor-based path generation. In
Pmeedings of the International Conference on Robotics and Automation, pages 1992
- 2001, San Francisco, CA, April 1986. IEEE.

[16] N. Hogan. Impedance control: An approach to manipulation, parts i, ii and iii. Tmns
of the ASME, Journal of Dynamic Systems, Measurement, and Control, 107:l-24,
March 1985.

[17] T. Ishida. Force control in coordination of two arms. In Proceedings of the 5th Inter-
national Joint. Conference on Artificial Intelligence, pages 717-722, Aug 1977.

[IS] Thomas R. Kane and David A. Levinson. Dynamics: Theory and Application.
ivlcGraw-Hill Series in Mechanical Engineering. McGraw-Hill, New York, NY, 1985.

[19] Thomas R. Kane, Peter W. Likins, and David A. Levinson. Spacecmj? Dynamics.
McGraw-Hill, New York, NY, 1983.

[20] 0. Khatib. Object manipulation in a multi-effector robot system. In ISRR, Santa
Cruz, CA, 1987.

[21] Oussama Khatib. Commande Dynamique dans l’Espace Ope‘mtion~el des Robots Ma-
nipulateurs en Prbence d’Obstacles. PhD thesis, (E)cole Nationale Supdrieure de
I’A6ronautique et de l’Espace (ENSAE), Toulouse, France, 1980.

[22] Oussama Khatib. A unified approach to motion and force control of robot manipula-
tors: The operational space formulation. IEEE Journal of Robotics and Automation,
RA-3(1), February 1987.

BIBLIOGRAPHY 111

e

e

a

0

[23] J. C. Latombe, C. Laugier, J. M. Lefebvre, E. Mazer, and J. F. Miribel. The lm robot
programming system. In H. Hanafusa and H. Inoue, editors, Second International
Symposium on Robotics Research, chapter 7, pages 377-391. MIT Press, Cambridge,
MA, 1985.

[24] M. A. Lavin and L. I. Lieberman. Aml/v: An industrial machine vision programming
system. International Journal of Robotics Research, 1(3):42-56, Fall 1982.

[25] Weiping Li and Jean-Jacques E. Slotine. Parameter estimation strategies for robotic
applications. In A.S.M.E. Annual winter Meeting - Modeling and Control of Robotic
Manipulators and Manufacturing Processes, pages 213-218, Boston, MA, 1987.

[26] M. T. Mason. Compliance and force control for computer controlled manipulators.
IEEE Trans. on Systems, Man, and Cybernetics, SMC-11(6):418-432, June 1981.

[27] Y. Nakamura, K. Nagai, and T. Yoshikawa. Mechanics of coordinative manipulation
by multiple robotic mechanisms. In Proceedings of the International Conference on
Robotics and Automation, pages 991 - 998, Raleigh, NC, April 1987. IEEE.

[28] L. Pfeffer. Cooperation via coordinated endpoint impedance control. Informal techni-
cal discussions.

[29] Mark H. Raibert and John J. Craig. Hybrid position/force control of manipulators.
Transactions of the ASME, 102(6):126-133, June 1981.

0

e

0

e

[30] G. Rodriguez and K. Kreutz. Recursive mass matrix factorization and inversion. Tech-
nical report, NASA Jet Propulsion Laboratory, Pasadena, CA, March 1988. JPL
Publication 88-11.

[31] Dan E. Rosenthd. Order N Formulation for Equations of Motion of Multibody Sys-
tems. In G. Man and R. Laskin, editors, Proceedings of the '!Vorkshop on Multibody
Simulation, pages 1122-1150, Pasadena, CA, April 1988. NASA Jet Propulsion Labo-
ratory. JPL D-5190, Volume 111.

[32] Michael Sherman and Dan Rosenthal. SDEXACT User's Manual. Symbolic Dynam-
ics, Inc., Mountain View, CA, February 1988.

[33] B. E. Shimano, C. C. Geschke, and C. H. Spaulding 111. Val-ii: A robot programming
language and control system. In M. Brady and R. Paul, editors, First International
Symposium on Robotics Research, chapter 10, pages 918-940. MIT Press, Cambridge,
MA, 1984.

[34] Jean-Jacques E. Slotine and Weiping Li. On the adaptive control of robot manipu-
lators. In Proceedings of the ASME Winter Annual Meeting, pages 51-56, Anaheim,
CA, 1986.

112 BIBLIOGRAPHY

[35] Software Components Group, Inc., 4655 Old Ironsides Drive, Santa Clara, CA 95054.
pSOS - 68K Real- Time, Multi-processing Opemting System Kernel User’s Manual, 4.1
edition, 12 1986.

[36] D. I. Soloway and T. E. Alberts. Comparison of joint space versus task force load
distribution optimization for a multi-arm manipulator system. In Proceedings of the
NASA Conference on Space Telerobotics, Pasadena, CA, February 1989. NASA.

[37] T. J. Tarn, A. K. Bejczy, , and X. Yun. Design of dynamic control of two cooperating
robot arms: Closed chain formulation. In Proceedings of the International Conference
on Robotics and Automation, pages 7 - 13, Raleigh, NC, April 1987. IEEE.

[38] R. H. Taylor, P. D. Summers, and J. M. Meyer. Aml: A manufacturing language.
International Journal of Robotics Research, 1(3):19-41, Fall 1982.

[39] M. Uchiyama, N. Iwasawa, and K. Hakomori. Hybrid position/force control for coordi-
nation of a two-arm robot. In Proceedings of the International Conference on Robotics
and Automation, pages 1242 - 1247, Raleigh, NC, April 1987. IEEE.

[40] E. Welzl. Constructing the Visibility Graph for n line segments in O(n2) . Information
Processing Letters, 20(4):167-171, May 1985.

[41] D. E. Whitney and J. L. Nevins. What is the remote centre compliance (rcc) and what
can it do? Robot Sensors, 2:3-15, 1986.

[42] B. Yin. Using vision data in an object-level robot language-rapt. International
Journal of Robotics Research, 6(1):43-58, Spring 1987.

[43] Y. F. Zheng, J. Y. S. Luh, and P. F. Jia. A real-time distributed computer system for
coordinated motion control of two industrial robots. In Proceedings of the International
Conference on Robotics and Automation, pages 1236 - 1241, Raleigh, NC, April 1987.
IEEE.

