NASA Contractor Report 179614 SPI-25-1

Megawatt Class Nuclear Space Power Systems (MCNSPS) Conceptual Design and Evaluation Report

Volume III—Technologies II: Power Conversion

J.R. Wetch, et al. Space Power, Inc. San Jose, California

September 1988

Prepared for Lewis Research Center Under Contract NAS3-23867

(NASA-CR-179614-Vcl-3) MEGAWATI CLASS N89-22980 NUCLEAR SPACE FOWER SYSTEMS (MCNSFS) CONCEPTUAL DESIGN AND EVALUATION EFFORT. VOLUME 3, TECENCLOGIES 2: FOWER CONVERSION Unclas Final Report (Space Fower) 136 F CSCL 10B G3/44 0190054

SPI-25-1 TABLE OF CONTENTS

VOLUME-PAGE

1.0	Abstract	• • • • • • • •		•••	•			•	•	•	•	•	•	•	I-1
	1.1 Objectiv	ves			•		• •	•	•	•	•	•	•	•	I-2
	1.2 Perform	ance Requiremen	nts .		•			•		•	•	•	•	•	I-3
	1.3 Study G	oals			•			•	•	•	•	•	•	•	I-3
	1.4 Systems	Considered for	MCNSP	s.	•			•	•	•	•	•	•	•	I-3
	1.5 Study Re	esults			•			•	•	•	•	•		•	I-5
2.0	Conclusions	••••••			•			•	•			•	•		I-10
	2.1 Study Co	oncept			•			•	•	•		•		•	I-10
	2.2 Applica	tion			•			•	•	•		•	•	•	I-13
	2.3 Technol	ogv Status							•	•	•	•	•		I-14
	2.4 Candida	te Technologies							•	•	•	•	•	•	I-15
	2.5 Study R	esults													I-16
	2.6 Critical	1 Technology De	evelopm	ent	Rea	uir	emen	its	·	Ì					I-22
3.0	Introduction a	nd Background	· · · · ·						•						I-28
4.0	Technologies Co	onsidered													TT-1
	4.1 MCNSPS	Objectives		•••	•	•••			•						TT-1
	4.2 Candida	te Sveteme		•••	•	•••	•••		•	•	•			•	11-2
	4.2 Candida 4.3 Heat Re	iection		•••	•	•••	• •	•	•	•	•	•	•	•	TT-15
	4.J Heat Re	ower Reactore	and Fue	.1	•	• •	• •	•	•	•	•	•	•	•	TT-75
	4.4 Space I	onversion System	inu rue	·	•	• •	• •	•	•	•	•	•	•	•	
50	4.5 FUWEL C	tion	• 8111	• •	•	•••	• •	•	٠	•	•	•	•	•	111-1
5.0	5 1 Solooti	ciul		• • • • •	•	• •	•••	•	•	•	•	•	•	•	10-1
	J.I Selection	noformed Sustan	i scree	ntug											TV7_1
	E 2 Eveluate	relerred System	15 • •	• •	•	• •	• •	•	•	•	•	•	•	•	
	5.2 Evaluat	lon and Selecti	. Ion	• •	•	•••	• •	•	•	•	•	•	•	•	1V-3
	5.3 System	Joni iguration	• • •	• •	•	• •	• •	•	•	•	•	•	•	•	10-17
	5.4 Survival	Dility	· · · ·	• •	• ,	•••	• •		•	٠	•	•	•	•	10-22
	5.5 Urbital	Assembly/Start	: Up/Sn	utdo	wn/	Dori	nanc	ÿ/							TT 01
	Restar	rt/Reliability	• • •	• •	•	• •	• •	•	٠	•	•	•	•	•	IV-31
6.0	Conceptual Des:	igns	• • •	• •	٠	• •	• •	•	٠	•	•	•	•	•	IV-36
	6.1 Rankine	Turbo Electric	: Syste	ms	•	• •	• •	٠	٠	•	•	•	•	•	IV-36
	6.2 Thermion	nic System	• • •	• •	•	•••	• •	•	٠	•	•	•	•	•	IV-60
7.0	Summary of Deve	elopment Requir	rements	and											_
	a Prel	liminary Develo	pment	Plan		•••	• •	٠	٠	•	•	•	•	•	IV-97
	7.1 Power Sy	ystem Developme	ent.	• •	•	• •	• •	٠	•	•	•	•	•	•	IV-97
	7.2 Adjunct	Activities .	• • •	• •	•	• •	• •	٠	٠	•	•	•	•	•	I V -107
REFER	RENCES														
	References to V	Volume I		• •	•	• •	• •	٠	٠	•	•	•	•	•	I-36
	References to V	Volume II		• •	•	• •	• •	٠	•	•	•	•	•	•	II - 130
	References to N	Volume III		• •	•	• •	• •	•	•	•	٠	•	•	•	111-106
	References to V	Volume IV, Sect	ion 5	• •	•	•••	• •	٠	•	•	•	•	•	•	I V- 35
	References to N	Jolume IV, Sect	ion 6	• •	٠	• •	• •	•	•	•	•	•	•	•	IV-96
APPEN	IDIX A (VOLUME II	II)		• •	•	• •	• •	•	•	•	•	•	•	•	A-1
	References to A	Appendix	· • •	• •	•	• •	• •	٠	•	•	•	•	•	•	A-33

4.5 POWER CONVERSION SYSTEMS

The major power conversion concepts to receive detailed consideration in this study are:

- 1) Rankine alkali metal vapor turbine-alternators;
- 2) In-core thermionic conversion;
- 3) Brayton gas turbine-alternators; and
- 4) Free piston Stirling engine-linear alternators.

In this volume the considerations important to the coupling of these four power conversion alternatives to an appropriate nuclear reactor heat source, together with the comparative performance characteristics of the combined systems meeting the MCNSPS requirements, are presented.

4.5.1 Rankine Alkali Metal Vapor Turbine-Alternator System

Introduction. It was recognized almost at the inception of the space nuclear electric power program that the heat rejection from a high temperature Rankine cycle system promised to give the lowest radiator size and weight of any of the systems under consideration. The cycle diagram and the schematic arrangement of the Rankine cycle are shown in Fig. 4.5.1.1. In this cycle, the working fluid is compressed as a liquid and heat is added to raise the liquid to its saturation temperature, as indicated in the cycle diagram by processes 1-2. Heat is added at constant pressure and temperature, causing a phase change from liquid to vapor, states 2-3. The vapor is expanded through a turbine and work is extracted, states 3-4. To complete the cycle, the waste heat is rejected at constant pressure and temperature, causing the vapor to condense back to the liquid state, during the process 4-1.

As a result of the boiling and condensing phase changes at constant temperature, the ideal saturated Rankine-cycle efficiency approaches that of the Carnot cycle. In addition, very little work is required to compress the working fluid in the liquid state. The principal advantages of the Rankine

III-1

PRECEDING PAGE BLANK NOT FILMED

FIG. 4.5.1.1.

Cycle are the high cycle efficiency and the isothermal heat rejection, both of which are important to minimizing the radiator area for a given heat source temperature. The principal disadvantages of liquid metal Rankine cycles are the relative complexity, heavy boilers and separators required to provide dry saturated or superheated vapor in mucri-gravity, vapor-liquid management in the separator, turbine, and condenser, liquid metal bearing requirements, numerous loops, pumps, heat exchangers, valves and ceramic alternator stator seals, inherent corrosion and erosion characteristics of the applicable working fluids.

Working Fluids

The reports and papers covering the extensive work carried out on high temperature Rankine cycles in the past 30 years have been reviewed. From this review it is evident that high temperature steam cycles entail such high pressures that the equipment would be much too heavy for space power applications. The upper temperature useable with higher boiling temperature organic fluids is limited to about 750 K by thermal decomposition; this temperature is too low to give an attractive system. Mercury was used in utility power plant systems for 40 years and was the choice for low power (3-30 kWe) SNAP space power systems. However, experience indicates that solution-type corrosion and mass transfer imposes an upper temperature limit of about 800 to 900 K for Fe-Cr-Ni alloys. Refractory metal alloys could be used for higher temperatures, but the vapor pressure of mercury increases to the point that equipment weights become excessive at boiling temperatures above about 1000 K. Alkali metals have been shown to be compatible with both the Fe-Cr-Ni and refractory metal alloys [23] to much higher temperatures and have lower vapor pressures than mercury, hence they are logical choices. Fig. 4.5.1.2 indicates the range of applicability of sodium, potassium, cesium and their potential radiator power densities. No other working fluids have since been found that would have both a suitab vapor pressure and be compatible with a suitable structural alloy.

By 1959 completely independent studies at ORNL and NASA Lewis Lab indicated that potassium and cesium were the best candidates for space power systems ranging from 300 kWe to 1 MWe. The vapor pressure of rubidium is

intermediate between the values for potassium and cesium, but it is difficult to obtain. Lithium was found to have such low vapor pressures at containable temperatures that the size of components and hence their weight became excessive. The diameter of the last stage of a 100 kW(e) lithium turbine, for example, would have to be almost 2 meters. A subsequent study at G.E. ANP in Evendale, Ohio reached similar conclusions. In comparing cesium and potassium it was found that the higher atomic weight of cesium gives a smaller and lighter turbine, but the turbine weight is a small fraction of the total power plant weight. On the other hand, potassium is much more readily available than cesium, less expensive, and far less subject to neutron activation. As a consequence, all three organizations chose potassium as the working fluid for the 300 kWe to 1 MWE power range.

In this program, for 10 MWe, sodium will be shown to provide lowest system mass, if suitable higher temperature (1600 K - 1800 K) reactor, fuel, manp and (low creep) turbine and boiler materials can be developed.

Over 100 reports are available describing liquid metal Rankine cycle concepts, materials work and components development that took place during the period 1955 to 1970. This cycle received over 200 million dollars (virtually all) of the space power development funding from 1955 to 1967. Most of the work was with the lower temperature SNAP 2 and SNAP 8 mercury systems. In the mid 1960's a healthy potassium Rankine component development program was under way. The potassium work was pointed toward 300 kWe to potentially 1 MWe and now serves as the technical basis for extrapolating to multimegawatt power outputs. To make the best use of this past work in this study, it was decided that past work [35-39] would be reviewed, correlated, and extrapolated to temperatures and power levels needed in this study. These correlations and extrapolations follow in this report.

In addition to components, design consideration must be given to coolant and working fluid loop arrangement. The major question in this regard is direct cycle versus indirect cycle.

<u>Direct In-Core Boiling Cycle</u>. The Rankine vapor cycle is similar to the Brayton gas cycle in that it can use either a direct cycle with the working fluid heated in the reactor core or an indirect cycle with a single phase liquid coolant loop and an external liquid to boiler or vapor heat exchanger. The direct and indirect cycles are illustrated schematically in Fig. 4.5.1.3.

Successful boiling reactors using water as a working fluid have been built for terrestrial low temperature, earth gravity power systems. However, a boiling reactor with liquid metal, as might be used in a 0-gravity space power system, requires a major technology development effort.

The direct in-core single pass boiling reactor is not reasonably capable of producing vapor superheat in a compact reactor because of the large void and heat transfer area requirement to achieve dry vapor for superheat. In order to prevent in-core boiling burnout in a fuel rod bundle core, a considerable recirculation rate (approximately 10:1 mass ratio of coolant liquid recirculation to vapor fraction) is frequently specified. In order to achieve low recirculation ratios, incore liquid-vapor separation, and boiling stability, the reactor should be "inside out", i.e., the fuel should be outside of the coolant channels, as in the heat pipe cooled "SPAR" reactor. In this manner, inlet coolant tube orificing can prevent "boiling disease" even in zero gravity, as was achieved in the Hanford and Savannha River tube type production reactors. In addition, a "calendria" type core will permit installation of spiral turbulators into each boiling tube as described in section 4.4 of Volume II. At the exit of the reactor, the vapor must be cyclone separated from the recirculating liquid and cyclonechevron dried before entering a saturated vapor turbine. After partial expansion, the moisture must be extracted from the turbine to remove accumulated liquid. Another alternative is to admit prime hot vapor into later stages of the turbine in order to reheat the partially expanded vapor. Moisture extraction and reheat are required to prevent excessive long term turbine erosion in saturated metal vapor turbines. Turbine vapor extraction is also required for feed heating, better efficiency, and reactor temperature stability.

The direct in-core boiling system is sensitive to fluctuating reactivity due to vapor (void) formation. Special attention is required to tailor the reactor design to have a nearly zero, or slightly negative, void coefficient of reactivity. The relatively high pressure (200-300 psi) on the reactor vessel will most likely require that the pressure vessel be located outside of the reflector control drums. This arrangement will greatly increase the complexity of reactor control.

A twin turbine, direct boiling, potassium reactor system schematic layout is shown in Fig. 4.5.1.4. The hot saturated vapor is cyclone separated and demisted in the reactor before being brought around the outside of the shield to a header and distributed to multiple turbo-alternator units. Recycled potassium liquid might be recirculated to the reactor inlet either by a very high temperature EM pump, a jet pump powered by high pressure condensate return, or by a vapor driven turbo-pump. Vapor extracted from the turbines is also reheated in a heat exchanger. Condensate is removed from the restartable-taper-cone condensers by EM pumps and delivered to canned-rotor or turbine driven boiler feed pumps. A heat rejection loop transfers waste heat from the taper cone condensers to the radiator. The main radiator is an extendable telescoping cylinder heat pipe type, which is shown packaged in the stowed configuration. In addition there is a bearing and alternator cooling heat rejection system which operates at a lower temperature.

The inherent primary advantage of the direct boiling system is lower reactor fuel temperatures for a given overall thermodynamic efficiency, if recirculation pumping power can be kept low. Because the use of lithium is precluded in the direct boiling system, a second advantage will be the lower corrosion sensitivity of refractory metals to potassium (as opposed to lithium). Finally, the direct cycle system avoids the weight and complexity of a separate loop, consisting of an intermediate heat exchanger and a high temperature lithium pump, components which are required for the indirect cycle approach.

III-9

Fig. 4.5.1.4

The indirect Indirect Systems. Rankine cycle system, utilizing electromagnetically pumped liquid lithium coolant in the reactor or primary loop and an external once-through potassium boiler-superheater in the power conversion system loop, can be a much more straight forward engineering With only a pumped non-boiling primary loop, a compact, reflector task. controlled, fuel pin reactor is reasonable. The low lithium pressure will permit thin reactor vessel (double) walls with minimum loss of reflector control. Reactivity fluctuation is minimal, and boiling burnout and stability in the reactor can be avoided. The external once-through boilersuperheater, with liquid lithium as the heat source, is not subject to unstable flow distribution boiling burnout at the expense of increased boiler-superheater mass, slightly superheated vapor might be provided to minimize the need for turbine moisture extraction and reheat. Development will be more straight-forward but must deal with higher reactor temperatures and lithium metal containment for a given system efficiency and radiator size. An indirect cycle potassium Rankine power system flow schematic is shown in Fig. 4.5.1.5

For this type of system, multiple torroidal boiler superheaters produce the dry vapor with heat input from pumped lithium loops which cool the reactor. Redundancy in the ducting and boilers is maintained with multiple turbine generator units. Other components in the system would be similar to the design shown in Fig. 4.5.1.4, although the space taken up by the boiler units means that the entire system would be longer.

Another indirect cycle concept uses a modified "mini-heat-pipe" reactor (described previously in Section 4.4.4 of Volume II), rather than a straight-forward lithium cooled fuel pin reactor. This concept permits elimination of the double-walled primary reactor core vessel. Multiple lithium loops cool the <u>short</u> heat pipes in a cross-flow series-parallel design which eliminates the possibility of single point failures. The short heat pipes at high power density are more reasonable. The reactor can be made much larger for higher fuel inventory and power output. Individual heat pipe, radiation cooled, control rods can be considered without primary coolant vessel penetration.

Fig. 4.5.1.5

Temperatures and Pressures. The peak cycle temperature for a liquid metal Rankine system is usually limited by the fuel cladding temperature, but this limit may also be a consequence of the allowable peak centerline temperature in the fuel itself. Although temperatures in excess of 1500 K might be achieved with liquid metal Rankine systems, it is expected that pressure containment will limit saturation temperatures to about 1400 K plus some small superheat for a potassium working fluid. At these temperatures, the vapor pressure of potassium is approximately 10-15 atm, which is reasonable for creep stress limitations in the high temperature components. The use of sodium as the working fluid would permit operation at 100 K higher temperature at the same pressure limits, if a low creep rate reactor core vessel (or boiler tube) material can be developed. The temperature of heat rejection can be varied for design optimization with the radiator size. However, as the heat rejection temperature is lowered, the condensing pressure is also lowered and the sizes of the last turbine stages, the condensers and the radiator are rapidly increased. Moisture erosion also becomes more significant.

<u>Reactor and Shielding Considerations</u>. For direct boiling Rankine systems, there are design difficulties in bringing the working fluid (large vapor pipes) around or through the shield, similar to the direct Brayton cycle problem. However, the mass of fluid which must be transported (and hence the sizes of the ducts) is smaller than the Brayton gas system and the radiation streaming may be less of a problem.

With an indirect Rankine cycle, a lithium metal primary loop would be used to bring the heat around the shield. This permits heat transport with a relatively small cross-section of fluid duct, so that the majority of the shield surface area can be left exposed for cooling. In addition, the liquid lithium in the ducts is a fair shielding (scattering) material itself, so that radiation streaming is reduced. With the pumped loop indirect cycle, there is no boiling in the reactor and the reactivity changes related to this are avoided. <u>Multiloop Systems</u>. Rather than combining the condensing and waste heat radiating processes into a single vulnerable component, a shell-and-tube condenser can be used to reject heat to a third loop. This loop conveys the heat out to a radiator, resulting in a three-loop system similar to those used in utility steam power plants and in the SNAP-8 power unit. The programs at NASA Lewis Lab, G.E.-Evendale, and Pratt & Whitney also followed this course. A flow sheet for the three-loop system is shown in Fig. 4.5.1.6.

<u>Electric Output</u>. Electric output of the Rankine cycle system is similar to all other rotor-dynamic systems, in terms of producing a desired voltage. A particular characteristic of the Rankine system is the need for an auxiliary radiator to cool the canned stator generator and turbine bearings. This radiator can operate at relatively higher temperature than solid state components (≈ 600 K).

Reliability and Modularity. The reliability of alkali metal Rankine cycle systems is primarily a question of high temperature fuel and component durability, corrosion resistance, and development of successful long life liquid metal bearings. Corrosion of high temperature components by the alkali metals in non-isothermal loops is greatly accelerated by the presence of small quantities of oxygen, nitrogen or carbon in the system [23,38]. It will be important to maintain the purity of the working fluid for a long operating life and to select materials that have very low temperature dependence on solubility in the liquid metals. The process of boiling the liquid metal continually re-distills impurities out in the portion where evaporation takes place. This can lead to transport of metal similar to the phenomena in high power heat pipes. However, the deposition of metal in the boiler portions of the system are less likely to clog small orifices, as occurs in the small passages of a heat pipe wick.

In order to achieve a reliable system, multiple boiler, turbo-alternator and condenser loops are anticipated. This is not difficult in the indirect case where the primary lithium flow can be divided and the alkali metal vapor turbines are small in both size and mass. Turbo-alternator units on the order of 1.5 to 3 MWe output were examined for extrapolation to 5 MWe and 10

MWe net output, respectively. All loops, pumps and turbo-alternators should be in near-perfect counter rotating pairs to minimize the vehicle disturbing torques.

vital requirement for exceptionally high reliability, unattended The operation in orbit raised a basic feasibility question at ORNL some years ago. Would it be possible to achieve the specified 90% probability for a year's operation without a forced outage? (An even more stringent reliability requirement of 95% for 5 years (44,000 hrs) is currently envisaged.) Extensive operating experience with complex systems indicate that such a high degree of reliability will be difficult to achieve in a dynamic system. Automobiles, for example, ordinarily require maintenance before they have run even 1000 hours, or about 50,000 miles at 50 mph. A study of the records of conventional steam plants and the Army Package Power Reactor systems and others, including hydroelectric units, was sobering: the best steam plants gave mean times to a forced outage of only around 500 hours, while the corresponding time for hydro units was about 1000 hours. This led to an extensive generic study [38] of the reliability of the basic types of equipment involved, i.e., valves, turbines, generators, motors, pumps, heat exchangers, instrumentation sensors, electronic controls, and electrical switchgear. The failure rates indicated that, even with the best quality control on each and every component, it was highly unlikely that the required reliability could be achieved unless the system is drastically simplified and the number of series connected components reduced to an absolute minimum. The only example found of a roughly comparable system demonstrating the desired degree of reliability was household А These appliances commonly give a mean time to failure of refrigerator. about 12 years. To achieve this, that system has been simplified to a minimum number of components: motor, pump, evaporator, condenser, expansion valve, thermostat, and a control switch with the requisite connecting piping and wiring. The refrigeration system is hermetically sealed, and the materials employed operate in a low temperature environment and are so compatible and so free of degradation, wear, or corrosion that no provision for additions to, or clean-up of, the working fluid is needed.

To get a degree of simplification in a space power plant, ORNL reduced the system to a single (direct) loop by using a boiling potassium reactor and a direct condensing radiator as shown in Fig. 4.5.1.7. [38] This eliminates not only some of the components of the typical three-loop system of Fig. 4.5.1.6, but also some of the instrumentation and control equipment as well. Analyses of outages in power plants have shown that the instrumentation and control equipment is the major cause of forced outages. The apparent simplified system of Fig. 4.5.1.7 could be achieved only if the formidable problems of a boiling potassium reactor could be solved.

As the programs on the 3-loop potassium Rankine cycle system (commonly referred to as the SNAP-50 system) proceeded at NASA, G.E., P & W, and AiResearch, the advantages of the direct-condensing radiator led to consideration of the 2-loop system of Fig. 4.5.1.8. This eliminated the temperature losses associated with the shell-and-tube condenser and the temperature drop in the NaK circuit for the radiator, thus increasing the mean radiator temperature about 100°C for a given turbine outlet This reduced the radiator size and weight and eliminated the temperature. NaK pump and its instrumentation and control equipment. These savings were offset in part by elimination of the redundancy provided by employing four parallel NaK radiator circuits. Additional armor was required on the radiator tubes to obtain the same low probability of an outage caused by a meteoroid puncture of the radiator.

Such a direct radiator at 1 to 10 MWe is not possible or reasonable. A 10 MWe Rankine space power system will utilize at least $1000m^2$ of radiator area. The required micrometeorite protection on such an area is prohibitive. Reliable condensation and return of the condensate from a large distance in zero gravity would also be very difficult. In this study SPI will utilize zero gravity conical condensers incorporated into large long radiator heat pipes. (See conceptual design Section 6.1., Volume IV). In Figs. 4.5.1.9 thru 4.5.1.13 the results of previous potassium Rankine studies and development programs are correlated and extrapolated. Fig. 4.5.1.9 [40] provides the correlation and extrapolation of reactor size and mass for the various lithium cooled and boiling potassium reactors. On Fig. 4.5.1.10 the size and weight correlation for lithium to potassium boiler

A.FRAAS ק ק אנרו או 8.0 • ~.0| I I 1 1 с, 9 0 SIZE AND WEIGHT OF POTASSIUM BOILERS BOLLER LENGTH, 578 VAPOR QUALITY, 1.3 CM TUBE ID 2 5 7 8 9 10 BOILER LENSTH, A 6 K SUPER HEAT, 1.5 CM TUBE 10 DIMETER SPECIFIC WEIGHT. 1200.1300 K HERMAL ENERGY OUTPUT MU(1) 1300-1400 K BOILER LENGTH 6 X SUPERMEAT. 0.9 Cm JUSE 10 1 6.9.7.9. 5 BOILER DUTLET TEMPERATURE, K 1100-1200 -0-1200-1300 -x-1300-1403 -0-۰ 0 ٥ ~ אבז כאנ -רפל/אא(ג) אבז כאנ -רפל/אא(ג) F16. 4.5.1.10 200 8 30 Ī I I 1 ļ I I | >141**334**5 ł I 411108 ,HTONJJ 93JIO8 Superheat and reheat boilers are as times the size and mass of boilers. assumed to be 3

11/9/84

Fig. 4.5.1.11

part design studies is presented. As indicated previously, a 10 MWe system will require a 40 to 50 MWt reactor, and large high-speed turbo-alternators will be coupled into counter rotating pairs.

If the power conversion system is divided into 4 parallel redundant systems, arranged into counter flowing and rotating pairs, then each unit will have to accommodate some 10 to 12 thermal megawatts.

From Fig. 4.5.1.10, four 10 megawatt boilers would have a mass of 2640 kg (4x10 MWt x 66 kg/MWt). The 2640 kg added to that of the 40 MWt Li cooled uranium nitride reactors (LUNR) of Fig. 4.5.1.9 places the LUNR mass nearly equal to the mass of the boiling potassium metal reactor (BMR). A final decision of whether to select a LUNR or BMR to provide heat to a Rankine vapor turbine cycle need not be made at this time. For purposes of comparing the Rankine cycle to the Stirling, Brayton or thermionic conversion cycles, the LUNR and BMR may be treated equally.

Fig. 4.5.1.11 correlates the Rankine turbine alternator mass and size from past studies [39].

Fig. 4.5.1.12 presents the feed heater correlation for mass and size [40].

Fig. 4.5.1.13 presents mass and efficiency correlations for the various pump types considered in past and current studies [36,40].

Rankine Cycle Performance Estimates. Analyses of Rankine cycle systems was carried out by doing a balance of the enthalpy at various points in the cycle as specified by Mollier charts for the particular working fluid. The data on these charts or tables are stored in a look-up routine in a system analysis computer program. Input parameters specifying the turbine and generator efficiencies, boiler feed and circulation pump work, pressure and thermal losses, etc. are entered to calculate the cycle performance. For liquid metals, the fluid state at the turbine exit typically represents a wet vapor condition. Both the enthalpy and the entropy values are interpolated between vapor and liquid states, based on the quality at that point. Techniques for handling a Rankine cycle in this way are similar for

many types of working fluids, if the fluid properties are known as a function of temperature and pressure over the operating range.

The cycle high temperature limits are established by materials' creep strength, corrosion, and radiation induced swelling limits, and system life expectations.

The cycle lower temperature limits are established by radiator area and mass limitations imposed by the launch system capability and cost, and the deployed system mass, compactness and mobility requirements.

The characteristics of the telescoping heat pipe radiator described in Section 4.3 of Volume II were incorporated into the computer program. The cycle analysis establishes the cycle efficiency which is utilized to establish the system thermal power. The thermal power and cycle peak and minimum temperatures establish the fluid flow rates, pressure drops, pumping powers and the reactor, superheater, boiler, reheater, and feed heater sizes and masses. The reactor size and mass are determined by the procedure described in section 4.4 of Volume II.

The electric power requirement is used to establish the turbine-alternator mass and dimensions. For this preliminary analysis, the past program correlations and extrapolations on Figs. 4.5.1.9 thru 4.5.1.13 are utilized to establish component masses and sizes. Superheater and reheater sizes and specific masses are estimated and are optimistically assumed to be 3 times the size and mass of a boiler passing the equivalent heat.

Preliminary Calculated Results. The Rankine cycle efficiency decreases when the heat rejection temperature is raised, for a fixed value of the peak cycle temperature. However, the fraction of the ideal Carnot efficiency does not degrade. It even increases slightly. These effects are shown on Fig. 4.5.1.14, which illustrates the variation in the cycle efficiency as a function of the condenser temperature found in the previous Rankine cycle development programs. When all the aerodynamic, moisture, seal losses and generator inefficiencies have been included, the Rankine cycle systems produce nearly ~ 60 % of the ideal Carnot efficiency, as shown in these

figures. Typical overall efficiencies are in the vicinity of 19% for condenser temperatures in the range of 900-1000 K, and turbine inlet temperature of 1450 K. Reactor circulation pump, electrical power conditioning, regulation and transmission losses are not included.

<u>Probable Operating Regime</u>. The alkali metal Rankine cycle system operates in a relatively small region of peak cycle and heat rejection temperatures. This is because of the rapidly changing vapor pressure of the fluid. In this limited range, it is possible to use a single value for the fraction of Carnot efficiency achieved in the cycle in order to calculate its performance. A preliminary calculation of P_e/A_R for the Rankine cycle system is shown in Fig. 4.5.1.15. The radiator is assumed to be at an average temperature 100 K below the condenser temperatures shown on the chart.

The data in Fig. 4.5.1.15 were generated using a constant 60% of carnot system efficiency. Based on the more detailed calculated results shown in Fig. 4.5.1.14, a value of approximately 75% has been estimated for the turbine expander efficiency only [41]. These values of component and device efficiencies seem reasonable for megawatt class machines that are used in the MCNSPS cycle selection analysis. Although the Rankine cycle is operated in a relatively small range of temperatures, its high heat rejection temperature yields a relatively high value of electric power for a given radiator.

Weight estimates of a 10 MWe Rankine power system are presented in Fig. 4.5.1.16. Turbine inlet temperature was limited to 1450K, believed to be the upper limit for ASTAR 811-C used as turbine blades. Using approximately 30,000 kg as the shuttle lift capacity, a 5 year life 10 MWe Rankine system could easily be lifted by 2 shuttle deliveries. The shuttle-stowable Rankine power conversion module is shown in Fig. 4.5.1.17. The main radiator subassembly (the telescoping radiator), can be lifted in the next subsequent shuttle.

10 MWe RANKINE CYCLE

Fig. 4.5.1.17

4.5.2 In-core Thermionic Conversion System

General Characteristics

Preliminary comparison of thermo-electric versus thermionic direct power conversion systems indicated that thermionic systems had a substantial mass and radiator size advantage for space power systems above 100 kWe output. That mass and size advantage increases to factors of 2 to 4 as power output is increased to the multimegawatt range. Thermionic conversion is one type of <u>static</u> energy conversion, which has the potential to produce multimegawatt space nuclear power systems in mass and size competition with the other promising high power systems, which are dynamic. Direct thermionic conversion has the advantageous features of:

- Direct Conversion of Energy: Electric power is produced without the use of moving parts. This helps minimize wear-out, startup and restart mechanisms, and eliminates the problems of satellite inertial stability associated with dynamic systems.
- o Modularity: The converters can be developed and produced as small modules, performance checked and assembled in series-parallel arrays of any desired size. This results in high reliability due to system redundancy and a lack of single point failure. It also reduces development time and cost, since development of the small module is greatly facilitated by lower unit costs and short iteration times.
- Good Conversion Efficiency with High Heat Rejection Temperatures: The thermionic converter has demonstrated attractive efficiencies and lifetimes at heat rejection temperatures exceeding 1100 K.

<u>Reactor Types</u>. A thermionic conversion system is potentially compatible with high-temperature liquid metal, heat pipe, and gas-cooled reactors. However, it is best capable of operating inside the reactor core with liquid metal coolant. The results of this study have shown that in-core thermionic conversion is a preferred approach for MCNSPS applications. The in-core converter system concept is schematically illustrated in Fig. 4.5.2.1.

The in-core thermionic reactor (ITR) eliminates the need for a high temperature heat transfer loop between the reactor and energy conversion system. This has two advantages; it permits operation with a higher hot side temperature for the energy converter, and it allows most of the reactor (coolant, vessel, control drums, etc.) to operate at the energy converter cold side temperature. Heat transfer from the reactor around the shield is at the heat rejection temperature, minimizing problems of reactor and shield cooling. The ITR is the only known concept that can generate multi-megawatt power levels in shuttle launchable packages with near state-of-the-art reactor and component temperatures.

In comparing the feasibility and reliability of TI systems with other approaches, three considerations are paramount: fuel swelling has the potential for creating electrical short circuits between emitter and collectors, ceramic insulators within the reactor are subject to irradiation damage, and the presence of converter components within the core results in a larger reactor and correspondingly larger shield.

Thermionic Conversion Principles

<u>Cycle</u>. The thermionic energy converter is a non-mechanical gaseouselectronic device for converting heat directly into electric power by thermionic electron emission. In its simplest form the diode, shown schematically in Fig. 4.5.2.2, consists of two electrodes separated by a narrow gap (0.2-lmm), typically filled with cesium vapor at \approx 1-10 Torr. Electrons are emitted from a hot electrode, the emitter, and are collected at a different potential by a colder electrode, the collector.

Heat is supplied to the emitter, to maintain a high enough temperature to emit electrons. The electrons cross the interelectrode gap and are collected by the collector. Heat is removed from the collector to maintain its temperature sufficiently low that it cannot emit electrons. The

collected electrons return to the emitter by flowing through the external load circuit.

Three operating modes are presently of practical importance and must be considered in a comprehensive review of potential systems.

- Ignited Mode. Normal operation of a thermionic converter at practical current densities requires that ions be generated in the interelectrode space, typically accomplished by maintaining a low pressure cesium discharge in that space. In this mode, voltage drop across the discharge of about 0.5 volts is required, a substantial performance penalty.
- 2. Unignited Mode. At high emitter temperature (≥2100 K) the ions can be generated thermally at the emitter instead of in a discharge, resulting in a much lower voltage loss (typically ~ 0.1 volt). This mode of operation has seldom been tested in the U.S. because of the high emitter temperatures required, but it has been studied extensively in the USSR.
- 3. <u>Quasi-Vacuum Mode</u>. Operation with very close interelectrode spacings (2x10⁻³ 10⁻² mm) eliminates the need for ion generation, reducing the voltage drop across the gap to 0.1-0.2 volts. This operating mode is effective at emitter temperatures as low as 1200 K. Until recently no practical converters have been able to avoid electrical short circuits between the electrodes in this mode, but the new SAVTEC converter design at Rasor Associates has recently shown encouraging results.

Performance Analyses

A variety of analytical models of thermionic converter performance have been developed. The most precise and detailed of these model the transport of electrons and ions in the plasma, allowing accurate calculations of both electrical and thermal behavior. These are designated as fundamental models, eg. the ignited mode computer program, IMD-4, developed by Rasor Associates, Inc. IMD-4 contains enough detail of the physical processes involved to be successfully used for exploring approaches to advanced performance through "computer experiments", which have later been verified by laboratory testing. Another important use of the models is to serve as a basis of comparison in establishing the region of validity of more approximate calculational methods.

<u>Idealized Model</u>. The complexity and slow computing times of fundamental models make them poorly suited for system design studies. In addition separate computer programs must be used for each type of operating mode. Consequently, several approximate converter models have been used for calculating performance in MCNSPS studies. The first of these is a variant of an ideal diode model to which additional parameters have been added in order to describe non-ideal effects. This model will be described here to illustrate some of the relevant and important thermionic converter physics and to illustrate a simple method to calculate performance.

The internal electron potential of an ideal thermionic converter, called a motive diagram, is represented in Fig. 4.5.2.3. In the motive diagram ϕ_E and ϕ_C are the emitter and collector work functions, respectively. They represent the potential barrier which must be overcome by electrons leaving the electrode. The output voltage V of the converter is the difference between the emitter and collector Fermi levels.

Parametric analysis of a thermionic converter requires specifications of the following parameters:

- 1. Emitter Temperature, T_E (K)
- 2. Collector Temperature, T_{c} (K)
- 3. Current Density, $J (A/cm^2)$
- 4. Arc Drop, V_d (eV)
- 5. Collector Work Function, ϕ_c (eV)
- 6. Current Attenuation Factor, F_A

To calculate the diode output power with this model, the following steps are taken. First, the desired output current density J is selected along with the collector work function ϕ_C , the arc drop V_d , and the current attenuation

III-37

factor F_A . The temperatures of both emitter and collector must also be specified. The ignited mode operation is characterized by $V_d \approx 0.5$ eV and $F_A = 1.75$. Unignited mode has $V_d = 0$; but the value of J must be chosen to correspond to space charge suppression by emitter surface ionization only.

Next, the collector back emission, J_c is calculated from Eq. 1.

$$J_{C} = 120 T_{C}^{2} \exp(-\phi_{C}/kT_{C}) \qquad (A/cm^{2}) \qquad (1)$$

Next an effective barrier height, Ψ is calculated:

$$\mathbf{v} - \mathbf{k} \mathbf{T}_{\mathrm{E}} \ln \left[\frac{120 \ \mathbf{T}_{\mathrm{E}}^{2}}{(\mathbf{J} + \mathbf{J}_{\mathrm{C}} \mathbf{F}_{\mathrm{A}}]} \right]$$
(2)

The output voltage of the operating point is then calculated:

$$V_{o} = \Psi - \phi_{C} - V_{d} \qquad (volts) \quad (3)$$

The thermal input power density P_{in} , which is comprised primarily of radiative heat transfer and electron cooling of the emitter, is given by:

$$P_{in} = 1.6 \times 10^{-3} JT_E + 1.1 \times 10^{-12} (T_E^4 - T_C^4)$$
 (W/cm²) (4)

The efficiency of the converter at its output leads includes terms for the electric output and thermal input along with other terms to account for resistive voltage drops and heat conduction in the lead. Approximately 10% of the input heat is conducted by an optimum lead and approximately 10% of the electric power is lost by Joule heating in the lead. Thus, the efficiency of a thermionic converter with optimized leads is given by:

$$\eta = \frac{0.9 \text{ J V}_{o}}{1.1 \text{ P}_{in}}$$
(5)

Fig. 4.5.2.4 and Fig. 4.5.2.5 show the output power density and lead efficiency which can be expected for a thermionic converter with a collector temperature near 900 K. Performance curves are given for a current density

III-40

of 10 A/cm^2 . At high emitter temperatures, even higher current densities are optimum. The effect of arc drop on performance is also shown. The lower set of curves in each figure corresponds to an arc drop of 0.5 ev, approximately that which characterizes present fully optimized converters operating in the ignited mode. The higher performance set of curves correspond to zero arc drop, which is achievable in principle.

In fact, converters have been demonstrated which operate with near-zero arc drop. The close-spaced vacuum diode and the unignited cesium diode can operate at practical power densities, but they presently require the extremes of close interelectrode spacing or very high temperature technology, respectively.

Phenomenological Model. The ignited mode has the greatest practical importance in state-of-the-art thermionic conversion. This type of operation at 1850 to 1950 K emitter temperatures, which are compatible with long life Tungsten clad UO₂ fuel at high burnup, has been selected for the baseline MCNSPS thermionic system. Lighter, more compact megawatt class may be produced by using higher temperature unignited mode systems converters, but a major breakthrough emitter evaporation suppression and in nuclear fuel technology and venting would be required to achieve one to five year operating endurance. Analysis of the ignited mode can be treated with known as the phenomenological model. The more detailed model phenomenological model has many characteristics of a correlation rather than a fundamental theory, although the relationships in its algorithm are based on physical principles. It has primarily been used in organizing parametric results of well-established experimental measurements, design studies, and systems analyses. Adjustable physical constants in the model can be set to correlate with experimental data. The model then provides good approximations of converter operating characteristics (i.e., currentvoltage (J-V) curves) over at least the range of parameter variations in which the linkage of model assumptions to the experimental situation remains The capabilities of the phenomenological model to predict ignited valid. mode J-V curves are illustrated by Fig. 4.5.2.6a, in which experimental data for various cesium reservoir temperatures (Fig. 4.5.2.6b) are compared with values calculated by the phenomenological model.

111-42

Subroutines which calculate ignited converter performance with the phenomenological model have been written in various computer languages for incorporation in systems analysis programs. This approach gives good results for ignited mode systems only.

Thermionic Hardware Experience. Practical nuclear fuel driven thermionic converters were very well demonstrated during the thermionic reactor space power program of the 1960s. The longest converter life test was designated LC-9, which was a cylindrical converter built and tested for NASA by General Atomic as part of the in-core nuclear space reactor program. LC-9 operated with electrical heating at an emitter temperature of 1970 K with stable performance for over five years. As shown in Fig. 4.5.2.7, LC-9 had an electrode efficiency of 17% and generated 8 W/cm^2 of output power (80) The converter was still performing stably when tests were kWe/m^2). terminated for programmatic reasons. This test well illustrates the long life capability of the thermionic conversion process. The tungsten/ cesium high temperature emitter combination forms an equilibrium system with no degradation mechanisms except emitter evaporation. At typical known converter operating conditions of 1850-1950 K in space power systems, such evaporation (30 x 10^{-8} m/yr at 2000 K) is unlikely to be a life limiting factor even for a century of operation.

The primary failure mechanisms for the converter are electrode distortion, which can cause a short circuit, and envelope leaks, which result in cesium loss. Both problems can be accommodated by proper design. Leaks occur typically at weld joints and more often at the ceramic-metal insulator-seal. Extensive development essentially eliminated such leaks by establishing weld and seal designs and fabrication practices for prototypical devices. Such practices must be modified and verified for each substantially different design, however. Fueled emitter distortion can also be controlled to a tolerable level by design and fabrication practice if verified by testing each new type of converter structure.

For in-core thermionic reactor designs the converter cell forms the fuel elements for the core. In this case the reactor fuel elements may consist of a series string of cylindrical thermionic converters, known as a TFE. The

cylindrical emitter of each converter contains the uranium fuel for the reactor. Such thermionic fuel elements were highly developed in the United States prior to termination of the space nuclear reactor power program in 1973. The primary life limitations encountered in in-core testing included: emitter cracking and short circuits due to swelling of the fuel, diffusion of carbide fuel components to the emitter surface with consequent performance loss, and leaks in the alumina insulator seals due to fast neutron damage. During the previous US program, lifetimes of prototypical TFE's were regularly exceeding 8000 hrs. In-core tests of TFE's with stable performance had reached 11,000 hours by the end of the program. Joint failures had largely been eliminated. Emitter swelling and radiation damage to ceramic components were life limiting at 12,000 and 20,000 hours, respectively, but a variety of approaches to solving these problems exist now and are being pursued in the present SP-100 predevelopment program. The longest life of an in-core thermionic converter was a thermionic fuel element operated at the Nuclear Research Center in Karlsruhe, Germany for 31,894 hours -- 23,240 hrs at full power.

Performance Measured: Power Density and Efficiency

The two critical performance parameters for a TFE are power density and efficiency. The bottom line for both is their value at the leads of the TFE, where interconnections to other TFE's and the rest of the system can be made. However, significant losses must be incurred in delivering power from the surfaces of the emitter and collector to the TFE leads, and similarly, thermal losses not associated with the emitter and collector surfaces exist in every TFE design. These losses are very design dependent, and as a result the performance of any particular TFE is a combination of two things: how well the thermionic conversion function is accomplished between the emitter and collector, and how well the TFE was designed to deliver this power to its leads. Typically, lead electrical values will be, at most, 90% of the corresponding electrode power due to voltage drops imposed by that portion of the leads which connect directly to the emitter. Similar thermal losses down the emitter lead set a ceiling on lead efficiency near 80% of electrode efficiency. Any further losses are the result of design trade-offs and are not imposed by physical limitations inherent to the converter.

Some of the design trade-offs that must be made are the voltage drop caused by conducting the current along the length of the emitter and the collector versus the amount of material thickness in the electrodes. This voltage drop can be made arbritarily small but the thicker electrodes displace fuel from the reactor core and add mass to the system. The cell aspect ratio (L/D)also affects the voltage drop. A typical compromise is to permit ~1-4% power loss in the electrodes. Other voltage losses occur in the TFE interconnects and the low voltage bus bars leading to the power conditioner. Again a few percent voltage loss is typically permitted in a system design.

Design dependent thermal losses analagous to the electrical lead losses also exist in every TFE design. Examples of these heat losses include conduction and thermal radiation from the bottom of the emitter to the top of the next cell, radiation from the top of the emitter through the emitter lead, and radiation from the outside of the large emitter lead itself. The advanced ThermoElectron G series design reduced these losses by using the bottom of the emitter as an active electrode, putting this heat to work instead of incurring the loss. Similarly, the G series uses a shorter emitter lead, reducing radiation losses from that surface. The West German ITR design carried this approach even farther by using an emitter lead that is both narrow and short. Using these type of design features make it possible to reduce the bypass heat to only a few percent. The cummulative effects of such parasitic losses are to degrade the overall system efficiency from the intrinsic electrode efficiency by about 25 or 30 % (e.g. 18% electrode efficiency yields 13% system efficiency).

The difference in performance that can be achieved in laboratory planar and prototypical cylindrical converters must also be considered when assessing the status of demonstrated TFE performance and the potential for improvements. Much of the research work in thermionic conversion is performed with converters that have small (-2 cm^2) flat opposed electrodes. These planar devices have uniform temperatures, uniform and easily adjusted interelectrode gaps, and very well defined electrode areas. They can be closely adjusted to give nearly fully optimized electrical performance, but their thermal performance cannot be reliably measured because of external radiation losses.

Cylindrical converters can be designed to have a minimal radiation loss problem, and thus they are used for efficiency measurements. However, input power may not be applied uniformly to the emitter and, as a consequence, there may be a variation in emitter temperature and current density over the surfaces. Finally, uniform spacing between emitter and collector is difficult to achieve. As a result the performance of a cylindrical converter cannot be fully optimized, and it will always have a somewhat poorer average electrode performance figure than the optimized value.

With these points in mind the data in Fig. 4.5.2.8 and Fig. 4.5.2.9 can be used to assess the state of development of the cylindrical thermionic converter in 1973 and today. The figures show the initial electrode performance for a wide variety of in-core and out-of core TFE's and cells built prior to 1973. All data have been normalized to optimized collector and cesium temperatures. Typically the output power density increases with current density, although at the lower temperatures (<1600 K) there is an efficiency penalty above -6 A/cm². At higher temperatures (>1800 K), one must operate at or above 10 A/cm² to realize the highest efficiency. Consequently data are shown for both 7 A/cm² and 10 A/cm².

Also shown for comparison are performance data obtained in 1978 on two cylindrical converters built at Rasor Associates, Inc. (RAI) for JPL, and ThermoElectron data showing the average performance obtained in 1979 with five heat pipe converters. The GGA converters, Fig 4.5.2.9, had tungsten emitters, some with [110] and some with [100] orientation. Both niobium and molybdenum collectors are represented. The RAI converter had rhenium emitters and molybdenum collectors. In these converters a performance improvement was obtained using a structured (CVD-Re) emitter in one case and a structured (grooved) collector in the other. The TECO converters had a W(110) emitter and a sublimed molybdenum collector applied in a partial pressure of oxygen.

The electrode efficiencies which are presently available are illustrated in Fig. 4.5.2.10. The band shown encompasses the results from two structured electrodes built by RAI for JPL in 1978. Also shown is an envelope of the

111-48

• 02 GGA DATA CYLINDRICAL CONVERTER PERFORMANCE 2100 - A4 •LC-7 ار • Emitter Temperature (K) J = 7 A/cm² ،**ت**) • GF2 1900 1 152 014 Ë R 21 RASOR 1700 FIG. 4.5.2.9 flectrode Power Density (w/cm2) 00 ø 2

best data from GGA. The longest stable TFE test, TFE-2E2, was also one of the best performers.

Efficiency, in addition to its dependence on emitter temperature and current density, also depends strongly on collector temperature. The highest performance converters typically have low collector work functions and begin to lose efficiency at collector temperatures above 900 K (1160°F). Converters with higher collector work functions and relatively low peak efficiencies actually have superior performance at high heat rejection temperatures, 1050 K (1431°F) and above.

Two things should be noted from these data. First, good and reproducible performance can be obtained using cylindrical converters. For converters with similar electrodes, output power differences of less that 10% are to be expected. Second, the use of rhenium emitters and structured electrodes provides a performance advantage, particularly at very high power densities. This advantage corresponds to a 50 K increase in temperature at 7 A/cm² and 75-100 K at 10 A/cm².

Parametric Variation of MCNSPS Thermionic Systems

The reduction of converter efficiency with increasing collector temperatures requires an optimization tradeoff with the radiator mass. The mass of several 10 MWe system designs were calculated at various collector temperatures and are shown in Fig. 4.5.2.11. The optimum system mass is seen to occur at a collector temperature of about 1050 K. This optimum does not depend significantly on the emitter temperature.

The thermionic power conversion module is shown within the shuttle envelope in Fig 4.5.2.12. As with the Rankine system, the telescoping radiator can be lifted up in a second shuttle launch and mated to the thermionic power conversion module without welding.

III-53

4.5.3 Brayton Gas Turbine-Alternator System

<u>Cycle Configuration</u>. The Closed Brayton Cycle (CBC) gas turbine alternator space nuclear power system has the flexibility to be designed with a number of different loop configurations. Each configuration includes different combinations of gas and liquid metal cooled reactors and radiators.

Fig. 4.5.3.1 shows a one-loop Brayton system. In this configuration, the cooled. The reactor coolant the reactor is gas is turbocompressor/alternator working fluid and is also the fluid which flows through the radiator. This configuration requires the least number of components and is the most simple design. The entire loop, and not just the turbo-compressor/alternator ducting, must be sized to minimize pressure drop. This results in large diameter ducting and components throughout the system. Since the volumetric heat capacity of a gas is significantly less than that of a liquid, relatively large piping/ducts are required. То protect those large areas of exposed ducting requires generous quantities of armor which leads to high weights. Particularly vulnerable to puncture is In a one-loop configuration, a single puncture anywhere in the radiator. the system would cause a complete loss of reactor coolant and turbocompressor/alternator working fluid. Even if paying the armor penalty were acceptable, the existance of a half-acre of vulnerable, single point failure, surface area is not acceptable.

A three-loop arrangement is shown in Fig. 4.5.3.2. If there are redundant loops within the radiator loop, the puncture of a radiator only partially compromises the capacity of the radiator alone. The reactor coolant and turbo-compressor/alternator loops are unaffected. The three-loop concept permits use of optimum heat transfer and low pump power liquid metal fluids in the reactor and radiator loops. Three loops also minimizes loop piping/duct sizes, since pressure drop is dependent only on the components and piping within that particular loop. The disadvantages of the three-loop concept are that it is the most complex and results in a lowering of the effective radiator temperature because of the temperature drops across each of the heat exchangers; and the heat exchanger between the reactor and turbo-compressor/alternator loops must operate above the turbine inlet

temperature. This heat exchanger and the hot primary loop circulating pump, will probably constitute the least dependable components in the system.

The two-loop configuration is depicted in Fig. 4.5.3.3. The hightemperature heat exchanger and circulating pump between the reactor and the turbo-compressor/alternator loops has been removed. This necessitates a gas-cooled reactor, since the reactor coolant is also the turbocompressor/alternator working fluid. As was pointed out in Volume II, there is a weight penalty for using a gas-cooled reactor for long endurance applications.

For a given reactor geometry and output level, pumping losses are large in a gas-cooled system relative to those in a liquid metal-cooled system, because the low volumetric heat capacity (cal/cc-C) of gases requires the pumping of large volumes of gas. The large pumping loss in turn requires a higher reactor gross output to compensate for the loss. Even at equal power ratings, the gas-cooled reactor core and vessel are larger (and heavier), and the ducting is larger than comparable liquid metal piping. Some of the weight gain realized in a gas-cooled reactor/two-loop concept is compensated by the weight saved by eliminating the high temperature heat exchanger and Elimination of the heat exchanger also reduces the pumps. reactor temperatures some 200 K, which substantially influences reactor and fuel life, reliability and mass. Or conversely, it permits raising the turbine inlet temperature some 200 K for the same reactor temperature limits. In addition, the reactor corrosion temperature limits of an inert gas-cooled reactor might be some 200 to 400 K higher than a liquid metal cooled Thus, a gas-cooled reactor might produce turbine reactor. inlet temperatures of some 1800 K whereas a lithium cooled reactor might produce gas turbine inlet temperatures of only 1400 to 1500 K.

<u>Working Gas</u>. The selection of a working gas in the direct Brayton cycle, which uses the turbine working fluid to cool the reactor as in the one-loop configuration is a compromise between heat transfer and turbo-machinery performances. He-Xe gas mixtures seem to offer significant advantages over single-gas selections. The He-Xe mixture has a very low Pr number, in the vicinity of 0.205. This is much lower than monatomic inert gases and is a

measure of good heat transfer performance. Using a high molecular weight He-Xe gas mixture (effective molecular weight of 40) also makes the turbomachinery less complex (fewer stages).

<u>Pressures</u>. Although heat transfer and power density would both be improved by increasing the operating pressures, containment of the high pressure gases with components at high temperature usually requires a practical pressure limit. The maximum system pressure (compressor exit pressure) will be limited in this study to ~68 atm (1000 psia). The compression ratio can be varied for optimization, but most closed Brayton cycle He-Xe space power systems optimize with a value of approximately 1.8 to 2.2. The CBC is particulary adaptable to operating at part load if gas can be summoned from the system to reduce pressure.

<u>Electric Output</u>. A particular advantage of the Brayton cycle, common to other dynamic systems, is the ability to generate A.C. electric power over a range of desired space system voltages, thus reducing the requirements for large switching power conditioning systems required for voltage transformation. Furthermore, the electric generating components can operate at higher temperatures than would be possible for a solid state power conditioning system.

Reliability and Modularity. Long-term reliability of rotating machines at high temperatures is always a question. Good reliability of Brayton systems with relatively low temperatures on the bearings and other critical areas has been demonstrated. However, at the required operating temperatures for high power MCNSPS, bearings must yet be demonstrated. It is anticipated that multiple counter rotating turbo-generator units would be required for mission confidence and torque balancing. For an overall power level in the 1 to 10 MWe range, turbo-alternator units of 1/4 to 2.5 MWe would be used. If the units are properly arranged, increased pressure and power output of surviving units can compensate for the failure of a single turbo-generator unit by providing auxilliary high pressure gas bottles. <u>Temperatures</u>. The turbine inlet temperature is governed by the materials used for the first stage of the turbine rotor. Fig. 4.5.3.4 shows the temperature ranges, suggested by the Garrett Corporation, associated with three major types of turbine materials: superalloys; refractory metals; ceramics.

<u>Mathematical Description</u>. The principal components and temperature-entropy cycle for the single loop Brayton system are shown in Fig. 4.5.3.5. At low radiator temperatures π relatively high cycle efficiencies are possible for the Brayton system, upwards of 35% [1], and the cycle can obtain a fraction of ideal Carnot efficiency equal to 0.4 - 0.45. However, these high efficiencies are only obtained with a high Carnot efficiency at low heat rejection temperature with large radiators.

Analysis of a recuperated Brayton cycle requires the following parameters to be specified:

- 1. Peak cycle temperature (Turbine Inlet), T_u (K)
- 2. Minimum cycle temperature (Compressor Inlet), T_C (K)
- 3. Turbo-alternator efficiency, η_{T}
- 4. Compressor efficiency, η_{C}
- 5. Recuperator effectiveness, $\eta_{\rm H}$
- 6. Specific heat ratio of the fluid, k
- 7. Compression ratio, P_2/P_1
- 8. Low temperature pressure loss, $\Delta P_1/P_1$
- 9. High temperature pressure loss, $\Delta P_2/P_2$

The compressor outlet temperature, T_2 is found by

$$T_2 = T_C \left[1 + \frac{1}{\eta_C} \left(P_2 / P_1 \right)^{\frac{k_c 1}{k}} - \frac{1}{\eta_C} \right] \quad \cdot$$

The turbine outlet temperature T_4 is calculated from

$$T_{4} = T_{H} - \eta_{T} T_{H} \left\{ 1 - \left[\frac{1 + \Delta P_{1}/P_{1}}{P_{2}/P_{1}(1 - \Delta P_{2}/P_{2})} \right] \frac{k-1}{k} \right\}$$

The regeneration temperature, T, is obtained from

$$T_x = T_4 \eta_R + T_2 (1 - \eta_R) \bullet$$

These temperatures are used to calculate the cycle efficiency:

$$\eta_{\text{cycle}} = \frac{(T_3 - T_4) - (T_2 - T_1)}{(T_3 - T_x)}$$

<u>Calculated Results</u>. The calculated efficiency of a Brayton cycle, using the methods described above, is shown in Fig 4.5.3.6. Both the device efficiency and the overall cycle efficiency for a Brayton system increase rapidly with the peak cycle temperature. However, if the lowest temperature in the cycle is raised from 300 K to 900 K, there is a drastic decrease in the system efficiency. This is a significant disadvantage for a high-power space system, because maximum power in a reasonable boost vehicle demands compact radiators using high temperature heat rejection. The Brayton cycle is relatively sensitive to the heat rejection temperature increase compared to other systems.

The curves in Fig. 4.5.3.6 are based on an example case, which was calculated using the estimated values of compressor, turbine, and regenerator efficiencies as shown on the Figure. The system efficiency is sensitive to these parameters as well as the pressure losses. The performance analysis of any actual system would require values of component efficiencies and pressure losses appropriate to the particular case.

<u>Probable Operating Regime</u>. A preliminary analysis of a thermal conversion cycle, solving for electric power generated (P_e) divided by the radiator area required (A_p) is found using

$$\frac{\frac{P_e}{A_R}}{\frac{1-\eta}{1-\eta}} = \frac{\eta \epsilon \sigma T_R^4}{(kWe/m^2)}$$

where: η - cycle efficiency ϵ - emissivity σ - Stephan-Boltzmann T_R - heat rejection temperature constant

The cycle efficiency used in the above equation is obtained from the previous mathematical relationships. The results of this calculation are

Fig. 4.5.3.6

shown in Table 4.5.3.1, where the values of P_e/A_R are printed in a matrix of temperatures representing the turbine inlet temperature and the compressor inlet temperature. The indicated zones on this figure are expected operating regions for the Brayton cycle in a space power system.

The data in Table 4.5.3.1 were generated by using efficiencies calculated with the component performance and pressure loss parameters shown in Fig. 4.5.3.6. Turbine and compressor efficiencies tend to be higher for larger machines, because the flow losses and leakage around the blades is a smaller fraction total power. As a consequence, turbo-alternator the of efficiencies of .9 and compressor efficiencies of .86 are achievable with larger units in the megawatt class. High pressure operation will help reduce the pressure loss in the heat exchange portions of the cycle, however, maximum compressor outlet pressure was limited to ~1000 psia in this study. The regenerator effectiveness depends on a trade-off between massively large heat transfer area and performance. Nevertheless, it will be necessary to ensure that the pressure drops are maintained small, and values of $\Delta P/P = 8$ were used in the primary loop.

A particular feature shown in Table 4.5.3.1 is that the Brayton cycle has a distinct maximum heat rejection temperature for a given hot side temperature. The loss in the fraction of Carnot efficiency as the heat rejection temperature is raised is responsible for producing the maximum value in P_e/A_R . This behavior for the Brayton cycle is in contrast to other systems, which tend to develop a relatively constant fraction of the Carnot efficiency. This indicates that high power Brayton Systems must have a relatively low temperature radiator with a large area; and hence, a deployable, very lightweight heat-rejection system may be necessary.

As shown in Fig. 4.5.3.4, using present day superalloys, turbine inlet temperature is limited to \approx 1144 K (1600°F). As seen in Fig. 4.5.3.6 a peak cycle temperature of 1144 K limits the radiator temperature to no more than \approx 600 K with a cycle optimum being reached somewhere below this. A high radiator temperature rapidly degrades cycle efficiency while low radiator temperatures increase the size of the radiator necessary to reject the waste heat. Maximizing the value of kWe generated per m² of necessary radiator

												[<u> </u>			
	Ð	പ	Ø	N.	6.2	æ	8.1	~	5.5	в. В.	2.2	-	2100			
	Ø	ß	ß	G J	3.7	6.1	6.8	6.2	4 61	ч. С	2.1	-	2000		'е/М ²)	
	ß	8	0	Ø	1.1	4.3	5.4	5.3	4 7	3.1	1.9	თ	1000		אא איר קושו נס	
	63	ß	63	ß	8	2.4	4.1	प च	3.8	2.B	1.7	<i>თ</i> .	1800		area (f	
	ເນ.	. ca	23	ಲ	8	5	2.8	э.5	3.2	۲.5	1.6	æ.	1700		iātur re assu	
	0	ы	Ø	ß	ß	0	1.5	2.6	. 2 2 . 7	2.2	1.4	۲.	1600	~	it rad peratu	
	0	ß	ø	0	0	ß	۶.	1.8	2.1	1.8	1.2	د.	1600	Inlet	per un or tem	
		69	63	63	5	Ø	യ	ъ.	1.6	1.5	1.1	9.	1400	rbine	utput Radiat	
			0	Ø	0	Ø	0	ß	-	1.2	6.	S.	1300	at Tu	ower c cle. (.5.3.1
				8	Ø	0	Ø	63	۶.	6.	8	ع	1200	т _н (ctric.p ton cy	PLE 4
					Ø	0	8	0	0	5.	9.	Ψ	1100	·	ed ele d Bray .)	1A
						0	0	0	0	۶.	4.	с.	1000		lculati nerate inlet	
			Ve/m²				8	0	8	8	е.	۶.	000		ple ca a rege ressor	
			R (k)					8	0	. 0	۱.	۶.	00		Exam for comp	
			P _e /A	,					8	8	0	-	100			
	1 4 0 0	0000	1200	1100	1000	000	008	100	000	009	0 0 •	000				
Tc (at Compressor Inlet)																

 (kWe/m^2) will locate the point of minimum radiator area. At a turbine inlet temperature = 1144 K, the Brayton system optimizes at $T_c \approx 500$ K, operates at a cycle efficiency of 20%, and would require a radiator area of $\approx 14,250$ m² (≈ 3.4 acres) in order to reject the 40 MW of waste heat. It is doubtful that any of the several heat rejection systems studied has the capability to deliver this required area in one or even two shuttles with the accompanying power conversion hardware. From this preliminary exercise, it is concluded that turbine inlet temperatures that exceed the material limits of superalloys will be required.

The Garrett Corporation was subcontracted to perform a computerized parametric analysis of a 10 MWe Brayton space nuclear power system. Garrett used an in-house, proprietary computer code which incorporates their extensive knowledge and experience in the Brayton cycle. Fig. 4.5.3.7 shows the ranges of major variables used in this analysis. The types of output information obtained from this analysis are shown in Fig. 4.5.3.8. Using this information from Garrett, the equations described in the Mathmatical Description portion of this section were used to determine intermediate cycle temperatures.

System weights were computed by combining the output from the Garrett computer code with the reactor, radiator and other miscellaneous data assembled by SPI. Fig. 4.5.3.9 compares the system weights of 1500 K and 1800 K turbine inlet temperature designs with varying recuperator effectiveness.

It is interesting to examine the 1800 K results. Fig. 4.5.3.10 shows the component weight breakouts of the three cases analyzed at 1800 K. Essentially the system which is lightest is the one with the lowest combination of radiator and recuperator weights. In comparing the 95% recuperator case with the zero recuperator case, the radiator weights are nearly identical. Although the zero recuperator has more heat to reject, it does so at a higher average radiator temperature. With radiator weights approximately equal, the zero recuperator has a significant weight advantage, since it doesn't have the weight associated with a recuperator.

GARRET PARAMETRIC COMPUTER ANALYSIS

ESTIGATED	1244, 1500, 1800	333 - 694	0, .80, .95	10,000 - 45,000	1.8 - 4.3	.08, .09, .10	,92, ,94	
OPERATING CONDITIONS INV	TURBINE INLET TEMPERATURE (K)	COMPRESSOR INLET TEMPERATURE (K)	RECUPERATOR EFFECTIVENESS	ROTATING SPEED (RPM)	PRESSURE RATIO	COMPRESSOR SPECIFIC SPEED	PRESSURE LOSS RATIO	FIG. 4.5.3.7

11/7/84

The zero recuperator and 95% effective recuperator are at opposite ends of the spectrum. At the recommendation of Garrett, an 80% recuperator case was also analyzed. This case tends to bring out the advantages of both extremes and results in the lowest system weight. Because the recuperator is only 80% effective, it is much smaller than the 95% effective unit. It does, however, reduce the amount of heat which must be rejected and results in an average radiator temperature somewhere between the 0% and 95% effective recuperator cases.

Although not at the optimum compressor inlet temperature, Fig. 4.5.3.11 shows a comparison of cycle temperatures, cycle efficiency, reject heat and recuperator heat for the three degrees of recuperation; 0%; 80%; 95%.

Fig. 4.5.3.12 shows component weight breakouts for two cases at 1500 K turbine inlet temperature. Again the 80% recuperated case is lighter than the zero recuperator case.

The number of shuttles necessary to launch the systems discussed is shown in Table 4.5.3.2 and 4.5.3.3 for 1800 K and 1500 K turbine inlet temperatures, respectively. As is shown, the optimum 1800 K system requires three shuttles while the 1500 K system requires 5 shuttles. At 1800 K turbine inlet temperature, 80% recuperation and a compressor inlet temperature of 556 K or 667 K, the entire power conversion system can be fit into one shuttle. This includes the reactor. turbo-compressor alternator, recuperator, piping, structure and miscellaneous. The heat exchanger and radiator require an additional two shuttles, not only from a weight standpoint but from a packageability standpoint. The power conversion system, packaged into the shuttle, is shown in Fig. 4.5.3.13.

Using the case of 667 K compressor inlet temperature, Table 4.5.3.2 shows a required radiator area of 2022 m^2 . This area is calculated from the requirement to reject 38.0 MWt of heat over a temperature range of 1015 K-642 K (Δ T across heat exchanger = 25 K).

The wide range of the heat rejection temperature eliminates the possibility of using the telescoping type heat pipe radiator. Heat pipe working fluids BRAYTON CYCLE

SYSTEM COMPARISONS AT 1800 K TURBINE INLET TEMPERATURE

III-73

T

BRAYTON CYCLE SHUTTLE DELIVERY

1	1	1										_
X	H	2	-7	Ś	व	m	÷	ন	,	J	7	2
LTLE DELIVEI	RAD+HX	7	ñ	s	۶	2	2	2	10	2	2	2
SHU	POWER MOD.	1		2	-	-1	+	2	2	2	2	m
RADIATOR+ HX MASS	(kg)	99,722	65,150	65, 361	80,591	51,746	49,750	50,355	85,903	59, 596	45,055	51,585
POWER MODULE	f:ASS (kg)	26,376	28, 338	35,253	26,257	27,039	31,286	33, 315	50,611	52, 807	5ë, 800	64,757
RAD1ATOR AREA	(m ²)	£43	2826	2403	101	2394	2022	1989	6244	2917	6761	2192
COMPRESSUR INLET	TEMPERATURE (K)	777	556	667	ካከካ	556	667	t 69	777	556	667	6 94
TURE INE INLET	TEMPERATURE (K)	1800 a	OZ RECUP.		1800 a	SOT RECUP.			1800 a	95% RECUP.		

TABLE 4.5.3.2

BRAYTON CYCLE SHUTTLE DELIVERY

RY	I	2	9	6	9	'n	đ
LILE DELIVE	RAD+HX	S	4	Q	7	m	7
LUHS	POWER MOD.	2	2	m	2	2	2+
RADIATOR + HX MASS	(kg)	140,293	118,552	172,964	121,975	88,866	102,534
PONER MODULE	MASS (kg)	44,229	50,052	73, 440	45,703	47,730	60,262
RADIATOR	(m²)	6988	5334	7064	6248	4248	4388
COMPRESSOR INIFT	TEMPERATURE (K)	ከተተ	556	667	ከተካ	556	667
TURBINE INFT	TEMPERATURE (K)	1500 a	OZ RECUP.		1500 a	60% RECUP.	

TABLE 4.5.3.3

Fig. 4.5.3.13

06168803

used at the low end of the heat rejection temperature range do not have sufficient axial heat carrying capacity (kW/cm^2) to efficiently operate in the long heat pipe telescope-type of arrangement. The Brayton cycle matches quite well with the triform-type of heat pipe radiator, which utilizes several working fluids over a broad temperature range.

The system uses two coaxially-run pipes. The outer tube carries NaK out to the heat pipe evaporator sections and the inner pipe provides a return. As the NaK fluid temperature drops, due to sensible heat loss, the heat pipe working fluids and envelope are changed. Fig. 4.5.3.14 and Table 4.5.3.4 demonstrate these effects.

TRIFORM RADIATOR BREAKDOWN

2,341	SIC PIPE+NoK :	+CONCENT				
36,661			38.0	2022		
11,033	17.4	Н9/Т1	5.92	634	671	111
6761	17.4	Rb/TI	5.09	389	725	١٧
5149	17.4	Rb/TI	5.09	295	775	>
4008	17.4	Cs/T1	5.09	230	825	١٧
3163	17.4	K/T1	5.09	182	875	ΙΙΙ
3060	21.1	K/SS	5.09	145	925	11
3487	23.8	dn/y	6.63	147	585	I
(kg)	(kg/m²)		(J/AW)	(m²)	(K)	
TX .	SPECIFIC NT	NYKG. FLUID/ PIPE MAT'L	REJECT HEAT	A	۱ ۲	SECTION

11/7/84

38,975 kg

RADIATOR SYSTEM WEIGHT

TABLE 4.5.3.4

4.5.4 Megawatt Class Stirling Gas Engines for Space

<u>Introduction</u>. Free Piston Stirling gas engines coupled to linear actuated alternators have an advantage for space application because they can be made to have a high efficiency, and designed to operate between any temperatures for which suitable construction materials can be found. However, very high power engines operating at the high temperatures required for megawatt class electric power systems have never been approached in Stirling engine technology.

In this section the range of suitable Stirling engine design is discussed and conceptual designs using first order design methods are presented to determine the approximate size of the machines and show the effect of temperature. A computer program, developed at Martini Energy Co. for design of free piston Stirling engines is used for these analyses. Based upon the first order designs, iterative methods, which have been specially modified to determine the approximate size and weight of the engine and the electric generator, are applied. Approximate optimization is done to determine the best design for each temperature level and frequency of operation, and critical endurance and reliability requirements are discussed. Finally, conclusions on this system, as it applies to the MCNSPS performance requirements, are given.

Stirling Engine Systems

<u>General Requirements</u>. As in the cases of the previous systems, the Stirling engine systems are in the 1 to 10 MWe range and are to have a 5 to 10 year life. This means that most common Stirling engine designs, which use mechanical seals, would not be suitable. Gas bearings, which also act as seals, would be suitable. Also, flexures which act as bearings and seals might be used at low temperatures. Because of the high neutron and gamma ray fluxes that are expected in the vicinity of the Stirling enginegenerator, lubricants made from oils or plastics like Teflon are to be avoided. Also the electrical insulators must be ceramic for the purpose of radiation hardening as well as for high temperature operation. In order to fit within the power range requirement, the engine hot temperatures must be in the range from 1300 to 1600 K. These temperatures are dictated by the maximum practical temperature for the lithium cooled nuclear reactor with consideration for a reasonable temperature drop in the liquid metal pumped loop leading to the engine. It is also required that the heat sink temperature of the engine be in the 800 to 900 K range. This temperature is dictated by the radiator size and weight and a reasonable temperature drop in the heat pipes needed to transport the heat.

Long Life Engines. A Stirling engine generator system has been built and operated for over 8 years using a radioisotope heated electric power source [41,42]. Fig. 4.5.4.1 shows the concept [43]. Note that the power piston is a cold diaphragm which is attached to the armature of an oscillating electric generator. The displacer is supported by a spring (not shown). Because the entire machine is spring supported, the displacer picks up enough energy from the oscillation of the engine to keep the displacer oscillating properly. By paying proper attention to the fatigue limit, Mr. Cooke-Yarborough and his colleagues at Harwell have been able to attain at least 8 years life, with an efficiency much better than thermoelectrics. With their latest design they plan to produce 183 W of AC power from 1216 W of heat input at 819 K input temperature and 300 K sink temperature. This gives an efficiency of about 15%. This group has demonstrated the lifetime, but neither they nor anyone else has demonstrated the power output at the temperatures and power densities needed for megawatt scale Stirling engines A small, lower temperature, 3 kilowatt Stirling free piston engine [44]. built by Mechanical Technology Inc. (MTI) of Latham New York has been working at NASA-LERC for several thousand hours over the past year.

<u>High Efficiency Engines</u>. There are a number of possible US developers of high efficiency, free piston, Stirling engines with linear alternators that have a chance of also being light weight and long life. They are:

- 1. Sunpower Inc., Athens, Ohio
- 2. Mechanical Technology Inc., Latham, New York
- 3. Energy Research and Generation, Oakland, Calif
- 4. General Electric Company, Valley Forge, Penn.
- 5. Martini Engineering, Richland, Washington

In addition, the NASA-Lewis SP-100 office has assumed a management role in developing Stirling engines for space electric power. The in-house programs, as well as contracts with the above contractors and others are making active progress toward a goal of a 25 kWe size power source with a thermodynamic cycle efficiency of 70 percent of Carnot, temperature ratios on the order of 1.8 to 2.0, and a power conversion specific weight of 6 kg/kWe. The engine will use non-contacting gas bearings and a dynamically balanced system [45].

The basic SP-100 Stirling cycle program is predicated on a heat input temperature of 900 K, in order to utilize the LMFBR reactor technology. SP-100 would require five, 25 kWe engine-generators, each about a foot in diameter and 4 feet long. Initially it is planned to operate with a temperature ratio of 2, which translates to a heat rejection temperature of 450 K and a Carnot efficiency of 50%. An overall efficiency of 32% may be possible although 25% is expected. The latter is comprised of an efficiency of 67% of Carnot, a mechanical efficiency due to gas spring losses of 85%, and an alternator efficiency of 90%: (.50) (.67) (.85) $(.90) \times 100 - 25.6$ %.

An SP-100 advanced program that would utilize a 1325 K Nb-1Zr reactor, Na or NAK cooled, is being considered. The engine temperature inputs would vary from 1200 to 1300 K. Gas operating pressures to 17 MPa (2500 psi) are being planned. Frequencies of 100 to 120 Hz are anticipated in order to achieve a maximum of 6-8 kg/kWe for the engine-alternator. The refractory metals Nb-1Zr, Cb-103 and FS-85 are being considered for cylinders. The engine temperature ratio is expected to be 1.8 to 2.0 for an average engine sink temperature of about 650 K and an average radiator temperature of about 600 K. A separate cooling loop may be required to cool the permanent magnet alternator to 500 to 550 K.

<u>Sunpower</u>. Although Sunpower Inc., of Athens, Ohio has not demonstrated very long life, they have built large, high efficiency engines that may be capable of attaining high efficiency and long life in a space environment. They have built and tested 1 kWe and 10 kWe machines. Their best 1 kWe machine, shown in Fig. 4.5.4.2, attained an efficiency of >32% heat to mechanical energy at >1250 watts output with helium at 7 MPa. The heat

III-85

source temperature was 923 K, and the heat sink temperature was 303 K. The testing was done independently at NASA-Lewis [46]. Sunpower has built a 20 kWe engine with a linear alternator load that has a projected efficiency of 44%. It operates at 50 Hz, employs 20 bars of helium pressure, and weighs 150 kg. It is designed to be solar heated [47]. Currently it is in Germany under test with a solar concentrator [48]. Sunpower is usually designing for low cost. However, for long life systems they plan to use rotating as well as oscillating parts to create a gas lubricated journal bearing and seal with no check valves needed. Sunpower is a contractor on the SP-100 program.

Sunpower has been working with free piston Stirling engine generators using their best technology to develop an efficient and light weight linear electric generator. The best that they have been able to do is 8 kg/kWe at 60 Hz with an efficiency of 90% at room temperature. The specific weight of the generator is approximately inversely proportional to frequency. Increasing the temperature above the normal 300 K range would greatly increase the system weight, particularly of the generator, if it is based upon a permanent magnet. They feel that 1 kg/kWe specific weight is simply not possible, even at room temperature [49].

Sunpower will be designing a 25 kWe engine generator for the SP-100 program managed by NASA-Lewis. The goal is a 930 K heat source temperature of 564 K and a radiator at nearly 550 K. A 6-8 kg/kWe specific weight and an overall efficiency of 25% is required [50].

<u>Mechanical Technology Inc. (MTI)</u>. This company has a program to develop a 3 kWe free piston Stirling engine-linear generator for the Army. They have 4 or 5 engines of this type under test on various programs. This Army power source is designed for 60 bar helium pressure and 60 Hz. It is expected to produce 3.1 kWe at 17.1% overall efficiency. The machine is heated by a diesel fuel burner. Fig. 4.5.4.3 shows the current concept.

MTI has a contract with NASA-Lewis on the SP-100 program to design and build a 25 kWe engine-generator. It will operate at 120 Hz and have an overall specific weight goal of 6-8 kg/kWe. The design heat source temperature is

III-87

1100 K from a liquid metal loop. The design heat sink temperature is 450 to 550 K in the form of a heat pipe. However, the first engine they will build will have a heat sink temperature of 120 °F (322 K) and a heat source temperature of 644 K. The practical limit for permanent magnet linear generators is considered to be 550 K. The barrier to going to higher temperature is the rapid loss in magnetism of all known permanent magnet materials [51].

Energy Research and Generation (ERG). Advanced high efficiency, low weight engine generator sets suitable for space electric power are being designed by ERG. To achieve full dynamic balance for their 25 kWe power source, ERG plans to use three in-line electrically driven displacers operating two opposed double acting power pistons that are integral with the permanent magnet plungers of the linear alternator [52]. Fig. 4.5.4.4 shows this concept. The central displacer has twice the mass of the two outside An electric motor drive moves the central displacer down while displacers. the two outside displacers are driven up. Therefore, there is balance in an up and down direction without any additional mechanism. During this part of the cycle there is a larger pressure between the power pistons than outside They are thus driven apart, balancing each other without any them. additional mechanism. On the return stroke complete balance is also maintained.

In connection with the electric generator, ERG has been attempting to produce a linear electric generator with a specific weight of 1 kg/kWe since 1973 [53]. ERG states that it is possible to do this by "eliminating backiron and using a wrapped toroidal core and permanent magnets with field coil control." ERG now has a contract with NASA-Lewis to investigate the design, fabrication, testing, and demonstration of a light weight, high efficiency, compact linear alternator for free piston Stirling engine (FPSE) spacepower conversion systems. To quote the abstract [54]: "Based upon preliminary analysis, the linear alternator concept, when successfully developed and mated with a dynamically balance FPSE, offers a space-qualified electric power plant having potential specific weights of 1 kg/kWe and an overall bus-bar efficiency of 45% using 1500 K heat input by lithium heat pipes and

111-89

750 K heat rejection by potassium heat pipe radiators. " The permanent magnet alternator must be separately cooled to 550 K.

The use of an electric drive on the displacers makes it possible to turn the engines on and off easily. This would be important in a space electric power source where spares could be installed and could be turned on or off, as needed by the controller. Both MTI and ERG have found that the use of an electrically driven displacer is the best way to control the engine, to get 90 degree phase angle for the most power, and to force a particular frequency if desired.

ERG claims that their engine will operate at 84% of the theoretical maximum Carnot efficiency. Others claim about 75%. However, the big difference is in the power density of the linear alternator. ERG claims 1 kg/kWe for a high temperature machine. Others claim 8 kg/kWe for a low temperature machine but are contracting with SP-100 for 6 kg/kWe high temperature machines. It appears that ERG has never been funded adequately to reduce their advanced ideas to deliverable hardware. However, component models and laboratory tests are encouraging. The ERG "thermizer" heat source and heat sink engine heat exchanger is novel, promising (at low operating pressure), and may permit fairly high frequency lower pressure operation.

ERG's proprietary novel linear alternator appears to be feasible, and is a technology advancement that must be achieved before free-piston Stirling engines can be seriously considered for multimegawatt application.

<u>Martini Engineering</u>. Martini has patented a new type of Stirling engine that uses a displacer with three layers. These layers act as heater, regenerator, and cooler. An advantage that would be important for space applications is the ability to operate at high frequency.

Fig. 4.5.4.5 shows the Martini concept as it would be applied to space electric power. A pair of these engine-generators would be positioned opposite the liquid metal pumped loop from the reactor.

III-91

At rest, the flexures, which are a series of leaf springs, support the three layer displacer at mid-stroke. At rest, leaf springs also support the power piston at mid-stroke. A floating labyrinth seal is used on both the displacer and power piston.

The power pistons compress gas. The gas compressor has interleaving fins in it so that the stationary side of the engine not only removes the heat of compression but also cools the power piston. The power piston gets the waste heat out of the engine by contacting the cooling layer of the displacer during part of each cycle. The cooling layer of the displacer is a perforated metal plate or a porous metal plate which collects the waste heat from the working gas of the engine as it passes through the plate.

A displacer drive piston passes through the power piston. This piston drives the displacer in the same way as is used in the usual free piston Stirling engine. However, in the usual free piston Stirling engine the displacer has to be carefully controlled so that it does not hit either end. In this concept the displacer must hit both ends to work properly. A snubbing action is built into the displacer so that it does not impact destructively.

During the time contact is made, the cooler layer is cooled by metal-tometal conduction and by conduction across a very thin gas layer. During no contact, the cooler layer cools the gas that flows through it. This cooler has a much larger number of short but fine flow passages which transfer the heat with less flow loss than the usual cooler in a Stirling engine. The usual cooler is a shell and tube heat exchanger.

The heater layer must also spend some time each cycle close to, or touching, the hot plate. The heater layer is heated by metal-to-metal conduction and conduction through a very thin gas layer. The regenerator layer performs the usual function of storing heat as the gas moves back and forth and of insulating the hot space from the cold space. It has a much larger flow area than the usual regenerator. If needed, it can be convoluted for additional flow area and shorter flow path. On the other side of the power piston is a gas compressor. The compressor is designed to have a large heat transfer area to volume ratio. The stationary fins in the compressor absorb the heat of compression as well as the waste heat from the engine. Two engines back-to-back will balance each other, even when they start out of balance. It was found by computer simulation that with the addition of equalizer tubes, connecting the working gas spaces and the gas pump spaces that are within one cycle, the two parts synchronize even when they are made to start off unsynchronized.

A pair of engine-pumps could operate a high speed hydraulic and a rotary electric generator. This rotary generator will be much smaller and lighter than a linear generator. A control in the turbine could be used for speed control. Another pair of engines operating another turbine and generator could be made to spin in the opposite direction to cancel out the gyroscopic effect. A bonus is that the expanding gas from the turbine would be cooler than the radiator. This gas would be used to keep the rotary generator cool for better operation at no increase in complexity. Also the turbine generator would be smaller and lighter than the linear alternator ever could be, because it moves continuously at a much higher speed.

It should be emphasized that there are many untried ideas in this concept. However, the basic concept of the engine acting as a pump to operate a common generator is a viable concept worthy of future evaluation. Because of time limitation, nothing more can be done with this untried concept in this report.

Multimegawatt Conceptual Design. In summary of the state-of-the-art, no Stirling engine presently exists that has the demonstrated life, power level, power density, temperature ratio, pressure, high temperature operation, or use of materials that would be required in a megawatt class engine system. In separate machines, the desired levels of lifetime and efficiency have been demonstrated as described above, but at low temperature, power level, power density, and at high temperature ratio. As a result, in order to evaluate the potential for Stirling engine use as a multimegawatt space power engine, an entirely new conceptual design was generated. The Martini Engineering Company Stirling engine computer program developed for NASA-LERC and Argonne National Laboratories was utilized for this new design. The engine will be heated by liquid lithium from the reactor and cooled by NaK to a radiator. In order to achieve attractive radiator size and to be able to utilize effective potassium vapor heat pipe (800 K) radiant heat dissipation, engine cold end temperatures should be at least 900 K.

To achieve 70 to 75% of Carnot efficiency from a free piston Stirling engine alternator system, the ratio of hot to cold engine surface temperatures, (T_H/T_C) , must be at least 1.8 to 2.0. Consequently, the reactor lithium must be 1600 to 1800 K. Due to an expected limit of about 1600 K for refractory metal systems containing lithium systems, and the high expected Stirling engine pressures of several hundred bars (1000's of psi), 1600 K was the highest engine temperature examined.

<u>Power Density</u>. To build a competitive multimegawatt class Stirling engine power source for space, the pressure and speed limits must be extended as far as possible, since power output is proportional to both pressure and speed. As pressure is increased, more heat must be transferred through the same area because there is more mass in the working fluid. As speed is increased, there is less time to accomplish the heat transfer. One must include the electric generator in the mass and power optimization, because the electric generator is by far the most massive part of the system. The mass of the electric generator goes down rapidly as speed increases.

Engine Power Level. The requirement is for 1 to 10 MWe and it would seem reasonable to accomplish this with from 4 to 40 cylinders, or about 250 kWe per cylinder. The only large Stirling engine study funded in recent years was done by three contractors and supervised by ANL [14]. This was for a 500 to 3000 hp coal fired, electric power source. These contractors, General Electric, Advanced Mechanical Technology Inc., and Foster-Miller Associates, picked between 65 and 105 kWe per cylinder. There is no increase in the size of the heater or cooler tubes, just their number. The flow area of the regenerator increases without increasing its length. High Temperature Technology. High temperature operation for Stirling engines is quite new technology. United Stirling has been considering using ceramics to increase power density and efficiency and reduce costs since at least 1977 [55]. The Japanese have great hopes for a ceramic Stirling engine [56]. The Air Force is currently sponsoring work in this area [57]. Although all this work concerns high temperature, it is not applicable. The ceramics, like silicon carbide and silicon nitride, will take temperatures much higher than the 800 °C (1073 K) limit for air compatible metal alloys, but they are incompatible with alkali metals which will be used in the space power system. Also the high power density and the high efficiency result from having a low heat rejection temperature. The desired heat rejection temperature of 800 to 900 K for space power systems is only slightly less than the usual heat input temperature for a terrestial Stirling engine. Thus, the comparatively high efficiency and power density would not be realized.

Refractory metals must be used to be compatible with the alkali metal that adds and removes the heat, and to have enough strength to be useful. Fabrication technology development will be a major task of any development program. General Electric [58] is studying CVD-tungsten coated silicon carbide parts for an automotive Stirling engine design concept for NASA-LERC. Heat addition would be by means of lithium heat pipes. Testing of refractory metal engines must be done in a very good vacuum to simulate space conditions and to keep the refractory metals from oxidizing [23].

Reference Design Concept. An engine concept somewhat similar (an extrapolation) to the SP-100 FPSE concepts was chosen. Preliminary analysis indicated that utilization of known refractory metal creep properties led to very thick and heavy cylinder walls, creating an excessive thermal short circuit from the hot to the cold end of the engine. As just mentioned, ceramic engines could not be used because of their long term incompatibility with liquid lithium. As an alternative possibility, graphite or silicon carbide fiber is assumed wound around a tungsten, tantalum or molybdenum thin-walled cylinder, and CVD-tungsten, tantalum or molybdenum is assumed deposited between layers of fiber wrap. Some 2400 small, u-shaped tungsten or molybdenum tubes would have to be installed through the fiber wound

layers of CVD-W to provide for lithium heat transfer to the helium working fluid. Similar u-tubes are required for heat rejection to a deployable NaK loop radiator, about 1/2 acre in size. The economizer was incorporated into the displacer piston. See Fig. 4.5.4.6 for a cylinder layout.

Table 4.5.4.1 presents a typical computer input-output from the design study. From this table note that:

<u>Efficiency</u>. The overall efficiency is the gross electric power divided by the total heat to the engine. It does not include insulation losses outside the engine or system pumping, transmission or control losses.

<u>Temperatures</u>. The assumed input temperature is 1600 K on the ID of the heater tube. Based upon the heat flux through the heater tubes, the temperature differential across the heater tubes is calculated to be only 1.84 K. To this must be added the film drop in the liquid metal. On the helium side, a gas temperature of 1569 K is assumed to be constant throughout the cycle. This temperature is determined by iteration until the heat that can be transferred is equal to the heat that must be transferred. The same considerations apply on the cold side.

<u>Weights</u>. Weights are determined directly from the volume of the metal and its density. The hot parts are calculated on the basis of Astar 811c at a density of 16.8 g/cc. The alternator is assumed to have a lumped density of 7.0 g/cc. The specific weight of the alternator is assumed to be inversely proportional to frequency. The assumed 8 kg/kWe at 60 Hz and 300 K is known to be about the state-of-the-art based upon a survey of those who have designed and built them. However, if the engine can be made to run at 240 Hz, the specific weight of the alternator would be only 2 kg/kWe.

Lengths. The overall length of the Stirling engine system, consisting of one engine, alternator and bounce space (dominated by the alternator length) should be somewhat less than 2 meters. Two of these systems must be installed in line and not exceed the 4 meter width of the shuttle compartment. To a first approximation, the length and the diameter of the engine system are related to the working gas volume of the engine, which in

FIG. 4.5.4.6

MARTINI STIRLING ENGINE CODE

ORIGINAL PAGE IS OF POOR QUALITY

INDEPENDENT INPUT VALUES Prostam control parameters: Case number defined by operator._____ 10 Graphic option Geno; leves, ______ 1 Conv. criteria (Frac. change in integrals.)_____ .005000 Number of time steps per cycle._____ 24 Ensine operating conditions! Average working was pressure, bat-----400.00 Metal temperature of was heatern K______ 1600.00 Heral temperature of sas cooler, K______ 980.00 Pressure vessel temp. Of alt. and b. space, K ____ 588.90 240.00 Ensine speed, Hz_____ Cylinder dimensions and materials 1.50 Maximum displacer and power siston stroke: CM ____ Dissever of power piston and ensine cylin CH ____ 29.00 Gap between displacer and cylinder wall. Cm _____ .10 7.Eb Displacer rod diameters cm _____ Number of radiation shields in displacer, _____ 10 Heater, resenerator, cooler: Number of heater and cooler tube rows ____ 15 5.00 Radial length of neated half pin tubes, CH _____ ID of heater tubes, CH ------. 20 Square pitch for heater or cooler tube array, cm_ . 48 . 50 Seal length CH ----------Diameter of wire in matrix, MICRONS 29.90 POTOBILY OF MATTIN, PER CENT 70.00 Ratio of flow area to face area in resenerator __ 6.00 Radial length of cooled hair pin tubes: Channes 3.00 1D of cooler tubes: CM ______ . 20 Linear senerator parameters! Specific weight of alternator at 68 Hz, ks/kW(e)_ 8.80 Efficiency of the alternator, per cent _____ 94. 44 Martini Ens. Isothermal Analysis of FPSE-Alternator Power System PONER. WATTS HEAT REQUIREMENT. WATTS Thermo, P. Pist. 93492.31 Thermodynamic 349588.88 Thermo. Dispi. 50469.00 Adiabatic Corr. 15287.58 Reneat loss Adiabatic Corr. -25819.71 53506.61 Shuttle loss 15618.66 44.87 Heater flow 1055 Resen. flow 1058 21071.83 Appendix loss 23848.89 13764.10 Cooler tion loss Teap. swins 1058 182.10 Dap. Dr. Pwr. Reamt. -16.01 Cri. Wall Cond. 176.49 Dispicr Wall Cond. Net Entine Power 67672.60 4687.45 Alternator Loss 6767.26 Resen. Wall Cond. 4862.98 NET ELECT. POWER E0921.35 Cyl. Gas Cond. 1.97 OVERALL EFFICIENCY. * Resen. Mtx. Cond. 14.12 E282.33 Rad. Inside Dispi. Flow Fric. Credis . 60 -26134.38 Teaperatures, K 1E01.84 OD Gas Heater 1568.73 Effect. Hot Gas TOLAI HEAL LO ENS. 431388.60 Dispi.Dr. Heat 922.57 Ettecs. Cold Gas -15.91 363760.00 OD Das Cooler £99.73 Ensine Coolins 6767.26 Weishts, hs Alternator cooline Hot Criinder 39.22 Lengths. cm Healer Tubes 15.36 Ensine 32.65 1.55 Res. Wall Alternator 55.39 BOUNCE SPACE TOTAL LENGTH Res. Masrix 6.75 6.16 94.79 Cyl. Wali . 21 35.39 Diameters, cm DISPlacer Dispi.Drive Rod Ens. Cri.OD 25.82 . 77 2.67 OD Ann. Reven. DISPI.D.R. Support 38.38 Cooler Tubes 1.24 Hall Thicknesses, cm Hos criinder Cold Cylinder 18.09 2.51 Alternator 121.81 Cold cylinder . 48 TOTAL WEIGHT 242.47 Aller. cyilnder . 48 Number of heater tubes 2356 . 85 Heater

TABLE 4.5.4.1

 $\ell \to \tau$

turn is proportional to the kilowatts generated. Therefore, the engine system is shortened by making it fatter, while maintaining the same working gas volume, and hence the power and efficiency will be, to first order, unchanged. To scale the power to the desired range, see Appendix A.

<u>Diameters</u>. The largest diameter of the engine system is controlled by the outside diameter of the heat exchanger arrays. The engine cylinder diameter of the alternator should be the same as the engine, so that a simple pressure vessel can enclose both, although this is not essential. The alternator could be much shorter and fatter as long as the volume is the same.

Results of Calculation. The Martini Stirling Engine computer design program was installed, operated to verify validity of the calculations, and used to provide a first order design of a system appropriate to meet MCNSPS requirements. Appendix A contains the complete computer printout of all the final results. By iteration, an acceptable engine design of about the right size and power was devised, if fairly low radiator temperatures are used. Because of the large number of heater and cooler tubes and because of the convoluted regenerator, a high frequency engine of 240 Hz provides good efficiency at an attractive specific weight. Table 4.5.4.2 summarizes the major results. All engine designs are for 400 bar (~6000 psi) pressure, a 20 cm diameter cylinder, and a 1.5 cm displacer and power piston stroke. In all cases the displacer drive piston diameter was adjusted so that the electric power requirement to drive the displacer was negligible.

<u>Critical Endurance and Reliability Issues</u>. In selecting and performing the conceptual designs described in this section, only those concepts with the prospect for inherently good endurance and reliability characteristics were

SUMMARY OF RESULTS MEGAWATT CLASS STIRLING ENGINES FOR SPACE

Heat Source Tenp.K	Heat Sink Tenp.K	Overall Length cn	Specific Height kg/kH(e)	Net Power KH(e)	Overall Effic. Z	Run + Apdx.B
1600	900	95	4.0	61	14	10
1600	800	122	3.3	91	19.	9
1600	700	153	3.0	125	24	8
1600	600	188	2.8	163	28	6
1600	500	227	2.6	207	31	4
1500	900	78	1.1	12	10	13
1500	800	106	3.4	73	16	15
1500	700	137	3.0	108	22	16
1500	600	172	2.7	146	26	17
1500	500	212	2.6	190	29	18
1400	900	60	5.6	23		26
1400	800	89	3.6	55	13	25
1400	700	120	3.0	89 -	14	24
1400	000	155	2.7	127	24	23
1400	500	195	2.5	171	67 97	23
		*/		- 1/1		66 ••
1300	900	41	41.2	2	. 0	29
1300	800	70	4.1	33	· 8	30
1300	700	101	3.1	68	15	·31
1300	600	137	2.7	107	21	32
1300	500	177	2.6	151	25	33

TABLE 4.5.4.2

chosen. These designs include several different types of free-piston Stirling engines coupled to linear generators. By choosing this type over kinematic engines and smaller rotary generators, one obtains the following advantages:

1. No seal problem. Hermetically sealed. Internal seals are not critical.

~ •

- 2. Low bearing loads. Gas bearings are adequate and radiation sensitive materials are avoided.
- 3. Small parts count. With fewer parts than with a kinematic engine, the reliability should be higher.

There remain significant endurance and reliability issues. Designing and building a high performance engine out of ceramic fiber reinforced refractory metals will present some new and unusual problems:

- 1. The endurance limit of the refractory alloys must be reliably known and allowed for.
- 2. Thermal stress in the metals must be evaluated and properly taken into account because of the high heat flux.
- 3. High vacuum, high temperature joining techniques must be used throughout. Helium is the only practical working gas and it permeates elastomers which might survive the radiation environment.
- 4. Gas bearing technology must be checked. Most gas bearings rotate. These oscillate and may rotate as well for some concepts.

Stirling Space Power Systems. The Stirling engine will be heated by lithium metal pumped through the cylinder head heat exchanger. The lithium is assumed to be heated to a maximum temperature of 1570 K in a uranium nitride In order to achieve reasonable primary loop pumping fueled fast reactor. power, the reactor coolant temperature rises 100°C across the core. The coolant flows to approximately 56 double (or 112 single end to end) cylinder The approximately 220 liters/sec (3500 gpm) flow might be engines. distributed to the engines in parallel or in series. Reasonable size, velocities and design require that the flow be largely in parallel. Thus, each engine pair receives at least 4 liters/sec (all parallel). Such an arrangement would require a 100°C temperature gradient around the cylinder head. This excessive gradient should be reduced to prevent cylinder warpage and misalignment. Thus 2 to 4 engine pairs may be plumbed in series to form

14 to 28 parallel circuits. Engine thermal distortion would be reduced with only 25 to 50°C temperature gradients per cylinder.

The Stirling cycle work by W. Martini was previously typified in Table 4.5.4.1 and summarized in Table 4.5.4.2 and the 20 cm base Stirling engine module concept was shown in Fig. 4.5.4.6. The high-frequency (240 Hz), very-high-pressure, 400 bar (≈6000 psi), low-pressure-ratio design achieves fair performance (\approx 15% efficiency) at temperature ratios greater than 1.75. Good efficiencies of 20% are projected for temperature ratios of 2. The high frequency and high power density results in about 3 to 4 kg/kWe enginealternator specific weights at 2.0 to 1.75 temperature ratios, respectively. Lower specific weights and higher frequencies at higher temperature ratios are of little interest for megawatt space power. Real systems have many losses that are not seen in ideal studies. Table 4.5.4.3 provides a summary of preliminary total system estimated weight per net electrical kilowatt output for the Martini Stirling engine data taken from Table 4.5.4.2. Note here that $T_{heat-source}$ of Table 4.5.4.2 is equal to $(T_{ho} + T_{hi})/2$ of Table Likewise $T_{heat-sink}$ of Table 4.5.4.2 is equal to $(T_{co} + T_{ci})/2$ of 4.5.4.3. Table 4.5.4.3. Also note that the $T_{radiator}$ average is equal to T_c -100. This provides for reactor and heat rejection loop temperature rises of 100 K from inlet to outlet.

The gross electric power output allowance was 10% greater than the net output in order to allow for pumping power, power conditioning, transmission losses and 5-year system degradation. The estimated kg/kW_{net} are listed for the radiator system, the engine-alternator system and the reactor-shield-pumping system. In order to produce 10 MWe net after 5 years, at least 11 to 12 MWe gross must be generated at BOL in order to provide power for the primary pump loop, the heat rejection pump loop, auxiliary-alternator cooling pumps, power conditioning, bus bar losses and some small number of engine failures or degradation. Consequently, the Martini engine-alternators alone, required for 10 megawatts EOL net output, could not be carried in one shuttle. This engine has enormous materials problems due to high temperature creep, cyclic stress and materials compatibility.

	IAL	223 20 0	36 35 36	22 39 25 23 25 23	
	101	13. 13. 13.		13. 24. 16. 16.	sdun
	et R-S-P	3.33 2.32 2.19 2.19	2.86 2.86 2.44 2.44	2.5 2.5 2.5 2.5 2.5	ernator Shield-P
	<u>kg/kur</u>	4.07 3.74 3.33 3.35	4.4 3.52 3.33 3.33	8.39 9.69 9.41 9.14	adiator ngine Alt Reactor-
	Rad	3.89 4.18 5.56 7.02	5.29 5.19 5.78 6.37	9.13 7.42 7.51 7.85 9.36	Rad = R E-A = E R-S-P = E
E SYSTEMS	P _{N/m} 2	2.57 2.4 2.11 1.42	1.89 1.74 1.57	1.09 1.35 1.33 1.27 1.07	
LING ENGIN	Rs (kWt/m ²)	16 9 6.7	16 12 6.7	16 9 6.7	kkeNet 1) = m ² Net
OF STIR	Ĕ	· 750 650 550	750 700 650 550	750 700 600 550	1.1 per ⁿ T per .1(1/n - ^R s
C WEIGHT	£	.15 .18 .205 .228 .25	.115 .15 .175 .205 .228	.07 .11 .14 .173	(kWeN) = ⁿ T -1.1P _N = Wt/m ² =
SPECIFI	Tc1	800 750 650 600	800 750 700 650	800 750 650 600	
	1c	900 850 750 800 750	900 850 750 700	900 850 750 700	Reactor kl iator Area
	۲ <mark>ـ</mark>	1500	1400	1300	Q = Rad 5.4.3
	f	1600 1600 1600 1600	1500 1500 1500	1400 1400 1400 1400	BLE 4.
		~1			TA

III-103

Fig. 4.5.4.7 shows a layout minus radiator for the 10 MWe net EOL output for 56 cylinder pairs and 112 displacer-alternators.

The Benson (Energy Resource Group) engine concepts utilize Speculation. more internally configured heat input and output exchangers. With lower pressures and higher pressure ratios, ERG expects good engine efficiencies at lower, more attractive temperature ratios of about 1.4 to 1.6. The lower pressures might reduce the materials creep problem to a manageable level. ERG powers the alternator bounce space with a smaller auxiliary displacer piston. Thus, ERG proposes a low-mass, linear alternator concept that might achieve engine-alternator weights of 1-1/2 to 3 kg/kWe. Such specific weights might be competitive with lower pressure potassium Rankine engine specific weights. However, the liquid-metal connected systems (i.e., reactor-shield-power conversion) at 10 MWe net will still not be lifted in one shuttle. Space assembly and liquid-metal-filled pipe welding, or a much larger booster, will be required.

<u>Conclusion</u>. High-temperature, high-power Stirling engines in these performance and specific weight ranges are highly speculative. No known refractory metals have low enough creep rates at temperatures from 1500 to 1600 K. Ceramic fiber or other ceramic reinforcing of refractory metals will be required, which represents an entirely new technology in itself.

Fig. 4.5.4.7

06168802

SPI-25-1 Revision of SP-58-S-84 VOLUME III

REFERENCES

- [35] T. T. Robin, "Design of Boiler-Superheater Units for Representative Cesium and Potassium Space Power Plants", ORNL-TM-2080, September 1968.
- [36] H. C. Young, D. L. Clark, A. G. Grindell, "Comparison of Boiler Feed Pumps for Cesium and Potassium Rankine Cycle Systems", ORNL-TM-2086, September 1968.
- [37] H. C. Young, A. G. Grindell, "Summary of Design and Test Experience with Cesium and Potassium Components and Systems for Space Power Plants", ORNL-TM-1833, June 1967.
- [38] A. P. Fraas, J. W. Michael, "Comparison of 1-, 2-, and 3-Loop Systems for Nuclear Turbine-Generator Space Power Plants of 300 kW to 5 MW of Electrical Output", ORNL-TM-1366, March 1966.
- [39] A. P. Fraas, D. W. Burton, M. E. LaVerne, L. V. Wilson, "Design Comparison of Cesium and Potassium Vapor Turbine-Generator Units for Space Power Plants", ORNL-TM-2024, February 1969.
- [40] A. P. Fraas, work done in support of this study.
- [41] E. H. Cooke-Yarborough, "Diaphragm Stirling Engines: Achievements and Future potential", Presented at IMechE seminar "Stirling Engines, Progress Towards Reality", at University of Reading, Mich, 1982-2, pp. 43-48.
- [42] E. H. Cooke-Yarborough, Private communications, 20 May 1983.
- [43] E. H. Cooke-Yarborough, "Operating Experience with the Harwell Thermo-Mechanical Generators", AERE-R-9829, 23 May 1980.
- [44] J. R. McBride, "The HoMach TMG: A New Small Stirling Power Source for Unattended Operation", 1984 IECEC Record, to be published Aug. 1984.
- [45] J. S. Slaby, D. G. Beremand, "Overview of NASA-Lewis Research Center Free-Piston Stirling Engine Activities", 1984 IECEC Record, August 1984, To be published.
- [46] J. Schreiber, "Test Results and Description of a 1 kW Free-Piston Stirling Engine with a Dah Pot Load", 1983 IECEC Record, pp. 887-896.
- [47] D. M. Berchowitz, "The Development of a 1 kW Electrical Output Free Piston Stirling Engine Alternator Unit", 1983 IECEC Record, pp. 897-901.
- [48] W. M. Beale, Private Communication, Feb. 1984.
- [49] D. M. Berchowitz, Personal Communication, 8 March 1984.
- [50] W. E. Beale, Sunpower, Inc., Personal Communication, 9 March 1984.
- [51] G. Dochat, Mechanical Technology Inc., Personal Communication, 9 March 1984.
- [52] G. M Benson, "25 kW FPSE Space Power Plant Featuring Lightweight Linear Alternator", 1984 IECEC Record, August 1984, To be published.
- [53] G. M Benson, "Thermal Oscillators", 1973 IECEC Record pp. 182-189.
- [54] "Small Business Innovation Research Abstracts of 1983 Phase I Awards", SBIR 83-1, p. 36.
- [55] S. G. Carlquist, K. G. Rosenquist, S. G. Gummesson, "Developing the Stirling Engine for Fuel Economy in Marine, Industrial and Medium Duty Automotive Applications", 12th Inter. Congress on Combustion Engines, Tokyo, 22 May to 1 June 1977.
- [56] "Japanese Develop a Stirling Engine Using Ceramics", Stirling Engine Newsletter, February 1983, p. 16 (Martini Engineering).
- [57] V. J. Van Griethuysen, "AFWAL Terrestrial Stirling Engine R&D Efforts", 1983 IECEC Record pp. 802-808.
- [58] S. Musikant, W. Caiu, D. Darooka, "Ceramic Automotive Stirling Engine Study", G. E. March 1984 report on NASA-LeRC Contract No. DEN3-312.

APPENDIX A (U)

Stirling Engine Design (U)

(U) <u>First Order Design</u>. First order designs are done using approximate formulas which tell the designer about how big and how efficient the Stirling engine would be. It says nothing about how the engine should be designed. There are a number of approximate formulas collectively termed the Beale equations [1]. The one that is most appropriate was proposed by J. Senft:

 $W = 0.035 \times F \times PM \times VC \times (TE - TC)/(TE + TC)$

- Where: W = Engine power output, watts
 F = Operating frequency, Hz
 PM = Mean cycle pressure, bar
 VC = Displacement of the power piston, cc
 TE = Heat source temperature, K
 TC = Heat sink temperature, K
- (U) Assume a frequency of 60 Hz and a mean cycle pressure of 200 bar (2900 psia). Design for 250,000 watts (e). Assume a 90\$ efficiency electric generator. Thus the desired engine power would be 277,778 watts (m). Based upon these assumptions the displacement (VC) of the power piston would be as shown below:

Heat Sink	Heat Source	e Temperature		
Temperature	1300 K	1400 K	<u>1500 K</u>	<u>1600 K</u>
800 K	2778 cc	2425 cc	2173 cc	1984 cc
900 K	3638 cc	3042 cc	2646 cc	2363 cc

UNCLASSIFIED

(U) The indicated efficiency of a practical Stirling engine is about 75\$ of the Carnot efficienty [2]. This efficiency depends very little on absolute temperature and will be used for approximate design. Assume again 90\$ efficiency for the electric generator. Thus the overall efficiency from heat to electric power is 67.5 \$ of the Carnot efficiency. The expected actual overall efficiency is given below:

Heat Sink	Heat Source	e Temperature		
Temperature	1300 K	1400 K	<u>1500 K</u>	1600 K
800 K	26\$	29\$	32%	34%
900 K	21%	24\$	27%	30%

UNCLASSIFIED

- (U) From the information we have obtained on the SP-100 program we can make some first order estimates about the size of the engine generator. The engine-generator is about half engine and half generator on a volume basis. On a weight basis it is 60\$ generator and 40\$ engine [3]. The SP-100 engine runs at 120 Hz so the specific weight of the generator is about 4 kg/kW(e). Assume that the density of the generator, being almost all solid metal, is 5 kg/liter. This would mean that a 250 kW(e) engine-generator would weight 1667 kg or 6.7 kg/kW(e). If the engine-generator were 5 times as long as it is in diameter, it would be 55 cm in diameter and 277 cm long. To get a more accurate idea of the engine design and the weight and size of the engine and generator, a second order analysis was undertaken.
- (U) <u>Second Order Design</u>. We will first describe the tools that are available to do second order designs. Then we will develop a design like that being offered by both Sunpower and MTI (See Figs. 4.5.4.2 and 4.5.4.3) which is more or less standard. However we will add some refinements that are proprietary and could be patentable. We will find one design that seems to give good results and then see how it applies over the full range of requested temperatures.

- (U) Linear Engine, Linear Generator Design. Figure A.1 shows the concept which is similar to both the Sunpower and the MTI design. The design will first be described. Then the independent inputs and the output display will be described using a sample output. The rest of the outputs are given in detail in Appendix A and abstracted in a table. Finally, design improvements will be discussed.
- (U) Concept Description. The concept shown in Fig. A.1 is basically a free-displacer, free-piston engine. The displacer is pneumatically driven with optional assist and control by an electric drive. The power piston is also the armature of the electric generator. Heat is supplied to the tubular hair pin type heaters from the reactor by a pumped lithium loop. Each heater tube is the same shape and the same length. Heat is removed from the tubular coolers by another colder lithium loop. Because of the Curie point limitation to the magnetic materials in the generator, a separate coolant loop cools the linear generator to 500 K. An insulation layer on the power piston protects the electric generator from the "cold" end of the engine. Both the displacer and the power are sealed by gas bearings. In this concept hollow volumes in the displacer accumulate the maximum working gas pressure and apply it to a static type seal and gas bearing. In Fig. A.1 these are shown in concept and are not designed for load carrying capacity. The electric drive or generator is also made to rotate both the power piston and the displacer. This rotation creates a journal gas bearing which also acts as a seal.
- (U) Two engine generators will be operated as a pair for balancing. They will be on the same center line with their hot ends joined. Fig. A.1 just shows one of these engines. This engine pair shares a common engine cylinder wall. If both are as shown in Fig. A.1, then there needs to be a cylinder in the middle with a spacer and no heat exchanger tubes. However, if one displacer has a convex cylinder head, as shown, and the other has a concave cylinder head, the two displacers would mesh. Important space and weight would be saved.

- (U) Note that in Fig. A.1 the cross section shows the displacer and the power piston all the way up on the left side and all the way down on the right side. Also two different designs are shown for the hair pin heat exchangers. The squared off design at the left could not be built without some changes because the vertical part of each hair pin would interfere with neighboring tubes. The design on the right is the same as is used in the consortium Stirling engine being tested in England. The tubes, each in the form of a semicircle, can be placed so that they do not interfere with each other. These semicircular tubes would have less flow loss. The velocity heads would be 1.5 instead of 2.5 as is now used.
- (U) In Fig. A.1 the engine cylinder wall is inconveniently thick. The wall thickness was calculated using the creep strength for Astar-811c. It is for 1% creep in 7 years. It was assumed that it would have a working strength of 500 MPa below 950 K. Above 950 K the following formula for the working strength was used.

WSTR = exp [30.3741 - 3.5236 ln (T)]

where WSTR = working strength, MPa T = temperature, K

This wall thickness would be twice as thick as shown if it were not for the use of graphite fiber hoops which take the hoop stress. The metal only has to withstand the axial stress. The 2.51 cm thickness is for 1600 K. At 1300 K the wall thickness is down to 1.21 cm. Information obtained from the Great Lakes Carbon Co. indicated a tensile strength of 2758 MPa for graphite fiber. Apparently in the range being considered there is no dependence on temperature and there is negligible creep. This information must be checked. Possibly a better design would be to use tie rods outside the hot zone to hold the engine pair together and then add more and stronger strength bands using some type of cladding for the refractory fiber if necessary.

- (U) Having the two hot ends of the engines in a common cylinder saves the weight of the end head. It also assures that both engines will operate in a counterbalanced mode. Computer simulation calculations at Martini Engineering showed that engines so connected would get in step within one cycle, even though they were intentionally started out of step. Of course the matching parts must have the same mass and the alternators musc be connected in parallel for the counter balance to work.
- (U) The use of the hair pin heater tubes starting and ending in the cylinder wall is unique in Stirling engine design so far as is known. The reason for it is to minimize the engine diameter and make possible fiber wrap strengthening without having to deal with heads. To do this the regenerator had to be placed inside the displacer in a volume that would otherwise be empty. An additional improvement is the use of a convoluted regenerator which also is unique as far as is known. The regenerator works better to allow higher speed operation when the flow area is large, the flow path is small and the regenerator quite dense. A convoluted regenerator would be difficult to build so that one would have no appreciable leaks around the regenerator matrix. For a space power engine it would be well worth it.
- (U) Because of the high reject temperature required in this engine design, it will be difficult and may be impossible to make a good electric displacer drive. In the engine designs described in this report we adjusted the diameter of the displacer drive piston so that the power applied to the displacer almost exactly equaled the flow loss through the heater, regenerator and cooler. Therefore, the electric displacer drive may not be needed. However there needs to be a more rigorous analysis of the pneumatic displacer drive. The timing of the forces applied during the cycle, the flow losses, and the inertia of the displacer determine the phase angle and the displacer stroke. They cannot be specified in advance. A more detailed analysis must be done to determine how much electric drive power is really needed to attain the desired 90 degree phase angle. Usually the phase angle is lower.

(U) <u>Description of Needed Inputs</u>. In calculating the performance of the RE-1000 free piston Stirling engine for NASA-Lewis, 94 numbers had to be input. Fifteen of these were for control of the calculation. The rest were dimensions and operating conditions. In this calculation certain dimensions will be set ahead of time and decisions made about how other dimensions relate to get as small a list as possible of truly independent inputs. The list given below is divided into these three parts:

(U) A. Set Inputs

- 1. Identity of metal of construction, best possible.
- 2. Working gas = helium because hydrogen would leak out.
- Fraction of open area in spider supporting displacer drive piston = 0.5.
- 4. Phase angle = 90 degrees, best value.
- Velocity head loss due to entrance, exit and bend in both heater and cooler = 2.5, right for design.
- Density of alternator = 7 g/cc, estimate based upon iron and copper almost solid.
- 7. Emissivity of radiation shields = 0.2

(U) B. Independent Inputs

- 1. Charge pressure of working gas.
- 2. Inside wall temperature of gas heater tubes.
- 3. Inside wall temperature of gas cooler tubes.
- 4. Alternator temperature.
- 5. Engine and alternator frequency.
- 6. Maximum stroke of displacer or power piston.

7. Inside diameter of engine cylinder.

- 8. Gap between displacer and cylinder wall.
- 9. Displacer rod diameter.
- 10. Number of radiation shields in displacer (included but now no longer relevant).
- 11. Number of rows of heater and cooler tubes.

12. Radial length of heater tubes.

13. ID of heater tubes.

- 14. Square pitch between heater or cooler tubes.
- 15. Length of seal.
- 16. Diameter of wire in regenerator matrix
- 17. Porosity of regenerator.
- 18. Ratio of flow area to face area in regenerator.
- 19. Radial length of cooler tubes.
- 20. ID of cooler tubes.
- 21. Specific weight of alternator.
- 22. Efficiency of alternator.
- (U) C. Derived Inputs
 - 1. Working gas properties -- based upon helium
 - 2. Metal properties.
 - Thickness of engine cylinder -- depends upon diameter, charge pressure and metal properties.
 - 4. Thickness of heater tubes -- same as #3.
 - 5. Thickness of cooler tubes -- same as #3
 - Thickness of outer regenerator wall -- average of hot and cold engine cylinder.
 - Thickness of inner regenerator wall -- currently set at 0.5 mm.
 - 8. Thickness of displacer wall -- to take twice value of pressure swing in tension.
 - Thickness of cold pressure vessel heads -- currently same as wall thickness.
 - Total number of heater or cooler tubes -- depends upon engine diameter and number of rows of tubes.
 - OD of regenerator -- depends upon engine diameter and number of rows of tubes.
 - Working stroke of displacer or power piston -- 90 \$ of maximum stroke.
 - Length of displacer -- depends upon the length of the heater, regenerator, cooler, pressure, number of rows of tubes, and maximum stroke.
 - 14. Volume of power piston bounce space -- 5 times the power piston stroke volume.

· · · ·

- 15. Volume of displacer bounce space -- 4 times the maximum displacement of displacer drive rod.
- 16. Thickness of spider -- 0.1 of engine diameter.
- (U) Note that the 79 dimensions and operating conditions needed to describe the RE-1000 engine has been reduced to 22 truly independent dimensions and operating conditions for both the engine and the alternator. This has been done by ignoring secondary effects such as leakage, making judicious choices for things that cannot really be changed, and by relating some inputs to others.
- (U) <u>Method of Calculation</u>. The isothermal analysis is used because it is fast and has been calibrated against published engine data [4] to within \pm 10%. It has been extended to include calculation of weights and sizes. It has been made specific for the internal convoluted regenerator design.
- (U) <u>Descriptions of Outputs</u>. Samples of the computer output are attached at the end of this appendix. Note that the independent inputs are given first and then the outputs are given. These outputs will now be discussed so that the reader will know what they represent. Note that the output is divided into power, heat requirement, efficiency, temperatures, weights, lengths, diameters, thicknesses, and numbers. Each of these subdivisions will now be discussed.
- (U) <u>Power</u>. This isothermal second order analysis is built on the assumption that there is a basic thermodynamic power output and heat input that can be calculated by assuming that the gas spaces in the engine all have a known temperature for the cycle which does not change during the cycle. In this case the motion of the power piston and the displacer are both known in advance. Therefore, the pressure of the working gas at each point in the cycle can be calculated. This pressure applied to the area of the power piston as it moves to and fro creates the thermodynamic power piston as the displacer moves to and fro

creates the thermodynamic power applied to the displacer which is used to overcome flow losses.

- (U) The <u>adiabatic correction</u> makes this program the equivalent to a more complicated and time consuming program. The basic isothermal program assumes that the hot space and cold space of the engine are at fixed temperatures do not change during the cycle. In reality, these temperatures do change during the cycle. In reality, these temperatures do change during the cycle. These changes have an important effect on the true power output especially at low temperature ratios. We found that the difference between the true power and the isothermal power depends chiefly upon the temperature ratio and the dead volume ratio. This relationship has been precalculated and stored in a table. These two ratios are determined and then the adiabatic correction is determined quickly by interpolation in the table.
- (U) The <u>flow losses</u> are determined by first approximating the flow through the different parts of the engine as a constant flow for part of the cycle, no flow for part of the cycle, the same constant flow back, and then no flow to complete the cycle. These constant flows and the fraction of the cycle time that they occur is determined for the heater and the cooler. For the regenerator, an average of these two is used. Standard flow loss and heat transfer coefficients are used.
- (U) The <u>displacer drive power requirement</u> is the electrical watts that are needed to drive the displacer in addition to that supplied by the thermodynamic displacer power. We tried to make this small by adjusting the displacer drive rod diameter because it may be difficult to make a high temperature displacer driver.
- (U) The <u>net engine power</u> is the thermodynamic power piston power corrected by the adiabatic correction.
- (U) The <u>alternator loss</u> is the power loss due to copper and iron losses in the alternator.

- (U) The <u>net electric power</u> is the power generated by the alternator less the electric power needed to operate the displacer. The efficiency of the displacer electric drive is assumed to be the same as the electric alternator. If for a particular case the displacer drive is calculated to produce power, this power is added to the power from the alternator.
- (U) <u>Heat Requirements</u>. The thermodynamic heat requirement is calculated from the integral of the engine pressure and the hot gas volume.
- (U) There is also an <u>adiabatic correction</u> for the heat input as well as the power output. It is calculated the same way.
- (U) Because the regenerator is not perfect, additional heat must be added to the working gas to <u>reheat</u> it every time it comes back into the hot space. This is always a major loss.
- (U) The <u>shuttle loss</u> comes about because two surfaces with an axial temperature gradient, like the displacer and the engine cylinder, move to and fro. Conduction back and forth across the gas gap causes additional heat loss.
- (U) The <u>appendix loss</u> is caused by gas being pressured into the crack between the displacer and the cylinder wall, cooling foo and then coming back at lower pressure but colder into the hot space. The appendix loss can be decreased and the shuttle loss increased for a net gain up to a point by decreasing the gap between the displacer and the cylinder wall. However, this gap in this case, acts as a flow passage and should not be too small.
- (U) The <u>temperature swing loss</u> accounts for the fact that the regenerator has limited heat capacity and therefore has some temperature swing as the gas moves back and forth. The regenerator therefore is not as good as it would be assuming unlimited heat capacity.

- (U) All the <u>conduction</u> terms are calculated by simple straight conduction across the part of the engine that takes the temperature difference. This conduction is the same whether the engine is operating or not.
- (U) The <u>flow friction credit</u> takes into account that the flow loss in the heater and half of the regenerator is converted back into heat and therefore reduces the heat that would otherwise be required from the heat source.
- (U) The total heat supplied to the engine is the denominator for calculating efficiency. It is also assumed to be supplied to the engine through the heater tube wall. In some engine designs it might be argued that some heat loss terms would not go through the gas heater.
- (U) The <u>engine cooling</u> must pass through the gas cooler at the heat sink temperature.
- (U) The <u>alternator cooling</u> is the amount of heat that must be removed from the alternator at a lower temperature than the main radiator to a special low temperature radiator.

ORIGINAL PAGE IS OF POOR QUALITY

INDEPENDENT 1	NPUT VALUES	6	EQUEILI
Program control paramet	térsi		
Case number define	ad by opera		- 4
Graphic option 0=1	no. 1=res		- 1
Conv. criteria (F	rac, change	r in integrais.)	805800
Number of time sto	PPS Pel Cyc	: ; •	_ 24
Ensine operating condi-	tions		
Average working g	AS Pressure	P: bar	_ 400.00
Metal tenperature	of sas hea	ater, K	_ 1600.00
Metal temperature	01 935 000	oler, K	_ 500,00
Pressure vessel to	emp. of all	t. and b. space, K	500.00
Ensine speed, Hz			240.00
Cylinder dimensions and	d materials	5.	
Maximum displacer	and power	Piston Stroke, CM	1.50
D: aneter of power	piston and	d ensine cri Cm	_ 20.00
Gap between displ	acer and co	rlinder Walls CM	10
Displacer rod dla	meter, cm .		- 7.20
Number of radiation	on shields	in displacer,	_ 10
Heater, resenerator, c	00 ef1		
Number of heater	and cooler	TUDE FORS	15
Radial lensth Of	heated hail	r pin tubes, cm	5.00
ID of heater tube	5, C#		20
Square pitch for i	heater or (cooler tube array, cm	40
Seal length: Cal			50
Diameter of wire	IN MATFIX.	MICKONS	20.00
Porosity of Matri	NI PER LEN		- 19.00
Ratio of flow area	A TO TACE (area in resenerator _	- 6. 00
ID of cooler tube	COOTED HALL	PIN CUDESI CAL	- 3.60
Lindar neuerator paraw	al CM Atarel		
Specific weight of	evely. F alternat/	or at 60 Hz, ke/kH(a)	8 00
Etticiency of the	ALTERNATO	APT CENT	90.00
Martini Ens. Isotherma	I Analysis	of FPSE-Alternator P	ONET System
POWER, WATTS		HEAT REQUIREMENT. WA	TTS
Thermo, P. Pist.	237834.60	Thermodynamic	443621.90
Thermo, Dispi.	57493.31	Adlabatic Corr.	23152.50
Adiabatic Corr.	-7825.68	Reheat loss	132593.80
Heater flow loss.	24E80.27	Shuttle loss	EØ. 12
Resention loss	19192.60	Appendix loss	90025.80
Cooler flow loss	13394.25	Temp.swing loss	743.64
DSp. Dr. Pwr. Reamt.	-251.33	Cyl. Wall Cond.	
Net Engine Power			258.27
Alternator Loss	229208.90	Dispict Wall Cond.	258,27 3641,52
	229208.90	Dispicr Wall Cond. Regen. Wall Cond.	258.27 3641.52 7366.69
NET ELECT. POWER	229208.90 22920.89 206539.40	Dispict Wall Cond. Resen. Wall Cond. Cri. Bas Cond.	258.27 3641.52 7366.69 2.64
NET ELECT. POWER OVERALL EFFICIENCY, X	229208.90 22920.89 206539.40 30.56	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond.	258.27 3641.52 7366.69 2.64 8423.44
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K	229208.90 22920.89 206539.40 30.56	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi.	258.27 3641.52 7366.69 2.64 8423.44 .00
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater	229208.98 22920.89 205339.40 30.55	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi. Flow Fric. Credit	258.27 3641.52 7366.63 2.64 8423.44 .00 -34276.57
NET ELECT, POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect, Hot Gas	229208.98 22920.89 206539.40 30.56 1602.89 1556.25	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi. Flow Fric. Credit Total Heat to Ens.	258.27 3641.52 7366.63 2.64 8423.44 8423.44 .00 -34276.57 675814.60
NET ELECT, POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi. Dr. Heat	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cocler	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling	258.27 3E41.52 73E6.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cocler Weights, Ky	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64	Dispict Wall Cond. Resen, Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	258.27 3E41.52 73E6.69 2.64 8423.44 .00 -34276.57 675814.80 -251.33 446354.50 22920.89
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22	Dispict Wall Cond. Resen, Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	258.27 3E41.52 73E6.69 2.64 8423.44 .00 -34276.57 673814.60 -251.33 446354.50 22920.89
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Boo Ust	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36	Dispict Wall Cond. Resen, Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, cm	258.27 3E41.52 73E6.69 2.64 8423.44 .00 -34276.57 673E14.60 -251.33 446354.50 22920.89
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Rom. Matrice	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55	Dispict Wall Cond. Resen, Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Ensine Alternator Pource Source	258.27 3E41.52 73E6.69 2.64 8423.44 -34276.57 673E14.60 -251.33 446354.50 22920.89 32.65 187.61
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Reg. Matrix Cyl. Hall	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 21	Dispict Wall Cond. Resen, Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, cm Ensine Alternator Bounce Space TOTOL I ENGTH	258.27 3E41.52 73E6.69 2.64 8423.44 -00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hail Res. Hatrix Cyl. Hail Displacer	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21	Dispict Wall Cond. Resen, Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diageorg. Cr	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Res. Hatrix Cyl. Hall Displacer Displ. Drive Pod	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14	Dispict Wall Cond. Resen. Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lengths: cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D. R. Support	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14 .69 2.57	Dispict Wall Cond. Resen. Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Alternator cooling Lengths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.OD OD Dop Peser	258.27 3641.52 7366.69 2.64 8423.44 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01 25.02
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hail Res. Hatrix Cyl. Hail Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14 .69 2.67	Dispict Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.OD OD Ann.Resen.	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01 25.02 30.30
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Res. Hatrix Cyl. Hall Displacer Displ.Drive Rod Displ.D. R. Support Coler Tubes Cold Cylinder	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.35 6.16 .21 19.14 .69 2.67 1.24 46.34	Dispict Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lengths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.OD OD Ann.Resen. Wall Thicknesses. cm	258. 27 3641. 52 7366. 69 2. 64 8423. 44 .00 -34276. 57 675814. 60 -251. 33 446354. 50 22920. 89 32. 65 187. 61 6. 75 227. 01 25. 02 30. 30 2. 51
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Res. Hall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes Gold Cylinder Alternator	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14 .69 2.67 1.24 46.34 412.58	Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator coolins Lengths. Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri.OD OD Ann.Resen. Wall Thicknesses. Cm	258. 27 3641. 52 7366. 69 2. 64 8423. 44 .00 -34276. 57 675814. 60 -251. 33 446354. 50 22920. 89 32. 65 187. 61 6. 75 227. 01 25. 02 30. 30 2. 51 .40
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Res. Hall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes Cold Cylinder Alternator TDTAL WEIGHT	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14 .69 2.67 1.24 46.34 412.58 545.16	Dispicr Wall Cond. Resen, Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator coolins Aiternator coolins Lengths. Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri.OD OD Ann.Resen. Wall Thicknesses. Cm Hot criinder Cold criinder	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01 25.02 30.30 2.51 .40 .40
NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Hall Res. Hall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes Cold Cylinder Alternator TDTAL WEIGHT Number of heater tubes	229208.98 22920.89 206539.40 30.56 1602.89 1556.25 523.03 499.64 39.22 15.36 1.55 6.16 .21 19.14 .69 2.67 1.24 46.34 412.58 545.16 2356	Dispicr Wall Cond. Resen, Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator coolins Aiternator coolins Lengths. Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri.OD OD Ann.Resen. Wall Thicknesses. Cm Hot criinder Cold criinder Aiter. Criinder	258.27 3641.52 7366.69 2.64 8423.44 .00 -34276.57 675814.60 -251.33 446354.50 22920.89 32.65 187.61 6.75 227.01 25.02 30.30 2.51 .40 .40 .95

INDEPENDENT INPUT VALUES Program control parameters: Case number defined by operator._____ 6 Graphic option B=no, 1=yes.____ 1 Conv. criteria (Frac. chanse in integrals.)_____.005000 Number of time steps per cycle._____ 24 Envine operating conditions! Average working tas pressure, bar_____ 408.00 Metal temperature of sas heater, K______ 1500.00 Metal temperature of sas coolers K______ 500.00 Pressure vessel temp. of alt. and b. space, K ____ 500.00 Ensine speed, Hz_____ 240.00 Cylinder dimensions and materials Maximum displacer and power plston stroke, cm ____ 1.50 Diameter of power piston and engine cyl., cm ____ 20.00 Gap between displacer and cylinder wall, Cm _____ . 10 7.30 Displacer rod diameter, cm Number of radiation shields in displacer: _____ 10 Heater, resenerator, cooler: Number of heater and cooler tube rows _____ 15 5.00 Radial length of heated hair pin tubes, cm _____ 1D of heater tubes. Cm . 20 Square pitch for heater or cooler tube array, cm_ . 40 Seal length: CM _____ . 50 20.00 Diameter of wire in matrix, MICRONS _____ POROSITY OF MATRIX, PER CENT 70.00 Ratio of flow area to face area. In resenerator 6.00 Radial length of cooled hair pin tubes, cm_____ 5.00 ID of cooler tubes: CH . 20 Linear senerator parameters: Specific weight of alternator at 60 Hz, ku/kW(e)_ 8.00 Efficiency of the alternator: per cent _____ 90.00 Martini Ens. Isothermal Analysis of FPSE-Alternator Power System POWER, WATTS HEAT REQUIREMENT. WATTS Thermo, P. Pist. 193455.50 Thermodynamic 413326.70 Thermo, Dispi. 55065.42 Adlabatic Corr. 20846.36 Adlabatic Corr. -12286.09 Reheat loss 103961.90 Heater flow loss 21477.54 Shuttle loss 57.32 62544.02 Resention loss 19634.02 Appendix loss Cooler flow loss 13646.57 Temp. Swins loss 500.39 Cyl. Wall Cond. Dap. Dr. Pwr. Reamt. -341.43 237.37 Net Engine Power 1E1169.40 Dispicr Wall Cond. 4159.59 Resen. Wall Cond. Alternator Loss 18116.94 6778.65 NET ELECT. POWER 163393.90 Cyl. Gas Cond. 2.52 DVERALL EFFICIENCY, * 27.73 Regen. Mtx. Cond. 8029.20 Rad. Inside Dispi. Tenperatures, K . 00 FION Fric. Credit -31294.55 1602.52 OD Bas Heater Effect. Hot Gas 1560.53 Total Heat to Eng. 589241.50 Dispi.Dr. Heat Ettecs. Cold Gas 622.23 -341.43 407730.70 OD Gas Cooler 599.68 Ensine Coolins Weishts, KV Alternator cooling 18116.94 39.22 Hos Criinder Lensths: CM Heater tubes 15.36 Engine 32.65 1.55 Res. Wall Alternator 148.29 6.16 Res. Hatrix Bounce Space 6.75 . 21 TOTAL LENGTH 187.69 Cyl. Wall 22.55 Dianeters, cm Displacer Displ.Drive Rod . 71 Ens.Cri.OD 25.02 DISPI.D.R. SUPPORT 2.67 OD Ann.Resen. 30.30 Cooler Tubes 1.24 Wall Thicknesses: cm 37.94 2.51 Cold Cylinder Hot criinder 326.10 . 40 Cold cylinder TOTAL WEIGHT Alternator 453.72 Alter, cylinder . 40 Number of heater tubes 2356 . 05 Heater

> ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ļ

ł

INDEPENDENT IN	PUT VALUES		
Prostam CONTROL Paramet	ersi		_
Case number define	d by opera	101	. 8
Graphic option 8=r	io, l=yes		. 1
Conv. criteria (Fr	AC. Change	in integrals.)	005000
NUMBER OF TIME STA	PS Per Cyc	I e	. 24
Ensine operating condit	lonsi		
Averase working sa	S Pressure	, batassassassassassas	. 400.00
Metal temperature	of sas hea	ter: K	. 1600.00
Metal temperature	01 945 COO	1er. K	700.00
Pressure vessel te	INP. Of alt	. and b. space. K	500.00
Ensine speeds Hz			240.00
Criinder dimensions and	materials	•	
Maximum displacer	and power	PISTON STROKE, CM	1.50
Diameter of power	Piston and	engine cyl., Cm	20.00
Gap between displa	cer and cr	linder HALLI CH	. 16
Displacer rod diam	eter chi -		7.40
Number of fadlatic	n shields	in displacer,	10
Heater: resenerator, co	oleri		
Number of heater a	nd cooler	Tube fows	. 15
Radial length of P	eated bair	RID Subes, CM	5.00
ID of beater tubas			20
	Teater of t	Coler tope arrays cm_	
Deal length, Cm			
Diameter Gr wire i	IN ALATTIX.	MICKUND	20.00
Porosity of matri	G PER CENT	**********************	. /0.00
KATIO OF TION AFEA	a to face a	rea in revenerator	. E.00
Radial length of (cooled hair	Pin tubes: CH	. 5.00
1D of cooler tubes	51 CM		20
Linear senerator parame	eterst		
Specific weight o	f alternato	or at 60 Hz, ks/kW(e).	. 8.00
Efficiency of the	alternator	· Per cent	. 90.00
Martini Eng. Isotherma POWER, WOTTS	l Analysis	of FPGE-Alternator Po	ower System
Martini Eng. Isotherma POWER, WATIS Thermo P Piet	Analysis	of FP6E-Alternator Po HEAT REQUIREMENT, WAT	ower System ITB TBB401 20
Martini Eng. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Diggi	155939.20	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Podiabatic Form	System 178 388491.20
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adjabatic Forr	Analysis 155939.20 53184.52	of FPGE-Alternator Po HEAT REGULREMENT, WAT Thermodynamic Adlabatic Corr. Patiabatic Corr.	Dwer System 179 388491.20 18765.11 92578 38
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr.	Analysis 155939.20 53184.52 -17440.53	of FPGE-Alternator Po HEAT REGULREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss	System 15 388491.20 18765.11 82678.39
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Pages flow loss	Analysis 155939.20 53184.52 -17440.53 19056.58 20105.45	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss	System 18 388491.20 18765.11 82678.39 53.79
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resen. flow loss	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 17768.92	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Tano aming loss	575 System 18 388491.20 18765.11 82678.39 53.77 44223.99 749.25
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adjabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Doo Dr. Pur Beam	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swint loss	575 575 588491.20 18765.11 82678.39 53.77 44223.99 349.26 215 58
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resen. flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Nat Enalpe Power	I Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond.	System (18) 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss	I Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Page Wall Cond.	System (18) 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET ELECT POWER	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 126418.60	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond.	System 118 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.44
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DESPONE EFECTENCY	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 12849.86	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	System 118 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 124919.40 23.85	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond.	System 118 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi.	System 19 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Education	Analysis 155939.20 53184.52 -17440.53 1906.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit	System 19 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect.Hot Gas	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	System (18 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi: Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	System (TS) 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.44 2.36 7531.33 .00 -29119.31 523764.30 -270.63
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Hatera	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.69 138498.69 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins	System TB 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384993.00
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad.Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	System (18 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.60 13849.86
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. NS Hot Cylinder	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mill Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	System TS 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.60 13849.86
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Fer Heater tubes	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	System (18) 3888491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.60 13849.86
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Cooler Weights. NS Hot Cylinder Heater tubes Res. Wall Domesic	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.35	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Eng. Dispi.Dr. Heat Engine Cooling Alternator cooling	System 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 236 7531.33 .00 -29119.31 523764.30 -270.63 384995.00 13849.86 32.65 113.36
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ms Mot Cylinder Heater tubes Res. Wall Res. Matrix	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.55 6.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Space	Cher System (TS) 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.00 13849.86 32.65 113.36 6.75
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ky Host Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Dist.	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 12919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.35 6.16 .21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi: Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths. Cm Ensine Alternator Bounce Space TDTAL LENGTH	System 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.35 7531.33 .00 -29119.31 523764.30 -270.63 384995.00 13849.86 32.65 113.36 6.75 152.76
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. NS Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.69 138498.69 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.33 6.16 .21 26.38	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TDTAL LENOTH Diameters. Cm	System 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 304995.00 13849.86 32.65 113.36 6.75 152.76
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. NS Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.55 6.16 .21 26.38 .73	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Bpace TOTAL LENOTH Diameters. cm	Swer System 113 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 304995.00 13849.86 32.65 113.36 6.75 152.76
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.69 138498.69 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.55 6.16 .21 26.38 .73 2.67	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl. OD OD Ann. Resen.	System (TS) 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36 7531.33 .00 -29119.30 -2915.00 13849.86 32.65 113.36 6.75 152.76 25.02 30.30
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Ks Mot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D. R. Support Cooler Tubes	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.55 6.16 .21 26.38 .73 2.67 1.24	of FPGE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mill Cond. Cyl. Gas Cond. Resen. Mill Cond. Cyl. Gas Cond. Resen. Mill Cond. Cyl. Gas Cond. Resen. Mill Cond. Dispicr Wall Cond. Resen. Mill Cond. Dispicr Wall Cond. Resen. Mill Cond. Cyl. Gas Cond. Resen. Mill Cond. Resen. Mill Cond. Cyl. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. Cm Ens.Cyl. DD OD Ann. Resen. Wall Thicknesses. Cm	System TS 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.64 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.60 13849.86 32.65 113.36 6.75 152.76 25.02 30.30
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Coid Gas OD Gas Cooler Weights. Ms Mot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coid Cylinder	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.55 6.16 .21 26.38 .73 2.67 1.24 30.48	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. cm Ens. Cyl. OD OD Ann.Resen. Wall Thicknesses. cm	System 18 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 384995.00 13849.86 32.65 113.36 6.75 152.76 25.02 30.30 2.51
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, NS Hot Cylinder Res. Mail Res. Matrix Cyl. Wali Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Cold Cylinder Alternator	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.60 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.35 6.16 .21 26.38 .73 2.67 1.24 30.48 249.30	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi: Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths. Cm Ensine Alternator Bounce Space TDTAL LENGTH Diameters. Cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. Cm	Jerr System 18765.11 92678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 231.33 .00 -29119.31 523764.30 -270.63 384995.00 13849.86 32.65 113.36 6.75 152.76 25.02 30.30 2.51 .40
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: X Temperatures: K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights: NS Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Cold Cylinder Alternator TOTAL WEIGHT	Analysis 155939.20 53184.52 -17440.53 19066.58 20105.46 13768.92 -270.63 138498.69 138498.69 13849.86 124919.40 23.85 1602.24 1563.87 722.02 699.70 39.22 15.36 1.35 6.16 .21 26.38 .73 2.67 1.24 30.48 249.30 373.29	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. Cm Ens.Cyl. OD OD Ann. Resen. Wall Thicknesses. Cm Hot cylinder Altern. Cylinder	Jewer System 388491.20 18765.11 82678.39 53.77 44223.99 349.26 215.69 4420.42 6152.04 2.36 7531.33 .00 -29119.31 523764.30 -270.63 304995.00 13849.86 32.65 113.36 6.75 152.76 25.02 30.30 2.51 .40

•

INDEPENDENT INPUT VALUES Program control parameters! Case number defined by operator._____ q Graphic option 8=no. 1=yes. 1 Conv. criteria (Frac. change in integrals.)_____.005000 Number of time steps per cycle._____ 24 Envine operating conditions! Average working gas pressure, bar_____ 400.00 Metal temperature of was heater, K______ 1500.00 Metal temperature of sas cooler, K______ 800.00 Pressure vessel temp. of alt. and b. space, K ____ 500.00 Envine speed, Hz_____ 248.00 Cylinder dimensions and materials Maximum displacer and power piston stroke: Cm ____ 1.50 Diameter of power piston and engine Cyl., Cm ____ 20.00 . 10 Gap between displacer and cylinder wall. Cm _____ 7.50 Displacer rod diameter: cm _____ Number of radiation shleids in displacer, _____ 10 Heaters resenerators coolers Number of heater and cooler tube FOWS _____ 5.00 Radial length of heated half pin tubes: Cm _____ ID of heater tubes: Cm _____ . 20 . 40 Square pitch for heater or cooler tube array. CM_ Seal length: CM _____ . 50 20.00 Diameter of wire in matrix, MICRONS _____ POROSITY OF MATRIX, PER CENT _____ 70.00 Ratio of flow area to face area in resenerator ____ 6.00 Radial length of cooled hair pin tubes, Cm_____ 5.00 1D of cooler tubes: CM 20 Linear senerator parameters: Specific weight of alternator at 60 Hz, kg/kH(e)_ 8.00 90 00 Efficiency of the alternatory per cent _____ Martini Ens. Isothermal Analysis of FPSE-Alternator Power System PONER WATTS HEAT REQUIREMENT. WATTS Thermo, P. Pist. 122949.80 Thermodynamic 367538.50 Thermo, Dispi. 51685.23 Adiabatic Corr. 16936.30 Adiabatic Corr. -21899.48 Reneat loss **66392,90** 17166.66 Shuttle loss Heater flow loss 49.60 20587.43 31942.90 Resenttion toss Appendix 1055 Temp.swing loss Cyl. Wali Cond. 13796.56 250.18 Cooler flow loss DSP. Dr. Pwr. Reamt. -147.31 193.36 Net Ensine Power 101050.30 Dispicr Wall Cond. 4603.93 Alternator Loss NET ELECT. POWER Resen. Wall Cond. 10105.03 5515.14 Cyl. Bas Cond. 91092.57 2.18 DVERALL EFFICIENCY. ¥ 19.26 Resen. Mtx. Cond. 6945.35 Rad. Inside Dispi. Flow Fric. Credit . 00 Temperatures, K OD Gas Heater 1602.02 -274E0.37 Total Heat to Ens. Effect. Hot Gas 1566.52 472909.90 Dispi.Dr. Heat Ensine Coolins 822.19 Effect. Cold Gas -147.31 799.72 371712.30 OD Gas Cooler Weishts, Ks. Alternator cooling 10105.03 Hos Cylinder 39.22 Lengths, Cm ; 15.3E Ensine 32.E5 Heater tubes 1.55 6.16 Res. Hali Alternator 82.71 Bounce Space 6.75 Res. Matrix . 21 TOTAL LENGTH 122.11 EVI. HAIL 30.65 Displacer Dlameters: cm . 75 2. 67 Dispi Drive Rod Ens. Cri. OD 25.02 OD Ann.Resen. Displ. D. R. Support 30.30 Cooler Tubes 1.24 Wall Thicknesses, cm 23.93 Hot cylinder 2.51 Cold Cylinder . 40 TOTAL WEIGHT 161.89 Cold cylinder Alter. cylinder 303.62 . 40 Number of heater tubes 2358 . 05 Heater

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ł

i.

INDEPENDENT IN	PUT VALUES	OF FOOR QU	MENT
Prostani control paramet	ersi		
Case number define	d by opera	301	10
Graphic option 8=n	of 1-yes.		1
Conv. criteria (Fr	ac. change	In Integrais.)	. 005000
Number of time ste	PS PET CYC		24
Ensine operating condit	ionsl		
Average Norking ta		bar	488.88
Metal temperature	of was hea	ter, K	1600.00
Hetal temperature	of 945 COO	ler. K	900.00
Pressure Vessel Te		and b space. K	500.00
Freibe ander Mit	MP. UT MIC	and d. spacer n	240.00
Children dimberiose and			
Cylinder dimensions and	I HIALETIAIS		1 60
Discondisplacer	and power	PISCON SCIONE: CH	20 00
Dialeser of power	PISTON AND	ensine criss cm	20,00
UAP between displa	icer and cy	linder Wall+ CM	.10
Displacer rod diam	leter, cm _		7.60
Number of fadiatic	on shields	in displacer,	10
Heaters resenerators co	poleri		
Number of heater a	and cooler	tube rows	15
Radial length of b	heated half	· Pin tubes: Cm	5.00
1D of heater tubes	i. CM		. 20
Square pitch for h	heater or d	COLET TUDE AFTAY: CM_	. 48
Seal length, cm			. 50
Dianeter of wire	IN MATTIX.	MICRONS	28.88
Porosity of matrix	PER CENT	ſ	70.00
Ratio of flow area	TO TACE A	rea in resenerator	6.00
Radial length of d	cooled bail	BID Tubes. Cm	5.00
			20
	91 LA		
		A ST ED HE. HEIVELA	9 88
Specific weight of		57 45 50 MET KE/KWLE/_	5.00
Efficiency of the	AITEFNATO	I PET CENT	30.00
Martini Ens. Isotherma	I Analysis	of FPSE-Alternator Po	wer System
Martini Eng. Isotherma POWER, WATTS	Analysis	OT FPSE-AISOTASOT PO HEAT REQUIREMENT, WAT	wer System TS 7/0500 00
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist.	93492.31	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	wer System TS 349508.00
Martini Ens. Isotherma POWER: WATTS Thermo. P. Pist. Thermo. Dispi.	Analysis 93492.31 50469.00	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr.	wer System TS 349508.00 15207.52
Martini Ens. Isotherma POWER: WATTS Thermo. P. Pist. Thermo. Dispi. Adiabatic Corr.	93492.31 50469.00 -25819.71	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055	wer Bystem TS 349508.00 15287.58 53506.61
Martini Ens. Isotherma PDWER, WATTS Thermo. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss	93492.31 50469.00 -25819.71 15618.66	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reneat loss Shuttle loss	wer System TS 349508.00 15287.58 53506.61 44.87
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Dispi. Adiabatic Corr. Heater flow loss Resen.flow loss	Analysis 93492.31 50469.00 ~25819.71 15618.66 21071.83	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss	wer System TS 349508.00 15287.58 53506.61 44.87 23008.89
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss	Analysis 93492.31 50459.00 -25819.71 15618.66 21071.83 13764.10	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swint loss	wer System TS 349508.00 15287.58 53506.61 44.87 23008.89 182.10
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt.	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond.	wer System TS 349508.00 15287.58 53506.61 44.87 23008.89 182.10 170.49
Martini Ens. Isotherma PDWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond.	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45
Martini Ens. Isotherma PDWER: WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond.	wer System TS 349508.00 15207.50 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Dooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Aiternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond.	wer Bystem TS 349508.00 15287.58 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. % Temperatures. K	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Displ.	wer System TS 349508.00 15297.58 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K OD Das Heater	Analysis 93492.31 50459.00 -25019.71 15518.55 21071.83 13764.10 -15.01 57672.60 6767.26 60921.35 14.12 1601.64	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit	wer System TS 349508.00 15207.58 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6202.33 .00 -26154.58
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6282.33 .00 -26154.58 431388.60
Martini Ens. Isotherma PDWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. % Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	wer System TS 349508.00 15207.50 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6282.33 .00 -26154.58 431308.60 -16.01
Martini Ens. Isotherma PDWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Tenperatures. K DD Das Heater Effect. Hot Gas Effect. Cold Gas DD Das Cooler	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Gredit Totai Heat to Ens. Dispi.Dr. Heat Entre Cooling	wer System TS 349508.00 15207.50 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431388.60 -16.01 363700.00
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow 1088 Resen.flow 1088 Cooler flow 1088 DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. * Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. NS	93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Reten. Wall Cond. Cyl. Gas Cond. Reten. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling	wer System TS 349508.00 15207.56 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431308.60 -16.01 363700.00 E7E7.26
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. % Temperatures. K DD Das Heater Effect. Coid Gas GD Das Cooler Weights. NS Hos Crilnder	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 699.73 39.22	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling	wer System TS 349508.00 15297.58 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431388.60 -16.01 363700.00 E767.26
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K OD Das Heater Effect. Hot Gas Effect. Coid Gas OD Das Cooler Weights. NS Hot Criinder Heater Tubes	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73 39.22 15.36	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mtw. Cond. Resen. Mtw. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths, Cm	wer System TS 349508.00 15207.5E 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E202.33 .00 -26154.58 431388.E0 -16.01 363740.00 E767.26
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights. Ky Hot Criinder Heater tubes Res. Wall	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Engine Cooling Alternator Alternator	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6292.33 .00 -26154.58 431388.60 -16.01 363700.00 6767.26 32.65 55.39
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Bas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Malli Res. Malli	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73 39.22 15.36 1.55 6.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Engine Cooling Alternator cooling Lengths, cm Engine Alternator Bounce Space	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 0 -26154.58 431308.60 -16.01 363700.00 E767.26 32.65 55.39 6.75
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas OD Gas Cooler Weights. NS Hot Criinder Heater tubes Res. Mali Res. Matrix Cri. Nati	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73 39.22 15.36 1.53 6.16 21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH	wer System TS 349508.00 15207.50 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6282.33 .00 -26154.58 431308.60 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. % Temperatures. K DD Gas Heater Effect. Hot Gas CD Gas Cooler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 3.39	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. cm Ensine Alternator Bounce Space TOTAL LENGTH	wer System TS 349508.00 15297.56 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431308.60 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. % Temperatures. K OD Das Heater Effect. Coid Gas OD Das Cooler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displacer	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 35.39 27	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths. cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. cm	wer System TS 349508.00 15297.5E 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431388.E0 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. × Temperatures. K DD Das Heater Effect. Hot Gas Effect. Coid Gas OD Das Cooler Weights. Ng Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall Displacer Displ. Dr. Support	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. C	wer System TS 349508.00 15297.5E 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431388.E0 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas Effect. Cold Gas DD Das Cooler Weights. Ky Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod DISPL. R. Support	Analysis 93492.31 50469.00 -25019.71 15518.65 21071.83 13764.10 -15.01 57672.60 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67 1.26	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mail Cond. Resen. Mail Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Engine Cooling Alternator Cooling Lengths. Cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens. Cyl. DD OD Ann.Resen.	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431388.E0 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas Effect. Cold Gas OD Das Cooler Weights. Ng Hot Criinder Heater tubes Res. Wall Res. Matrik Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	Analysis 93492.31 50469.00 -25819.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67 1.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Engine Cooling Alternator cooling Lengths. cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens. Cyl. DD OD Ann. Resen. Wall Thicknesses. Cm	wer System TS 349508.00 15207.52 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6282.33 0 -26154.58 431388.60 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30 2.51
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSD. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas Effect. Cold Gas DD Das Cooler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D. R. Support Cooler Tubes Cold Criinder	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.64 1568.73 922.57 699.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67 1.24 18.09	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Resen. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Cooling Alternator cooling Lengths. Cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl.DD OD Ann.Resen. Wall Thicknesses. Cm	wer System TS 349508.00 15207.50 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 6282.33 00 -26154.58 431308.60 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30 2.51
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSD. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K DD Das Heater Effect. Hot Gas CD Das Coler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D. R. Support Coler Tubes Cold Criinder Alternator	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 6767.26 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67 1.24 18.09 121.81 17.10 17.10 17.10 17.10 17.10 17.10 17.10 17.10 17.10 17.10 17.10 17.10 18.10 18.10 19.10	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mix Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.DD OD Ann.Resen. Wall Thicknesses. cm	wer System TS 349508.00 15297.56 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E282.33 .00 -26154.58 431308.60 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30 2.51 .40
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSO. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Coid Gas OD Gas Cooler Weights. NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Dr. Support Cooler Tubes Coid Criinder Alternator TOTAL WEIGHT	Analysis 93492.31 50469.00 -25019.71 15618.66 21071.83 13764.10 -16.01 67672.60 67672.60 60921.35 14.12 1601.84 1568.73 922.57 899.73 39.22 15.36 1.55 6.16 .21 35.39 .77 2.67 1.24 18.09 121.81 242.47	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths. cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl. DD OD Ann.Resen. Hail Thicknesses. cm Hot cylinder Coid cylinder	wer System TS 349508.00 15297.5E 53506.61 44.87 23008.89 182.10 170.49 4687.45 4862.90 1.97 E202.33 .00 -26154.58 431308.E0 -16.01 363700.00 E767.26 32.65 55.39 6.75 94.79 25.02 30.30 2.51 .40 .40

INDEPENDENT I	NPUT VALUES	i	
Provrais CONTROL Parame	tęrs:		
Case number define	ed by opera		13
Graphic option 8=	no, 1=yes		1
Conv. criteria (F	rac. chanse	in integrals.)	. 885888
NUMBER OF TIME ST	PPS Per Cyc	10	24
Ensine operating condi-	tionsi		
Average working g	as pressure	• bat	400.00
Metal tenperature	of sas hea	ter, Kassassassassas	1500.00
Metal temperature	of sas coo	ler: Kananananananan	900.00
Pressure vessel to	emp. of alt	. and b. space: K	500.00
Ensine speeds Hz_	*********		248.88
Cylinder dimensions and	d materials	i	
Maximum displacer	arid power	Piston stroke: Cm	1.50
Diameter of power	Piston and	ensine cyl., cm	20.00
Gap between displ	acer and Cy	linder walls cm	. 10
Displacer rod dia	Neteri CM _		7.70
Number of radiati	on shields	in displacer,	10
Heater, resenerator, c	ooleri		
Number of heater	and Cooler	Sube rows	15
Radial length of	heated half	PIN Subes: Cm	5.00
ID of heater tube	51 CAL		. 20
Square Pitch for	heater or o	COLET Sube AFRAY, Cm.	. 48
Seal length Cm -			. 50
Diameter of wire	in matrix,	MICRONS	20.00
Porosity of matri	K. PER CENT		78.88
Ratio of tion are	a to face a	TEA ID TEREDETALOT	6.00
Radial length of	CODIED hall	PID SUDES: CM	5.00
ID of cooler tube	51 CM		. 20
Linear senerator param	etersi		
Specific weight o	f alternato	or at 60 Hz; kg/kW(e)_	8.00
Eddicioney of the			60 00
CTICIENCS OF the	all set that Of	n per cent mamaanaan	30.00
Martini Ens. Isotherma	I Analysis	of FPSE-Alternator Po	wer System
Martini Ens. Isotherma POWER, WATTS	I Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	Wer System TS
Martini Ens. Isotherma POWER, WATIS Thermo. P. Pist.	1 Analysis 76365.90	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	50.00 wer System TS 339592.10
Martini Ens. Isotherma POWER, WATIS Thermo, P. Pist. Thermo, Displ.	1 Analysis 76365.90 50350.87	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr.	50.00 wer System TS 339692.10 14323.94
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr.	1 Analysis 76365.90 50350.87 -29025.59	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss	wer System TS 339692.10 14323.94 49374.72
Martini Ens. Isotherma PDWER, WATTS Inermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss	Analysis 76365.90 50350.87 -29025.59 13706.00	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss	S. 20 wer System TS 339692. 10 14323. 94 49374. 72 37. 61
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss	Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Tabe subs loss	S5. 55 Wer System TS 14323, 94 49374, 72 37. 61 20016, 69
Martini Ens. Isotherma PDWER, WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Don Dr. Par Reput	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swint loss	S. 22 Wer System TS 14323, 94 49374, 72 37, 61 20016, 69 176, 75
Martini Ens. Isotherma PONER, WATTS Thermo, P. Pist. Thermo, Displ. Adlabatic Corr. Heater flow loss Resentflow loss Doner flow loss Dsp. Dr. Pwr. Regat. Net Engine Power	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swint loss Cyl. Wall Cond. Displar Wall Cond.	SU. UU Wer System TS 339592. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39
Martini Ens. Isotherma PDNER, WATIS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmit. Net Ensine Power Alternator Loss	Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Reser, Wall Cond.	SC. CC wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34
Martini Ens. Isotherma PDNER, WATIS Inermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Doper flow loss Dsp. Dr. Pwr. Regat. Net Ensine Power Alternator Loss MET ELECT. POWER	Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	S5. 55 Wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65
Martini Ens. Isotherma PDNER, WATTS Inermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Doper flow loss Dsp. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Max. Cond.	S5. 55 Wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86
Martini Ens. Isotherma POWER, WATTS Inermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Dopler flow loss Dsp. Dr. Pwr. Regmit. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X	I Analysis 76365.90 50350.87 -29025.59 13706.00 20267.86 14513.15 151.27 47340.31 4734.03 42435.01 10.35	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond.	SC. 22 wer System TS 339592. 10 14323. 94 49374. 72 37.61 20016.69 176. 75 145. 39 3461. 77 3419. 34 1.65 5266. 86
Martini Ens. Isotherma PDWER, WATTS Inermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regalt. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit	SC. CD wer System TS 339692. 10 14323. 94 49374. 72 37.61 20016.69 176. 75 145. 39 3461. 77 3419. 34 1.65 5266. 86 .00 -25839. 93
Martini Ens. Isotherma POWER, WATTS Inermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Hot Gas	I Analysis 76365.90 50350.87 -29025.59 13706.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Matx. Cond. Resen. Max. Cond. Resen. Max. Cond. Total Heat to Fns.	SC. CD wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 419076. 90
Martini Ens. Isotherma PDWER, WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Dooler flow loss Dooler flow loss Dooler flow loss Dooler flow loss Dooler flow loss Dooler flow loss Met Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas	<pre>I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22</pre>	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Gyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi. Maat	S. 20 wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27
Martini Ens. Isotherma PDWER. WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dobe Dr. Pwr. Regait. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures. K DD Gas Heater Effect. Coid Gas DD Gas Cooler	<pre>! Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73</pre>	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensure Cooling	S. 20 Wer System TS 339592. 10 14323. 94 49374. 72 37. 51 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362007. 90
Martini Ens. Isotherma PDWER, WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Regat. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Coid Gas OD Gas Cooler Watghts, Ks	Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 18.35 1501.41 1470.93 922.22 899.73	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Grite 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling	Se. 80 wer System TS 339592. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03
Martini Ens. Isotherma PDWER, WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Regat. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, % Tenperatures, K DD Gas Heater Effect. Hot Gas OD Gas Cooler Weights, ks Hot Cylinder	<pre>1 Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 4734.03 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 ; 31.24</pre>	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	Se. 80 wer System TS 339592. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03
Martini Ens. Isotherma POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Cold Gas DD Gas Cooler Weights, KS Hot Cylinder Weater Tubes	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 47340.31 4734.03 42455.01 18.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	S. 22 wer System TS 339692.10 14323.94 49374.72 37.61 20016.69 176.75 145.39 3461.77 3419.34 1.65 5266.86 .00 -25839.93 410076.90 151.27 362087.90 4734.03
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Dsp. Dr. Pwr. Regmin. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Coid Gas OD Gas Cooler Weights, ky Hot Cylinder Heater tubes Res. Hall	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 18.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	Sc. 22 wer System TS 339692. 10 14323. 94 49374. 72 37.61 20016.69 176. 75 145. 39 3461. 77 3419. 34 1.65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03 32.65 38.75
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Doler flow loss Dsp. Dr. Pwr. Regat. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, ks Hot Cylinder Heater tubes Res. Mail Res. Mail	I Analysis 76365.90 50350.87 -29025.99 15706.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 ; 31.24 12.23 1.28 E.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths, CM Ensine Alternator Bounce Space	Sc. 22 wer System TS 339692. 10 14323. 94 49374. 72 37.61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1.65 5266. 86 -25839. 93 410076. 90 151. 27 362887. 90 4734. 03 32.65 38.75 5.75
Martini Ens. Isotherma PDWER, WATTS Inermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Dos. Dr. Pwr. Regalt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Matrix Cyl. Wall	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 18.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 E.16 .21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Grite 1055 Temp.swing 1055 Crit. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Crit. Gas Cond. Resen. Mit Cond. Resen. Mit Cond. Length Mit Cond. Resen. Mit Cond. Length Mit Cond. Resen. Mit Cond. Mit Cond. Re	Sc. 22 wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 -25839. 93 410076. 90 151. 27 362887. 90 4734. 03 32. 65 38. 75 6. 75 78. 15
Martini Ens. Isotherma POWER, WATTS Inermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dop. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 E.16 .21 38.65	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wali Cond. Dispicr Wali Cond. Dispicr Wali Cond. Cyl. Gas Cond. Resen. Mali Cond. Cyl. Gas Cond. Resen. Mix. C	Se. 80 wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362887. 90 4734. 03 32. 65 38. 75 5. 75 78. 15
Martini Ens. Isotherma POWER, WATTS Inermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Doler flow loss Dsp. Dr. Pwr.Regait. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mail Res. Matrix Cyl. Wall Displacer Displ.Drive Rod	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 E.16 .21 38.65 .79	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttie 1055 Shuttie 1055 Cyl. Wali Cond. Dispicr Wali Cond. Dispicr Wali Cond. Cyl. Gas Cond. Resen. Mali Cond. Cyl. Gas Cond. Resen. Max. Cond. Resen. Max. Cond. Resen. Max. Cond. Resen. Max. Cond. Resen. Max. Cond. Bispicr Wali Cond. Cyl. Gas Cond. Resen. Max. Cond. Resen. Resen. R	Se. 80 wer System TS 339692.10 14323.94 49374.72 37.61 20016.69 176.75 3461.77 3419.34 1.65 5266.86 .00 -25839.93 410076.90 151.27 362087.90 4734.03 32.65 38.75 6.75 78.15 24.00
Martini Ens. Isotherma POWER, WATTS Inermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dop. Dr. Pwr. Regait. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mail Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 E.16 .21 30.65 .79 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Grite 1055 Crite 10555 Crite 10555 Crite 10555 Crite 10555 Crite 1	Sc. 82 wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03 32. 65 38. 75 6. 75 78. 15 24. 00 30. 28
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dop. Dr. Pwr. Regait. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Coid Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mail Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 E.16 .21 30.65 .79 2.67 1.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Dispicr Cond. Colling Lengths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens. Cyl. OD OD Ann.Resen. Wall Thicknesses. Cm	S. S
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Dsp. Dr. Pwr. Regait. Net Ensine Power Alternator Loss WET ELECT. POWER DVERALL EFFICIENCY. X Tenperatures. K DD Gas Heater Effect. Cold Gas OD Gas Cooler Weishts. Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displ. Drive Rod Displ. D. R. Support Cooler Tubes Cold Cylinder	I Analysis 76365.90 50350.87 -29025.59 1570E.00 20267.86 14513.15 151.27 47340.31 4734.03 42455.01 10.35 1501.41 1470.93 922.22 899.73 ; 31.24 12.23 1.28 E.16 .21 30.65 .79 2.67 1.24 14.54	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Grief 1055 Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Displ.Dr. Heat Ensine Cooling Alternator cooling Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. Cm	Sc. 82 wer System TS 339692. 10 14323. 94 49374. 72 37. 61 20016. 69 176. 75 145. 39 3461. 77 3419. 34 1. 65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03 32. 65 38. 75 5. 75 78. 15 24. 00 30. 28 2. 00
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Doler flow loss Dsp. Dr. Pwr. Regmin. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, ks Hot Cylinder Heater tubes Res. Mail Res. Mail Res. Mail Res. Mail Displacer Displ, Drive Rod Displ, D. R. Support Cooler Tubes Cold Cylinder Alternator	I Analysis 76365.90 50350.87 -29025.99 15706.00 20267.86 14513.15 151.27 47340.31 47340.31 4734.03 42455.01 18.35 1501.41 1470.93 922.22 899.73 i 31.24 12.23 1.28 6.16 .21 38.65 .79 2.67 1.24 14.54 85.21	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Miternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. cm	Se. 22 wer System TS 339692. 10 14323. 94 49374. 72 37.61 20016.69 176. 75 145. 39 3461. 77 3419. 34 1.65 5266. 86 .00 -25839. 93 410076. 90 151. 27 362087. 90 4734. 03 32. 65 38. 75 6. 75 78. 15 24. 00 30. 28 2. 00 .40
Martini Ens. Isotherma PDWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Doler flow loss Dsp. Dr. Pwr. Requit. Net Ensine Power Alternator Loss WET ELECT. POWER OVERALL EFFICIENCY, X Tenperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D.R. Support Cooler Tubes Cold Cylinder Alternator TOTAL WEIGHT	I Analysis 76365.90 50350.87 -29025.59 15706.00 20267.86 14513.15 151.27 47340.31 4734.03 42435.01 18.35 1501.41 1470.93 922.22 899.73 ; 31.24 12.23 1.28 6.16 .21 30.65 .79 2.67 1.24 14.54 85.21 186.22	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Gri. Vali Cond. Dispicr Wali Cond. Dispicr Wali Cond. Cri. Gas Cond. Resen. Wali Cond. Cri. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Alternator Cooling Lensths, CM Ensine Alternator Bounce Space TOTAL LENGTH Diameters, CM Ens. Cri. OD OD Ann.Resen. Wall Thicknesses, CM Hot criinder Alter. criinder	S. S. S.

INDEPENDENT IN	NPUT VALUES	5	
Provian CONTROL Paramet	lers:		
Case number define	rd by opera	101,	15
Graphic option 0=r	no, 'leres		1
Conv. criteria (Fi	rac. Chanse	· in intestals.)	.005000
NUNDER OF LIMP STO	PPS PET CYC	18,	24
Ensine operating condit	LIONSI		
Averase working sa	is pressure	· • •	400.00
Metal tenperature	of sas hea	Ser: Kaumananananan	1500.00
Metal temperature	01 945 000	leri Kawasanananan	B00.00
Pressure vessel te	emp. of alt	. and b. space, K	500.00
Erisine speeds Hz			240.00
Cylinder dimensions and	i materials	•	
Maximum displacer	alid power	PISTON STFOKe: CM	1.50
Dianeter of power	Piston and	ensine cyl., Cm	20.00
Gap between displa	icer and cr	linder walls cm	. 10
Dispiacer rod diam	eter: cm _		7.60
Number of radiatio	on shleids	in displacer:	10
Heater, resenerator, co	poleri		
Number Of heater a	And COOLER	LUDE TOWS	15
Radial length of h	heated hair	PIN TUDES: CM	5.00
ID of heater tubes	6) CM		.20
Square pitch for H	heater or c	COLET SUBE AFTAY: CM_	. 40
Seal length; Cm			.50
Diameter of wire I	D MASTINI	MICRONS	20.00
Porosity of matrix	G PER CENT		78.00
RACIO OT TIDW AFRA	L TO TACE A	rea in resenerator	5.00
	Colled hair	PIR CUBESI CM.	5.00
Linear severator parane	sterel	دی چہ بی بی بی میں دین جے من خاندی کر بی ہو جو بی بی دو بی بی دو دی چہ بی بی بی بی دی دی دی دی من بی دو اور دی بی دو بی بی دو بی دو دی	. 20
Specific weight of	l alternato	T AT ER HT. KA/KH(A)	8 02
Efficiency of the	Alternator	· Der Cent	90.00
			20100
Martini Eng. Isothermal	Analysis	of EPSE-Alternator Po	WAT SYSTAM
Martini Eng. Isothermal PONER, NATIS	Analysis	OF FPSE-Alternator Po	wer System TS
Martini Eng. Isothermal PONER, NATIS Thermo, P. Pist.	105861.90	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	wer System TS 357481 40
Martini Eng. Isothermal PONER, WATIS Thermo, P. Pist. Thermo, Disel.	Analysis 105861.90 51620.38	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr.	wer System TS 357481.40 16015.05
Martini Eng. Isothermal PONER: MATIS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr.	Analysis 105861.90 51620.38 -24398.17	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055	wer System TS 357481.40 16015.05 52109.37
Martini Eng. Isothermal PONER: MATIS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss	Analysis 105861.90 51620.38 -24398.17 17283.33	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss	wer System TS 357481.40 16015.05 62109.37 42.43
Martini Ens. Isothermal PONER, WATIS Thermo. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resen. flow loss	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss	wer System TS 357481.40 16015.05 52109.37 42.43 28545.00
Martini Ens. Isothermal PONER, WATIS Thermo. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss	Analysis 105861.90 51620.38 -24398.17 17263.33 19778.89 14561.32	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31
Martini Ens. Isothermal PONER, WATIS Thermo. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Regmt.	Analysis 105861.90 21620.38 -24398.17 17283.33 19778.89 14581.32 25.73	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond.	wer System TS 357481.40 16013.05 62109.37 42.43 28546.00 246.31 168.31
Martini Ens. Isothermail PONER, WATIS Thermo. P. Pist. Thermo. Disel. Adlabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power	Analysis 105861.90 21620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond.	wer System TS 357481.40 16015.05 52109.37 42.43 28545.00 245.31 168.31 3449.42
Martini Ens. Isothermail PONER, WATIS Thermo. Disel. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14561.32 25.73 61463.72 81463.73	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttie loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displor Wall Cond. Resen. Wall Cond.	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40
Martini Ens. Isothermail PONER, WATIS Thermo. Displ. Adlabatic Corr. Heater flow loss Resentflow loss Dooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81463.72 81463.72	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86
Martini Ens. Isothermail PONER, WATIS Thermo. Disel. Adlabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, ¥	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81463.72 16.26	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond.	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67
Martini Ens. Isothermail PONER, WATTS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 8146.37 73291.62 16.26	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi.	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr. Haater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, # Temperatures, K OD Gas Heater	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 8146.37 73291.62 16.26	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Displor Wall Cond. Resen. Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77
Martini Ens. Isothermail PONER, WATIS Thermio. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, # Temperatures, K OD Gas Heater Effect. Hot Gas	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 8146.37 73291.62 16.26 1501.55 1468.80	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mix, Cond. Resen. Mix, Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	wer System TS 357481.40 16015.05 52109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40
Martini Ens. Isothermail PONER, WATTS Thermio. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Das	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81465.37 73291.62 16.26 1501.55 1468.80 821.75	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	wer System TS 357481.40 16015.05 52109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73
Martini Ens. Isotherman PONER, WATIS Thermo. Displ. Adlabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: * Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Bas OD Gas Cooler	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81465.37 73291.62 16.26 1501.55 1468.80 821.75 799.72	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Displor Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40
Martini Ens. Isotherman PONER, WATIS Thermo. Displ. Adlabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Das OD Gas Cooler Weights, Ks	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 1463.62 16.26 1501.55 1468.80 821.75 799.72	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37
Martini Ens. Isothermail PONER, WATTS Thermo. Displ. Adlabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Das OD Gas Cooler Weights, Ks Hot Cylinder	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 81463.72 16.26 1501.55 1468.80 821.75 799.72 31.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Cvi. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 B146.37
Martini Ens. Isothermail PONER, WATIS Thermo. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, % Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Bas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81463.72 81465.37 73291.62 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cvi. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermio. Dispi. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Ks Hot Criinder Heater tubes Res. Wall	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 8146.37 73291.62 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23 1.28	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wali Cond. Dispicr Wall Cond. Cri. Gas Cond. Resen. Mail Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Bas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix	Anaiysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 81463.72 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23 1.28 6.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Cri. Wall Cond. Dispicr Wall Cond. Cri. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Bas Cond. Resen. Mix. Cond. Resen. C	wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermo. Dispi. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Bas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall	Anaiysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 81463.72 16.26 1501.55 1468.80 821.75 799.72 31.24 12.23 1.28 6.16 .21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Cri. Bas Cond. Resen. Matl Cond. Cri. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Bad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENOTH	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.48
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermo. Dispi. Adiabatic Corr. Haater flow loss Resentiow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Bas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Anaiysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 1468.80 821.75 799.72 31.24 12.23 1.28 6.16 .21 26.38	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cvi. Bas Cond. Resen. Mtx. Cond. Bad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.48
Martini Ens. Isothermail PONER, WATTS Thermio. P. Pist. Thermo. Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Aiternator Loss NET ELECT. POWER OVERALL EFFICIENCY, # Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Bas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mail Res. Matrix Cyl. Wall Displacer Displ. Drive Rod	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 1468.80 821.75 799.72 31.24 12.23 1.28 6.16 .21 26.38 .77	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Cond. Enside Cond. Resen. Cond. Lengths. Cond. Diameters. Cond. Diameters. Cond. Cond. Diameters. Cond.	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.48 24.00
Martini Ens. Isothermail PONER, WATTS Thermio. P. Pist. Thermio. Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, * Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Das OD Gas Cooler Weights, Hs Hot Cylinder Heater tubes Res. Hall Res. Hatrix Cyl. Hall Displacer Displ. Drive Rod Displ. D. R. Support	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81463.72 1463.72 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23 1.28 6.16 .21 26.38 .77 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.Swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Cred. Displ. Cr. Lew. Displ. Cr. Lew	Wer System TS 357481.40 16015.05 52109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.48 24.02 30.28
Martini Ens. Isothermail PONER, WATTS Thermo. Displ. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 8146.37 73291.62 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23 1.28 6.16 .21 26.38 .77 2.67 1.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl.OD OD Ann.Resen.	Wer System TS 357481.40 16015.05 52109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.46 24.00 30.26
Martini Ens. Isothermail PONER, WATTS Thermo. Displ. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: * Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas OD Gas Cooler Weights. Ks Hot Criinder Heater tubes Res. Matrix Cyl. Wall Displacer Displ. D. R. Support Cooler Tubes Coid Criinder	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 61463.72 81463.72 14581.55 1468.80 821.75 799.72 31.24 1.28 6.16 .21 26.38 .77 2.67 1.24 20.59	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. CM Ensine Alternator Bounce Space TOTAL LENGTH Diameters. CM Ens. Cyl. OD OD Ann. Resen. Wall Thicknesses. Cm	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.48 24.00 30.28 2.00
Martini Ens. Isothermail PONER, WATTS Thermo. Displ. Adlabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, ¥ Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coid Criinder Alternator	Anaiysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 81463.72 8146.37 73291.62 16.26 1501.55 1468.80 821.75 799.72 31.24 ; 12.23 1.28 6.16 .21 26.38 .77 2.67 1.24 20.50 146.63	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Displer Wall Cond. Displer Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Lensths. CM Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl.OD OD Ann.Resen. Wall Thicknesses. Cm	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.42 24.00 30.22 2.00 .40
Martini Ens. Isothermail POWER, WATTS Thermio. P. Pist. Thermio. Dispi. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, # Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Das OD Gas Cooler Weights, MS Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Dispiacer Dispi. D. R. Support Cooler Tubes Cold Criinder Alternator TOTAL WEIGHT	Analysis 105861.90 51620.38 -24398.17 17283.33 19778.89 14581.32 25.73 81463.72 8146.37 73291.62 16.26 1501.55 1468.80 821.75 799.72 31.24 12.23 1.28 6.16 .21 26.38 .77 2.67 1.24 20.50 146.63 249.32	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mix Cond. Enside Dispi. Cond Space TOTAL LENGTH Diameters. Cm Ens. Cri. OD OD Ann. Resen. Wall Thicknesses. Cm Mot Criinder Aiter. Criinder	Wer System TS 357481.40 16015.05 62109.37 42.43 28546.00 246.31 168.31 3449.42 3958.40 1.86 5941.67 .00 -27172.77 450707.40 25.73 369349.40 8146.37 32.65 66.68 6.75 106.46 24.00 30.22 2.00 .40 .40

1

Ì

INDEPENDENT 1	INPUT VALUES	5	
Prostam control parane	tersi		
Case number detif	ed by opera	\$0f	16
Graphic option B	no, l=yes.		1
LONV. Criteria Ir	rac. change	r in integrais./	24
NUMBER OF TIME ST	LEPS PET CJU		24
	LIUNDI As oressure		408.08
Melai tenperatur	of sas her	ter, K	1508.08
Metal tenperatur	01 345 COG	oleri K	700.00
Pressure vessel	LEMP. Of All	L. and b. space, K	500.00
Ensine speed, Hz.			240.00
Cylinder dimensions an	nd materials	•	
Maximum displace	r and power	Piston stroke: CH	1.50
Dianeter Of Power	r piston and	d ensine cyl., CH	20.00
Gap between disp	lacer and ci	Vlinder Walls CH	10
UISPIACET TOD dia	Ameter: CM .		10
NUMBER OF RADIAL	COLECT		
Number of healer	and cooler	tube rows	15
Radial length of	heated hall	r pin tubes, CM	5.00
ID of heater tube	PS: CM		. 20
Square pitch for	heater or d	COOLET TUBE AFTAY: CM.	. 40
Seal length, cm .			. 50
Dianeter of wire	in matrix,	MICRONS	20.00
Porcisity of matri	IN PER CEN		70.00
HALLO OF TIDW AT	PA TO TACE A	area in resenerator	5 04
ID of coller tube	CUDIES NAII	DIN CODESI CHALLAN	. 20
Linear senerator para	neters:		
Specific weight (of alternato	or at 60 Hz; ks/kW(e)_	8.00
Efficiency of the	e alternatos	. Per cent	90.00
Martini Ens. Isotherma	ANALYSIS	of FPSE-Alternator Po	wer System
Martini Ens. Isotherm PONER, WATTS	a'i Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	wer System TS
Martini Ens. Isothermi PONER, WATIS Thermo, P. Pist.	a'l Analysis 138907.20	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	wer System TS 378170.20
Martini Ens. Isotherm PONER, WATIS Thermo, P. Pist. Thermo, Displ.	i Analysis 138907.20 53180.17	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr.	wer System TS 378170.20 17876.08
Martini Ens. Isotherma POWER, WATIS Thermo, P. Pist. Thermo, Dispi. Adiabatic Corr.	138907.20 53180.17 -19167.56	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055	wer System TS 378170.20 17076.08 78286.38
Martini Ens. Isotherma PONER, WATIS Thermo, P. Pist. Thermo, Dispi. Adiabatic Corr. Heater flow loss	138907.20 53180.17 -19187.56 19220.76	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1085	wer System TS 378170.20 17076.08 78286.38 46.71
Martini Ens. Isotherma PONER, WATTS Thermo, P. Pist. Thermo, Dispi. Adiabatic Corr. Heater flow loss Resen.flow loss	138907.20 53180.17 -19187.56 19220.76 19291.35	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055	wer System TS 378170.20 17876.08 78286.38 46.71 40414.66
Martini Ens. Isotherma PONER, WATTS Thermo, P. Pist. Thermo, Displ. Adlabatic Corr. Heater flow loss Resentflow loss Coler flow loss	138907.20 53180.17 -19187.56 19220.76 19291.35 14586.36	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp. Swins 1055	wer System TS 378170.20 17076.08 70286.38 46.71 40414.66 348.26
Martini Ens. Isotherma PONER. WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resentflow loss Coler flow loss DSP. Dr. Pwr. Reamt.	138907.20 53180.17 -19187.56 19220.76 19291.35 14586.36 -90.78	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swins 1055 Cyl. Wall Cond.	wer System TS 378170.20 17076.08 70286.38 46.71 40414.66 348.26 190.71
Martini Ens. Isotherma PONER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Coller flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alactor Loss	138907.20 53180.17 -19187.56 19220.76 19291.35 14586.36 -90.78 119719.60	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Appendix 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Bessen Wall Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485 15
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET FLECT. POWER	138907.20 53180.17 -19187.56 19220.76 19291.35 14586.36 -90.78 119719.60 19719.60	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Temp.swins 1055 Temp.swins 1055 Cyl. Wall Cond. Resen, Wall Cond. Cyl. Bas Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. *	138907.20 53180.17 -19167.36 19220.76 19291.35 14586.36 -90.78 119719.60 119719.60 107638.40 21.53	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Temp.swins 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cyl. Gas Cond. Resen, Mtw. Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures, K	138907.20 53180.17 -19187.56 19220.76 19291.35 14586.36 -90.78 119719.60 11971.96 107838.40 21.53	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Temp.swins 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cyl. Gas Cond. Resen, Mtx. Cond. Resen, Mtx. Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures, K OD Gas Heater	138907.20 53180.17 -19187.56 19291.35 14586.36 -90.78 11971.96 11971.96 107838.40 21.53 1501.72	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cyl. Gas Cond. Resen, MtH. Cond. Resen, MtH. Cond. Resen, MtH. Cond. Resen, MtH. Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44
Martini Ens. Isothermi POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adlabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas	138907.20 53180.17 -19187.56 19291.35 14586.36 -90.78 119719.60 11971.96 107838.40 21.53 1501.72 1466.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1035 Shuttie 1035 Temp.swing 1035 Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Regen. Mail Cond. Regen. Cond. Regen. Mail	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4483.16 2.05 6542.33 .00 -28866.44 500837.90
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adlabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	138907.20 53180.17 -19187.56 19291.35 14586.36 -90.78 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1035 Shuttie 1035 Temp.swing 1035 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mail Cond. Resen. Mix. Cond.	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. × Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler	138907.20 53180.7 -19167.56 19291.35 14586.36 -90.78 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 699.71	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Gooling	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.78 391027.50
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks	138907.20 53180.17 -19187.56 19291.35 14586.36 -90.78 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 899.71	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1035 Shuttle 1035 Temp.swins 1035 Temp.swins 1035 Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Resen, Wall Cond. Resen, Mil Cond. Resen, M	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.78 391027.50 11971.96
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ms Hot Cylinder	138907.20 53180.17 -19187.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 899.71 31.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Resen, Mail Cond. Resen, Mil Cond. Resen,	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.78 391027.50 11971.96
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Bas Effect. Hot Bas Effect. Not Gas OD Gas Cooler Weights. WS Hot Cylinder Heater tubes	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 699.71 31.24 ; 12.23	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Cyi. Gas Cond. Resen, Mail Cond. Cyi. Gas Cond. Resen, Mix. Cond. Resen, Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28865.44 500837.90 -90.70 391027.50 11971.96
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Not Gas OD Gas Cooler Weights. Ms Hot Cylinder Heater tubes Res. Wall	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 699.71 31.24 ; 12.23 1.28 6 16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cri. Gas Cond. Resen, Mail Cond. Cri. Gas Cond. Resen, Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Goolins Alternator coolins Lensths. Cm	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28865.44 500837.90 -90.70 391027.50 11971.96 32.65 97.99 6.75
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Bas Effect. Hot Bas Effect. Hot Bas Effect. Cold Gas OD Gas Cooler Weights. Ms Hot Cylinder Heater tubes Res. Mali Mes. Matrix Cyl. Wall	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 699.71 31.24 ; 12.23 1.28 6.16 -21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cri. Gas Cond. Resen, Mix. Cond. Resen, Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Goolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENGTH	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28865.44 500837.90 -90.78 391027.50 11971.96 32.65 97.99 6.75
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Bas Effect. Cold Gas OD Gas Cooler Weights. Ws Hot Cylinder Heater tubes Res. Wall Net Intik Cyl. Wall Displacer	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 699.71 31.24 ; 12.23 1.28 6.16 .21 22.55	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Cri. Wali Cond. Dispicr Wali Cond. Dispicr Wali Cond. Cri. Bas Cond. Resen. Mil Cond. Cri. Bas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Totai Heat to Ens. Dispi.Dr. Heat Ensine Goolins Aiternator coolins Lensths. Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70 381027.50 11971.96 32.65 97.99 6.75 137.39
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Bas Effect. Cold Gas OD Gas Cooler Weishts. WS Hot Cylinder Heater tubes Res. Wall Net. Natrix Cyl. Wall Displacer Displ. Drive Rod	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 11971.960 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 ; 12.23 1.28 6.16 .21 22.55 .75	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Cri. Wali Cond. Dispicr Wali Cond. Dispicr Wali Cond. Resen. Wali Cond. Resen. Wali Cond. Resen. Wali Cond. Resen. Mix. Cond. Resen	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70 381027.50 11971.96 32.65 97.99 6.75 137.39
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Oas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Wall Kes. Matrix Cyl. Wall Displ. Dr.ve Rod Displ. D. R. Support	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 ; 12.23 1.28 6.16 .21 22.55 .75 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Das Cond. Resen. Mil Cond. Cri. Das Cond. Resen. Cri. Credit Dispi. Dr. Heat Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri. OD OD Ann. Resen.	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.00 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70 381027.50 11971.96 32.65 97.99 6.75 137.39
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Regamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. WS Hot Cylinder Heater tubes Res. Wall Nes. Natrix Cyl. Wall Displ.Dr.ve Rod Displ.D. R. Support Cooler Tubes	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 ; 12.23 1.28 6.16 .21 22.55 .75 2.67 1.24	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Ensine Aiternator Coolins Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl. OD DD Ann.Resen. Wall Thicknesses. Cm	wer System TS 378170.20 17076.08 70206.38 46.71 40414.66 348.26 190.71 3341.00 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70 381027.50 11971.96 32.65 97.99 6.75 137.39 24.00 30.28
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Regamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights: KS Hot Cylinder Heater tubes Res. Wall Kes. Matrix Cyl. Wall Displ.Drive Rod Displ.D. R. Support Cooler Tubes Cold Cylinder	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 ; 12.23 1.28 6.16 .21 22.55 .75 2.67 1.24 27.19	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Das Cond. Resen. Wall Cond. Cri. Das Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator coolins Lensths. Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri.OD DD Ann.Resen. Wall Thicknesses. Cm	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.78 381027.50 11971.96 32.65 97.99 6.75 137.39 24.00 38.28 2.00
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Coid Gas OD Gas Cooler Weights: KS Hot Cylinder Heater tubes Res. Wall Kes. Matrix Cyl. Wall Displ.Drive Rod Displ.D. R. Support Cooler Tubes Coid Cylinder Alternator	138907.20 53180.17 -19167.56 19291.35 14586.35 -90.78 119719.60 119719.60 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 : 12.23 1.28 6.16 .21 22.55 .75 2.67 1.24 27.19 215.50	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttie 1055 Temp.swins 1055 Cri. Wali Cond. Dispicr Wali Cond. Resen. Wali Cond. Cri Dispicr Cond. Cold Cylinder Cold Cylinder	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.70 381027.50 11971.96 32.65 97.99 6.75 137.39 24.00 30.28 2.00 .40
Martini Ens. Isothermi POWER. WATTS Thermo. P. Pist. Thermo. DISPI. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas OD Gas Coler Weishts. WS Hot Cylinder Heater tubes Res. Wall Mes. Natrix Cyl. Wall Dispiacer Dispi. D. R. Support Coler Tubes Cold Cylinder Alternator TOTAL WEIGHT	138907.20 53180.17 -19167.56 19291.35 14586.36 -90.78 11971.960 11971.96 107838.40 21.53 1501.72 1466.24 721.48 E99.71 31.24 ; 12.23 1.28 6.16 .21 22.55 .75 2.67 1.24 27.19 215.50 321.03	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttie 1055 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Das Cond. Resen. Wall Cond. Cyl. Das Cond. Resen. Mth. Cond. Miternator Colling Alternator Colling Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. Cm Hot cylinder Alter. Cylinder	wer System TS 378170.20 17076.08 78286.38 46.71 40414.66 348.26 190.71 3341.80 4485.16 2.05 6542.33 .00 -28866.44 500837.90 -90.76 381027.50 11971.96 32.65 97.99 6.75 137.39 24.00 30.28 2.08 .40 .40

INDEPENDENT H	NPUT VALUES		
Prostani control Paramet	lersi		
Case number define	ed by Opera	101	17
Graphic option 0+	no, leyes,_		1
Conv. criteria (F	rac. chanse	in integrals.)	. 005000
NUMBER OF TIME ST	eps pet cyc		24
Ensine operating condi-	tionsi		
Averase working s	AS Pressure	ti bafawamawawawawawa 	400.00
Hatal temperature	OT BAS NEA	ter K	1300.00
Proceura voscal a			500.00
Ensine cood. My	EMP. OT ALL	. and D. Spaces N	266.60
Cylinder dimensions an	d natorial		240.00
Maximum displacer	And Roser	PISTON STroke, cm	1.50
Dianeset of power	PISTOD ANA		20.00
Gap between displ	acer and co	LINGER NALLS CH	. 10
Displacer rod dia	NELETI CM .		7.40
NUMBER OF FACIATI	On Shields	in displacer,	10
Heaters resenerators c	ooleri	<u> </u>	
Number of heater	and cooler	tube rows	15
Radial length of	heated half	r pin tubes, cm	5.00
ID of neater tube	51 CH		.20
Square pitch for	heater or (cooler tube array, cm_	. 40
Seal length: CM _			. 50
Dianeter of wire	in matrix.	MICRONS	20.00
Porosity of matri	NI PER CEN	「	70.00
Ratio of flow are	a to face i	area in resenerator	6.00
Radial lensth of	COOled hal	r pin tubes, cm	5.00
ID of cooler tube	51 CH		. 20
Linear senerator paran	etersi		
Specific weight o	f alternat	or at 60 Hz, ks/kW(e)_	8,00
Liticiancy of the	alternato	r, per cent	90.00
Martini Ens. Isotherma	I Analysis	of FPSE-Alternator Po	WET SYSTEM
POWER. WATTS		HEAT REQUIREMENT. WAT	TB
Thermo, P. Pist.	176470.90	Thermodyness is	
*		INTERNOGTNERIC	402715.00
Inermo, Displ.	55131.77	Adiabatic Corr.	402715.00 19956.14
Adiabatic Corr.	55131.77 -14686.45	Adiabatic Corr. Reheat loss	402713.00 19956.14 99396.80
Thermo, DISPI. Adiabatic Corr. Heater flow loss	55131.77 -14686.45 21679.87	Adiabatic Corr. Reheat loss Shuttle loss	402715.00 19956.14 99396.80 50.38
Adiabatic Corr. Heater flow loss Resentflow loss	55131.77 -14686.45 21679.87 18812.40	Adiabatic Corr. Reheat loss Shuttle loss Appendix loss	402715.00 19956.14 99396.80 50.38 57756.91
Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss	55131.77 -14686.45 21679.87 18812.40 14498.55	Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss	402715.00 19956.14 99396.80 50.38 57756.91 504.19
Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP, Dr. Pwr. Regat.	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61	Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48
Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP.Dr.Pwr.Reamt. Net Ensine Power	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50	Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regnt. Net Engine Power Alternator Loss	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45	Adiabatic Corr. Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regnt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60	Adiabatic Corr. Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Beach Maty Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentlow loss Cooler flow loss DSP. Dr. Pwr. Regnt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81	Adiabatic Corr. Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swing 1058 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Mtx. Cond. Resen. Mtx. Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentlow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94	Adiabatic Corr. Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swins 1058 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit	402715.00 19956.14 99396.80 50.38 57756.91 204.19 212.48 3160.44 4997.27 2.21 7058.43 .00
Adiabatic Corr. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05	Adiabatic Corr. Adiabatic Corr. Reheat 1058 Shuttle 1058 Temp.swin5 1055 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07
Adiabatic Corr. Adiabatic Corr. Heater flow loss Cooler flow loss Dob, Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1055 Temp.swint 1055 Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	402715.00 19956.14 99396.80 50.38 57756.91 204.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 564724.20 -156.61
Adiabatic Corr. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures. K OD Gas Meater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins	$\begin{array}{r} 402715.00\\ 19956.14\\ 99396.80\\ 50.38\\ 57756.91\\ 504.19\\ 212.48\\ 3160.44\\ 4997.27\\ 2.21\\ 7058.43\\ .00\\ -31086.07\\ 564724.20\\ -156.61\\ 402783.10\end{array}$
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68	Adiabatic Corr. Adiabatic Corr. Reheat 1058 Shuttle 1058 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator cooling	$\begin{array}{r} 402715.00\\ 19956.14\\ 99396.80\\ 50.38\\ 57756.91\\ 504.19\\ 212.48\\ 3160.44\\ 4997.27\\ 2.21\\ 7058.43\\ .00\\ -31086.07\\ 564724.20\\ -156.61\\ 402783.10\\ 16178.45\end{array}$
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.450 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator cooling Lensths, cm	$\begin{array}{r} 402715.00\\ 19956.14\\ 99396.80\\ 50.38\\ 57756.91\\ 504.19\\ 212.48\\ 3160.44\\ 4997.27\\ 2.21\\ 7058.43\\ .00\\ -31086.07\\ 564724.20\\ -156.61\\ 402763.10\\ 16178.45\end{array}$
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, KS Hot Cylinder Heater tubes	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mail Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator cooling Lensths, cm	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 564724.20 -156.61 402783.10 16178.45
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP, Dr. Pwr. Regant. Net Engine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 161784.50 161762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28	Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Watl Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling Alternator	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42
Adiabatic Corr. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dse, Dr. Pwr. Regat. Net Engine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16	Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths. cm Ensine Alternator Bounce Space	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.43 32.65 132.42 6.75
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dse, Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16 .21	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swing 1058 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Cond. Resen. Wall Cond. Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Resen. Wall Cond. Resen. Resen. Wall Cond. Resen. Resen. Mall Cond. Resen. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond. Resen. Cond	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42 6.75 171.82
Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer Displacer	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16 .21 19.14	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swing 1058 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Mail Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Htx. Cond. Resen. Mtx. Cond.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42 6.75 171.82
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentlow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall DisplaD. R. Support	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16 .21 19.14 .73 2.57	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Cyl. OD. OD. Ann Resen.	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42 6.75 171.82
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP.Dr.Pwr.Regmt. Net Ensine Power Alternator Loss NET ELECT.POWER OVERALL EFFICIENCY, X Temperatures. K OD Gas Heater Effect.Hot Gas Effect.Cold Gas OD Gas Cooler Weights.Ks Hot Cylinder Heater tubes Res.Wall Res.Matrix Cyl.Wall Displacer Displ.D.R.Support Cooler Tubes	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 25.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16 .21 19.14 .73 2.67 1.24	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1058 Temp.swins 1058 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Resen. Mix.	$\begin{array}{r} 402715.00\\ 19956.14\\ 99396.00\\ 50.38\\ 57756.91\\ 504.19\\ 212.48\\ 3160.44\\ 4997.27\\ 2.21\\ 7058.43\\ .00\\ -31086.07\\ 564724.20\\ -156.61\\ 402783.10\\ 16178.43\\ 32.65\\ 132.42\\ 6.75\\ 171.82\\ 24.00\\ 30.28\\ \end{array}$
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP.Dr.Pwr.Regat. Net Ensine Power Alternator Loss NET ELECT.POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect.Hot Gas Effect.Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ.D.R.Support Coler Tubes Cold Cylinder	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 23.81 1501.94 1463.05 621.63 599.68 31.24 1.28 6.16 .21 19.14 .73 2.67 1.24 34.55	Adiabatic Corr. Adiabatic Corr. Reheat 1058 Shuttle 1058 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator cooling Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.DD OD Ann.Resen. Wall Thicknesses. cm	$\begin{array}{r} 402715.00\\ 19956.14\\ 99396.00\\ 50.38\\ 57756.91\\ 504.19\\ 212.48\\ 3160.44\\ 4997.27\\ 2.21\\ 7058.43\\ .00\\ -31086.07\\ 564724.20\\ -156.61\\ 402783.10\\ 16178.45\\ 32.65\\ 132.42\\ 6.75\\ 171.82\\ 24.00\\ 30.28\\ 2.00\\ \end{array}$
Adiabatic Corr. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP.Dr.Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT.POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect.Hot Gas Effect.Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Nall Res. Nall Res. Nall Res. Nall Displacer Displ.Drive Rod Displ.D.R.Support Cooler Tubes Cold Cylinder Alternator	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 23.81 1501.94 1463.05 621.63 599.68 31.24 12.23 1.28 6.16 .21 19.14 .73 2.67 1.24 34.55 291.21	Adiabatic Corr. Reheat 1058 Shuttle 1058 Shuttle 1058 Temp.swins 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator cooling Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.DD OD Ann.Resen. Wall Thicknesses. cm Hos criinder	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42 6.75 171.82 24.00 30.28 2.00 .40
Adiabatic Corr. Adiabatic Corr. Heater flow loss Cooler flow loss DSP.Dr.Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT.POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect.Hot Gas Effect.Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Mall Res. Mall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod Displ.D.R.Support Cooler Tubes Cold Cylinder Alternator IDTAL WEIGHT	55131.77 -14686.45 21679.87 18812.40 14498.55 -156.61 161784.50 16178.45 145762.60 23.81 1501.94 1463.05 621.63 599.68 31.24 1.28 6.16 .21 19.14 .73 2.67 1.24 34.55 291.21 400.67	Adiabatic Corr. Reheat 1058 Shuttle 1058 Appendix 1055 Temp.swing 1055 Cri. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cri.OD OD Ann.Resen. Wall Thicknesses. cm Hot criinder Coid criinder	402715.00 19956.14 99396.80 50.38 57756.91 504.19 212.48 3160.44 4997.27 2.21 7058.43 .00 -31086.07 364724.20 -156.61 402783.10 16178.45 32.65 132.42 6.75 171.82 24.00 30.28 2.00 .40 .40

A-21

INDEPENDENT INPUT VALUES Prostani control parameters: Case number defined (by operator._____ 18 Graphic option Bano, 1=ves._____ 1 Conv. criteria (Frac. chanse in Intestals.)_____.005000 Number of time steps per cycle.____ 24 Ensine operating conditions: Averase working gas pressure, bar_____ 400.00 Metal temperature of sas heater, K______ 1500.00 Metal temperature of sas coolers K_____ 500.00 Pressure vessel temp. of alt. and b. space, K ___ 500.00 Ensine speed, Hz._____ 240.00 Cylinder dimensions and materials Maximum displacer and power plston stroke: cm ____ 1.50 20.00 Diameter of power piston and ensine cylin Cm ____ . 10 Gap between displacer and cylinder walls Cm _____ Displacer rod diameter: cm _____ 7.30 Number of radiation shields in displacer: _____ 10 Heaters resenerators cooler1 Number of heater and cooler tube rows _____ 15 Radial length of heated hair pin tubes: Cm _____ 5.00 ID of heater tubes: cm _____ . 20 Square pitch for heater or cooler tube array, CM_ . 40 Seal length, CM _____ . 50 20.00 Diameter of wire in matrix, MICRONS 70.00 Porosity of matrix, PER CENT Ratio of flow area to face area in revenerator ___ 6.00 5.00 Radial length of cooled hair pin tubes, smaller 1D of cooler tubes, cm ______ . 20 Linear senerator parameters! Specific weight of alternator at 60 Hz, km/kW(e)_ 8.00 90.00 Efficiency of the alternator, per cent _____ Martini Ens. Isothermal Analysis of FPSE-Alternator Power System POWER, WATTS HEAT REQUIREMENT, WATTS 220117.08 Thermodynamic Thermo, P. Pist. 432669.80 57642.42 Thermo, Displ. Adlabatic Corr. 22314.97 -9605.65 127998.30 Adiabatic Corr. Reheat loss 24948.44 Shuttle 1055 Heater flow loss 53.35 18358.53 Appendix 1055 14275.84 Temp.swing 1055 -66.24 Cyl. Wall Cond. Resention loss 84632.66 757.06 Cooler flow loss 233.49 DSP. Dr. Pwr. Reamt. Net Engine Power 210511.40 Dispice Hali Cond. 2924.37 Alternator Loss 21031.14 Resen. Wall Cond. NET ELECT. POWER 129326.30 Cyl. Bas Cond. DVERALL EFFICIENCY, ¥ 29.14 Resen. Mtx. Cond. 5491.38 2.34 7475.38 . 00 Tenperatures, K Rad.Inside Displ. Imperatures: NName: Statutes: NDD Gas Heater1502.23Flow Fric. CreditEffect. Hot Gas1458.89Total Heat to Ens.Effect. Cold Gas522.33DI Gas Cooler499.65 -34127.70 650425.40 -66.24 439847.80 Weights, Kg Alternator cooling 21051.14 31.24 Hos Criinder Lensths, cm : 12.23 Ensine 32.65 Heater tubes Ensine Alternator Res. Wall 1.28 6.16 172.31 Res. Matrix Bounce Space Total Length Bounce Space 6.75 211.71 Cyl. Hall .21 Diameters, cm Displacer 1E. 12 Displ.Drive Rod Ens. Cy 1. 0D 24.00 .71 DISPI.D. R. Support 2.67 OD Ann.Resen. 30.28 Coler Tubes Cold Crilnder Alternator TDTAL WEIGHT Wall Thicknesses, CM 1.24 43.67 Hot cylinder 2.00 378. 92 Cold cylinder . 40 . 40 493.B5 Alter. cylinder Number of heater tubes 2356 Heater . 84

INDEPENDENT IN	PUT VALUES		
Prostan control paramet	ersi		
Case number define	d by opera	tor	22
Graphic option/B=n	o, 1=yes		1
Conv. crizeria (Fr	ac. change	in integrals.)	.005000
NUMBER OF LIME SLE	PS Per Crc	I C	24
Ensine operating condit	ionsi		
Averase working ga	s pressure	• • • • • • • • • • • • • • • • • • • •	400.00
Metal temperature	of was hea	Ser: Kasasanasasas	1400.00
netal tenperature	01 945 000	ler. Kassassassas	500.00
Fressure vessel te	ap. of all	. and b. Space, N	260.00
Culindad dimension		*	240.00
Maximum displaces	materials		1 50
Disnetar ist nowar	and power	PISCON SCIONES CM	20 00
Gan between displa	FISCON END		10.00
Displacer for diam	eter and cr		7.42
Number of fadiatio	n shipids	in displacer,	10
Heater, resenerator, co	oleri		
Number of heater a	nd cooler	Sube rows	15
Radial length of h	eated half	PIN TUDESI CM	5.00
ID of heater tubes			. 20
Square pitch for h	eater of c	ODIET TUDE AFTAY, CH_	. 40
Seal length cm			. 50
Dianeter of wire i	n matrix,	MICRONS	20.00
Porosity of matrix	PER CENT		70.00
Ratio of flow area	to face a	rea in resenerator	6.00
Radial length of c	coled hair	Pin tubes, Cm	5.00
ID of cooler tubes	· CM	***************	. 20
Linear senerator parame	sers:		
Specific weight of	alternato	r at 60 Hz; ks/kW(e)_	8. 40
Efficiency of the	alternator	, per cent	90.00
•			
· · · · · · ·	.		·_
Martini Ens. Isothermat	Analysis	of FPSE-Alternator Po	wer System
Martini Eng. Isotherman POWER, WATTS	Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	wer System TS
Martini Eng. Isothermal POWER, WATIS Thermo. P. Pist.	Analysis 201795.80	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	wer System TS 421071.50
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ.	Analysis 201795.80 57956.74	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr.	wer System TS 421071.50 21421.09
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr.	Analysis 201795.80 57956.74 -11360.98	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055	wer System TS 421071.50 21421.09 122773.50
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss	Analysis 201795.80 57956.74 -11360.90 25211.74	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss	wer System TS 421071.50 21421.09 122773.50 46.80 20505 20
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss	wer System TS 421071.50 21421.09 122773.50 46.80 78626.38
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Don Dr. Pur Peope	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss	wer System TS 421071.50 21421.09 122773.50 46.80 78626.38 768.22 208 81
Martini Ens. Isotherman POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen. flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Mat Eng. Power	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss Cyl. Wall Cond.	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2197
Martini Ens. Isotherman POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Covr. Heater flow loss Resen. flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Playnator Loss	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss Cyl. Wall Cond. Dispicr Wall Cond.	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Covr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET FIETE POWER	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Appendik 1055 Temp. Swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond.	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Bas Cond.	wer System TS 421071.50 21421.09 122773.50 46.80 78626.38 768.22 208.91 2183.99 4029.61 2.06
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50 27.48	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond.	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5550.26
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Mastar	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50 27.48	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad.Inside Dispi.	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5558.26 .00
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50 27.48	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5558.26 .00 -33967.84 523722.40
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50 27.48 2401.70 1361.56 521.64	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispip. Dr. Heat	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 623722.40 20.83
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 19043.480 19043.48 171370.50 27.48 :401.70 1361.56 521.64 499.65	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendik loss Temp. swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 623722.40 20.83 433308.40
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Coid Gas OD Gas Cooler Weights. Ks	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. X Temperatures. K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights. Ks Hot Cylinder	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 19043.48 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 558.26 .00 -33967.84 523722.40 20.83 433308.40 19043.48
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas CD Gas Cooler Weights, Ks Hot Cylinder Heater tubes	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 190434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Add. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths, Cm	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas CD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 190434.80 190434.80 190434.80 19043.48 171370.50 27.48 '401.70 1361.56 521.64 499.65 24.50 9.59 1.45	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Regen. Mail Cond. Cyl. Bas Cond. Regen. Mtx. Cond. Alternator cooling Alternator Alternator	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 190434.80 190434.81 71370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Mail Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling Lensths, CM Ensine Alternator Bounce Space	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.4B 32.65 155.87 5.75
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. PWR. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENGTH	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 523722.40 20.83 433308.40 19043.48 32.65 155.87 5.75 195.27
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. PWR. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Cyl. Bas Cond. Resen. Mall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Lensths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, Cm	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 558.26 .00 -33967.84 523722.40 20.83 433308.40 19043.48 32.65 155.87 6.75 195.27
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall Displacer Displ. Drive Rod	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46 .74	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths, CM Ensine Alternator Bounce Space TOTAL LENGTH Diameters, CM	wer System TS 421071.50 21421.09 122773.50 46.80 78626.38 768.22 208.91 2183.99 4029.61 2.06 6558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48 32.65 155.87 6.75 195.27 23.14
Martini Ens. Isothermal POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas DD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Marrix Cyl. Wall Displacer Displ. D. R. Support	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 19043.48 171370.50 27.48 '401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46 .74 2.67	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix Cond. Resen. Mix Cond. Resen. Mix Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths, CM Ensine Alternator Bounce Space TOTAL LENGTH Diameters, CM Ens.Cyl. OD OD Ann.Resen.	wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.88 433308.40 19043.48 32.65 155.87 6.75 195.27 23.14 30.26
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, NS Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 19043.480 19043.480 19043.480 19043.48 171370.50 27.48 '401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46 .74 2.67 1.24	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mix Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins Lensths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, Cm Ens.Cyl. DD OD Ann.Resen.	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5559.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48 32.65 155.87 6.75 195.27 23.14 30.26
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Cold Criinder	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 19043.48 170434.80 19043.48 171370.50 27.48 1401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46 .74 2.67 1.24 39.56	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp. Swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator Coolins Lensths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, Cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses, Cm	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 6558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48 32.65 155.87 6.75 195.27 23.14 30.26 1.57
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer DISPL. Drive Rod Displ. D. R. Support Cooler Tubes Cold Cylinder Alternator	Analysis 201795.80 57956.74 -11360.98 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 19043.48 171370.50 27.48 '401.70 1361.56 521.64 499.65 24.50 9.59 1.05 6.16 .21 13.46 .74 2.67 1.24 39.56 342.78	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adlabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Appendix 1055 Temp. Swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mail Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Cyl. Gas Cond. Maiternator Cold Cylinder Cold Cylinder	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.05 5558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.48 32.65 155.87 6.75 195.27 23.14 30.26 1.57 .40
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Mall Res. Mall Displacer Displ. Drive Rod Displ. D. R. Support Coler Tubes Cold Cylinder Alternator TOTAL WEIGHT	Analysis 201795.80 57956.74 -11360.90 25211.74 17512.21 15251.54 20.83 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 190434.80 27.48 24.50 521.64 499.65 521.64 499.65 5.16 .21 13.46 .74 2.67 1.24 39.56 342.78 441.95	of FPSE-Alternator Po HEAT REQUINEMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp. swins 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond.	Wer System TS 421071.50 21421.09 122773.50 46.80 78526.38 768.22 208.91 2183.99 4029.61 2.06 5558.26 .00 -33967.84 623722.40 20.83 433308.40 19043.4B 32.65 155.87 6.75 195.27 23.14 30.26 1.57 .40 .40

ţ

INDEPENDENT INPUT VALUES

ī

:

Brooks costict Differen			
Core summer detine	d by opera	107.	23
	d. laves		1
		(\mathbf{p})	005000
LONV. Criteria (Fi	ac. chanse		24
NUMBER OF LINE ST			
Ensine operating condition			100 DO
HVERASE HORKINS 30	S Pressure	n Pelaassaassaassaassaa	1400.00
netal temperature	OF SAS NEE	ttell Nasaasaasaasaasaasa Lad M	500 00
netal temperature	OT WAS COO	DITTI Naaaaaaaaaaaaaaaaa	500.00
riessure vessel te	INP. OT ALL	, ANG D. BPACEI IV	240.00
Litine speed, HI			. 240.00
Lylinder dimensions and	MATERIAIS		1 50
TAKIMUM GISPIACET	and power	PISTON STICKED CH	20 DU
Con between digels	PISCON AND		10
Disclose and with	ster and th		7 50
DISPIACET TOG GIAN	NEGEIS LA .		10
NUMBER OF FAGIALIC	on shieles	IN GISPISCTI	
Number of ballers			15
Desitat Locate of D	AND COULES	ALD THERE. PM	5.00
	TEALED DAIL	PIN (0004) CM	
ID OT NEATER SUDES			, , 4 0 //a
Square pitch for r	heater or c	COTER SUDE AFFASS CM_	
Seal length, CM			
Diameter of Wire I	IN MATINA	MICKUND	70.00
POTOSITY OF MATTIN	I PER LEN		. /0.00
Hatio of flow area	TO TACE A	area in resenerator	5.00
Radial length of C	coled hail	r pin tubes, cm	. 5.00
ID of cooler tubes	5. CM		20
Linear senerator parane	sersi		• • •
Specific weight of	r alternato	DF & C CD HZ, K9/KW(@)_	. 8. 00
ETTICIENCY OT INC	alternator	() PET LENG	. 30.00
Martin Eve Trephones	0.000		
Martini Ens. Isothermal	Analysis	of FPSE-Alternator Po	wer System
Martini Eus. Isothermal POWER, WATTS	Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	WET SYSTEM TS
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist.	Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	Wer System TS 391489.30
Martini Ens. Isothermal PONER, WATTS Thermo, P. Pist. Triermo, Displ.	Analysis 138093.30 55347.15	of FPSE-Alternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr.	wer System TS 391489.30 19001.81
Martini Ens. Isothermal PONER, WATTS Thermo, P. Pist. Trifrido, Displ. Adiabatic Corr.	Analysis 158093.30 55347.15 -17008.30	of FPSE-Alternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reneat loss	wer System TS 391489.30 19001.81 94267.33
Martini Ens. Isothermal PONER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss	Analysis 158093.30 55347.15 -17000.30 21675.08	of FPSE-Alternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss	Dwer System TS 391489.30 19001.81 94267.33 43.68
Martini Ens. Isothermal PONER: WATTS Thermo. P. Pist. Triermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss	Analysis 158093.30 55347.15 -17000.30 21675.08 17976.95	of FPSE-Alternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reneat loss Shuttle loss Appendix loss	Wer System TS J91489.30 19001.81 94267.33 43.68 52635.52
Martini Ens. Isothermal PONER: WATTS Thermo. P. Pist. Triermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss	Analysis 158093.30 55347.15 -17000.30 21675.08 17976.95 15434.53	of FPSE-Alternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reneat 1055 Shuttle 1055 Appendix 1055 Teap. Swing 1055	Wer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Triermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt.	Analysis 158093.30 55347.15 -17000.30 21675.08 17976.95 15434.53 -67.33	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swing loss Cyl. Wall Cond.	Wer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. NGt Ensine Power	Analysis 158093.30 55347.15 -17000.38 21675.08 17976.95 15434.53 -67.33 141093.00	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispict Wall Cond.	Wer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond.	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DUEDOLL SESTITION W	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00	of FPSE-Aiternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Das Cond.	System TS 391489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.55	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond.	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89
Martini Ens. Isothermal PONER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Dobe. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.55	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond.	Dwer System TS 391489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00
Martini Ens. Isothermal PONER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures: K DD Gas Heater Science Mat Das	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.55	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss Cri. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cri. Bas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit	Dwer System TS 391489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.35
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 521 (6)	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reneat 1055 Shuttle 1055 Temp. Swing 1055 Cri. Wall Cond. Dispicr Wall Cond. Cri. Gas Cond. Regen. Mail Cond. Cri. Gas Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Eng.	DWET SYSTEM TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 14109.30 14109.30 127051.00 23.55 1401.47 1365.57 E21.04	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp. swing ioss Cri. Wall Cond. Dispicr Wall Cond. Cri. Gas Cond. Regen. Wall Cond. Cri. Gas Cond. Regen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi. Dr. Heat	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. PWT. Reamt. NGT Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Ettect. Cold Gas DD Gas Cooler	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.55 1401.47 1365.57 E21.04 599.69	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Bispi. Credit Total Heat to Ens. Dispi. Dr. Heat Ensine Coolins	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Das Heater Effect. Hot Das Effect. Cold Das DD Gas Cooler Weishts. KS	Analysis 158093.30 55347.15 -17000.38 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Eng. Dispi.Dr. Heat Engine Cooling Alternator cooling	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.35 539363.30 -67.33 398203.00 14109.30
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weishts. Ks Hot Crilnder	Analysis 158093.30 55347.15 -17000.32 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Regen. Wall Cond. Regen. Mtx. Cond. Rad.Inside Dispi. Flow Fric. Credit Total Heat to Eng. Dispi.Dr. Heat Engine Cooling Aiternator cooling	System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -308653.55 539363.30 -67.33 398203.00 14109.30
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures: K DD Gas Heater Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater Tubes	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 621.04 599.69 24.50 9.59	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Bas Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Aiternator cooling Lengths, Cm	System TS 391489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30865.30 -398203.00 14109.30 32.65
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures: K DD Gas Heater Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater Tubes Res. Wall Do Mattin	Analysis 158093.30 55347.15 -17000.36 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6 16	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Cri. Wall Cond. Dispicr Wall Cond. Cri. Das Cond. Resen. Mail Cond. Cri. Das Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator Coolins Lensths. Cm Ensine	Swer System TS 391489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 -5
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weishts: Ks Hot Cylinder Heater Tubes Res. Hall Res. Matrin	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 14109.30 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6.16	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Bas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Bispicr Cond. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. Cm Engine Alternator Bounce Space	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.35 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Not Gas Effect. NS Hot Cylinder Heater tubes Res. Wall Res. Matrim Cyl. Wall	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 E.16 .21	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp. swing ioss Cri. Wail Cond. Dispicr Wail Cond. Regen. Wail Cond. Cri. Gas Cond. Regen. Wail Cond. Cri. Gas Cond. Regen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Aiternator Cooling Lengths: Cm Ensine Aiternator Bounce Space TOTAL LENGTH	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weishts, KS Hot Criinder Heater Tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 14109.30 127051.00 23.55 1401.47 1365.57 E21.44 599.69 24.50 9.59 1.05 E.16 .21 16.12	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Cri. Wall Cond. Dispicr Wall Cond. Cri. Gas Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator Coolins Aiternator Coolins Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 27.14
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. PWT. Reamt. NGT Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures: K DD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater Tubes Res. Wall Res. Matrin Cyl. Wall Displacer Displ. Drive Rod Displ. Drive Rod	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6.16 .21 16.12 .76	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp. swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regn.	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 79.25
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. PWT. Reamt. NGT Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Das Heater Effect. Hot Das Effect. Hot Das Effect. Cold Gas DD Gas Cooler Weishts, KS Hot Cylinder Heater Tubes Res. Hall Res. Hatrin Cyl. Hall Displacer Displ. Drive Rod Displ. R. Support	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.55 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6.16 .21 16.12 .76 2.67 1.21	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Ensine Coolins Alternator Coolins Lensths. Cm Ensine Space TOTAL LENGTH Diameters. Cm Ens. Cyl. DD OD Ann. Resen.	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.35 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 30.26
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weishts. Ks Hot Cylinder Heater tubes Res. Wall Res. Matrim Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	Analysis 158093.30 55347.15 -17000.32 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6.16 .21 16.12 .76 2.67 1.24 70 9.59	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Regen. Wall Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Eng. Dispi.Dr. Heat Engine Cooling Aiternator Cooling Aiternator Cooling Lengths. Cm Engine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Eng.Cyl.DD DD Ann.Regen.	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 .00 -30863.35 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 30.26
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Mall Res. Matrim Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coid Cylinder	Analysis 158093.30 55347.15 -17000.32 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 E.16 .21 16.12 .76 2.67 1.24 30.93 247	of FPSE-Aiternator Pc HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Shuttle ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Bas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Eng. Dispi.Dr. Heat Engine Cooling Aiternator Cooling Aiternator Cooling Lengths. Cm Engine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Eng.Cyl.DD OD Ann.Regen. Wall Thicknesses. Cm	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 2351.99 3622.29 1.92 6119.89 -308653.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 30.26 1.57 40
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas DD Gas Cooler Weights. KS Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coid Cylinder Alternator	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 6.16 .21 16.12 .76 2.67 1.24 30.93 253.97 .15 .16 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .12 .16 .16 .12 .16 .16 .16 .16 .16 .16 .16 .16	of FPSE-Aiternator PC HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Cri. Wail Cond. Dispicr Wall Cond. Cri. Gas Cond. Resen. Wall Cond. Cri. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Aiternator Coolins Aiternator Coolins Ensine Aiternator Bouce Space TOTAL LENGTH Diameters, CM Ens.Cri. DD DD Ann.Resen. Wall Thicknesses, CM	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 30.26 1.57 .40
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights. MS Hot Cylinder Heater tubes Res. Wall Res. Matrim Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coild Cylinder Alternator TOTAL WEIGHT	Analysis 158093.30 55347.15 -17000.3E 21675.08 17976.95 15434.53 -67.33 141093.00 14109.30 127051.00 23.56 1401.47 1365.57 E21.04 599.69 24.50 9.59 1.05 E.16 .21 16.12 .76 2.67 1.24 30.93 253.97 347.19 2155	of FPSE-Aiternator Pc HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp. swing ioss Cri. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cri. Gas Cond. Regen. Wall Cond. Cri. Gas Cond. Regen. Wix Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi. Dr. Heat Ensine Cooling Aiternator Cooling Aiternator Cooling Lengths: Cm Ensine Aiternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cri. OD OD Ann.Regen. Wall Thicknesses. Cm Hot Criinder Aiter. Criinder	Swer System TS J91489.30 19001.81 94267.33 43.68 52635.52 505.42 187.79 3622.29 1.92 6119.89 .00 -30863.55 539363.30 -67.33 398203.00 14109.30 32.65 115.49 6.75 154.89 23.14 30.26 1.57 .40 .07

INDEPENDENT INPUT VALUES Program control parameters! Case number defined by operator._____ 24 Graphic option 8=no, 1=yes._____ 1 Conv. criteria (Frac. chanse in integrals.)_____.005000 Number of time steps per cycle._____ 24 Ensine operating conditions: Average working gas pressure: bar_____ 400.00 Metal temperature of sas heater, K______ 1400.00 Metal temperature of sas cooler: K______ 700.00 Pressure vessel temp. of alt. and b. space: K ____ 500.00 Cylinder dimensions and materials Maximum displacer and power piston stroke, cm ____ 1.50 Diameter of power piston and ensine cyl., cm _____ 20.00 Gap between displacer and cylinder wall: cm _____ . 10 Displacer rod diameters cm 7.62 Number of radiation shields in displacer, _____ 10 Heater, resenerator, copieri Number of heater and cooler tube rows 15 Radial length of heated hair pin tubes: cm _____ 5.00 ID of heater tubes, cm . 20 . 40 Square pitch for heater or cooler tube array, cm_ Seal length: Cm _____ . 50 Diameter of wire in matrix, MICRONS 20.00 POROSITY OF MATRIX, PER CENT 70.00 Ratio of flow area to face area in resenerator ____ 6.00 Radial length of cooled hair pin tubes, cm_____ 5.00 ID of cooler tubes: Cm . 20 Linear senerator parameters: Specific weight of alternator at 60 Hz, kg/kW(e)_ 8.00 Efficiency of the alternator, per cent _____ 90.00 Martini Ens. Isothermai Analysis of FPSE-Alternator Power System PONER, WATTS HEAT REQUIREMENT, WATTS 120466.30 Thermo, P. Pist. 367263.00 Thermodynamic Thermo. Dispi. 53312.27 Adiabatic Corr. 16896.81 Adlabatic Corr. -22084.44 -22084.44 Reheat loss 19366.29 Shuttle loss 73356.95 Heater flow loss 39.88 18463.14 36285.45 Resention Loss ____3, 14 15480.02 Appendix loss 5480.02 Temp. swins loss -3.08 Cyl. Wall Cond. COOLET FION LOSS 344.66 DEP. Dr. Pwr. Reamt. 165.93 98381.89 Dispicy Wall Cond. Net Engine Power 2468.07 Reven. Wall Cond. Alternator Loss NET ELECT. POWER 3200.68 9838.19 8854E. 77 Cyl. Gas Cond. 1.75 Reven. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit OVERALL EFFICIENCY, X 18.56 5586.83 OVERALL EFFICIENCES Temperatures: K DD Gas Heater 1401.30 Effect. Hot Gas 1368.62 Effect. Cold Gas 721.03 DD Gas Cooler E99.71 . 00 -28597.86 Total Heat to Eng. 477012.20 Displ.Dr. Heat Ensine Cooling -3.08 378627.20 Weights, ky Alternator cooling 9838.19 Hot Criinder Heater tubes 24.50 Lenstha, cm : 9.59 Envine 32.65 Res. Wall Res. Matrix 1.05 Alternator 80.53 6.75 119.93 **6.**1E Bounce Space E. 75 Cri. Hali . 21 TOTAL LENGTH Diameters, cm Ens.Cyl.OD 23.14 OD Ann.Resen. 30.26 Cooler Tubes 1.24 Wall Thicknesses, cm Hot cylinder 1.57 Cold cylinder .40 Cold Criinder 23.4E Alternator TOTAL WEIGHT . 40 177.09 265.89 Aiter, cylinder Number of heater tubes 2356 Heater . 83

INDEPENDENT INPUT VALUES Program control parameters! Case number defined by operator. 25 Braphic Option B=no. 1=res.____ 1 Conv. criteria (Frac. change in integrals.)_____.005000 Number of time steps per cycle. 24 Envine operating conditions! Average working sas pressure, bar_____ 400.00 Metal temperature of sas heaters K______ 1480.88 Metal temperature of sas cooler, K______ 808.00 Pressure vessel temp. of alt. and b. space, K ____ 500.00 Erisine speeds Hz_____ 240.00 Cylinder dimensions and materials Maximum displacer and power piston stroke: cm ____ Diameter of power piston and ensine cyl., Cm ----20.00 Gap between displacer and cylinder wall, cm _____ . 10 Displacer rod diameters Cm _____ 7.72 Number of radiation shleids in displacer, _____ 10 Heaters resenerators coolers Number of heater and cooler tube rows _____ 15 Radial length of heated hair pin tubes, cm 5.00 ID of heater tubes: CM . 20 Square pitch for heater or cooler tube array, cm_ . 42 Seal length; cm . 50 Diameter of wire in matrix, MICRONS 20.00 POROSILY OF MALTIN, PER CENT 78.88 Ratio of flow area to face area in resenerator ___ 6.00 Radial length of cooled hair pin tubes, cm_____ 5. 99 ID of cooler tubes: CM . 28 Linear severator parameters! Specific weight of alternator at 60 Hz, kg/kW(e)_ 8.00 Efficiency of the alternator, per cent 98. 88 Martini Ens. Isothermal Analysis of FPSE-Alternator Power System PONER WATTS HEAT REQUIREMENT, WATTS 67407.69 Thermo. P. Pist. Thermodynamic 346869.90 Thermo. Displ. 51662.29 Adiabatic Corr. 15032.13 -26248.68 Reheat loss Adlabatic Covr. 57352.21 17388.82 Shuttle loss Heater flow loss 35.50 Resention loss 24926.26 18956.05 Appendix loss COOLET TION 1055 15434.49 Temp. Swins 1055 240.85 DEP. Dr. Pwr. Reamt. 107.86 Cri. Wall Cond. 143.47 Net Ensine Power E1167.09 Dispicr Wall Cond. 2514.09 Resen. Wall Cond. Alternator Loss **Б11Е.71** 2767.43 NET ELECT. POWER 54942.52 Cyl. Bas Cond. 1.56 OVERALL EFFICIENCY, * 12.84 Resen. Mtx. Cond. 4972.72 Temperatures, K Rad.Inside Dispi. . 00 OD Gas Heater 1401.1E Flow Fric. Credit -26866.85 1371.08 Effect. Hot Gas Total Heat to Ens. 427988.50 Displ.Dr. Heat Effect. Cold Gas E21.30 107.86 OD Gas Cooler 799.72 Ensine Cooling 366929.30 Weights, kg Alternator cooling 6115.71 i 24.50 Lenstha, cm Hos Criinder Heater tubes 9.59 Ensine 32.65 Rés. Nati 1.05 Alternator 50. 87 Res. Matrix 6. 1E Bounce Space 6.75 Cyl. Wall . 21 TOTAL LENGTH 89.47 22.55 Displacer Diameters, cm . 80 DISPI.Drive Rod Ens. Cri.OD 23.14 2.67 DISPI.D.R. SUPPORT DD Ann.Resen. 30.26 Cooler Tubes 1.24 Hall Thicknesses, Cm Cold Criticider 16.95 Hot cylinder 1.57 110.10 HILETNALOF TOTAL WEIGHT Alternator Cold cylinder . 40 195.82 Alter. criinder . 40 Number of heater tubes 2356 Heater . 03

INDEPENDENT INPUT VALUES Probram control parameters! Case number defined by operator. _____ 26 Graphic option 0=no. 1=yes.____ 1 Conv. criteria (Frac. change in Integrals.)_____.005000 Number of time steps per cycle._____ 24 Ensine operating conditions! 400.00 Averase working gas pressure: bar_____ Metal temperature of say heaters K______ 1400.00 Metal temperature of sas coolers K______ 900.00 500.00 Pressure vessel temp, of alt. and b. space, K ____ Ensine speed, Hz_____ 240.00 Cylinder dimensions and materials Maximum displacer and power piston stroke: cm ____ 1.50 20.00 Diameter of power piston and ensine cyl., cm ____ . 10 Gap between displacer and cylinder walls cm _____ Displacer rod diameters CM ______ 7.82 Number of radiation shields in displacer, _____ 10 Heaters resenerators cooler: Number of heater and Cooler tube rows _____ 15 5.00 Radial length of heated half pin tubes: cm _____ ID of heater tubes: CM _____ . 20 . 40 Square pitch for heater or cooler tube array, Cm_ Seal length, Cm _____ Diameter of wire in matrix, MICRONS _____ . 50 20.00 POROSILY OF MALTIN, PER CENT _____ 78.00 Ratio of flow area to face area in resenerator ___ 6.00 Radial length of cooled hair pin tubes: cm_____ 5.00 ID of cooler tubes: Cm _____ .20 Linear senerator parameterst Specific weight of alternator at 68 Hz, ks/kW(e)_ 8.00 90.00 Efficiency of the alternators per cent _____ • . • Martini Eng. Isothermal Analysis of FPSE-Alternator Power System PONER. WATTS HEAT REQUIREMENT, WATTS Thermodynamic Thermo, P. Pist. 57877.68 329344.40 Thermo, Dispi. 50350.45 Adiabatic Corr. 13273.21 Adjabatic Corr. -31842.90 Rebeat LOSS 44843.77 Heater flow loss 15781.42 Shuttle loss 30.62 Resention Iciss 19449.43 Appendix loss 16874.79 Cooler flow loss 15326.83 169.34 Temp. swing loss DSP. Dr. Pwr. Reamt. 230.25 Cyl. Wall Cond. 120.50 Dispice Wall Cond. Net Engine Power 26834.77 2469.65 Alternator Loss 2603.48 Reven. Wall Cond. 2324.38 NET ELECT. POWER 23201.05 Cri. Bas Cond. . 1.35 OVERALL EFFICIENCY. X 5.98 4287.33 Resen. Mtx. Cond. Temperatures, K Rad. Inside Dispi. . 66 -25506.13 OD Gas Heater 1401.06 Flow Fric. Credit Effect. Hot Gas 1373.12 Total Heat to Ens. 388233.30 Ettecl. Cold Gas 921.89 Displ.Dr. Heat 230.25 OD Gas Cooler 899.73 Ensine Cooling 362428.70 2603.48 Weishts, Ks Alternator cooling 24.50 9.59 Hat Cylinder Lensthai Cm 32.65 Heater tubes Ensine Res. Wall 1.05 Alternator 21.31 Bounce Space Res. Hatrix 6. 1E 6.75 Cyl. Wali . 21 TOTAL LENOTH 60.71 Displacer 26.38 Diameters, cm Eng.Cyl.OD Displ.Drive Rod 23.14 .82 2.67 DISPI.D.R. SUPPORT OD Ann.Resen. 30.26 Cooler Tubes 1.24 Wall Thicknesses, Cm Cold Crlinder 10.81 Hot cylinder 1.57 . 48 Alternator Cold cylinder 4E. BE TOTAL WEIGHT 130.29 Aiser. cylinder . 40 Number of heater tubes 2356 Heater . 03

INDEPENDENT	INPUT VALUES	6	
Program CONTROL PALA	neters:		
Case number det (ned by opera	ator	29
CONV. Criteria	(Frac. change	D integrals.)	. 005000
Number of time t	STEPS PET CY		24
Ensine operating cond	TICASI		• •
Averase working	sas pressure	P. 647	400.00
Metal temperatur	re of sas he	ater, K	1300.00
Metal temperatur	re of sas co	oler: K	900.00
Pressure vessel	temp, of all	L. and b. space, K <u></u>	500.00
Ensine speed, Ha			240.00
Lylinder dimensions a	and materials	B	
naximum displace	er and power	Piston Stroke: CM	1.50
	Pr Piston and	S engine Cyl., CM	20.00
	placer and ci	TINGET WATTS CH	.140
Number of facial	Idmeteli Lm . Ion stields	in dissister.	1.3/
Heater, resenerator,	coniert		
Number of heater	r and cooler	TUDE FONS	15
Radial length of	heated hail	PIN TUPES. CM	5. 80
ID of heater tut	251 CM		. 20
Square Pitch for	T heater or (CODIER TUDE AFRAY, CM_	. 40
Seal length, Cm			. 50
Diameter of wire	e în matrixi	MICRONS	20.00
Porosity of Mati	TIN PER CEN	「	70.00
Ratio of flow at	rea to face a	area in resenerator	5.00
Radial length of	COOLED hall	r pin tubes: CM	5.60
	975: CR		. 20
Specific weight	STATESTICS	or at 60 Hz, ke/kH(a)	8.00
Efficiency of th	ne alternato	S PET CENT	90.00
Martini Eng. Isothera POWER, WATTS	nai Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	wer System TS
Martini Ens. Isothers POWER, WATTS Thermo. P. Pist.	ai Analysis 37725.83	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	wer System TS 316397.60
Martini Ens. Isothera POWER, WATIS Thermo, P. Pist. Thermo, Displ.	ai Analysis 37725.83 50562.21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr.	wer System TS 316397.60 12116.68
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Covr.	ai Analysis 37725.83 50562.21 -35696.34	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss	wer System TS 316397.60 12116.68 39965.28
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss	ai Analysis 37725.83 50562.21 -35696.34 15838.46	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reneat loss Shuttle loss	wer System TS 316397.60 12116.68 39965.28 23.89
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss	nai Analysis 37725.83 50562.21 -35696.34 15838.46 18611.31	of FPSE-Alternator Po HEAT REGUIREMENT, WAT Thermodynamic Adiabatic Corr. Reneat loss Shuttle loss Appendix loss	wer System TS 316397.60 12116.68 39965.28 23.89 13670.31
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss	nai Analysis 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss	wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt.	ALI ANALYSIS 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wail Cond.	WET SYSTEM TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power	nai Analysis 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond.	wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss WET FLECT POWER	nai Analysis 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49 202.95	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond.	wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY.	AAI ANALYSIS 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49 202.95 1722.66 47	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. May, Cond.	wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. 3	AAI ANALYSIS 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49 202.95 1722.66 4 .47	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reneat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wail Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Regen. Mtx. Cond.	Wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, S Temperatures, K OD Gas Heater	AAI ANALYSIS 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49 202.95 1722.66 4 1308.78	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wail Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, S Temperatures. K OD Gas Heater Effect. Hot Gas	AAI ANALYSIS 37725.83 50562.21 -35696.34 15838.46 18611.31 16205.94 103.89 2029.49 202.95 1722.66 4 .47 1300.78 1275.30	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wail Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 363821.30
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wail Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.54 103.89
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.54 103.89 363895.90
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. 1 Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Cylinder	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Mail Cond. Resen. Max. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights. Ks Hot Crlinder Heater tubes	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths, Cm	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Hot Gas DD Gas Cooler Weights. Ks Hot Crlinder Heater tubes Res. Wall Bas Hotin	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Regen. Mail Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric, Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator Cooling Lengths, Cm	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Hati	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Mail Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths, Cm Engine Alternator Bounce Space TOTAL IFNOTH	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.96
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric, Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths, cm Engine Alternator Bounce Space TOTAL LENOTH	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06
Martini Ens. Isothera POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. S Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Hall Displacer Displ. Drive Rod	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Regen. Mail Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator cooling Lengths, cm Engine Alternator Bounce Space TOTAL LENOTH Diameters, cm	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. 1 Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights. Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod Displ.D. R. Support	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wail Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Alternator Coolins Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Ens. Cyl. OD OD Ann.Resen.	Wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42 30.25
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resen.flow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. 1 Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displ.Drive Rod Displ.D.R. Support Cooler Tubes	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wail Cond. Displer Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Matl Cond. Cyl. Gas Cond. Resen. Max. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator coolins Alternator Coolins Lenstns. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens. Cyl. OD OD Ann.Resen.	Wer System TS 316397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42 30.25
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. 1 Temperatures. K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D.R. Support Cooler Tubes Cold Cylinder	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wail Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Alternator coolins Alternator coolins Alternator coolins Lenstns. Cm Ensine Alternator Bounce Space TOTAL LENBTH Diameters. Cm Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. Cm	Wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42 30.25 1.21
Martini Ens. Isothera POWER, WATIS Thermo, P. Pist. Thermo, D. Spi. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, 1 Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ.D.R. Support Cooler Tubes Cold Cylinder Alternator	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wail Cond. Displer Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Regen. Mail Cond. Cyl. Gas Cond. Regen. Max. Cond. Alternator Cooling Lengths. Cm Engine Alternator Cooling Lengths. Cm Engine Alternator Bounce Space TOTAL LENGTH Diameters. Cm Eng. Cyl. OD OD Ann.Regen. Wall Thicknesses. Cm	Wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42 30.25 1.21 .40
Martini Ens. Isothera POWER, WATIS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, 1 Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall DISPLACER DISPL. R. Support Cooler Tubes Cold Crlinder Alternator TOTAL WEIGHT	A A A A A A A A A A A A A A A A A A A	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wail Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Naternator Bounce Space TOTAL LENGTH Diameters. Cm Ens.Cyl. OD DD Ann.Resen. Wall Thicknesses. Cm Hot cylinder Alter. Cylinder	Wer System TS 318397.60 12116.68 39965.28 23.89 13670.31 159.69 95.85 1679.59 1510.29 1.05 3345.47 .00 -25144.11 365821.50 103.89 363895.90 202.95 32.65 1.66 6.75 41.06 22.42 30.25 1.21 .40 .40

INDEPENDENT INPUT VALUES Program control Parameters: Case number defined by operator._____ 30 Graphic option 8=no, 1=yes,_____ 1 Conv. criteria (Frac. chanse in integrals.)_____.005000 24 Ensine operating conditions: Average working gas pressure, bar_____ 408.00 Metal temperature of sas heaters K______ 1300.00 Cylinder dimensions and materials Maximum displacer and power piston stroke, cm ____ 1.50 Diameter of power piston and ensine cyl., cm ____ 20.00 Dap between displacer and cylinder wall, cm _____ . 10 Displacer rod diameters cm _____ 7.87 10 Number of radiation shields in displacer. Heater, resenerator, cooler: Number of heater and cooler tube rows _____ -15 Radial length of heated half pin tubes: CM _____ 5.00 . 20 ID of heater tubes, cm ______ Square pitch for heater of cooler tube array, CML . 40 . 50 Seal length: CM _____ 20.00 Diameter of wire in matrix, MICRONS Porosity of matrix, PER CENT _____ 70.00 Ratio of flow area to face area in resenerator ___ 6.00 Radial length of cooled hair pin tubes, CM______ 5.00 . 20 Linear senerator parameters: Specific weight of alternator at 68 Hz; ks/kW(e)_ 8.00 90.00 - Efficiency of the alternator, per cent _____ Martini Ens. Isothermal Analysis of FPSE-Alternator Power System POWER, WATTS HEAT REQUIREMENT, WATTS E72E2.13 Thermo. P. Pist. Thermodynamic 335629.40 Adlabatic Corr. Thermo, Dispi. 51969.55 13901.92 Adiabatic Corr. -30422.16 Reneat loss 52053.91 Heater flow loss 17476.70 Shuttle loss 22.84 Resent Iow Iciss 18113.64 Appendix loss 21061.52 Cooler flow loss 16359.34 Temp. Swins loss 230.68 DSP. Dr. Pwr. Reamt. -22.08 Cyl. Wall Cond. 11E. BE 36839.96 Dispicr Wali Cond. 1767.94 Net Ensine Power 3684.00 Resen. Wall Cond. Alternator Loss 1872.90 33178.05 NET ELECT. POWER Cyl. Gas Cond. 1.27 OVERALL EFFICIENCY, * 8.21 Resen. Mtx. Cond. 4848.12 Rad. Inside Displ. . 00 Temperatures, K Flow Fric. Credit Total Heat to Ens. -26533.52 1300.BE OD Gas Heater Effect. Hot Gas 1273.37 404193.80 DISPI.Dr. Heat E21.01 Ettecs. Cold Gas -22.06 367331.80 OD Gas Cooler 799.72 Engine Cooling Weights, kg Alternator cooling 3684. WD · 18.87 Hos Cylinder Lensths: CM Heater tubes 7.39 32.65 Ensine . 66 Res. Wall Alternator 30.15 Bounce Space Res. Matrix 6.1E 6.75 Cyl. Wall . 21 TOTAL LENGTH 69.55 19.14 Displacer Diameters, cm Env. Cyl. DD Dispi.Drive Rod 22.42 . 83 2.67 Displ.D.R. Support OD Ann.Resen. 30.25 Cooler Tubes Wall Thicknesses: cm 1.24 Hot cylinder Cold Crilinder 12.70 1.21 . 40 бе. 31 Cold cylinder TOTAL WEIGHT Alternator 136. 3B . 40 Alter. cylinder Number of heater tubes 2356 . 02 Heater

INDEPENDENT IN	PUT VALUES	i	
Program control paramet	erst		-
Case number detine	d by opera	tor	31
Graphic option 8=n	io, l=yes		1
Conv. criteria (Fr	ac. Chanse	in integrais.)	.005000
NUMBER OF LIME SEE	PS Per Cyc	10	24 .
Ensine operating condit	lonsi		400 00
HVELASE WORKING SA	A Pressure	n Defessessessesses	400.00
Metal temperature	01 345 DE	ier. K	700.00
Pressure vessel te	MP. Of All	and b. Space, K	500.00
Engine speed, Hz			240.00
Cylinder dimensions and	i materials		
Maximum displacer	And POwer	PISTON STFOKE: CM	1.50
Diameter of power	Piston and	ensine cyl Cm	20.00
Gap between displa	icer and cy	linder walls cm	. 10
Displacer rod diam	netefi CM _		7.7 7
Number of radiatic	on shields	In displacer:	10
Heaters resenerators co	poleri		
Number of heater a	and cooler	tube rows	15
Radial length of F	heated half	' Pin Tubes: Cm	5.00
ID of heater tubes	31 CM		.20
Square pitch for f	leater or o	Coler tube array, cm_	. 40
Seal length, Cm			.50 -
Diameter of wire I	IN MATTIXE	MICRONS	20.00
Porosity of matrix	G PER CENT	******************	70.00
Ratio of flow area	to face a	irea in resenerator	6.00
Radial length of c	COLED HALL	PIN TUDES, CM	5.00
ID of cooler tubes	5. CAI		. 20
Linear senerator parane	eters:		
Specific Weight Of	l alternato	of at 60 Hz, ks/kW(e)_	8.00
ETTICIENCY OF THE	alternato	n per cent	90.00
Martini Ens. Isothermal		of FPSE-Alternator Po	WAT Systam
Martini Eng. Isothermal POWER, WATTS	Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT	wer System TS
Martini Ens. Isotherman POWER, WATTS Thermo, P. Pist.	Analysis	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	wer System TS 355703.90
Martini Ens. Isotherman POWER, WATIS Thermo, P. Pist. Thermo, Dispi.	Analysis 100356.20 53687.30	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr.	wer System TS 355703.90 15837.16
Martini Ens. Isothermal POWER, WATIS Thermo, P. Pist. Thermo, Dispi. Adiabatic Corr.	Analysis 100356.20 53687.30 -24846.38	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss	wer System TS 355703.90 15837.16 57810.45
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater ficw loss	Analysis 100356.20 53607.30 -24846.38 19493.57	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss	wer System TS 355703.90 15837.16 57810.45 33.31
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist, Thermo, Displ, Adiabatic Corr, Heater ficw loss Resen, flow loss	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist, Thermo, Displ, Adiabatic Corr, Heater flow loss Resentflow loss Cooler flow loss	1 Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regam.	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond.	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power	1 Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond.	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss	1 Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond.	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73
Martini Ens. Isothermal POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E809E.05	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSO. Dr. Pwr. Regait. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, %	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 68096.05 15.06	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Displcr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond.	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4666.34
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Requit. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 68096.05 15.06	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi.	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4666.34 .00
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Geoler flow loss DSP. Dr. Pwr. Regnit. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effact Mar Gas	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 68096.05 15.06 1300.96	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit	wer System TS 355703.90 15837.18 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4666.34 .00 -28301.46
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Gooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 15.06 1300.96 1271.02	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swing loss Cyl. Wall Cond. Displcr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens.	wer System TS 355703.90 15837.18 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.45 4656.34 .00 -28301.46 452055.00
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 15.06 1300.96 1271.02 720.58	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad.Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ender Conline.	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4626.34 .00 -28301.46 452056.00 -137.24
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 15.06 1300.96 1271.02 720.58 E99.71	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Gooling	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4628.34 .00 -28301.46 452056.00 -137.24 376408.90 2556.00
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Criinger	Analysis 100356.20 53607.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 15.06 1300.96 1271.02 720.58 E99.71	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4666.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Crlinder Heater tubes	Analysis 100356.20 53607.30 -24846.38 19493.57 17615.79 16454.42 -137.24 7550.98 E8096.05 15.46 1300.96 1271.02 720.58 E99.71 18.87 7.39	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Matl Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Ad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Goolins Alternator coolins Lensths. Cm	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46E6.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks Hot Crlinder Heater tubes Reg. Wall	Analysis 100356.20 53607.30 -24846.38 19493.57 17615.79 16454.42 -137.24 7550.98 26096.05 15.06 1300.96 1271.02 720.50 E99.71 18.87 7.39 .86	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Add. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46E6.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 51.81
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. & Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks Hot Crlinder Heater tubes Res. Wall Res. Matrix	Analysis 100356.20 53607.30 -24846.38 19493.57 17615.79 16454.42 -137.24 7550.98 26096.05 15.06 1300.96 1271.02 720.50 E99.71 18.87 7.39 .86 6.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mitl Cond. Cyl. Gas Cond. Resen. Mit. Cond. Resen. Cond. Miternator Cooling Alternator Bounce Space	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46E6.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. X Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ks Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall	Analysis 100356.20 53607.30 -24846.38 19493.57 17615.79 16454.42 -137.24 7550.98 26096.05 15.06 1271.02 720.56 E99.71 18.87 7.39 .86 6.16 .21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen.	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4626.34 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSO. Dr. PWT. Regait. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY. % Temperatures. K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Hs Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 15.06 1300.96 1271.02 720.58 E99.71 18.87 7.39 .86 6.16 .21 16.12	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Goolins Alternator coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46E6.34 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Gooler flow loss Dooler flow loss Dooler flow loss Dooler flow loss Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, % Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E809E.05 15.06 1300.96 1271.02 720.58 E99.71 18.87 7.39 .86 6.16 .21 16.12 .81	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. Swing loss Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Gooling Alternator cooling Lensths. Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. Cm	wer System TS 355703.90 15837.16 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4626.34 .00 -28301.46 452055.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regait. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Crlinder Heater tubes Res. Wall Displacer Displ. Drive Rod Displ. D. R. Support	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E809E.05 15.06 1300.96 1271.02 720.5E E99.71 18.87 7.39 .86 6.16 .21 16.12 .81 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mail Cond. Resen. Mail Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi. Dr. Heat Ensine Goolins Alternator Coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. cm Ens:Cyl. OD OD Ann.Resen.	wer Srsten TS 355703.90 15837.18 67810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4626.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42 30.25
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Crlinder Heater tubes Res. Wall Displacer Displ. Drive Rod Displ. D. R. Support Ecoler Tubes	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E809E.05 15.06 1300.96 1271.02 720.5E E99.71 18.87 7.39 .86 6.16 .21 16.12 .81 2.67 1.24	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Displcr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Goolins Alternator coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. cm Ens;Cyl. OD OD Ann.Resen. Wall Thicknesses. cm	wer Srsten TS 355703.90 15837.18 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46266.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42 30.25
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas Effect. Hot Gas OD Gas Cooler Weights, Ks Hot Crlinder Heater tubes Res. Wall Res. Matik Crl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coild Crlinder	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E809E.05 15.06 1300.96 1271.02 720.5E E99.71 18.87 7.39 .86 6.16 .21 16.12 .81 2.67 1.24 19.45	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swing loss Cyl. Wall Cond. Displcr Wall Cond. Cyl. Gas Cond. Regen. Wall Cond. Cyl. Gas Cond. Regen. Mtx. Cond. Regen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Eng. Displ.Dr. Heat Engine Gooling Alternator Cooling Lengths. Cm Engine Alternator Bounce Space TOTAL LENOTH Diameters. Cm Eng.Cyl. OD OD Ann.Regen. Wall Thicknesses. Cm	wer Srsten TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 46266.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42 30.25 1.21
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Gooler flow loss DSP. Dr. PWT. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas OD Gas Cooler Weights, Hs Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Coild Crlinder Alternator	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 7550.98 E8096.05 15.06 1300.96 1271.02 720.58 E99.71 18.87 7.39 .86 6.16 .21 16.12 .81 2.67 1.24 19.46 135.92	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.Swins loss Cyl. Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Goolins Alternator Coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl.OD DD Ann.Resen. Wall Thicknesses. cm	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 1.46 4626.34 .00 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42 30.25 1.21 .40
Martini Ens. Isothermal POWER, WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Gooler flow loss DSP. Dr. PWT. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K DD Gas Heater Effect. Hot Gas OD Gas Cooler Weights, HS Hot Crlinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. D.R. Support Cooler Tubes Coil Crlinder Alternator TOTAL WEIGHT	Analysis 100356.20 53687.30 -24846.38 19493.57 17615.79 16454.42 -137.24 75509.79 7550.98 E8096.05 1300.96 1271.02 720.58 E99.71 18.87 7.39 .86 6.16 .21 16.12 .81 2.67 1.24 19.46 135.92 209.70	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.5wins loss Cyl. Wall Cond. Displer Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Goolins Alternator Coolins Lensths. cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens:Cyl. OD OD Ann.Resen. Wall Thicknesses. cm Hot cylinder Alter. cylinder	wer System TS 355703.90 15837.16 57810.45 33.31 31827.37 337.55 141.38 1770.73 2227.73 146 4666.34 -28301.46 452056.00 -137.24 376408.90 7550.98 32.65 61.81 6.75 101.21 22.42 30.25 1.21 .40 .40

INDEPENDENT 1	NPUT VALUES	i	
Prostani Control Patane	tersi		
Case number defin	ed thy opera	tor	32
Graphic option 8=	no. 1=res		1
Conv. criteria (F	rac. Chanse	In Integrals.)	.005000
Number of time st	eps per cyc		24
Ensine operating condi	tionsi		
Averase working a	as pressure	• beraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	400.00
Netal temperature	of sas hea	ser, K	1300.00
Metal tenperature	01 945 COO	ier, K	600.00
Pressure vessel t	eap. of alt	. and b. space: K	500.00
Ensine speed, Hz.			240.00
Cylinder dimensions an	d materials	•	
Maximum displacer	and power	Piston Stroke: CM	1.50
Diameter of power	Piston and	ensine cyl CM	20.00
Dap between dispi	acer and cy	linder walle cm	. 10
DISPLACET FOD dia	ALETETS CAL_		7.67
NUMBER OF FACIALI	On Shields	IN displacer:	10
Number of bostor		• · · · • • • • · · · ·	
NUNDER OF REALER	and cooler	TUDE FONS	12
The states and the st	neated half	PIN TUDES: CM	3.00
ID OT heater tube	'5) CM		. 20
Square pitch tor	neater or c	COTER TUBE AFTAY: CM_	. 40
Seal length, CM _		MICOONS	. 20
	10 MATTIXI	MILKUNS	20.00
Porosity of Matri	RI PER LENI		70.00
	CODIO- NALE	Trea in resenerator	5.100
ID of cooler tube	COULES HALL	PIN (0043) [M	3.00
	31 CM		. 20
Specific weight o	Alternate		P. 00
			00.00
ETTICIENCE OT CHE	a ternator	', per cent	90.00
Martini Eng. Isotherma POUFR. NOTIS	Analysis	• PER CENT of FPSE-Alternator Po HEAT REDUISEMENT, MAT	90.00 Wer System TS
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist.	Analysis	• Per Cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic	98.60 wer System TS 379573.30
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Dispi.	138019.70 55824.75	• Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr.	90.00 wer System TS 379573.30 17977.93
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Disel. Adiabatic Covr.	138019.70 55824.75 ~19073.40	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss 	90.00 wer System TS 379573.30 17977.93 88535.74
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Disel. Adiabatic Corr. Heater flow loss	138019.70 55824.75 -19073.40 22055.06	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Disel. Adiabatic Corr. Heater flow loss Resen.flow loss	138019.70 55824.75 -19073.40 22055.06 17123.07	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Disel. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16	 Per cent Of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp. swing loss 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Regmt.	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond.	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regent. Net Ensine Power	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond.	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35
Martini Ens. Isotherma POWER, WATTS Thermo, D. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adlabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen, Wall Cond. 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regnt. Net Ensine Power Alternator Loss NET ELECT. POWER	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Resen. Wall Cond. Cyl. Bas Cond.	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 . 1.64
Martini Ens. Isotherma POWER. WATTS Thermo. D. Spit. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.60 20.90	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond.	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 . 1.64 5215.00
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi.	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 .64 5215.00 .80
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentflow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen, Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 .1.64 5215.00 .00 .00 .00
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09	 Per cent of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. 	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 .00 .00 .00 .00 .00 .00
Martini Ens. Isotherma POWER, WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas	130019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 .00 .00 .00 .00 .00 .00
Martini Ens. Isotherma POWER, WATTS Thermo. D. Spit. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Coid Gas OD Gas Cooler	130019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Shuttle loss Appendix loss Temp.swins loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 -30616.60 513214.40 -207.17 394060.90
Martini Ens. Isotherma POWER, WATTS Thermo, D. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Cooler flow loss Dsp. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Shuttle loss Appendix loss Temp.swins loss Cri. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cri. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator coolins	98.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 -30616.60 513214.40 -207.17 394060.90 11894.63
Martini Ens. Isotherma POWER, WATTS Thermo, D. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, ks Hot Cylinder	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 ; 18.87	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths, Cm	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weishts, ks Hot Cylinder Heater tubes	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 1666.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths. Cm	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Covr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weishts, Ks Hot Cylinder Heater tubes Res. Wall	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .85	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Regen. Wall Cond. Cyl. Bas Cond. Regen. Mix. Cond. Regen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Cooling Alternator cooling Alternator	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSP. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .86 6.16	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling Ensine Alternator Bounce Space	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 .1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss DSD. Dr. Pwr. Regat. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, NS Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .86 6.16 .21	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling Ensths, CM Ensine Alternator Bounce Space TOTAL LENOTH	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 .1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76
Martini Ens. Isotherma POWER. WATTS Thermo. P. Pist. Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.60 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .85 6.16 .21 13.45	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator Coolins Lensths. Cm Ensine Alternator Bounce Space TOTAL LENOTH Diameters. Cm	50.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regnt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. Drive Rod	138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 11894.63 107258.60 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .86 6.16 .21 13.45 .79	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rasen. Mtx.	50.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76 22.42 7.05
Martini Ens. Isotherma POWER, WATTS Thermo, P. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss DSP. Dr. Pwr. Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, kg Hot Cylinder Heater tubes Res. Mali Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support	1 Analysis 138019.70 55824.75 -19073.40 22055.46 17123.07 16460.16 -207.17 11894.63 107258.60 20.90 1301.09 1268.09 620.49 599.69 ; 18.87 7.39 .86 6.16 .21 13.46 .79 2.67	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Shuttle 1055 Appendix 1055 Cyl. Wail Cond. Dispicr Wail Cond. Cyl. Bas Cond. Resen. Wail Cond. Cyl. Bas Cond. Resen. Mtx. Cond	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 5.75 136.76 22.42 30.25
Martini Ens. Isotherma POWER, WATTS Thermo, D. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr.Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes	1 Analrsis 138019.70 55824.75 -19073.40 22055.06 17123.07 16460.16 -207.17 118946.30 11894.63 107258.60 20.90 1301.09 1268.09 628.49 599.69 1301.87 .86 6.16 .21 13.46 .79 2.67 1.24 .74	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Bas Cond. Regen. Wall Cond. Cyl. Bas Cond. Regen. Mtx. Cond. Regn. Cond. Regn. Mtx. Cond. Regn. Co	50.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76 22.42 30.25 1.21
Martini Ens. Isotherma POWER. WATTS Thermo. Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss Dsp. Dr. Pwr.Regmt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, % Temperatures. N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights. Ng Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes Cold Cylinder Alternator	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 1646.16 -207.17 118946.30 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 1301.87 -267.15 .21 13.46 .79 2.67 1.24 27.06 214.19	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cri. Wail Cond. Displcr Wall Cond. Displcr Wall Cond. Cri. Bas Cond. Resen. Wall Cond. Cri. Bas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator Coolins Alternator Bounce Space TOTAL LENOTH Diameters. Cm Ens. Cri. OD OD Ann. Rysen. Wall Thicknesses. Cm Hot criinder Cold criinder	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76 22.42 30.25 1.21 .40
Martini Ens. Isotherma POWER, WATTS Thermo, D. Pist. Thermo, Displ. Adiabatic Corr. Heater flow loss Cooler flow loss Cooler flow loss Cooler flow loss DSP. Dr. Pwr. Regant. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, % Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler Weights, Kg Hot Cylinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Displacer Displ.Drive Rod Displ.D. R. Support Cooler Tubes Cold Cylinder Alternator TOTAL WEIGHT	1 Analysis 138019.70 55824.75 -19073.40 22055.06 17123.07 1666.16 -207.17 11894.63 107258.80 20.90 1301.09 1268.09 620.49 599.69 1268.09 620.49 599.69 136.09 6.16 .21 13.46 .79 2.67 1.24 27.06 214.10 292.79	of FPSE-Alternator Po HEAT REQUIREMENT, WAT Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Cyl. Wall Cond. Displer Wall Cond. Displer Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Wall Cond. Resen. Wall Cond. Cyl. Bas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Displ. Flow Fric. Credit Total Heat to Ens. Displ.Dr. Heat Ensine Coolins Alternator Coolins Alternator Coolins Lensths. CM Ensine Alternator Bounce Space TOTAL LENOTH Diameters. CM Ens.Cyl. OD OD Ann.Resen. Wall Thicknesses. CM Hot Cylinder Alter. Cylinder	90.00 wer System TS 379573.30 17977.93 88535.74 37.22 47542.80 503.33 163.31 1707.35 2573.35 1.64 5215.00 .00 -30616.60 513214.40 -207.17 394060.90 11894.63 32.65 97.36 6.75 136.76 22.42 30.25 1.21 .40 .40

İ

INDEPENDENT I	NPUT VALUES	5 · · · · · · · · · · · · · · · · · · ·	
Program control parame	tersi		
Case number defin	ed by opera	stor	33
Graphic option B=	no, 1=yes		1
Lonv. criteria (F	rac. Chanse	P in interrais.J	. 000000
NURDER OF time st	●P\$ P●T C70 -:		24
Average becking condi-	LIONS!		400 00
NVERASE WORKINS S	AS PIESSUIL	ri Bergepaganaanaanaanaana ter. K	1300 00
Hatal tangerature		ler. K	500.00
Pressure variatione		, and b. space. K	500.00
Freise space. Hy			240.00
Cylinder dimensions and	d materials		240,00
Maximum displacer	And ROWET	PISTON STROKE, CH	1.50
Diameter of power	PISSON AND	ensine Cri., CM	20.00
Bap between displ	acer and C	linder walls CM	. 10
Displacer rod dia	NETET CM		7.55
Number of radiation	on shields	in displacer.	10
Heater, resenerator, c	ooler:		
Number of heater	and cooler	tube rows	15
Radial length of	heated hail	PIN TUDES: CM	5.00
ID of heater tube	5. CM		. 20
Square pitch for I	heater or d	ODIET TUDE AFFAY, CM_	. 40
Seal length, cm			. 50
Dianeter of wire	IN MATTIX:	MICRONS	20.00
Porosity of Matri	N. PER CENT		70.00
Ratio of flow are	a to face a	rea in resenerator	6.00
Ràdial lensth Of	cooled hall	Pin tubes, Cmasses	5.00
ID OT COOLET TUDE	51 CH	و و پر ب ک ه م و و ب ه ه تر و ج ه ک د د	. 20
Linear senerator param	etersi		• • •
SPECIFIC WEIGHT O	t alternato	Dr at bu Hz; k\$/kw(e)_	8.00
ETTICIENCY OT THE	aiternatoi	Per cent	50.00
Martini Fra Isotherma		of EPSE-Alternator Po	war Svetam
PONER. NATIS		HEAT REQUIREMENT, NAT	TS
Thermo, P. P.St.			
	162062.40	Thermodynamic	408744.40
Thermo, Disel.	162052.40	Thermodynamic Adlabatic Corr.	408744.40
Thermo, Displ. Adiabatic Corr.	162052.40 56248.68 -13567.25	Thermodynamic Adiabatic Corr. Reheat 1055	408744.40 20432.91 116627.70
Thermo, Displ. Adjabatic Corr. Heater flow loss	122052.40 36248.68 -13567.25 25479.65	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss	408744.40 20432.91 116627.70 40.48
Thermo, Displ. Adjabatic Corr. Heater flow loss Regen. flow loss	162062.40 56248.68 -13567.25 25479.65 16659.20	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss	408744.40 20432.91 116627.70 40.48 71980.41
Thermo, Disel. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss	162062.40 56248.68 -13567.25 25479.65 16659.20 16345.22	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss	408744.40 20432.91 116627.70 40.48 71980.41 776.30
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Resmt.	122052.40 52248.68 -13557.25 25479.65 16559.20 16345.22 251.54	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Resmt. Net Ensine Power	122052.40 52248.68 -13567.25 25479.65 16559.20 16345.22 261.54 162495.10	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Resmt. Net Ensine Power Alternator Loss	122052.40 52248.68 -13557.25 25479.65 16539.20 16345.22 261.54 162495.10 16849.51	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Regen. Wall Cond.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER	122052.40 52248.68 -13557.25 25479.65 16539.20 16345.22 261.54 168495.10 16849.51 151364.10	Thermodynamic Adiabatic Corr. Reheat loss Shuttle loss Appendix loss Temp.swing loss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: *	122052.40 52248.68 -13557.25 25479.65 16539.20 16345.22 261.54 128495.10 158495.10 151324.10 25.41	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dso, Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 16849.51 151364.10 25.41	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .178 5673.36 .00
Thermo, Displ. Adjabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso, Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, K OD Gas Heater	122052.40 52248.68 -13567.25 25479.65 16659.20 16345.22 261.54 16849.51 16849.51 151364.10 25.41 1301.26	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dso. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 16849.51 15849.51 151364.10 25.41 1301.26 1264.26	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 593689.50
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas	122052.40 52248.68 -13567.25 25479.65 16659.20 16345.22 261.54 16849.51 151364.51 151364.51 25.41 1301.26 1264.26 520.97	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 1.78 5673.36 .00 -33809.25 595689.50 261.54
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas OD Gas Cooler	122052.40 56248.68 -13567.25 25479.65 16559.20 16345.22 261.54 168495.10 15849.51 151364.10 25.41 1301.26 1264.26 520.97 499.66	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 595689.50 261.54
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Dsp. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 16849.51 151364.10 25.41 1301.26 1264.26 520.97 499.66	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Robin Spi. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 1.78 5673.36 -00 -33809.25 595689.50 261.54 427455.90 16849.51
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dsp. Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER OVERALL EFFICIENCY: X Temperatures. N DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Criinder	122052.40 52248.68 -13567.25 25479.65 16659.20 16345.22 261.54 168495.10 15384.10 25.41 1301.26 1264.26 520.97 499.66 , 18.87	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Mall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 1.78 5673.36 -00 -33809.25 593689.30 261.54 427455.90 16849.51
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso. Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. N DD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, KS Hot Criinder Heater tubes Boo With	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 151364.10 25.41 1301.26 1264.26 520.97 499.66 , 18.87 7.39	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, Cm	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 1.78 5673.36 00 -33809.25 595689.30 261.54 427455.90 16849.51
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso. Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Criinder Heater tubes Res. Wall Bes. Malrie	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 15849.51 151384.10 25.41 1301.26 1264.26 520.97 499.66 . 18.87 7.39 .86 5.15	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator Cooling Lengths, Cm Ensine Alternator Bourse Space	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 -33809.25 595689.50 261.54 427455.90 16849.51 32.65
Thermo, Displ. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso. Dr. Pwy. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures. N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights: Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 15849.51 151384.10 25.41 1301.26 1264.26 520.97 499.65 .18.87 7.39 .86 .16 .21	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, Cm Ensine Alternator Bounce Space TOTAL LENGTH	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 595689.50 261.54 427455.90 16849.51 32.65 137.92 6.75
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Cooler flow loss Dso, Dr. Pwr. Reamt. Net Engine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, * Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Kg Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 151384.10 25.41 1301.26 1264.26 520.97 499.65 .18.87 7.39 .86 6.16 .21 13.46	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Resen. Wall Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, cm	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 595689.30 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso, Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, * Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Mali Res. Mali Displacer Displ. Drive Rod	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 168495.10 151384.10 25.41 1301.26 1264.26 520.97 499.66 .18.87 7.39 .86 .21 13.46 .76	Thermodynamic Adiabatic Corr. Reheat ioss Shuttle ioss Appendix ioss Temp.swing ioss Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lengths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, Cm	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 595689.30 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso, Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 126495.10 151324.10 25.41 1301.26 1224.26 520.97 499.66 .18.87 7.39 .86 .21 13.46 .76 2.67	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Alternator Cooling Hensths, Cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, Cm Ens.Cyl. DD DD Ann.Resen.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .178 5673.36 .00 -33809.25 595689.50 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32 22.42 30.25
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso, Dr. Pwr.Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas 'DD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Res. Matrix Cri. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 126495.10 151324.10 25.41 1301.22 1224.26 520.97 499.66 .18.87 7.39 .82 5.16 .21 13.46 .72 2.67 1.24	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Lensths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters, cm Ens.Cyl. OD DD Ann.Resen.	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 .1.78 5673.36 .00 -33809.25 595689.50 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32 22.42 30.25
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resentiow loss Coler flow loss Dso, Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY, X Temperatures, K OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Cooler Weights, Ks Hot Criinder Heater tubes Res. Wall Aws. Matrix Cri. Wall Displacer Displ. Drive Rod Displ. D. R. Support Cooler Tubes Cold Criinder	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 126495.10 151324.10 25.41 1301.22 1224.26 520.97 499.66 .18.87 7.39 .82 6.16 .21 13.46 .76 2.67 1.24 35.72	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wall Cond. Dispicr Wall Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix Cond. Resen. Mix Cond. Rad. Inside Dispi. Fiow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Cooling Alternator cooling Alternator cooling Lensths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl.OD DD Ann.Resen. Wall Thicknesses, cm	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 5573.36 -00 -33809.25 595689.50 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32 22.42 30.25 1.21
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resent low loss Coler flow loss Dso, Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Coler Weights, Ks Hot Cylinder Heater tubes Res. Wall Res. Matrix Cyl. Wall Displacer Displ. Drive Rod Displ. D. R. Support Coler Tubes Cold Cylinder Alternator	122052.40 52248.68 -13567.25 25479.65 16559.20 16345.22 261.54 128495.10 151384.10 25.41 1301.26 1264.26 520.97 499.66 .18.87 7.39 .86 6.16 .21 13.46 .76 2.67 1.24 35.72 303.29	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swins 1055 Cyl. Wali Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mix. Cond. Resen. Mix. Cond. Resen. Mix. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Ensine Coolins Alternator Coolins Alternator Coolins Lensths, cm Ensine Alternator Bounce Space TOTAL LENGTH Diameters. cm Ens.Cyl. DD DD Ann.Resen. Wall Thicknesses, cm	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 5573.36 -00 -33809.25 595689.50 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32 22.42 30.25 1.21 .40
Thermo, Dispi. Adiabatic Corr. Heater flow loss Resent low loss Coler flow loss Dso. Dr. Pwr. Reamt. Net Ensine Power Alternator Loss NET ELECT. POWER DVERALL EFFICIENCY: X Temperatures, N OD Gas Heater Effect. Hot Gas Effect. Cold Gas DD Gas Coler Weights, Kg Hot Criinder Heater tubes Res. Mall Res. Matrix Cyl. Wall Dispiacer Dispi. Drive Rod Dispi. D. R. Support Coler Tubes Cold Criinder Alternator TDTAL WEIGHT	122052.40 52248.68 -13567.25 25479.65 16539.20 16345.22 261.54 16849.51 151364.10 25.41 1301.26 1264.26 520.97 499.66 .18.87 7.39 .86 6.16 .21 13.46 .76 2.67 1.24 35.72 390.62	Thermodynamic Adiabatic Corr. Reheat 1055 Shuttle 1055 Appendix 1055 Temp.swing 1055 Cyl. Wali Cond. Dispicr Wall Cond. Cyl. Gas Cond. Resen. Wall Cond. Cyl. Gas Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Resen. Mtx. Cond. Rad. Inside Dispi. Flow Fric. Credit Total Heat to Ens. Dispi.Dr. Heat Engine Cooling Alternator Cooling Lengths, cm Engine Alternator Bounce Space TOTAL LENGTH Diameters, cm Ens.Cyl.OD DD Ann.Resen. Wall Thicknesses, cm Hot cylinder Cold cylinder	408744.40 20432.91 116627.70 40.48 71980.41 776.30 184.53 1929.19 2907.71 1.78 5673.36 593689.30 261.54 427455.90 16849.51 32.65 137.92 6.75 177.32 22.42 30.25 1.21 .40 .40

REFERENCES TO APPENDIX A (U)

- (U) [1] "More on the Beale Equation", Stirling Engine Newsletter, May 1982,
 p. 5 (Martini Engineering).
- (U) [2] W.R. Martini, "Stirling Engine Design Manual", DOE/NASA/3152-78/1, NASA CR-135382, April 1978 p. 93.
- (U) [3] W.E. Beale, Sunpower, Inc., Personal Communication, 9 March 1984.
- (U) [4] W.R. Martini, "A Revised Isothermal Analysis Program for Stirling Engines", 1983 IECEC Record, pp. 743-748.

	National Aeronautos and Sarona Administration Report Documentation Page				
1.	Report No. NASA CR-179614	2. Government Acces	sion No.	3. Recipient's Catalog	No.
4.	 4. Title and Subtitle Megawatt Class Nuclear Space Power Systems (MCNSPS) Conceptual Design and Evaluation Report 		Conceptual	 5. Report Date September 1988 6. Performing Organization Code 	
7.	Volume III—Technologies II: Power Conversion 7. Author(s) J.R. Wetch, et al.			 8. Performing Organization Report No. SPI-25-1 10. Work Unit No. 506-01-11 	
9.	Performing Organization Name and Address Space Power, Inc. 621 River Oaks Parkway San Jose, California 95134			586-01-11 11. Contract or Grant N NAS3-23867 13. Type of Report and Contractor Repo	No. I Period Covered
12.	 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191 			Final 14. Sponsoring Agency Code	
15.	Supplementary Notes Project Manager, John M. Smith, Pow funded by a Memorandum of Agreeme Space Administration, and the Departm	ver Technology Divi ent among the Depar ment of Energy.	sion, NASA Lewis tment of Defense, t	Research Center. The National Aerona	nis research was utics and
16.	 Abstract This study was conducted in 1984 under the direction of the NASA Lewis Research Center, for the Triagency (DARPA, NASA, DOE) SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. Namely: A gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection. A Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator. A Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. A Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with heat pipe radiator. 				
17.	Key Words (Suggested by Author(s)) Nuclear space power Space power conversion systems Multimegawatt space power		18. Distribution Stater Unclassified - Subject Cates	nent - Unlimited gory 44	
19.	Security Classif. (of this report) Unclassified	20. Security Classif. (o Uncla	f this page) assified	21. No of pages 142	22. Price* A07

NASA	FORM	1626	OCT	86
------	------	------	-----	----

ł

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161