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induced drag coefficient, Induced drag force/qS 

aerodynamic lift coefficient, L/QS 
induced lift coefficient, Induced lift force/qS 

zero-lift pitching-moment coefficient, Zero-lift pitching moment/QSc 

thrust coefficient, T/QS 
effective thrust coefficient, CT cos6, + ~ T R C T ( ~  - cos&) 

thrust-loss coefficient, pTLCT(1 - cos 6,) 

surface chord, ft 

induced drag 

influence term as defined in equations (3.1.8) and (4.1.10) 
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incidence angle, rad 

induced lift parameter 

aerodynamic lift force, lb 
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tail volume coefficient 
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0 Prandtl coefficient 

(7 normalized term, Quantity/Reference quantity 

Subscripts: 

cg center of gravity 

j surface j 

k surface k 

jk 
V jet nozzle 

jv 
1 wing 

2 aft horizontal tail 

3 canard 

Abbreviations: 

LOTS linear optimum trim solution 

s.m. static margin 
VLM vortex-lattice method 

interaction terms of surfaces j and k 

interaction terms of surface j and jet nozzle (see eq. (4.1.10)) 
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Summary 
Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of 

the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming such 
airplanes. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables 
the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady 
state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. 
Comparisons of the trim drags obtained using LOTS, a direct, constrained optimization method, and several 
ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and a two-surface 
airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained 
from the nonlinear optimization and that the optimum methods result in trim-drag reductions up to 80 percent 
compared with the ad hoc methods. 

1. Introduction 
In the interest of increased economy, maneuverability, and safety, airplane designers are proposing 

configurations with more than two lifting surfaces or longitudinal-control effectors. Examples of these 
configurations are airplanes with three lifting surfaces (e.g., wing, tail, and canard) or two lifting surfaces 
and thrust vectoring. Such airplanes are capable of generating more forces than are necessary to maintain 
longitudinal equilibrium and are thus statically indeterminate. The redundant forces and moments present 
in these configurations may add many desirable capabilities to the airplanes such as attitude and flight path 
decoupling, increased damage tolerance, and enhanced aerodynamic efficiency. Some of these benefits have 
been studied by Kendall (1984), Butler (1983), Rokhsaz and Selberg (1985), and Capone and Reubush (1983). 
With the increased flexibility that these redundant forces provide, the designer faces new challenges not present 
in conventional designs. One such challenge is that the individual surface lift coefficients or thrust-vector angles 
are no longer uniquely determined by the conditions of trimmed flight. For example, the wing, horizontal tail, 
and canard of a three-surface airplane produce three independent lift forces (within aerodynamic limits). To 
maintain level trimmed flight, two constraints must be satisfied; the lift must equal the weight of the airplane, 
and the sum of the moments acting on the airplane must be zero. Thus, the number of independent forces 
exceeds the number of constraints, and hence there is an unlimited number of load distributions that can 
satisfy the trim constraints. The designer can capitalize on this indeterminateness by selecting the longitudinal 
load distribution that will satisfy the constraints and maximize or minimize a given performance function. For 
cruising flight, a logical parameter to minimize is trim drag. 

During the design process, one approach for obtaining the load distribution yielding the minimum trim 
drag for a specific flight condition is to employ nonlinear programming techniques. These numerical methods 
use multiple iterations to converge on an optimum solution. Typically, a nonlinear optimization routine 
implemented on a computer passes a load distribution to a cost-function evaluation routine. This evaluation 
routine returns the value of a cost function, which is usually based on a weighted sum of the deviation from 
trim and the trim drag as determined for the load distribution. The optimization routine compares the value 
of the cost function for the current load distribution with values from previous iterations and, based on this 
comparison, modifies the distribution in an effort to reduce the cost function. This process continues until the 
optimization routine converges on the load distribution that yields the lowest obtainable cost-function value. 
Even though this method generally yields the optimum distribution, it has several shortcomings that may 
make it unsuitable for a number of situations. For a given configuration, selecting the proper weighting terms 
in the cost function may require a fair amount of experimentation. In addition, such algorithms frequently 
need operator supervision to ensure that convergence is occurring properly. Finally, the iterative nature of this 
type of solution does not by itself provide a designer with insight into the physics governing the airplane. To 
obtain this insight, a potentially lengthy series of parametric design studies should be conducted on a given 
configuration. 

An analytical solution to the optimum trim problem that addresses many of the limitations of the nonlinear 
optimization approach has been developed and is detailed in this report. The algorithm is referred to as the 
linear optimum trim solution, or LOTS. LOTS uses a Lagrange formulation to obtain the longitudinal load 
distribution for a specific flight condition that will minimize a quadratic model of trim drag while satisfying 
linearized trim constraints. The LOTS algorithm is closed form and computationally efficient, thus making 
it compatible with a designer’s intentions and needs during the conceptual and preliminary design processes. 
The speed of the method allows timely optimization of the load distribution, whereas the closed-form nature 



permits analysis of the influence effects between control effectors. In addition to its applications in airplane 
design, LOTS may also have applications in wind-tunnel testing and in-flight operations. These potential uses 
are discussed briefly in this paper. 

The accuracy of LOTS is evaluated by comparing the trim drags obtained from its utilization with those 
obtained through a nonlinear optimization method. LOTS is alsd compared with procedures that have been 
proposed as ad hoc methods of trimming redundantly controlled airplanes during preliminary design. These 
comparisons were conducted using vortex-lattice models of a general aviation class, three-surface airplane and 
a two-surface, thrust-vectoring, high-performance airplane. 

2. Derivation of LOTS 
The goal is to develop a closed-form analytical procedure for optimally scheduling the forces generated 

by the longitudinal-control effectors of a redundantly controlled airplane with respect to trim drag in steady, 
unaccelerated flight. Equations are presented that model the prime aerodynamic, propulsive, and gravitational 
effects; and methods for computing each of the relevant aerodynamic and interference terms are either described 
or referenced. The model includes vertical force and pitching-moment trim equations along with the classical 
induced drag expression. An approximate form for the propulsive thrust loss due to vectoring of thrust 
is developed for incorporation into an effective drag function. This drag function combines the effects of 
aerodynamic drag and the thrust loss due to vectoring into a single term by treating the thrust loss like an 
equivalent increase in aerodynamic drag. Influence coefficients modeling the aerodynamic interaction of lifting 
surfaces and thrust vectoring are included in the equations. The equations presented in this paper represent 
an airplane with any number of aerodynamic surfaces and a single jet-exhaust nozzle. The equations can easily 
be generalized to include the effects of multiple nozzles, but only at the expense of an increase in the number 
of terms. 

After developing the equations modeling the airplane, it is possible to solve the problem with nonlinear 
programming techniques using nonlinear constrained optimization. This approach is desirable if the equations 

calculations. An alternative is presented that is consistent with an airplane designer’s goals at preliminary 
design and with the predicted accuracy of the data available at this stage of the design cycle. In this method, 
the trim equations are linearized and a Lagrange formulation is used to minimize the drag function while 
satisfying the trim constraints. The mathematical formulation is described in this section and is applied to 
two specific airplane configurations in sections 3 and 4. 

Once an optimum longitudinal distribution of lift along the vehicle has been determined, the surface 
deflections and thrust deflection angle can be scheduled to generate the specified lift distribution. Equations 
for estimating the required stabilizer incidence and/or control surface deflections for a given required lift are 

I have been augmented with experimental data and there is no time limitation for the computationally intensive 

I presented in appendix A. 

2.1. Vertical-Trim Equation 

In figure 1 the aerodynamic and propulsive force coefficients acting on a multiple-lifting-surface airplane 
equipped with thrust vectoring in level, steady state flight are shown. The aerodynamic coefficients acting on 
the fuselage are combined with those of the primary lifting surface (i.e., the wing) to form a wing/body pair 
that will simply be referred to as the coefficients for the wing. To maintain level, trimmed flight it is necessary 
for the airplane to maintain constant altitude. This condition will be satisfied if the vertical aerodynamic and 
propulsive forces balance the gravitational force acting on the airplane. This balance is achieved for an airplane 
with n aerodynamic surfaces if 

I 

n 

j=1 
[ ( C L , ~  + kjC&,)  COS(^ - Ej - 0) + C D , ~  sin(a - ~j - e)] 3j + CT sin(& + 8) - W = 0 (2.1.1) 

In this and in the following equations, a caret over a variable (e.g., 3) indicates that this variable has been 
nondimensionalized by a reference quantity. In this paper, the planform area of the wing is used as the reference 
area and the mean aerodynamic chord of that surface is used as the reference length. The term w is the total 
lift coefficient of the configuration; for the purposes of this paper in which only equilibrium cruising flight is 

I considered, w is approximated by Weight/qS. The effective lift coefficient of each surface is expressed as the 
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sum of the lift coefficient of the surface in the absence of thrust-induced effects ( C L , ~ )  and the change in the 
lift of the surface due to supercirculation ( k j C ~ 6 , ) .  This change due to supercirculation is a result of the jet 
wake acting to modify the circulation about the surface; this effect can be quite significant for surfaces located 
in close proximity to a jet wake. More details on supercirculation and its effects can be found in appendix B. 
The terms a ,  E ,  and 8 are the angle of attack of the body reference line, the average downwash angle at  the 
lifting surface, and the angle between the gravitational horizontal and the body reference line, respectively. 
The thrust coefficient CT is given as T / q S .  

cL,3 + k3FvCT 

t 
Fuselage contribution is included 

(a) Nondimensionalized forces acting on a multisurface, thrust-vectoring airplane. Fuselage contribution is included in terms for 
main lifting surface. In equation (2.1.1), the term E ,  (not shown here) represents the change in local angle of attack due to 
downwash. 

of wing 

Body reference line 

(b) Relevant lengths. All lengths are measured in a body fixed axis system with origin located at 
aerodynamic center of wing. 

Figure 1. Relevant forces and lengths. 

The formulation of LOTS requires that the trim equations be linear. Equation (2.1.1) can be linearized 
when considering cruising flight by making several standard assumptions regarding the relative magnitude 
and contributions of the drag, thrust, and angular terms. Since this linearization is somewhat configuration- 
dependent, it will be demonstrated when specific examples are presented in sections 3 and 4. 

2.2. Moment-Trim Equation 

The moment-trim equation, dictated by the condition that the pitch rate and acceleration be zero, requires 
the sum of the moments about any point to be zero. If the aerodynamic center of the wing is chosen as the 
reference point, this condition will be satisfied if the forces and moments are governed by 
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h 
n 

_ h  c~,,, + w (leg cos e + zcg sin e) - CT (2, sin 6, + Z~ cos 6,) - E{ ( c L ~  + I C ~ C T G , )  [cos(, - e j>t . j  
j=2  

(2 .2 .1)  

h 

Here, Cm,o is the zero-lift pitching moment, lCg and ZCg are the normalized horizontal and vertical separations 
between the center of gravity and the aerodynamic center of the wing, respectively, 2, and 2, are the separations 
of the exhaust nozzle, and 2j and 2j are the separations of the aerodynamic trim surfaces. These separations 
are measured in the body axis system as indicated in figure 1. Like equation (2 .1 .1) ,  equation (2 .2 .1)  is easily 
linearized for cruising flight using common assumptions and will be demonstrated for specific configurations. 

2.3. Induced-Drag Equation 
Durand (1935) and Butler (1983)  express the induced drag of a system of three elliptically loaded lifting 

surfaces as 

(2 .3 .1)  

The subscripts 1 ,  2 ,  and 3 refer to the wing and two trim surfaces, respectively. The Prandtl coefficients uij 
account for the flow interference between surfaces due to the presence of vortex systems. The efficiency factors 
eij account for the effects of viscous flow. 

Equation (2 .3 .1)  can easily be extended to analyze systems with any number of lifting surfaces. This 
extension is accomplished by considering the surfaces in pairs and forming the appropriate influence terms. 
The resulting equation is most easily expressed in this extended form as a summation. Thus, 

(2 .3 .2)  

where n represents the number of surfaces. For the development of LOTS it is convenient to write the equation 
in nondimensional form by normalizing the terms by ijS1. The general induced drag equation can thus be 
written as 

(2 .3 .3)  

As before, the effective lift coefficient of each surface is separated into a component generated by the free 
stream and a thrust-induced component. 

2.4. Thrust-Loss Expression 
When utilizing thrust vectoring to reduce trim drag, some means of accounting for the decrease in the 

available propulsive force needs to be included. This thrust loss arises from the diversion of propulsive thrust 
to generate a trim force. For the current study, this effect is accounted for by adding a penalty term to the 
aerodynamic drag function. This penalty takes the form of the coefficient of thrust loss. Thus, 

The c T ( 1  - cos 6,) term accounts for propulsive losses from the diversion of thrust from the nominal, 
undeflected position. The fraction of thrust-loss term ~ T L  indicates the fraction of this diverted thrust that 
is not recovered through the process of thrust recovery to provide an effective propulsive force. The thrust- 
recovery process is a result of favorable interactions between the jet wake and the aerodynamic circulation 
about the airplane and can significantly reduce the thrust loss associated with thrust vectoring. Experimental 
data indicate that typical values of ~ T L  will be between 0 and 0.5 for moderate deflection angles (6, < 20") 
(Lowry et al. 1957). Additional information on the process of thrust recovery is given in appendix B. 
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2.5. Lagrangian Formulation 
The optimum longitudinal load distribution is defined as the solution to the vertical-trim and moment-trim 

equations yielding the minimum trim drag. As mentioned in the “Introduction,” the rigorous approach to 
determine this distribution would be to employ nonlinear programming techniques. This approach will result 
in the solution with the best performance, but, unfortunately, it is often too burdensome to obtain for many 
applications. 

forms of the trim equations, a relatively simple, closed-form solution (LOTS) can be obtained by using a 
Lagrange formulation as presented by Bryson and Ho (1975). As will be shown in ensuing numerical examples, 
the performance degradation for using this simplified approach is negligible for the conditions of cruising flight. 

The Lagrange formulation involves forming the Hamiltonian H ,  which is the sum of the quadratic 
performance index and the linear equality constraints appended through Lagrange multipliers. For this study, 
the performance index used is the sum of the induced drag equation and thrust-loss equation, and the linear- 
equality constraints are the linearized vertical-trim and moment-trim equations. Thus, H is formed as 

, If one is satisfied with the fidelity provided by the quadratic effective-drag model (eq. (2.3.3)) and linearized 

b 

(2.5.1) 

where the subscripts VT and MT indicate vertical trim and moment trim, respectively. It should be noted 
that by properly reformulating the performance index of H ,  this technique could be applied to other trim 
optimization problems such as minimizing control deflections or achieving a desired body attitude. The partial 
derivatives of H with respect to the control variables and the Lagrange multipliers are equivalent to the gradient 
of the performance index with respect to the control variables while satisfying the trim equations; thus, the 
sufficient conditions for a minimum are that the partial derivatives of H be equal to zero. For LOTS, the 
independent design variables are the surface lift coefficients and the thrust deflection angles. Thus, performing 
the differentiation and setting the derivatives equal to zero give the system of simultaneous linear equations 

(2.5.2) 

where the subscript n denotes the nth lifting surface. When solved, this system yields the linear optimum 
values of the lift coefficients and thrust-vector angle. 

For clarity, solutions for a three-lifting-surface airplane and a two-lifting-surface airplane with thrust 
vectoring will be illustrated in the following sections. The representative drag and nonlinear trim equations 
will be presented for these configurations. The trim equations will then be linearized and LOTS will be formed. 
The effectiveness of the solution will be evaluated by applying LOTS in numerical examples and comparing the 
results with the results obtained using a nonlinear optimization routine and several ad hoc methods currently 
in use. 

3. LOTS for Three-Lifting-Surface Airplane 
Configurations with three lifting surfaces may be attractive for use in general aviation and in transport 

airplanes because of the capability of yielding minimum trim drag at all center-of-gravity locations. To utilize 
this capability it is necessary to do some type of longitudinal load-distribution optimization. This section 

I 

1 describes the development and validation of a simple method for performing the optimization. 

3.1. Development of Solution for Three Lifting Surfaces 
For a three-lifting-surface airplane without thrust vectoring, the general trim and drag equations 

(eqs. (2.1.1), (2.2.1), and (2.3.3)) are applied by setting n = 3 and assuming that 6, = 0. Thus, these 
equations can be written as follows: 
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Vertical trim: 

- CL,l 

CL,2 

CL,3 

A1 

- A2 

(3.1.1) 

Moment trim: 

1 _ h  

cm,o  + w (ecg cos 0 + zcg sin 0 - C T Z ~  

A 
3 

- E { C ~ , j [ c o s ( a  - c j ) ! j  + sin(a - c j )? j ]  + C D , ~ [ C O S ( ~  - cj )? j  - sin(@ - c j ) z j ] }  gj = 0 (3.1.2) 
j = 2  

Drag: 

(3.1.3) 

Here, the subscript 1 refers to the wing, 2 to the aft horizontal tail, and 3 to the canard. If the airplane is in 
cruising flight, it is reasonable to neglect the contributions of drag to the trim equations since the drag forces 
are generally much less than the lift forces and are usually accompanied by significantly shorter moment arms. 
The thrust coefficient terms can be neglected for the same reasons. In addition, it is reasonable to assume that 
the angles 0, c, and a are small, thus allowing sine terms to be approximated by the angle and cosine terms 
by 1. Using these approximations, the trim equations (eqs. (3.1.1) and (3.1.2)) can be written as 

Linearized vertical trim: 
CLJ + CL,232 + CL,333 - w = 0 

A h  

Linearized moment trim: 
Cm,o + WCg - c L , 2 2 2 3 2  - cLl3e3s3 = o 

(3.1.4) 

(3.1.5) 

The trim equations (eqs. (3.1.4) and (3.1.5)) are now linear and can be adjoined with the drag-due-to-lift 
equation (eq. (3.1.3)) to form the Hamiltonian 

Setting the partial derivatives of the Hamiltonian with respect to the independent variables and the Lagrange 
multipliers (CL,1, C L , ~ ,  C L , ~ ,  X I ,  and X 2 )  equal to zero, and arranging the equations such that the influence- 
coefficient matrix will be symmetrical, gives 

2s s u 2s s u & * +$f 3 3  -333ii3 I 
O I  

1 32 3 3  0 

0 - 3 2 7 2  -s32 0 0 

(3.1.7) 

The structure of the influence-coefficient matrix provides an interesting insight into the nature of the 
interactions between surfaces. The influence matrix is composed of only three distinct types of terms. These 
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three types are area terms, tail-volume terms, and aerodynamic-influence terms. With this idea in mind, the 
system of equations can be rewritten in the form 

= 

-Ell E12 E13 31 0 

E12 E22 E23 3 2  v2 

E13 E23 E33 33 h 
31 5 2  33  0 0 

- 0  v2 v3 0 0 

- CL,1 

CL,2 

CL,3 

A1 

- A2 

-1 

Area, 
f t2 Component 

(3.1.8) 

f Span, Taper Sweepof 
ft ratio IICchord, deg 

The area terms are normalized areas. The tail-volume terms are standard measures of the moment- 
generating effectiveness of a trim surface. The influence-coefficent terms Eij are measures of the induced drag 
generated by a surface or the interference drag created between surfaces. It is significant to recognize that the 
method used to obtain these influence coefficients is at the discretion of the implementer; the terms can be 
obtained through engineering judgment, analytical means, or experimental data. This flexibility allows LOTS 
to accommodate the various types of data that may be available during the design and testing processes of an 
airplane. A relatively simple analytical method for estimating the influence terms is presented in appendix C. 

The following numerical example demonstrates the application of LOTS to a three-surface airplane. 

3.2. Numerical Example for Three-Lifting-Surface Airplane 

A three-view drawing of the example airplane and its specifications are shown in figure 2. The first step 
toward forming the solution is to determine the Prandtl and efficiency coefficients, u and e,  respectively. This 
process is detailed in appendix C and the results are as follows: 

0 1  1 a22 = 1.00 - 033 = 1.00 - = 1.00 
e l l  e22 e33 

- a1 2 = 0.203 
e12 e13 e23 

- 013  = 0.102 - 023 = 0.144 

0 nla nla I '?;.4 I 465 13:7 I 0'40 .75 I 25 I 1.8 I 4.32 I Wing I Tail 1 Canard I 22.3 1 10.6 I .75 I 0 1 -.62 1 -6.0 I 
I Center of gravity (with s.m. = - - - - - - - - - - - - - - - - - - - I 0 I -0.15 I 

Figure 2. Three-view drawing and specifications of example three-surface airplane. 
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In this analysis, the coefficients are assumed constant over the range of flight conditions considered; this 
condition results in the solution taking a very simple form as will be seen shortly. In practice, these coefficients 
would vary somewhat as a function of the surface loadings. As these variations are apt to be small over the 
range of usable cruise lift coefficients, the effect should be minimal. The remaining area and tail-volume terms 
are easily obtained, thus allowing the system of simultaneous equations (eq. (3.1.8)) to be formed as follows: 

- 

CL,2 0.00840 0.0348 0.00348 0.248 -1.07 0 

C L , ~  = 0.00547 0.00348 0.0165 0.134 0.802 0 

A 1  1 0.248 0.134 0 0 W 
- 

- A2 - - 0  -1.07 0.802 0 0 -  - Cm,o - w e c g  - 

(3.2.1) 

With all the terms constant in the influence-coefficient matrix constant, the matrix is independent of 
the flight condition. This independence allows the influence-coefficient matrix to be easily inverted without 
knowledge of the flight condition, thus resulting in a simple schedule for the optimum values of CL,1, C L , ~  and 
C L . ~  with respect to induced trim drag. Thus, 

CL,1 = 0.966W - O.O174(Cm,o + m c g )  (3.2.2) 

C L , ~  = 0.0804W + O.432(Cm,o + T E c g )  (3.2.3) 

C L , ~  = 0.107V - 0.671(Cm10 + Wccg) (3.2.4) 

Values are shown in figure 3 of CL,J, C L , ~  and C L , ~  obtained by applying the above control schedule for 
Cm+, = -0.10, a static margin that is 10 percent stable, and W ranging from 0 to 2.0. The fuselage inclination 
and control surface deflections required to produce these lift coefficients are shown in figure 4. These positions 
were obtained through the methods described in appendix A. It is interesting to note that the optimum load for 
the aft tail is downward. Although this result may not be intuitively obvious, it is also not unexpected; previous 
research by Sachs (1978), McGeer and Kroo (1983), Kendall (1984), and others has shown that the optimum 
load distribution may include a negatively loaded trim surface for statically stable two-surface configurations. 

o Wing 
Tail 

A Canard 

I I 

1 2 
-.5 I 

0 
Configuration lift coefficient 

Figure 3. LOTS surface schedule for example three-surface 
airplane with s.m. = 10 percent stable and Cm,o = -0.10. 

lor Angle 
o Fuselage inclination 

Tail incidence 

0) a 
U 

0) 
3 0  

z 

-1 0 
0 .6 1.2 

Configuration lift coefficient 

Figure 4. Fuselage inclination, tail incidence, and canard ele- 
vator angle versus configuration lift coefficient for example 
three-surface airplane with s.m. = 10 percent stable and 
cm,o = -0.10. 

3.3. Validation of Three-Lifting-Surface Solution 
To assess the validity of LOTS as applied to the example three-lifting-surface airplane, a comparison was 

made of the results obtained from LOTS, a nonlinear optimization routine, and two ad hoc methods suggested 

a 



as a simplified means of trimming a three-surface airplane. The nonlinear optimum solution represents the 
theoretical minimum trim drag and thus provides an ideal baseline by which to assess the performance of the 
other solutions. The nonlinear optimization routine used is the direct, sequential-search simplex algorithm 
explained and illustrated by Olsson (1974, 1975). It is extremely reliable and robust in terms of convergence, 
although it suffers from slow convergence in regions of the independent design variables with low gradients of 
the performance index. It can be argued that computer resources are much less expensive than the manpower 
required to supervise other more efficient nonlinear optimization algorithms that need frequent adjustments to 
ensure proper convergence. Therefore, the robustness and reliability of the simplex algorithm make it highly 
desirable to use. The first ad hoc distribution considered was to carry no load on the tail. This method is 
frequently advocated by proponents of canard airplanes who claim that since the aft tail usually contributes 
to trim by producing a down load, the trim drag will be reduced by unloading it. The second ad hoc method 
was to carry equal but opposite loads on the tail and canard. This method was suggested by Kendall (1984) as 
optimum for a three-surface airplane with all surfaces in the same plane and with trim surfaces of equal span. 

The vortex-lattice method (VLM) described by Margason and Lamar (1971) was used to evaluate the trim 
drag of the load distributions as determined by the four trim solutions. The VLM is a relatively sophisticated 
method of determining the lift and induced drag of a multiplane system in uniform, potential flow. The method 
consists of modeling the system with a lattice of   horseshoe^' vortices, that is, applying boundary conditions 
to solve for the strengths of the vortices and using these strengths to determine the forces acting on the 
system. The VLM has been shown to underpredict induced drag slightly; but as long as the paneling scheme 
is unchanged, this underprediction will be in a manner consistent with exact solutions (Feifel 1976). Thus, the 
VLM is highly suitable for comparisons of the same system of aerodynamic surfaces at various loadings. 

Because LOTS trims the airplane according to linearized trim equations, there is a small amount of trim 
error present when this distribution is substituted into the nonlinear trim equations. As will be shown, this 
error is very small and can be neglected for most applications. However, for this study in which the nonlinear 
trim equations were used to obtain the comparison solutions, it was found that this trim error caused load 
distributions obtained from LOTS to sometimes have slightly less trim drag than the theoretical minimum. To 
eliminate this contradiction, it was decided to reduce the trim error of LOTS-obtained distributions to a level 
comparable to that of the other distributions-the sum of the squares of the vertical-trim and moment-trim 
errors less than This reduction was accomplished by constraining one of the surface lift coefficients to 
the value obtained from LOTS and using an iterative search technique to reduce the trim error by varying 
the two remaining surface lift coefficients; in essence, the problem was made determinate around the LOTS 
distribution. It should be realized that when using nonlinear trim conditions, it is necessary to use an iterative 
search technique to obtain the two ad hoc solutions as well. 

Figures 5 and 6 demonstrate the effects of the trim-error reduction for the three-surface airplane at a static 
margin of 10 percent stable and with Cm,o = -0.10. Figure 5 shows the specified lift coefficients before and 
after the trim-error reduction for the wing and canard. (The tail lift coefficient is held constant.) Figure 6 
shows the predicted trim drag before and after the trim-error reduction compared with the results obtained 
from the nonlinear optimization routine. These results are typical; the trim-error reduction resulted in only a 
small deviation from the LOTS distributions. The wing and canard lift coefficients usually moved much less 
than 1 percent from the original value. These very small deviations imply that for most applications, the trim 
error can be neglected. 

As mentioned above, the trim drag obtained through the use of the nonlinear optimization routine is the 
minimum achievable while satisfying the nonlinear trim conditions and thus can serve as a standard for judging 
the other solutions. Figures 7, 8, and 9 show the percent of increase in trim drag over the nonlinear optimum 
solution for the three simplified approaches at various static stability margins and zero-lift pitching moments. 
Figure 7 represents the airplane at a typical cruise condition with a 10-percent-stable static margin and at 
Cm,o = -0.10. Over the range of cruise lift coefficients (0.3 5 w 5 0.9), LOTS is only negligibly less efficient 
than the nonlinear solutions and is clearly superior to the two alternate procedures. In figure 8 the static 
stability margin of the airplane is reduced to neutral stability; again, LOTS performs almost as efficiently as 
the nonlinear solution and much better than the alternate procedures. In figure 9 the static stability margin is 
returned to 10 percent stable, but the zero-lift pitching moment has been increased to -0.20. The trends of the 
two previous figures are repeated, and LOTS performs very favorably. These three combinations of pitching 
moment and static margin serve to demonstrate that although the two ad hoc procedures have regions in which 
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they may yield near-minimum trim drag, only LOTS achieves this minimum over the range of lift coefficients 
studied. Furthermore, the optimum methods (LOTS and the nonlinear optimum) can provide trim-drag savings 
up to 80 percent compared with the ad hoc procedures. 

It is difficult to make a direct comparison of the computational time required to obtain LOTS and 
the nonlinear optimum solution. These times will vary significantly depending on how the solutions are 
implemented. For the current example, one can get an idea of how great this difference can be by considering the 
number of calculations required to arrive at the optimum loading. For LOTS, all that needs to be done to obtain 
the optimum distribution is to substitute the appropriate numbers into equations (3.2.2), (3.2.3), and (3.2.4). 
By comparison, the nonlinear optimization routine used in this study requires about 400 iterations through 
the nonlinear trim equations and the VLM drag analysis routine to converge on the optimum distribution. 
As mentioned before, the direct, sequential-search simplex algorithm used in the nonlinear optimization is not 
necessarily the fastest such algorithm available, but even more efficient algorithms would still have to perform 
numerous iterations. 

4. LOTS for Two-Lifting-Surface, Thrust-Vectoring Airplane 
Although thrust vectoring is usually considered a means for increasing agility or improving short field 

performance, it can also be used for reducing drag in cruising flight. By taking advantage of the redundant 
forces and moments that thrust vectoring provides, it is possible to optimize the longitudinal load distribution 
between the aerodynamic surfaces and the thrust force such that the effective trim drag is less than the trim 
drag without thrust deflection. By treating the thrust force in a manner similar to the force generated by 
an aerodynamic surface, the linear optimum trim solution of the previous section has been used to develop a 
scheduling algorithm that exploits the benefits of thrust vectoring during cruising flight. 

4.1. Development of Solution for Two-Lifting-Surface, Thrust-Vectoring Airplane 
The first step in developing the method is to write the nonlinear trim and drag equations (eqs. (2.1.1), 

(2.2.1), and (2.3.3)) as appropriate for a two-surface airplane with thrust vectoring. This is done by setting 
n = 2 in equations (2,1.1), (2.2,1), and (2.3.3) with the following result: 

Vertical trim: 

h 
2 

[ ( c L , ~  + IC~CTG,)  COS(, - c j  - 8) + c D , j  sin(, - tj - e) ]  Sj + CT sin(6, + 0) - W = o (4.1.1) 
j=l 

Moment trim: 

) Cm,* + w (TCg cos 0 + Zcg sin 8) - CT (2, sin 6, + 5 cos 6, 

- { ( c L , ~  + ~ c ~ c T s , )  [cos(, - t2 ) i i2  + sin(, - t 2 ) 2 2 1  

+ c D , 2  [cos(, - q ) 2 2  - sin(, - c 2 9 2 ] }  5 2  = o (4.1.2) 

Induced drag: 

(4.1.3) 

The 'equations are linearized by making the same approximations regarding cruising flight as made in the 
three-surface solution regarding small angles and drag. However, unlike the three-surface solution, the thrust 
terms with components vertical to the body reference line are retained since there is now independent control 
over its direction and these terms are usually accompanied by long moment arms. These approximations yield 
the following vertical-trim and moment-trim equations: 

Vertical trim: 
(CL,J + k lCT6 , )  + ( C L , 2  + k 2 C T 6 , ) 5 2  + CT(6, + 8) - w = 0 (4.1.4) 
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Moment trim: 

In level flight a and 9 as defined in figure 1 are equal, thus making it possible to approximate the fuselage 
inclination angle by subtracting the incidence angle between the wing and fuselage ( 2 1 )  from the ratio of the 
wing lift coefficient ( C L , ~ )  to the linear lift-curve slope (CL,.~). That is, 

With this relati 

Vertical trim: 

n, the v rtical-trim equation can now be written in the final linearized form as follows: 

The moment-trim equation is expressed in the necessary form by grouping the thrust-dependent terms: 

Moment trim: 

Cm,o - CT% - C~,22232 - S,CT (2, + k22232) + T E c g  = 0 

(4.1.6) 

(4.1.7) 

(4.1.8) 

In addition to the induced drag of the aerodynamic surfaces, the cost function must include the thrust-loss 
term to account for the propulsive force lost because of vectoring for trim. Adding the thrust-loss coefficient 
to the drag-due-to-lift equation gives the effective drag penalty: 

Using equations (4.1.7), (4.1.8), and (4.1.9) to form the Hamiltonian and setting the partial derivatives of H 
with respect to CL,J, C L J ,  6,, X i ,  and A2 equal to zero gives a system of five simultaneous equations that can 
be solved to find the optimum values of CL,J ,  C L , ~ ,  and 6, based on the linearized equations. Thus, 

(4.1.10) 
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where 

h 

G 2  = S2 

G3 = k l  + k252 + 1 
A h  

G~ = -s2e2 
G 5  = (2, + k25222) 

Unlike the three-surface solution (eq. (4.1.7)), the influence-coefficient matrix for this thrust-vectoring- 
equipped airplane contains the thrust coefficient. Because the thrust coefficient depends on the flight condition, 
the influence matrix is also dependent on the flight condition. This dependence makes it inconvenient to invert 
the influence matrix (as was shown for the three-surface solution) until the value of the thrust coefficient has 
been obtained or estimated. 

The following example demonstrates LOTS for a typical two-surface airplane with thrust vectoring. 
4.2. Numerical Example for Two-Lifting-Surface, Thrust-Vectoring Airplane 

A three-view drawing of the example airplane and its relevant specifications are shown in figure 10. Estimates 
of the aerodynamic efficiency and influence terms were obtained using the method described in appendix C 
and are given as follows: 

The lift-curve slope of the wing was estimated using VLM analysis to be 3.46 per radian. In addition to the 
aerodynamic influence terms and lift-curve slope, estimates need to be obtained of the thrust/aerodynamic 
interaction terms (ki and ~ T L ) .  Analytical methods for estimating these terms are unknown to the authors, 
and little applicable experimental data have been published. To simplify the demonstration of LOTS, the 
values of k1 and k2 used in this example are zero. For the example airplane where the separation between the 
wing and the jet nozzle is significant and little interaction is expected, the actual value of k l  is probably near 
zero. However, the tail surface of this airplane is located very near the jet nozzle and significant interaction 
may occur, thus making the actual value of k2 likely to be nonzero. To bound the effects of thrust, recovery 
values of 0, 0.5, and 1.0 were used for ~ T L .  Experimental data from Lowry et al. (1957) indicate that a value 
of ~ T L  between 0.5 and 0 may be expected in practice. With all the terms in the influence matrix in hand, the 

I 
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solution can be written as 

- - CL,1 - 0.180 0.0371 0 1.0 + 0 .289C~ 0 

CL,2 0.0371 0.0570 0 0.220 -0.346 

cT6v = 0 0 PTLICT 1.0 -1.96 

A1 1.0 + 0 .289C~ 0.220 1 .o 0 0 

- A2 - L 0 -0.346 -1.96C~ 0 0 

Component 

- 1  

2 Area, Span, Taper Sweepof 
ft2 ft ratio 114-chord, deg 

(4.2.1) 

Nozzle 

As pointed out in the previous section, the presence of CT in the influence-coefficient matrix of equa- 
tion (4.2.1) makes the inversion of the influence matrix impractical until CT has been estimated or measured 
for a given throttle setting and flight condition. An estimate of CT can be obtained by using standard drag- 
estimation techniques and assuming that CT = CD. The values of CL,J, C L J ,  and 6, obtained from the above 
solution are shown in figures 11 and 12 for = -0.10, a static margin of 3 percent stable, ~ T L  = 0.5, and 
a Mach number ranging from 0.3 to 0.9. 

nla n/a 1 n/a nla 0 1.8 

I 

Center of gravity (with s.m. = 3%) - - - - - - - - - - - - - - - - - - - 

I- I\ 

-0.056 0 

F --4l 

n la 1 C%5 I 1.4 1 20 I ‘ i i .1  1 37’5 14.7 I 0‘35 .46 I 40 
Wing I Tail 

Figure 10. Three-view drawing and specifications of example two-surface, thrust-vectoring airplane. 

4.3. Validation of Two-Lifting-Surface, Thrust-Vectoring Solution 
To assess the validity of LOTS as applied to the example two-lifting-surface, thrust-vectoring airplane, a 

study similar to the one used to validate the three-surface solution was conducted. An investigation was made 
of the results obtained from LOTS, a nonlinear optimization routine, and trimming the airplane without using 
the thrust-vectoring capability (6, = 0). As in the previous section, the nonlinear optimization routine used 
is the direct, sequential-search simplex algorithm described by Olsson (1974, 1975), and the VLM was used 
to evaluate the effective trim drag of the various load distributions. It should be noted that the VLM routine 
used in this comparison was incapable of estimating the effects of supercirculation. Consequently, any changes 
in aerodynamic lift due to thrust vectoring were not modeled and thrust recovery was included simply by 
selecting, a priori, a percentage of thrust that was recovered. A trim-error-reduction routine, identical to the 
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one described in the previous section, was included in the implementation of the LOTS solution. As before, 
this trim-error reduction had only a small effect on the LOTS distributions. 

o Wing 
0 Tail -I 

0 

- I '  ' ' I I ' ' ' I ' ' 
.3 .4 .5 .6 .7 .8 .9 

Mach number 

'r 

Figure 11. LOTS surface schedule for example two-surface, 
thrust-vectoring airplane with ~ T L  = 0.5 for wing and 
tail. 

Figure 12. LOTS surface schedule for example two-surface, 
thrust-vectoring airplane with ~ T L  = 0.5 for jet. 

As was done in the previous section, the distributions obtained from the nonlinear optimization routine, 
having the lowest achievable effective trim drag, were used as a baseline to evaluate the other techniques. 
Figures 13, 14, and 15 show the percent of increase in effective trim drag compared with the nonlinear optimum 
solution for LOTS when trimming while holding 6, to zero with ~ T L  equal to 0.0, 0.5, and 1.0, respectively. As 
can be seen from the figures, LOTS yields nearly the same results as the nonlinear optimum solution over the 
range of flight conditions and ~ T L  studied. For a Mach number M from approximately 0.4 to 0.5, neither of 
the optimum methods results in a significant trim-drag reduction compared with trimming without using the 
thrust vectoring. This absence of savings is because the optimum thrust deflection angle in this Mach number 
range is nearly zero, and hence little reduction is possible. 

It is interesting to note the sensitivity of the effective trim drag to the amount of thrust recovery. When 
no thrust is lost ( ~ T L  = 0), the optimum solutions predict trim-drag reductions of over 70 percent compared 
with holding 6, equal to zero for the typical cruise Mach number region (0.8 to 0.9). However, when half the 
deflected thrust component is lost ( ~ T L  = 0.5), the reduction in effective trim drag drops to around 5 percent. 
When none of the deflected thrust is recovered ( ~ T L  = 1.0), the reduction is only 2 percent. It appears that 
to use thrust vectoring as a viable means of reducing trim drag, the design should recover a high percentage 
of the deflected thrust. 

5. Other Potential Applications of LOTS 

testing and operations. 
The simplicity, speed, and closed-form nature of LOTS also make it suited for applications in airplane 

5.1. Experimental Testing 
Frequently, the procedure used for testing models in a wind tunnel is to fix the control effectors while 

sweeping through a range of angle of attack or sideslip. For conventional airplanes (i.e., two lifting surfaces and 
no thrust vectoring), this procedure will generally result in the collection of data from which the characteristics 
of the trimmed configuration can be easily and accurately interpolated. However, because of the redundancy 
of forces and moments, this technique may not result in such data for airplanes with multiple lifting surfaces 
or propulsive control effectors. In order to collect data that reflect the optimum trimmed aerodynamics of the 
model, it is necessary to set the surfaces and effectors in the optimum positions for a given test condition. 
LOTS provides a simple means of calculating the optimum lift coefficients of the surfaces, and the required 
surface positions can be estimated using the methods provided in appendix B. Ideally, this entire scheduling 
process would be automated on a programmable calculator or personal computer, thus placing little additional 
burden on the experimenter. 
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Figure 13. Percent of increase in effective trim drag 
over nonlinear optimum solution for example two- 
surface, thrust-vectoring airplane with ~ T L  = 0. 
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Figure 14. Percent of increase in effective trim drag 
over nonlinear optimum solution for example two- 
surface, thrust-vectoring airplane with ~ T L  = 0.5. 
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Figure 15. Percent of increase in effective trim drag 
over nonlinear optimum solution for example twc- 
surface, thrust-vectoring airplane with ~ T L  = 1.0. 

5.2. In-Flight Operations 

The speed with which the minimum trim-drag lift distribution can be found using LOTS could make in-flight 
trim optimization a possibility. Once the solution has been set up for a given configuration, all that is needed 
to determine the optimum distribution is the current flight condition. These data could be obtained from the 
air data system, the throttle position, and an estimate of the gross weight and center-of-gravity location. The 
solution of the set of simultaneous equations in real time should be well within the capability of currently 
available flight computers. The entire process could be implemented as part of the control system, thus making 
the optimization process transparent to the flight crew. 

6.  Concluding Remarks 
The research described in this paper investigates a closed-form trim solution yielding minimum trim drag. 

The solution known as the linear optimum trim solution (LOTS) provides designers a technique to trim, 
with minimum trim drag, redundantly controlled airplanes in the conceptual and preliminary design stages 
with rather straightforward analytical formulas. Potential applications in experimental testing and in-flight 
operations are also briefly discussed. 

16 



The benefits of LOTS and the optimum longitudinal load distribution to produce minimum drag in general 
are investigated by trimming vortex-lattice representations of a three-surface airplane and a two-surface, thrust- 
vectoring airplane using LOTS, a nonlinear optimization routine, and ad hoc techniques. This investigation 
shows that the performance of LOTS is insignificantly less than the nonlinear optimum over the range of 
conditions studied. Furthermore, the optimum trim solutions have been shown to provide trim-drag reductions 
up to 80 percent compared with the ad hoc techniques for the example three-surface airplane and 70 percent 
for the thrust-vectoring airplane. These trim-drag savings are on the order of 0.5 to 1.0 percent of the total 
airplane drag. 

I NASA Langley Research Center 
Hampton, VA 23665-5225 
March 1, 1989 
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Appendix A 

Surface Deflections 

After the optimum longitudinal load distribution has been determined, it may be necessary to estimate 
the control surface deflections and incidence angles required to generate the specified lifts. There are many 
methods available to accomplish this task and one is free to select a method consistent with his objectives. 
The method presented in this appendix was chosen for its relative simplicity. Its use should be restricted to 
lift coefficients where no significant flow separation is expected. 

The lift coefficient of an aerodynamic surface (Datcom 1978) can be expressed as 

where 

CL, lift-curve slope 

i 

a 

AaoL 

incidence angle between zero-lift line and body reference line 

angle of attack of body reference line 

change in i due to deflection of simple hinged control flap 

€ local downwash angle 

By estimating the appropriate dependent variables and then choosing the proper value for the independent 
variable, equation ( A l )  can be used for scheduling most conventional surfaces. For instance, if the incidence 
of the main wing is fixed and if the optimum position of any camber-changing devices on the wing has been 
determined, a will be the independent variable used to achieve the desired wing lift coefficient. For trim 
surfaces with variable incidence, i will be the independent variable used to obtain the desired coefficient; and 
for surfaces with a hinged control flap, AaoL will be used. Procedures for estimating the dependent terms are 
as follows: 

The term CL, can be approximated by using the following relation from Nicolai (1975): 

CL, = 
t a n 2 ~ ~  ' I 2  

2 + [4 + A2P2 (1 + 72-91 
where 

A aspect ratio 

~ 

Atlc  sweep of maximum thickness line 

I 

I The average downwash angle e at a surface can be found using the following methods (Datcom 1978). The 
term €2, which represents the downwash at the aft tail due to the wing (the canard contribution is negligible), 
is given as 
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where 
1.19 

!%L = -4.44 [KAK~RKH(COS A1/4)'/2] 
aa 

10 - 3TR 
KTR- 

and 

h t  

4 
TR taper ratio of wing 

vertical separation of wing and aft tail 

horizontal separation of wing and aft tail 

aeff = a + E + i - AaoLl 

A114 sweep of l/Cchord line 

tail, the canard as the wing, and calculating &3/& as 
The method above can be adapted to estimate the downwash at the wing €1 by treating the wing as the aft 

where Sc/Sw is the canard area divided by the wing area. 

(1949) can be used. The effect of the wing on the canard €3 is given as 
To estimate the upwash produced at the canard by the wing, the following method by Perkins and Hage 

where 
ae2 (+-2) 
- = O.g(O.722) aa 

C, is the horizontal separation of the canard and wing, and c is the length of the mean aerodynamic chord. 
Because of the coupling of aeff,l and aeff ,3 ,  several iterations of the scheduling process may be required to 

The term AaoL can be approximated by using the following relations from Datcom (1978): 
converge on a satisfactory solution. 

where 

C c 2  
Cia 

C,/C 

lift effectiveness of plain trailing-edge flap, C 1  + C 2  

= Flap chord/Total wing chord 

+ C 3  (d) 

0.5991t Cl = 1.242 -7 
12.44t c 2  = 12.98 + 7 
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0.6497t (73 = -10.53 -7 

K' 

t l c  
6f flap deflection, rad 

flap-effectiveness factor at large deflections 

= Wing thicknesslwing chord 

and I 

where 

K' = K1 + K26f + K36; + K46j 

Cf K1 = 1.011 + 0.1740 - 
C 

Cf K2 = 0.002053 - 0.02069 - 
C 

Cf K3 = 0.0004845 + 0.00002479 - 
C 

7 Cf K4 = 5.688 x - 1.217 x 10- - 
C 
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Appendix B 
Analytical Approximations for Effects of Supercirculation 

Experimental studies have shown that the deflected jet of a thrust-vectoring airplane can significantly alter 
the flow field about the airplane. The name given to this alteration is supercirculation. Supercirculation has 
two primary effects-induced lift and thrust recovery-as clarified in the subsequent discussion. 

Induced Lift 
Induced lift is a change in the lift produced by the aerodynamic surfaces of an airplane due to the presence 

of thrust vectoring. The deflected jet acts in a manner similar to a jet flap, that is, altering the circulation 
about the surfaces and thus altering the amount of lift produced. The induced lift coefficient CL,r was modeled 
as a function of thrust coefficient CT and thrust deflection angle 6,. Figure B1 shows thrust deflection angle 
versus normalized CT (Lowry et al. 1957). This figure indicates that CL,r can be modeled as 

where k is a constant depending on surface and nozzle geometry factors. 

Thrust Recovery 
Thrust recovery is the fraction of deflected thrust that is eventually recovered to provide an effective thrust 

component. The term “thrust recovery” is somewhat misleading; the process that actually takes place is a 
reduction in induced drag. This reduction is due primarily to an upwash field created in front of the surfaces 
of the airplane by the deflected jet. Figure B2 (Capone 1974) shows the effect of thrust deflection on the drag 
characteristics of an airfoil. The figure shows that increasing the thrust deflection angle decreases the drag 
coefficient. With the process of thrust recovery in mind, the model for effective thrust coefficient becomes 

where ~ T R  is the fraction of thrust recovered. 

1 . 2 r  

c c 
0 
aJ 
-I 

+ 
‘T 

0 + 
L 
Ai 

0 

.8 r 

.02 .04 .06 .08 .10 .12 0 

CD 

Figure B1. Supercirculation lift model. Figure B2. Effect of nozzle deflection on drag characteristics. 

Since in this analysis we are interested in the lost thrust and not in the effective thrust, we form the relation 

M = 0.7; CT = 0.125. 

for the thrust-loss coefficient as 

where ~ T L  = 1 - ~ T R  and is the fraction of thrust loss. Experimental data presented by Lowry et al. (1957) 
indicate that between 50 to 100 percent of the deflected thrust can be recovered at low-to-moderate thrust 
deflection angles (< 20”); hence, ~ T L  will generally have a value between 0 and 0.5. 
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Appendix C 
A Technique for Estimating e and o 

Before the linear optimum trim solution can be implemented, estimates of the efficiency factors e and the 
Prandtl coefficients u must be obtained. The methods used to obtain these coefficients are independent of the 
linear optimum solution-the implementer is free to use any applicable method, be it analytical or experimental. 
The following equations provide a simple analytical means for obtaining these coefficients. 

The e j j  terms can be estimated using figure C1 to obtain the vortex-induced drag factor 6 for surface i 
(Torenbeek 1982) and the relation e = 1/(1+ 6). 

According to Butler (1983), the e j k  terms can be written as 

and the Ojjk terms can be estimated as 

where 

b, smaller of two spans 
b, larger of two spans 

g vertical gap between surfaces 

Inspection of the above relation reveals that Ujk = ujkj and ujj = 1. 
Rather than using the above equations to determine the efficiency factors and Prandtl coefficients of the 

example airplane in sections 3 and 4, the VLM described in section 3 was utilized. By using the VLM 
to determine both the influence coefficients and the trim drag of the configurations, a potential source of 
disagreement was eliminated. The results from the VLM were compared with the results obtained from the 
equations above and were found to be nearly identical. The application of the VLM to find the influence 
coefficients of the three-surface airplane is as follows. By analyzing the surfaces of the example airplane 
individually and in pairs, estimates of the aerodynamic influence terms were obtained directly. 

From the quadratic model of drag due to lift (eq. (3.1.3)), 

and 

Hence, the E l l  term of the influence matrix in equation (3.1.8) can be found by 

where c D , i , J l  is the induced drag coefficient estimated by the VLM for the isolated wing generating the lift 
coefficient C L , J ~ .  Similarly, 
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The Ejk terms (where j # I C )  were found by taking the difference in induced drag between the surfaces tested 
in pairs and those tested individually and using the relation 

The influence coefficients were determined in an identical manner for the example thrust-vectoring airplane. 

A aspect ratio 
1.r. surface taper ratio 
p Prandtl's compressibility correction, a 
A sweep angle of surface quarter-chord line 

A p  corrected sweep angle (tan A D  = tan +/4/p), deg 

Figure C1. The vortex-induced drag factor 6 taken from page 494 of Torenbeek (1982). 
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