SPACECRAFT CHARGING

N. JOHN STEVENS TRW CHAIRMAN

GENERAL COMMENTS

- SPACECRAFT CHARGING INTERACTIONS COUPLE ENVIRONMENT TO SYSTEM
 PERFORMANCE THROUGH MATERIALS
- TECHNOLOGY IS STILL DEVELOPING
 - CONCERN FOR BOTH ENVIRONMENT-DRIVEN & OPERATING SYSTEM DRIVEN INTERACTIONS
- MEETING ADDRESSED ENVIRONMENT BUT LACKED SPECIFIC MISSION REQUIREMENTS
 - REQUIRE SYSTEM DEFINITION TO PRIORITIZE INTERACTIONS
 - RECOMMEND SDI BRIEF SYSTEMS REQUIREMENTS
- NEED ADDITIONAL GROUP SUPPORT WORK TO SUPPLEMENT FLIGHT EXPERIMENTS

MATERIAL PROPERTY CHANGES WITH ELECTRICAL STRESS

AND TIME IN SPACE ENVIRONMENT

- WHY PROBLEM:
 - STRESS ENHANCES AGING
 - RADIATION INDUCED INTERFACE FAILURES:
 - CURRENT SPACECRAFT BEHAVIOR STARTING TO BE UNDERSTOOD BUT MATERIALS AND OPERATING CONDITIONS CHANGING
 - LIFETIME EXTENDED
- GROUND TEST/THEORY CORRELATION:
 - DIELECTRIC COMMUNITY WORKING
 - SHORT TERM TESTING WITHOUT SPACE ENVIRONMENT
- WHAT IS STILL NEEDED

- MATERIALS TESTING TO ESTABLISH RANGE OF INTERACTION

MATERIAL PROPERTY CHANGES WITH ELECTRICAL STRESS

AND TIME IN SPACE ENVIRONMENT (CONTINUED)

- WHY REQUIRE SPACE FLIGHT:
 - NEED SPACE ENVIRONMENT TO VERIFY BEHAVIOR
 - HIGH ATTITUDES OR POLAR FOR RADIATION
 - TIME IN ENVIRONMENT
- SUPPORTING WORK:
 - DIELECTRIC COMMUNITY
 - NOT DIRECTED TOWARDS SPACE APPLICATIONS

CANDIDATE EXPERIMENTS

- MATERIAL PROPERTY CHANGES WITH ELECTRICAL STRESS AND TIME IN SPACE ENVIRONMENT
- HIGH VOLTAGE SYSTEM INTERACTIONS
- THIN-FILM COATING INTERACTIONS
- DISCHARGE CHARACTERIZATION
- "TAILORED" MATERIALS
- HEAVY STRESSED POWER SYSTEM DIELECTRICS
- PULSED POWER SYSTEM INTERACTIONS
- COMPOSITE INTERNAL NOISE GENERATION
- ACTIVE CHARGE CONTROL
- "RADIATION BELT" CHARGING

RADIATION BELT CHARGING BY

ENERGETIC PROTONS AND ELECTRONS

- WHY PROBLEM:
 - UPSET SEEMS TO OCCUR ON GPS
 - NO CHARGING MODEL EVALUATION
- GROUND TEST/THEORY CORRELATION
 SHOULD BE ABLE TO TREAT BUT HASN'T BEEN YET
- WHAT IS STILL NEEDED: - EVALUATION OF EFFECT OF ENVIRONMENT
- WHY REQUIRE SPACE FLIGHT:
 - NEED ENVIRONMENT AND TIME IN SPACE

ACTIVE CHARGE CONTROL INTERACTIONS

• WHY PROBLEM:

- THIS IS A CHARGING MITIGATION TECHNIQUE, BUT IT CAN DEGRADE COATINGS BY BOMBARDMENT TIME EFFECT

- GROUND TEST/THEORY CORRELATION:
 - SHORT TERM TESTING
 - MODEL EXISTS BUT NOT VALIDATED
- WHY REQUIRE SPACE FLIGHT:
 - LONG TERM STUDY IN SPACE WITHOUT WALLS
- SUPPORTING WORK:
 - AFGL CHARGE CONTROL SYSTEM (XENON)
 - IAPS (MERCURY)

PULSED POWER INTERACTION-SYSTEM DYNAMIC RESPONSE TO <u>1 TO 100/SEC POWER PULSE</u>

- WHY PROBLEM:
 - BEHAVIOR IN PLASMA UNCERTAIN
 - AFFECTS SYSTEM PERFORMANCE
 - FLASHOVER
- GROUND TEST/THEORY CORRELATION:
 - THEORY BEING DEVELOPED
- WHAT IS STILL NEEDED:
 - THEORY AND TESTS DEMONSTRATION
- WHY REQUIRE SPACE FLIGHT:
 - NEED SPACE ENVIRONMENT
 - RADIATION ENVIRONMENT IMPORTANT
- SUPPORTING WORK:
 - SPEAR II
 - TEXAS TECH AND MAXWELL (TESTING)

NOISE GENERATED IN COMPOSITES

(SPACE INDUCED CHARGING COUPLED WITH RADIATION TO GENERATE NOISE IN MATERIALS)

- WHY PROBLEM:
 - RF NOISE CAN COUPLE INTO COMMUNICATIONS AND SENSORS
- GROUND TEST/THEORY CORRELATION:
 - MEASURE RF LEVELS IN SMALL SAMPLES UNDER ELECTRICAL STRESS AND RADIATION
 - THEORY ADEQUATE BUT NUMBER OF PULSES UNKNOWN
- WHY REQUIRE SPACE FLIGHT:
 - NEED SPACE FLIGHT ENVIRONMENT
 - AURORAL OR HIGH ALTITUDE
 - CAN BE ADDED TO EXISTING S/C HAVING RF DETECTION SYSTEMS

HEAVY STRESSED POWER SYSTEM DIELECTRIC (SDI APPLICATIONS UNDER HIGH VOLTAGE AND LARGE CURRENTS)

• WHY PROBLEM:

- STRONG ELECTRICAL STRESS AND INDUCED MAGNETIC FIELD REDUCE BREAKDOWN THRESHOLDS

- GROUND TEST/THEORY CORRELATION: - COMPONENTS UNDER STUDY
- WHAT IS STILL NEEDED:
 - COMBINED SYSTEM EFFECTS
 - SPACE ENVIRONMENT DEMONSTRATION
- WHY REQUIRE SPACE FLIGHT:
 - TOTAL SPACE ENVIRONMENT EFFECT
 - TIME IN SPACE

SYSTEM INTERACTIONS

- SCOPE:
 - HIGH VOLTAGE
 - = HIGH VOLTAGE SOLAR ARRAYS
 - = STRUCTURE COLLECTION IN PLASMAS
 - = SCALING LAWS FOR SIZE, VOLTAGE, POWER FREQUENCY
 - = SHEATH EFFECTS
- · WHY PROBLEM:
 - SYSTEM FLOATS ELECTRICALLY IN PLASMA ENVIRONMENT
 - BREAKDOWNS IN HIGH VOLTAGE SYSTEMS
- GROUND TEST/THEORY CORRELATION:
 SMALL SCALE SAMPLE CORRELATES WITH THEORY
- WHAT IS STILL NEEDED:
 SIZE, VOLTAGE, POWER, FREQUENCY SCALING
- WHY REQUIRE SPACE FLIGHT:
 - NEED COMPLETE SPACE ENVIRONMENT - CAN'T SIMULATE ON GROUND
- * SUPPORTING WORK:
 - GROUND SUPPORT WORK
 - JAPANESE SPACE EXPERIMENT

THIN FILM COATING-STABILITY OF THIN-FILM OPTICAL AND ELECTRICAL COATINGS IN SPACE ENVIRONMENT

· WHY PROBLEM:

- COATING APPLIED FOR SPECIFIC OPTICAL OR ELECTRICAL PURPOSE SPACE --

- SPACE
 - SPACE CHARGING INTERACTION COUPLED WITH SPUTTERING OR CONTAMINATION MAY DESTROY COATING CHARACTERISTICS
- GROUND TEST/THEORY CORRELATION:
 - SHORT TERM TESTING
 - FLIGHT DATA NOT INSTRUMENTED FOR DETAILED EXAMINATION
- WHAT IS STILL NEEDED:
 IDENTIFICATION OF COATINGS
- WHY REQUIRE SPACE FLIGHT:
 NEED SPACE ENVIRONMENT

DISCHARGE CHARACTERIZATION

· SOURCES:

- WHAT ARE CONDITIONS FOR DISCHARGE INITIATION

· CHARACTER:

- FREQUENCY, AMPLITUDES, REP RATE, TRANSFER FUNCTION, AND CHANGES WITH TIME IN SPACE

- WHY PROBLEM:
 - PROTECTION OF SYSTEM CIRCUITS DEPENDS ON KNOWLEDGE OF DISCHARGES
- GROUND TEST/THEORY CORRELATION:
 - DEDUCE DISCHARGE BEHAVIOR IN SPACE
 - CHARACTERISTICS NOT REPEATABLE
- WHAT IS STILL NEEDED:
 - THEORY AND TEST CORRELATION
- WHY REQUIRE SPACE FLIGHT:
 - NEED TOTAL ENVIRONMENT AND SPACECRAFT CONFIGURATIONS

"TAILORED" MATERIALS

SCOPE:

- MATERIALS DEVELOPED FOR PROPERTIES TO MINIMIZE CHARGING LEVELS - CONDUCTIVITIES IN RANGE 10⁻⁸ TO 10⁻¹⁰ S/M⁻²

- WHY PROBLEM:
 - CAN MITIGATE CHARGING CONCERNS
- GROUND TEST/THEORY CORRELATION:
 QUASI-CONDUCTIVE MATERIALS UNDER DEVELOPMENT
- WHAT IS STILL NEEDED:
 - BETTER MATERIALS FOR THIS APPLICATION
 - DEMONSTRATE STABILITY IN SPACE ENVIRONMENT
- WHY REQUIRE SPACE FLIGHT:
 - DEMONSTRATE BEHAVIOR IN SPACE ENVIRONMENT
- SUPPORTING WORK:
 - GSFC
 - VIRGINIA TECH

SUMMARY

- IDENTIFIED INTERACTIONS THAT WOULD AFFECT SYSTEM PERFORMANCE
- BETTER DEFINITION OF SYSTEM/MISSIONS REQUIRED
- GENERAL APPROACH FOR THIS AREA:
 - SMALL SCALE GROUND TESTS
 - MODELING OF INTERACTION
 - UNDERSTANDING
 - SCALING
 - FLIGHT VERIFICATION TEST