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Abstract

Viscous, axisymmetric vortex rings are investigated numerically by solving the in-

compressible Navier-Stokes equations using a spectral method designed for this type

of flow. The results presented are axisymmetric, but the method is developed to be

naturally extended to three dimensions. The spectral method relies on divergence-

free basis functions. The basis functions are formed in spherical coordinates using

Vector Spherical Harmonics in the angular directions, and Jacobi polynomials to-

gether with a mapping in the radial direction. Simulations are performed of a single

ring over a wide range of Reynolds numbers (Re = r/_,), 0.001 _< .Re <_ 1000, and

of two interacting rings. At large times, regardless of the early history of the vortex

ring, it is observed that the flow approaches a Stokes solution that depends only on

the total hydrodynamic impulse, which is conserved for all time. At small times,

from an infinitely thin ring, the propagation speeds of vortex rings of varying Re

are computed and comparisons are made with the asymptotic theory by Saffman.

Our results are in agreement with the theory; furthermore, the error is found to be

smaller than Saffman's own estimate by a factor utX/-@--_ (at least for Re = 0). The

error also decreases with increasing Re at fixed core-to-ring radius ratio, and ap-

pears to be independent of Re as Re ---* oe. Following a single ring, with Re = 500,

the vorticity contours indicate shedding of vorticity into the wake and a settling

of an initially circular core to a more elliptical shape, similar to Norbury's steady

inviscid vortices. Finally, we consider the case of "leapfrogging" vortex rings with

/_e = 1000. The results show severe straining of the inner vortex core in the first

pass and merging of the two cores during the second pass.
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Chapter 1

Introduction

I.I Review of Literature

Vortex structures are often observed in complex flows, and as Helmholtz vortex

laws dictate for unbounded flow, a vortex line must close upon itself. Topologi-

cally, the most simple three-dimensional structure is a vortex ring. This problem
has fascinated engineers, scientists, physicists and mathematicians alike for over

one hundred years. Among the first theoretical studies were the works of Kelvin

(Thomson 1867) and J.J. Thomson (1883) who investigated vortex rings as candi-

dates for the fundamental structure of atoms. In an appendix in which Helraholtz'

paper is translated to English, Kelvin (1867) gave (without proof) the well known

formula for the velocity of translation of a thin vortex ring having uniform vorticity

(w/y = constant, where w is the vorticity and y is the distance from the axis of

symmetry). The propagation speed has a logarithmic dependence on core radius

such that the ring speed is finite for a finite core radius, and in the limit of zero

core radius, the ring speed is infinite. This result was later verified by Hicks (1885)

and Gray (1914). It was then extended to a viscous vortex ring by Tung and Ting

(1967) and derived by different means by Saffman (1970) (where he discovered a

numerical error in the results of Tung and Ting ). In the present work, Saffman's

expression is verified and extended to higher order numerically. Furthermore, the

effect of Reynolds number is quantified.
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A classical view of vortex rings is given in Lamb (1945), Prandtl & Tietjens

(1934), Sommerfeld (1950) and Batehelor (1967). Based on inviscid theory, a circu-

lar core of uniform vorticity travels under its own induced velocity as predicted by

Kelvin. Furthermore, surrounding the vortex core and carried with it is a bubble

of irrotational fluid which extends to the axis of symmetry unless the core-to-ring

radius is smaller than about 0.01. The role which viscosity plays in the real flow

was perhaps first observed by Reynolds (1876) where he states that "... they are

continually adding to their bulk water taken up from that which surrounds them
and with which their forward momentum has to be shared."

Vortex rings are experimentally generated by forcing a slug of fluid through a

nozzle with a sharp lip (Maxworthy, 1977, Didden, 1979) or through a hole in a

rigid wall (Glezer, 1981). Vorticity generated along the walls separates from the

trailing edge and spirals into a vortex ring. By injecting either smoke into air, or

dye into water at the lip, the ring is made visible through streaklines (1964 Mag-

arvey & MacLatchy). This flow visualization technique became widely publicized

through the huge smoke rings generated on the Camel cigarettes billboard in Times

Square in New York. As pointed out by Magarvey & MacLatchy (1964) and oth-

ers (Maxworthy, 1972), interpretation of the dye requires caution since the flow is

viscous and the vorticity diffuses much more quickly than the dye. For example, a

streakline can show a spirM structure, while the corresponding vorticity distribution
is a smooth Gaussian.

A vortex ring is characterized by the ring radius, translational velocity, and the

circulation. In an experiment, we must relate the parameters associated with the

apparatus (the nozzle diameter, velocity history of the piston, and stroke length)

to those of the ring. This subject is described by Didden (1979) where he exam-
ines detailed velocity measurements of the flow at the nozzle exit and relates this

to the final circulation. Furthermore, Didden shows that the starting process is

strongly dependent on secondary effects such as the vorticity of opposite sign which
is generated on the outside of the nozzle.

Once the laminar sheet of vorticity leaves the nozzle, and spirals into a vortex

ring, several situations axe possible depending on the Reynolds number (Maxworthy,

1972). For Reynolds numbers less than around 600 (based on initial translation

velocity and maximum bubble diameter), a stable, laminar vortex results. For

Reynolds numbers greater than 600, azimuthal waves develop, as first demonstrated

by Krutzsch (1939) and later observed by Widnall & Sullivan (1973), Liess & Didden

(1976), and Maxworthy (1972, 1977) and numerically by I(nio _z Ghoniem (1988)

with an inviscid vortex method. If the Reynolds number is greater than around

1000, the waves grow to amplitude where they break, resulting in turbulent flow.

After some period of time a new stable ring emerges. This process was occasionally

found to repeat itself as implied by I(rutzsch, and then later reported by Brasseur

(1985). Among the unanswered questions are the effects of viscosity and swirl on the

instabilities (Saffman, 1978). Fully turbulent flow was investigated by Kovasznay,

Fujita, Lee (1973) and later by Glezer (1981), who fully exploited the similarity of

the flow resulting from Reynolds number invariance.
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Three dimensional instabilities and the resulting turbulent vortex rings de-

scribed above are beyond the scope of the studies considered here, as the results we

will present are for axisymmetric rings. The numerical method, however, is natu-

rally extended to three dimensions and will enable three dimensional effects to be

studied at moderate Reynolds numbers in future work.

Because of the inherent unsteadiness of vortex rings, both temporally and spa-

tially, quantitative measurement of the time-dependent vorticity and velocity fields

has presented challenges to experimentalists. Widnall _ Sullivan (1973) presented

the first measurements of vorticity distributions at a single time in the evolution.

Similar measurements were also shown by Ma.xworthy (1977). Other experimental

results by Sallet& Widmayer (1974) give the time dependent ring velocity, ring

diameter, core diameter and circulation. Maxworthy (1972) presents a model for

the behavior of viscous stable rings. He proposes that, in contrast to the classical

models, the vorticity is distributed throughout the bubble of fluid carried with the

vortex core, and furthermore, the bubble shape grows in a self-similar fashion. The

external irrotational fluid flows past the bubble, and through viscous diffusion a

thin layer mixes with the vorticity in the bubble. The total pressure in the thin

layer is reduced, and fluid is therefore entrained into the rear of the bubble. In order

for the model to be dynamically consistent, he argues that vorficity is continually

being shed into the wake. In our simulations, we show that there is indeed a wake

of weak vorticity continually being shed.

It is natural to look for steady inviscid solutions (in the frame of reference

traveling with the ring). A very early result by Hill (1894) gave such a solution

with tmiform vorficity (w/V = constant) distributed in a sphere, known as Hill's

spherical vortex. The existence of steady thin rings was proved by Fraenkel (1972),

and Norbury (1973) studied rings of finite size. Norbury's family of steady rings

range from thin rings at one end to Hill's spherical vortex at the other. For a viscous

vortex, it is not possible to have a steady solution (because the energy decays). Our

numerical viscous solutions, however, show a quasi-steady behavior (a nearly self-

similar shape in a translating frame) with vorticity distributions reminiscent of

Norbury's rings.

As the vortex ring propagates, fluid is entrained and the bubble of vorticity

continues to grow. Meanwhile, vorticity is diffusing across the axis of symmetry

and canceling with vorticity of the opposite sign, so that in the limit of large-time,

the circulation goes to zero. The circulation is one measure of the Reynolds num-

ber. It follows that the Reynolds number is decreasing in time and asymptotically

approaches zero.

For sut_ciently large time, the convective term is negligible and we are left

with the Stokes equations. The most slowly decaying solution to these equations

is what is often termed the Stokes solution. This is an analytic solution first de-

rived by Phillips (1956), which he points out is the final period of decay for an3'

initial vorticity distribution in an infinite domain where the flow at infinity is at

rest. Further studies of this regime were made by Kambe and Oshima (1975) where



1.2 Numerical Method 4

they experimentally verify the predicted t-3/2 decay of velocity and claim to have

extended the large time solution to second order through the method of matched

asymptotic expansions. In the present work, it was shown numerically that for large

times, the vorticity field returns to the drifting Stokes solution and that the only

memory of the initial conditions that remains is the impulse and kinematic viscosity.

Furthermore, we have nun_erically determined the proportionality constant relat-

ing the dimensionless propagation speed to t -312. This constant was later found

analytically by Rott & Cantwell (1987) and agrees with the numerical result to 4

significant digits, indicating that the numerical solution is very accurate.

In this work we show results for the propagation speed, shedding, and inter-

actions, and ultimately the decay of axisymmetric viscous vortex rings from initial

Reynolds numbers as high as 1000. A very accurate numerical method was devel-

oped for three-dimensional flows, and tested for axisymmetric rings. It was shown

that the impulse, which is analytically conserved, is constant during a simulation

to within 2% for even the most difficult case, and more typically to within fractions

of a percent. Therefore, these results may be useful as a database to compare with
other numerical methods under development such as discrete vortex methods which

include the effects of viscosity.

With a numerical method, we are able to obtain any information from the

flow, making this a very powerful tool (provided that the solutions are correct and

accurate).

1.2 Numerical Method

The complete equations describing the physics axe the incompressible Navier-

Stokes equations. Because the Reynolds number is limited by the size of the smallest

scale of the flow which can be resolved, it is desirable to use a numerical approach

which is highly accurate for a given number of degrees of freedom. When properly

formulated, spectral methods are known to have exponentiM convergence with re-

spect to the number of degrees of freedom and to allow an excellent resolution of

small scales. The objective, therefore, is to develop an efficient spectral method

applicable to vortex ring calculations in an unbounded domain with a quiescent far
field.

Two approaches were considered. The first approach, suggested by Leonard

(1981), uses divergence-free basis functions tailored to inherently satisfy the bound-

ary conditions of the problem. Because of this, the pressure does not appear in the

final equations and the incompressibility condition allows the number of unknown

velocity components to be reduced to two. The second approach considered uses

a complete set of basis functions and enforces continuity (through the expansion

coefficients) at each time step. In this case, there are four unknowns; three velocity

components and the pressure. The first approach, although more elegant, relies on

finding an appropriate divergence-free set of basis functions, which can be difficult.
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The appropriate set of basis functions is strongly affected by the choice of coor-

dinate system. Cartesian coordinates are mathematically the most simple to work

with and therefore, the obvious first case to consider. An interesting approach for

computing an infinite domain is to first map the domain [-¢x_, co] to [-1, 1] using

a tangent mapping and then to apply Fourier series expansions (Cain's mapping,
Cain et al., 1984). With the mapping, an infinite domain can be approximated with

a periodic expansion since the image of the non-zero vorticity is infinitely far away

from the flow of interest. An advantage is that Fourier series expansions can be ap-

plied, allowing FFT's (fast Fourier transforms) to be used, reducing the operation

count from O(N 2) to O(NlogN). Cain's mapping has been successfully imple-

mented on several occasions in one direction where one or both of the remaining

two directions are assumed to be periodic (Cain et al., 1984, Lowery, 1986). This
approach results in a bandwidth of 5 for each direction for the mass matrix as well

as a Poisson equation with bandwidth of 5 in each direction, each of which must be

inverted to advance one time step. Because the domain of interest is infinite in all

directions, the mapping would be applied three times, resulting in a fully coupled

system of equations which would be extremely costly to invert.

The second coordinate system considered is spherical polar. The advantages

here are that only one direction is infinite, and by holding the azimuthal direction,

¢, fixed we can conveniently represent axisymmetric flow with only two dimensions.

With only two dimensions we are able to study more cases. Furthermore, by com-

puting exactly axisymmetric flow, we can compute the instabilities from this state

more precisely. Another advantage here is that a set of functions which comprise a

complete set for a vector field on the surface of a sphere are "known, and furthermore

their derivative relations are relatively simple. These are known as vector spherical

harmonics (VSH, Hill 1953). With VSH, it is relatively straightforward to extract

the divergence-free set of functions. Furthermore, because VSH are orthogonal,
the angular directions completely decouple in the linear terms of the Navier-Stokes

equations. To define vector functions for a divergence-free field in a volume, one

must then choose appropriate radial functions. This is the approach taken.

The radial direction is handled by first mapping the semi-infinite domain,

0 _< r < oo, to a finite domain, 0 _ _ < 1, then expanding the velocity and vor-

ticity in terms of Jacobi polynomials. Care is taken to ensure that in the far field,

the velocity decays as 1/r 3. Exponential decay in vorticity (occurring when the

vorticity is initially zero outside a finite region) can be approximated, but individ-

ually the basis functions decay algebraically. The resulting matrices in the radial

direction are banded, positive-definite and symmetric, with semi-bandwidths of 3

and 5 for the mass and viscous matrices, respectively. In addition, the functions are

chosen such that the solution is smooth at the origin where there is a coordinate

siugularity.

The divergence-free method developed is similar to those of Leonard et al.

(1982) for pipe flow, Moser et al. (1983) for channel flow, and Spalart (1936) for

boundary layers. Special considerations which arise in applying this approach to

the present problem are the unbounded domain, and the more complex geometry
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of the flow structure. Because of these complexities, two of the three directions

do not allow the use of Fast Fourier Transforms in transforming between real and

wave-number space.

The method is particularly well suited for flows where the activity is concen-

trated in a spherical domain. Vortex rings are representative of an important class

of lqows which are produced by a time-dependent point force (Cantwell, 1987). A

delta-function forcing, for example, produces a vortex ring. The numerical method

developed here for this particular flow could be extended to other members of this

class, produced by more complex forcings.

1.3 Objectives

The objectives of this work, divided into numerics and fluid mechanics, are
outlined below.

Objectives: Numerics

(i) To develop an accurate numerical method to study viscous vortex rings in
three-dimensions.

(ii) To verify the method by implementing the axisymmetric case.

Objectives: Fluid Mechanics

(ii)

(iii)

5v)

To study the large time behavior of axisymmetric rings; in particular, how does

the asymptotic solution of the Navier-Stokes equations depend on the initial
conditions.

To study the early time behavior when the ring is very thin and compare the

propagation speed with the theory by Saffman.

To observe intermediate time development of vortex rings such as the defor-

mation of the core, and shedding of vorticity into the wake.

To provide a database of an accurate solution of the Navier-Stokes equations

representing vortex rings in unbounded domains.

To observe leapfrogging of vortex rings.



Chapter 2

Design of the Numerical Method

In this chapter a spectral method is developed which solves the Navier-Stokes

equations in an unbounded domain with a quiescent far field. There are no exter-

nal forces acting on the flow, however including them would be a straightforward

process. Using a weighted residual method, the momentum equation is projected

onto specified weight functions. The flow field is represented as a summation of

spatially-dependent functions, which form the basis for the solution space, mul"ti-

plied by time-dependent coefficients.

In the method developed here, the weight functions and basis functions are the

same (i.e. Galerkin approximation, cf., Gottlieb and Orszag, 1977). These functions

axe built using Vector Spherical Harmonics (VSH) for the angular dependence and

an algebraic mapping together with Jacobi polynomials for the radial dependence.

Using VSH, the set of basis functions is complete, and the divergence-free subset

is extracted. Each basis function individually satisfies continuity, therefore, the

continuity equation is implicitly satisfied in the formulation.

In the first section, we manipulate the conservation equations; first by non-

dimensionalizing, then by transforming to an expanding and translating coordinate

system. The transformation enables vortex rings to be computed over long time

periods while having a minimum impact on the numerical algorithm. Next, we apply

the weighted residual procedure. By using a Galerkin method with divergence-free

basis functions, it is shown that the pressure drops from the equation. Finally, the

basis functions are developed and substituted into the governing equations, leading
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to a set of coupled equations which are solved numerically. With this procedure,

the spatial dependence is accounted for, and the Navier-Stokes equations reduce to

a set of coupled ordinary differential equations which are integrated in time from
an initial flow field.

2.1 Governing Equations

Using the invariant quantities, impulse (I/p) and kinematic viscosity (v), the

Navier-Stokes equations are first expressed in dimensionless form (identified by (--')).

Next, a transformation is found, such that the boundary conditions at infinity are

unchanged and the changes to the working equations are minimal. Because of this,

the equations are cast in a hybrid coordinate system; the independent variables

are referred to moving coordinates but the pressure azld velocity are referred to

non-moving coordinates. The computational variables are identified by (-).

2.1.1 Physical and Non-dimensional Equations

The incompressible Navier-Stokes equations express conservation of mass,

V-u=0 (2.1.1)

and conservation of momentum,

0u 1

0--5-+ (u. V)u = --Vp + _,V2u (2.1.2)
P

where u is the velocity, p is the pressure, p is the density, and v is the kinematic

viscosity. Boldface quantities denote vectors. The domain of interest is infinite,

with the vorticity confined to a finite region. It can be shown that, in this instance,
the velocity decays like 1/r 3 in the far field.

With the vorticity defined as w = V x u and the vector identity,

u. Vu = V(u. u x

equation (2.1.2), can be written as

_U

0--t + V¢ - uV2u = u x w, (2.1.4)

where q =- p/p + u • u/2 is the total pressure.
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The dimensions of the impulse (I/p), and the kinematic viscosity ( u ), are L 4/T

and L2/T, respectively. By inspection, a length scale is formed, (I/p)l/2/ul/2, and

a time scale, (I/p)/u 2 . With this, the dimensionless variables are

X _--_ X

_=t m

(_rlp)_l=
vl/2 _ - u

V3/2

(z/p),/_ zip
V2 _0 _ _./ /I 2

I/p __p/p_.

(2.1.5)

Substituting equation (2.1.5) into equation (2.1.4) gives the dimensionless momen-

tum equation,
0-a
a--f+ v • - V 2u = u x _, (2.1.6)

where _ = _ + _2/2. Continuity becomes

V._=O. (2.1.7)

2.1.2 Transformed Equations

Since the domain of interest is infinite and we are studying vortex rings that

are diffusing and translating in time, it is helpful to express the governing equations

in a coordinate system which is also expanding and translating. In this way, we are

able to efficiently compute flows from an initial state, such as a thin ring at high
Reynolds number, for long periods of time.

A transformation is found which leaves the boundary conditions invariant and

has a minimal impact on the algorithm. It is a hybrid transformation, where the ve-

locity and pressure are referred to fixed coordinates while the independent variables

are referred to a translating reference frame, given by

"2= (_ - "X) _-112
' _ = _, (2.1.8)

T- InL
_-p_.

Here, X is the displacement of the center of the coordinate system as a function of

time. The expansion is prescribed proportional to _1/2 because this is the variation

of the viscous length scale. However, the origin of t is arbitrary and will be chosen

carefully in each case. Simil_ly, X is left unspecified for now and will be adjusted

to minimize the time dependence of the solution in the transformed frame. Note

that the reference frmne moving with X does not have to be inertial.
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Appendix A shows the details of the transformation. The final equations in

the new coordinates express conservation of momentum,

Ot
(2.1.9)

and conservation of mass,
N

V._ ----0. (2.1.10)

Equation (2.1.9) has the same form as equation (2.1.4) except that the pressure and

the non-linear terms are modified. They are given by

N -- 1N

Umod _ U -- _ x - U

1

g

__1/2U=71/2 dX

(2.1.11)

For reasons to be described shortly, the pressure does not appear in the final

equations, so that the only effect on the algorithm is due to the modified velocity in

the non-linear term; H becomes umod each time the non-linear term is computed

(see Chapter 3 for more detail). To simplify the notation, we will present the

solution procedure of equation (2.1.4), even though equation (2.1.9) is solved in

practice. The differences are minor: _ becomes 1 and the velocity in the convection

term is replaced by Umod.

2.2 Weighted Residual Method

In a weighted residual method, the governing equations are multiplied by a set

of weight functions, _j, and integrated over the domain of interest. This gives

_U

< -_,_j > + < Vq_,_j > -_, < V2u,_j > = < u xw,_j > (2.2.1)

where < a, b >, an inner product, denotes the integral of the dot product of two

vectors, a and b, over the volume. All of the quantities will decay fast enough at

large distances for the integrals over the infinite domain to be finite.

By specifying certain constraints on the weight functions, _j, the pressure term

will drop from the governing equations, greatly simplifying the numerical method.

Using the product rule and Green's Theorem, the second term in equation (2.2.1)
becomes

< >: £ (2.2.2)



2.2 Weighted Residual Method 11

In Leonards' formulation (1982), the domain was bounded by pipe walls. The

normal component of the basis functions is therefore zero at the boundaries, and

the wM1 boundaries don't contribute to the first term in equation (2.2.2). The

streamwise direction was periodic, and therefore had no contribution, hence the

first term is zero. Since our domain is infinite, extra care is needed. The first term

is zero when the integrand, _(_j • n), decays fast enough such that the limit of

the integral as S becomes infinitely large is zero. Since _5 decays like 1/r 2 and

• j decays like 1/r 3 , this is clearly the case. The second term is zero for weight

functions which are divergence-free (V-_j --- 0). The weight functions, therefore,

are chosen such that they satisfy continuity and the boundary conditions, leading

to the so called weak formulation due to Leray (1934):

_U

<-_,_j>-u <V2u,_j>=<uxw,_j>. (2.2.3)

For the Stokes equations, it can be shown (Moser et al., 1984) that the solution of

the strong form (eqn. 2.1.4) is also a solution of the weak form (eqn. 2.2.2) and

that the solution of the weak form is unique. Therefore, it is valid to solve the weak

form of the equations, and a solution of the strong form will be found (if it exists).

It is also true that the weak form of the equations may have a solution when the

strong form does not. But, there are no firm examples of such a behavior with the

incompressible Navier-Stokes equations.

The next step in the formulation is to expand the velocity and vorticity in

terms of unknown time-dependent coefficients, aj(t), multiplying known spatial-

dependent basis functions, _j(x):

u = E aj(t) _/(x) (2.2.4)

J

where each basis function is divergence-free. Equation (2.2.4) is substituted into

(2.2.3), the time-dependence is brought outside of the integrals, and inside the

integral are expressions involving products of weight functions. In the integrand,

there are two indices (j and jt for example) such that each integral is an element

of a matrix. Furthermore, the integrals (or matrix elements) are dependent only"

on the spatial functions which are known a priori, and therefore only need to be

computed once. The matrix multiplying the time-dependent term will be called the

mass matrix and that originating from the diffusion term will be referred to as the
viscous matrix.

If we constrain the basis functions and weight functions to span the same space

(i.e. a Galerkin method), several benefits are realized. It can be shown that the

solution gives a minimum in the L 2 error in the vorticity. Furthermore, the conver-

gence properties of the numerical approximation to the differential equations are as

good as the convergence of the series expansion to typical solutions (approximation

theory) (Moser et al., 1984). Also, when the weight functions and basis functions

are the same, the mass and viscous matrices are positive-definite and symmetric,
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0=x/2 -----Nil y ¢=0 plane
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¢

X

Figure 2.1. Schematic of a vortex ring is spherical coordinates. The

domain is infinite, where 0 _< r _< co, 0 _< 0 _< 7r, and

0 _< ¢ _< 27r. The cross section indicates lines of constant

vorticity.

leading to a more efficient numerical method. This approach, used by Spalart

(1986) to simulate turbulent boundary layers, was also used here. Choosing basis

functions which are appropriate for computing vortex rings and their interactions

in an unbounded domain is the subject of the remainder of the Chapter.

2.3 Three-Dimensional Basis Functions

The basis functions must not only be complete for a given set of endpoint con-

ditions and divergence-free, they should also lead to an efficient numerical method.

One measure of the numerical efficiency is the sparseness and bandedness of the

matrices resulting from the linear terms (on the left hand side of eqn. 2.2.3). Ide-

ally, the basis functions would be orthogonal (bandwidth of one) in all three spatial

coordinates. In practice, this is probably impossible to achieve simply by a judicious
choice of functions.

Our problem is formulated in spherical polar coordinates (see Fig. 2.1) which

offers several advantages. Vector spherical harmonics (VSH, cf., Hill, 1953), can be

used as basis functions in the angular directions. They span the space of vector



2.3 Three-Dimensional Basis Functions 13

fields on the surface of a sphere. A complete set of functions in a volume is gen-

erated by multiplying the VSH by appropriate radial functions. Furthermore, the

divergence-free subspace can be easily extracted using the properties of the VSH

(Appendix C). Finally, because of the orthogonality of VSH, the different angular

modes are completely decoupled in the linear terms of the Navier-Stokes equations.

With these, the only remaining task is to choose the radial functions.

The radial direction is mapped from the semi-infinite domain, 0 _< r < cx_, to

a finite domain, 0 _< _ < 1, then the velocity and vorticity are expanded in terms

of Jacobi polynomials. Care is taken such that in the far field, the velocity decays

as 1/r 3 . Exponential decay in vorticity can be approximated, but individually the

basis functions decay algebraically. In addition, the functions must satisfy special

conditions at the origin where there is a coordinate singularity.

2.3.1 Vector Spherical Harmonics

The coordinate system plays a vital role in the method. With this, the vector
field (velocity or vorticity) is projected onto each of the coordinate directions and

each component is expanded in terms of a family of complete polynomials. The co-

ordinate system determines the boundary conditions in each direction which in turn

determines the appropriate functions to use. Furthermore, the higher-resolution re-

gion of the approximating functions should coincide with the large gradients in the
flow field. Finally, it is useful if a subset of the basis functions is consistent with the

physics of the flow (i.e. by removing one coordinate the 2D or axisymmetric flow is

recovered exactly).

For this problem, we chose spherical polar coordinates (see Fig. 1). By holding

¢ constant, the three-dimensional problem reduces exactly to the axisymmetric

problem. This will be important for future studies of azimuthal instabilities and is

a definite advantage over Cartesian coordinates. In addition, it is desirable that only

one direction (radial) be infinite since special care is needed in an infinite interval,

making this an advantage over cylindrical coordinates. Finally, the availability of

VSH and their properties enables a complete, divergence-free set of basis functions

to be defined analytically without excessive complexity. Furthermore, with VSH the

matrices from the time-dependent and viscous terms in the Navier-Stokes equations

are diagonal in the polar and azimuthal directions. In this section, these properties

are illustrated and the basis functions are developed;

Since the vector spherical harmonics, Xem, Vtm, and Wtm, form a complete

set on a sphere (Blatt & Weisskopf, 1952), an arbitrary, unsteady, three-dimensional

vector field can be represented by

¢,,)= {Fl,m(r,*)X,m(e,¢)
e,m (2.3.1)

+ F2,m(r,_)Vg.m(O,(_)+ F3tm(r, 7_)Wem(O,¢)}.

The scalar functions, FI_.., F2_, and F3_.., are arbitrary radial functions which
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vary in time. In numerical solutions, the series is truncated with 1 < g _< L and

0 < [m[ < g where the limit, L, is set according to the complexity of the flow field

(i.e. the ratio of length scales which depends on the Reynolds number).

The divergence-free subspace is extracted from the complete space by substitut-

ing equation (2.3.1) into the continuity equation, and applying VSH properties (see

Appendix B). This gives a velocity expansion requiring only two scalar functions,

FFm(r,t ) and +F_m(r , t), instead of three:

u(nO,¢,0 = {F,-m(r,t)X,m(e,¢) + V × ¢)]}.
t,rn

(2.3.2)

The functions denoted by + and - are related to those denoted by 1, 2, and 3 as
follows:

Fl,m - Fire

F 'm L dr r

[dFSm ]F3''=k2 L dr + r F_

(2.3.3)

$( t+l hl/2 The + and notation is that;(__£_t _1/2 and k 2 _-"\2l+11 "where kl -- ._ 2t+l / ,

used by Leonard and "VVray (1982). This procedure amounts to using a vector

potential. That is, since a divergence-free vector can be written as the curl of

another vector, the basis functions in equation (2.3.2) can be expressed as V x T-

and V x "r + , where T- and T + are the vector potentials. In two dimensions, the

vector potential simply reduces to the stream function.

Until this point, the functions denoted by F included both the spatial varia-

tion in the radial direction and the time-dependence. These two dependences are

now separated by expanding the radial functions in terms of polynomials. If these

are properly chosen (solutions of a singular Sturm-Liouville problem) the expan-

sion is complete and able to represent arbitrary behavior at the endpoints without

exhibiting Gibbs phenomena (Gottlieb & 0rszag, 1977). The particular choice of

radial functions is described in the next section, but for the moment they are rep-

resented by f_,(r) and f+t(r) where n is the third index in our expansion. Note

that these functions do not depend on the index m (thanks to some properties of

the VSH) which simplified the method significantly. The time-dependence is ex-

pressed by unknown time-dependent coefficients, a_,m(t ) and +anem(t ). The radial
and time-dependence are then separated:

N(t)

__"_m(l',_,)--_ _ a:£rn(f;)f_(r)

n=O

N(e)

Fe+m(r,t ) = _ a + +.e.,(t)f2t(r)
n.-_.O

(2.3.4)
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The expansion for the velocity becomes

u(r, 0,¢,t) = _ {a_m(t)f_e(r)Xem(O,¢)+a+ntm(t)V x [f+nt(r)Xtm(O,¢)]}.

(2.3.5)
where 1 <_ < L, 0 _< n _< N([), and 0 _< m _<g. Furthermore, N(g)= N(1)-[+I

and N(1) - N (see section 3.2). As discussed in the previous section, the weight

functions and basis functions are the same. Therefore, the weight functions are
simply,

ff2n, t,m, -- f_,,t, Xt, m,,

+ (f#e, Xe, m,). (2.3.6)fft n,t,m, = _7 ×

We are now in a position to derive the final equations. Note that the radial

functions are still arbitrary. The resulting equations will involve integrals of radial

functions, and these functions will be chosen so that as few of these integrals as
possible are nonzero.

Substituting equation (2.3.5) into equation (2.2.3), and using the orthogonality

of VSH, we can show that the angular modes are orthogonal in the mass and viscous

term (all the integrals are zero unless _ = _', m = rn' ). In practice, this means that

the two angular directions are completely decoupled for the linear terms in the

Navier-Stokes equations. The result is two sets of ordinary differential equations

for each of the indices, l and rn, with dependent variables a,_-,m and a + In
II,_m "

summation notation they read,

An, n(£ ) da-_em vB_n(e)ane m =< u x w,f_,tX_m > (2.3.7)
dt

A+ (e) da_+m vB+,,_([) a + + •
dt ntm=<UXW, Vx(f_n,tXem)> (2.3.8)

where X_m is the complex conjugate of Xtm. The matrix elements of A,,n, and

Bn n,, in terms of the radial basis functions, are given by

A:,.(e) - fo°°

B_,.(e) _ fo°°

A+'_(e) _/oo

+ °°B.,.(e) -

f[efSt r2d_',

Le(f_)f_,erZdr,

[A,,,A,,,, + f3o,f_,,,,],-_d,-,

[Le+l(f2,,)A.,, + Le-l(f3., )f3,,,,] rZdr.

(2.3.9)

They are real, independent of m, and symmetric. This is so because the Laplacian

2 _ e(e+_)f (see VSH, Appendix C) is self-adjoint withoperator, Le(f)= _ +-; d,. /-' ,
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respect to the measure r 2 dr. Furthermore, A,,n is positive definite and Bn'n is

negative definite. The definitions of f2,_ and f3.,, in terms of a single function,
+

fn_l, follow from equation (2.3.3):

= i + 1

(g_+l)ll2[d (g + 1)] /+t(r) (2.3.11)fa.,(r)=i k,2g+l _rr +_r

Once the radial basis functions (f_ and f+) have been chosen, the matrix elements

are evaluated. In the next section, these radial functions are chosen judiciously to

minimize the radial coupfing while still satisfying the boundary conditions.

2.3.2 Radial Functions

There are many constraints driving the choice of the radial functions. They

must form a complete set and satisfy the boundary conditions. At the coordinate

singularity, r = 0, the basis functions must be smooth ( Coo ), implying in particular

that they have the correct parity. The basis functions should be suitable for ap-

proximating typical functions, in other words, the collocation points should cluster

in regions of large gradients. In order for three-dimensional flows to be studied, it

is important that the number of operations per time-step be kept to a minimum.

This is dependent primarily on the matrix structures (i.e. diagonal is optimal) and

the availability of fast transforms (i.e. as FFT's). Because these constraints are

not applied serially, rather, they are applied in parallel, it is easier to first state the
result and then evaluate the merits.

An algebraic mapping is used, given by

1 - (2.3.12)

combined with expansions of the form,

f:-, -/J, - (1 - (/2 (2.3.13)

where G_ are Jacobi polynomials, defined in Appendix C, and + and - functions

are the same (and called simply f_g). Equation (2.3.12) maps the semi-infinite

domain, 0 _< r _< co, to the finite domain 0 _< _ _< 1. The mapping could be

specified in terms of r 2 because the parity of each radial function is known. This

mapping (eqn. 2.3.12) has the advantage of alleviating the unnecessary clustering

of collocation points near the origin of the spherical coordinates. The constant, rl,

is a free parameter, chosen to minimize the error in the vorticity for a given initial

condition. When the resolution is marginal, it is recommended that rl be varied
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by +10% and the results compared to assure that the solution is not sensitive to

this parameter.

Completeness is guaranteed by choosing a set of polynomials which are solu-

tions of a Sturm-Liouville problem (Gottlieb & Orszag, 1977). Furthermore, if the

eigenfunctions are solutions of a singular Sturm-Liouville problem, convergence is

faster than any power of N (exponential) when approximating an infinitely differ-

entiable function (Coo) with arbitrary boundary conditions. Laguerre polynomials,

defined in a semi-infinite domain, are a possible choice. They are solutions of a

singular Sturm-Liouville problem, although their convergence to a function of given

complexity requires roughly twice as many polynomials as Legendre and Chebychev

polynomials (Gottlieb & Orszag, pg. 42). Therefore, it is better to map the radial

coordinate to a finite domain and then, in the mapped domain, expand the solution

in terms of Jacobi polynomials (similar to Legendre and Chebychev).

The far-field is the only boundary in the problem. The vorticity is assumed to be

essentially confined to a finite domain, hence, in the far-field it decays exponentially.

This corresponds to a 1/r 3 decay in the velocity (Batchelor, 1967). This behavior

is enforced by the factor (1 - _)P, through the exponent, p. To find the correct p,

we first consider the + modes. The function, fn_, is the radial dependence of the

vector potential. Therefore, to determine the correct behavior of fn, at infinity,

consider the Poisson equation relating the vector potential to the vorticity,

v (fMr) x,m(e, ¢)) = (2.3.14)

Using VSH properties for the Laplacian, and assuming that the vorticity is of the

form, 00 .-_ rq Xem(0, ¢), where q is a large negative exponent (theoretically infinite),

equation (2.3.14) becomes

1 d I -2, d, ,+1.+,1
s,(fn,) - ,.-,+1 [r ±,,jj = O(rq) (2.3.15)

which has a solution of the form,

foe = C1 r -(e+l) + C2 r t + O(r q+2) (2.3.16)

where C1 and C2 are constants, determined by the boundary conditions. Since the

solution is bounded at infinity, C2 is zero. Therefore, the leading term at infinity

is Clr-(e+z). At a large radius, (1 - 4) ,,_ r -2 , { ,-, 1, and G_ _ 1, therefore, for

the correct decay

(e+l)
P- 2 (2.3.17)

With this choice, each of the velocity basis functions decays like 1/r 3 or faster. The

vorticity basis functions also decay algebraically, like 1/r s or faster, and collectively

they will approximate exponential decay. A similar argument for the - modes

shows that the sanle factor, (1 - {)(e+l)/2, must multiply the Jacobi polynomials

in order to satisfy the far field boundary conditions.
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At the origin, we must concern ourselves with the coordinate singularity asso-

ciated with spherical polar coordinates. In spherical coordinates it is possible to

specify the radial dependence of a function in such a way that it is a smooth func-

tion of r, 49, and ¢, but not a smooth function of z, y, and z. This occurs because

the metric coefficients of the mapping tend to infinity. Therefore, for smoothness,
certain constraints are imposed on the radial basis functions. To illustrate this

point, consider a simple example. Suppose we have a function, g(r, _), in polm:

coordinates, which is a product:

g(r,o) = R(r) e(0) (2.3.1s)

Now let R = 1 and @ = cos 8. It is clear that this function is discontinuous by

plotting it along the x a_xis: if x < 0, then g = 1, and if x > 0, then g = -1. Now

choose R = r, and the function, g, is smooth.

The appropriate constraints on the radial functions when using vector spherical

harmonics, derived by Spalart (1988) and summarized in Appendix D, are given by

fl,m(r) = re f:.m(r 2)

f2 ., (r) = rt+l fve,n(r 2)

f3,m(r) =r e-1 fwem(r 2)

(2.3.19)

These are found by requiring that the vector function be infinitely differentiable

near the orig4n and counting the associated degrees of freedom and constraints,

thereby proving necessary and sufficient constraints shown in equation (2.3.19).

Here the functions fXtm, fVem, and fwtm are themselves infinitely differentiable

and bounded for [0, ¢x_]. Note that (2.3.19) dictates both the parity of fl, f2, and

f3 and their rate of decay as r --+ 0 (fast decay for large _).

This analysis is reinforced by the earlier results derived by Cantwell (private
communication) where the self-similar Solutions of the three-dimensional Stokes

equations for the vector vorticity, 0_____0t-- V2w (in spherical polar coordinates), are

derived. The angular dependence is described by vector spherical harmonics, while

the radial dependence involves associated Laguerre functions (Laguerre polynomials

multiplied by decaying exponentials). Cantwell's radial functions give the following

limiting behavior, as r --+ 0, for each of the components of vector potential, T,
velocity, and vorticity:

"Y'- T + u- u + w- w +

zr r e-1 0 0 r e-1 r e-1 0

_0 re-1 r e r e r t-1 r t-1 r e

{¢ r t-1 r e r e re-1 re-1 r e

The general result (equation 2.3.19) is in agreement with the behavior of the

Stokes solutions. In practice, the constraints at the origin are imposed by including

a factor _e/2 in the radial basis functions, f_t, and choosing an algebraic mapping

in terms of r 2 . In doing this, the parity requirements are also satisfied.
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In summary, the correct behavior in the far field and near the origin is repre-

sented with the algebraic mapping of equation (2.3.12) and the factors, _/2 and

(1 - _)(*+1)/2 in equation (2.3.13). This form has the drawback that the radial

functions depend on/_. A careful adjustment of the asymptotic behavior, however,

ensures that all the degrees of freedom are useful in resolving the solution. An ad-

ditional advantage is that more of the improper integrals (over the infinite domain,

e.g. the impulse and kinetic energy) will be convergent and have meaningful, finite
values.

Numerical efficiency depends on both the number of terms required to represent

a typical solution, the length of the time steps that can be taken, and the number

of operations required to advance the solution one time step. With VSH, the linear

terms are completely uncoupled (orthogonal) in the two angular directions. When

the basis functions and the weight functions are the same, the matrices resulting

from the radial direction (eqn 2.3.9) are symmetric and positive-definite (section

3.4). V_rith our choice of mapping and radial functions they are also banded, where

the number of non-zero elements above the diagonal is 3 and 5, respectively (for

every m and _ ). Bandedness is important not only for efficiency in solving the linear

terms in the final set of coupled ODE's but perhaps more importantly, to minimize

the round-off error which could ultimately corrupt the solution when many terms are

used. In the process of developing the method, several alternatives were considered

where these matrices were full, which led to poorly conditioned matrices even at
moderate values of L and N.

The azimuthal coordinate is the only direction employing the FFT, in contrast

to similar spectral methods where typically two of the three directions are Fourier.

The operation count in transforming to and from wave-space for large N is O(N4).

In comparison to other three-dimensional spectral methods using FFT's in two

directions and a "slow" transform in the third one (Leonard et al., 1982, Spalart,

1986), the present approach is slower by a factor of two, (not an order of magnitude,

as it might first appear). This is acceptable for three-dimensional computations.



Chapter 3

Numerical Procedure

In the previous chapter, the incompressible Navier-Stokes equations ".'ere cast

as a set of coupled ordinary differential equations. By using spherical polar coor-

dinates, and considering only the m = 0 modes, the three-dimensional problem

reduces to the axisymmetric problem exactly. This a_xisymmetric problem was im-

plemented in FORTtK_.N to run on the CRAY-XMP computer. This chapter dis-

cusses the practical aspects of solving these equations including time advancement,

transforms to and from wave-space, Cholesky decomposition and its use, aliasing,
and initial conditions.

The axisymmetric basis functions are extracted from the three-dimensional

functions by setting rn = 0 (axisymmetric flow) and imposing u¢ = 0 (no swirl

velocity) in the velocity expansion (eqn. 2.3.5). One finds that the axisymmetric

solution is described by the + modes alone (eqn. 2.3.8). From this point forward,

we will only discuss the axisymmetric problem, so the + symbol is dropped and rn

is set to zero, simplifying the notation (i.e. a + + k_+n£rn _ ane, f_e = fne, n'em _ fifth'g,

etc.).
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3.1 Time Advancement Schemes

In Chapter 2, the complete equations were derived for the three-dimensional

problem. Assuming the flow is axisymmetric, these simplify to the equations gov-

erning the + modes:

dane

An,n(g) dt vBn, n(g) ant = Qn,(g) (3.1.1)

where Qn, (g) = < u x w, V x (f+eX_,n) >" This is a set of N(g) x N(g) equations for

each g. Throughout this work, the matrices, An,,_(£) and Bn,n(g), are referred to

as the mass and viscous matrix, respectively. The vector representing the non-linear

term, Qn,(g), acts as a forcing to the linear equation, and is integrated explicitly

in time using Adams-Bashforth (AB), a second-order scheme.

Applying an explicit solver for the viscous term in a non-Fourier spectral

method severely limits the maximum step size allowed by the stability criterion.

An example of this is the solution of the heat equation between two walls using a

Chebyshev-spectral method (Gottlieb and Orszag, pg. 115); for this problem, the

stability limit gives At = O(1/N 4) as N --4 oz. It is important, therefore, that the

viscous term be treated implicitly for non-Fourier expansions. Because the semi-

bandwidth of the mass matrix is 3 and that of the viscous matrix is 5, and the mass

matrix needs to be inverted anyway, an implicit scheme for the viscous term brings

only a moderate penalty over an explicit scheme (Leonard and Wray, 1982). The

Crank-Nicolson scheme, used to integrate the viscous term, is also second-order

accurate in time. Therefore, the overall time-integration scheme is second-order
accurate.

The time-differenced form of equation (3.1.1) is thus:

An, n(g) n_ "A-t-ane = Bn, n(g) ne 2+ ant + "_Qn,l - 2"_n'e

= a j+l / equationwhere j indicates the time level: t jAt. Defining Aa{_ -- nt - ane,

(3.1.2) may be written in "delta form" as:

A_,n(e) AaJ t Y j j-1= Bn,n(e)a,t - (3Q_,, - Qn,l ) At (3.1.3)

where A_,n(g ) = -[2 A,,n(e) - At Bn, n(g)] and B_,,(g) = -2 At B,,n(g).

Two codes are used to solve these equations. The first code, IC, takes an initial

condition, the velocity or vorticity field at an instant in time, and computes the

coefficients of the spectral expansion. Using these coefficients, the second program,

NS, integrates the coupled set of ODE's (eqn. 3.1.3) forward in time from the initial
state.

In NS, the mass and viscous matrices are computed once and stored. With this,

the matrices A_,,(e) and B:,_(e) are then computed and stored in place of A,,,n(e)

and B,en(g). Next, the implicit matrix, A_v,(_.), is decomposed with the Cholesl:y

method and replaced with its decomposed form. The matrices are symmetric and
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banded, requiring a total storage space of 6NL each. The time integration proceeds
as follows:

(a) Usingan,_,compute e'n,t for all n' and e (by a pseudospectralmethod)

(b) For each g, compute Btn,n(g)aJ t and add it to -(3Q{, t -QJ,-tl)At.

(c) For every g multiply through by [A*.,n(e)]-1 to obtain Aa{t hence a d+l
' ' n_ "

(d) Save J j-1Q,,t in place of Q,,,t •

a j+l in array J and return to (a).(e) Advance in time, save at ant,

The following sections more carefully describe these steps; transforming to and

from wave space (section 3.3), forming the mass and viscous matrix elements (sec-

tion 3.4), inverting Afn, n(g) using Cholesky decomposition (section 3.5), computing

the non-linear term (section 3.6), and starting the initial conditions (section 3.7).

3.2 Axisymmetric Basis Functions

The velocity expansion for axisymmetric flow is given by

L N(O

£=1 n=.O

L N(t) L N(t)

=E E v,+ w,)=E E <,o,
£=1 n=O £=1 n=O

(3.2.1)

[4rrt(t+l)] 1/2where a constant has been inserted for convenience, ct -= -i [ 2t+1

radial basis functions are specified through the mapping,

The

(3.m2)

and the radial function,

f_t = (1 - _)(t+I)I2{tI=G_({). (3.2.3)

Recall that f2,, and fa_, are related to f_t by

f2o,=i g_+l g-

(e+l)_12[d (e + 1)]fa., =i \2e+ i _+_

(3.2.4)
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Jacobi polynomials, denoted by tGn(() , are polynomials of order n. Their definition

is modified from that of Abramowitz and Stegun (1972, eqn. 22.2.2) as follows: from

the notation of AL:S, start with shifted Jacobi polynomials, Gn(p, q, z), normalize

them such that hn = 1 (i.e., orthonormal polynomials), and set p and q equal to

1 (note that and used here are2[ -- 1 and g - _ p q not related to the notation of

Chapter 2). The choices of p and q were determined by constraining the matrices,

A and B, to be banded• Note that if we had a scalar field and did not apply the

operators (2.3.10) and (2.3.11), and Lt, the matrix would be diagonal.

The components of the basis functions for the velocity reduce to:

U

Ur

UO

u¢

L N(£) [ ff2ngr

= E E a,,e l W,,to

,=, .=o L%t¢

L N(t)

/=1 n=0

[e([ + 1) f.e(_) p_(,)

[old

(3.2.5)
by substituting ce and the definitions for Vt and We (Appendix C) into equation

(3.2.1), and simplifying. The functions pO(#) and P_(#) are the associated Legen-

dre functions, P_(#) (Arfken, 1985), where m = 0 and rn = 1, respectively, and

# = cos 0. Their properties are summarized in Appendix C.

The vorticity only has its azimuthal component:

L N(Q

w¢=(Vx u)¢=_an£ce [VxVx(f,,eXt)]¢
g=l n=0

(3.2.6)

Applying the definitions of ce and Xe (Appendix C), and assuming axisymmetric

flow without swirl, equation (3.2.6) reduces to

L N(t)

,._: _ _ ,_,.(0P;(#) L, (f,.(,-))
£=1 n=0

(327)• .

Recall that the definition of the operator, Le, from Chapter 2 is

[d _ 2 d [([+l)tZe(f,e) =- _ + r dr r 2 ] Lt (3.2.8)

From equation (3.2.5), the radial dependence of the velocity components are
1

given by fne(r)/r. This can be expressed as a polynomial in _ of order n + [ + _.

For efficiency (i.e. so that we don't carrying useless degrees of freedom), we choose

N([) so that each expansion is the same order in _ for every g. Therefore, by using

a constant and sufficient number of collocation points, integrals of products of the

functions (as in computing the nonlinear term) will be exact for every [. The result

i N(e) = N(1) -[ + 1_ =N(Q+e+_. oris /V(1)+1+7
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3.3 Transforming To/From Wave-Space

Transforming from real-space to wave-space, given the coefficients of the basis

functions, is done by evaluating summations at a finite number of grid or collocation

points, r/ and 0j, where i = 1,...,No and j = 1,..., Lc. Transforming to wave-

space from real-space involves numerical evaluation of definite integrals where the

integrands are known at the collocation points. Two such examples are evaluating

the non-linear terms, Q,e(e), and finding the expansion coefficients for an initial

condition. This section discusses the theory and practice of transforming to and
from wave-space for orthogonal functions.

Like the matrices, the basis functions (evaluated at each collocation point) are

computed once and stored. The radial basis functions corresponding to u,., uo, and

we are

GR(n,g,i) -- g(g + 1) fne(_i)
ri

1 d (3.3.1)
GTH(n,I,i) - (rifne(_i))

ri dr

GV(n, I, i) =_ Le(f.t(_i))

where _i is the i _h grid point in the mapped radial coordinate, _. The polar basis
functions are

PO(e,j)- P2(m )
(3.3.2)

 i(e,j) - P2(z )

and #y is the jth grid point in the polar direction where # = cos 0.

Before evaluating equations (3.3.1), the derivatives are replaced with sums of

the neighboring Jacobi polynomials (i.e. G e and tn+l Gn_x, cf., Appendix B). The

derivatives in equation (3.3.1) could either be evaluated numerically or computed

analytically. It is preferable to compute them analytically in order to reduce the

round-off error (see section 3.5). Due to the mapping, the second derivatives in

Le, and the complicated recurrence relations of the two parameter family of Jacobi

polynomials, the algebra is quite involved. By hand, it would be extremely tedious

and time consuming. With the aid of a symbolic algebra program, MACSYMA,

this task is greatly simplified, but is still a major effort. MACSYMA is also used

to analytically compute the elements of the mass and viscous matrices in equations

(3.4.1) and (3.4.3).
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by
The transforms in vorticity and velocity in terms of the stored arrays are given

L N(e)

u ( i,0i) =E E
f=l n=l

L N(g)

g=l n=l

L N(e)

£=1 n=l

i) PO(e,j)

ant GTH(n, e, i) Pz(e,j)

pz(e,j)

(3.3.3)

Assuming Lc = No, it appears at a first glance, that O(N_) operations are required

to evaluate equations (a.3.3). The operation count is reduced to O(N a) because

the G functions do not depend on j and the P functions do not depend on i, as

shown in figure G.3. Ordering the loops in this way, also turns out to be well suited

for vector processing on the CRAY-XMP.

We wish to evaluate the integral of a function, g(z) over the interval [a, b] using

Gauss quadrature. We begin by writing g(x) as the product of a new function,

P(z), and a specified weight function, w(z) (determined by the interval [a, b] ). For

example, in Gauss-Laguerre quadrature, the weight function is e-* and the interval

is [0, oo]. The definite integral is then approximated as a discrete sum by

b b Ne

i g(x)dx=-_ P(x)w(x)dx_E P(xi)Ai (3.3.4)
i=1

where Ai are the weights (not to be confused with the weight functions, w(x)),

and xi are the collocation points. The degrees of freedom are Ai, and xi, where

i = 1,..., No, totaling 2 Arc (Appendix E). If the function P(x) in equation (3.3.4)

is a polynomial of order 2No - 1 (the space of such polynomials also has dimension

2N_), then the discrete sum describing the integral is exact (to within machine

precision) with Nc collocation points.

The power of Gauss quadrature together with spectral methods, is that we can

often integrate expressions exactly by using Gauss-type quadrature rules which are

compatible with our expansion functions.

3.4 Forming the Mass and Viscous Matrices

The mass and viscous matrices result from the coupling of the radial modes.

Because they are not time-dependent, they can be computed once and stored. This

section will discuss the properties of the matrices and the method used to compute
them.
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In Chapter 2, we developed the mass and viscous matrices,

_0 (X_
A,,,(g) = [f2.,h.,, + f3.,f3.,,] r 2dr (3.4.1)

Bn,,(O = + Z,-l(Y3., )f3.,,] r:dr (3.4.2)

which are functions of the radial functions, fat, and mapping, ((r). These were

chosen such that A and B have semi-bandwidths of 3 and 5, respectively. With

banded matrices, the operations count per time step is much lower; there is also

less round-off error (see section 3.5).

It is clear from equation (3.4.1) that A is symmetric and positive-definite,

however, this is not as clear for equation (3.4.2). Before evaluating the viscous

matrix, it is first simplified by integrating by parts. The result,

{/0 /0_o dr2., df2.,, r2dr + (g + 1)(g + 2) f2.., f2.,,B,,n(g) = - dr dr

/ /o }+ _df3.,dr df3.,,dr r2dr+e(#-m) f3.,f3.,,dr

dr

(3.4.3)

is clearly symmetric and negative-definite. As mentioned earlier, Lt is self-adjoint.

This form (eqn. 3.4.3) is preferred from a computational standpoint since the order

of the derivatives is reduced by one. Again, MACSYMA, was used here.

MACSYMA is a high level programming language. It symbolically manipulates

expressions, and has an extensive library of algorithms which, among other things,

evaluates derivatives and integrals. One can either interactively enter commands to

the program, or submit a list of commands in the form of a batch job. The pro_am,

written in LISP, is recursive in nature, and therefore, even for moderate problems

can quickly use very large fractions of the disk space of a VAX 11-780. Much of the

difficulty encountered was due to running out of disk space.

The end result, the diagonal and off-diagonal expressions as a function on n

and _, are written directly in FORTRAN (by MACSYMA). A single expression is

up to 15 lines long, giving an idea of the complexity of the algebra. The MACSYMA

codes are described and listed in Appendix G.

3.5 A Few Words About Stiffness

In a viscous flow, the ratio of largest to smallest length scales is a function of the

Reynolds number of the flow. This, in turn, is reflected in the ratio of the largest

to the smallest eigenvalues of the matrices. As the ratio of eigenvalues becomes

large, the time integration becomes increasingly difficult. This behavior is what we

call stiffness. By using implicit time advancement for the viscous term, we have
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helped to alleviate some of the problem. The stability limit for the time step is

not as severe as it otherwise would be, although we still must contend with round-

off errors. Round-off error comes from several sources - from forming the matrix

elements, and from advancing the solution in time, in particular it is a function of

the number of operations per time step. Several steps are taken to keep these errors
to a minimum.

The number of operations per time step is determined largely by the matrix

structure of the system being solved. For example, a full matrix requires O(N 3)

operations initially and O(N 2) at each time step, while a banded matrix requires

O(rn2N) operations, where m is the number of non-zero elements above the di-

agonal. For the problem at hand, the matrix structure is even more specialized -

it's banded, symmetric and positive-definite - leading to even greater savings. The

algorithm which exploits this particular matrix form is called Cholesky decomposi-

tion (see Golub & van Loan, 1984). The round-off error of this algorithm has been

studied rigorously by Wilkinson (1968) and shown to be very low.

An important consideration, therefore, in forming a numerical method is to

consider the conditioning of the system of equations which are solved. Minimizing

the number of operations not only helps the efficiency but also the round-off error.

By choosing weight functions to be the same as the basis functions, the resulting

matrices are positive-definite and symmetric. It is also very helpful to minimize the

bandwidth of the matrices by careful choice of the basis functions.

Round-off error also enters the problem in computing the matrix elements.

Again, using MACSYMA, the analytic expressions for the elements were found.

The result is an expression for the diagonal, and off-diagonals, in terms of n and

g. These expressions are evaluated once and stored, so it is not a large penalty to

evaluate them in double precision, and store them in single precision, thus obtaining

the correct result to every significant digit.

3.6 Computing the Non-Linear Term

From equation (2.3.8), the non-linear term is

1

Q,,(e) =< u x > (3.6.1)

One way to compute this term is spectrally. By substituting the expansions for

velocity and vorticity, the time-dependence is separated in the usual way from the

spatial dependence giving integrals of triple products of the basis functions. Each

time step would then involve a convolution sum. Even if the integrals of basis

functions could be evaluated analytically, a convolution sum is more expensive than

a pseudospectral approach where the coefficients are transformed to real space, the

non-linear product is formed, and the result is transformed back to wave space.

This led us to adopt the pseudospectral method.
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To compute Qn,(e) pseudospectrally, we first write equation (3.6.1) in compo-
nent form,

Q.,(e) = c--T [(uea¢)%vt,.- (u,-w¢)'I'.,to]r: sinOdrdO (3.6.2)

then equation (3.6.2) is expressed as successive transformations in each direction

(note that this was also the case for eqn. 3.3.3). With q = u x ca, the nonlinear
term can be written as

271" A

= (q/n',e)- 6(n',e))
C t

(3.6.3)

where the polar transform is

1

1

(3.6.4)

and the radial transform is

j_o _
e)- q_(_,e)e(e + 1) f_---(r2dr

r

/o-
r

(3.6.5)

The integrals are then cast as sums using Gauss-Legendre and Gauss-Jacobi quadra-

ture (Appendix E).

When using a pseudospectral method, we must concern ourselves with alias-

ing - the phenomena of higher frequencies "masquerading" as lower frequencies

because a continuous function is sampled only at discrete points and described by

a Fourier series. With polynomials, errors creep in for the same reason, but you

cannot say that "one polynomial is mistaken for another." Typically in a pseu-

dospectral method, the number of collocation points is equal to the order of the

approximating polynomials. In forming a triple product of the basis functions (as

in the nonlinear term above), the result will have aliasing errors. This occurs be-

cause the product of functions produces a new function with frequencies that are

higher than the original functions. If the original function is barely resolved, then

the polynomial approximation will not resolve the product and the higher frequen-

cies will appear as lower frequencies. With Fourier series, one way to remove this

error (or dealias) is to pack the coefficients in spectral space with zeros, transform

to real space with a larger number of points, perform the non-linear product at the

sample points, transform back to wave-space, and discarding the higher coefficients

(previously added). The number of points added and removed is (1/2) N, giving a
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total of (3/2)N. The equivalent process for other polynomial expansions is done

by choosing Nc = (3/2) N. In this way, the integral expression, involving products

of three polynomials of up to order N (as in eqn. 3.6.2), is integrated exactly with

Gauss quadrature. If the flow is smooth and well resolved, however, dealiasing may

not be necessary since the higher modes which are interpreted as lower modes have

a very small contribution. To avoid aliasing errors, therefore, either the flow must

be over-resolved or we must use 3/2 N collocation points.

3.7 Initial Conditions

To start a calculation, only one scalar component of the vorticity needs to be

specified over the infinite domain. One could also start from a velocity field, but

specifying such a field requires two components and a constraint. Thus, in practice

a vorticity-based initialization is much more powerful. Two initial distributions

have been used - the Stokes vortex ring, and a thin ring with a Gaussian vorticity
distribution in the core.

3.7.1 Stokes Vortex Ring

Exact solutions to the diffusion equation for vorticity in spherical polar coordi-

nates are developed by Cantwell (1986) for several different forcings. The solution

of interest here is that resulting from an impulsive point force, leading to what we

will refer to as the Stokes vortex ring. This is a self-similar solution in time with

similarity variable, q = r/_. This solution is a convenient starting point in our
calculations for several reasons.

Given such an exact solution, we are able to validate the Stokes part of the

Navier-Stokes solver (see section (4.2.1)). In solving the Stokes equations, the an-

gular direction is exactly represented by the first mode in 0 (_ = 1); the radial

modes are the only non-trivial terms in the expansion.

The vorticity distribution for a Stokes vortex ring is

I/p sin e exp -'= (3.7.1)<o(,7,e)-

and the radial and polar components of velocity are

u,.(r],O)- 4rr(_,t)3/2 cosO -r] e ---erf(,/)4q2 (3.7.2)

+, _2___eg(,) (3.7.3)47 2

As Cantwell points out, the Stokes solution is uniformly valid over the full range

0 <77 <oc.
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The Stokesequations are a limiting form of the Navier-Stokesequations for a

Reynolds number approaching zero, where the appropriate Reynolds number is

t ei- (IIp)112
utzl/2 (3.7.4)

Note that the Reynolds number is inversely proportional to time. Starting at tz - 0,

an impulsive force forms a turbulent puff (with Re1 = cx_) of the type studied by

Glezer (1981), and after a very large time (tz --+ oo), the vorticity and velocity

fields approach the Stokes distributions given by equations (3.7.1)-(3.7.3).

The free paraxneters are found by transforming the vorticity to computational

variables using equations (2.1.5) and (2.2.8),

1 sin 0"_ exp -72 (3.7.5)
= 87r3/2 tz

From this, we see that the time, tz, is the only parameter in the solution. Also, the

time in the code, t, is set to tz (or Re_r).

There is nothing that prevents us from specifying, for our initial state, a Stokes

solution which is at a Reynolds number outside of the range of validity of the Stokes

equations (Rez > 1). This is in fact what is done in the results section (5.2.1)
where the Navier-Stokes equations are solved with an initial Stokes distribution of

Reynolds numbers 30 and 40. Therefore, the starting solution contains only the

g = 1 mode, and the other modes axe excited through the non-linear terms. As

time progresses, the solution decays and returns to the Stokes solution. This is the

simplest initial condition, since it is characterized by a single parameter, Rei.

Note from equation (3.7.5) that contours of _t in expanding coordinates, F,

are steady. This is convenient in studying the long time behavior; we can study

how the non-linear solution approaches the Stokes solution.

3.7.2 Thin Ring

Note that any function, we(r, 0) is a valid initial condition since in the un-

steady case the time derivative, 0_,a---T, is free. In this section, we describe a vorticity

distribution in the core which is easy to specify - a Gaussian. It has the additional

advantage that for a thin viscous ring, it is the first order solution to the vorticity

distribution in the core for a solution which has been evolving according to the

Navier-Stokes equations. Therefore, it is reasonable as a first guess.

In the core of a thin ring, where the core radius is small compared to the ring

radius, the solution is locally two-dimensional. Furthermore, to a good approxima-

tion near the core the streamlines are circular. Applying these assumptions to the

Navier-Stokes equations in polar coordinates, s and /3, the momentum equations
become

p"4 op
_- (3.7.6)s c9_
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Figure 3.1. Schematic of a thin ring with Gaussian vorticity distribution
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where s is the distance from the vortex center. Equation (3.7.6) is a constraint of

the radial pressure gradient which must be maintained to have circular streamlines.

Rewriting equation (3.7.7) with the vorticity as the dependent variable, we have

0-V=" \ a_2 + -_ (3.7.s)

giving the classical Oseen solution (1910):

r exp (3.7.9)_(_' _ ) - 4__r

where F is the circulation in a meridional half-plane. It follows that the tangential
velocity distribution is

-/0 { (u_(s, tr) = 1 wsds- F 1--exp (3.7.10)
s 27r s 4 _tr

At the origin of time, tr = 0, the vorticity is concentrated on a line, s = 0, and as

it spreads it takes the shape of a Gaussian. The core radius, a, is defined as the

distance from the center of the vortex to the peak radial velocity. This is found from
du6

equation (3.7.10) by setting "77 = 0, and solving for a, giving a = 2.24182x/_.

To describe a thin ring, the two-dimensional vortex is offset a distance R from

the axis of symmetry as shown in fig_tre 3.1. The distance from the core is therefore

s = (R 2 + r 2 - 2 Rr sin 8) 1/2 , and the total vorticity distribution is

w - exp -K + a2 sin_ (3.7.11)7r a 2 a a

where K = (2.24182)2/4. To assure that the initial distribution was smooth, an

image ring was placed across the axis of symmetry so that we - 0 on the axis. In

computational coordinates this becomes

= --/( F/_ 1_'-'_ exp 1 + _ (3.7.12)(,,/_)_ (aiR)_- _
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This initial condition is characterized by three parameters, Rer -- (F/v)o, (a/R)o,

and the ring radius location in computational variables, Ro. For thin rings, -Ro is

inconsequential in the description of the initial condition in physical coordinates.

Furthermore, given Ro, the collocation points are clustered about this radius. In

describing the Stokes solution, however, this is not a free parameter. Therefore,

for computing flows for long periods of time, we pick Ro which can resolve the

limiting solution well, the Stokes vortex ring.In the Stokes solution, the ring radius

is not well defined; the peak of vorticity (R _ 2) and the point where uo = 0

(R = 3) are not the same. Experience showed that the latter gave a more accurate

approximation of the solution, therefore, for all simulations, Ro = 3.

The appropriate choice of the initial value of time, "to, for the thin ring initial

condition must be consistent with R = 3 and is found from the expression for
impulse

I/p = 7r w¢(r sin0) 2 rdrdO (3.7.13)

Rewriting equation (3.7.13) in computational variables, gives

/0-/01 =_Tr _, (F sin 0)2 Fd_dO " (3.7.!4)

With equation (3.7.12), the vorticity (_¢) is specified, therefore, from equation

(3.7.14) _ is determined.

3.8 Reynolds Numbers and Virtual Origins

There are many ways to define a Reynolds number for a vortex ring. Exper-

imentalists often use UvD __ ReD, where U is the propagation speed, D is the

diameter of the ring, and r, is the kinematic viscosity. Alternatively one might use

(I/a)I/2 - Rei, where I/p is impulse, and tI -- 0 is a virtual origin in time when
v tlI 12 --

the ring was created by an impulse force (Cantwell, 1987). Still another measure

is Flu - Rer. Because the flow is viscous, F decreases With time. For rings with

infinitesimal cores however, the cancellation of vorticity across the axis is expo-

nentially small and for a time, F m constant. Locally, in the core, the vorticity

is diffusing like a two-dimensional Oseen vortex. The origin in time for this case,

tr - 0, refers to the concentration of vorticity along a circular line.

Each of these Reynolds numbers is more appropriate in different circumstances.

Expressions can be derived giving approximate relationships of these Reynolds num-

bers to one another. For example, using I/p _  r(tr)R(tr) 2 (which assumes that

the core is thin), and a _ 2.24(vtr)_/2 (from an Oseen solution), we get

Rez _ 2.24v/F, kS / (3.8.1)
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Note that in equation (3.8.1), ti was replaced by tr. It gives an approximate

relationship between Rei and Rer (together with a/R).

Next, we express ReD(Rer, a/R) by using the expression for the propagation

speed of viscous vortex rings (Saffman, 1970, i.e. equation (5.2.10)), and again,
a _ 2.24(utr)1/2 , giving

UR 1 [ln (4(2.24) R) _ 0.558] (3.8.2)---if-_ 4---;

Rearranging (3.8.2) gives

- ,_ - • -- In 8.96 - 0.558 (3.8.3)
V /] 271"

In the results, we have scaled the time in two different ways. This final para-

graph discussed these scalings and their relationships. The scaling more frequently

used in this work is t_2 - _. When there isn't a subscript, ( )I or ( )r the originI/p --

in time is determined by the method described in section 3.7.2. The second scaling,
tv
_-_-, is used in section 5.2 to study thin rings, and the virtual origin is chosen in

tp v
order to compare the calculation with theory, giving "-R-_'. In order to relate tr to

the time in the calculation, we must find _,tr (t, to, Ro)

From (2.1.5), we caa write

vt

R_ = -_ (38.4)
R-

-- -- _ -1/2
Since R ._ constant, R ..m Rot o ,

vt _ 1

R 2 L R_

Next, we shift the origin in time to get tr by

Vt F vt Vtshif t

R---T = R---7 + R-----T---

and we solve for the initial time in the calculation, to from

t_ 2 R 9- t_"- \2.24182,]

Combining equations (3.8.5) and (3.8.7) gives

(z s.5)

(3.s 6)

1
- =-. (3.8.7)

2_o

R_-- -_ Yo- 1 + (3s8)R ° \2.24182

In the results, Rer and ReI are used when referring to a specific calculation.

\Vhen the distinction is not necessary, we simply use Re to denote the Reynolds
nunlb er.



Chapter 4

Harmonic Convergence

In this chapter, we examine convergence properties of the numerical method.

As mentioned in section 2.2, it can be shown for linear equations, that the con-

vergence of a spectral approximation to a typical velocity field (by least squares)
determines the convergence of the spectral solution to the exact solution of the dif-

ferential equation. Therefore, we begin by examining the convergence of a spectral

expansion to some typical solutions - Stokes rings and thin rings.

Next, by using the Stokes vortex ring solution, an analytic solution to the Stokes

equations, a substantial part of the code is tested. This test is easily implemented

by setting the convective terms to zero. Note that the polar dependence is exact

using the _ = 1 mode, so that only expansions in the radial direction are tested.

Because the Navier-Stokes equations are nonlinear, there is no guarantee that
the convergence of the time-dependent solution is related to that of the basis func-

tions, however, this is what normally happens in practice. By computing the ira-

pulse (which is conserved in the exact solution) as a function of time, we are able

to test the global convergence and accuracy as the time step is decreased and the

resolution is increased. From this, we show exponential convergence with resolution

and second order convergence with the time step, as expected. Furthermore, when

the two limits are taken simultaneously, the error in impulse goes to zero, showing
that the solution is globally accurate.
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N

Convergence of the spectral expansion to typical initial con-

ditions: --, the Stokes solution; , a/R = 0.35:

----, a/R = 0.15; - --, a/l:{ = 0.1.

4.1 Initial Conditions

As shown in Gottlieb and Orszag (1977), the beauty of spectral methods is

their exponential convergence as the number of modes, N, is increased. If the basis

functions are chosen incorrectly, however, the convergence can be much slower, or

the numerical solution mav even converge to the wrong solution. An important

test is conducted in this section showing the convergence properties of the spectral

expansion to typical solutions. Of interest in particular, is the number of terms

that are required to represent a given vector field, and how the error varies vdth

the number of modes. First, we must define a measure of the error.

Only one vorticity component (w¢_) is nonzero in axisymmetric flow. If the

exact vorticity is given by w, then the local error,

- e) (4.i.1)
nt

is exponentially small. From this we define a global, normalized error:

mE = [ fA w2dA ] (4.1.2)
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It follows that we expect the global error to also be exponentially small. Therefore,

lnwE versus N should be linear.

In figure 4.1, the global error is plotted on a logarithmic scale as a function of

the number of modes, N, where L = N. For four different initial conditions - a

Stokes solution, and three thin rings with a/R = 0.35, 0.15, and 0.1 - the curves are

indeed essentially linear, at least for large enough N. Because the Stokes vortex ring

involves only the £ = 1 mode and has a relatively smooth vorticity distribution,

it is the easiest to represent. With only 10 modes, the global error is O(10-2).

Between 40 and 45 modes there is a jog in the curve, for which we do not have a

definitive explanation. The number of collocation points used in all cases studied in

figure 4.1 is N + 5. For this stray point (N = 45), an additional case was run with

_N, giving the same result to within plotting accuracy. From this, we conclude

that integration error is not the cause. Perhaps it is due to round off errors since,

with this number of modes, the errors are very small.

As expected, approximations of rings with thinner cores have larger errors than

thicker cores for a given number of modes. Notice also, that the slope is decreasing

slightly for thinner cores. With a sufficient number of modes, however, all of the

cases considered indicate exponential convergence. When N and L are equal, the

number of collocation points in the core in each direction (r and 19) was roughly

equal. Therefore, for all of the thin ring cases, L is set equal to N, simplifying the

input.

The thinnest ring which was resolved sufficiently was a/R = 0,1. Because the

spacing between collocation points in t9 is equal (Appendix C), to resolve a ring

with half the core size, we need twice as many modes. At some point, therefore,

the pavback is small compared to the cost. In practice, to determine if a given

problem is resolved sufficiently, it is best to show that the quantities of interest are

insensitive to variations in the free parameters, N, Nc, and rl, by 4-10%.

In solving the Navier-Stokes equations, we can start with any vorticity distri-

bution which satisfies the boundary conditions. In general, the gradients in the

solution will decrease overall (since the Re decreases in time), however, this is not

necessarily true locally (because Re is a global parameter). Although we expect

the solution at later times to require fewer terms than the initial condition, time-

dependent diagnostics are desirable. Furthermore, such diagnostics are needed to

monitor the accuracy of the time integration.

4.2 Time-Dependent Solutions

Next, the convergence and accuracy of the time-dependent solutions is exam-

ined. The Stokes part of the Navier-Stokes code is verified to be working correctly

by comparing vorticity profiles at several times with the analytic time-dependent

solutions. To study the accuracy and convergence of the numerical solutions to

the Navier-Stokes equations, since there are no useful exact solutions, we rely on
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Figure 4.2. Vorticity along 0 = lr/2 computed from the Stokes equation

(shown as symbols at the collocation points) compared to

the analytic Stokes solution: --, t -- 1.0; , t = 1.5;

-- -, t = 2.0).

diagnostics such as impulse, circulation, and the comparison of the rate-of-change

of energy with dissipation. The impulse is especially useful since it is fundamen-

tally conserved for unforced flow in an unbounded domain. The impulse of time-

dependent solutions is computed for various step sizes and resolutions and shows

that the solutions converge (with decreasing step size and increasing N) and that

they are accurate.

4.2.1 Stokes Equations

The convergence and accuracy of the time-dependent solution of the Stokes

equations are tested using the exact solution of the Stokes equations, the Stokes

vortex ring (eqn. 3.7.1). This test is easily implemented by setting the convection

term equal to zero in the Navier-Stokes code. The polar direction is exact with only

the e = 1 mode (the 0 dependence for both the Stokes vorticity and the first pol_
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vorticity function, P11 , is sin/_ ), therefore, it is suiCficient to consider only the radial

direction, for which there are 10 modes and 15 collocation points.

The initial condition is given by tile solid line in figure 4.2 (t = 1 ) and the

approximate representation of the function at the collocation points is shown by

triangles. Integrating the Stokes equations in time (40 time steps) gives the result

shown by circles (t = 1.5). The exact solution at that time, shown by the long-

dashed line, is in close agreement. Integrating once again (30 time steps) we get

the square symbols. Again, the results are in very close agreement with the exact

solution at that time (t = 2.0) represented by the shortdashed line.

Notice that the solution is very accurate with only 10 terms - the initial con-

dition, at t = 1, corresponds to WE of O(10 -2) in figure 4.1 - and the accuracy

is maintained at the later times. Also note that the peak vorticity moves outward

with time and the collocation points (because of the transformation - eqn. 2.1.8)
follow suit.

4.2.2 Navier-Stokes Equations

Since exact solutions of the full nonlinear equations are not available, other

methods are needed to verify that the code converges and that it is accurate. One

indication is the degree to which global invariants, such as impulse, are conserved.

Also computed are the rate of change of vorticity, circulation, the momentum, and

the dissipation and rate of change of energy. Another means of veri_'ing the accu-

racy is to compute limiting solutions and compare them with asymptotic theories

(see Chapter 5).

A single case ((F/v)o = 100 and (a/R)o = 0.35) is run: first, with a fixed

resolution and varying the time step, and second, with a fixed time step and varying

resolution. The baseline case, from which these variations are made, uses 55 x 55

modes, 400 time steps, and (At)b = 0.0025. At each time step, we compute the

percent error in impulse, defined by

I -- Iexac t

IE -- x 100. (4.2.1)
Iexact

Recall that t refers to the dimensionless time and t" refers to the time in the calcu-

lation, where t'_ In 7.

In figure 4.3, the time history of IE is plotted for four different step sizes:

i(Lkt')b, (At')b 2(At')b 4(A_')b using S00, 400. 200. and 100 time steps, respec-

tively, where the baseline case is shown by the chaindashed curve. As expected, the

error becomes smaller with smaller time steps. Furthermore, the magnitude of the

error in this figure is very small - _ 0.001% (accurate to 5 significant digits). \\:e
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found that the largest step size, 4 (A_)b, is very near to the stability limit (with

larger values of At, the solution blew up) indicating that stability rather than ac-

curacy, constrains the maximum step size. At the final time, t = 0.00083, IE is

plotted as a function of (A_) 2 (figure 4.4). As expected, the curve is linear, since

the time differencing scheme is second order accurate (see Chapter 3). This test is

useful for detecting subtle coding errors.

Note in figure 4.3 that the curves are converging to a finite error in impulse.

We immediately suspect that the spatial resolution is responsible for the remaining

error. To test this, the resolution is varied (45, 55, and 65 modes) from the baseline.

The result, figure 4.5, shows that this is indeed the case - the dashed line is the more

coarse grid and the solid line is the fine grid, showing that the error is now going to

zero. Furthermore, plotting the logarithm of the error at the final time as a function

of the number of modes (fig. 4.6), gives a relatively straight line. Therefore, we have

shown that the time-dependent solution converges exponentially with the number

of modes, N. This is interesting since a rigorous proof for this behavior does not

exist for the Navier-Stokes equations.

At each time step in the calculation, severn other diagnostics are computed in

addition to the impulse. The circulation, given by

Ff0"P = w dy dx (4.2.2)

is compared to the input value for thin rings, and monitored over time. As the time

becomes large, the circulation approaches zero due to diffusion of vorticity across

the axis of symmetry, which cancels with that of the opposite sign. However, at

early times the loss of circulation is exponentially small.

As shown by Cantwell (1986) the initial forcing on the flow in the form of an

impulse in space and time, transfers 2/3 of the impulse to the velocity field and 1/3

to the pressure field. It is a simple matter to compute the integral of the velocity

over the domain,

H=/vUdV. =2rr/AUydA (4.2.3)

where V is the volume of an infinite domain, and A is the area of the meridional

half plane. Evaluating equation (4.2.3) does indeed give 2/3 of the impulse. This

is primarily a check of the behavior of the velocity field at large distances.

The kinetic energy was computed and its rate of decay compared very well

with the dissipation, which was computed separately from the velocity derivatives

(see figures 5.1k and 5.11k). This showed that the viscous term was resolved and

that the numerical dissipation (of either sign) introduced by time-integration errors

was much smaller than the true viscous dissipation. This agMn indicates that the

stability criterion is more stringent than the accuracy concern. One advantage of

this behavior, is that any solution which is stable is also very accurate.
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Chapter 5

Results

5 ¸

In the previous chapter we showed that for the numerically computed flow

fields_impulseis conserved to high accuracy, and that itconverges exponentially in

space and second order in time. Furthermore, by comparing computations of the

Stokes equations with the exact solution, we gained confidence that the method

isformulated and implemented correctly.In this chapter, we willbuild upon that

confidence by showing that the calculationsagree with asymptotic theoriesfor large

time and small time motion: the Stokes limit and the limit of infinitesimalcores.

Because the fullnonlinear equations are solved, we observe the way in which the

solutions approach the asymptotic solutions.

To orient the reader, we willbegin by showing a typical calculation of a single

vortex ring at a Reynolds number, Rer, of 500. Vorticitycontours and streamlines

are plotted, showing detailsof core shape, shedding, and transport of vorticitywith

the core. Next, the asymptotic cases are discussed. The finalsection describes the

computation of interacting vortex rings with Reynolds numbers of I000 each. The

vorticitycontours illustratethe severe strainingof the inner vortex through the first

pass and merging of the two vorticesduring the second passage.
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5.1 Evolution of a Single Vortex Ring

In experiments, vortex rings are generated by impulsively forcing a column of

fluid through a nozzle. The vortex ring forms from the rolling-up of the vortex sheets

created by the boundary layer along the walls of the nozzle (Didden, 1979). After

the initial transient behavior associated with this formation process is over, the

dominant parameters of the flow are r/v, and a/R. Although we are not equipped

to calculate such. a complex starting process, we can start with any smooth vorticity

distribution (which satisfies the boundary conditions) and integrate the Navier-

Stokes equations forward in time. As a first guess, we use a Gaussian distribution

through the core, since locally (for a sufficiently thin core) it is the leading term in

the Navier-Stokes equations (see section 3.5.2).

Figures 5.1a. through 5.1g show vorticity contours for a typical solution with

the initial conditions, a/R = 0.35 and Rer = 500. The contour levels are the

same for each figure. The solid lines denote high levels and the dashed lines are low

levels (the difference between the solid lines is a factor of 10 larger than between
the dashed ones; the outermost dashed contour is 1/100 th of the innermost solid

contour in figure 5.1a). Two families of contours were needed to display the behavior

in the core and in the tail on the same plot. In figures 5.1h and 5.1i, time-histories

of the global quantities, ring speed and circulation, are shown. The solid dots in

figure 5.1h correspond to figures 5.1a through 5.1g. Figures 5.1j and 5.1k are the

time-dependent histories of the diagnostics, impulse, and diffusion shown together

with the rate-of-change of energy.

The vorticity is positive (counterclockwise), therefore, the ring convects to the

right under its own induced velocity. Note that the peak vorticity decreases rapidly

from the initial condition in the first few frames. The vorticity is diffusing outward

from the core, as seen from the lowest contour levels. When the vorticity reaches

the axis of symmetry, it cancels with vorticity of opposite sign across the axis, and

circulation decreases. This is reflected in figure 5.1i, where the initially constant

circulation begins to drop off rapidly at the time corresponding to figure 5.1c.

The core starts out circular (fig 5.1a) and after traveling a short distance,

adjusts to a more elliptical shape (fig 5.1b) through its own self-induced strain.

Evidence of this transient behavior is seen in the ring speed history of figure 5.1h,

where the ring initially speeds up before it begins to decelerate. If the initial core size

were made sufflciently small, this transient effect would no longer appear because the

Gaussian core would be very close to the natural solution. Because of this initial

unsteady behavior, the wake of vorticity is swept upward. For later times, the

vorticity contours show a quasi-steady distribution (nearly steady in a translating

frame) with a shape that is reminiscent of Norbury's family of steady, inviscid vortex

rings.

Figures 5.1a' through 5.1g r show instantaneous streamlines (in a translating

reference frame) on top of the vorticity contours shown previously. Note the dividing

streamline separating the fluid which is carried with the core of the vortex and the
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fluid which is left behind at a given instant. Because the flow is unsteady, the

streamlines differ from the pathlines and streaklines, and care must be used in

discussing the time-dependence given an instantaneous picture. The observations

seem to be in agreement with Maxworthy's heuristic model (1972) where vorticity

diffuses across the dividing streamline and is carried downstream to form a wake.

The wake however, does not extend very far behind the ring before it is annihilated

by viscous diffusion. Including a passive scalar in the calculation would be useful

to clearify this process.
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Figure 5.1. The evolution of a single vortex ring starting from initial

conditions of a/R = 0.35, P/v = 500. (a)-(g): Vorticity

contours at several instants in time. The change in vorticity

between solid contours is a factor of 10 larger than between

dashed contours. For lines of the same type, the vorticity

,-aries linearly. (a')-(g'): Instantaneous streamlines in a

translating reference frame plotted on top of the vorticity

contours of figures 5.1a-g. (h) Ring speed versus time.

(i) Circulation versus time. (j) Impulse versus time (k) Rate

of change of energy and dissipation versus time.
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Figure 5.1a'-g I • Instantaneous streamlines in a translating reference frame

plotted on top of the vorticity contours of figures 5.1a-g.
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5.2 Asymptotic Results

In this next section, asymptotic solutions are considered. Irrespective of the

initial condition, the flow will come back to rest after a long period of time (since

the kinetic energy necessarily decays). We are interested in the rate at which this

happens, and whether or not it depends on the history of the flow (i.e. such as the

initial conditions). We are also concerned with the asymptotic solution as the core

radius becomes infinitesimal. In particular, by solving the full nonlinear equations

we want to determine the effect of core size and Reynolds number on the vortex

ring propagation speed.

5.2.1 Large Time

As described above, a bubble of vorticity surrounds the vortex core and travels

with it. Due to viscous diffusion, irrotational fluid is entrained into the bubble

as it propagates, the bubble grows, and the ring slows down. The vortex ring

asymptotically comes to rest, and the vorticity spreads to the far field with the

viscous length scale, V_. At this point, the viscous effects have overtaken the

nonlinear convection effects. The way in which this occurs and its dependence on

the initial conditions is the subject of this section.

The appropriate Reynolds number for this flow is

Re1 - = (5.2.t)
_1/2

where ti corresponds to the virtual time when the ring was started from an im-

pulsive, point force (Cantwell, 1986). Note that as the time becomes larger, the

Reynolds number becomes smaller.

The limiting behavior of the Navier-Stokes equations as t _ ¢x_ is found by

substituting the similarity form of the Stokes variables

xi

r/i--

I/p
ui -- (4v)3/2t3/2Vi(ui ) (5.2.2)

lip
p/p- (4.)t2P(rli)

into the Navier-Stokes equations, simplifying, and grouping the remaining parame-

ters to form a Reynolds number. Then. taking the limit as Re _ 0, gives the self

similar form of the Stokes equations:

-3Ui r]j OUi OP 0"2Ui+ -o (5.2.3)
2 20Tlj _r]i C_rljOT]j



5.2 Asymptotic Results 56

(Cantwell, 1986). The solution of equation (5.2.3) is the Stokes vortex ring given

by equation (3.7.1). The vorticity distribution of this solution is fixed in space.

By dimensional arguments, we expect that the Stokes vortex ring is drifting like

t -3/2 . Indeed this behavior was experimentally observed by Kambe and Oshima

(1975). In this paper, they also attempted (without success) to extend the Stokes

solution to second order. In a successful attempt to extend the Stokes solution to

second order, Rott & Cantwell (1987) found that it was necessary to add a drift to

the Stokes solution in the form of a modified independent variable: 7/1,

//p 2
x-D_77;7

Tll = x/-4ut (5.2.4)

where the constant, D, is required to be

7

D = 2407ra/221/2 (5.2.5)

in order for the second or tier solution to exist. The drift velocity is therefore given

by

U = D t -3/2 (5.2.6)

Note that the length scale associated with the drift is of lower order than the length

scale of the vorticity due to viscous diffusion.

l¢\re are now in a position to compute the fiow field and observe the effects of

the initial conditions on the limiting behavior. The simplest initial condition, the

Stokes solution, has only one independent parameter, the Reynolds number (or the

elapsed time, ti). Unless the Reynolds number is much smaller than one (i.e. very

large tI), the solution is outside the range of validity of the Stokes equations and

the nonlinear terms affect the solution. As a result, higher modes are excited (than

the dipole). After a sufficient passage of time, the viscosity damps these higher

modes and the solution returns to the Stokes distribution of vorticity. Because

the Stokes solution is self-similar in time, there is a flame of reference in which it

is steady - contours of _j2 with the coordinates r/v/'_, in a frame of reference

which is translating with the speed of the ring. This is convenient for observing

the departure from the Stokes solution and the subsequent return to it. Unless

otherwise mentioned in this section, these are the contours and axes plotted. In

addition, for each case we plot the drift, _-_3/2, as a function of time.

The first case considered is the Stokes solution, at an initial Reynolds number,
--O

Relo, of 30. Vorticity contours (_t') in the meridional half plane are shown in

figures 5.2a through 5.2d, and the time dependent drift is shown in figure 5.2e, with

symbols corresponding to the vortieity plots. In the first frame we see the Stokes

solution (fig. 5.2a), which is symmetric fore and aft. By solving the Navier-Stokes

equations, we get the solution at a later time, figure 5.2b. This figure shows that the

peak has moved faster than the surrotmding vorticity, and through the nonlinear
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term, the symmetry has been disturbed. Futhermore, the quasi-elliptic core is tilted

to an angle with respect to the axis of symmetry. At a later time (fig. 5.2c) the

vorticity distribution is becoming more Stokes-like and finally (fig 5.2d) it returns

to the Stokes solution. The corresponding drift starts out at the constant De, and

quickly deviates. By the time the solution appears to have returned to the Stokes

solution (fig. 5.2d), the drift has returned to Dc to within plotting accuracy.

In the next case, Rezo is 40. The vorticity contour plots (fig 5.3a through 5.3d)

are qualitatively similar but the initially higher Re ring initially moves faster, and

the vorticity gradients are larger. Again, the solution asymptotically returns to the

Stokes vortex ring (fig 5.3d). From figure 5.3e, we see that _a/2 initially deviates

dramatically from De, and then begins to return. In contrast to the previous case,

_--f3/2 overshoots, and returns to De asymptotically from below. An analogy can

be drawn between this and a damped spring-mass system where increasing the

Reynolds number is analogous to decreasing the damping.

Next, we begin with two Stokes distributions at Re = 2 each (fig. 5.4). The

two rings merge with very little influence from the nonlinear term (no noticeable

asymmetry). For this case" the initial drift, _=_3/2, is different from Dc . (Here,

there is some arbitrariness in the choice of the origin of time. However, for large

enough times, this effect becomes insignificant.) After some time, the flow goes to

the single Stokes vortex ring with the same Stokes drift, De, as the previous cases

(the impulse used is that of the two rings combined).

Figure 5.5 shows a starting condition of a single thin ring with an initial

Reynolds number, Rero, of 150 and a/.R = 0.25. Figures 5.5a through 5.5d show

the usual contours in the Stokes coordinates. For comparison, figures 5.5a' through

5.5d', show vorticity contours at the same times in stationary physical coordinates.

Note that the ring travels a fixed distance, and at large times, the flow at the orion

is uniform. The drift at large times also asymptotes to the same value as the above

cases, De.

The value of Dc found by computations is 0.003703 which matches to four

significant digits the value in equation (5.2.5) determined by Rott.

In summary, the results for the large time behavior show that flows with several

different initial vorticity distributions approach the same steady solution for _-72

in a frame of reference which is translating at the ring speed and expanding with

viscous diffusion, r/v/_. The asymptotic solution (in this translating frame) is

the Stokes solution. Furthermore, the centroid of the vorticity drifts at a speed,

= 0.003703 _-3/2 regardless of the initial condition. Finally, the accuracy of the

computations is further confirmed by the agreement to 4 significant digits between

the computed drift and that obtained from theory by Rott.
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Figure 5.2. Navier-Stokes calculation starting with a Stokes vorticity

distribution at a Reynolds number of 30. (a)-(d) Contours

of _ t" in a frame of reference translating with the ring

speed which is also expanding. (e) Time history of ring

speed where dots correspond to the times shown in figures

(a)-(d).
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Figure 5.3. Navier-Stokes calculation starting with a Stokes vorticity

distribution at a Reynolds number of 40. (a)-(d) Contours

of _ 72 in a frame of reference translating with the ring

speed which is also expanding. (e) Time history of ring

speed where dots correspond to the times shown in figures

(a)-(d).
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Figure 5.4. Navier-Stokes calculation starting with an initial condition

of two Stokes rings at a Reynolds numbers of 4 each.

(a)-(d) Contours of _ 32 in a frame of reference translat-

ing with the ring speed which is also expanding. (e) Time

history of ring speed where dots correspond to the times

shown in figures (a)-(d).
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Figure 5.5. Navier-Stokes calculation starting with an initial condition

of a thin ring, a/R = 0.25 and r/u = 150. (a)-(d) Contours

of _ _2 in a frame of reference translating with the ring

speed which is also expanding. (a')-(d') Contours of _ in

a fixed frame of reference, corresponding to figures (a)-(d).

(e) Time history of ring speed where dots correspond to the

times shown in figures (a)-(d) and (a')-(d').
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5.2.2 Small Time

In 1970 Saffman extended the theory for the propagation speed of steady invis-

cid vortex rings (Fraenkel, 1970) to that of unsteady vorticity distributions, resulting

from the presence of viscosity. The underlying assumption in Saffman's theory is

that the core radius is vanishingly small (a 2 << R2). In addition, he suggests

a general definition of ring speed in a three-dimensional unsteady flow, which has

many merits (and it is a vital step in the theory). In this section, computed solu-

tions of the full Navier-Stokes equations in the thin ring regime are compared to

the theory. Motivations for this study are: to provide a check to the code, to assess

the range of validity of the theory, and to determine the next order correction to

the theory. First, we describe the theory, next we expound the interesting issues,
and then discuss the results.

Saffman's Theory

Since the fiow is not steady in any reference frame, it is necessary, to define

what is meant by the velocity of the ring. For three-dimensional unsteady fiow,

Saffman used a centroid defined by

where r

therefore

1 fv rxw-IX = 2 12 rdV

is the position vector relative to some fixed point.

(5.2.7)

The ring speed is

(5.2.8)

X= f wxy_ dA -- f wxy2 dA (5.2.9)
f wy2dA I

where the position of the point in the flow defined by X is independent of the

reference point defining the origin.

Saffman showed that the vorticity distribution, to first order, is Gaussian in

the limit of small cores. Furthermore, the length scale associated with the core is

(4utr) 1/2 where u is the kinematic viscosity and tr is the time since the ring was

concentrated on a circular line. With this, he found that the propagation speed of

a viscous vortex ring, valid in the limit of utr/R 2 -_ O, is

U - 4,TR _) - 0.558 + 0 i(-__,) m (-_-T)] (5.2.10)

dX
C=--

dr"

Saffman's formula is easily checked for several special cases where (5.2.7) reduces

to the obvious centroid: a pair of rectilinear line vortices, a vortex ring with an

infinitesimal cross section, and Hill's spherical vortex. Also note that the denomi-

nator, impulse, is the fundamental conserved quantity. Therefore, X is the centroid

of impulse elements. For axisymmetric flow, equation (5.2.7) reduces to
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It is interesting to compare this result with the propagation speed of a thin

core with uniform vorticity in an ideal fuid,

U = 4_"---R a 4 + O . (5.2.11)

known as Kelvin's formula (Lamb, 1945). The viscosity does not affect the logarith-

mic leading term, and the core radius, a, is replaced by a time dependent length

which measures the size of the viscous core, (4utr) 1/2.

I88ue8

As mentioned above, an assumption in the theow is that the vorticity distri-

bution in the core is locally, a two-dimensional Gaussian. This is affected by the

ring curvature. To be precise, the viscous term expressed in Cartesian coordinates

is

u[O 0 10= 7 + oy y oy (5.2.12)

A local solution is a two dimensional Gaussian when the curvature term (last term

on the right hand side of eqn. 5.2.12) is neglected. We are interested in quanti_ing

the effect on the propagation speed with this term included, as well as the curvature
in the convective term.

Although•it is not discussed by Saffman, there exists a one-parameter family

of solutions even with vanishing initial core radius. The parameter is the Reynolds

number, Rer -- F/y, which is independent of core size. The question arises there-

fore, as to whether or not equation (5.2.10) is uniformly valid and how the ring

speed depends on /_er. For clarity, equation (5.2.10) is written as

if -_T < A, then B x (vtr 112, r utr

Here Udiff is the difference between equation (5.2.10) and the ring speed defined by

equation (5.2.7) and (5.2.8) and computed in the Navier-Stokes code. A is, roughly

• speaking, the range of validity of the approximation, and B is the proportionality

constant. They are not unique (one can trade between A and B ), but for a given A

there is a minimum value Bmi_. The most relevant quantity is the limit of Brain(A)

as A --+ 0. K equation (5.2.13) holds, this limit is finite. Furthermore, A and B

depend on Rer. If B is finite over the range 0 <_ Rer < co then the error estimate

is uniform.

There are several limits being taken at once. We are interested in the limit as

utr / R _" -+ O, while Rer --+ 0 and Rer --+ ec . Computing flows in the limit Rer -+ 0

is easy, the other two limits are not. Unfortunately, we are not able to compute

the flow at tr = 0 when the vorticity is concentrated on a line, preventing us from

strictly observing the behavior in the limit as utr/ft 2 --+ O. This is not a serious
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problem, however, if we carl start with sufficiently thin rings. As Saffman argued,

after a sufficient amount of time has passed (from the initial condition), the only

parameters remembered are the ring size, R, and the circulation, F. By starting

with several initial core sizes, (tr)o, the time dependent flow should collapse to the
solution which would be followed if the initial core were infinitesimal. The limit as

Rer --_ c_ is also not possible with this code because of the time step restrictions

related to the explicit scheme applied to the nonlinear term. Still, a sufficient

number of cases are considered at fairly high Rer to give a good indication of the

high Rer behavior.

Results

We are looking for small differences, so diagnostics are very important. The

usual diagnostics monitored are impulse, circulation, energy and dissipation. The

most difficult case is the thinnest ring at the highest Rcr, giving an upper bound

for the errors. The impulse was accurate to within 0.02% for the duration of these

computations. Because the theory applies only for thin rings, it is assumed that

the loss of circulation is exponentially small. Computations are stopped, therefore,

when the circulation is 99% of the initial value, giving a conservative upper bound.

The rate of decay of kinetic energy compared very well with dissipation, which was

computed separately from the velocity derivatives. This shows that the viscous term

was resolved and that the numerical dissipation introduced by the time integration

errors was much smaller than the viscous dissipation. In addition, the "effective

radius," defined by

= f f y dx dv

was shown both analytically and numerically (to leading order) to vary like

dR_ff/dt = -2v. This is related to the spreading of the core and, like the ki-
netic energy, is a fine measure of the effect of viscosity.

Figures 5.6 through 5.9 correspond to Reynolds numbers of 0.01, 50, 100, and

200. In each case, two plots are shown. The first plot, labeled (a) displays the

asymptotic theory (eqn. 5.2.10) and four different initial core sizes (a/R = 0.12,

0.15, 0.25, 0.35). The initial conditions are indicated by solid dots. Keep in mind

that each initial condition is a Gaussian vorticity distribution and that the core is

circular. The lines represent the time history of the ring speed.

In figure 5.6, Rer is nearly zero (Rer = 0.01). Therefore, the effect of the

nonlinear term is very weak and the vorticity remains nearly Gaussian as it spreads

(as seen in the results of the previous section). As mentioned above, however, the

axisymmetric vorticity is not exactly Gaussian due to the curvature term in equation

(5.2.12). The ring speed indicates that the vorticity is nearly Gaussian as predicted

by Saffman, since the time histories of the initially thinner rings pass right through

the symbols corresponding to two-dimensional Gaussian initial distributions with

larger cores. In other words, the curvature effect is very small.
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By plotting the difference between the velocity given by the asymptotic theory

and that from the computations, Udiff, the ordinate is greatly expanded. Figure

5.6b shows the same data (as shown in figure 5.6a) of Udiyf and an abscissa of

-(utr/R 2) ln(utr/R2) 1/_ (the reason for this form is discussed later). Now the lines

are distinguishable, and we can see that the curves merge at later times, however,
the differences between the time histories of various initial core sizes is small. At

higher Rer, this will no longer be the case.

Figure 5.7 is a similar case except that Rer = 50. In figure 5.7a, the solid

dots show the intial conditions and the lines leaving them are the time histories of

the ring speed from the initial condition. Again, the asymptotic theory is shown

for comparison. On this scale, the differences are difficult to distinguish, so we

again plot the results in the expanded view of figure 5.7b. The (lighter) solid line

corresponds to the Rer = 0.01 case for comparison, which starts from the initial

core size, a/R = 0.12. Because the velocity is normalized by F, the initial condition

does not change from the previous case (fig. 5.6). From this figure, we can test the

hypothesis that the solution at some time does not depend on the initial conditions.

The curves corresponding to the four different initial core sizes form an envelope,

which represents the correct solution if we were able to start with an infinitesimal

core. This claim is further substantiated by figures 5.Sb and 5.9b where the Reynolds

numbers are 100 and 200. In the Rer = 200 case we see that the envelope formed

can be approached from either side. To reiterate, by starting with the thinnest

possible core, the transient associated with imposing the Gaussian core as an initial

condition is smallest (since in the limit of a/R --+ O, the Gaussian is to first order

correct). By considering several different initial core sizes, we are able to isolate the

effect of this transient and see at what point the envelope of the curves forms. This

envelope corresponds to the solution which would result if we were able to start
with an infinitesimal core.

The results of figures 5.6 through 5.9 are summarized in the next three figures,

along with two cases for higher Rer (400 and 800). Figure 5.10 shows a plot of ring

speed as a function of time for several different Reynolds numbers, compared to

the asymptotic theory. The initial core sizes for all of these cases are a/R = 0.12,

and because the ring speeds are normalized by F, the initial velocities collapse.

Bracketing the results is the asymptotic theory on the top which is labeled as such,

and on the bottom is the nearly zero Rer case shown by a thick solid line. The

Rer = 50 case is distinctly shown by a long dash line, and the rest of the Rer cases

are more or less on top of one another. This suggests that the zero Rer case has the

largest disparity from the asymptotic theory at finite cores and that the normalized

ring speed at high Rer is independent of Rer. Again it is helpful to expand

the picture, so that small differences are more apparent. In figure 5.10b, we show

Udiff plotted versus Saffman's error estimate, (utr/R2) 1/2 ln(utr/R2) 1/2 for each

of the cases shown in figure 5.10. Note all of these curves are tending to zero faster

than linearly, indicating that Saffman's error estimate was conservative. By trial

and error, we came up with an improved error estimate, (utr/R 2) ln(utr/R2) 1/2 .

Plotting the curves versus this function of time (fig. 5.10c) we see that at zero
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Rer, _fdiff is nearly linear. From the slope of 0.49, we then have a correction to

the asymptotic theory of (5.2.10) which shows the effect of a finite core size and

of curvature. For higher Rer, the curves are no longer linear, but this previous

correction gives an upper bound. The transient behavior is also more apparent in

this coordinate system.

In summary, the numerical results axe in full agreement with Saffman's the-

ory. Furthermore the error at Re = 0, and probably at all Reynolds numbers, is

smaller than Saffman's own estimate by a factor ,v/utr/R 2 . The new error esti-

mate holds until the diffusion of viscosity across the axis becomes significant. There

is an indication that as Re approaches either 0 or oa, the velocity approaches a

limit which is only a function of the time in viscous units (utr/R 2 ). Finally, the

procedure of starting the simulation at a finite time (utr/R2)o and taking the limit

(utr/R2)o --_ 0 is valid, and our method allowed us to start with thin enough rings

to observe the asymptotic behavior.
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Propagation speed versus time for vortex rings of strength,

Rer -- 0.01, initial core sizes vary: --, (aiR)° = 0.12;

---, (alI_)o = 0.15;---, (a/R)o = 0.2.5; , (aln)o =
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Figure 5.7. Propagation speed versus time for vortex rings of strength,

Rer = 50, initial core sizes vary: --, (a/R)o = 0.125

---, (alR)o = 0.15;---, (alR)o = 0.25;-----, (alR)o =
0.35. The solid dots are the initial conditions. (a) Compar-

ing computation with theory, versus time, _,tr/R 2 . (b) Dif-

ference between computation and theory, versus
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Figure 5.9. Propagation speed versus time for vortex rings of strength,

Rer = 200, initial core sizes rafT: _, (a/R)o = 0.12;

---, (a/R)o = 0.15;---, (a/R)o = 0.25; , (a/R)o =
0.35. The solid dots are the initial conditions. (a) Compar-

ing computation with theory, versus time, vtr/R 2 . (b) Dif-

ference between computation and theory., versus

(.tr/R2) l_(.tr/R_) 'I2 .
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The solids dot are the initial conditions. (a) Comparison

of computed ring speed and theory (eqn.' 5.2.10), which

assumes (a/R) 2 << 1. (b) Difference between computed

ring speed and theo_, versus (utr/R2) x/2 ln(utc/R2) 1/2.

(c) Difference between computed ring speed and theory ver-

sus (utr/R 2) In(utr/R2) 1/2 .
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5.3 Leapfrogging of Two Vortex Rings

There has been some debate in the literature about the nature of interacting

vortex rings, in particular, whether or not the classical leapfrogging of inviscid rings

could be realized in viscous flows before the vorticity merged due to viscous effects

(Oshima et al., 1975, Maxworthy, 1979, Yamada & Matsui, 1978, 1979). Using

a smoke wire stretched across the exit of a vortex generator, Yamada &: Matsui

(1978, 1979), showed the passage of smoke marking the fluid and a subsequent

merging of the smoke during the apparent second passage. Furthermore, they stated

that three or four slip-throughs were observed by Oshima et al. (1977). Because

vorticity diffuses more rapidly than smoke, however, it is quite possible that the

smoke can indicate a successful passage while the vorticity simply merges (Oshima

et al., 1975). Below, vorticity contours are plotted for a Navier-Stokes calculation of

two rings with an initial separation distance of one ring radius. The results do show

a successful passage before merging. The effects of convection and diffusion on the

interactions are distinguished through a qualitative comparison of the Navier-Stokes

calculation with an Euler calculations of a similar case by Shariff (1987).

With vorticity of the same sign and with the initial conditions, Rer = 1000

and a/R = 0.1 each, two rings are seen leapfrog_ng in figure 5.11. In figures

5.11a through 5.11g, the contours are of _, and figure 5.11h shows the propagation

velocity of the total vorticity centroid (defined by eqn. 5.2.7 and 5.2.8) as a function

of time. As in figure 5.1, the contour levels axe the same throughout the simulation.

where the higher vorticity levels are shown by thick lines and the lower vorticity

levels are shown by thinner lines. As before, the difference in vorticity between the

thick lines is a factor of 10 larger than the difference between the thinner lines. For

ease of discussion we will name the rings: the ring which is initially on the right is

referred to as R1, and the ring initially on the left is R2.

Because cores are very thin, the contours in figure 5.11a are indistinguishable.

The outermost contour is 1/100 th of the initial peak vorticity (there are 10 thick

and 10 thin contours lines). In the second frame (Fig. 5.11b), the peak vorticity

has decreased roughly 60 % and 70 % of the initiM value for R1 and R2, respectively

(i.e. 4 thick lines remain for R1, and 3 for R2).

At the initial time of the calculation (Fig. 5.11a), R1 and R2 induce ve-

locities on each other perpendicular to the axis of symmetry.; R1 stretches while

R2 contracts. Considering inviscid flow, by Helmholtz' laws, D(a_/R)/Dt = 0 or

D(wS)/Dt = O, where S is the cross sectional area of a vortex tube. From this,

we would expect that aJ --_ R and S "_ 1/R. Figure 5.11b shows that we indeed

see the correct trend - R1 has a higher peak than R2 and a smaller core. The

interactions continue and R2 catches up with R1 in figure 5.11c and has passed it

in figure 5.11d. Note that R2 shows straining from the passage: it develops a tail-

like structure (Fig. 5.11e) which then pinches off (Fig 5.11f). Starting from figure

5.11e, the process repeats from the beginning where R2 is now the leading ring and

R1 is trailing. Because of the first passage and the viscous effects, the rings are
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significantly fatter and their cores are closer together than they were initially and

the second passage is unsuccessful (R1 merges with R2).

It is interesting to note that the velocity of the vorticity centroid oscillates

as the rings pass, with the maximum speed occurring when the rings have the

same radius and a minimum speed occurring when their centroids are at the same

x-location (see figure 5.11h).

The qualitative behavior is similar to the smoke visualizations of Yamada &

Matsui (1978), however, it isn't very useful to compare the results in detail since the

smoke is not marking the vorticity (especially since smoke is not only ejected into the

vorticity laver but is across the entire jet diameter). A passive scalar is needed in the

calculation in order to make a comparison with this type of experiment useful. It is

quite interesting, however, to compare the viscous calculations with similar inviscid

results of Shariff (1987). Shariff solves the Euler equations using contour dynamics

for two rings of the same initial separation distance. The vorticity distribution in

the core for the two calculations are necessarily different. For the contour dynamics

formulation, it is assumed that the vorticity is uniform (constant w/y) and that it
is zero outside the core radius. In the viscous calculation we start with the usual

Gaussian vorticity distribution. Furthermore, the initial core-to-ring radius for the

contour dynamics case is 0.18. The comparisons, therefore, are qualitative. Figure

12 shows vorticity contours for the two calculations at similar times. The figures

are shown on the same scale. In figures 12a and 12a', the core shapes are very

similar. As the passage progresses the straining of the ring which passes inside the

first shows remarkable agreement for the viscous and inviscid calculations. From the

viscous calculation however, the cores are diffusing and the cores are closer together

after the passage than the initial separation. The result is that the second passage

of the viscous calculation shows merging or pairing.

In summary, leapfrogging was observed for two rings with initial Rer of 1000

each, an initial separation distance of one radius, and initial a/R's of 0.1. Through

the first passage, the trailing ring was severly strained due to the inviscid straining

field, and a tail forms which eventually pinches off. Because of the viscous effects,

the ring which was initially in front merged with the other in an attempted second

passage.
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Figure 5.11. Evolution of two vortex rings of the same sign, each with

Rero = 1000 and (alR)o = 0.1. (a)-(g) Vorticity fields at

several instants in time. The change in vorticity between the

thick lines is a factor of 10 larger than between the thinner

lines. Between lines of the same type, the vorticity varies

linearly. (h) Ring speed versus time. (i) Circulation versus

time. (j) Impulse versus time (k) Rate of change of energy

and dissipation versus time.
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Figure 5.12a. Navier-Stokes calculation (same as fig. 11); (a/R)o = 0.1,

Gaussian vorticity in core.
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Figure 5.12a t. Euler calculations of vortex rings by Shariff (1987);

(a/R)o = 0.18, uniform vorticity in core.
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Figure 5.12b. Navier-Stokes calculation (same as fig. 11); (a/R)o -- 0.1,

Gaussian vorticity in core.
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Figure 5.12b _. Euler calculations of vortex rings by Shariff (1987);

(a/R)o = 0.18, uniform vorticity in core.
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Figure 5.12c. Navier-Stokes calculation (same as fig. 11); (a/R)o = 0.1,

Gaussian vorticity in core.

Figure 5.12c'. Euler calculations of vortex rings by Shariff (1987);

(a/_R)o = 0.18, uniform vorticity in core.



Chapter 6

Concluding Remarks

6.1 Summary

A spectral method was developed which solves the incompressible Navier-Stokes

equations in an unbounded domain. In particular, the flow of interest is that of

vortex rings and their interactions. Because the the domain is infinite, and regions

of large gradients vary both temporally and spatially, this a more difficult problem

than those to which spectral methods are typically applied. The method is based on

divergence-free basis functions. A set of functions was developed satisfying several

constraints. In particular, each function is divergence-free. The solution is smooth

everywhere and the functions combined represent the correct decay of vorticity at

infinity. In addition, with the particular choice of functions, the linear terms in

the matrix equations (resulting from numerically approximating the Navier-Stokes

equations) are orthogonal (ie., diagonal) in two coordinate directions and banded

in the third. This is an important property when solving a three-dimensional, time-

dependent problem such that the computational time is manageable. Furthermore,

it is important in order to alleviate stiffness arising in flows where there is a large

range of length scales (ie., high Re flows).

Computations of axisymmetric rings demonstrated that the method works well,

and that it is very accurate in computing rings over extended periods of time.



6.1 Summary 91

In contrast to most spectral methods (where typically the flow is assumed to be

periodic) the flow was solved in an infinite domain. Several tests demonstrated

that the fax field was handled properly. The impulse, which is conserved in an

infinite domain with confined vorticity, was shown to be conserved to very high

accuracy. The drift at large times agreed with the analytic results of Rott (1988)

to four significant digits. The arguments leading to the analytic drift are based

on the behavior of the far field flow. The total integrated momentum was found

to be 2/3 of the impulse (within several significant digits), as expected (Cantwell,

1986). All of these are primarily a check of the behavior of the velocity at large

distances. Other diagnostics showed that the solution was accurate. The energy loss

was shown to be due only to the true viscous dissipation. The impulse was typically

conserved to several significant digits. Convergence studies of impulse showed that

the error in impulse does indeed go to zero properly as the time step is decreased

(ie., second order) and the resolution is increased (ie., faster than algebraic).

Computations were conducted over a wide range of Re. The algorithm devel-

oped is able to compute flows from thin rings at high Re to large time (Re ---* 0).

Two kinds of asymptotic studies were performed. The first is the limit of thin cores

in a time frame where very little vorticity is permitted to diffuse across the axis of

symmetry (F _ constant), with ReF as a parameter (0 _< Re < co). A common

theme was observed. A universal solution is approached after the transients associ-

ated with the starting condition have ended. For thin rings, it was shown that the

propagation speed of rings with several different initial core sizes collapsed onto an

envelope. That envelope corresponds to the time-dependent solution which would

exist if the initial condition were given by an infinitely thin ring, and depends only

on Rer. As expected, as Rer _ 0 the solution and envelope of propagation speed

versus time is bounded. Furthermore, the vorticity distribution in the core is nearly

Gaussian and simply spreads with time. A more surprising result was the apparent

limit as Re --+ oo (note that we can only extrapolate finite-Rer results). For Rer

greater than around 200, curves of propagation speed versus time (normalized by

circulation and ring radius) collapsed. This means that a universal time-dependent

solution (ie., vorticity distribution) is approached for viscous solutions at sufficiently

high Re.

The second asymptotic limit considered was t _ oo or Re --+ 0. Flows were

computed until Re < 1 for several different initial vorticity fields. For all cases

studied, the solution returned to the drifting Stokes solution. The constant of

proportionality relating _-3/2 and U was found to be independent of the initial

condition. The large time solution, therefore, only remembers the impulse and

kinematic viscosity.

In computing the propagation speed for thin rings (where F _ constant), an-

other useful observation was made. The next order term was found to the asymp-

totic theory of the propagation speed of viscous vortex rings (Saffman, 1970) for

ReF = 0. Furthermore, this correction is observed to to be an upper bound for all

Re's. With this result, the range of validity of the asymptotic theory is quantified

for a/R as large as 0.35.
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The computations demonstrated the behavior of viscous vortex flows not pre-

dicted by inviscid models: shedding of vorticity into the wake of a propagating ring,

and fusing of interacting rings. As postulated by experimentalists (Maxworthy,

1972), vorticity is shed behind a propagating ring. When considering the interac-

tion of two rings, we find that they are able to leapfrog. Furthermore, the effect

of diffusion is to smooth the vorticity peaks caused by the straining field, and for

viscous flow the rings will merge into one.

6.2 Future Work

Future work will involve extending the method to three dimensions. Studies

can then be made of mode selection associated with azimuthal instabilities, vortex

collisions and reconnections, and noise generation due to collisions. The addition

of a straining field could also be considered.



Appendix A

Translating and Expanding Coordinates

To compute rings over long time periods, it is very. helpful to transform the

equations to expanding and translating coordinates. The center of the coordinate

system is translating with the centroid of the vorticity distribution (actually of the

centroid of wy ). The rate of expansion of the coordinates is that of diffusion (_).
The transformation is chosen for convenience. We have transformed to some new

equations, slightly different from the Navier-Stokes equations. The two terms which

are not invariant are the scalar quantity, ( _ ), and the velocity in the u x w term.

In the new coordinates, the dependent variables refer to the fixed coordinates while

the independent variables refer to the translating frame. This is of no consequence

since the results are easily transformed back to the original variables for plotting

and interpretation. In this appendix, the new equations are derived.

In Cartesian tensor notation, the transformation is given by:

_, ___(e, - N_(t)) g, _- 5, _1/2

t _= logt __= _.

(.4.1)

where Xi(t) is the centroid of the vorticity distribution, and its time-derivative is

the ring speed:

dXi(t)
U_(t) -

d_ (A.2)
Ui(t) --=C_i(t)_ 1/;
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In Cartesian tensor notation, the Navier-Stokes equations are given by:

0-ffi G_'i _-ff 02"_i

A B C

(A.3)

The transformations are applied to equation (A.3), one term at a time. Starting

with the time-dependent term (A), substitute for the dependent variable, and apply

the product rule:

O"_iO(Ui) l O'Ui 1 _= _/_ui (A.4)

D

Next, the chain rule is applied to term D:

a--f= +as--jW (A.5)
.... _

E F

Term E is given by:

Term F is given by:

0F 0log7 1
(A.6)

05 i _ 0 [(gi =X---_i(t))] = 1 1 0_i(t) (A.7)-O_ O_ 71/2 j -_sj 71/_ 0_

Combining the results from equation (A.5) and equation (A.6), term D becomes:

Using the chain rule, term B becomes:

0-zj _1/2 OSj
(A.9)

Multiplying equation (A.9) by gj and transforming to Ej, the convection term is:

_ O'ffi 1 O_ii
uj-- = _j (A.lO)

Oy i _z/2 0"2j

Following equation (A.9), the viscous term transforms to:

O2-ffi 1 O2_i

- (A.il)
C_j O_j _3/2 05jOSj
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Using the above results, the transformed governing equations are:

_3/2 L 0"[ + _i 0._i

O_ a2"_i
+--

Ox i OxjOSj

(1_ + 1 71/2_. a_,) + (a_(_) a_,0,j)}+

(A.12)

In vector notation, this becomes:

0F
0-7+ (_ _) _ = - e_ + _

1_ 1 _ _ _+_+ u+ LSL u
G H

(A.13)

Next, vector identities are applied to term G and H. Term G is given by:

(_. %_ = _(._._)-(_.%_-_ × (_ ×_)-_ x _ × (_ x_)
_ 0

U (,d

(A.14)

Applying the same vector identity to H gives:

(Q. _) _ = _(Q. _) - (_. _) Q -O × (_ × _) -_ ×_ × (_ x Q)
0 _ 0

Od

(A.15)

Substituting equation (A.14) and (A.15) into equation (A.13) gives:

a_ + (_. _) _ = _ 9_+ _
at

+_u+_l- l[_(_._)____xD]+[9(_ I. _) - U xD]

(A.16)

Applying the identity, (_. 9) _ = 9(_. _)/2 - _ x _], to equation (A.16) gives the

equations in expanding and translating coordinates which are solved numerically:

a_ - - 92 _--= + V _ - _a = u.,oa x 5
cgt

(A.17)

where _amod and _ are given by:

1

1

¢ =g+_._/2- ___._-O._.
(A. 18)



Appendix B

Divergence-Free Basis Functions

Vector spherical harmonics (VSH) comprise three vector functions which are

in turn functions of scalar spherical harmonics (see Appendix C for their defini-

tions and properties). These functions span the space of any vector function on

the surface of a sphere, i.e. they form a complete set. To represent an arbitrary

function in a volume, each of the three families of functions, Nero(0, q_),Vtm(0, _),

and Were(0, _b), is multiplied by scalar radial functions, Fl,..(r,t), F2,._(r,t), and

F_,,_(r,t).

u= _Fl,_.(r,t)X,m(O,_)+ i%_(r,t)V,m(O,_)+ F3,_(,',t)W,m(O,¢)) (B.1)
gm

To find the divergence-free set which is complete, substitute equation (B.1) into the

continuity equation,

V.u = Z {v.(Fl,_X,m)+ v.(r_, v,m)+ V.(r3,mW,m)}= 0
gm

(B.2)

From the properties of VSH (Appendix C), V-(F(r)Xem) = 0 for any function F.

On the other hand, both Vtm axld W_m contribute to V • u"

O = k,,_YF -\ dr + r -) F2'= + kl dr r "
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where kl -,7Y4-7,( t _1/2 , and k2 =- _2t+1(t+l )1/2 . Divide equation (B.3) by k2 Y_ (recall

that the Y_'s are orthonormal) and factor both terms,

1 d (rt+lF2_.,) + ks 1 dr _+2 dr r -_+1 dr (r-t+lF3Lm)= 0 (B.4)

{ t _1/2 We wish to show that because of equation (B.4) thewhere ks - kl/k2 =-- tT-4-f J •

functions F2_.. and Fa_,. can be uniquely expressed in terms of one function, F+m,

such that F+m(r)Xem is a vector potential:

V× (F_+,,,(,-)Xtm) = rs,_. (F)V,,,(O, ¢) + F3,m (F)Wt,,,(O, ¢). (B.5)

For the functional dependencies, Fs_.,(F+m) and Fa,.,(F+,_), see Appendix C. Fac-

toring these,

"dF_r n t +] kl d -t +F2,m = kl dr 7 F-tin = r ----i d--_ (r F-tm(r,t)) (B.6)
J

[dF+m (g+ 1) ] k2 d
F3_m = k2 L dr + r F-t+J - r TM dr

(r*+lFtm(r,t)). (B.7)

Substitute equation (B.6) into (B.4), thus eliminating F2,..,

]k3 [ dr 2 + =r d," ,. F-t+ r- +l

Note that kl/k3 = ks. Factor the left hand side of equation (B.8),

1 d rr- , d ,] - 1 d, -t+l,-
k2r-t+l dr [ _rr' "t,_,j r_t+ 1ZrLr -"3,.,) (B.9)

And finally, integrate equation (B.9),

ksr -t-1 d (rt+ 1 +-- F-tm)= F3,_ (B.IO)
dr

which is in agreement with equation (B.7). Therefore, the complete set of three-

dimensional divergence-free basis functions is

u= FZrn(r,t) X_m(O, ¢) -t- _Tx (Ft+rn(r,t)Xtm(O, f/))) (B.11)

with two scalar radial functions, Fir n and F+m. Using the continuity equation, we

have reduced the number of radial functions (and time dependent coefficients) from
three to two.

Note that the - modes can also be interpreted as deriving from a vector

potential, since
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Limiting forms at large radius:

?
lim (1 - _) _ r--L
r--_oo r 2

lim _ = 1 (C.5)
r_OO

Limiting forms at small radius:

7.2

rlim(1 - _) = 1 ,--ulim_ _ r-_ (C.6)

Vector Spherical Harmonics

Vector spherical harmonics (VSH), X_m, Veto, and Were, form a complete

set of vector functions on the surface of sphere. They are functions of scalar spher-

ical harmonics which, in turn, are functions of Legendre polynomials and complex

exponentials. With the aide of relatively simple expressions for their Laplacian and

divergence, the divergence-free subset is extracted from the complete set (see Ap-

pendix B). Furthermore, since the VSH functions are orthonormal, the mass matrix

is completely decoupled in 0 and ¢. Because the Laplacian of a vector spherical

harmonic function does not modify the angular dependence (see eqn. C.13), the

viscous matrix is also completely decoupled in 0 and ¢. Many of the relevant prop-

erties of these functions are given below, and a more complete list is found in the

paper by Hill (1953).

Orthogonality properties of VSH (C and D are Xe,,, Veto, or W,m ):

f02r_ f0'_Ctm " (De'm,)* sin O dO d b = 6CD 6et, 6,n,,_, (c.7)

Definitions of VSH in terms of the scalar spherical harmonic, ( Y_ ):

V_rn _ r -- \2g + 1 !_)m +_ 1[(e+ 1)(2e+ 1)]I/2

{ /myem }+¢ [(e + 1)('__e+_] I/_ sinO

(c.s)

_m},)m }Nero = 0 [e(f + 1)] 1/2 sin0 -_ a}T }+ ¢ [e(e+ 1)]1/2 ao
(C.9)
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Wfm ----r

+ ¢ [e(2e+ 1)]1/2sin0

J- o}T }
._- 1)] 1/2 O0

(C.10)

Divergence and curl of Xem :

v. [F(_)X_m]= 0

(e)'/2[dF eF]v_.,v x [F(_)x_.,] =i 2e+ i 7_; ,-

+i \2e+17 -_-- + @ w_m

(C.11)

(C.12)

Laptacian of the product Of VSH with an arbitrary radial function (F(r)):

_'2 [zb'_(r)V£m ] -- L__bl(r)Vg.r n

V-_[F(_)X_m]= L_(F)X_m

V_'[F(_)W_m]= L___(F)W_.,
02 2 0

Ze - O_ r r Or

Scalar spherical harmonics:

g(g + 1)

r 2

(C.13)

eim¢

gtm(O,q_) -7- O_(0) • (9.;r)l/2 (C.14)

er(o) = [2e+1_
(e-m)!ll/_
(g + m)'!J Ptm (#) (C.15)

Hill's definition (1953) for the Legendre polynomials, P_(#), differs slightly from

that used here (i.e. by a factor of (-1)").
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Associated Legendre Polynomials

Notation: Peru(#) = Qem(0)

Weight function: w(x) = 1

Domain: -1 _< p _< 1,

Orthogonality:

Rodrigues formula:

[2 = COS 0

(--1) m

pro(,) _ _.,

First few polynomials:

2(e+m)!
(2e + 1)G- m)! _"'

(1 - _2)m/2 dt+"
d/+-, (_2 _ 1)e

(c.16)

(c.17)

m=0 m=l m=2

g = 1 # -(1 - _2)1/2 not defined

e = 2 ½(3__- 1) -3_(1 -/)1. 3(1-/)
e = 3 ½_(5/- - 3) -_,3c5d- 1)(1 - _)'/_ 15_(1- _)

(C.18)

Recurrence relations:

(m-e- 1)Pi"_ +(2e + 1)vPi_-(m+e)P___ =0

Derivative relations:

dQeo _ p_(#); e > 1
dO

(C.19)

(c.20)

dQtm __ 1 S D"+l
1,"2dO 2

-(m+e)(e-m+l)P?-'}; m>__1 (C.21)
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Shifted Jacobi Polynomials

The shifted Jacobi polynomials, G_, are similar to those defined in Abramowitz

and Stegun (A&S), (1972, eqn. 22.2.2) with two important differences. First, in

the notation of A&S, p = 2g - 1 and q = g- 1/2. Second, the polynomials

are orthonormal with respect to the weight function, w(_). The properties are
summarized below.

Notation: G_,

"Weight function:

Domain: 0 _< _ <_ 1

Orthogonality:

w(_) = (i - _)_--__-_

'/ol.G_ ( _) G_,( _) w( _)d_

Rodrigues formula:

(_nnt (C.22)

=
(2(n+2t--2_! 1/2.-r )

( 2n+2-e-3 "_!
\ 2 ]"

(_ -- 1)-t+-_-t+_ d-----V
(C.23)

First few polynomials:

co_= (2(2e- 2)!)1/=

c_ - (2e- 1),/_ (4e_- _ + l)

C-_0 = 2g- 1 [(8g+8)( 2-(Sg+4)4+2g-1]

(c.24)
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Recurrence relation:

¢a'.(¢) -

+

Derivative relation:

+

[(n+ 1)(n+ 2e- 1)]'/2 G_+I(,_)
4(,_+ e)

(2n2+ 4en- 2n+ 2g2- 3g+ 1) G_(_)
4(_ + e - 1)(_+ e)

[n(n+ _- 2)]_/_G___(_)
4(_+e- 1)

(c.25)

_ n[(n + 1)(n + 9_£- 1)] I/2 Gtn+a(_)
4(n + g)

_ n(n + 9_2- 1) G_(,_)
.... 4(n + _ -- 1)(n + t_)

_ [n(n + 2g- 2)]1/2(n + 2.£- 1) at_l(,_ )
4(n + g - 1)

(C.26)



Appendix C

Properties of Algebraic Mapping

and Special Functions

Algebraic Mapping

The radiM direction, 0 _< r < oc, is mapped to the domain [0,1] in the new

variable _. The mapping, and its properties are shown below.

Definition:

r 2 -- (C.1)
-- r 2 +r_ 1 -_

Derivatives:

-2 -2,-f (3,̀ 2 - if)
(4sc- 1)(1 __.)2 _-- )3 (C.3)

r3 _:1/2(
r 2 dr = 79" .1 - _)-5/2 d_ (C.4)



Appendix D

Coordinate Singularities

In spherical polar coordinates, there are coordinate singularities near the origin

and on the polar axis, 0 = 0 and _r. Therefore, an arbitrary expansion in these

coordinates can have discontinuous derivatives at these singular points giving, for

example, infinite vorticities or Laplacians. Our expansions involve vector spherical

harmonics multiplying arbitrary radial functions. The vector spherical harmonics

ensure that the function is smooth along the polar axis. We are left with the

task of finding appropriate radial functions, and therefore knowing the allowable

combinations of sin _b, cos q_, cos 0, sin 0 and r such that the basis functions are

smooth near the origin and are also complete.

Spalart (1988) derived the functional dependence for the general class of the

radial functions in polar and spherical polar coordinates, for scalar and vector fields.

This was accomplished by writing the solution at the origin in a T_'lor series ex-

pansion, applying a Laplacian operator repeatedly, and requiring that all of the

derivatives remain bounded. From this, a set of constraints on the radial functional

dependence is found. He then shows that this is not only a necessary condition but

also a sufficient condition by counting the number of degrees of freedom imposed

by this dependence and the number of degrees of freedom available in the Taylor

expansion in z, V, z coordinates. By showing that these are equal, it follows that

this form of the radial expansion in the neighborhood of the origin, is both sufficient

and necessary for completeness. This appendix describes this procedure for scalar

and vector fields in spherical polar coordinates.
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For a scalar field, g(r, 0, ¢), we have an expansion of the form

g(_,0,¢)= _ hem(_)Y_m(0,¢)
e,m

(D.1)

We wish to find the functional form of hem(r) such that g(r, 0, ¢) is smooth near

the origin. Applying the Laplacian operator n times gives

(v_)"9 = Z(V_)"(hemYem)=_((L_)"hem)YF
elm eylTt

(D.2)

where Le is given by equation (C.13). For all the derivatives of g to be bounded

at the origin, ((Lt)nhem) must be bounded for all n. Now, write a Taylor series

expansion of hem about the origin:

hem = E a,r'. (D.3)

. . .

Substitute equation (D.3) into (D.2) giving

Oo

(v_)-g = Z(te)-(E a,_,) 5 m
e,m p=0

l,m p=O

(D.4)

Again, for all derivatives of g to be bounded, (Le)"r p must be bounded.

equation (C.13) it follows that

ze(_') = (q-e)(q + e + 1)_q-_.

From

(D.5)

From (D.5), it is clear that for Lt(rq) to remain bounded, q must equal g before

q .---2 < 0. Furthermore, repeated applications of the Laplaciaa (eqn. D.4) gives

(Le) n r p _ r p-2". (D.6)

and q =p-2n. Since q =e, then p-2n =g before p-2n <0, or p=_+2n.

Combining this with equation (D.3) gives

OO

hem "" E anrl+2n

n.-_O

~ _a.(_2)"
n.._-O

,-_ refem(r 2 )

(D.7
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where f_m is a smooth function. This constrains the form of the expansion. The

next step is to show that these constraints are sufficient, or that the the number of

degrees of freedom in the spherical harmonic expansion is equal to the number of

constraints imposed by equation (D.7).

In a Taylor series expansion in x, V, z, we have

g(x,y,z)-- E aijkxlYJzk (D.8)

i,j,k=0

where x = r sin O cos ¢, y = r sin 0 sin ¢, and z = r cos 0. Writing equation (D.8)

in spherical polar coordinates gives

= Z
i,j,k=0

.... _ErP

p----=0

aijk r i+j+k 8ijk(O, (_)

E aijk sijk 1
i+j+k=p

(D.9)

where the functions $ijk contain the angular dependence. We now ask how many

combinations of (i,j, k) there are for a given p, such that i + j + k = p, where

i>_0, j>_0, and k>__0.

First, we eliminate k by writing

k=p-i-j (D.10)

or

i>0
p k i + j, - (D.1t)

j>o

By expressing equation (D.11) as

j _ p - i, i >__0 (D.12)

we can count p - i + 1 values of j that are compatible with a given i. Therefore,

the total number of degrees of freedom is

p

E(P-i + 1): E((p+ 1)-i)
i:0 i:0

P P

=E(p+I)-E/
i=0 i=0

= (p+l) 2 p(p+l)
2

(p + 1)(p + 2)
2

(D.13)
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Next, we count the degrees of freedom in the expansion given by (D.1). Com-

bining this with the radial dependence given by (D.7), we have

g "_ E rt+2n Yt,n(/9, ¢) (D.14)

where n > 0, Iml < e, e > 0, and p = g Jr 2n.

We begin by counting the number of values of m, giving 2t? + 1. Furthermore,

write e = p - 2n, n > O, g. >__O. Now, we eliminate e giving 2(p - 2n) + 1 values of

m, wheren _>0. Notethat the upperboundon n is givenby n _< where
indicates the integer value. Therefore, the total number of degrees of freedom is

Ill
E (2(p- 2n)+ 1)
nw_0

= ([P]+I) (2p--2[P]+l) • (D.15)

Considering the case of even and odd p separately, the equation (D.i5) simplifies

to (p+l)(p+2)2 , which is equal to the number of degrees of freedom (eqn. D.13).

Next, we generalize this to 3D vectors in spherical polar coordinates. The ex-

pansion is in terms of the radial functions multiplying the vector spherical harmonic

functions, Xem, Veto, and Were. Applying the same procedure as that above, we

take the Laplacian of the expansion function and require that all of the derivatives

are bounded. From equation (C.13) for the Laplacian of each of the VSH functions,

we findp=e+2n for Xem,p=e+l+2n for Vtm,andp=_-l+2n for Were

and the corresponding total number of degrees of freedom is (3p 2 + 9p + 8)/2. In

comparison with the number of degrees of freedom for the Taylor ex'pansion in x, y,

z (ie., 3(p+ 1)(p+ 2)/2), we find that we have 1 too many degrees of freedom. This

apparent discrepancy can be accounted for by the special cases of X0,0 and W0,0

which are equal to 0. If p is even it multiplies X0,0 and if it is odd it multiplies

W0,0, making all of the degrees of freedom accounted for.

In summary., in order for an the expansion given by equation (2.3.1) to be

Coo (infinitely differentiable), the radial functions multiplying each of the vector

spherical harmonics, Xem, Veto, Were, must (near the origin) be of the form

r fxlm(r'),

re+l fvtm(r2),

rt-l fwtm(r2),

(D.16)

respectively, where the ffs are smooth.



Appendix E

Gauss Quadrature

Gauss quadrature is an efficient and accurate method to evaluate certain types

of integrals. In particular, when an integrand is composed of the product of a poly-

nomial and a weight function of a Sturm Liouville polynomials (Legendre, Jacobi,

Chebychev, etc.) and the limits correspond to the same family as the weight func-

tion, then such an integral can be integrated exactly with a finite number of points.

It happens that for the problem which we are solving, integrals of this form arise

in transforms from real space to wave space and those defining global properties

of the flow (i.e. impulse, momentum, etc.). Actually, this property of our integral

expressions was a constraint which determined the basis functions.

Gauss quadrature frequently refers to integrals using Legendre polynomials of

as interpolating polynomials. Here we are using this term in a more general sense

to mean any interpolating polynomials which are solutions of a Sturm-Liouville

problem. This method is defined not only by weights multiplying the function at

each grid point, but also the particular choice of the grid points. By using these

extra degrees of freedom, a polynomial, P2N-1, of order 2N-! is integrated exactly

using only N collocation points. This appendix develops this numerical method

and presents a scheme for determining the collocation points and weights for a

particular family of interpolating polynomials (Golub and Welsch, 1969).
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Theory

A definite integral, I, is evaluated numerically as a discrete sum

b N

I= f_ f(x) w(x)dx = ___f(x,)A,, (E.1)
n=l

The particular quadrature rule is determined by the choice of the points, z,, (N

degrees of freedom), and the weights, A, (N degrees of freedom), totaling 2N

degrees of freedom.

One means of determining the weights, A,, is to approximate the function,

f(x), as a polynomial of degree N,

N ., ,
PN(x) Z (x _ (z.2)

r_---_--1

where a(x) = (x - Xl)(Z - x2)(x - x3)...(x - xN) is a completely factored N `h

degree polynomial. Therefore, f(x) is exact at the points, xn. Furthermore, if

f(x) is a polynomial of order N - 1, then the approximation is exact everywhere

(the space of polynomials of degree 0, 1,..., N - 1 is of dimension N).

Substituting equation (E.2) into (E.1), and exchanging the sum and integral

operators gives

f b N i b a(x) w(x) dx (E.3)f(x)w(x)dx _ _ f(x,.,) (x - xn)a'(xn)
n=l

With equally spaced points, xn, we get gives various Newton-Cotes formulas, among

which is the commonly used Simpson's rule (w(x) = 1 ).

It was pointed out by Gauss, that the values of x,_ represented unused pa-

rameters, giving the potential of a more accurate scheme. Indeed this is true when

x,_ is chosen such that a(x) is the n th-degree polynomial which is orthogonal to

all lower degree polynomials over [a, b] with respect to the weighting factor w(x).

With this, a function, f(x) = P22v-1 is integrated exactly with N collocation

points. The most common sets of orthogonal polynomials are those resulting from

solutions of a Sturm-Liouville problem. Therefore, if we are able to express our in-

tegrals in the form of equation (E.1) where the weight function, w(x), and interval,

[a, hi, correspond to a family of polynomials which are solution of a Sturm-Liouville

equations, and if the remaining part of the integrand, f(x), is a polynomial, then

we can integrate the function exactly with a finite number of collocation points.
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Finding the Collocation Points and Weights

The mechanics of numerically computing the collocation points, xi, and the

weights in the quadrature formula, Ai, are described below. For a more complete

mathematical treatment, see Golub and Welsh (ref.). We start with the recurrence

relation for the particular special functions of interest, cast this as an eigenvalue

problem, normalize the matrix, and solve for the eigenvalues and the eigenvectors.

The collocation points, x,,, are the eigenvalues (which are also the n zeros of the

n th degree polynomial) and the weights are found from the eigenvectors. This

procedure tends to be less sensitive to rotmdoff errors than that of finding the roots

of the n th polynomial, and then the weights by a linear system.

For any solution of a Sturm-Liouville problem, a three term recurrence relation

can be found, showing the relation between the polynomials of different orders.

vj+l(x) = (aj+l x + bi+l)pj( ) - cj+l (E.4)

for j -- 0, 1, ..., N - 1, p__(x) = O, and po(x) = 1. The coefficients, aj+_ , bj+l,

and cj+l are tabulated in several books, for example Abramowitz and Stegun (ref.).

Rewriting equation (E.4),

1
xp(x) = Tp(x) +--py(z)eu

aN

eg -- [0,0,...,0, 1] T

p(x) = _o(x),pl(x),V2(X),...,pN_l(x)] T

(_ b_t. !

c_z _!x !
_2 a2 a2

**° °°° °°°

cN-t bN-t

aN--i aN--i

0 c.._._
aN

W _ 0I1

aN--I

aN

(E.5)

The eigenvalue comes about from evaluating equation (E.5) at x = t j, and

setting pN(tj) = 0,

tjp(tj) = T p(tj) (E.6)

The matrix, T, is symmetric if the polynomials, pj(x), are orthonormal. K this is

not the case, a diagonal similarity transform is performed,

_2 /32

DTD -i = J = ".. ".. ".. (E.7)

,_N--2 C_N-I _N-1

rflN_ 1 (R N
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where

bi Ci+l
_i----_ i = -_

ai ai ai+l /

to obtain a symmetric matrix.

The eigenvalues and eigenvectors of the matrix J are computed from a standard

eigenvalue solver. The eigenvalues, which are distinct and real since J is symmetric,

are equal to the collocation points. Knowing the eigenvalues, the eigenvectors are

easily obtained. The first component of the eigenvectors, q02j is used to compute

the weights,
bP

A,_ = q2o j #o #o = J,_ w( z )dx. ( E.8
)

We have obtained the collocation points, xn, and the weights, A,, defining the

quadrature rule.



Appendix F

Computing Centroid and Impulse

Centrold and Propagation Speed

We begin with the definition of the centroid suggested by Lamb (1945), Saffman

(1970) and others.

1/vrXW'IX= _ 12 rdV (F.1)

For axisymmetric flow, equation (F.1) reduces to

1£X = I,l'----p ";¢y2xdA
(_'2)

As seen in figure F.1, A is the area enclosed by the half plane, -cx_ < x < c_, and

0 < y < co. The velocity of the centroid, U, is found by taking the time-derivative

of equation (F.2):

dX 1 [ Ow e_ 2

U- dt - L:Ip JA ---_--y zdA (F.3)
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Y

r

v

Figure F.1. Definitions of Cartesian coordinates, and spherical polar co-

ordinates with ¢=constant.

In order to evaluate U for a given vorticity field, we use the vorticity equation

(obtained from the curl of the momentum equation).

...._ = v × (u × _) + _v% (F.4)

The rate-of-change of vorticity in equation (F.3) is then replaced by the right hand

side of equation (F.4). As mentioned by Saffman (1970), the viscous term does not

contribute to the velocity of the centroid, U. This can be shown by expressing

the Laplacian of we in cartesian coordinates and rearranging the viscous term,

xy2X_72_, such that it is expressed as total differentials. Integrating by parts and

considering the decay of vorticity at infinity, together with zero vorticity on the axis

of symmetry, shows that this term is zero.

Assuming that the flow is axisymmetric and without swirl (u¢ = O, wr = wo =

0), the only component of the convection term is

(v x (u x _))_ = ....1 O 1 Ouew¢ (F.5)
rot (ru_¢) r cOO

Substituting equation (F.5) into (F.3) (using eqn. F.4 and the fact that the viscous

term does not contribute), and integrating by parts, the velocity of the centroid
becomes

1 /__l f0oo{ Ue(3/_2__1)}= _ 3ur + we radr sin O#dff
U I_/p 1 /_ sin 0

(F.6)

where # = cos 0. Therefore, given the velocity or vorticity (since one can be derived

from the other), the velocity of the centroid is computed using equation (F.6.).
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Impulse

For flows which are unbounded and unforced with a quiescent far-field, the

impulse is conserved. Because the governing equations conserve impulse, and it is

not built into the method, this serves as a very useful diagnostic. It is computed in

two ways. The first is by a multipole expansion (described below), and the second

is a direct integration using Gauss quadrature (see Appendix E).

Multipole Expansion:

The ¢ component of the vector potential as r --* _ to leading order is

I sin O

T¢ = 4_" r 2 (F.7)

where I is the impulse (Cantwell, 1986). Furthermore T¢ is related to the stream

function, _¢ by '

T,- % (F.S)
r sin 0

Therefore,
I sin 2 0

(F.9)_ - 47r r

From this we can get the velocity component in the radial direction, u, as

I cOrSe 1 I
U = r2 sin 0 00 r 3 2re cos 0 (F.10)

Now, our spectral expansion for the radial component of velocity is

+

1,f_t_0 (F.11)= a.d(e + t
nt

where f+ = (1 - _)(t+l)12_t/2Gt_(_). For e = 1 ,po = cos0. Hence. we only need

the f = 1 terms. The velocity becomes

u = 2 (1- _)_1/2 cos0 (F12)
r

n

where G_(_) is the normalized Jacobi polynomial family where p = 1, q = 1/2.

Next, we need to determine the leading term in u as r _ ec. or _ _ 1.

9

u_ _ r- cos0_'/2(1 - _) E a., _i___G,(() (F.13)
n
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The results for lim_-.l(1 - _) and lira(_1 Gn(_), described in detail below, are

- (E.14)

lira G,-,(,_) _, (2n + 1) (F.151
_--1

Substituting equation (F.14) and (Y.15) into equation (F.13) gives

_,= = 2cos0 _ a,i(2n + 1) (.F.16)
n

The velocity at a large radius, uoo, is then substituted into equation (F.10) giving

2 1/2

I : 47F-- I"2 E an 1(213 JF 1) (F.17)
7P

. + .
n

Limiting form of Jacobi polynomials as r --+ oo:

Abramowitz and Stegun (1972) give coefficients of the expansion for Jacobi

polynomiMs, P(_'_'_)(z) (in their notation) where 1 < x _< 1, of the form:

P(_J)(x) =a_' E cm(x- I)m. (F.18)
rn_O

These polynomials, P(_J)(x), are related to shifted Jacobi polynomials through

A&S equation (22.5.2). In addition, we must scale the Jacobi polynomials in A&S

such that they are orthonormal. Applying these transfomations gives an expansion

in terms of 1 -_, where _ is the mapped coordinate (eqn. C.1). From equation

(C.5), note that the leading term for 1-_ at large r is of order 1/r 2 . Therefore, the

limiting behavior as r ---+ oo (or _ --+ 1) is simply the first term in the expansion.

From this analysis, we find that the leading term as a function of n for orthonormal

shifted Jacobi polynomials at large radius is

lira c',,= + 1).
FwOO

(/:.19)



Appendix G

MACSYMA Code

MACSYMA is a high level programming language which is able to manipu-

late symbols. In addition, it includes extensive libraries of algorithms for solving

mathematical problems such as integrM equations, differential equations, etc.. It

is especially powerful in solving problems where the algebra becomes very lengthy

and involved. The elements of the mass and viscous matrix were computed ana-

lytically using MACSYMA (see section 2.2 and 3.4). One reason to compute these

analytically is to mimimize the roundoff error (see section 3.5).

We axe interested in evaluating the integrals given by equations (3.4.1) and

(3.4.3), the mass and viscous matrices, respectively. The way in which this was done

was to express these integrals in terms of sums of Jacobi polynomials (using the

derivative and recurrence relations of Appendix C) and then apply the orthogonality

relations (Appendix C) to evaluate products of Jacobi polynomials. Therefore, the

problem proceeds in two stages. The first stage is to find the recurrence relations

and differential relations for the Jacobi polynomials used in this work. The next

stage is to write a program (or macro) to carry out the process of substituting the

recurrence and derivatives relations, and evaluating the integrals.

As discussed in Appendix C, we are using orthonormal, shifted Jacobi poly-

nomials. These axe a modified form of those shown in Abramowitz and Stegun

(1972). The Jacobi polynomials are functions of two indices (n and e) in order

that the matrices are banded. This leads more complex recurrence, derivative, and

Rodrigues formulas. To avoid mistakes, this process is programmed: the listing is

entitled Jacobi. Three formulas are derived here. The recurrence relation, recur,
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the derivative relation, difeq, and the macro which generates the Rodrigues formulas

of any specified order, Rodrigues.

The second listing, Matrix Macros, shows several marcos which are called

in succession in order to evaluate the integrals, followed by the a listing of the

program used to obtain the elements of the mass matrix. The macros are: (1) repzi

which replaces _G t with the appropriate linear combination of G t (eqn. C.25),

(2) repder which replaces occurances of _(1 - _:_da._ with the appropriate linear".] d_

combination (eqn. C.26), (3) getcoef extracts the coefficients in front of each of the

Jacobi polynomials, and (4) genmat uses the orthogonality relations and solves for

the matrix elements (ie. the diagonal and off-diagonal nonzero elements).

In the mass matrix shown by equation (3.4.1), there are two terms. Because

the there wasn't sufficient memory to solve the entire problem at one time, each of

the two terms are computed during a separate session and the results from the two

sessions were combined to give the final answer. The macro which combines these

elements is forma.

The viscous matrix was computed in a similar manner. This matrix involves

another derivative, and 4 terms instead of 2, so the algebra is considerably more

involved. Again because of memory, restrictions, the problem had to be solved in

pieces and then combined to give the final result.
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Jacobi mcorrance (recor} ::-buildq([mcur],

(assu_ (n>-O),

assure (el>-l),

assure (n+el>-l),

/* ocefficients in Jacchl recurz-ance r_laticn */

p:2*el-l,

q=el-i/2,

al : factor(-(2*n*(n+p) +q*(p-l)) /((2*n+p)^2-1)),

a2 : factor (n * (n+q-l) * (n+p-l) * (n+p-q) / ( (2*n+p-2)* (2*n+p-I) ^2* (2*n+p)) ),

I* nonmdlzed Jacchl polyn_al factors *I

h[n] :N!*GAVM_ (P+N) *G%M_A (-Q+P+N+I) *GAF_A (Q+N) / ((P+2*N] *GAM_ (P+2*N} *'2},

h[n] :makefact _ [n] ),

h[n+l] :subs* (n+l, n,h[n] ),

bin-If :subs* (n-l, n,h[n] ),

NOF_: sqrt (fact.or _dnfactorial (h [n+l]/h In] ) )),

NOF_2: sqrt (factor _dnfactorial (h [n-I ]/h In] ) )),

/* recurrence relaticn for normalized Jaccbi p01yr_miais */

recur: y*g[n] (y) - NC_MI*g[n+I] (y) - al*g[n] (y) + NC[_M2*a2*g[n-l] _y)))$

_rigues (_ax, G, te=_) ::-buil_( [_ax,S, ten_ ],

_:2*el-l, q=el-I/2, alpha:el-i/2, beta:el-3/2,

rho: (l-x)^al_ha * (l+x)^beta,

g: i - _'2,

rhoy: subs* (2*y-l,x,rho),

gy: st_ost (2*y-l, x,g),

for n:0 _hru nmax do

( an: (-l)^n *'2"n * factorial(n),

terml: (factorial(n) *g_ma(n+p) )/ga_ma(2*n+p),

h [n] :N! *t:;/_Y_ (P+N) *_t"b_ (-Q+P+N+I)

• G_M_A (Q+N) I ((P+2*_ *GAM_ _P+2*N) ^2 },

sqrt (h [n] ),

r.en'n2 In] : =e.ml/(nonu*an*rb_*2"n),

G [nl :factor (diff (rhoy*gy_n, y, n) *term2 [n] ),

print("S[",n,"] is", G[n])

)

)

)$

/t Differential recurrence relaticn_/

: el - 1/2;

beta : el - 3/2;

g2 : (2*n + al_*ha + beta) * (l-xi^2};

gl : n*(alpha - beta - (2*n + al_/na + beta) *xi);

gO : 2* (n + alpha) * (n + beta);

eq:.g2 * dlff(f[n] O_i),xi) - gl*f[n] (xi) + gO*f[n-l] (x.i);

eq:. subs_ (2*xi-l,xi, eq) ;

eq: ratsubst (dill (f[n] (2*xi-l) ,xl)/2,dill (f [n] (2*xi-l} ,2*xi-l) ,eq) ;

z:2*xi-l;

for k:n-i thru n do

( _[k] :makefact( gam_a(2*k+p)/ (factorial (k)*gamma (k+p) ) ),

f[k] (z) :- g[k] (xi)*te__n[k]);

eq:.eq/te-_m[n], dlff:

eq: factor _infactorial (.expand (eq)) );

eq:.eq/(-4 t (n+el-l)) ;

/* eq2: normalized differential relation "/

c[n]: ra_cceff (rb.s(es) ,gin] (xi)) ;

c[n-!] :factor (ratcoeff (rhs (eq) ,gin-l] (xi)) ) ;

eq.2:Lhs(eq) - c[n]*g[n] (xi) + N_g2*c[n-l]*g[n-l] (xi);

/*as a _heck, eq2.:lhs(ec_ = c[n]*g[n] (xi) + c[n-l]*g[n-l] (xl);*/

/*_nen, is ratsJ2p. (rhs(e_-rhs(eq2)) -0 "/

eq2: ratsubs_ (rhs (recur), lhs (recur), eq_) ;

i___eq2:fac_r (lhs (eq2.)) ;

c2 [n_l] :factor (raccceff (r_ (eq2) ,g[n+l] O_i) )) ;

c2 [n] :factor (ratcoeff (rhs (eq2) ,g[n] (xl)) ) ;

c2 In-l] :factor (ratcoeff (rhs (eq2}, q[n-!] (xl)) );

difeq:lhseq2-c2[n-l]*g[n-l] (xi) + c2[n]*g[n] (xi) + c2[n+ll*g[n+l] (._i};

ORIGINAL PAGE IS
OF ,¢K)O=RQUALITY
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Matrix Macros

l*Procecbre to replace xl * Je_x_al polynuaial with appropriate lirear ccmbln

rewi (fun=, wid) ::- baildq ( [fun=, wld],

for k: n-wld thru n+wid do

func: ratsubst ( Gt[k+l] bxi)*sqrt_+l)*sqrt(k+2*el-l}/(k+el)/4

+Gt [k] 0c£) * (2*k_ 2+4*el*k-2 *k+2*el^2-3*el+ i)/ ((k+el-i) * (k+el) )/4

+Gt [k-l) (xi) *sqrt (k}*sqrt [k+2 *el-2 )/(k+el-1)/4,

xi * Gt[k] (xi), func } }$

/*Procedu_ to replace xi * (l-xl) * dGn/ckl with appropriate linear

mpder (func , wld ) : :- buildq ( [ func , wld ],

for k: n-wid thru n+wid do

func : ratsubst ( -Gt[k+l] Oct) *k*sqr_(k+l)*sqr_[k+2*el-l)/(k+el)/4

+Gt[k] (xi) *k* (k+2*el-l)/( _+el-l}* 0_+el) )/4

_t [k-l) (xi) *sqrt (k)*sqr_ 0_+2"ei-2) * (k+2*ei-l)/[k+el-l)/4,

xl * (l-xl) * dlff( Gt[k] (xl), xl), func ) )$

/* Extract coefficients */

_ccef(func, wlcScoef, funccu_) ::- buildq.([func,wi_c_ef, fun_],

(funcout: 0,

for J:-wid thru +wid do

(trap:divide (func, Gt In+J) 0ct),Gt[n+J] Oft)),

ccef [J) :factor (_p[l]),

func:U_. [2],

funoou_:funcout+coef [J] *Grin+J) (xl)

)

)

)$

genmat (co_fl, ccef2,wi_ma_x,amat0,ara_l) : :-

buildq ( [ccefl, ccef2, wid, matrix, amat0, amatl ],

(ccef2[-wid-2] :0, ccef2[-wid-3] :0,

for J:0 thru 2*wid+l do

_a__rix In+ J] :0,

for k: -_id thru wid do

_natrlx[n+J] :matrix[n+J] + ccefl[k]*suhstm+J,n, ccef2[k-J])

), matrix[n+J] :fac_or_nar_rix[n+J] ),

print ("matrix element ",n+J, "is", mar_r/x[n+J]),

a_atO [n] : - (coefl [-I ]*ccef2 [0 ]_ [0]*ccef2 [-i ]+coefl [I ]*ccef2 [-2]

a_ar/[n] : -ccefl[-ll*ccef2[-2],

amat0 [n+l ] : - (ccefl [-I ]*s_ost (n+l, n, ccef2 [-I] )

+ cDefl [0] *subst (n+l, n, ocef2 [-2] ) ),

amat0[n+2] : -ccefl[-1]*subst (n+2,n, ccef2[-2])

)

)$

/* form the mass matrix _ts by ou_hining the first and second parts */

fo_na (mass I,mass2, aln_tO, a2ma_0, altar 1,a2r_r.l, wid, mat, r_atO,ma_l ) ::-

' bulldq ( [massl, mass2, almat 0, az%na_0, almar_l, a/_ar_l,wid, mat, mat0, mat i ],

(for J:0 r_hru wid do

_a_ [n+J ]: factor (ratslmp (-rl^3 * _massl [n+ J ] + 2_2 [n+J ] )/6) ) ),

man0[n] : factor(ratsi_p(-rl^3 * ( _assl[n]+almat0[n] )

+ 2*tmass2[n]+a2mat0[n] ) )/6) ),

mat0[n*l]:factcr(ra_imp(-rl^3*( _assl[n+l]+alma_0[n+l] )

+ 2*_ass2[n+l]+a_nat0[n+l] ) )/6) ),

mat0[n+2] :factor(ratsimp(-rl^3 * ( _assl[n+21+alma_0[n+2] )

+ 2*_ass2[n+2]+a2mat0[n+2] ) )/6) ),

marlin) : facr_r(ratsimp(-rl^3 * ( _ssl[nI+almatl[nl

+ 2*_ass2[nl+ab_atl[n_ ) )/6) )

)

)S
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Listing for Mass Matrix

I* Bul/dinq blocks of funcr.ions -I

dxdr:2*sqrt (xi) • (l-xi) ^ (312)Irl:

Fnl: (l-xl) ^ ((el+l) 12) *xi ^ (ell2) *Gt In] Oct) ;

r: rl*sqrt (xi}/sqrt (l-xi) ;

I" First half of mass matrix, first function "I

f: ratsir_p ((dxdr*diff (Fnl ,xi) -el*Fnl/r) *xi ^ (- (el-l)/2) * (l-xi) ^ (- (el+2)/2) );

repder(f,0);
repxi(f,0};

getcoef(f,I,c/,fslmp)$

/* First half of mass mar_--ix, second function "/

fp:fsimp-xl;
rep_iCfp,1);

get_f (fp, 2, cfp, f-psi.p) $

/* With first and .second ft_ctlon, find the first half of n_ass matrix "/

germac (c.f,cfp, l,,_ssl, alma,0, almatl) $

/* second half of mass mar.z/x, first funcr/mn */

/* f2: ratsi_p ( (dxdr*diff (Fnl, xi) + (el+l)*Fnl/r)

•xi ^ (- (el-l)/2) * (l-xi) ^ (-(el+2)/2) ); */

/*repder (f2,0) ; */

l*repxi(f2,0); */

/*get:coef (f2, i, cf2, f2slmp )S */

I* second half of mass mar_fix, second function *I

/* f2p: f2rdznp_xl; */

/*re c_i (f2p, i) ; */

l*qetooef(f2p,2,cf2p,f2pslmp)$ "/

I* With flrsc and second funcclon, find r_he second half of mass matrix "I

/*germat (cf2, cf2p, l,_ass2,a2ma_:O,a2mar-l)$ */

/* fozm the mass mar_rlx elements */

/* fo22na 0rassl ,mass2, almar.0, a2mat:O, almatl, a2matl, 3, amat, aratO, amat i )$ */



Appendix H

Initial Condition Code

The task of solving the Navier-Stokes equations is divided into two separate

codes. The first (IC) takes an initial condition in the form of a vorticity distribution,

and finds the coefficients of the expansion approximating the vorticity field. The

second code (NS) starts with the coefficients computed by IC and marches the

solution forward in time, a specified number of time steps. This Appendix will

describe IC. We will begin by deriving the matrix equation which is solved to obtain

the initial condition. Then a flowchart for solving this problem is presented and

finally, a listing is attached.

The vorticity field for axisymmetric flow in spherical polar coordinates contains

only one component

we = E a,t(t) Lt(f,t) P_ (H.1)
nt

Multiply both sides of equation (H.1) by (Le(f,vt,)P_,)* and integrate over the

domain, 0 _< # < 1 and 0 _< r < co. Apply the orthogonality relations for

associated Legendre polynomials

2g(g + 1) f0 _ j(0°° f2t_+l Ea'_t Le(f_)Lt(f_'t)r2dr= w¢L_(f"'t)P) d#r2dr
1

n

(H.2)

Rearranging equation (H.2) gives a set of N coupled equations for each g, with
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Figure H.1.

[SETUP i

I
IJACOB,I

I
ILEGENDREI

I
I EXACTI

i
lUO=l,_i

<>"

Flowchart of IC.

1
IF°"MRHs1

I
IFORMAI

I

[solve for an(1)I

unknown vectors, ang,

' [/_', ]C"n'a"l- 2_(g + 1) wcPT(#)d # L<(f,,,<)r2dr (H.3)

gwhere C.., -- fo Z"(f"')C'(A") "_d' This matrix, C_..,, is sy_etric and
positive-definite, and has a semi-bandwidth of 5. It is related to the viscous matrix.

The elements of C_ ,, were analytically computed using MACSYMA.

For a specified vorticity distribution, the right hand side of equation (H.3) is
t

computed using Gauss-Legendre and Gauss-Jacobi quadrature. The matrix C_, ,,,

is inverted by Cholesky decomposition, giving the coefficients, a,_t.

A flowchart of IC is shown in figure H.1. The solution procedure is quite

straightforward. SETUP reads the inputs, N, No, L, Lc and the parameters defin-

ing the initial vorticity field, and solves for the collocation points and weights

for Gauss-Legendre and Gauss-Jacobi quadrature. JACOBI evMuates the radial

basis functions at the collocation points, i = 1,...,N¢ for each n - NI and

g =_ LI. LEGENDRE evaluates the polar basis functions at the collocation points,

j = 1,..., Lc, for each _ __. L[. EXACT contains the initial conditions of Stokes

and thin rings, where the specified initial condition are evaluated at the colloca-

tion points. For a given e, FORMRHS computes the right hand side of equation

(H.3) and FORMA computes the elements of the matrix C_e,,,. The coupled set

of ordinary differential equations are then solved using the IMSL banded Cholesky

soh, ers LUDAPB (decomposes eC,, n, ) and LUELPB (solves the linear system) to

get the coefficients a,_ for that g. This procedure is repeated for each g.
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"CCIvDECK VOW4

P_2A_( NMgIM'92, NCDIM-92, IPDIM-92, 1£DD_92,

1 PI " 3.14159265358979323846)

pAgAMEI2_ (LV_IT£'3, IREAD'5, II_RITE-6)

DOUBLE P._ECISICN XIDD, _'XI_SID

CCtWE_/XIEX_'BL/ XlDD (NCDIM)

O:te_'/B=OLLOC/ XI (NCDIM} ,WrR(NCDIM) ,ClH (LCDIM) ,WITH (UmlI_,

1 R (NCDIM)

Ce_X_/B_CC_I/ GVD (_VDIM, I.VD_4, NCDIM)

CavM£_IBLEGL-"_DI P1 (LMD_4,1_D_

CCH_/mgXP/X/ SIC (_Dn% 6), SIcIhv (k_Dn_ 6), PaS (_HDn_,

1 SOL (h_DIM}

CQVM3NIBETJ_TI V¢_ @EDIM, _CDn_

CC_E_/BCOEFFI Tn_,AL9 e_DI_ LHDn_

CQvH_N/BG_/ NM_X, NCOL, IMP, LCOL,NM_A e_DI_ ,IC

CC_M_V BPARH/ RAD I_JS,EXX_T, VlSC, GAM_ Ct_ BCC_5_D,

1 IRON, IFRPPE

*DF_K IC4_IN

EROGRAM P_IN

C

C *'" MAIN BOUIU_E ***'*

*CALL VORT4

CALL _?

DO 25 LI = I, IFAX

NM_A(LI) - hPmX - LI +I

25 CChTINL_

CALL _P£

C_LL _C08I

CALL EX_'T

C begin 1 _ her_:

DO i00 LI=I,LMAX

NM_X - NH_A_)

CALL EORvEHS (T.T)

CALL FOR_ (LI)

c deccmpose mar.r_, SIC
N = NM_A(L_)

NC-5

IA - NMDIM

IU - NMD]_

CALL _B (SIC, N, NC, IA, SICINV, IU, DI,D2,1ER}

IF (IE_,_E.0) _EN

WRITE F-_E_, i000} LI

10GO FORMA_CX, 'km_ING: _ error parameter is nonzero for LI -',I2)

_ND IF

c find SOL, given PaS and deomposed matrix, SICINV

CALL LUE/2B (SICINV, ._PLS,N, NC, IA, SOL)

C Ccpy resulE_nt vector inDo AI2(NI,LI) :

DO 95 NI-I,_Z_X

ALP e_I,LI) -SOL CNI)

95

I00 CCNTINL_

CALL OLX_T

SIDP

DD

C

•CALL VOFCE4

DCUBLE p._ECISICN XIID,RADD

C Input:
C > the order of the maLrix _max).

C > the n,Jrber of collocation points (Nool).

C > t_he _test value of the qJa/_tL_ nuTnDer i_ thesa ([/Tax).

C > the number of collocation points in theta (Lcoi).

C > the radius of the vortex ring (Radius).

C > initial condition

READ (L%EAD, 1040)

EcAD(L_EAD,*) NM%X, NCOL, L_%X, LCOL

E_AD (I/EAD, IO40)

__ADG/EAD,*) RADIUS, VISC, _ CtR

WAD (IBEAD, 1040)

_E/EJ_,*) IC, IR24, IEPAME

1040 FORV_T( IX )

C

C Call quad to get absissas and weights in the radial direction.

CALL OJ_ (NCOL,Wn_ X_,XIDO}

C Call _ to get The oollocation points in the theta direct/on.

CALL (X_D_Z (fOOL, Wrl_, C_)

C

C Calculate NCC55_.

]2EN = INT(RFAL(hL-'OL)*3.2/5.)

Xn - X_ (n,4n'_

R=E_3T = RADIUS" ( (I .-XII)/XII) ** (i.12. )

X_D - EDD (n_E_
BADD - RADIUS

E:QNS_ - P_£D* ((I.-XIID)/XIID) ** (I./2. )

C

C Find the radial ccordlnate at each collocation point.

DO 31 I - I,NCOL

Xrl - x_(1)

R(I) - RCONSI _ 0El/(I.-XII) ) ** (i./2.)

31 OCNYINU£

REI%_

END

SUB_EX/IU2_ dACOBI

C "J%is subr-roLEine is defined for p_i, q-I/2

*CALL VCEE4

C G(NI,I} or G_MDIM, NCDIM)

DOUBLE P_ECISICN N, EL, G(90,90),DS_4,_ORM, XID, rl

C DOL_LE PRECISIQN DGAPP_

REAL GAMFR, A_GI,ABG2, &N_RM

RI - EX_NST

DO 50 LI - I,IM_X

EL-LI

C c{_u_e the Jac_hi 9olyncmisis for all n and EL at a given EL.

C this is only an inteJ_nediate result, it is not needed outside of

cthls subroEclne.

DO I0 I - I,NCOL

C n-0, NI-I

ARG1 - 2*EL-1

AR;2- (2"EL-1)/2.0

_DRM- SQB_(2.)*SQR_(GAH_C_GI) )I_0_G2)

G%EI_M - S_ORM

G(I,I) - 1.0d+0

C n-l, NI-2

XID - XIDD (I)

G(2,I) - (4*EL*XID-2*KL+I)_(2*=--L-I)

i0

C general recurrance formula - at that paricular el.

C Note: if necessazy, s_me mm_ry can be saved by storing only

C -- 5 Gn's at a given EL."_... Gn+2, Gn+l, G_, G'e-l, Gn-2.

DO 20 NI - 3,NM_XA(LI)+2

DO 30 I-I,NCOL

N - NI-2

XID - XIDD(1)

G (Ni,I) - ( ( (4"N*'2+ (8"__w-4)-N+4*EL**2-4"EL) "XID-2*N'*2+ (2-

i 4*EL) .*N-2*EL*'2+3"EL-I) *C LNI-I, I) + (-N_DSG._ 6N'*2+2*EL*N-2"Y)-

2 EL*DSQR_ 6W_ "2 +2*EL*N-2 "N) )*G (NI-2, I ) )/ ((N+EIr-I) "DSCg_ (N*" 2

3 +2*F-L'N+2* F.L-I) )

30

20 c3NrlNUE
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C Knowing the Jaoclxt pol_, ompute (what aT_unts to) the

C vor_icity basis function.

DO 60 I - I,NCOL

XID - XIDD(I)

dLm - KID* ( (EL* (4"EL+B) +3) *XID+ (-4*EL--8) *EL--3)/Rl**2

GVD(I,LI, I) - dum *

dun - XID" (XID* (EL" (EL* (16"EL+64) +60) *XID+EL*

1 ((-24*EIP92) *EL-82) +3) +EL* (EL* (8"EL+28) +22)-3)

2 / (DSQRT (2*EL-I) *RI**2}

G'VD(2,LI,I) - 6um * GNCRM

60 CONEL'tE

DO 70 NI - 3,NMAXAE/)

N - NI-I

BEAD (LEAD, 1040)

READ(I/READ,*) TIME

1040 FORMAT( IX )

- 0.0

_NUT-VISC* TIME

IF (IC.EQ.I) GOlD i0

IF (IC.EQ.5) GOID 15

IF (IC.EQ.2) GOID 20

IF (IC.I_Q.3) GOID 30

IF (IC.EQ.4} GOID 40

C Gaussian rlnq with an image. Input: P, a/_ Ga_m_/nu

C

DO 80 I - I,NOOL

DLM-

1 ( (N" CN* e4* (4*N+I6*E,-4) +EL* (24"EL-12)-13)+EL* EL* (16*EL-12) -26)+7)

1 +EL* (EL* (EL* (4"EI,-4)-13) +7 )+6 )*DSQK_ e_'*4+ (4" EL+2 )*N**3+ (4*EL**

2 2+10*EL-I) *N'*2+ (12*ELw*2+2*EL-2) *N+8*EL**2-4 *EL) *G C_!I+2,I)+ el

3 * (N'*((-8*N-32*EL+I2 }*N+ (32-48"EL) *EL+20) +EL* ((28-32"EL) *EL+46}-

4 18 )+EL* EL* ((8-8*EL) *EL+26) -14)-12 }*DSQRE e_**2+2*EL*N+2*EIrl) *

5 G (NI+I, I) + CN* (N* (N" (N" ((-8*N-48*EL+24) *N+ (88-128"EL} *EL-2) +EL* (

6 (128-192"EL} *EL+56)-36) +EL* (EL* ((96-168"EL) *EL+186)-68) +4 )+EL* (

7 P'.*(EL*((40-80*EL}*EL+I96)-42)-64)+IS)+EL*(EL*(EL*(EL*((8-16*EL

8 )*EL+68} -i0} -64) +2) +12) *G CNI, I )+ el* a_;*(N* (8*N+32*EI,-20) +EL* (4

9 8"EL-56)-8) +EL* EL* (32"EL-52)-18)+26) +EL* EL* _.L* (8*EL-16)-10) +

: 20)+6)*DSQIRTeI**2+(2*E:-2)'N)*GeE-I,I)+(N*(N*(N*(4*N+I6*EL-12

; )+EL* (24 *EL-36 )-I )+EL* (EL" (16"EL-36)-2} +15 )+EL* (EL* (EL* (4"EI:-12

< )-I )+I 5) )*DS0/_ el*'4+ (4"EL-6) *N'*3+ (4*EL**2-14*EL+II) *N**2+ (-4"

EL**2+I0*EL-6) *N) *G (NI-2, I) ) / ((N* (N_ _i (16*N+64*EL-32) +EL* (96*

> EL-96)-I6)+EL* EL* (64"EL-96)-32) +32) +EL* (EL* (EL* (16"EL-32)-16) + C

? 32) ) *RI**2) 15

C Copy. Lhe cbuhle precision v-e_d2hle, _ _n the single precision array

GVDCNI,LI, I) - _ " GN[I_M

80 CCIVI_NUE

70

50 CCI%TL_L_E

RE!L._N

ESD

C

_RTJlq1_

*CALL VOE4

C Calulate Zegendre pol_, P1 CLZ,J].

DO 63 J-I, LCOL

XI-CTH (J_

S_/=SUE (I.-XI*Xl)

PI (I, _ --S_X2

Pl (2, J}--3.*_I*SC_2

63 CONTINUE

DO 64 LI-3,I/q_

L-LI-I

FACI- (2.'L+I.) / (L+I.)

F;E2-L/(L+I. )

FAC3- (2. *L+I. )/L

DO 65 J-I,LCOL

XI-CTH (J]

El (LI, J)-FAC3*XI*P! (LI-I, J} -Pl (1.1-2,J}/FAC2

65 CCI4TINUE

64 CC_EI_NS_

R_"V.JRN

END

C

SL3RCLqqNE EXACT

"C_LL VCRr4

C Ca!culaEe velocity at coilocat.ion points.

I0 CONTINUE

FEqD - 1.2564392281

- RADIUS

DO II0 J-I, LCOL

S_ - SIN(A(DS(CZH(J]) )

DO i00 I-I,NCOL

B1 - R(I)

ARG- D(P( --EIXEDICcR'*2)" (I.+ (RI'RII(C_PR°C2_R))

1 - 2.*RI*E£H/C_/3R ) )

ARG2 = EXP(-fFIXEDICtR**2)* (I.+ (RI.'_!I(CAPR'CAPR))

i + 2.*RI*_CAPR ) )

VOR(I,J]- _ *GAM * Q___G2)

1 I(PI* VISC *CAPR**2 *CtR'*2)

I00

110 CON'IqlV.E

GOlD i000

c Two Gaussian rlnas with an imagE. In_:: R, a/R, "_m_/nu

(XIVK[NUE

FIXED - 1.2564392281

CAPR - RADIUS

XX = 1.5

DO 115 J-I,IEOL

DO 105 I-I,NCOL

X1 - R(I)'CTH(J] - XX

Xb = R(I}*CTH(J} + XX

Y - R(I)*SIN (ACOS (C_ (J]) )

- SQRr(XI*-2 + Y*'2}

= AZ_N2 (Y,Xl)

= SIN(_ea)

- SOB_0(b**2+ Y'*2)

- A_.N2 (Y, Xt))

S'mNb - SIN(_Nb)

ARG1 = EXP( -(FIXEDICtR"2)* (1.+ (NNI*NNII(CAFR*CAPR})

1 - 2.*_NI*STHN1/CA_R ) )

- D{P( -(FIXEDICT.R''2)* (I.+ (F_TI*NNII(CAPR'CAPPO)

I + 2.*_NI*_/GL_R ) )

ANGIb- EXP( -(FIX_DICtR'*2)* (I.+ (I_*RNbI(CAPR*C_2R)}

I - 2.*_Nb*STHNblCAPR ) )

ARG2b- EXP( -fflXEDICtR"2)* ( I.+ (I_b'RNbI(CAPR*C_PR})

1 + 2.*_b*SlZa_/C_R ) )

%Da(I,J]- FIXED *C_M * &_R_I+ARGIb-ARG2-ARG2b)

I l(Pl* VISC *CAPR**2 *CtR"2)

105 (X_EXNUE

115 O_I¢CINLE

GOlD I000

C GaussLan ring with3L_ an image. _: _time
C

20 CONTINUE

C Vortlcity of a uDrtex ring of r(cor_)/R which is dete_nv_ned by "T_2_ ''

DO 130 J-I,LCOL

STH - SIN(ACOS(Cn_(J_) }

DO 140 I-I,NCOL

R1 - R(I}

ARG - PADIUS'RADIUS + RI*RI + DX*DX

I - 2.*RI* (P_%DIUS*SE'H + _X*CrH(J] )

IF 0_q;.LT.0.) A_3 - 0.

P_O - S_RmU%qG)

EXPFUN - EXP (-RHO'RHOI4.)

VOR(I,J) - (GAM/VISC) " EX2Ft_ / (4.'PI)

140 (XINTLNUE

130 CENEINLE

GOID i000
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C Stokes ring. Input: time

C

30 OONTINUE

C AnqJlar c_endence:

DO 150 J-1,LCOL

SZ_- SIN(_nCS(CTH(J]))

C Radial dependence:

DO 160 I-1,NCOL

%DR(I,J) - SI_R(1)*EMP( -R(I)*'2/4. )

1 / (TIM_'I6.*PI** (3./2. ) )

160 O3NF2g_

150 CCNTINUE

GOID I000

C 9_o s_okes rings. Input: time

C

40 CCNYINJE

C A test case for the low Re no. vortex

XX - 3.0

¢Angulard_end_ce-
DO 170 J-I,LOOL

DO 180 I=I,NCOL

c _wo stokes vortex rings:

C Pedtal dependence:

)(1 - R(I)*CTH(J] - XX

)(2 - R(I)*CTH(J} + XX

Y - R(1)*SIN(ACCS(CTH(J) ))

I_ - S_(XI**2 + Y**2)

T_ND¢I - AZ_N2(Y, XI} .-.

I_NID¢2- $0/_0(2"'2+ Y**2)

TtNS_ - ATAN2 CL,X2)

V_(I,J] - (.5*S_N(TI_) *KNIfe1 *EXP(.-_*'2/4.)

1 + .5*SIN(T_) *_'W2 *EXP(-_q_Sq2*'2/4.

2 )/(TL_'16.*PI*" (3./2.))

180 CONYINb_

170 OCIVYIN[_

i000 OONlq]Cu_

RLqL?_

L_D

C

*CALL _4

NI,LI

C DIC (NFDIM, 6)

D(IIBLE PRECISICN N, EL,DIC (90, 6)

D(X;E[_ PRECISIGN DSQ_

EL-LI

C Fore DIC (initial c_-(lltion Matrix).

DIC(1,1) - 0.

DIC(I,2) - 0.

DIC(I,3} - 0.

DIC(1,4) - 0.

DIC(I,5} - 0.

DIC(2,1) - 0.

01C(2,2) " 0.

DIC(2,3) - 0.

DIC(2,4) - 0.

DIC(3,1) - 0.

DIC(3,2) - 0.

DIC(3,3) = 0.

DIC(4,1) = 0.

DIC(4,2) = 0.

01C(5,1) - 0.

DIC (I,6) -

1 (EL* fEL" (EL* (EL* (EL" (EL* (128"EL+832)+1952) +1936) +536) -356}-258)-

1 45) / (EL* (EL* (512"EL*1536)+1024) )

DIC(2,5) -

1 (EL* (EL* (EL* ((-32"EL-208) *EL-496)-536)-258) -45) -DS_ (8"EL"3-12-

1 EL'*2+6*EL-1) / (EL" (EL* (512"EL+1536) +1024) )

DIC (3,4) -

IDS(E_ ((2"EIrl)/EL)" (EL* (EL* (EL* (EL* ((-64*EIr576) "EL-2032)-3552)-

1 3196)-1380)-225) / ((EL* (EL* (256"EL+1536)+2816) +1536) )

DIC(4,3) -

1 (EL* (EL* (EL* (16*EL+If2) +288) +324 }+135) *DSQRr ((48*EL**4+48*EL"3-

1 12*EL-3)/EL) / ( (EL* (EL" (256"EL+1536) +2816) +1536) )

DIC (5,2) -

1 (EL* (EL" (EL* (16*KL+I60) +552) +792) +405) "DSQRr ((96*EL**4+96*EL**3-

1 24"EL-6) / (EL**2+EL)) / ( (EL* (EL" (512*F.L+46GS) +13312) +12288) )

DIC(6,1) -

1 ((-4"EL-24) *EL-35) *DSQ_ ( (3840*EL**7+21120*EL* "6+43200"EL** 5+

1 37920*EL'*4+8400*EL**3-7560*EL**2+4860*EL-810 )/ (EL** 2+EL) )

2 / ((EL* (EL* (512"EI+4608) +13312) +12288) )

DIC(2, 6) -

1 (EL* (EL" (EL* (EL" (EL* (EL" (EL* CI28*EL+I472) +6624)+14768) +16744)+8468

1 )+i002) +9) +135) / (EL* (EL" _L* (512"EL+3072) +5632) +3072) )

DIC(3,5) =

1 (EL* (EL* (EL* (EL* (EL* ((-64"EL-576) *EL-1936) -3056)-2476)-1372 )-795) -

1 225 )/ ((ELi (EL* (256"EL** (3.0d+0/2.0d+0) +I536*DSQ{RT (EL)) +2816

2 *DSQRT (EL)) +1536"DS0/_ (EL)) )

DIC (4,4) -

_((6"EL+3)/EL) * (EL* _L* (EL* (EL* (EL* ((-64"___.z_96)*EL-SCC8)

1 -14208) -21420) -15960) -4059) +540) / ( (EL* (EL* (rL* (256, TEL+2560)

2 +8960)+12800)+6144))

DIC(5,3) =

1 (EL* (EL* (EL* (EL* (EL* (128"EL+1440) +6288) +13424) +142(38) +6282) +405) *

1 DS¢_ ((12"EL+6) / (EL**2+EL)) / ( (EL" (EL* (512"EL+4608) +13312)

2 +12288) )

DIC(6, 2) -

1 (EL* (EL* (EL* (EL* (16"EL+224) +I120) +2372) +I735)-I75)*DSQR_ ( (480*

1 EL* * 4+2400*EL"3+4320*EL** 2+3240* EL+810) / (EL'*2+EL)) / ((EL*

2 (EL* {EL* (512"EL+7168) +36352) +78848) +61440) )

DIC(7, i) -

1 (EL* ((-24"KL-252) *KL-858)-945) *DS_R£ ((i60*EL**5+800*EL**4+I440*EL

1 **3+1080*EL'* 2+270"EL) / (EL**2+3*EL+2)) / ((EL* (EL* (256"EL+3072) +

2 12032) +15360) )

DIC(3,6) -

I_-L*_.L*_L* (EL* (EL*CEL" (EL* (128"EL+2240)+16352}+64752)+151464)+21

1 3988)+178730)+80661)+14715)/((EL* (EL*(EL* (512"EL+5120)+17920)+2

2 5600)+12288))

DIC(4,5) -

IDSQRT (6"F--+3)* (EL* (EL* (EL* (EL* (EL* ((-64"EL-832) *_--_-4368)-12272)-

1 20972)-23468)-16499)-5385) / ( (EL" (EL* (EL* (512"EL+5120) +17920}+

2 25600) +12288) )

DIC(5,4) -

IDSQRT((12*_--_+6)/(EL+I))'(EL*(EL*(EL*(EL*(EL*((-64-EL-1280)-_u-

1 10544)-46192)-!15804)-I65336)-123605)-36975)/((EL*(EL-(EL,

2 (256"F-L+3584}+18176)+39424)+30720))

DIC (6,3) -

i (EL* __L, (-_--_*(EL* (16"EL+232) +1300) +3538) +4714 )+2485) *DSQRT ((480

1 *EL**4+2400*EL*" 3+4320*EL** 2+3240"EL+810) / (_-_*i))/ ((EL* (EL*

2 (EL" (256"EL+35_4) +18176) +39424) +30720) )

DIC(7,2) -

I(EL*(EL'(EL*(EL'(EL'(96*_.+2064)+I7568)+75384)+I69950)+I86081).727

1 65)*DS?_R_((40*EL*'2+80*EL+30)/(EL**2+3*EL+2))/((EL*(EL*(EL-(512

2 *EL+9216)-60928)+175104)+184320))
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7O

DIC (8,1) -

i (EL* ((-24"EL-324) *EL-1434 )-2079) *DSQ_ ((2240"EL** 6+23520"EL*" 5+

1 98560 *EL**4+208880_EL**3+233100*EL**2+I27750*EL_26250) / (EL+2))

2 / ((EL* (EL* (EL* (512"EL+9216) +60928) +175104) +184320) )

DO 70 NI - 4,NM_XA(LI)

N - NI-I

DIC (NI, 6) -

1 (N" (hi*(N" (N* (N* (N* (N* (N* (N* (96_N+96O*EIz-480) +EL * (4384"EL-3632)+672

1 )+EL* (EL" (12032"EL-12032)+2624) +192) +EL* (EL* (EL* (22048"EL-22432

2 )+32) +136)-4026 }+EL* (EL* (EL* (EL* (28352"KL-25120)-18528)-376O) -1

3 0900 )+9390) +EL* (EL* (EL* (EL* (EL* (26O80"EL-16432)-48640)-16104 )+1

4 926)+38413)-2097} +EL* (EL* (EL* (EL* (EL* (EL* (17024"EL-5120)-62944)

5 -29696) +42232) +68288) -16618)-10272) +EL* (EL* (EL* (EL* (EL* (EL* (EL*

6 (7552,EL+256 }-464 64 )-28432 )+656O8} +69752)-32292 }-21489) +5085) +E

7 L* (EL* (EL* (EL* (EL* (EL* (EL* (EL* (2O48"EL+640) -18816) -13920) +42976

8 )+41656)-27816)-Z1458) +7626) +1440) +EL* (EL* (EL* (EL* (EL* (EL" (EL* (

9 EL* (EL* (256"EL+128) -3264) -2784 )+10800) +12024 )-7684 )-11258)-864 )

: +2106} +540) / ( _ (N" (N" (N* (N_ (1024*N+6144*EL-3072) +EL* (15360"KL-

; 15360) -5120) +EL* (EL* (20480*ED-30720) -20480) +15360) +EL* (EL" (EL* (

< 15360"EL-30720)-30720) +46080) +4096)+EL* (EL* (EL* (EL* (6144"EL-153

- 6O)-20480) +46080)+8192)-12288) +EL* (EL* (EL* (EL* (EL* (1024"EL-3072

> )-512O) +1536O) +4096) -12288) ))

DIC _I+l, 5) -

i _ (N* (N* _'* (N* (N* ((-16*N-128*EL) *N+ (-480"EL-128) *EL-40) +EL* ((-I_

1 8,EL-768) *EL-240) )+EL* (EL* ( (-i 680"EL-2176) *EL-472 }+736} +431} +EL

2 * (EL* (EL* ((-1856"EL-3584) *EL-288) +2944 )+1724) )+EL* (EL* (EL* (EL* (

3 (-14C8"EL-3456) *KL+56O) +5696) +2800) -I016)-105) +EL* (EL* (EL* (EL* (

4 EL* ((-640"EL-1792) *EL+1056) +5504) +l152) -2032)-210) )+EL* (EL* (EL*

5 (EL* (EL* (EL* ((-128"EL-384) *EL+480) +2016) +360)-2088)-838) +402) +1

6 80) *DS(lqr (N** 2+2*EL*N+2*EL-1) / ((N* (N* (N* (N* (1024*N+5120*EL) +

7 10240"EL"2-5120) +EL* CI0240"EL_'2-15360) )+EL**2* (5120"EL*'2-

8 15360) +4096) +EL* (EL*"2* (1024-EL*'2-5120) +4096) ))

DIC (NI+2, 4) -

1 _ (N* (N* _ (N_ (N* ((-32*N-256*EL-128) *N+ (-928"KL-I040)*EL--64) +EL* (

1 (-1984 *KL-3648) *EL,-816) +256} +EL* (EL* ((-2720"_--7136) *EL-3C_24) +i

2 976) +i022 )+EL* (EL* (EL* ((-2432"EL-8384) *EL-5248) +5696) +6200) +146

3 8)+EL* (EL* (EL* (EL* ( (-1376"EL-59C,4 )"EL--4800 )+7880) +12626) +4047) -

4 971) +EL* (EL" (EL* (EL* (EL* ((-448"EI,-2304) *EL-2256) +5296) +I(3844)+3

5 656) -3427) -1641 ) +EL* (EL* (EL* (EL" (EL" (EL* ((-64"EL-384) *EL-432) +i

6 392} +3396 )+Ii04 )-2477) -2C85)-450) *D.9_RT (N**4+ (4*EL+2) *N'*3+

6 (4*EL

7 *_ 2+I0*EL-I )*N**2+ CI2*EL**2+2*EL-2) *N+8*EL** 2-4*EL) / ( (N* _* (N* (

8 N* (N* (512*N+3072*EL+1536) +EL* (7680"EL+7680)-2560)+EL* (EL* (10240

9 *EL+15360) -I0240)-7680) +EL* (EL* (EL* (7680"EL+15360) -1536O) -23040

: )+2048)+EL* (EL* (EL* (EL* (3072"EL_7680)-I0240)-23040)+4096)+6144)

; +EL* (EL* (EL* (EL* (EL* (512"EL_1536)-2560)-7680)+2048)+6144) ))

CU_q_UE

DO 80 NI - 4,NFAXA(LI)

N - NI-I

DIC _I+3, 3) -

1 CN* (hi*(N" (N_ (N" (48*N+288*EL+288) +EL* (800"_+1664) +744)+EL* (EL* (128

1 O*EIH-4096)+3872) +1056)+EL* (EL* (EL* (1200*EL+5184)+7304)+3440) +51

2 )+EL* (EL* (EL* (EL* (608"EL+3296) +5968) +3376)-I146)-1242) +EL* (EL* (

3 EL* (EL* (EL* (128"EL+832} +1792) +992 )-1368)-1836) -540)

3 *DSQRr Lg*'6+ (

4 6. EL+6) ,N** 5+ (12*EL* "2+36*EL+I0 )"N** 4+ (8*EL* "3+72"EL*'2+64" EL) *

5 N**3+ (48*EL**3+I32*EL**2+24*EL-II) *N**2+ (88*EL**3+72*EL**2-22*E

6 L-6) .*N+48*EL**3-12*EL) / ( (N* (N_ (N* _ (2048*N+I0240*KL+I0240) +EL"

7 (20480"LL+4096O) +I0240) +EL* (EL* (20480"EL+61440) +30720) -I0240} +E

8 L* (EL* (EL* (I0240"EL+40960) +30720) -20480) -12288) +EL* (EL* (EL* (EL"

9 (2048"EL+I0240) +i0240)-I0240)-12288) ) )

DIC (NI+4,2) -

!D,.q:_qrLN+I )*_ (N+2) *DSC_r (N+3) *DSQS_ (N+4) ,'DSQKr (N+2*EL-I)

! "DSQ_ (N*2* EL) *DSQRT C_+2 *_L+I) *r'-_QKr(N+2 *EL+2)

1 * (N* (N* (N* (N* (N* (32_*N+I92"EL+288

2 }+EL" (480"EL+1456) +832) +EL* (EL* (640"EL+2944) +3424) +672)+EL" (EL"

3 (EL* (480*=_L+2976) +5280) +2216) -702) +EL" (EL* (EL* (EL* (192.F7.+1504)

4 +3616) +2416) -1236)-!242) +EL" (EL* (EL* (EL* (EL* (32-EL+304) +928) +87

5 2) -534 )-I197)-405) / ((N* _" (N" _ (N_ (2048*N+I2288*EL+I8432) +F.L*(

6 30720.EL+92160) +51200)+EL" (EL* (4096O*EL+184320)+204800)+30720) +

7 EL* (EL* (EL* (30720,EL+184320) +307200) +92160)-53248) +EL* (EL" (EL* (

8 EL* (12288"EL+92160) +204800)+92160}-I06496)-49152) +EL* (EL* (EL* (E

9 L* (EL* (2048.EL+18432) +51200) +30720)-53248) -49152) ))

DIC(NI+5, i) -

IDSQKr (N+I) *DSOR_ (N+2) *DSQRr (N+3) *DSCA_ (N+4) *DSOK_ (N+5)

1 *DSQRT (N+2 *EL-I ) *DSQRT (N+2 *EL) *_ (N+2*EL+I )

1 "DSO/_ (N+2*EL+2) *_ (N+2*KL+3) * (N* (N*

2 ( (-16 *N-64 *EL-128 ) *N+ (-96"EL---384) * EL-344 ) +EL* ( (-64 *F-L-384 ) * EL-6

3 88) -352 ) +EL* (F.,L* ( (-16 *EL-128) *EL-344) -352 ) -105) / ( (N" (N* (N* (N* (2
4 048*N+10240*_.a'20480) +EL* (20480*EL+81920) +71680) +EL* (EL* (20480"

5 EL+122880) +215040) +102400) +EL* (EL* (KL* (10240*EL+81920) +215040) +
6 204800) +49152) +EL* (EL" (EL* (EL* (2048"EL+2O480) +71680) +1024C0)+49

7 152) ) )

80 (X]NFIN[E

C convert double precision watr/x to single precision.

DO 20 NI - I,hHAX

SIC(NI, I} - DIC(NI,I)

SIC_I,2) - DIC(NI,2)

SIC(NI,3) - DIC(NI,3)

SIC(NI,4} - DIC(NI,4)

SIC(NI,5) - DIC(NI,5)

SIC (NI, 6) - DIC (NI, 6}

IF (LI._Q.I)

DDIF

2O CU_qNU£

REIL_

END

C

S[BROUIU!_E FO_4P,HS (7._)

C

*CALL VEST4

L-LI

_L - _EALCL)

CLI - (2.*RL + I.) I (2.*RL* (EL + i.))

R1 - RCCNST

C Fonu RHS vec_cr.

DO 150 NIP-I,k_gLX

StM - O.

DO 160 I-I,NOOL

C .Test _:
TESIF - RI**4 * G4D(NIP,LI, I) * (I-XI(1))**((RL-3}/2}

1 * XI(I)**(RL/2) /2

C an inner loop begins here for the _cuble Integrati=n

S[_41 - O.

C _.t.q_r. function of quadra_:u._ met.hod:

WFth - 1.

DO 165 J- I,I.CDL

SUM1 - _ + VOR(I,J)*PI(LI,J)*WITH(J]/WFth

165

c w,e.tg_ _mcr_Ion of quadrature _er.hcd

S-M - SlIM + SLMI*_5"IF_rIR(1)

160 CCt41qI'X_

_S _IP) - SLM * CLI

150

END

C

C

*C%LL

C

SUBR_TINE _

VC8_4

WRITE (IUd_TE, i002)

WRITE (I£X,_RITE,*) TIML0.

WRITE (IDa_TE, I000)

WRI'['E _TE,*) P£X3NSTD, RADIUS,_-qlME

WRITE (I/_RITE, I007)

M_q'E _,*) VISC, GAM, CtR

WRITE (IDWRI_E, I001)

WRITE (IDaRITE,*) IR/_, IFRAM£
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10

2O

4O

3O

WRITE (LDWEITE, i005)

WRITE (I/_,*) N_kXA(1),NCOL, I/M_X,LCOL

WRITE (IDWNITE, I009}

DO 5 LI-I,IMAX

WRITE (LD_RITE,*) LI,N_XA(LI}

CCNTINUE

wRITE (_aRITE, I010)

DO i0 I-I,NCOL

W?aTE _TE,*) I,X_DD(1),Wm(D

CCI_fINUE

WRITE (LU_RITE, i020}

DO 20 J-I,ICOL

WRITE (IDWRITE,'} J, CrH(03,Wrm(J}

CCNTINUE

WRITE (IDwRrIE, i030)

DO 30 LI-I, IFAX

DO 40 NI-I,NFRMAfLI)

WRITE ¢LUWRITE,') LI,NI,ALPCNI,LI)

CQVYINUE

CCNrlNJE

1002 FO_4tT (SX, 'TII4E',I3X, 'ZCENr')

I000 FC_AT (_(, ,BDDNST' ,I(_, 'RADIUS', 10X, 'TIFEo' )

i001 FOSFAT (_(,'II_dN',IC_,'IFRA_E')

1005 FOaVAT (9X,,NMAX,,SX,'NCOL',SX,'LM_X',SX,'LGOL')

1009 F(I_9_T (SX, ,LINDEX',ICM, 'NM_X(L) ')

1007 F_T ( 5X, 'VISC',I2X, 'GAM',I2X, 'Core to Ring radius')

I010 FOF_AT ( 10X, 'I',7X, 'XI (I) ',laX, 'WIR(I) ')

1020 FOF_4tT ( 10X, 'J',7X, 'CE4(J) ',I_(, 'WITH(J) ')

1030 F(k_WtT ( 9X, 'LI' ,ICM, 'NI',7X, 'ALP ¢NI,LI) ')

C

END

C

C

_JBROUTINE Gt_D _,WTS,XIS, D)

c P(k+l)- ( f0(+l} *x +d0_+l} )*PC_) - e_+l)'P(k-l)

c

c D(I) : c_gonal of symmetric __ricLt_ matrix

D (D --AZK/A3K

IF(I._.N) GOlD ICX3

C

C F-AIK/A3K

F-I.0

C

K-I

C __.replace coefficients here

(2.*K+PC-2.) • (2.*K+PC-1.) • (2.*K+PC)

A3K_ (2.*K+PC+I. }* (2.*K+PC-I.)

A4K-K* _(+QC-I. ) * (K+B:-I.)" _(+PC-QC )* (2.*K+PC+I. )

C ---------end replace coeff

c

E-A4K/A3K

B (I+I)-DSCI_ 0F'E)

C

100

C

c Find elqenvalues and eigenvectcrs

W_q3(- .TWJE.

NDnM-90

C_LL TRIEIQ3 _NDII_N,D,B,_mAWI_X}

C

C note that this is also =mrticu/ar to the polynamlal--

c CA_ I_ - integral frcm a to b of the weiqht ftmctlon

c where a and b are the a_opaiate llmits for the polyncmla!

WTI-PI/2.

C

C

C Normalize eigenvectors

DO 20 J-I,N

_W-0.0

DO 30 I=I,N

xr=x(I, J)

XN=Kr*XT+XN

30

X (i,J) =X (1, J]/TN

2O csvfnv_

C

c %/_is routine calcttlates the weights and absisscas for orth_mal polyncstia C CalunLtate weights

c _a=xiriture routines. It can be used for any orthegtmal poly_miais by DO 40 J-I,N

c _niaclrg the coefficients AK1,AK2,AK3,AK4 with the ap_opriate ones frcm

c Lhe 3 term recurrance relatica _. 782 Ahra_ncwitz and Stegun)

C 10/11/86: m=difled for p-l, q-i/2, check case worked to all signif, figur

C

IDGICAL

REAL XlS(90) ,WrS (90)

DOUBLE PRECISIGN D(90),B(90),X(90, 90),WT(90),AIF_A2K,

1 A3F_ A4K, F, E, WrI, XT, XN, T_MP, PC, _C, PI

C

PI - 3.14159265358979323846

C

PC- 1.0

_C 1 0.5

D(1) - QC/(PC+I.)

I-i

K-I

F-1.0

IIr4P- (2.*K+PC-2. ) * (2. *K+PC-I. ) * (2 .*K+PC)

A3K-TEFP* (2.*K+PC+I.)* (2.*K+PC-I.)

A4K-K* (K+_C-I.) * (K+PC-I.) * (K+PC-QC) * (2. *K+PC+I. )

E-A4K/A3K

B (I+I)-DSQS_ (F'E)

C

DO i00 I-2,N

K-I-I

C input the following _3efficients for a given polyr_m/ai C

c Bef. Abrtm_witz and Stegen p. 782

C replace ccefficients heine

(2 .*K+PC-2. )* (2. *K+PC-I. )" (2. "K+PC)

A1 K_ZSMP * (2.*K+PC+I. }" (2.'K+PC-I. )

A2K_ (2.*K _ (K+PC) +QC* (PC-I.) )"-"_

A3K-TKN?" (2. "K+PC+I. )" (2. *K+K-I. }

A4K-K" (K+_C-I.)" (K+PC-1.) * (K+PC-QC) " (2."K+_C+I. }

C ----------end replace coeff

C

C Cc_ine ccefflecients t be in the recurra_nce form:

X_X(I, J)

Wr (J)=x_xr_a_

4O CONTINUE

C

C Arrenq_ P_tnts In Asscendlng Order.

DO 200 M-N,2,-1

DO 210 I-2,M

IF_3(I-I) .LT.D(I)) GO _D 210

TEMPO (I-l)

D (I-I)-D (I)

D (I)-qIIMP

TR_-Wr (I-l)

WT (I-I)-WT (I)

WT(1)-T_v_

210 CCNTINU£

2OO cc_rfINUE

C

DO 220 J-I,N

wrs (_ -wr (03

xIs(J)-o (j)

220 C_NTIRUE

C

END

_dSNDUFINE Q[_3AZ (N,WTS, DS)

C l'nls rc_tiz_ calculates the weights and ak_isscas f_r orth=gonal polync_ia

c quadriture routlnes. It can be used fcr any orr-hogonai polyn_nlais by

c replacing the coefficients AKI,AK2,AK3,A/<4 with t.he a_propriate cries fra=

c the 3 term recurrance relation (p. 782 Acracmcwitz and Stegtm)

ICGICAL

NEAL WI3 (139) ,DS(139)

H5%L D (139), B (139) ,X (139,139) ,WT (!39),

1 AIK, A2F_ A3K, A4K, F, E, WTI, XT, XN, AW5

C
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DO I00 I-I,N

K-I-I

C input the fallowing coefficients for a given polynunial

c Ref. Abrcmowitz and Steqen p. 782

C __.r_ce coefficients here

AIK-K-AWJ+I.

A2K-0.

A3K-2. *K+I.

A4K-K+AMA

C ---------end replace a=eff

C

C Combine cceffieci_nts t be in the recurrance lush:

c P(k+l)- (f(k+l) *x +d(k+l) )*P(k) - e(k+l)*P(k-l)

c

c D(I) : _ of sym_etrlc tridlagunal matrix

D (I)--A2K/A3K

IF(I.EXLN) GUID I00

C

F-AIK/A3K

C

K-I

C __r_Kace coefficients here

A3K-2.*K+I

A4 K-K+A_2

C -----=-----erKireplace cceff

C

E-A4K/A3K

B (I+l)-SQK_ f_E )

C ..

I00 C _Vf_U E

C

c Flnd elqenvalues and elgenv_x_rs

_qqIX- .TRt_.

BDIM-139

CALL _Iq[EIG Gq3IY, N, D, B, _%NIX, X )

C

c no_ thac rA,A.s _._ also particular to the _olynunlal--

c CAICULATE MLb - integral from a to b of the weight fun_Ice

c where a and b are the a_pmopria_e iL_its for the polyncmiel

WrI=2.

C

C

C Normalize ei__nvectors

DO 20 J-I,N

_-0.0

DO 30 I-I,N

XT-X(I,J_

XN-MI_XT+XN

3O CChTINJE

X _,09-X(i,_3/_N

20 OUqrINJE

C

c Calculate weights

DO 40 J-I,N

xr-x (i,J]

WT(_-x_xr_I

40 C_VrINU£

C

C ABRANGE POINTS I_ DESCENDING OR3_.

DO 200 M-N,2,-1

DO 210 I-2,M

IFCD(I-I).GT.D(I)) GO TO 210

TEM_ (I-l}

D (I-l)-O (I)

D (Z)-Tn_

TK_P-WT (I-l)

WT(I-I)-WT(I}

WT(I) .-Ta_

210 CCNTLq/£

2C0 OghTL'4JE

C

DO 220 J-!,N

WT3 (J) -44£(J)

DS(_-3 (0]

220 CQV[q NS_

C

nq3

C

S38RSUFfNE T_IEIG _DI_N,D,E,_%ND(,X)

NDI_N

LOGICAL 9_qX

C DOUBLE P_uCISICN D_NDI_,E_DI58,X(NDD4,hDII4)

REAL D _Dn_, E _Dn_, X _Dn_ NDm8

C

C Ccsputes Kigenvalues And Eigenvectors Of Peal Trldiagonal Symmetric

C Matrix

C

C ND_ - declared r_w dim_-_ice of A _ND X).

C N-orc_r of A

C D - N-VEClD_ output, _alce

C E - N-VECDCS. lower diagonal of syNmentric matrix E(2)...E_

C _ - .T_E. if eiqm_ectors _ .FALl. if not.

C X - N-BY-N MATRIX

C IF (t,_AN"D() _N_ X(*,O] Is EIGENVECI_SASSOCIAT_

C WI_ EIG_qqAIIE D (J).

C

C DOUBLE FR_SISICN A/2HA, BEq_,GA_T4%,KAPPA, AIJ, T,C,S,F

REAL ALP_, BEI_, GAMMa, HAPP_ AI J,T, C, S, F

C DOL_L_ _4ECI_ICN DABS, DSQR_

C

C Initialize X As An Idenity Matrix

DO 101 I-I,N

DO 102 J-I,N

X_,_-O.0

102 C_VfINU£

X (I,I) -i. 0

i01 CONTINUE

C TKID_ GR AIf_RI_M

C ]IMPLICIT SHIFT FRGH _ 2-BY-2

C

20 DO 27 MB- 2, N

M - N+2 .-MB

MMI - M-I

I_.R _ 0.

L-I

21 E CL} = 0.

C

C FIND L SJCH _XAT E(L} IS NE_IGI_SE

C

L-M

C 22 S - DABS_(L-I)) + DABS_(L) )

22 S - ABS_(L-I}) + ABS_))

c T = s + DASS(E('r_.,))

T - s + ABS(E(L))

IF (T.EQ. S) GOT023

L-L-I

IF _._.2) GO TO 22

C

C IF E_8 IS h_GLIGIHLE, _ D_ IS AN EIG_VAII_, SO ...

C

23 IF U_DQ._8 GO ID 27

IF (ITER.G_.30) GO TO 27

ITER-I_XR+ 1

C

C _ IMPLICIT S_qY£

C

T- _3_-i) -D_M_)/(E6_8 + E6M))

C S - DS3R_(I. + T)T)

s - sQ_r(l. + T'T}

IF (T.LT.0.) S--S

S - D_) - E_/_+s)

E(L) - D(L) - S

F - E(L+I)

C

C CHA_N[_ F D_M_q.IX

C

DO 26 J- L, MMI

c T - DABS(E(O]) + DABS_}

T - ABS(E(0J) + ASS(F)

C ALPHA - T_DSQ_/( (E (J)/T) *" 2 + (F/T) *" 2)

AL?HA - T*SQ_ ((E (J)/T) "'2 + (F/T) "'2)

C - E(_ I AL_FA

S - F / AI2HA

BE_% - S* _3(J+l) - D(J) ) +2.*C_E(J+I)

E (JJ - ALPHA

E(J+I) - E(J+I) - C*BEI_

T - S'SEEA
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24

25

D(09 -D(_ +T

D(J+I) - D(J+I) - T

IF (J.EO.M41) GO TO 24

F - S*E (J+2)

E(J+2) - -C*E(J+2)

IF (.N_E.E_rD() GO TO 26

DO 25 I - I, N

T - X(I,J]

X(I,J) - C*T + S*X(I,J+I)

X(I,J+I} - S"T - C*X(I,J+I)

C

26 CCNTINU£

GO TO 21

C

27 CChTINUE

_D

TKIEIGD (NDIM, N,D, E,_ANIX, X)

INTEGER NDIM, N

lOGICAL

DOUBLE PF_CISIGN D 6qDIN_ ,E _DIM] ,X fNDIM, hDIM)

C REAL D (ND_, g (NDIM}, X (_DIM, NDIM)

C

C O:mpt_es Flgenvalues And Eigenvectors Of _ Tridiagonal Symnetric

C Me crix

C

C hDIM-_m3wdimensicn ofA (A_DX).

C N-order of A ....

C D - N-VEClUR. output, eiganvalue

C g = N-VE_. lower diagonal of syrm_ric matrix E (2)...Z 6_)

C _NTX = .TR/£. if _ectors desir_i .FALl. if no_.

C X = N--BY--.N M_TRIX

C IF 64ANIX) T_ _ X(*,J] IS EIG_CTOR A-K.q_

C Wr_ FX_ D (_.

C

DCX/BLE PRECISION AIFHA, RETA,GA'.T'A,KAPPA,AIJ, T,C,S,F

C REAL ALPHA, BEI_, GAMMA, KAPPA, AI J, T, C, S, F

DOUBIE PRECISICN DABS,DSQBT

C

C Inl_La.]d._e X As An Idenity Matrix

DO 101 I-I,N

DO 102 J-I,N

X(l,J]-0.0

102 CENIUIg3E

X(I,I)-I.0

i01

C TRIDL_Z<_mL 0__

C ]HBL.ICIT SHIFT FR_ ID,',ER 2--BY-2

C

20 DO 27 FB- 2, N

M - N+2-+B

MMI - M-I

I_R- 0.

L-I

21 E (L} - 0.

C

C FInD L _ THAT E(L) IS 5F/_LIGIE_E

C

L-M

22 S - DABS(D(L-I)) + _BS_L))

C 22 S - ABS(D(L-I)) + ABS(D(L})

C T - S + DABS_))

r - s + ABS(E(L}}

IF (T .EQ. S ) GOTO 23

L - L-I

IF (L.GE.2) GO ID 22

C

C IF E&M) IS NE_GIBLE, _ D_ IS AN EIGENVAI/._, SO ...

C

23 IF (L.EQ.P_ GO _"D 27

IF (ITER.GE.30) GO TO 27

lIT-R- ITER + i

C

C FORM IPPLICIT SHIFT

C

T- (D6M-I) -DGM))/(E_ + E(M))

S - _(I. + T'T)

C

24

25

C

26

s - SQR_(I. + T'_

IF (T.LT.0.) S--S

S - D_) - E_/_+S)

E(L) - D(L} - S

F - E(L+I)

_NONZE_3 F DG_NM_TRIX

DO 26 J- L, M_I

T - DABS(E(J]) + _S(F)

T - ABS(E(J)) + ABSfF)

- T*DS0_((E(J}/T)**2 + (F/T)*'2)

ALPHA - T*S;_((E(J)/T)'"2 + (F/T}**2)

C - r.(J} / ALPF_

s - r / ALF_A

- S*(D(J+I) - D(J)) +2.'C*E(J+I)

g(J+l) - g(J+l) - C*_/9.
T - S*BEI_

D(J) - D(J] + T

D(J+I) - D(J+I) - T

IF (j.EQ.FMI) GO %13 24

F - S*E (J+2}

E(J+2) - -C*E(J+2)

IF (.NU_.9_NIX) GO TO 26

DO 25 I - I, N

T - X(I,J)

X(I,J] - C*T + S*X(I,J+I)

X(I,J+I) - _ -_C*X(I,J+I)

OU_F/_UE

CChTINLE

GO TO Z1

27 CCNZDL_

_I_N

END



Appendix I

Navier-Stokes Code

In this appendix, the Navier-Stokes code is described and the listing is included.

We begin by deriving the working equations for the axisymmetric Navier-Stokes

calculation. Next, a brief flowchart outlines the structure of the code by showing

the first level of subroutines. A detailed flowchart follows of the algorithm used in

transforming to and from coefficient space (in O(N 3) operations). Nero, we include

a FLOP (floating point operations) trace showing the breakdown of the speed and

percent of total time spent in each subroutine. Finally, the code is listed.

To get the working equations, we start with the weighted residual equation,

(2.2.1). As described in section 2.2, the term involving the gradient of the pres-

sure drops because of the divergence-free expansion and boundary, conditions. The

weighted residual equation therefore reduces to (2.2.3). Next, we substitute the

axisymmetdc velocity expansion, (3.2.1), into (2.2.3) and take the time-dependent

coefficients outside of the integrals. The result is a set of N x N coupled ordinary

differential equations for each e:

a +

'_'-" dt a,_e,,_ =< u x a;, V x (f+t Xtm) >

Differencing equation (I.1) in time then gives

A*.,.(e) zXa , t J J-,= B,_,,.(_)a.e-(3Q,,,e-Q,_, _ )&t

(1.1)

(z.2)

The elements of the matrices A+,,_(_) and +B,,, n(g) were computed analytically using

MACSYMA. output as FORTRAN statements, and pasted directly into the code.
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At the start of a calculation, these non-zero matrix elements are computed once (in

double precision) and stored (in single precision). From this, the differenced form

of the matrices, A_,,,(e) and Bt,,,(e), are computed and stored in place of A+,,(e)

and B+,,(e).

Figure (I.1) illustrates the structure of the Navier-Stokes solver, where the

words with bold capital letters denote subroutines. The chart on the left is the

general flowchart while the one on the right describes TIMEINT in more detail.

INITIAL reads the coefficients defining the initial vector field obtained from IC.

Next, JACOBI and LEGENDRE, solve for the basis functions at the collocation

points and store them in arrays. For each index _, the mass matrix (FORMA) and

viscous matrix (FORMB) are evaluated and combined appropriately in PREINT

for the difference equation. TIMEINT then advances the coupled set of ordinary

differential equations in time. The flowchart to the right describes the steps taken
to advance the solution in TIMEINT.

The program marches forward in time for a specified number of time steps,

ncloop, with the nonlinear term treated as a forcing on the right hand side of the

equation and computed pseudospectrally. Several diagnostics such as ring speed,

impulse, momentum, etc. are also computed in the FORCING, and every so often,

data is written to a file in the form of numbers and plots. The advancement of the

centroid is computed from the ring speed, the coefficients are advanced in time, and

the process repeats.
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IINITIALII

IJACOBI I I,,oo_=1. ndoop I
I

I LEGENDRE I

t

IFORMBI
I

IPREINTI

ITIMEINT I

IF°RCINGI
I

write output file to
CRAY and plot
contours (occationally)

I
compute centroid I
(i.e. ring speed) I

t
ladvance coefficients by

solvint rhs of eqn. I-2 I

ladvance time I

Figure 1.1. Flowchart of the Navier-Stokes solver, NS.
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ven a(n,l) for n = 1,..., N(I_1 1 .....

li= ,Nc

I j= ,Lc

mUTt (])

art=

_-oI

L
= UT2+ GR(n,l,i) a(n,I) I

<

I

!

I J-I,LoI 1

<
i
I

JI_',D;U-_,I
h

utputu(i,j) for i = 1....,Nc _j 1.....Lc_'--

Figure 1.2. Flowchart for transforming to and from coefficient space in

O(N 3) operations.
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*** FLOP TRACE *** VERSION 1.0

INDX NAME CALLED TIME(SEC) AVE-TIME XAGE ACCLIMY;,
8 FORCING 2401 2.82E+02 1.17E-01 78.45 78.45
7 TIMEINT 1 5.60E+01 5.60E+01 15.61 94.06

17 MATMULT 156000 8.52E+00 5.46E-05 2.37 96.43
2 JACOBI 1 4.83E+00 4.83E+00 1.34 97.78

5 12 PLTCONT 3 2.71E+00 9.03E-01 6.7598.53
6 16 CONDI2 18 1.95E+00 1.08E-01 0.54 99.07
7 13 CONTXX 12 9.70E-01 8.08E-02 0.27 99.34
8 9 MATMULT2 15665 8.88E-01 5.67E-05 0.25 99.59
9 5 FORMB 65 3.68E-01 5.67E-03 0.10 99.69

10 16 OUTPUT2 161 3.23E-01 2.01E-03 0.09 99.78
11 1 INITIAL 1 2.14E-01 2.14E-01 0.06 99.84
12 18 OUTPUT 1 1.87E-01 1.87E-01 0.05 99.89
13 4 FORMA 65 1.55E-01 2.38E-03 0.04 99.94
14 11 STREAMF 3 1.08E-01 3.60E-02 0.03 99.97
15 6 PREINT 65 7.15E-02 1.10E-03 0.62 99.99
16 14 FRANGE 17 4.21E-02 2.47E-03 0.01 160.00
17 3 LEGENDRE 1 5.05E-04 5.05E-04 0.00 100.00
18 15 CONSCL 9 2.28E-04 2.54E-05 0.00 106.08

ADDS MULTS RECIPS FLOPS MEM/FLOP MMEM/SEC
1.02E+10 7.49E+09 1.37E+07 1.77E+10 1.34 84.54
6.97E+08 6.77E+07 2.64E+04 7.64E+08
1.00E+08 5.22E+07 1.56E+05 1.52E+08
4.15E+07 9.45E+07 7.85E+05 1.37E+08
2.75E+06 2.59E+06 5.29E+05 5.87E+06
1.64E+06 1.52E+06 3.58E+05 3.52E+06
1.18E+06 8.95E+04 1.79E+04 1.28E+06
1.01E+07 5.24E+06 1.57E+04 1.53E+07
3.78E+06 5.57E+06 6.81E+04 9.42E+06
0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.88E+03 7.22E+04 2.86E+02 7.44E+04
4.79E+03:1.63E+04 0.00E+00 2.11E+04
1.61E+06 2.62E+06 4.15E+04 4.26E+06
1.54E+06 1.53E+06 1.36E+04 3.08E+06
7.19E+05 1.09E+05 1.08E+04 8.40E+05
1.67E+05 0.00E+00 0.00E+00 1.67E+05
9.50E+03 2.81E+04 5.34E+02 3.82E+04
4.35E+02 5.14E+02 5.00E+01 9.99E+02

MFLOPS
62.92

2.28 31.07 13.64
2.26 40.36 17.89
1.03 29.31 28.34
5.75 12.47 2.17
6.66 12.02 1.80
5.26 6.97 1.33
2.27 39.16 17.25
0.82 21.05 25.57
0.00 16.29 0.00

22.98 7.98 0.35
83.65 9.42 0.11

0.86 23.75 27.52
1.80 51.47 28.53
2.18 25.59 11.74
1.58 6.29 3.98
0.84 63.73 75.53
1.89 8.26 4.38

PROGRAM TIME -

0 0 PROGRAM

359.1224085050 SECONDS
1 3.59E+02 3.59E+02 100.00 100.00 1.11E+10 7.72E+09 1.57E+07 1.88E+10

1.39 72.87 52.41

NOTES:
ASSUMED TRACE OVERHEAD - 300--600 CP PER CALL
CLOCK PERIO0 - 9.50E-09 SECONDS
ONE USER DIVISION - 3 MULTIPLIES AND 1 RECIPROCAL

EXECUTION DATA:
TIME EXECUTING IN CPU -
TIME WAITING TO EXECUTE -
TIME WAITING FOR I/O -
TIME WAITING SEMAPHORE -
JOBTIME -
TIME WAITING IN INPUT QUEUE -

0000:06:22.9583
0000:43:12.2579
0000:00:04.6046
0000:00:00.0000
0000:06:25.9199
oooo:oo:oo.o212

MEMORY * CPU TIME (MWDS*SEC) - 605.78656
2.67661

MEMORY I/O WAIT TIME (MWDS*SEC) -
MEMORY _ WAIT TIME (MWDS*SEC) 0.00000SEM
MINIMUM JOB SIZE (WORDS) - 17408
MAXIMUM JOB SIZE (WORDS) 1829376
MINIMUM FL (WORDS) - 13312
MAXIMUM FL (WORDS) 1822726

4096MINIMUM JTA (WORDS) -
MAXIMUM JTA (WORDS) 7168

/

k-,,4

t_

t.-_,
('b

O3
c-'P

C_

cb

c¢
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*CQVDECK ARPAYS

p_( NC_92, I.Q>'92 )

PA.RA',_IT.R( _M9-92, IM>.92 )

ce,HxC, P,_2/ _ (IM)) ,ALP G'M_, IHD}

C cbuble precision stuff:

DOUBLE PRSCISICN XIDO, R_3NSID

XIED @_D), RCU_'ID

C quan_Lr.ies at coLlocarA.cn points:

CU_3"UCOLL/ Xr (N_) ,cm (I_}, R(NC_),

1 tR _CD, LCD), UI_ fN_D, ICD),

2 CPEG _D, ICD}, _'UNC _, I/D), SA (I£D),

3 XY (NCD, I, CD, 2), F (bED, I_D)

C general quantities:

_G_RL/ WTR _) ,Wn_ rum), S_ __CD}

C radial basis functions

CU_W_C/ GRG_PD, LHD,NQg) ,G'm _, D_D,hrD), GV (NM), LHg,NCD),

1 _ @rD}, Fa%C 0_m), F2JAC caD)

C Polar basis functions:

CXI_M_V_RF2 P0(IIVD,LCD),PI (IMD, ICD)

C I_e calculation:

CUeiNg/ cn_s e_D)

C Mass and viscous matriums:

A'4%TGq_D,6), B_%T_NMD,6), BV£C0_MD),

1 AM_TS 0JMD, 6, IMD), BM_CS _MD, 6, LMD),

2 AM_IZ [NMD, 4, LMD )

c Fmergy and dlsslpard_n calculacions

COM4_/E_RGY/ DISV 6q49} ,ENV _I))

C Arrays which are _ to particular subrcutlnes

DOJBLE FRELqSICN G, BOFUNC, FUNC

_S_Z/ G (N_D, _), B_Et_C _D), _C e_D)

_S_RED_/ AINV C_D, 6), s'nm_ @_D, 6)

CU4v£N/_ PaS e_D), CORM1 _MD, LMD) ,Dm.SOU_ (k_D}

C i ,DAIPOLD (_M), I/4D)

C(:H43N/_'0RC.,/ VEI/RA (LCD), VEL_ CtCD ),VORI_ (LCD },COEF _D ),

i POFAN (IMD, I_D), R)2 CNCD), S_41A _), S/___A _(D),

2 PIDLM (NM)), P2EI/M 0_D ),OONV CNMD, IMD), PI_L_ (IMD, L_D )

C 3 ,Q _CD,LCD, 4)

*C'_DECK PAIR'_

P_( PI=3.14159265358979323846 )

PAPAMEI_R (ICREAD-2, MREAD-5, IA_R_TTE-6,LVAX-7, LGLOBAIz_, ICRAY=9,

> LPIE_I0}

OXerN/PAR4/ RADppo, RC_I_T, TIM_, VISC, GAM_ hI_X, 12BX,

> RVEIP, TINC, TSIX_, NCOL, LCDL, Ct_ _, CI_C, RAD_p_.,

> ZC_o_ _, KD4PGQ, D I1vP,RVEI2P, RM3M, DCENT, ICYL_

_/ LIC,II_N,

> nriOOg, iIEC_,

> NCRAY, JCRAY,

> NGmOBAL, JGLOBAL,

> NPI_T, i_iOT, JPLOT, J2PLOT

*DECK N&M%IN

_ OF M_IN PRC(;I:_M

C

C _/s is a program to find the evolut!oa of the coefficients in

C Spectral Stokes equa_utian.

c jNA_X - indicates a flaq, 0 or I

c ._._i_E- do _ every n loops.

C r-_ - indlca_es the tc_al Number of Records of NAME

c i_ - indicates the _ # of NAME

C _ - array dimension (> or - NM_X+3)

C NCD - array dimension _> or - NCCL)

C LMD - array dimenslcn C_ or - LM_X)

C _ - array dlmsnsicn (> or - LCDL)

C _LLOC: XI G_D) - radial cmilocatlon poln_s

C WTR(NCD} - weights for Gauss-Jaccmi quadrature

c C'E4C,_m_} - polar on[loca_cn points

C _ (LCD) - welc]nts for Gauss-Leq_ndr_ qgadratuz_

C RCNCD) - radial c_x_rdlnates ccoresponding to XI (I)

C CACOBI: G(NMD,NCD) - Jacc_l pol_

C LEGEI_DRE:POCIADLM, IfD) - Assoc_ta_w/ leg_x/re poly. 0n-0)

C P1 (I2,DIM, LCD) - Associated LegencL_ poly. 0n-l)

C .VATRIX: AMAT?J_(k_D,_D) - A matrix

C _(MVD,NPD} - B matrix

c PJACCrD) - r2 _/d(ps±}

C _._.EFF: ALP(N_D,I/VD) - coefficients in the expansion

C _%WAX - number of tenms with index n

C NCOL - nunt__r of collocation points in the radial direction

C _ - number of terms with index 1

C LCOL - _ of collocation points in the polar _on

C RADppo - initial radius of v_rtex ring in cu_utatlonal coordlna_es

C RC_L_T - constant which is optimized for clustaring around core

C PI - constant pl

C _:

C

c na_ unit # description

C ICREAD 2 : initial cmdltion

C MI_JE 5 : tire marching paramaters

C _ 6 : _ stuff

C LVAX 7 : final solution; sent to VAX

C LGIDBAL 8 : global quantities at ead_ time step; sent to tray

C _ 9 : cu_lete solution a_ specified times; sent to Cray

C

C

*CALL PALMS

*C%LL ARRAYS

C inputs and lnitializa_:m:
G_LL INITIAL

C%LL ,iq:OBI

C%LL LEGEND_E

C fozm matrices:

DO i0 LIC=I,I24_

CALL FORM%

C%LL FOR_B

CALL PREIN_

i0

C inteqra_e:

C%LL TINZ LVf

call dcnepl

C output:

O%LL OUI?U_

STOP

END

C q_'qqqc_q_qqq_q

_ INITIAL

*CALL PAR_S

*CALL A_AYS

C inltiaJ_[ze flaq for FLTCCNT -- ini _tiallzing file 15

_=0

JP_0T = 0

_-0

c _ starting condition

C

@_EAD, I040)

BEAD 6MKFAD, * )IC_AG

C time step, number of time steps:

READ _READ, I040)

READ C_READ, ")TINC, nrLOOP

C Every __ time steps, plot soln and write glcksi info

READ OVIREAD,I040}

@_READ, !040}

READ G_-AD, * )N_LOT, NGIEBAL, hK=RAY

C Read data from IC. FOR

READ (ICREAD, I040)

READ (ICRE/_,*) ._/_E, ZCcR

READ (ICREAD, I040)

READ (ICREAD,-) FCC_SID, PA_gpo,_

READ (ICREAD, 1040)

READ (IC_EAO,') VISC, GAM, CtR

READ (IC_EAD, !040)

READ (ICRE_D,*) IRUN, iPIXTf

READ (ICREAD, i040}

READ (ICREAD,') NF_X, NCOL, I/q_,£COL
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10

2O

(IC_EAD, I040)

DO 5 LI-I, IMAX

BYrD (IC_u%D,*} II, NM_XA(LI)

READ (ICBEAD, 1040)

DO I0 I-I,NCOL

BZAD (I_READ,*) II,XIDD(I),WTR(I)

COVrINb_

READ (ICKEAD, I040)

DO 20 J-I,ICOL

READ (IC_EAD,*) JJ, CrH(_,WTE4(JI

(Xhrn2_J_

40

30

READ (IC_.AD, I040)

DO 30 LI-I,Ii_X

DO 40 NI-I,NM_XACLI)

READ (ICq_AD,*) LL, NN, ALP0_I,LI]

CCNYINJE

CCNrINJE

1040 FONM_T (IX)

RCC_L_T - BCONSID

C ozmput,e a few quatities, used _ the program

c

C Find the corresponding radial values for _ collocation points

DO 50 I-I,NCOL

XI(I) - XIDD(1)

XII - XI (I)

R(I} - NCC_ (XII/(I.-XII} )** (i./2.)

50

c ccInpute the ooefficlents Ln the multlpole .expansion for the Impulm

CFACr - S_(2./PI}

CIMg(1) - 4. " PI * _CI_CCNST * CYACT

DO 110 NI - 2,_X

RN - __AL(NI-I)

D[IM- (2.*_W+I.)*CF_ET

(NI} -O[h_4. *PI*RCONSI_ BCON ST

II0 CONiqI_UE

END

c_

C this subt_rour_ine is defined for p - 2*el - I, q - el - i/2

-CALL PALMS

•CALL ARRAYS

C G(NI,I) or GCNMD, NED)

DOUBLS PP_CISION N, EL, Uj_G'_XID, EI,VfHI

ARGI,A_2, S_OR_ GAM_

El - _XINST

C -_-valuate r_2 dr/d(xi):

C

DO 5 I-I, NEOL

C r_2 • d(xl)/dr

RJAC(I) - 0.5*RI*RI*RI *>CI(I)''(I./2.}/ (I.-XI(I))*'(5./2.)

c r_2 • d(xl)/dr / w_)@l-i

F_C(!) - 0.5*RI*Ei*RI*XI(I) / (I.-XI(I))"3

c ( z-_2 - d(xi)/dr / w(x)@l-i } " wI_ature

F2CAC(I} - 0.5 * RCC_T*'3 * WTR(I) ,XI(I) / (I.-XI(1))''3

5 CChTLhUE

C Evaluate C_R, GTH, GV:

C

DO 50 LI - I,IMAX

EL-LI

C os_uta the Jaocht Polyr_mhals for all n and xl at a glve_ EL.

C this is only an intermediate result, it is not needed outside of

C this subroutir_.

DO I0 I - I,NEOL

C n-0, NI-I

A_GI- 2*EL-I

A_G2- (2*EL-I)/2.0

S_D_M- S_R_(2.)*S_Rr (GAMM_C_I) }/_£_2}

_CI_4 - SNOBM

G(I,I) - 1.0d+0

C n-l, NI -2

XZD - X_D(I}

G(2,I) l (4*EL*XID-2*EL+I)/I_r(2*EL-I)

I0 CONTINUE

C general recurrance fonmila - at that particular el.

C Note: if necessary, sane m_Dry can be saved by stcrinq only

C _ 5 Gn's _c a given time... _m+2, Gn+l, Gn, Gn-l, Gn-2.

DO 20 NI - 3,NM_XAfLI)+2

DO 30 I-I,NCOL

N - NI-2

X_D - xnm (z}

G (NI, I} - (( (4"N*'2+ (8*EL_) _N+4*EL*'2-4*EL) *XID-2*N"2+ (2-

1 4*EL) *N-2*EL**2+3*EL-I) *G C_I-l, I) + (-N'DS_R/_*2+2*EL*N-2*N)-

2 EL*DS01_ _**2+2*EL*N-2*SD )"G _NI-2, I ) )/ ([N+KL-I) *DSO_/(N* "2

3 +2*EL*N+2*F/rl) )

3O

2O CCNTINJE

DO 56 I - I,NCOL

X_D - X_DD(Z}

BOFL_ (I) - RI* (1-KID) *" ((-!. Cd+O )/2.0d_0- (-EL-3)/2.0d+0) *

I XID** (I.0d+0/2.0d+O- (2--EL)/2.0d+O )

fL_ (I) = (I-XED) ** ((-_3)/2.0d+O) *)CID'" ( (2-EL}/2.0d+0)

56 CCNTL_JE

C compute the r c_ponen_ of the _xr.icit7 basis function

DO 71 NI - I,NM%XA{LI)

N -NI-i

DO 81 I - I,NDOL

_NI,LI,I) - _ * G _qI, I}*EL* (EL+I}'ROFUNC (I)/RI**2

81 OONVINUE

71 OmaUNU£

C c_ute the tbeta c_mponent of the vcrt!clty basis function

DO 62 I - I,NCOL

XZD - X_O (I}

- XID** (EL/2.0d+O+ (-l.0d+O)/2.0d+O) * 0(ID" ((2*EL+I) *

1 (I_XID) *, (EL/2.0d+O) *XID+ (-3"EL-2) * (I-XID )"* (KL/2.0d+0) )+

2 (KL+I) * (I-XID) ** _L/2.0d+O} )/RI

GTH(I, LI,I) - _DBM " VE41

62

DO 72 NI - 2,NMaXA{LI)

N - NI-I

DO 82 I - I,SUOL

V_I-

1 ( ((-2*N-4*EL+I) *N+ (I-2._') *EL+I ) *gs_-R/Ch_'2+2 *EL*N+2 *EL-I) "

1 G _I+l, I)+ CN" (4"N+8"_-4) +EL_ (4*_F-L-3)-i) *G &NI 'I )+

2 fN* (2*N+4-EL-3) +EL* (2*EL-3)) *DS_R_ _" 2+ (2"EL-2) *NI*G (NI-I, 1 ]

3 / ( _* (4*N+8*EL-4) +EL* (4._'-_-4)) "KI'" 2)

GTH(NI,r.LI} - GNC_ * _[l*_qU_(I}

82 CC_TINtE

72 CONTnV_E

C Knowing the Jaccbi polynomials, _mnpute (what amc_mts to) t.he

C vorticlty basis function.

DO 60 1 = IoNCOL

XID - X_(I}

ch*n - KID" ( (EL* (4"EL+8) +3) "X_(-4"rL-8)'_-_-3)/RI''2

GV(I,LI,!) - (_ " dL_/qC{i)

c_ - KID" OflD* (EL" (EL" (16"'_---+64)+60) "XID+EL"
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1 ((-24"EL-92) *EL-82 ) +3) +EL" (EL* (8"EL+28) +22 }-3)

2 / (DSQKr (2*EL-1) *Rl**2)

G4(2,LI,I) - GNDRM - dua/Ft_(I)

6O cucrD,L_

DO 70 NI - 3,NM_XA(LI)

N - NI-1

DO 80 I - I,NCOL

V/H-

I ( CN* _ 6N'*(4*N+I6*F/,-4) +KL* (24"KL-12)-13)+EL* _EL* (16"ED-12)-26) +7}

1 +KL* (EL* (EL* (4"F/,-4)-13) +7) +6) *DSQRr (N**4+ (4*KIA-2)*N**3+ (4*EL**

2 2+10*EL-I) *N* "2+ (12*EL**2+2*K5-2) *N+8*EL**2-4*EL) *G fNI+2, I )+ _

3 * G%'*((--8*N-32*EL+I2) *N+ (32-48"EL) *KL+20) +EL* ((28--32"EL) *EDP46)-

4 18) +KL* (EL* ((8-8*KL) *EL+26)-14 )-12) *DSQRT (N'*2+2*EL*N+2*EL-I) *

5 G G_I+I, I} + (N* G_* CN* _ ((-8*N-48*EL+24) *N+ (88-128"EL) *EL-2) +EL* (

6 (128-i 92*KL) "_56)-36) +EL* 0_L* ((96-168"EL) *EL+IS6) -68) +4) +EL* (

7 EL* (EL* ((40-80*EL)*EL+I96)-42)-64) +18) +EL* (EL* (EL* _.L* ((8-16*EL

8 )*EL+68)-I0)-64) +2) +I2)*G (NI, I) + (N* (N* _ (8*N+32*KL-20) +EL* (4

9 8"EL-56 )-8) +EL* (EL* (32"EL-52) -18) +26 )+EL* (EL* (EL* (8*EL-16) -i0) +

: 20) +6) *DSQRT (N**2+ (2*EL-2) *N) *G CNI-I, I )+ _* CN* _* (4*N+16*glr12

; )+EL" (24"K5-36)-I)+EL* _L* (16*EL-36)-2)+I5)+EL* (EL* _L* (4*EL-12

< )-I )+15) )*DSOBT G_'_*4+(4*EL-6) *N** 3+ (4"EL*'2-14 "EL+II )*N** 2+ (-4 *

. KL**2+I0*EL-6) *N} *G G%'I-2,I) )/ (_, (N* (N* (16*N+64*EL-32) +EL* (96*

> KL--96)-I6)+EL* (EL* (64*KL-96)-32)+32)+EL* _L* _L* (16"EL-32)-16) +

? 32) )*RI**2)

C _ the cb_ole precision variable, D(/M, to the sinqle precislmn array

GV(NI,LI, I) - GNC_M * DUH/FtNZ(1)

80 CC_nN_

70 CCNrINUE

50 CCNn_X_

P,L'II_N

_ND

C ..... _qqz%qqqq<_

•CALL ARRAYS

C Calulate iegendre pol_, PO (LI, 0_ and P1 (LI,

DO I0 J-I,ICQL

Xl-Cm (4

PO(I,_-XI

90 (2,0_ - (3. *XI*_I-I. )/2.

S_2-S_ (1.-XI*Xl)

P1 (I,_n _S@<2

F1 (2, J_ --3. *XI*S_X2

I0 (XX_XJE

DO 20 LI-3,LH_

FACI- (2. *RL+I. )/ fRL+I. )

_2=P/J _aL+l. )

F_C3- (2.*P.L+1. )/RL

DO 30 J-I,LCOL

Xl-CrH (_D

PO (LI, ,D -_ACI*XI*PO (LI-I, J] -F_2"90 (LI-2, J_

P1 (LI, J] -FAC3*XI*PI U-/-!, J) -PI CLI-2, J}/FAC2

3O cQvrLNu£

2O

PXTU_

_'BRJJI"INE FOR_R

,C_j.I pA._p_

"CALL A._AY S

-_.'I-_CF.RNI, LIC

DCS_E PPECISICIN DSQF2, N,_,RI

R1 - FCXX_'ID

EL - LIC

C Fccm AM_T (initial condition Matrix).

DO 20 NI - I,NMP_AG_IC)

AH_T(NI,I) - 0.

AM_Tea,2) - 0.

2O ccNrINu£

AM_T(1,3) - 0.

AM_T(I,4) - O.

AM_T(I,5) - O.

R_T(2,3) - O.

AMAT(2,4) - 0.

AM_T(3,3) - 0.

AWkT (1,6) -

1 (EL* (EL* ((-16"EL-32) *EL-8) +8) +3)*R1/(EL* (64"EL_64))

AW%T (2, 5) -

IDS_R_ (2*EL--I)* (EL* ((-8*KL-2O)*EL-14)-3) *RI/_£L* (64"KL+64))

AW%T (3, 4) -

IDSQR_ ((2*KL-I)/EL) * _uL* _L* (8*KL+20) +14 )+3) *RI/fgL

1 * (64"KL+192) +128)

AM_T (4,3) -

1 (2"EI_3) *DS_R_ ((48*EL**4+48*EL**3-12*EL-3)/EL) *RI/f£L

1 * (64"EI_192) +128)

A,4_T (2, 6) -

1 (EL* (EL* (EL* ((-16*EL-80) *EL--128) -84) -31)-6) *RI/(EL* (EL

1 * (64"KL+192) +128) )

AW_T (3, 5) -

1 _+L* _L* ((-16"EL-64) *EL-72) -16) +3) *RI/(EL* (64*EL** (3.0d+0

1 /2. Od_O) +I92*DSQ_ (EL}) +I28*DSQ_ (EL))

AW%T (4,4) =

IDSCg_ ((6"_t+3)/EL) * (EL* (_* (EL* (8"_+44) +82) +57) +9) *RI/

1 (EL* (EL* (64"EL+384) +704)+384)

A_T (5,3) -

I (EL* (4*EL+I6) +15) *DSQR_ ((12*EL**2+6*EL) / (EL+I)) *RI/(EL

1 * (32"EL+160) +192)

DO I0 NI - 3,NM_XAC_IC)

N-NI-I

A'_T ea, 6) -

1 _ CN* _* CN* ((-8*N-48*EL+24) *N+ (92-!28"EL) *KL-14) + (144-192"EL) *EL"

1 "2-12) +EL* _L* ((124-168"EL) *KL+I02)-I9) +19) +EL* (EL* (EL* ((64-80*

2 EL) *KL+144)-28)-7)-9) +EL* C£L* (EL* (EL* ((16-16*EL) *EL+56)-32) -37)

3 +7) +6) *RI/G_* fN* (N* (64*N+256*KL-128) +EL* (384"EL--384) -64 )+EL* (_

4 * (256_EL-384)-128)+128) +EL* (EL* _L* (64"EL-128)-64) +128) )

A_T CNI+I, 5) -

1 G_ CN" ((-4*N-16*EL) *N+ (-36"EL-24) *KL+I) +EL* ((-40"__:-48) *EL+2 ))+EL _

1 (EL* ( (-I6"EL--24 )*EL+f2 )+22) +6) *DS_T 6_'**2+2 *EL*N+2*F.L-I )

2 *RI/(N" _ (128*N+384*EL)+384"EL*'2-128)+EL" (128"EL*'2-!28))

369/_I+2, 4) -

1 C_ _* C_ (8.*N+32*KL+I6) +EL* (48"EL+44) -2) +EL* _L* (32"ZL+40) -8)-i0) ÷

1 EL* (KL* (EL" (8*EL+f2) -6)-Ii) -37

1 "DS_q_ _N*" 4+ (4*EL+2 )*._ "3+ (4 *£L*" 2

2 +10*EL-I) *N**2+ (12*EL**2+2*F.L-2) *N.+8*EL"2-4"EL) *_/GN" (N" (N* (I

3 28*N+5i2*EL+256) +EL* (768"EL÷768) -128) +EL* (EL* (512"EL+768) -256) -

4 256) *F.L*(EL" (EL* (128"EL+256) -1287 -256) )

_AT C_I*3, 3 ) -

1 C_* (4*N+8*EL+8) +EL* (4*EL+8) +3)

1 "DSQ._ C_'" 6+ (6" F.L+6)*h_* 5+ (I2*EL** 2+3

1 6*EL+f0) *N'*4+ (8"£L** 3+72*EL**2+64*EL) *N**3* (48*EL**3+I32*EL'*2

2 +24"_£L-II) *N"2+ (88*EL**3+72*EL*'2-22*F./.r-6) *N+48*EL*'3-!2"EL) *R
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3 I/_r, fN" (128*N+384*KL+384 }+EL" (384"KL+768) +256) +EL* (EL* (128*EL+

4 384) +256) )

10

DO 25 NI - I, hMnXA(LIC)

25 AM_Z_CNI,I,LZC) - A_TCNZ, 6)

DO 30 NI - I, bI_XA(LIC) - 1

30 AM%_(NI,2,LIC) - AMKT(NI+I,5)

DO 40 NI - I, NbgXA(LIC) - 2

40 AM_TE(NI,3,LIC) - A_nI_I+2,4)

DO 50 NI - I, NM_XAfLIC) - 3

50 Abg/I_(NI,4,LIC) - AM_T(NI+3,3)

REIX3_N

_D

C_

SUBBCtKq2qE FO_B

*CALL P/%_45

ARRAYS

INIEGER NI, LIC

DOUBLE PI_ECISION _,N, EL, RI ....

EL - LIC

El - BCCI_STD

brat (I, I) -

1 (EL T (EL t (EL* (EL* (EL* (EL* (128"EL+832)+!952)+1936)+536)-356) -258) -

1 45) / (EL* (EL* (512*F_L+I536) +1024 )*El)

hrau (I,2)

1 (vL* (EL. (EL" ((-32"£L-208) *F/r496)-536)-258)-45) *_ (8*EL'*3

I -!2"_-_"2+6"EL-i )/ C_r_"(EL* (512"EL+1536) +1024) *El)

brat (I, 3) -

((2*EL-I)/EL) * (EL* (EL* (EL* (EL* ((-64"EL-576) *EL-2032)-3552)-

1 3196) -1380) -225) / ((EL* (EL* (256"EL+1536) +2816) +1536) *El)

bma_ (i, 4) -

1 (EL* (EL* (EL* (16*EL+f12) +288)+324)+135) *DS(IRT ( (48*EL**4+48*EL**3--

1 12*EL-3)/EL) / ( (EL* (EL* (256"EL+1536) +2816)+1536) "ILl)

brat (I, 5) -

1 (EL* (EL* (EL* (16*KL+I60) +552 )+792)+405) *DSQ8_ ( (96*EL**4+96*EL**3-

1 24"EL-6) / (KL**2+EL)) / ( (EL* (EL* (512"EL+4608) +13312) +12288) *El)

hmat (I, 6) -

1 ((-4"EL-24) *£L-35) *DS(I_ ( (3840*EL**7+21120*EL** 6+43200"EL* "5+

1 37920*EL**4+8400*EL"3--7560*EL"*2-4860*EL-810) / (E..L**2+EL))

2 / ( (El,*(EL* (512"EL+46C8} +13312) +12288) *El )

l::mat:(2,1) -

1 (F.L*(EL* (EL* (EL* (EL* (EL" (EL* (128"EL+1472) +6624) +14768) +16744 )+

1 8468) +IO02) +9) +135) / (F_.X,*(EL* (EL* (512"EL+3072) +5632) +3072) "Ill)

bmat (2,2) -

1 (EL" (EL* (EL* (EL* (EL* ((-64"EL-576) *EL-1936)-3056)-2476)-1372)-

1 795) -225) / ( (EL* (EL* (256"EL** (3. Od+O/2. Od+O) +1536"_ (EL)) +

2 2816*DS_/RT (EL)) +1536*DSCa_E (EL)) *El)

b_au(2, 3) -

ID_RE ((6"EL+3)/EL) * (EL* (EL" (EL" (EL" (EL" ((-64"_w-896) *KL-50CS)-

1 142C8)-21420) -15960)-4059) +540) / ( (EL* (EL* (EL* (256'E!_2560)

2 +8960) +12800) +6144 ) *El)

h=",ar. (2,4) -

1 (EL" (EL* (EL* (EL* (EL* (128"___+1440)+6288)+13424)+!4208) +6282)

1 +405) "DSQRE ((12*EL+6) / (EL**2+EL)) / ( (EL* (EL" (512"EL+4608)

2 +13312) +12288) *El)

brau (2,5) -

i (EL* (EL" (EL* (EL" (16"P_+224) +1120) +2372) +1735)-175) "DSQRT (

1 (480*EL**4+2400*EL**3+4320*KL**2+3240*EL+810) / (EL**2+EL))

2 / ( (EL* (EL* (EL* (512"EL+7168) +36352) +78848) +61440)*RI)

hnat (2, 6 ) -

I (EL* ((-24"EL-252) *EL-858)-945) *DSQRT ( (I60*EL** 5+800"EL*'4+

1 1440*EL**3+I080*EL**2+270*EL) / (EL**2+3*KL+2)) / ( (EL* (EL

2 * (256"EL+3072) +12032) +15360) *El)

bna_ (3,I) -

1 (EL* (EL* (EL* (EL* (EL* (EL* (EL* (128"EL+2240)+16352)+64752)+151464)

1 +213988) +178730) +80661) +14715) / ( (EL* (EL* (EL* (512"EL_5120)

2 +17920) +25600) +12288) *RI )

]u'nar..(3,2 ) -

_(6*EIA-3) * (EL* (EL* (EL* (El,*(EL* ( (-64 *EL-832 ) *EL-4368}-12272)

1 -509"72) -23468)-16499)-5385) / ( (EL* (EL* (EL* (512 *EL+5120) +17920)

2 +25600)+12288)*El)

(3,3) -

((12*F_J.,+6)/ (F_J..,+I)} * (El,*(EL* (EL* (EL* (EL* ((-64*EL-1280) *EL

1 -I0544 )-.46192) -115804 )-165336)-123605)-36975) / ( (F..L*(EL* (EL"

2 (256"EL+3584) +18176) +39424 )+30720) *Rl)

hmat (3,4) -

1 (EL* (EL* (EL* (EL* (16"EL+232) +1300 )+3538) +4714) +2485) *DSC2_ ((480

1 *EL**4+2400*EL**3+4320*EL**2+3240*EL+810) / (EL+I)) / ( (EL* (EL*

2 (EL* (256"EL+3584) +18176) +39424) +30720)*El)

h_at (3,5) -

1 (EL* (EL" (EL* (EL* (EL* (96"EI_2064)+17568) +75384) +169950)+186081) +

1 72765 )*DSQ/_ ((40*EL'*2+80*KL+30) / (EL**2+3*KL+2) )/ ((EL* (EL

2 * (EL* (512"KL+9216) +60928) +175104 )+184320 )*El)

brat (3,6) -

i (EL* ((-24*EIr324) *EL-1434 )-2079) *DS_RT ((2240"EL*'6+23520" EL*" 5+

1 98560*EL**4+208880*EL'*3+233100*EL**2+I27750*EL+26250) / (EL+2

2 / ((EL* (EL* (EL* (512*r--L+9216)+6C928) +175104) +184320) *El)

DO I0 NI - 4,NMAXA(LIC)

N-NI-I

brat CNI, I) -

1 0q* (N" (N* (N* (N* 0q* (N* (N* _ (96*N+960*KL-480) +EL* (4384"EL-3632) +672

1 )+EL* (EL* (12032*F.L-12032) +2624) +192) +EL* (EL" (EL* (22048"EL-22432

2 )+32) +136) -4026) +EL* (EL* (EL* (EL* (28352*EL-25120} -18528)-3760) -!

3 09CO) +9390 )+EL* (EL" (EL* (KL* (EL" (26080"EL-16432)-48640)-I 6104 )+i

4 926) +38413)-2097) +EL* (El,*(EL* (EL* (EL" (EL* (17024"EL-5120)-62944)

5 -29696) +42232) +68288)-16618)-I0272) +EL* (F.L*(EL" (EL* (EL* (EL* (EL"

6 (7552*E.L+256).-46464) -28432) +&5608) +69752)-32292)-21489) +5085) +E

7 L* (EL* (EL* (EL* (EL* (EL* (EL* (EL* (2048"EL+640) -18816) -13920 )+42976

8 )+41656)-27816)-21458)+7626}+1440) +EL* (EL* (EL* (EL* (EL* (EL* (EL* (

9 EL* (EL* (256"EL+128)-3264)-2784)+10800)+12024)-7684)-11258)-864)

: +2106) +540) / ((N* (N* (N" (N* _ (1024*N+6144*EL-3072)+EL* (15360"_L -

; 15360)-5120) +EL* (EL* (20480"EL-30720)-20480) +15360) +EL* (EL* (EL" (

< 15360*EL-30720)-30720) +46(]80) +4096) +EL* (EL* (EL* (EL* (6144"EL-153

- 60) -20480) +46080) +8192)-12288) +EL* (EL* (EL* (EL* (EL* (I024"EL-3072

> )-5120) +15360) +4096) -12288) )"El)

treat 0VI, 2) -

I _ (N" (N" (N" (N" (N* ((-16*N-128*EL) ,*N+(-480"KL-128) *F/r40) +EL* ((-108

1 8"EL-768) *KL-240) )+EL* (EL* ((-1680"EL-2176) *EXr472) +736) +431 )+EL

2 * (EL* (EL* ((-1856"EL-3584) *EL-288) +2944) +1724) )+EL* (EL* (EL* (EL" (

3 (-1408"KL-3456) *EI_560) +5696) +2800)-1016) -105) +EL* (EL* (EL* (EL* (

4 EL* ((-640"£L-1792) *EL+f056) +5504)+2152)-2032)-210) )+EL* (EL* (EL_

5 (EL* (EL" (EL* ((-128"EL-384) "KL+480) +2016) +360)-2088)-838) +402) +!

6 80) *_ (N**2+2*EL*N+2*EL-I)/( _ _ (N" 0_* (I024"N+5120 *.=r.)+

7 I0240"EL*'2-5120) +EL" (10240"EL"2-!5360)) +EL''2* (5120"EL''2-

8 15360) +4096) +EL* (EL*'2* (I024"EL"2-5120) +4096) )*El)

hr,at:(NI, 3) -

1 _* (IV"(N" (N" (N" CN" ((-32*N-256*EL-128) "N+ (-928" _.__,-!040)"_._w-64)+EL" (

I (-!9_4"EL-3648) "E.L-8! 6)+256) +EL* (EL- ((-2720-EL-7136) *Er_r3024) *i

2 976) + I022} +EL* (EL* (EL" ( (-2432"_'--.r8384)"ELL-5248 }+ 5696) +6200) +146

3 8) +EL" (EL" (F_L*(EL* ((-1376"EL-5904) *=EL-4800) +7880) +12626) +4047) -

4 971 )+F--.,"(EL* (EL" (EL* (EL" ((-'448"_JE/.,-2304)"EL'-2256) +5296) +10844) +3

5 656)-3427) -1641) +EL" (EL" (F"L"('r.T.*(EL" (r'L"( (-64" E5-384) "EL-432) +i

6 392) +3396) +1104)-2477)-2085) -45(])

6 *_ (N*'4+ (4*EL+2) *N"3+ (4"EL
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10

7 ** 2+10"EL-1) *N**2+ (12*EL* "2+2"EL-2) *N+8*EL**2-4*EL) / ((N* (N* (N* (

8 N* (N* (512*N+3072*EL+I536) +EL* (7680"EI_7680) -2560) +EL* (EL* (10240

9 *EL+15360) -i0240)-7680} +EL* (EL* (EL* (7680"EL+15360}-15360)-23040

: )+2048}+EL* (EL* (EL* (EL* (3072"EI_7680)-I0240}-23040) +4096)+6144)

; +EL" (EL* (EL* (EL* (EL* (512"EL+1536)-2560}-7680}+2048)+6144 }) *RI)

CONIXNUE

DO 20 NI - 4,R4%XA(LIC)

N- NI-1

bmat (NI,4) -

1 (N* (N" (N* _* (N* (48*N+288*EL+288) +EL* (800*EL+1664)+744) +EL* (EL* (128

1 0.EL+4096) +3872 }+i056) +EL* (EL* (EL* (1200*EL+5184) +7304 }+3440) +51

2 )+EL* (EL* (EL* (EL* (608.EL+3296) +5968) +3376) -1146 )-1242) +EL* (EL* (

3 EL* (EL* (EL* (128"EL+832) +1792) +992}-1368) -1836) -540)

3 *DSOKr aq**6+ (

4 6*EL+6} *N** 5+ (12*EL**2+36*EL+10) *N**4+ (8*EL* .3+72"EL*'2+64 *EL) *

5 N**3+ (48*EL**3+132*EL**2+24*EL-11) *N't2+ (88*EL**3+72*EL**2-22*E

6 L-6) *N+48*EL**3-12*EL} / ( (N* (N* (N* (N* (2048*N+I0240*EL+10240} +EL*

7 (20480.EL+40960 )+10240 )+EL* (EL* (20480"EL+61440) +30720)-10240) +E

8 L* (EL* (EL* (I0240"£L+40960) +30720) -20480)-12288} +EL* (EL* (EL* (EL*

9 (2048.EL+I0240) +I0240)-I0240)-12288 ) )*RI )

kmat _I, 5) -

1 (N* (N" (N* (N* G_* (32*N+192*EL+288} +EL* (480*EL+1456)+832) +EL* (EL* (640

i *EL+2944) +3424) +672} +EL* (EL* (EL* (480"EL+2976) +5280) +2216}-702) +

2 EL* (EL* (EL* (EL* (192"EL+1504)+3616)+2416)-1236)-1242) +EL* (EL* (EL

3 * (EL* (EL* (32"EL+304)+928) +872)-534)-I197)-405)

3 *DSO/_ _"8+ (8*EL+

4 12) *N**7+ (24*EL* "2+92"EL+54 )*N**6+ (32_EL**3+264*EL**2+396*EL+10

5 8 )*N**5+ (16*EL**4+336*EL**3+I076*EL** 2+776"EL+69) *N**4+ (I60*EL*

6 .4 +1280*EL* "3+2000" EL* "2+612"EI,-72 } *N**3+ (560" EL**4+2160" _T.**3+

7 1636*EL**2-52*EI,-124 ).*N**2+ (800*EL**4+1568*EL** 3+376"EL* "2-296"

8 EI:-48).*N+384*EL**4+384*C-IL**3-'96*EL**2 -96*EL) / ((N* (N* (N* (N* (N* (2

9 048*N+I2288*EL+I8432) +EL* (30720*EL+9ZI60) +51200)+EL* (EL* (40960"

: EL+184320) +204800) +30720) +EL* (EL* (EL* (30720"EL+184320) +307200) +

; 92160)-53248) +EL* (EL* (EL* (EL* (12288"EL+92160) +204800) +gl160) -i0

< 6496 )-49152) +EL* (EL* (EL* (EL* (EL* (2048"EL+18432) +51200) +30720)-5

- 3248)-49152 )) *RI)

h_at Qql, 6) -

1 ¢N_ &g* ((-16*N-64*EL-128) *N+ (-96"EL-384)*EL-344)+EL* ( (-64"EL-384)*E

1 L-688) -352) +EL* (EL* ((-16"EL-128) *EL-344) -352)-i05)

I _r_ _*i0+ (

2 10*EL+20) *N**9+ (40*EL* * 2+I 90*EL+165 )*N**8+ (80"EL*'3+720" EL** 2+i

3 480"EL+720) *N**7+ (80*EL** 4+1360"EL** 3+5260"EL** 2+ 6080* KL+I743) *

4 N* ,6+ (32*EL**5+1280*EL**4+9240*EL**3+20080*EL**2+I3978*EL+2100)

5 *N**5+ (480*EL** 5+8000*EL* * 4+322OO*EL** 3+42760*EL* *2+17030" EL+33

6 5) .*N**4+ (2720*EL**5+24800*EL**4+61320*KL**3+49480*EL**2+7500*EL

7 -2120) *N**3+ (7200*EL**5+39920*EL**4+62440*EL**3+26340*EL**2-458

8 0"EL-2244 }*N**2+ (8768*EL** 5+31520*EL**4+30160*EL**3+I720*EL* "2-

9 5688"EL-720} *N+3840*EL** 5+9600* EL* "4 +4800" EL* *3-2400"EL** 2-I 440

: *EL) / ( _* CN* 6_* _* (2048*N+I0240*EL+20480} +EL* (20480"EL+81920) +7

; 1680)+EL* _KL* (20480"EL+122880) +215040) +i02400) +EL* (EL* (EL* (1024

< 0.EL+81920)+215040)+204800) +49152) +EL* (EL* (EL* _L* (2048"EL+2048

0) +71680) +102400) +49152) )*RI)

20 CCNFLNUE

RErL_¢4

END

C _-_qq_qqq'_c_q¢._qqq_q'qqq'qq_qqS

_RCLTINE PFEINT

"CALL PA_4S

*CALL ARRAYS

C a_. y time differencing: Crank-Nicholscn for viscous term

C

DO5NI - 1,5

DO 6 K - 1,6-NI

6 BTEMP_NI,K) - 0.0

5 CONTI_L_

DO 17 NI - i, NMAXA(LIC}

17 BII_4_(NI,6) - BM_T(NI,I)

DO 12 NI - 2, NM_XA6LIC}

12 BTEMP(NI,5) - BMAT(NI-I,2}

DO 13 NI - 3, N_XA_IC)

13 BT_(NI,4) - BM_T(NI-2,3)

DO 14 NI - 4, NM%XA_LIC}

14 BT_MPfNI,3) - BMKT(NI-3,4)

DO 15 NI - 5, NH_XA(LIC}

15 _(NI,2) - BM%T(NI-4,5)

DO 16 NI - 6, NM%XAfLIC}

16 BTEMP(NI,I) - B4_T(NI-5,6)

10

2O

DO 20 K - 1,6

DO i0 NI - I,NM%XA(LIC)

A_TeU,D - -(2.*AM_Tea,K) - s_Pea,K)_nSC*Tnr)

B_9_S_I,K, LIC) - -2.*BM_T_qI,K)*VISC'TIN=

CONTINUE

CCNIqNtE

C ck_n_pose matrlx A_AT

C

N - NM_A_IC]

NC-5

IA - NFD

IU - NMD

CALL _ _%M%T,N, NC, IA,AINV, IU, DI,D2,IER)

28O

IF (IER.NE. 0)

WRITE CLWRITE, 280) IER, LIC

EN3 IF

FOF_(' %_/_NING: the error parameter is ',13,' for LIC =',I3}

DO 31 K - 1,6

DO 41 NI - I,_HAXAU_IC)

AW_TSCNI,K, LIC} - AINVCNI,K3

41 C_gTINUE

31 CCNYnV_

END

SUSR_JI_ TIMEINT

*CALL PA_4S

*CALL ARRAYS

C Write header lines to files:

C

C WRITE (LGLOSAL, 2010)

C 2010 FCRM_T0(, 'bead: Frayed time cen_r_id ringV

C Begin integration ...

C

NSC_T - I

DO I0 II_X_P - l,nrIEOP

C foL_ forcing functicn (_nvectlon *eLY..} for all values of L.

c

CALL FORCING

Output solution to cray at every _ _L,-e ste_s

IF (IIEOP.EQ.I) THEN

ntCPAY - (nrlfX3P -I)/NCRAY +I
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3O

4O

WRITE (DZRAY) ntCK_Y

_ITE (IERAY) RCCNSID, RADppo, TZ_r_o

WRITE(ICRAY) VISC, CA_ CcR

WRIIE(IERAY) i_]N, LPl/Yr

WRITE (ICRAY) NM_X, NCOL, I/_, LCOL

_(LCPaY) eM_XA_X}, ._-I, LM_X}

WRITE(LCRAY) (R(I), I-I,NCOL)

_RITE(IERAY) (XIDD(I},WTR(I), I-1,NCOL}

W_(LC_AY) (C_(J),Wn_(a, J-l, InOL}

E_DIF

IDtMI- ((IIDOP-1)/NO_Y}*100000

ID_'_- ((iLO_-I}*I00000)/N_AY

IF (IDLMI-IDtM2.EQ.0) THEN

CALL_

JC_X - _COU_T

- NS:O.Nr+I

ELm_

_AY - 0

E_DIF

P!ot solution every xx time sceps

IDLMI- ((IIOOP-I)/NPIOD*I00000

IDLM2- ((LIDOP-I)*I00000)A_IDT

IF (IDLMI-IDU_.EO.0)

G_LL_

CALL P_ (NED, I£D, (rEG, CrH, P_ XY, SF_, F)

IPLOT - iPI£_ + 1

IF (gnOT._.0) T_EN

- (nrIDOP-l)/NPIX_+I ....

_TTE (LPIOT) i_L_, GA_ TRY, CtR

WRITE CLPLOr) TINC, NFAX, IMAX

WRITE (LPIOT} nrPLOr

EN) IF

Eh_gGY - 0.

DISSIP - 0.

WRITE- (LPLOT) rn_g, cruz, RAopp., mmLpp

WRITE (LPIOT) ENErgY, DISSIP, _, RIMPGQ, DI_P

JPLOT - 1

K_DIF

IF (iLOOP.EQ.nrIOOP}GOTO 5 [ Quit integration after nri_X_P steps

C:=pute centrold:

ZC_e - ZCoR + mrs2* (ExPCTIN: + AInG(TIM£)) -TI_)/

1 (SO_ (TIFF_o)*PADppo)

Advance the unknown coefficients in tJ/re for each L

DO 20 LIC - I,IFAX

Multiply B matrix times the solution vector

CAIL_

Adams Bashforth differencing applied to the ccnvecuive tenn.

IF (ILCOP.EQ. i)

DO 30 NIP - I,k'4_XA(LIC)

RHS(NIP) - -2.*CCNV(NIP,LIC)*TIN: + BVEC(NIP)

ELSE

DO 40 NIP - I,NM_XA_IC}

_HS (NIP) - - (3.*CC_V ¢NIP, LIC) -CXINVMI 6NIP, LIC ) )"TI/_

+ _ (NIP)

CZhTINUE

END IF

41

31

70

2O

N - NM_XA(I_C}

NC-5

IA - NMD

DO 31 K - I, 6

DO 41 NI - I,NM_XA(LIC}

A_NVea,K) - AM_TS_a,K, nIC)

(XlWrINt_

CALL ILEL_B_NV, fSS, N, NC, IA, DELSX_

the unknown, time ds_m_ent coefficients' are:

DO 70 NIP - I,NFAXA(LIC)

ALP_IP, LIC} - DKLSOLNeaP) + ALPerIP, LIC}

CONTINtE

CChrfINUE

the _ve term from the preJious t.Lme stsp.

DO 90 LIC - I,IPAX

DO i00 NIP - I,NM%XA(LIC)

I00 CCh_MI_qIP,LIC) - O3_VCNIP, LIC)

9O CS_fINUE

c _duanoe "time"

c

i0 CCNI'LA%E

C end integration.

c

5 CCNYIIg_

END

C inltlallm the solution vector to

C

DO 15 NI - I,NM_AU_IC}

15 BV_C _NI) - 0.

C multiply all elements able/on the _._.

C

DO i0 K - 1,6

DO 20 NI - I,NFAXA(LIC) - 5

20 BVEC6_I) - BVEC(NI) + HM_TS(_Z,K, LIC) * AIP_I-I+K, LIC)

I0 O=NIqNtE

C multiply all elements bel_ the dlag_i

C

40

3O

DO 30 K - 1,5

DO 40 NI - 2,NMAXA(LIC) - 4

BVEC (NI+K-I) -u-VEC (NI+K-I) *_S (NZ-!, K+I, LIC) "ALP _qI-i, LIC_

CCNYLNbE

C ir_ert the implicit term with forcing banc_lon (RHS_qIP)) as r_-_ C multiply the l_wer ri_t ._and corner elere_nts (5.x5 matrix)

c C
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DO 50 NI - NMAXACLIC}, NM_XA(LIC) - 4, -i

IF (NI.LT.I) GOID I00

C above/on the diagonal

C

DO 60 K - I,MMAXA(LIC}-NI+I

60 BVEC(NI) - BVEC(NI} + E_ATS(NI,K, LIC) * AI_(NI-I+K, LIC)

C below diagonal

C

DO 70 K - I,_IMAXA(LIC}-NI

BVEC(NI+K} - BVEC(NI+K} + BM_I'S(NI,K+I, LIC) *ALP(NI, LIC)70

50

i00

REIL_

KND

C_

SUI_CxlrINE tak_4lLT2 CLI,NM),LM],NSB,AIP, NMAXA, I{_AT,SOIAV)

*CALL PARV_

DIMXNSION R_AT_,NSB+I, LM)), ALP(N_D, IND), k'_AXA(IM])

DIMZNSICN SO.tNV (N_}

C LnltJzdize the solution vector to zero

C

DO 15 NI - l,k'q_(A(LI)

15 SOINI(NI} - 0.

C _.tttipily all elements akmve/on the dla_ai

C

20

1O

DO I0 K - I,N._B+I

DO 20 NI - I,NMAXAU_I} - NSB

SOI/_V(NI) - SOL'_V(NI) + ._Iv_LT{NI,K,LI) * AI2(NI-I+K, LI)

OghTANtE

C .'n/it/ply all elements }re_low the di_

C

40

30

DO 30 K - I,NSB

DO 40 NZ - 2,NMAXA(IZ} - (NSB-I}

SGLNV 6NI+K-I )-SOLNV CNI+K-I ) +F_MAT (NI-I, K+I, LI) *AIP (NI-I, LI )

C_

C mnltiply the icier right hand corner elements _ matrix)

C

DO 50 NI - k'_A(LI}, N_XA(LI) - (NSm-I), -1

IF _II.LT.I) GOID I00

C above/on the diagonal

C

DO 60 K - I,fI_XA(LI) .--NI+I

60 SOI/_V(NI} - SOINV(NI) + f_AT6NI,K, LI) * AIP(NI-I+K, LI}

c below diagonal

C

DO 70 K - I,h_4%XA(LI}-NI

70 SOI_NV(NI+K) - SOI_V(]_f+K) + RMAT(NI,K+I,LI) "AI2 6NI,_)

50 CCtCYI._JE

!C0 C_',L'fINU£

P,_."V_,/{N

C .... _ _ _

_ R3t,TINE FC6CI NIl

*CALL PAKNS

*CALL AIRI_AYS

Go FI_CM wave space TO real space

DO i0 I-I,NODL

DO 20 J-I,LCOL

VaURA(J} - 0.

VELZ_ (J} - 0.

V_m_(J} - 0.

20 CONI"/X%E

DO 30 LI-I,LM_

VEIR - 0.

VELT - 0.

VORT = 0.

4O

DO 40 NI-I,SIVAXA(LI}

VELR - VELR + (IR(NI,LI,I)'AI2 (NI,LI)

VELT - VELT + GTH(NI,LI,I)'AI@ (NI,LI)

V_ - _ + GV(NI,LI, I)*ALP (NI,LI)

C_

5O

30

DO 50 J- I,ICOL

V£LRA(J) - V_aA(J} + VELR'PO(LI,J)

VELTA(J} - V£L_(J] + VEL_PICLI,_

VOKEA(J] - VORI_(J) + VORT'PI(LI,J)

CC_TINUE

Cr_n_Nu£

60

I0

DO 60 J- I,ICOL

UR(I,J] - VZLRA(J]

Um(I,_D - V£L_(JD

(I,J] = %DREA (J_

CC_'I_

C_

c C cr4mrce Saffman's velocity

DO 120 J=I, iCOL

S'_H(_ = S4_Cr(I.-C_ (J)*'2)

120

IF (IIfX_.ZQ.I) 9_N

For the first ti_e step crtly, (x_-_ute the _ error of vorticity

c the initial c(_ndit_ton is a Stokes soiution

c

IF (ICFIAG.EQ.I) THEN

I_S3 - 0.

rr_mum - 0.

DO 132 I - I,N_OL

NM_DI - O.

rnnm_ - 0.

_'th - I.

DO 142 J- I,LCOL

EXCI_93 - STH (J) "R (I)*EXP (-R (I} ""2/4. )/ _" ! 6. "PI" * (3./2. ) )

F_SDI - _I + C£XCI_(I,,.T))'*2"%rf'C4(_/C_LFth"STH(_)

rr_ - moral + EXGv_*2*WI'_(J}/(_th'STH(_)

142 C_

- F_v_D + R'_DI"F2JAC(1)/R(1)

rnozm - rnonn + rnorml*F2JAC(1)/R(I)

132 CCIgTIINU£

._vcD - SQRr(Rv_D)

WRI _E UA4RI_, I I00 )NMAXA (!),f_SD

_RI .-E(I/_R_TTE,Ii01) t-n.o_n

D/3 IF

C the

c

initLal oc_xllt/ce is a thin ring

IF (I_VLA;3.EQ.2) T}{L_N

FTXED - 1.2564392281

CAPR = W_gFo

rnorm - (].

DO 13! I - I,NCOL

R&_Di - O.
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40.

wFth - I.

DO 141 J- I, ICOL

ABG- EXP( -(FIXED/CtR**2) * (i.+ (R(I)*R(1)/(CAPR*CAPR))

1 - 2.*R(I}*SI_(J]/CAPR ) )

ARG2- EXP(-(FIXED/CtR'*2)* (I.+ fR(1)*R(I)/(CAPR*C_&_R))

1 + 2.*R(I)*STH(J]/CAPR ) )

EXOP_ - FIXED *CAM * (ARG-ARG2)/(PI* V'ISC ,CAPR**2 *CtR**2)

R_DI - R_DI + EMCM£G-CMEG(I,J))**2*WITH(O]/_Fth*STH(_)

rnorml - rnornd + D_ME_*2*WTrH(_/6_Fth*S_(_)

141 OCNTINUE

RM_ - R_D + R4SDI*F2d_Z(1)/R(I)

rnonn- _ + rrmnnl*F2dAC(1)/R(I)

131 CCNFINUE

WRITE UuWRIIE, Ii00 )NM_XA (I), R_D

WRITE (IW?/rE, 1101 )rrmrm

END IF

IIC0 FOR4%TC(, 'NFAXA(1) - ',I2,5x, 'R_error -',f18.9)

Ii01 format(x,'rnozm - ',f19.8)

E_D IF

cu_pute speed of Safi_an cencruid and other stuff

140

C

CPI - 0.

CP2 - 0.

_PI - 0.

TP2 - 0.

CIRC - 0.

_-0.

R41M - 0.

DCENr - 0.

DO 130 I - I,hL'OL

an irmer locp begiP.s here for the double integration

RIMPI = 0.

CI_rl - 0.

CENI'2- 0.

TLMPI = 0.

_2 = 0.

CIRCI - 0.

_D_I - 0.

DCENrl - 0.

_Vth - 1.

DO 140 J- I,LCCL

UP/ - UR(I,_9

UIHI - LTHCI,J]

RD4PI - RD_I + (_G(I,J)*SFH(J]*WFIH(J]/W_th

C_Vfl - cDrfl + URI*(_G(I,J3*STH(O3*CTH(J]*WI'_(J]/WFth

C[NF2 - CENT2 + bTHI*C_EG(I,J)* (3.*CTH(J]*CIH(J]-I.)

1 *WrTH (_]/WFth

TIS_! - TIMPI + URI*GMEG(I,J_*STH(J)_NITH( J]/WFth

'IUI_2 - TI_2 + UTHI*C_E(I, Sg*CTH(J)*WITH(J]/WFth

ClRCl - C/l_l + e_(I,_FrH(_IC_Fth'STH(_)

RADppl - RADppl + (_EG(I,J]_WI"d{(J]/WFth

R4_MI - _ + Cu_I*CL_(J]-UrHI*S_(03) _rH(_/_Y_h

DC_"qlq - DCENI'I + (I_F-E(I,J) *5q_ (J]*CL_ (J] *WITH (J]/WFth

CCNIT/%UE

weight fumcticn of quadrat'-u_e method

WFrad - S_{r((l.- XI(I))/XI(I})

C Ncte uhat F2J_C(I) - RdAC(I)*WTR(1)/%_rad

- _ + RIMPI*R(I)*F2_C(I}

CPI - CPI + CENYI*R(1)*F2dAC(I)

CP2 _ CP2 + CENT2"R(1)*F2_AC(I)

TPI - 1?1 + TIM21*R_E(1)*WI_R(I)/WFrad

172 - I72 + TIMP2*_C(1)_q_R(1)/WFrad

CIF_ - CI/_C + CIRCI'F2_%C(1)/R(I)

c!2/I0/87 _ " _ ÷ RADcDI*R(I)'F2J_C(I)

RAD_ - _ + RAD_..i',_2_(I)

R_[IM - ._ + __'F2Z_C(I)

DCE_/f - DC_ _ D_---_T.*R(I)*'2*F2£ZC(I)

i"-O CChTI_

C ccr_u_e i_/ise by multlpoie e._ganslcn

S/M _ 0.

DO 21 NI - !,_AX

SLM - _ + AI2(NI,!)'CIMP(Nq)

21 CU_IN[E

IF _qME._Q.O.} _EN

TIME- I./(K_P *PI)

TIMEo - T3_

ENDIF

C BE CAREFUL BE_, _{IS _ WAS C{_N_D QUICKLY WI_

C FLL'H THOUGHT FROM IIEOP.EQ.I TO DL-IIDE IF TIF_.EQ.0.

C IF (iIEO_.EQ.I.AND.TD_.EQ.0.} TIMEo - TIME

RD_M_ - S3M"TIME

P,D_q_Q - RIMP*PI*TE_

RVELPP - time*pi* (3.*(_I + CP2)

D]MP - 2.* PI* CfPI + _P2)

(I_.EQ.2) T_N

SAFVEL - gain* _ (4. *2.24182/CTR} - 0.558) / (4. *pi*P4_3ppo)

SAFVEL - 0.0

ENDIF

C _ _E (_L Nt_RER AT THE GRIGIN

IF (IID3P.EQ.I)

CFL - _ Cu_H (i,IEOI]2) +RVELPP) / (R (2)-R(1))

C 1300 F_gM_T(' _HE CFL _d_RER IS',FI6.8)

WRITE(6,*) 'I, CFLrad, CFLtheta'

DO 1310 I-I,NCGL-I

CFLrad - TINC* COTH (I,IEOI_2 )+RVELPP) / _R (I+l) -R(I ))

CFLth - _ _ (I,ICOL/2 )+RVEI2?) / (R(I) *pi/icol)

WRF_(6,*) I, CFLrad, CFLth

1310 OSN'IUIg3E

ENDIF

C 4/16 SET THE RIN_ VEIDCITY TO Z_O WHEN S_VING THE STCKE_ EQNS

C(4/27) RVEIPP - 0.

mmLP - RVEI2P/S_ CrimE)

_M_ - 3.*pi*tlme'n_m

DCENT - DCLV_PI*TIME

IF (RADcp./_RC.LT.0) IHEN

WRI_ (6,1999) RADrsp._/CIBC

1999 FCR_ATCX, '.WH3pp/CIRC - ',F16.8)

ELSE

ENDIF

_RIIE _NRITE, i010) TIME

_I_ U_TE, i015) CIRC

WRI_ (6,i003) D(_NT

1003 _0(,'the c_ntruid cu_pu_ed by _ is ',F16.8)

WRITE (6,1002) R_DM

1002 FOR4%T0(, 'H(t)/ (2/3)I/rho is ',F16.8)

WRI"IZ (6,i001) RADpp

i001 FCR4tT0(, 'K_)pp IS ',F16.8)

C write _ and related quantities

WRYIZ _, i020) KIMPMP

WRITE 6L_RIIE, I030) RIFPGQ

_RITE(IWRITE, 1040) PdlMPMP-RIMPGQ

_RI_ _WRITE, I050) DIM_

C write p_tion speed and r_lated quantities

WRI_Z CL_RITE, 1060 ) RVEI2P

WRITE G_WRI_, I070) &%FVEL

c WRITE (IARITE,1040) SAFVEL- (RVELP?'4.'PI_RADgpc./G_

WRITE(LWRITE,1040) SAFVEL - _P

i010 FOR4_T0(,'tt._e (sec) -',F16.8)

1015 FOR4LT CX, 'cu_x_ed circniatlon -', FI6.8,/)

1020 FOR4tTCX, "2_/ise CL^4/T) (_j3.t.i_CLe expar_ion} -',F16.8)

1030 FOR_ATC<, 'impulse _^4/T) (Gauss Quacra_-ure}-',F!6.8)

1040 FC_T0<,'dlff - ',F16.8,/)

1050 FOR4_T0(, 'd(L_pulse)/dt (Gauss Quadra<ure -',E16.8,/)

1060 FORFAT0(, 'prmgagaclon speed (non-dLm) -' ,F16.8)

1070 FORMATCK,°Saf_ an p rcgagatlon veiocity (non-dim) -',F!6.8)

C compute _ diffe-_-nce and maxL_n error for _he stokes solution at

c each time step.

c Every xx _eps, c_mpute the energy an_ dissipation and write gic_! i
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210

2OO

23O

220

- ( (_I }/NGIE_L) *I00000

IIXlM2- ((iIEOP-I]*I00(X)0}/NGLCSAL

IF (IIXIMI-IIM/_.EQ.0) _ C

_F (JGLCSAL.EQ.0) _ C

nrGID2AL- (nrLOCP-I)/_EIE_J_+I C

WRITE (IEIOBAL) I/_N, GAM, TIM£, CtR C

WRITE (LGI_BAL) TINC,NMAX, DgX

WRITE (InLOBAL) nrglc_al

ourpuCe enerqy and disslpaclon
C

Dissipation bF rrmCrlx mult_Ipllcatlon 160

DIS_IP - 0.

DO 200 LI - I,I_M_X C

RL - REAL(LI) 165

- - (4.*PI*RL t (RL+I.) )/ (2. *KL+I. )

CALL MA_MULT2 (LI,NMD, IMg, 5, ALP, NM_XA, HMATS, DIS_)

DO 210 NI - I,NMAXA(LI)

DISSIP - DISSIP + _DISV(NI)*AI2(NI,LI)

CCNTIA%E

CCNTINUE

DISSIP - -DIS.KIP/(2. *VISC*TINC*SQ/_ _qME) )

151

_ergy by Gauss O_rature

EhER_ = 0.

DO 220 I - I,NCOL

DF/_GI - 0.

DO 230 J- I,NCCL

- ESERGI + _3R(I,J)*UR(I,J]+Ui'H(I,J)*UFH(I,J))

> *WFI_ (J)/WFth

CCNTINJE

EhERG = ENERG + EhERGI*F2d_C (I)

CONTINUE

EhE_GY = EhE/_G*PI*SQRTCIUIME)

WRITE (LGIOBAL_ Tn_, CIPC, RAD_._, RVELpp._ C

WRI_I_ _) ENE/_'Y, DISSIP, RIMPMP, RIIVPGQ,DIM9 150

_JZBAL = 1

DD IF

Go FROM real space TO _ve space

C C_pute this part of the oDde in the first pass only.

IF (II/X_.EQ.I) _HEN

75

74

76

DO 74 LI-I,LM_X

RL - _A.5(LI}

CCKF(LI) -- (2.*RL+I.) / (2.*RL*(RL+I.})

DO 75 J - I,IEOL

POFUN_I,J_ - P0_I,_*Wn_(09

91FUN(LI,J) - P1 _LI,_)*Wn_(J_

CCNITN_

CChTnV_

DO 76 I-I,NCOL

_D2(I) - 0.5*P,(I)

CChTI_JE

END IF

71

C

convective _enn in the Navier Stokes Equations.

DO 70 LI-I,LMAX

DO 71 I-I,NCOL

S_'41A(1) - 0.

S/M2A(1) - 0.

C_

integrate wr_ _he[a, for all Lf

DO 165 J - I,LCC_

RVrH - KV_.2P*SEH(J]

RVR - K_V_PP-CTH (03

DO 160 I-I,NCOL

W_24 _ THE STOKES SOIIIfICN _ RVEJ2P, UTH,UR - 0.

_SO _E A_E)

UE_(I,_ = 0.

tR(I,J) - 0.

S£_41A(I) - S[IMIA(I)+ (UFH(I,J)+KVI_)* _48G(I,J) *POFL_(LI,J)

St_g-A(I) - S/M2A(1)+ ( [R(I,J)- RVR

- t_o2 (z}

} *e4E_ (I, J) *P1FtZq fLI, J)

end of i l_p

C_hTINUE

endof Jlc_p

CCNn_E

C end of transformation wrn the_a...

C Integrate wr_ r, for all NIP and IX

DO 151 NIP=I,NM_XA(LI)

Pldum(NIP] - 0.0

P2dum(NIP) - 0.0

CCNFIN_

DO 161 I-I,hEOL

C

161

TEMPI - S[I_/A(1)*F2_AC(I)

T_MP2 - S/M2A(1)*F2_C(I)

DO 150 NIP-I,_'4_XA(LI)

Plcun_NIP) = pldun(NIP) + T_vPI * GRfNIP, LI,I)

P2dum6%qP) = P2du-n_NIP) + _P2 * GTH6_-_,LI,I)

end of NIP locp

CCNVLAUE

end of i locp

_DNYL'_E

152

C end of LI icc 9

70 C[X_UN.E

DO 152 NIP=I,h_D(A(LI)

CC_V&_IP,LI) = COEF_LI)" (FldunfN_P) - P2d_-n_))

C_NIUI%tE

REIUR_

END

C S-_SSS_qq_q_q_qqq "

_SRXrnNE _JTVJT2

*C_LL PAR_

*CALL A_FAYS

WRITE _AY) TIME, ZCcR

c WRITE(LCRAY) (C%I2(NI,LI), NI-!,h_4_XACLI)), LI=I,LMAX}

WRI_E(LCRAY) ((cmeg(I,J), I-I,NCOL), J-I,LCCL)

REIL_N

END

_TD_£ CLqI_3T

"CALL PAR_

"CALL ARRAYS

hI%ITE (U/AX, I002)

_.I_E_ (LV_X, "} _,ZC_R

WRITE (LVAX, I000}



I. Navier-Stokes Code 144

10

2O

40

3O

WRITE (LVAX,*) _:ONSID, PAD_o, TIM£o

_RITE (LVAX, I007)

WRITE (LVAX,*) VISC, _ CtR

WRITE (LVAX, I001 )

_RITE (LVAX,') IRL_,

WRITE (LVAX, I005}

WRITE (LVAX,*) NMBX, NCOL, IFAX, I_OL

_ITE (LVAX, i009)

DO 6 LI-I,I/_X

WRITE (LVAX,') LI, NM_XAfLI}

CONTIN_

W_ITE (LVAX, I010)

DO i0 I-I,NCOL

WRITE {LVAX,*) I,XIED(1),WIR(I)

OmmINUE

WRITE (LVAX, 1020)

DO 20 J-I,ICOL

WRI_ _VAX,'} J, CrH(JI,W_H(O]

O_VZINJE

_-KITE CLgl%X,i030)

DO 30 LI-I, IMAX

DO 40 NI-I,NM_XA{LI)

CIHRYiZ, * } LI, NI,ALP CNI, LI)

WRYIZ (LVAX,*) LI,NI,ALP6_I, LI}

CONTINUE

CCNn]_JE

FO_VAT (_, 'TIME', 12X, 'ZCmR' )

PO_4_T (12X, ,FCONSr' ,ICK, 'PADppo' )

I0C2

i000

10CI FCRFAT (4X,,II{YN',4X,'II_O_')

1005 PORMAT (9X, 'NFAX' ,SX, 'NCOL', 8X, ,II_X', 8X, 'LCOL' )

IOC7 FOrmAT ( 5X, 'VISC', 12X, 'GAM', 5X, 'Ct_' )

1009 P0_tT (SX, 'LDDEX',IOX, 'NMAXA(L) ')

i010 FCIW4_T ( !0X, 'I', 7X, 'XI (I) ',10X, 'WIR (I) ')

1020 P0__AT ( 10X,'J', 7X,'CZ4(J]''ICM''WI_C4(J]')

1030 P0_AT ( 9X,,LI,,10X,'NI',7X,'ALPCNI,LI)')

RET_N

EhD

_ ST_u_MF

*CALL PALMS

*CALL ARRAYS

c c_:_u_e rke scream function in a reference frame translating with the

c velocity of the Saffman centroid.

DO i0 I-l,Sr.OL

DO 20 J-I,ICOL

20 SA(_9 - 0.

DO 30 LI-I,IMAX

• RL - KEAL(LI)

STEMP - 0.

DO 40 NI-I,NMAXACLI)

40 SI_MP - ST_MP + GRfNI,LI, I} *ALPCNIT'T)

l STEF_'R(I) / _L" _L+I. ))

DO 50 J- I,LCC_

50 SA(,.D - SA(J] + _piFuI,oD

30 CONTLNL_

C ccnpute the Saff_an ring speed

c Uo - gan* _kt_G(4.'2.24182/CLq}- 0.558)/(4.'pI'_)

Uo - RVEI2P

DO 60 J - I,LCOL
SfX]_ (I,J] -- (SA (J]"STH (J] "R (I) +. 5*Uo'R(1) --2"STH (J)*'2)

60 C(IVI_._UE

i0 CCNTLNUE

RE_L_

C -

SJB BCX/ZLh'£ PLTCC_V_ _CD, LZD ,CI_E_ ,C-C_"'K' XY' SFL'_C'F )

c Izero:

c

C NCOPT

C NCOL

C DCOL

C NCO_T

C N_D_4

C b_DDD4

C I_DR4

C ARBAYS:

C F e_D, IED)

C XY_CD,I£D)

C AOmm erdlm)

c xomm 6_XD_D

C yomm e_Dn_)

C NAD e_DDn_

C NLEVe_DDmD

C IA(IADn_

*_LL PAf_S

C DIMENSIONS/OPTICNS:
0 : do noC plot zero oontour level

1 : plo_ zero contour level

-i (input contour levels), -2 (au_cmatic)

IN F(I,J) I - I,NCOL

J - I,LODL

nu,ber of con_=ur levels

_ber of points in the contour definitions

number of contours

try 3000 (says Peter Bunlng)

FUNCTION TO PU_T cav_u_

o=,=zdlna_s of function

(for _I) conuour le_.s

x values of contmur lines

y values of contour lines

k%D(1): # am_a_s, pointers to each am_our i£-._

values of oon_m_r levels

scratch array

pApR, EiL_er_dim_25 ,h_DZM-2000 ,_n v"100 ,IADLM-3000)

DIMENSION XY CARD, LCD, 2) •F _O3 ,ICD) • SFtNC 6_CD 'I_D )"(_r-G CAID' L_D )

DIMENSION AC_NTI _im) ,Aa]NV2 C_Tmtlm),ACC_T3 _Cdlm), ACC5_4 (NCdhu)

DIMENSION )K:QqE (I'_IM, 2 }

DIME%L_ON NAD(k_EDIM), NLEV(h%DOD4), IA(IADIM)

DIF_SICN blankc (N_DIM)

IEGICAL LABELS

DIMa_ON CrH(I£D), R_CD)

_AL IXFT

IABELS - .FALSE.

C Incillm dlsspla

IF (J2P!OT.LE..5)THEN

G%LL DIP (15)

J2PI_r _ i.

ENgIF

CALL pA_ (8.5, iI.)

CALL H_SCAL ('SC_Z_N' )

C set d%araccer type and size

C_LL S_PLX

CALL _XlALF ('L/CSID' , ') ')

CALL MX2ALF ('SZ%NDm_' • '( ')

OkIA MX3ALF ('L/C_REEK', '%' )

CALL _4ALF ('_REEK', ' :')

CALL _V_LF ('INS_', '\')

CALL _(6ALF ('M_I_', '*' )

(_LL HEIGH_ (0.12)

c label axis with intecj_r numbers

&_LL INZ_XS

c do not plot _utside of subplot area

(:ALL GI_ (0)

c _ paints with a pol_ _.t

c don't d_eck for points w_ch are out of ran_.

CALL NOCHE<

two

l_wer plot, page 1 - ex_ndlng coot _dina_es

Plo_ of w't'^2 in self similar coc_-_nates

CALL [_IYSOR(I. 25, 7.75)

CALL AKEA2D (6.25, 2.5)

CALL MESSAG('_LIg (#) $,,100,5.2,2.75)

(_LL INII_D (iFLN, 'ABUT', 'ABUT')

CALL FESSAG(,FRA_ (#) $,,I00,5.2,2.55)

CALL INTNO (IPL_, 'A_UT', 'ABL_ ')

C_ ENDGR(0}

2O

DO I0 I-I,NCOL

DO 20 J-l, I_DL

l [ (I• --CTH (J)"CTH...'(J))

XY(I,J,I) " R(I}'C_{(J)

XY(I,J, 2) " R(I)*STH

F(I,J) " (IMEG(I' J]*TL_-

CO%TINt_
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NCOFE - 1
_,u_r2 - 20
izero - 0

PHYSCR(I.5,2.25)

IZ_T - -5.

RIGHT - 5.

BOr - 0.

TOP - 5.

SCALE - 6./(RIG}_-LEFT)

XDIS£ - RIGhT-LEFT

ARFAZ3(SC_J_E*(RIG_-LYfT), _AtE* _) }

GLLL :@IA_('X/(0_)t0 ) kEH.5)I/2kEXHX}$',I00)

CALL YNAME('Y/(0%N)tO) kEH.5)I/2k£XHX]$',I00}

CALL XREV_

CALL YREV_
CALL G_W%F(LF/T,i.,RIGHt,B_f,1.,TCP )

CALL (XlWI_XCNCD,IfD,I,NDaL,I,I_OL,XY,F,NCOFZ,NCDIM,N_i'2,

1 ACCNF2,NXDIM,XCQNT,XODNT (i,2),NADDIM,NAD,NLEV,

2 IADIM,IA,FMIN2,FM_2, izero)

CALL CCNDI2 (I,2,_,NMDIM, NADDIM,NCDIM,NCONV2,XCCNf,NAD,NLEV,

CALL F_:__r('XPXVrK')

CALL F___T('YREVIK')

CALL _N_4 ....

CALL YNONLM
C_LL MGRAXS(LEFT,I.,RIQ{T,_d%LE* _I_4T-IF/T), ' ',I,0.,

1 XDISI_-5*_-AIX}
CALL YGRAXS(BOT,1.,TOP,_ALE" (IDP-BOT),' ,,1,XDIST*SCALE,0.)

C%LL _BM (.02)

CALL F_A_E

CALL _(0)

CALL _.__T('_')

C%LL RES£T ('YNONJM')

C (_.e

c Sesond plot - physical coo=_mates

xYsc - soB_(TIME_)

DO 15 I-I,NCOL

DO 25 J-I,ICOL
STH - S09_(I. - CI_(J)*CL_(03}

XY_I,J,I) - _(I}*CI_(0] _XYsc)_ + ZCoR

XY(I,J,2} - R(I)*S_*XYSC/_
F(I,J) - (IM_G(I,J)*TIMEo'*2/TIFE

25 CCNnNUS
15 CS_TINU£

izero - 0

NCCN_ - 20

IF (yU_r.EQ.0)
NCOPT - i

ELSE

NCC_T - 2
FRAX[_ _CD, D:D,i,kL'CL,i,ICOL,F,FMLNI,FFAXI)

E_D IF

C '_" is used here to mean ._hysical" space.
CALL pHYSCR(I.5,6.75)

C Scale the plot so that the ring is Lnside r-hebox.

IF (JPIET.EQ.0) FXDIST- 8.
IF (ZCoR.GT.PXDIST-I) PXDIST- PXDIST*_2.

IF (p_H3pp/RADPPO*.5.GT.P_DIST/4.)F_3IST - _XDISI'*2.

pLEfT - -i.

FRIC_T - Pi2__T+FMDIST
PBOT - -gMDIST/4.

FIOP - PXDIST/4.

PSCAIZ - 6./PMDIST

AP_2D (pSCALE"(PKIC-HT-P_L_T},pSC.ALE"(pTCe-_BOT))

OtLL X_V_

CALL Y_V_
(3_LL_ (,X/(R]kLH.6)OkLXHXS',i00)

CALL yNAM£('y/(B_kLH.6)0_', I00)

GBAF (pI//T,1.,PRIQ{T,PBOr,1.,PTOP)

NCCeT - 1
CALL CGNIMX(N_D,LCD,1,NODL,1,LCOL,XY,F,NCGPT,NCDIM,NCIIWI_,

1 B:X_qfl,NKDIM,X(X_T,X_ (I,2},N_DDIM,NAD,NLEV,

2 L_n_ IA_FMINI,FM_Xl,izero)

CALL C_NDI2 _,2,1ABELS,NXD_NAOD_M, NCD_M,NC_rrI,XC_T,h_D, NLEV,

1 ACer;l,SL_/_=)

CALL DA_

CALL RIRI_(FLEFT,0.,P_GHT, 0.,0)

CALL _ET ('DAS4')

DO 50 I - I, _%D(_%D(I]+I)-I

XCGNT(I,2) - -XCCNT(I,2)

CS_ZINU£

CALL CC_DI2 (I,2,1ABELS,N_D I_ NA[DLM,NCDIM,_L_NII ,XCCNT,k%D,h_ZV,

CALL XNONtM
CALL TNCNUM

CALL _Z._=T('X_EV_' )

CALL _T('T_V_ ')

(_LL X(_%XS(PIEFT,I.,PRIGH_,PSCALE'(FRI(_T_-gI21T),' ',i,0.,

I F_DISl_ .5*PSCAIE)

CALL YGFAXS(Pm_OT'I"FIDP'PSCALE*(F_)'' " o 0
I,P_DISI_ ._ALE, .)1

C_LL _(.02)

&_LL FK_E
c_ I_(O)

CALL _'.Y_'L(-I}
CALL I_,._---'T(')0,KI,,I/4'}

CALL :RE__-'T('_'2,rI_'}

C four
c plot sr_,-eamfun__ton in osordir._tesysr_emuranslaulr_ rir_ speed.

C Firs_ plot, second page - expandL_g ccordinaues

CALL FHYSOR(I.25,7.75)

(3%LLAREA2D (6.25,2.5)

C%LL LINEAR

CALL _('F.]N (#) $,,I00,5.2,2.75)

CALL ININ3(IZ3N,'AB%T','AK_')

CALL MESSAG('FRAME (#) $,,100,5.2,2.55)

CALL ININD(IFL_, 'AHHT','ABUT')

(:_ Z,DGR(0)

DO 44 I-I,N_OL ! plc_ the c_rmurs of Psi

DO 43 J-1,L_3L

STH - SO_r(l. - CTH(J]*C_(J))

XY(I,J,I) - R(I)*CI_(J)

XY(I,J,2) - R(1)'STH
F(I,J) - _--UNC(I,J)*TIME/TLMEo

43 CCNYLNL_

44 CCh'I'LNUE

ICCL2 - LCDL

C Find _riate intervals
c the # of"mosttlve sonrxmrs (ir_ide _he ring): NPC_

NPC_hT - 7

CALL _ _D, ICD,I,NCOL,!,LCOL,F,FMI 4,FFAX4)

_emD- _(..ry_X4)

CC_,T - _C_4 (2)-ACChT4(1))"'2

kUC_C4 - 3"NPC_T ! total nt._xerof _ntcurs

DO 60 1 - 1,2.'_/L-_NT ! negative _n.tcur levels

_CNT4 (I) - -_-c-_r_(I-2".__CCtr_3--2

60 CC_,_Lh_IX
DO 61 I TM i,-__L_T ! positive ccn._curlevels

ACC_T4 (i+2":C_X_rf)- DCChT'!"2
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61

CML

CALL

c

cC _.r ee

cucnN._

izero - I I plot zero contour level

NcO_T - 2 l contour levels are

CALL pHYSCR(I. 5, 2.25)

I2/T - -5.

KIlT - 5.

S_-0.

TCP - 5.

- 6.1 _GHT-U_T}

XDIST - RIGhT-LEFT

CALL AREA2D (SCALE* (RI_4T-LF/T), SCALE* (TOP-BOT})

CALL XPXVIK

CALL Y_WK

CALL XNAVE('X/(()%N}t()} _H.5)I/2kE_DQ$',I00}

CALL yk_E('Y/((}%N)t()) kEH.5}I/2kE_X)$',I00)

CALL G_F (IX_, 1., KIGHT, BOT, 1., TC_}

CALL CCND_ (NCD, L_, i,NDOL, I, I_OL2, MY, F, NCOPT,NCDIM, NCQNT4,

1 ACONT4, N_DIM, XCC_T, XCCNT (1• 2), NADDIM, N_D, NIE4,

2 IADIM, IA, FMIN4, FFAX4, izero) -
CALL O3hDi 2 (1, 2, IABELS, NXDIM, NADDIM, NCDIM, _h'XIV£4,XC_, h_D, NLEV'

1 ACa_T4, B_)

__SET ('X_VI_ ° )

G_LL _ ('YSEVI'K' }

G_LL m_NtM

CALL YNChLM ....

C_LL XGK%XS(LEFT, I.,RI(_T, SCALE* _IGHT-LF/T), ' ',I,0.,

I XDIST". 5*SCALE}
CALL _(BOT, I.,IDP, SCALE*(TOP-BC_), ' ,,I,XDISI"SCALE,0.)

CALL _(.02)

CAIL FRA_X

CALL DDGR(0)

___"T ( 'YNCN/M °)

second plot, second page

c

MYSC - SOBT(_)

DO 16 I-I,NCOL

XY(I,I,I) - (R(I)*XYSC)/RADppo + ZCcR

XY(I,I,2} - 0.

F(I,I) - 0.

DO 26 J-I,LCOL

s_ - s_(l. - CrH(_*CTH(J))

XY(I,J+I,I) - (R(I)*CTH(J)*XYSC)/RAEppo + ZCcR

MY (I,J+l, 2) - R(I} _S_4*XYSC/PADppo

F(I,J+I) - SFLINC(I,J]*SOB_ClqlME_}

26 CGNY£NJE

XY(I, IEGI_2,1) - (-R(I)*MYSC)/_K)ppo + ZCoR

XY(I, ICOL+2,2) - 0.0

F(I,LCOL+2) - 0.

16 C_NIqNUE

G%LL pHySCR (1.5, 6.75)

CALL AKEA2D (PSCALE* (pRIG_T-PLEFT), PSCALE* (F!DP-PB_;))

CALL XREVTK

CALL YREVrK

CALL Xh_ME (,X/(R) klH. 6 )OkIX}9($ ',i00)

CALL YNAFE (,y/(R) XLH. 6) O_', I00}

CALL GRAF (FLEFT ,I .,PRI GHT ,PBOT ,I . ,PTO P)

NZCPT - 2

icei2 - lcol+2

C FOP,,q:Id, _ 03-04

NCII_F3 - NCOhT4

DO 62 I = I,,XUON_3

ACONT3 (I) - _L-X]_4 (I)

62 CIXqCI_

CALL C3NITX (NED, LCD, i, NCOL, I, LCOL2, XY, F, MZCPT, _X:3_4.,_L_CNT3,

i ACON_3, _DIM, XCONF, XCONT (i,2) ,NADDLM, _AD, _C_2V,

2 IAD_ I_ FMIN3, FM_X3, izero}

CALL CGNDI2 (I,2,IABELS,NXDIM,_DDLM, NCDE4,NC_q_,XCCN_,NAD, NLEV,

1 ACCNF3, BIAN_}

CALL DASH

(_LL RLVEC (FLEFT, 0., p_IG}_, 0., 0)

CALL _E_T ('DA._' ]

ccc scales pl_ to fill plotting region

DO 75 I - I, _D_%D(1)+I|-I

XCGNT(I,2) - -XG3NT(I,2)

75 O_NFmU£

CALL CCNDI2 (I,2,1ABELS,N_DIM, NADDIM, NCDIM, M'/INT3,XC_NT, NAD,NLEV,

1 ACCNT3, BIAN_=}

C_LL XN_NLM

CALL YN_NLM

CALL _V___T ('XRSVIK' )

CALL _T ('YREVIK' )

CALL XGK_XSfPIEFT, I.,PRIGH_,P_,.%LE'(FRIG_T-PLEFf), ' ',i,0.,

1 FADIST* .5*pSCAIZ)

CALL YGRAXS(PB_f,I.,FIDP, PSCALE'(PTOP-PB_r),' ',

1 1 •F_DISI_PSCALE' 0")

C_LL _(.02}

G_L FRAFE

CALL ENDOR(0)

(mJ.,LI_L (-2)

B___._ ('XNC_ ')

CALL l_E.._ ('YI'_' )

C

C write q_anct_ve infonra_uton (m next page

BED = K"v'E//'P*R_Dpp."2.

_I = I.ISQF_(TIM£)

U32 = RVELPP'TD_

CALL FHYSOR(I.25,7.75)

AREA2D (6.25, 2.5)

CALL HEIGHT (.12)

CALL _SSAG('_P) (1)SE_UI'S:\U]$',100,0-, 2-25)

C%LL C_PLX

CALL _IGH_ (.ii)

CALL F_S.-_G('_ (#) $',100,5.2,2.75)

G_LL ININO (i_IN, 'ASU_ °, 'ASbT °)

CALL MESS_('FR_ME (#) $',100,5.2,2.5)

CALL ININ3 (iPIr_, °AHUT °, 'AKrf ° )

CALL_('TIM£ STEP (#) $',100,5.2,2.25)

CALL INTND (liOn, 'A_/f', 'ABUT °)

CALL M£SSAG( ° !G)/%N) - $',I_3,0.9,2.25)

CALL REAINO (GAM, i, 'ABUt', 'ABL_' )

CALL MESSAG('aY fR) - $',I00,0.9,2.0)

RFAINO (Ct_ 2, 'ABUT', 'ABL_' )

CALL FESSAG('\!D)kPI) (t}kP2)\Gl} -kEI.!5)*P)kEX)\G2) " S °,

1 100,0.9,1.75)

CALL _=AINO(TINC, 6, 'AHUr', 'AHUT' )

CALL _=_SAG('\PI )T XEI.2VI) \LH.7)O kEXHX ) - $',I00,2.4,2.25)

CALL REAI/_(_,-6, 'ABUt', 'ABUt' )

CALL ININO 6_X, 2.4,2.0)

CALL M_SSAG(' X $,,I00,'ABUr','AHUr_'}

CALL INFNO (_, 'ABUT', 'ABUT ')

CALL __SSAG(' FEDES $',I00,'AHL:','_LT')

CALL 19DGR (0)

CALL PHYSOR(I. 25, 7.25)

CALL AREA2D (6.25, 2.5)

CALL HEIGHT (.12)

CALL N_.__G('\P) (C)URRENT (I)NFO.=_ATIC_:\U)S',IO0,0.,I.52)
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CALL HEIGHT (.11)

C column I:

C_.LL _('kPl )T kF/.3Vl} MD(HX) - $,,I00,0.,1.0)

CALL I_ALNO _, -6, 'ABLrD, 'AB_T ')

CALL M£SSAG(' (R)ekLH.6(DkEXHX) - $',i00,0.,.75)

CALL I_2C/kD(BID, i, 'ABbT', 'AB_T' )

CKLL MKS.S_(' fR)ekI/4.6(I/X%Rk_} " $',100,0., .5)

I_.AI/_O(I_KI,1, 'ABUT', 'AB[_' )

CALL M£SSAG('!G)/%N) - $',100,0.,.25)

CALL _ (CIRC, I, 'ABbT', 'ABUT' )

C column 2:

CALL _ESS_n (

I'XPI) (U}kEI-2Vl) XKXHX)kP2)TXEI'3v2)iE_uX}XEH'7)3/2MDe_) " $"

2 100,2.0,1.0)

C_LL NEAIND Cu-32,-3, 'AB/f', 'ABUT')

CALL _(,XXI_.6}C_(/R)klH.6)OklXHX) - $',

1 I00, 2.0, .75)

CALL BEAINO (ZOrn%-4, ,ABUT','ABLr_')

C_a _SSAG (

I,XPI)XkP2)\_)kEI.O)*P)kEX)\G2}kl/q.6)C(GQ}_) = $',

2 100,2.0,.5}

CALL F_=AI_D CXZENT, -4, 'ABUt ', 'ABut' )

(3kLL MESS;_ ('kPl ) (IDXP2) \GI) kEl. 05) *P) kEX) \G2) = S', i00, 2.0,. 25)

CALL NEAIN3 (RAI_, 4, 'AHUT ', 'AHUT' )

C colurm 3:

CALL MESSAG(' (IA%R ki/4.6 (GQ XEDCHX) _ 5',100,4.2,1.0)

CALL REAI/qD (RIMIr_RZ-6, 'AHUT', 'ABUt ')

CALL MESSAG('kSI) (IA%R kEXHX) $',i00, 'A_'r','ABJT')

CALL _'_.SSAG(' (IA%R kLH.6 Cv_ k_} " $',i00,4.2,.75)

CALL I_IN3 (ITL_PMP,-6, 'ABUT', 'ABUt' }

CALL I_('k.KI} (IA%R kEXHX} $',ICO,'ABUT', 'ABUT')

CALL M£SS_G('3/2 *: _J)d(v) - $',100,4.2,.5)

CALL I_AI/qO (RvI1_ 4, 'ABJT ', 'AHtrf')

CALL _[X_R(0 )

C "_RIT£ OUT NLMERIC%L _ON

CALL PHYSOR(I.25, 2.00)

CALL AKFA2D (5.75, 4.75)

CALL I_=.sEr('HEIGHT' )

Cone INFO

CALL MESSAG (,kpl )%WXEI. 2 )\VI )\SI )XEXVX) kP3) TkP4 ) kEl -2)\V3)

1 kD(VX)\CA}kI_.7)okIX}_)kBI)XEH.7)2kEXHX) $',I00,0.0,4.5)

c CALL MESSA_(,%WkSI)TklB.7)okLXHX}\BI)\EH.7)2kEXh_) 5'

c I ,100,0.0,4.5)

CALL HEIC.RT (0.I )

C_J_L M_('P_%X - 5',100,0.0,4.1)

CALL p.EAI/_O(WAX1,-3, 'ABUT', 'ABUT')

CALL M£S.SAG ('M_ - $',100,0.0,3.9)

CALL _.AINO (_'_/NI,-3, 'AHUT', 'ABUT' )

CALL MESSAG('contour levels$',100,0.0,3.6)

CALL SIMPI/

CALL _XlGHT (0.C8)

DO 30 I - I,_L-'C_

IF (A(XI"r£1(I).EQ.0.) GCID 30

CALL NEAIIqO (AC/INTI (I), 5, 0.2,3.4-0. ll* (I-i))

30 CONTINUE

CALL RESET ('h_IGHT' )

CALL SCMPIX

c two

CALL M£S&_ (,kpl )%WkE1.2) \VI )\SI )kEXVX) kP3) TkP4) kE1.2} \V3)

1 kDCVX)\CA)kEH.7)2kEXHX) $,,100,1.75,4.5)

c CALL MES.SAG(,%_4kSl)TkE_.7)2kEX}{X) $,,I00,I.75,4.5)

31

C%LL _TG_r (0.i}

MESS_('M_X - $',i00, i.75,4.1)

CALL KEAINO(R4_(2,-3, 'A_JT', 'A_Jr')

CALL _('MIN - $',I00,I.75,3.9)

CALL RFAINO(_KN2, -3, 'ABbT', 'A_;r' )

CALL MESSAG('c_ccur le_els$',100,1.75,3.6)

CALL SIMPIX

C_LL _XGHr (0.08}

DO 31 I - I,NC_q2

IF (AC(IVI2(1).EO.0.) GUID 31

CALL F_.AINO (ACONT2 CI} ,5,1.95, 3.4-0.11" (I-l))

(x_NrlN_

CALL I_ ('HEIGHt' }

(_kLL S(_PIX

C three INFO
CALL MESSAG ('_PI) !YkEI.2)\VI)kSI}kEXVX) kP3)TkP4) kEI.2)\V3)

1 kEXVX)\CA)kl/4.7)okL_kBI)kEH.7}-I/2kEDCHX} $',i00,3.5,4.5)

c CALL MES&_(' ,.YkSI)TkLH.7)o_)kBI)kEH.7)-I/2kED_X} 5'

c 1 ,I00,3.5,4.5)

32

C%LL _EIG_ (0.1)

CALL _('M%X - $',I00,3.5,4.1)

CALL REAINO(FM_3,-3, 'ABUT', 'ABLE')

CALL M"_SSAG('M/N - $',ICO,3.5,3.9)

CALL REAL_D@I_3,-3, 'ABUT', 'ABUt' )

C%LL MESS;_('conr_m_r levelsS',100,3.5,3.6)

C%LL SL'4P_-X

CALL _IC_HT (0.08)

DO 32 I - I,NCCIqT3

CALL REALND (A(XIVE3(I), 5, 3.7,3.4-0.11" (I-l))

CALL I_-T ('._=--I_HT')

CALL SC_P'-X

C four I_'O
CALL MF.S.-_E('kP!) !YkEi.2)\Vl)\_) kEXVX) kP2)TkP4) kEi.2) \V2)

1 kEXVX)\G4}kEH.7)I/2XE_qX}Ap3)tkEI.2)\V3)XE<VX)klH-7)°kI/_Z4} S

2 ,i00,5.25,4.5}

c CALL MESSAG("YkSI)TXEH.7)I/2kEXHX)_SI)/TXIH'7)°_) S',

c 1 I00, 5.25, 4.5)

33

C_LL __zc_r (0.I)

CALL MES,_E('MAX - $',I00,5.25,4.1)

CALL BEAINO (IM_X4,-3, 'ABUt', 'A_uT' )

CALL _('MIN - $',I00,5.25,3.9)

CALL NEAINO(n_5_4,-3, 'ASUr', 'ASUr')

CALL MES--_&G('cc_cour levels$',100,5.25,3.6)

CALL SIM_-X

CALL PEIC,H_ (0.08)

DO 33 I - I,NCCINT4

CALL I_.AINO (_CCNT4 (I},5,5.45, 3.4-0.11" (I-l))

CONEMJE

CALL I_=_-'T('HEIGHt' )

CALL SU'vIPIX

CALL L'qL'_L(-3)

REV._

DD

C

C

C

C

C

C

SL_qCL _-'I'D_ CEND_ (_IM, JDLM, IS, IE, _S' JE 'XY' F' _K_OFT'N_DL_" NCCt_T'

C A.'_I%T,:OC-L_ XCEIVr ,-_vCC1_f,NAEO L2_-._AD,W_V, IAD_, L_.,

C :qM!N,:-'_Y_X,i_-ro}

i _ T_..qSAND T_.Y-FC_ 3 _BFCS- _ZLNLS _ ?!E_--R G. HU_I-_Z

(_ASA A_S RE._-RAC_ _}
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C

C

C

C calculate contour /_Ir_s for the function F in the region IS no IE, JS to

C OE. X,Y coordinates corresponding to the grid points are in array XY.

C

C If NCOPT-I, figure our own cuntour levels, u9 to NCCN_ of tb_ using

C '9%ice" mmbers. FRANG_ finds the function range in the giv_ region, an

C CCNSCL computes the contour levels. Note that NC_T will be revised

C dm_ward to correspond to the number of contour levels actually used.

C The amYcc_r levels calculated are r_turned in the array ACCNT.

C

C If _2, calculate lines for the NCONT contour levels specified in

C _:CNT.

C

C The oontour lines are returrad in arrays XCC_, and YCONr. NAD(1)

C gives the n_ of contour lines, and k_D(n} points to the start of the

C nth line (i.e. k_D(n+l) points to one past the end of the nth line).

C NLEV(n) returns the cc_tcur level of the nth contour llne.

C

C IA is a scratch array. Try a dlmenslcn of 3000.

C

DIDENSqoN XY (IDL_L JDIM, 2 ), F (IDD4, JDI_

D_ON ACU_ erdim)

DIM£hSION XCChT e_DI_ ,YGONT e_Dn_)

DD_SION k%D e_DI_, NLEV e_DDn_, IA (IAOn_

C

C If NCOFI_I, figure our own c_ntcur levels, up to _ of them, using

C '_nlce" numbers. F_q_GE finds the function range in the given region, an

C CC_SCL computes the cc_tcur levels. Note that NV_NT will be revised

C cbwnward to _ to the nunhe.r of contour levels actually used.

C

c IF _KX_T.D_.I}

CALL FRANC_ C!DI_ JDII_ IS, IE, JS, JE, F, FMIN, F_AX)

IF _COPT. EQ. I)

CALL CCNSCL (_LN, _AX, N_ LM, NZGNT, ACChT, i zero )

E_DIF

C ***

DO 2222 I_!,IADLM

2222 IA(I) =0

C _*

IW-3

C

NAD (i)- 1

NLIAX2- 2

C

C One little _heck. If IS-iE or JS_JE, return with no con_cur lines.

C

IF (IS.EQ.IE .CR. _._.JE) GOID ii0

C

C _ throuqh each contour level.

C

DO IOO ICON1 _ I,Ntr_T

ZA- _CONT (ICONIJ

M-O

C **** SCAN POINTS AND DETERMINE POINTS CF IA

DO 600 j- JS+l, JE-I

n_S-0

DO 600 I- IS, IE

IF_(I,J].LE.ZA) GO TO 601

IF(IM8.5_.I) GO TO 600

M-M+1

IF_LG_.IADIN0 GO TO 210

IA _-1000*I+J

GO TO 6OO

601 IM_-I

6OO CONTINUE

I01 IM_-I

IXA- IS-I

IYA- J_

! [XA_IXA+I

IF (IXA.EQ.IE) LvA-2

GO ."D 5

2 IYA_IYA+I

IF (IYA. EQ. J£_} -rvA-3

GO TO 5

3 IYA-IXA-I

IF (IXA._Q.IS) IMP-4

GO TO 5

4 IYA-IYA-I

IF (IXA.EQ.JS) IM4-5

5 IF(F(IXA, IXA).GT.ZA) GO TO 7

n_S-I

6 GO TO (1,2,3,4,91),D_

7 IF(]_8.NE.I) GO TO 6

C***" _ $54R_ POIN_

De-O

D(-I_A

IY-IXA

S-F (D_, n_)

GO ID (21,II,12,13,51),_

ii IF(IY.NE.JS) GO TO 31

GO TO 21

12 IF(IX.NE.IE) GO TO 41

GO TO 31

13 IF(IY._.JE) GO TO 51

GO TO 41

I0 IX-IA _9/10OO

IY-IA _)-I000*IX

S-F (IX, IY)

GO TO 21
C**** PROCESS TO _ FLOT POINT

20 IY-IX+I

21 IX-IX-I

IF(IX.LT.IS) GO TO 90

I-I

_(_X, IY}.LE.ZA) GO TO 52

S-F(IX, IY)

GO _O 31

30 IX=IX-I

31 IY=IX-I

IF(IX.LT.JS) GO TO 9O

I-2

IFff(IX, IX).LE.ZA) GO TO 60

S=F (IX,IY)

GO ID 41

40 IY=IX-I

41 IX=IX+I

IF(IX.GT.IE) GO TO 90

I-3

_(F_X, IY).LE.ZA) GO TO 60

S-F (IX, IX)

GO _D 51

50 IX=IX+I

51 IX-IX+I

I-4

IF(IX.GT.JE) GO TO 90

IF_{IX, IX).IX.ZA) GO TO 60

S-F (IX, IX)
DO TO Z1

52 IF_.0) GO ID 60

IK-1000"IX+IX+I000

DO 602 J-I,M

IF(IA(J_._.IK) GO TO 602

IA(_-O

602

C'"* CAIL'dlATE PlOT POINT

60 XXF- (ZA--F(IX, IX) ) I (S-F (IX, _Y) )

GO TO (61,62,63,64),I

61 WXX- XY (IX, IY, 1 )+XYF* C<Y (IX+I, IY, I)-XY (IX, IX, I) )

WYY- XY (IX,IY, 2) +XYF* 0(Y (iX+l, IY, 2)-XY (IX, IY, 2} )

GO ID 65

62 _X- XY (IX, IY, I) +XYF* C<Y (IX, IX+I, 1 )-XY (IX, IY, I) )

WYY- Xy (IX, Iy, 2) +XYF- 0(Y (IX, IY+I, 2)-XY (IX, IY, 2) )

GO TO 65

63 WXX- Xy (IX, iy, I) +XYF- C<Y (IX-I, IY, !)-XY (IX, IY, i) )

WYY- XY (IX, IY, 2) +XYF" 0C/([X-l, IY,2)-XY (IX, IY, 2) )

GO TO 65

64 WXX- XY ([X,IY, I)+XYF_ C<Y (IX, -_Y-I,1 )-XY (IX, IY, I) )

WYY- Xy (IX,iy, 2)+XYY- C<Y ([X, IY-I, 2)-XY (IX, IY, 2) )

C ***_ PLOT

65

C'*"" DECIDE IF P_3T POLNT E_ INIIXAL PL6T POINT

IF(IW.NE.3) GO TO 66

NP-I

NAD (._m_EP) _ NAD (NLD_EP-I)
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NIEV _I)- ICU_

NFr-0

_CNT _AD eaXNEP) )-

YCCNTe_D _) }- WYY

WY-WYY

1W-2

GO TO 67

66

IF _N_D_/I_.P).GT.NXDIM) GOlD 220

NP-NP+I

m;X_T (N_D _) }- _X

YCU_ _ eKXNEP} }- WrY

C IF (NP .LT. 200) GO TO 6602

C

C CALL DR_42D (PT,NP, 2, 2, 0)

C N?T-NPT+NP

C NP-I

C PT(I,I)- _MX

C PT(2, I)- WYY

6602 IF_D(X._.WX) GO TO 67

IFf_YY._.WY) GO TO 9O

C**** _ NEXT PROCESS

67 GO TO (50,20,30,40),I

90 IW-3

N_D _)- NAD 6_LINEP) +I

IF _II_2).GT.NMDIM) GOID 220

IF Q_P.GT.!) THEN

NLINEP- NLINEP+I

IF (NLIhF_P.GT.NADDIM) GOlD 230

_%DIF

C IF aqP .GT. l} CALL DBAW2DfPT,_,2,2,0)

IF(IM_._.5) GO TO 6

C ***_ _3H_CH _ POINT

IF_.EQ.0) GO TO 92

91 DO 603 N_I,M

IF(IA_4).N_.0) GO TO I0

603 C_TINUE

92

C _'** CALCdLATE VALUE OF _EXr CURVE

i00 CONTLALX

C

ii0 CCNrINJE

NAD (i)- NLLNEP-2

REV_N

C

C Warning - IA array full.
C

210 CONTINUE

WRITE (6,211) IADIM

211 FORM%T(' Warn/rig - Scratch array IA full in contour routine ',

C °CENIXX. '/

C ' Picture may be incun_ete. Array was dimensioned ',

C I5,'.'}

GOID i01

C

C Warning- XCC_T array full.

C

220 C_NTINUE

_fE (6,221) hMDIM

221 FO5%MKT(' _ - Contour llne array XCC_Ff _ in contour ',

C 'rcutlne CCIqIXX.°/

C ' Picture may be inc_mp,lete. Array was dimensioned ',

C I5,'.')

II0

C

C Wa/r2tng - NAD array full.

C

230 CChTLVJE

W_"q._UE(6,231} h_DDIM

231 FC_5_T( ° Warning - Contour llne pointer array h_D full in ',

C 'contour routine Cc_;rxx. '/

C ' Picture may be inourr_ete. Array was d/_._er_ioned ',

C 15,'.')

GOTO i!0

L_D

._,_F_DGTLA_ FRANGE (IDIM, _3 IM, I S, IE, JS, JE, F, FMIN, FMAX)

C

C Find the range _mimum and maximum) of the funCclon F in the region iS

C IE, JS to JE.

C

DnM_SICN F (_IM, JDI_

C

FMIN- F (IS, _)

FMAX- FMIN

DO I0 J- JS,JE

DO I0 I- IS, IE

FMIN- AMINI (FMIN, F (I,J) )

FM_X- AMKXI (FM_X, F (I,J_ )

I0 ClVrINUE

END

S/_CtrfIN£ C3NSZL t%MIN, AM_X, NCDD% NCCNT,AOCNr, izer_}

C

C Cu_ up with a "nice" sca/_ of about NfnV_ values between AMIN and A_A

C NCC_T is updated to the nummer of intervals actually needed.

C

Dn_m_ICN Acuqr erx£tm)

DIM£NSICN _ICE (4}

DAq_ _NICE/.I, .2,.25, .5/

DAW_ NNICE/4/

C

C As a first appr_dmation, get the difference, its characteristic and

C mantissa.

C

DIF_ (A_gX_ I (NCENT+ i )

IF _IFF.iE.0.} GOID 20

AIDGI0 aDIFF) +I.

C

C Round CH_ ck:wn and cj_ t.he mar_ssa.

C

IF (CHAR._.0.) _N

ICHAR_ CHAR

ELSE

ICHAR= Cn_l.

ENDIF

DI .FF*!0. "" (-ICFAP4

C

C _hat's the cex_ largest ,"nice" .-mntissa?

C

DO 3 i- 1,5_I_

IF (_T.LE._IC_(_)) G_D I0

3 CCNTIh_E

I- NNICE

C

C Got a guess. Calculate a DIFF, rcund AMIN dcwn.

C

I0

AINC- _NICE(I} *I0.**ICHAR

AMIN/AIN_

IF _IN.GT.IMIN*AINZ) IMIN-_M]_+I

IM_X- AM_JAINC

IF _M_X.LT.DgX*AINZ) IM_X_ IMAX-I

D4_X+I-IMIN

C

C Are we under?

C

IF _qEED.GT.NCChT) THEN

C

C Nope. Try the next nice number.

C

IF (I.LT. :_ICE}

I- I+l

EISE

ICPAR- ICYAR+ i

I-I

LNDIF

GOID i0

END!F

C

C NOW _ set _ the A_'7_ array end ucca_e NC[_T. (Set up ail (origi:'_i

C NCOh_ of the ACCLTs for r_.e folks Dack hcme.)

C

DO I I- I,NC_.T

ACOhT(1)= (E_3._-I_I) "ALNC

1 CC_TIh_E

NCChT= NT/EED
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¢xym 3o

C
C All values are the same -- Just set up one contour level.

C

20

_C_T (I)- A_N

DO 2 Il 2,NC_

ACCNT (I}- 0.

2 CONlm_t_

NCCNI_ I

C

30 CONTINUE

C Additions made by sharon S_ay, Oct. ii, 1987

if (izero.eq.l) gor.o 40

c _tts was ckme so that _ zero contour is not plotted

ites_ - 0.

cb I00 i - l,ncont-I

if (acont(i).EQ. 0.) Itest- 1

if (Itest._Q.l} then

accr_ (i) - accnt (i+l)

endlf

I00 con_tnue

ncont - nccnt-i

40 CU_n_U£

_D

subroutine oondi2 (IX, IY,IABELS, _DL_4-_OLv_htDD%'_NT'x_INT'

I N_D, NLEV, ACC_, BIAN_)

c
c Draw the contours we Just calculated - this involves some

c deo_ng. Also, we may or _ nc_ want _ on the o_nuoUr

c lines.

c

DIM_SICN XCChT e_DI_ 2), had _L_, nlev _z0na, AC_T C,_Lm )

DIM£NSICN blankc (h_DIM)

c

if (.nc_.labels) _to I00

c
c Use DISSPIA's contour utilities so we can get labels.

c

nd- had(l}

if (n_eq.0) goto 200

call bcu,_n (_DIM)

Isnex_- 1

de 10 Ic- l,nd

is- isrext

isnext- had (ic÷l)

call concrv (xoont (is, ix) ,xcont (is, ly), isnext-ls,

c acont (nlev (ic)) )

i0 oontLnue

c

call ccn_

c

c Set sure contour drawing parameters.

c
call conlln (0, 'SOLID', '_', I,i)

call o::,-min (2.5)

call ccnan_ (40.)

call height (.O_)

c

c _ ac_ually draw them.

c

call ccmtur (I, 'IABELS', 'D_%W' )

call reset ('HEIGHT')

£,::_o 200

c
c :b labels on the contour ].iDes - _h!s is easy.

c

I00 continue

rid- had(1)

c write (6, i000) nd

c i_00 forma_0_,'n_mber of contcur li_s, nd(1) _ ',i2)

if (ncLeq.0) goto 200

Isnex_- I

cb Ii0 ic- 2,nd+l

is- isnex_

Isnex_- had (ic)

C _U2_G: This line has been changed for particular needs tm the use_

c IF _C_T (NLEV (IC-I}).EQ.0. }GOTO ii0

c IF _CCNT (NLEV (IC-I)).LT.0.)CALL DA_4

call curve (xccnt (is, ix}, xcont (is,ly ),isnext-ls, 0}

C%LL _ ('DA_')

II0 cuntlnue

200 con_Ln_e

return

CCCCC
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