

.
SEMI-AUTOMATIC PROCESS PARTITIONING

FOR PARALLEL COMPUTATION

Charles Koelbell, Piyush Mehrotrd2

Department of Computer Science,
Purdue University,

West Lafayette, In. 47907.
and

John Van Rosen&l$

Department of Computer Science,
University of Utah,

salt Lake city, ut. 84112.

On current multiprocessor architectures one must carefully distribute data

in memory in order to achieve high performance. Process partitioning is the

operation of rewriting a algorithm as a collection of tasks, each operating

primarily on its own portion of the data, to carry out the computation in

parallel. In this paper we consider a semi-automatic approach to process

partitioning in which the compiler, guided by advice from the user,

automatically transforms programs into such an interacting task system. This

approach is illustrated with a picture processing example written in BLAZE,

which is transformed into a task system maximizing locality of memory
..

reference.

' Research was supported under NASA Contract No. 5ZCb1398-0356.

'Research was supported under the National Aeronautics and Space Administration under
NASA Contract No. NAS1-18107 while the second and third authors were in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, VA 23665.

i
.- . . .

1. Introduction

The shared memory paradigm is one of the most useful models of parallel

computation. A parallel machine having a single homogeneous memory,

randomly addressable by all processors, is relatively easy to program, and

makes an effective target architecture for compilers restructuring sequential

programs.[6,1] Unfortunately, this model does not accurately rcflcct most

current machines. On most multiprocessor -%rchittctUrcs, each proccssar has

attached local memory. Access to this local memory is faster, and involves

less contention than access to remote memory. This speed difference makes it

important for the data used in a calculation to be in local memory, whenever

possible. Treating an architecture having local memories as a pure shared

memory architecture results in inferior performance.

Process partitioning is the process of assigning'data to processors to

exploit locality of reference. Until now it has been done manually by coding

algorithms in a parallel language giving the user explicit control over the

location of all computations and data. While this strategy is &cctive, it

suffers from two major drawbacks. First it is time consuming and error prone

for the programmer, who must supply a great deal of detail a b u t data and

task allocation having little to do with the underlying algorithm being

implemented. Second manual process partitioning generally produces non-

portable programs. While the data may be divided in precisely the same

manner on both a shared memory and a non-shared memory machine, the

syntax for non-local accesses will almost certainly be Merent.

-2-

Our purpose in this paper is to show that, with a small amount of help

from the user, the compiler can automatically perform process partitioning.

The only extra information that the programmer must provide is a general

statement of the data distribution pattern. The remaining aspects of process
- _-

partitioning are essentially just mechanical details, which can easily be left to

the compiler. Eventually even specifying data distribution patterns can be left

to the compiler, either via an expert system front end, or through mofe

thorough analysis than is currently available.

While this approach’ does not fully automate proccss partitioning, it makes

it relatively painless to programmers. They are then fie to focus on the

higher-level aspects of program and algorithm design. In this paper, we

consider a simple example, showing the sequence of transformations a BLAZE

compiler would follow in generating efficient code ,for a shared memory

multiprocessor.

Locality of memory reference is important on both s h a d memory and

non-shared memory architectures, but is man critical on n o n - s h d m e w

architectures, such as hypercubes. However, even in the simpler shared

memory case, effectively mating memory locality issues is still relatively

I

t

complex. It is our eventual goal to treat general non-shared memory

architectures; however there are a number of complex issues that have not

been resolved yet. These issues will be treated in a future paper.

..

~~

-3-

2. Process Partitioning

As an example We consider h e n a standard process partitioning example,

a smoothing algorithm used in picture processing and other numerical

applications. Extracting parallelism from this type of algorithm is a well

studied problem.[5,4] In this algorithm, a pictun, represented as two

dimensional array of pixel values, is modified to produce a new "improved"

m y . In one approach, the

pixel values in each new array arc formed by taking a weighted average of

four neighboring pixel values as shown in the picture below.

This process is repeated a number of times.

- Suppose the pixel matrix is M x M and there axe N2 pnxxssors available.

The data in this case should be grouped into MIN x M / N blocks so that each

processor contains a contiguous subarray of the original matrix. This allows

most of the array rcferences in the fannula to be made locally. Only the

edge pixels in each processor's subarray require non-local acccsses as shown

below.

! I

-4-

. . . .

pixel! ~)*
4 4 4 A

.

Our transformations automatically changes a program expressing the smoothing

algorithm whose data flow pattem is shown in the first figure to a task system

like that illustrated in the second.

-

3. The BLAZE Environment

BLAZE is a new programming language intended for pgramming

scientific applications on parallel machines.[2] It is intended to be a simple

and elegant way to express scientific programs in a way that compilers can

easily transform them to execute on a variety of parallel a x h i t e c m . In this

section, we describe a few of the features of BLAZE, and also describe E-

BLAZE, the target language of the BLAZE transformation system.

3.1. BLAZE Features

While closely related to data flow languages, BLAZE uscs relatively

conventional syntax. The listing below represents the picture processing

algorithm that we have been considering.

procedure smooth (w) returns : w ;

param w : array[O..NP : integer, O..NP] of real;
var ws : like w;
const N := NP - 1;
begin

for k in 1.50 loop
ws := w; -

forall (i, j) in [1..N] * [l..N] do
w[i, j] := c*(w[i-1, j-l]+ w[i-l,fl+ w[i-1, j+l]

+ w[i, j-1]+ w[i, j] + w[i, j+l]
+ w[i+l, j-1 J + w[i+l, j] + w[i+l, j+l]);

end; - - forall loop

end;

end; - - procedure smooth
-

The forall loop here is similar to conventional for or do loops. The

difference is that in a forall loop all invocations can run in parallel. The ws

array is declared via the like type specification, which gives it the same type

as the array w .

1

--.

- 6-

3.2. E-BLAZE Constructs

BLAZE is a high level language designed to permit program portability

E-BLAZE is a lower-level explicit- across a variety of parallel archittcwcs.

tasking language providing a virtual target architecture for our program

transformation system. BLAZE itself contains no explicit parallel constructs,

except the forall loop. E-BLAZE is a superset of BLAZE, consisting of

BLAZE together with constructs for allocahg processes, specifying a m y

storage patterns, scheduling loops, and performing intcrprocess communication

and synchronization.

The following declaration:

processors procs : array[l..np, l..np] with np in l..P; -

allocates an array of np' processon, where np is in the range 1.p. The run-

time environment dynamically chooses the largest feasible value far RP.

To use the above processors for computation, a coprocess loop must be
~

used. This is an explicitly parallel version of the forall loop, with the same

copy-in-copy-out semantics. Each iteration of the loop is performed on a

separate processor. For example, given the above declaration of procs, the E-

BLAZE statement

coprocess (p, q) in [1 ..np] * [l..np] on procs[p, e] do

end;
...

- 7-

would start np' processes in parallel, each of which would execute one

coprocess iteration. The processes all execute the same code, and finish by

performing a barrier synchronization.

h y s are declared as stored across E-BLAZE processors in one of

Each a m y declaration must have a by clause describing its several ways.

distribution. The example below shows two possible by clauses.

processors procs : array[l..np] with np in 1..10;
var A : array[1 ..200] of integer by [block] on procs;

B : array[1..200, 1..200] of integer
by [block, *] on procs;

,' -

If procs were allocated ten processors, each processor in procs would be

assigned a consecutive block of twenty elements of A. The two-dimensional

array B is distributed by blocks of rows across procs. There axe other

distribution patterns in E-BLAZE, such as cyclic distribution, which ae not

discussed here.

4. Transformation of BLAZE to &BLAZE

In this section we consider the transformation of the picture smoothing

algorithm for multiprocessor execution. One of the critical decisions required

in transforming such programs is the choice of data dismbution pattern

employed. In our current research, we assume that the programmer provides

annotations describing the data distribution patterns desired. Thus, in the

above picture processing example, the programmer might provide the

-8-

annotation:

param w: arrag[O..NP, O..NP] of real; - - distribute by [block, block]

To simplify the presentation hen, we look at a one dimensional version

of the smoothing algorithm as shown below.

procedure smooth (w) returns : w ;

param w : array[O..NP : integer] of real; - - distribute by [block]
var ws : like w;
const N := NP - 1;
begin

for k in 1.30 loop
ws := w;

forall i in [1 ..NJ do

end; - - forall loop
w[i] := c*(w[i-1] + w[i] + w[i+l]);

end;

end; - -procedure smooth

All transformations described hen apply equally to higher dimensional cases.

4.1. Transforming forall Loops

The first step in the transformation process is to restructure the logically

parallel forall loops into the explicitly parallel coprocess loops. This requires

the introduction of the processor declaration and the distribution of the arrays

across the processors.
-

-9-

The original forall loop is then "strip-mined" so as to generate a

coprocess with a nested fonl l pafonning the same computation. The bounds

of the generated copnmss loop arc based on the pmccsor declaration while

those of the nested forall need toobe generated such that most of the axray

accesses refer to data local to that processor. In the smoothing example, thm

is only one statement within the fodl loop, wherein only one array is

referenced. In such a situation, the forall loop bounds arc generated based on

the a m y reference on the left hand side of the statement. Morc complex

loops, in which more than one m y is referenced or the rcfmnce pattern is

more complex arc being studied. Thus the msult of the above.transfmations

result in the following E-BLAZE program:

-10-

procedure smooth (w) returns : w ;

processors P : array[l..m] with m in [l..NP];
pararn w : array[O..NP : integer] of real by [block] on P;
var ws : like w;
Const N :=NP- 1;

begin

for k in 1..50 loop

coprocess q in l..m on P[qJ do

end; - - coprocess loop
ws[range(ws[*], P)] := w[range(w[*], P)];

coprocess q in l..m on P[ql do
forall i in (l..N) A range(w[*], P) do

end;
w[i] := c*(ws[i-1] + ws[i] + ws[i+l I);

end; - - coprocess loop
end;

end; - -procedure smooth

The range(w[*J, P) primitive hue provides the bounds of the subvector of w

stored on the processor of the array P on which this particular copnnxss loop

is executing. The intersection operator provides the intersection of this

range with the original forall range.

5. Subscript Analysis

Once the parallelism in the program has been expressed as explicit

coprocess loops, the question of memory locality can be addressed. This

requires an analysis of the local and non-local memory references occurring in

-

,

-11-

each loop, followed by a sequence of program transformations based on this

analysis. This section describes this analysis and the subsequent program

transformation.

The type of loop we are looking at has the basic farm

coprocess ... P[...] do
forall (i, j) in product-range do

...
... R' ...
... R2 ...
... R" ...

...

...
end;

end;

where each R' is an array reference. Axray references can occur on both the

left and right sides of statements, and a number of arrays may be referenced

in the loop. For simplicity, we assume that only one a m y A is referenced,

and also assume a two dimensional forall loop, as shown. The general case

is no more difficult, but complicates notation.

Our analysis is applicable to the commonly occuning cast in which amy

subscripts are linear functions of the loop indicts. We also q u i r e the

assumption that each array subscript depends on at most one loop index. Thus

all array references have the form:

where f, has either the form:

or the form
f , (i , j) = co + c I i

-12-

f . , (i , j) = co + ct i
Now assume that array A is distributed by blocks across the pcessors in

the processor a m y P. For example, A might have the declaration

A:array[l..N,l..NJ of real by [bIocL,block] on P;

or

A:array[l..N,l..NJ of real by [block,*] 011 P;

depending on whether P is one dimensional or two dimensional.

exist two intervals, f and f2, such that if (s. r) is in the rectangle

Then there

I1 X I 2

then A[s. r] will be a local reference. If either s or r were outside the

corresponding interval, A [s, r] would not be a local reference.

Given our assumptions on the form of subscript functions occurring, for

each array reference R', there is a rectangle GL, such that if the loop indices

(i . j) are within G', then the reference will be I d . That is,

(i , j) c G'
implies

Note that in degenerate cases the "rectangles" may be empty, may be the

whole plane, or may be an infinite slab. The slab case, for example, occurs

with array references such as A l j . j] , in which one index is omitted.

.

-13-

5.1. Loop decomposition

Once the rectangles, C" arc computed for each reference Rk, they may be

combined into a single diagram, called the "reference locality diagram." As a

simple example, consider the loop:

fora11 (i, j) in [a..b] * [c..d] do
A[i, j] := A[i, j] - A[i+3, j+3]

end

'- . .

has the the reference locality diagram

C*

I

where the correspondence between the mmngles shown and the amy

references occurring is:

.

-14-

A(i, j] := A(i, j] - A[i+3,j+3]

G' G' G2

The rectangle GI corresponds both to the first nfennce hen, and to the index

range of the f d l loop.

The next step in the transformation process is to extend the edges of the

rectangles in the reference locality diagram, so that the index range is

decomposed into a disjoint union of rectangles. We also discard the portion

of each rectangle lying outside the index range.

the simple example here, yields the following diagram.

Applying this operation to

Each rectangle in this diagram corresponds to a loop over a subrangc of the

original loop. In this case there would be. four subloops, as shown.

-15-

A

forall i, j in [a..b-31 * [c..d-31 do
A[i, j] := A[i, j] - A[i+3, j+3]
end;

forall i, j in [a..&3] * [d-2..d] do
A[i, j] := A[i, j] - !A[i+3,j+3]

end;

forall i, j in b2..b] * [c..d-31 do
A[i, j] := A[i, j] - !A[i+3, j+3]

end;

forall i, j in [b-2..b] * [d-2..d] do
A[i, j] := A[i, j] - !A[i+3, j+3]

end;

From the rectangle inducing each loop, one can tell which array refennces in

the assignment statement arc bcal. Non-local nfcrenccs are flagged with an

exclamation marks.
,

--.

Finally, in many cases one can merge loops, reducing the amount of loop

overhead. In this case, for example, the last two loops could be merged into

a single loop over the index range:

[b-2..b] * [c..d]

5.2. Picture Processing Example

Let us now apply the above analysis on the one dimensional picture

processing under consideration. The important fora11 loop is given below:

-16-

.

forall i in range(w[*], P) do

end;
w[i] := c*(ws[i-1] + ws[i] + ws[i+l]);

The three rcfennces to the amy ws give rise to the following (degenerate)

rectangles:

w[i] := c*(ws[i-1] + ws[i] + ws[i+l]);

G' G2 G' G'

G3: 1-4

G *: -
G l: -

,
where G1 corresponds to the index range of the forall loop.

The disjoint rectangles can be easily determined and give rise to the

following three forall loops:

-18-

procedure smooth (w) returns : w ;

processors P : array[1 ..m] with m in [l..NP];
param w : array[O..NP : integer] of real

var ws : like w;
by[blocL]onP,

mnst N F N P - 1;

begin

for k in 1.50 loop

coprocess q in l..m on P[ql do

end; - - coprocess loop
ws[range(ws[*], P)] := w[range(w[*], P)];

coprocess q in l..m on qql do
var s, t : integer;

s := lower(ws[*], P);
t := upper(ws[*], P);

if (s >= 1 and s <= N) then

end;
w[s] := c*(!ws(s-1] + ws[s] + ws[s+l]);

forall i in [I..N] A (s+l..t-1] do

end;
w[i] := c*(ws[i-1] + ws[i] + ws[i+l]);

if (t >= 1 and t e= N) then

end;
w[t] := c*(ws[t-1] + ws[t] + !ws[t+lJ);

end; - - coprocess loop
end;

end; - -procedure smooth

At this point, it is fairly simple for a compiler to generate good code for the

-19-

A

8

non-local references.

6. Conclusions

Careful distribution of data is essential for high performance on many

parallel machines. This paper has demonsmtcd that automatic process

partitioning by a series of sourcc-~source translations is feasible. Our method

secms to be quite general, is easy to implement, and should substantially

reduce users programming effort.

The work here falls in the framework of automatic parallelization of

sequential code. Our transformations arc related to the concept of "strip

mining" one of the loop transfommtions studied by program restructuring.

Much work in this area has been done by David Kuck and the Cedar p u p at

the University of Illinois[3] md Ken Kennedy at Rice University.[l] We have

extended that work to include distributing data and pafarming the

computations on multiprocessors.

A major shortcoming of our work is that the g c n d anray distribution

pattern must be specified by the progammer's annotations. Ideally, the

compiler should also determine the storage pattern of all arrays. This is a

complex optimization problem and is being studied.

Even though we have concentrated on shared memory machines,

extensions of the ideas here wil l apply to non-shared memory architccturcs,

such as the hypercubes. However, a number of aspects of these extensions are

unresolved, so we will report on this research later.

-20-

7. References

1. Kennedy, K., “Automatic Translation of Fortran Programs to Vector
Form,” Rice Technical Report 476-0294 Rice University (October
1980).
Mehrotra, P. and Van Rosendale, J., “The BLAZE Language: A Parallel
Language for Scientific Programming,” Parallel Computing 5 pp. 339-
361 (1987).

3. Padua, D. A., Kuck, D. J., and Lawrie, D. H., “High-Speed
Multiprocessors and Compilation Techniques,” IEEE Transactions on
Computers (2-29 (9) pp. 763-776 (September 1980). Special issue on
Parallel Processing
Reed, D., Adams, L., and Patrick, M., “Stencils and Problem Phoning:
Their Influence on Pcsrformancc of Multiple Fmccssor Systems,” IEEE
Transactions on Computers (to appear), Also available as ICASE Report
86-24, (May 1986).
Siegel, H. J., Siegel, L. J., Kcmmcrcr, F. C, Mueller, P. T. Jr., Smalley,
H. E. Jr., and Smith, S. D., “PASM: A Partitionable SIMD/MIMD
System for Image Processing and Pattern Recognition,” IEEE Transacrions
on Computers C-30 (12) pp. 934-947 (December 1981).

2.

4.

5.

.

Report Documentation Page
1 . Roport No. 2. Government Accession No.

NASA CR- 181633
LCASE Kcport No. 88-16 __-__---

4. litle and Subtitle

3. Recipient's Catalog No.

5. Repott Date

SEMI-AUTOMATIC PROCESS PARTITIONING FOR
PARALLEL COMPUTATION

7 Authorls)

Char les Koelbel , Piyush Mehrotra,
and John Van Rosendale

February 1988

6. Parforming Organization Code

8. Performing Organization Report No.

88-1 6

9. Performing Organization Name and Address

Ins t i tu te €or Computer Appl ica t ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hambton. VA 23665 - 5775

National Aeronaut ics and Space Adminis t ra t ion
Langley Research Center -
Hampton, VA 23665-5225

and Engineering

12. Sponsoring Agency Name and A d d m

11. Contract or Grant No.

NAS1-18107

13. Type of Report and Period Covered

Cont rac to r Report

14. Sponsoring 4gency Code I

I
15. Supplementary Notes

21. No. of pages

22

s Paw)

Langley Technical Monitor:
Richard W. Barnwell

22. Price

A02

Submitted t o P a r a l l e l Programming ~

19 Securny Clauif. (of this report)

U n c l a s s i f i c d

F i n a l Report

20. Security Classif. (of

Unclas s i f i ed

16. Abstract

On c u r r e n t mu1 t i p r o c e s s o r a r c h i t e c t u r e s one must c a r e f u l l y d i s t r i b u t e d a t a i n
memory i n o rde r t o achieve high performance. Process p a r t i t i o n i n g is t h e opera-
tion of r ewr i t i ng an a lgor i thm as a c o l l e c t i o n of t a s k s , each ope ra t ing p r i m a r i l y
on i t s own por t ion of t he d a t a , t o c a r r y o u t the computation i n p a r a l l e l . I n t h i s
paper we cons ide r a semi-automatic approach t o process p a r t i t i o n i n g i n which the
compiler , guided by advice from the u s e r , au tomat i ca l ly t ransforms programs i n t o
such an i n t e r a c t i n g t a s k system. This approach is i l l u s t r a t e d wi th a p i c t u r e
process ing example w r i t t e n i n BLAZE, which is transformed i n t o a t a s k system
maximizing l o c a l i t y of memory r e fe rence .

17. Key Words (Suggested by Authoris))

programming languages, p a r a l l e l
compute r8

18. Distribution Statement

61 - Computer Programming and
Software

N A S A FORM 1628 OCT RF,

