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On current multiprocessor architectures one must carefully distribute data 

in memory in order to achieve high performance. Process partitioning is the 

operation of rewriting a algorithm as a collection of tasks, each operating 

primarily on its own portion of the data, to carry out the computation in 

parallel. In this paper we consider a semi-automatic approach to process 

partitioning in which the compiler, guided by advice from the user, 

automatically transforms programs into such an interacting task system. This 

approach is illustrated with a picture processing example written in BLAZE, 

which is transformed into a task system maximizing locality of memory 
.. 
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1. Introduction 

The shared memory paradigm is one of the most useful models of parallel 

computation. A parallel machine having a single homogeneous memory, 

randomly addressable by all processors, is relatively easy to program, and 

makes an effective target architecture for compilers restructuring sequential 

programs.[6,1] Unfortunately, this model does not accurately rcflcct most 

current machines. On most multiprocessor -%rchittctUrcs, each proccssar has 

attached local memory. Access to this local memory is faster, and involves 

less contention than access to remote memory. This speed difference makes it 

important for the data used in a calculation to be in local memory, whenever 

possible. Treating an architecture having local memories as a pure shared 

memory architecture results in inferior performance. 

Process partitioning is the process of assigning'data to processors to 

exploit locality of reference. Until now it has been done manually by coding 

algorithms in a parallel language giving the user explicit control over the 

location of all computations and data. While this strategy is &cctive, it 

suffers from two major drawbacks. First it is time consuming and error prone 

for the programmer, who must supply a great deal of detail a b u t  data and 

task allocation having little to do with the underlying algorithm being 

implemented. Second manual process partitioning generally produces non- 

portable programs. While the data may be divided in precisely the same 

manner on both a shared memory and a non-shared memory machine, the 

syntax for non-local accesses will almost certainly be Merent. 
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Our purpose in this paper is to show that, with a small amount of help 

from the user, the compiler can automatically perform process partitioning. 

The only extra information that the programmer must provide is a general 

statement of the data distribution pattern. The remaining aspects of process 
- _- 

partitioning are essentially just mechanical details, which can easily be left to 

the compiler. Eventually even specifying data distribution patterns can be left 

to the compiler, either via an expert system front end, or through mofe 

thorough analysis than is currently available. 

While this approach’ does not fully automate proccss partitioning, it makes 

it relatively painless to programmers. They are then fie to focus on the 

higher-level aspects of program and algorithm design. In this paper, we 

consider a simple example, showing the sequence of transformations a BLAZE 

compiler would follow in generating efficient code ,for a shared memory 

multiprocessor. 

Locality of memory reference is important on both s h a d  memory and 

non-shared memory architectures, but is man critical on n o n - s h d  m e w  

architectures, such as hypercubes. However, even in the simpler shared 

memory case, effectively mating memory locality issues is still relatively 

I 

t 

complex. It is our eventual goal to treat general non-shared memory 

architectures; however there are a number of complex issues that have not 

been resolved yet. These issues will be treated in a future paper. 

.. 
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2. Process Partitioning 

As an example We consider h e n  a standard process partitioning example, 

a smoothing algorithm used in picture processing and other numerical 

applications. Extracting parallelism from this type of algorithm is a well 

studied problem.[5,4] In this algorithm, a pictun, represented as two 

dimensional array of pixel values, is modified to produce a new "improved" 

m y .  In one approach, the 

pixel values in each new array arc formed by taking a weighted average of 

four neighboring pixel values as shown in the picture below. 

This process is repeated a number of times. 

- Suppose the pixel matrix is M x M and there axe N2 pnxxssors available. 

The data in this case should be grouped into MIN x M / N  blocks so that each 

processor contains a contiguous subarray of the original matrix. This allows 

most of the array rcferences in the fannula to be made locally. Only the 

edge pixels in each processor's subarray require non-local acccsses as shown 

below. 

! I  
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Our transformations automatically changes a program expressing the smoothing 

algorithm whose data flow pattem is shown in the first figure to a task system 

like that illustrated in the second. 

- 

3. The BLAZE Environment 

BLAZE is a new programming language intended for pgramming 

scientific applications on parallel machines.[2] It is intended to be a simple 

and elegant way to express scientific programs in a way that compilers can 

easily transform them to execute on a variety of parallel a x h i t e c m .  In this 

section, we describe a few of the features of BLAZE, and also describe E- 

BLAZE, the target language of the BLAZE transformation system. 



3.1. BLAZE Features 

While closely related to data flow languages, BLAZE uscs relatively 

conventional syntax. The listing below represents the picture processing 

algorithm that we have been considering. 

procedure smooth (w) returns : w ; 

param w : array[O..NP : integer, O..NP] of real; 
var ws : like w; 
const N := NP - 1; 
begin 

for k in 1.50 loop 
ws := w; - 

forall (i, j) in [ 1..N] * [ l..N] do 
w[i, j] := c*( w[i-1, j-l]+ w[i-l,fl+ w[i-1, j+l] 

+ w[i, j-1]+ w[i, j] + w[i, j+l] 
+ w[i+l, j-1 J + w[i+l, j] + w[i+l, j+l] ); 

end; - - forall loop 

end; 

end; - - procedure smooth 
- 

The forall loop here is similar to conventional for or do loops. The 

difference is that in a forall loop all invocations can run in parallel. The ws 

array is declared via the like type specification, which gives it the same type 

as the array w .  

1 

--. 
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3.2. E-BLAZE Constructs 

BLAZE is a high level language designed to permit program portability 

E-BLAZE is a lower-level explicit- across a variety of parallel archittcwcs. 

tasking language providing a virtual target architecture for our program 

transformation system. BLAZE itself contains no explicit parallel constructs, 

except the forall loop. E-BLAZE is a superset of BLAZE, consisting of 

BLAZE together with constructs for allocahg processes, specifying a m y  

storage patterns, scheduling loops, and performing intcrprocess communication 

and synchronization. 

The following declaration: 

processors procs : array[ l..np, l..np] with np in l..P; - 

allocates an array of np' processon, where np is in the range 1.p. The run- 

time environment dynamically chooses the largest feasible value far RP. 

To use the above processors for computation, a coprocess loop must be 
~ 

used. This is an explicitly parallel version of the forall loop, with the same 

copy-in-copy-out semantics. Each iteration of the loop is performed on a 

separate processor. For example, given the above declaration of procs, the E- 

BLAZE statement 

coprocess (p, q) in [ 1 ..np] * [ l..np] on procs[p, e] do 

end; 
... 
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would start np' processes in parallel, each of which would execute one 

coprocess iteration. The processes all execute the same code, and finish by 

performing a barrier synchronization. 

h y s  are declared as stored across E-BLAZE processors in one of 

Each a m y  declaration must have a by clause describing its several ways. 

distribution. The example below shows two possible by clauses. 

processors procs : array[l..np] with np in 1..10; 
var A : array[ 1 ..200] of integer by [ block ] on procs; 

B : array[1..200, 1..200] of integer 
by [ block, *] on procs; 

,' - 

If procs were allocated ten processors, each processor in procs would be 

assigned a consecutive block of twenty elements of A. The two-dimensional 

array B is distributed by blocks of rows across procs. There axe other 

distribution patterns in E-BLAZE, such as cyclic distribution, which ae not 

discussed here. 
--- 

4. Transformation of BLAZE to &BLAZE 

In this section we consider the transformation of the picture smoothing 

algorithm for multiprocessor execution. One of the critical decisions required 

in transforming such programs is the choice of data dismbution pattern 

employed. In our current research, we assume that the programmer provides 

annotations describing the data distribution patterns desired. Thus, in the 

above picture processing example, the programmer might provide the 
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annotation: 

param w: arrag[O..NP, O..NP] of real; - - distribute by [block, block] 

To simplify the presentation hen, we look at a one dimensional version 

of the smoothing algorithm as shown below. 

procedure smooth (w) returns : w ; 

param w : array[O..NP : integer] of real; - - distribute by [block] 
var ws : like w; 
const N := NP - 1; 
begin 

for k in 1.30 loop 
ws := w; 

forall i in [ 1 ..NJ do 

end; - - forall loop 
w[i] := c*(w[i-1] + w[i] + w[i+l]); 

end; 

end; - -procedure smooth 

All transformations described hen  apply equally to higher dimensional cases. 

4.1. Transforming forall Loops 

The first step in the transformation process is to restructure the logically 

parallel forall loops into the explicitly parallel coprocess loops. This requires 

the introduction of the processor declaration and the distribution of the arrays 

across the processors. 
- 
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The original forall loop is then "strip-mined" so as to generate a 

coprocess with a nested fonl l  pafonning the same computation. The bounds 

of the generated copnmss loop arc based on the pmccsor declaration while 

those of the nested forall need toobe generated such that most of the axray 

accesses refer to data local to that processor. In the smoothing example, thm 

is only one statement within the fodl  loop, wherein only one array is 

referenced. In such a situation, the forall loop bounds arc generated based on 

the a m y  reference on the left hand side of the statement. Morc complex 

loops, in which more than one m y  is referenced or the rcfmnce pattern is 

more complex arc being studied. Thus the msult of the above.transfmations 

result in the following E-BLAZE program: 
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procedure smooth (w) returns : w ; 

processors P : array[l..m] with m in [l..NP]; 
pararn w : array[O..NP : integer] of real by [ block ] on P; 
var ws : like w; 
Const N :=NP- 1; 

begin 

for k in 1..50 loop 

coprocess q in l..m on P[qJ do 

end; - - coprocess loop 
ws[range(ws[*], P)] := w[range(w[*], P)]; 

coprocess q in l..m on P[ql do 
forall i in (l..N) A range(w[*], P) do 

end; 
w[i] := c*(ws[i-1 ] + ws[i] + ws[i+l I); 

end; - - coprocess loop 
end; 

end; - -procedure smooth 

The range(w[*J, P) primitive hue provides the bounds of the subvector of w 

stored on the processor of the array P on which this particular copnnxss loop 

is executing. The intersection operator provides the intersection of this 

range with the original forall range. 

5. Subscript Analysis 

Once the parallelism in the program has been expressed as explicit 

coprocess loops, the question of memory locality can be addressed. This 

requires an analysis of the local and non-local memory references occurring in 

- 



, 

-11- 

each loop, followed by a sequence of program transformations based on this 

analysis. This section describes this analysis and the subsequent program 

transformation. 

The type of loop we are looking at has the basic farm 

coprocess ... P[ ... ] do 
forall (i, j) in product-range do 

... 
... R' ... 
... R2 ... 
... R" ... 

... 

... 
end; 

end; 

where each R' is an array reference. Axray references can occur on both the 

left and right sides of statements, and a number of arrays may be referenced 

in the loop. For simplicity, we assume that only one a m y  A is referenced, 

and also assume a two dimensional forall loop, as shown. The general case 

is no more difficult, but complicates notation. 

Our analysis is applicable to the commonly occuning cast in which amy 

subscripts are linear functions of the loop indicts. We also q u i r e  the 

assumption that each array subscript depends on at most one loop index. Thus 

all array references have the form: 

where f, has either the form: 

or the form 
f , ( i ,  j )  = co + c I  i 
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f . , ( i , j )  = co + ct  i 
Now assume that array A is distributed by blocks across the pcessors in 

the processor a m y  P. For example, A might have the declaration 

A:array[l..N,l..NJ of real by [bIocL,block] on P; 

or 

A:array[l..N,l..NJ of real by [block,*] 011 P; 

depending on whether P is one dimensional or two dimensional. 

exist two intervals, f and f2, such that if (s. r )  is in the rectangle 

Then there 

I1 X I 2  

then A[s.  r ]  will be a local reference. If either s or r were outside the 

corresponding interval, A [s, r ] would not be a local reference. 

Given our assumptions on the form of subscript functions occurring, for 

each array reference R', there is a rectangle GL, such that if the loop indices 

( i . j )  are within G', then the reference will be I d .  That is, 

( i ,  j )  c G' 
implies 

Note that in degenerate cases the "rectangles" may be empty, may be the 

whole plane, or may be an infinite slab. The slab case, for example, occurs 

with array references such as A l j .  j ] ,  in which one index is omitted. 

. 
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5.1. Loop decomposition 

Once the rectangles, C" arc computed for each reference Rk, they may be 

combined into a single diagram, called the "reference locality diagram." As a 

simple example, consider the loop: 

fora11 (i, j) in [a..b] * [c..d] do 
A[i, j] := A[i, j] - A[i+3, j+3] 

end 

'- . . 

has the the reference locality diagram 

C* 

I 

where the correspondence between the mmngles shown and the amy 

references occurring is: 

. 
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A(i, j] := A(i, j] - A[i+3,j+3] 

G' G' G2 

The rectangle GI corresponds both to the first nfennce hen, and to the index 

range of the f d l  loop. 

The next step in the transformation process is to extend the edges of the 

rectangles in the reference locality diagram, so that the index range is 

decomposed into a disjoint union of rectangles. We also discard the portion 

of each rectangle lying outside the index range. 

the simple example here, yields the following diagram. 

Applying this operation to 

Each rectangle in this diagram corresponds to a loop over a subrangc of the 

original loop. In this case there would be. four subloops, as shown. 
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A 

forall i, j in [a..b-31 * [c..d-31 do 
A[i, j] := A[i, j] - A[i+3, j+3] 
end; 

forall i, j in [a..&3] * [d-2..d] do 
A[i, j] := A[i, j] - !A[i+3,j+3] 

end; 

forall i, j in b2..b] * [c..d-31 do 
A[i, j] := A[i, j] - !A[i+3, j+3] 

end; 

forall i, j in [b-2..b] * [d-2..d] do 
A[i, j] := A[i, j] - !A[i+3, j+3] 

end; 

From the rectangle inducing each loop, one can tell which array refennces in 

the assignment statement arc bcal. Non-local nfcrenccs are flagged with an 

exclamation marks. 
, 

--. 

Finally, in many cases one can merge loops, reducing the amount of loop 

overhead. In this case, for example, the last two loops could be merged into 

a single loop over the index range: 

[b-2..b] * [c..d] 

5.2. Picture Processing Example 

Let us now apply the above analysis on the one dimensional picture 

processing under consideration. The important fora11 loop is given below: 
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. 

forall i in range(w[*], P) do 

end; 
w[i] := c*(ws[i-1] + ws[i] + ws[i+l]); 

The three rcfennces to the amy ws give rise to the following (degenerate) 

rectangles: 

w[i] := c*(ws[i-1] + ws[i] + ws[i+l]); 

G' G2 G' G' 

G3: 1-4 

G *: - 
G l: - 

, 
where G1 corresponds to the index range of the forall loop. 

The disjoint rectangles can be easily determined and give rise to the 

following three forall loops: 
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procedure smooth (w) returns : w ; 

processors P : array[ 1 ..m] with m in [ l..NP]; 
param w : array[O..NP : integer] of real 

var ws : like w; 
by[blocL]onP, 

mnst N F N P -  1; 

begin 

for k in 1.50 loop 

coprocess q in l..m on P[ql do 

end; - - coprocess loop 
ws[range(ws[*], P)] := w[range(w[*], P)]; 

coprocess q in l..m on qql do 
var s, t : integer; 

s := lower(ws[*], P); 
t := upper(ws[*], P); 

if (s >= 1 and s <= N) then 

end; 
w[s] := c*(!ws(s-1] + ws[s] + ws[s+l]); 

forall i in [ I..N] A (s+l..t-1] do 

end; 
w[i] := c*(ws[i-1] + ws[i] + ws[i+l]); 

if (t >= 1 and t e= N) then 

end; 
w[t] := c*(ws[t-1] + ws[t] + !ws[t+lJ); 

end; - - coprocess loop 
end; 

end; - -procedure smooth 

At this point, it is fairly simple for a compiler to generate good code for the 
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A 

8 

non-local references. 

6. Conclusions 

Careful distribution of data is essential for high performance on many 

parallel machines. This paper has demonsmtcd that automatic process 

partitioning by a series of sourcc-~source translations is feasible. Our method 

secms to be quite general, is easy to implement, and should substantially 

reduce users programming effort. 

The work here falls in the framework of automatic parallelization of 

sequential code. Our transformations arc related to the concept of "strip 

mining" one of the loop transfommtions studied by program restructuring. 

Much work in this area has been done by David Kuck and the Cedar p u p  at 

the University of Illinois[3] md Ken Kennedy at Rice University.[l] We have 

extended that work to include distributing data and pafarming the 

computations on multiprocessors. 

A major shortcoming of our work is that the g c n d  anray distribution 

pattern must be specified by the progammer's annotations. Ideally, the 

compiler should also determine the storage pattern of all arrays. This is a 

complex optimization problem and is being studied. 

Even though we have concentrated on shared memory machines, 

extensions of the ideas here wil l  apply to non-shared memory architccturcs, 

such as the hypercubes. However, a number of aspects of these extensions are 

unresolved, so we will report on this research later. 
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