
/I/-- _ /- /-'/<-

Computer Viruses

Peter J. Denuing

21 Mar 1988

RIACS Technical Report TR-88.10

NASA Cooperatkc Agreement Number NCC 2-3_7

{NASA-CR-1846 80) COM_UTER VIRUSES
(Research Inst. for Advanced Computer

Science) 15 p CSCL 09B

G3/6 |

N89-26421

Unclas

0217911

Research Institute for Advanced Computer Science

Computer Viruses

Peter J. Denning

21 Mar 1988

RIACS Technical Report TR-88.10

NASA Cooperative Agreement Number NCC 2-387

Computer Viruses

Peter J. Denning

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report TR-88.10

21 Mar 1988

The worm, Trojan horse, bacterium, and virus are destructive programs that attack

information stored in a computer's memory. Virus programs, which propagate by
incorporating copies of themselves into other programs, are a growing menace in the

late-1980s world of unprotected, networked workstations and personal computers.
Limited immunity is offered by memory protection hardware, digitally authenticated

object programs, and antibody programs that kill specific viruses. Additional immun-

ity can be gained from the practice of digital hygiene, primarily the refusal to use
software from untrusted sources. Full immunity requires attention in a social dimen-
sion, the accountability of programmers.

This is a preprint of the column The Science of Computing for

American Scientist 76, No 3 (May-June 1988).

Work reported herein was supported in part by Cooperative Agreement NCC 2-387

between the National Aeronautics and Space Administration (NASA)
and the Universities Space Research Association (USRA).

Computer Viruses

Peter J. Denning

Research Institute for Advanced Computer Science

21 Mar 1988

Sometime in the middle 1970s, the network of computers at a Silicon Valley

research center was taken over by a program that loaded itself into an idle

workstation, disabled the keyboard, drew random pictures on the screen, and

monitored the network for other idle workstations to invade. The entire network

and all the workstations had to be shut down to restore normal operation.

In early September 1986, a talented intruder broke into a large number of

computer systems in the San Francisco area, including 9 universities, 15 Silicon

Valley companies, 9 ARPANET sites, and 3 government laboratories. The

intruder left behind recompiled login programs to simplify his return. His goal

was apparently to achieve a high score on the number of computers cracked; no

damage was done (1).

2/Computer Viruses TR-88.10 (21 Mar 1988)

In December 1987, a Christmas message that originated in West Germany

propagated into the Bitnet network of IBM machines in the United States. The

message contained a program that displayed an image of a Christmas treeand

sent copies of itselfto everyone in the mail distributionlistof the user for whom

itwas running. This prolificprogram rapidly clogged the network with a

geometrically growing number of copies of itself.Finallythe network had to be

shut down untilallcopiescould be located and expurgated.

For two months in the fallof 1987, a program quietlyincorporated copiesof

itselfinto programs on personal computers at the Hebrew University. Itwas

discovered and dismantled by a student, Yuval Rakavy, who noticed that certain

libraryprograms were growing longer for no apparent reason. He isolatedthe

errant code and discovered that ifexecuted on certain Fridays the thirteenth the

computer running it would slow down by 80%, and on Friday 13 May 1988, it

would erase all files. That date was the fortieth anniversary of the last day

Palestine was recognized as a separate political entity. Rakavy designed another

program that detected and erased all copies of the errant program it could find.

Even so, he could not be completely sure he had eradicated it.

These four incidents illustrate the major types of programs that attack

other programs in a computer's memory. The first type is a worm, a program

that invades a workstation and disables it. The second is a Trojan horse, a pro-

gram that performs some apparently useful function, such as login, while con-

taining hidden code that performs an unwanted, usually malicious function.

TR-88.10 (21Mar 1988} Computer Viruses/3

This name isinspired by the legendary wooden horse builtby the Greek army,

ostensiblyas an offeringto Athena, which in the dark of night disgorged itsbel-

lyfulof murderous soldiersinto the sleepingstreetsof Troy. The third type isa

bacterium, a program that replicatesitselfand feeds offthe host system by

preempting processor and memory capacity. The fourth isa virus,a program

that incorporates copiesof itselfinto the machine codes of other programs and,

when those programs are invoked, wreaks havoc in the manner of a Trojan

horse.

I can cite numerous other incidents in which information stored in comput-

ers has been attacked by hostile programs. An eastern medical center lost nearly

40% of its records to a malicious program in its system. Students at Lehigh

University lost homework and other data when a virus erased diskettes inserted

into campus personal computers. Some programs available publicly from elec-

tronic bulletin boards have destroyed information on the disks of computers into

which they were read. A recent New York Times article (2) describes many

examples and documents the rising concern among computer network managers,

software dealers, and personal computer users about these forms of electronic

vandalism. In an effort to alert concerned computer scientists to the onslaught,

the Association for Computing Machinery sponsors the Computer Risks Forum,

an electronic newsletter moderated by Peter G. Neumann of SRI International,

which regularly posts notices and analyses of such dangers.

4/Computer Viruses TR-88.10 (21 Mar 1988)

The recent rash of viral attacks has drawn everyone's attention to the more

general problem of computer security, a subject of great complexity which has

fascinated researchers since the early 1960s (3). The possibility of pernicious

programs propagating through a file system has been known for at least twenty-

five years. In his May 1985 Computer Recreations column in Scientific Ameri-

can, Kee Dewdney documented a whole menagerie of beastly threats to informa-

tion stored in computer memories, especially those of personal computers (J),

where an infected diskette can transmit a virus to the main memory of the com-

puter, and thence to any other diskette (or to hard disk). Ken Thompson, a

principal designer of UNIX TM, and Ian Witten have documented some of the

more subtle threats to computers that have come to light in the 1980s (5,6).

It is important to keep in mind that worms, Trojan horses, bacteria, and

viruses are all programs designed by human beings. Although a discussion of

these menaces brings up many intriguing technical issues, we should not forget

that at the root of the problem are programmers performing disruptive acts

under the cloak of anonymity conveniently provided by many computer systems.

I will focus on viruses, the most pernicious of the attacks against informa-

tion in computers. A virus is a code segment that has been incorporated into

the body of another program, "infecting" it. When the virus code is executed, it

locates a few other uninfected programs and infects them; in due course, the

number of infected programs can grow quite large. Viruses can spread with

remarkable speed: in experimental work performed in 1983 and 1984, Fred

TR-88.10 (21 Mar 1988) Computer Viruses/5

Cohen of the University of Cincinnati demonstrated that a simple virus program

can propagate to nearly every part of a normally operating computer system

within a matter of hours. Most viruses contain a marker that allows them to

recognize copies of themselves; this avoids discovery, because otherwise some

programs would get progressively longer under multiple infections. The destruc-

tive acts themselves come later: any copy of the virus that runs after some

appointed date will perform such an unwanted function.

A Trojan horse program is the most common means of introducing a virus

into a system. It is possible to rig a compiler with an invisible Trojan horse that

implants another Trojan horse into any selected program during compilation.

A virus that takes the form of statements inserted into the high-level

language version of a program -- that is, into the source file -- can possibly be

detected by an expert who reads the program, but finding such a program in a

large system can be extremely difficult. Many viruses are designed to evade

detection completely by attaching themselves to object files, the machine coded

images of high-level program sources that are produced by compilation. These

viruses cannot be detected from a reading source programs.

The first serious discussions of Trojan horses took place in the 1960s. Vari-

ous hardware features were developed to reduce the chances of attack (3), includ-

ing virtual memory, which restricts a program's to a limited region of memory,

its "address space" (7). All these features arebased on the principle of least

privilege, which reduces the set of accessible objects to the minimum a program

6/ComputerViruses TR-SS.10 (21 Mar 1988)

needs in order to perform its function. Because a suspect program can be run in

a strictly confined mode, any Trojan horse it contains will be unable to perform

much damage.

How effective is virtual memdry against viruses? Memory protection

hardware can significantly reduce the risk, but a virus can still propagate to legi-

timately accessible programs, including portions of the operating system. The

rate of propagation may be slowed by virtual memory, but propagation is not

stopped. Most PCs are especially vulnerable because they have no memory pro-

tection hardware at all; an executing program has free access to-_nything in

memory or on disk. A network of PCs is even more vulnerable, because any PC

can propagate an infected copy of a program to any other PC, no questions

asked.

What can be done to protect against viruses in a computer or workstation

without memory protection hardware or controls on access to files? One com-

mon proposal is to retrofit the operating system with a write query check that

asks the user for permission to allow the running program to modify a file. This

gives the user an opportunity to determine that the program is attempting to

gain acces to unauthorized files. It is, unfortunately, hardly workable even for

experienced programmers because of the difficulty of discovering which files a

running program must legitimately modify. A design that suppresses write

queries for files named in an authorization list associated with a program can be

subverted by a virus that adds the name of the unauthorized file to the list

TR-88.10 (21 Mar 1988) Computer Viruses/7

before attacking it.

A more powerful immunization scheme is based on digital signatures of

object files. When a program is installed in a system, an authenticator is created

by producing a checksum that depends on all the bits of a file, which is then

signed with the secret key of the person who stored the file (8). The authentica-

tor can be unlocked by applying the public key of that person. A user can

confirm that a file is an exact copy of what was stored by computing its check-

sum and comparing that with the unlocked authenticator. A program infected

by a virus would fail this test. Without access to the secret key, the designer of

the virus could not produce a valid authenticator for the infected program. This

scheme also works for programs obtained from trusted sources over a network:

each program comes with an authenticator sealed by the trusted producer.

One way to implement this scheme is to equip the operating system with a

background process that randomly checks files against their authenticators. If a

virus has entered the system, this process will eventually discover an infected file

and raise the alarm. Another way to implement this scheme is to "innoculate"

an object program by placing an authentication subroutine at its entry point.

This implementation is slow, however, and can be defeated by a virus that

invades entry points: by the time the authenticator gets control, the virus will

already have acted.

The authenticator scheme relies on the protection of the secret key, which

cannot be complete unless the key is kept outside the system. It also rests on the

8/ComputerViruses TR-88.10 (21 Mar 1988)

integrity of the system itself: for example, a sophisticated attack against the pro-

gram that reports whether a file has been infected could disable the scheme.

A program called an antibody can offer limited remedies should a virus

penetrate a system. Such a program examines an object file to determine

whether a known virus has been incorporated. It may also remove the virus

from the infected program. This limited form of protection can be very effective

against known viruses, but it cannot identify new ones.

As we have seen, each of the major technical mechanisms - memory protec-

tion hardware, dlgital-signature authenticators, and antibodies - offers limited

protection against viruses (and Trojan horses). Can the operating procedures

followed by those who use a computer system lower the risk further?

Yes! An additional measure of protection can be obtained by care in the

way one uses a computer. Analogies with food and drug safety are helpful. Just

as one would not consider purchasing food or capsules in unsealed containers or

from untrusted sources, one can refuse to use any unsealed software or software

from untrusted sources. Never insert a diskette that has no manufacturer's seal

into your PC. Never use a program borrowed from someone who does not prac-

tice digital hygiene to your own standards. Beware of software obtained from

public bulletin boards. Purchase programs that check other programs for known

viruses. Be wary of public domain software (including virus eradicators!). Moni-

tor the last-modified dates of programs and files. Don't execute programs sent

in electronic mail -- even your friends may have inadvertently forwarded a virus.

TR-S8.10(21 Mar 1988) Computer Viruses/9

Don't let employees bring software from home.

The problem of viruses is difficult, both technically and operationally, and

no solution oriented entirely along technical or operational lines can be complete.

There is a third, social dimension to the problem: we don't know how to hold

people fully accountable for the actions of their programs in a networked system

of computers. A complete solution must involve all three dimensions.

Computer scientists are divided over whether it serves the field to publish

accounts of viral attacks in full technical detail. (This article, being superficial,

does not count.) Some hold that revelations of technical detail -- as in Dewdney

(4) or Witten (6) - are reprehensible because they give the few would-be perpe-

trators a blueprint for actions that can make life exceedingly difficult for the

many innocent users, and because there are few successful defenses against the

attacks. Others hold that the main hope for a long term solution is to mobilize

the "good guys" by setting forth the problems in detail; the short term risk,

according to this view, is offset by the long-term gain. Most computer scientists

favor this way of mobilizing forces to oppose computer sabotage.

References

° B. Reid. 1987. Reflections on some recent widespread computer breakins.

A CM Communications 30, 2. February. 103-105.

10/ComputerViruses TR-88.10 (21Mar 1988)

t Vin McLellan.

Business Section. January 31.

3. D.E. Denning.

4. A.K. Dewdney.

°

.

o

.

1988. Computer systems under siege. NY Times Sunday

1982. Cryptography and Data Security. Addison-Wesley.

1985. Computer Recreations (A Core War Bestiary of

Viruses, Worms, and other Threats to Computer Memories).

American $52, 3. March. 14-23.

K. Thompson.

$7, 8. August.

1984. Reflections on trusting trust.

172-80.

Ian H. Witten. 1987.

Abacus 4, 4. Summer.

1986.P. J. Denning.

JUne). 227-229.

P. J. Denning. 1987.

1 (January-February).

Scientific

A CM Communications

Computer (In)security: Infiltrating Open Systems.

7-25.

Virtual memory. American Scientist 74, 3 (May-

Security of data in networks.

12-14.

American Scientist 75,

"- TR-eS.IO (21 Mar 1988) Computer Viruses/l1

Box 1: How a Virus Works

=

i

Iappend

I

uni nfected

object
program

(on disk)

infected

program

operati ng
system

Mat n

Memory

i nfected

object
program
(on disk)

A program infected with a virus (shaded area) and loaded and executing in the mat n

memory of a computer can infect another executable (object) program in the computer's disk

storage system by secretly requesting the computer's operating system to append e copy of

the virus code to the object program usually at the start. The infection makes the object

program slightly longer.

When the newly infected program is itself loaded into memory and invoked, the virus in it

takes control and performs hidden functions, such as i nfecti ng yet other object programs.

The vi rus may also perform destructive functions before trensferri ng control to the original

entry point. The virus codecontains a marker so that e virus won't attempt to infect a

program al ready infected by its own kind: multi ple infections will cause an object file to

grow ever larger, leading to easy detection.

The same principle works in personal computers (PCs), where floppy disks play the role

of object files in the description above. In this case, the virus usually attacks the copy of the

operating system contai ned on the floppy disk so that the virus is automaticelly invoked

whenever the disk's opereti ng system is started. 5i nce the operali ng system then resides in

the PC's main memory, it can infect any diskettes inserted into the PC.

12/ComputerViruses

Box 2: A Trojan Horse

souroe
file (high
level

language)

in a Compiler

riggedcompiler

/!--
Main Memory

TR-88.10 (21 Mar 1988)

object file
(machihe
code)

A Trojan Horse is a useful program contai ni ng hidden code that performs an unwanted,

mischevlous function. It might copy the invoker's private files into an area of memory

belongi ng to the Trojan Horse's designer, thereby ci rcumventi ng the owner's file protection. It

might obtain access to a s ubs yale m nor mail y i naccessi ble to t he designe r. A Troj an Horse t hat

destroys or erases files is also called a logic bomb.

It is sometimes suggested that Trojan Horses can be detected by scanning the borrowed

program's source file for statements that perform operations outside the program's

specifications. Ken Thompson, one of the pri nci pal designers of UNIX TM, has potnted out that this

approach is fundamental1 g incomplete. He demonstrated how to rig a compiler _o introduce a

Trojan Horse into the object file orang other selected program, for example the login program

(5). Whenever the logi n program is recompiled, the rigged compiler al,,'ags inserts a segment

of code t hat allows 1ogin w henave r a speciel pessword (known onl g to t he Troj an Horse's

designer) is given. The login program's Trojan Horse cannot be detected by reading the login

program's source file.

Nov, it might seem that a careful reading of the rigged compiler's source file would reveal

the Trojan Horse that inserts the loginTrojan Horse. But this is not so. The rigged compiler is

itself" an object code, and can thereby contei n its own Trojan Horse without a record in the

compiler's source file. Thompson demonstrated a scheme to rig a compiler in this way (5,6).

