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1. Abstract

A general purpose six-axis robotic manipulator controller was designed and implemented to
serve as a research tool for the investigation of the practical and theoretical aspects of
various control strategies in robotics. A 80236-based Intel System 310 running the Xenix
operating servo software as well as the higher level software (e.g. kinematics and path
planning). A Multibus compatible interface board was designed and constructed to handle 1/0
signals from the robot manipulator's joint motors.

From the design point of view, the universal controller is capable of driving robot
manipulators equipped with D.C. joint motors and position optical encoders. To test its
functfonality, the controller s connected to the joint motor D.C. power amplifier of a PUMA
560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller
algorithm consisting of local PD control laws was written and installed into the Xenix
operating system. Additicnal software drivers were implemented to allow application programs ‘
access to the interface board. All software was written in the C language. /
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2. Introduction

Robots are becaming increasingly prevalent in the industrial workplace, as well as creating an industry of
their own. This new industry is both driving and being dptven by new technologies. New materials, improved
mechanical designs, and faster controller electronics 2 running into the limitations of traditional control
techniques. Thus, theoretical work to overcome these/icmitations is urgently needed. Much of the theoretical
work is being carried out in academic research insti,t‘ﬁtions. However, there is often a significant gap between
the results of theoretical studies based on simul;t“’ions .and the verification based on actual implementation.
Industry is often reticent to try untested theore“ical results, preferring the time-tested, sub-optimal control
techniques of the past, possibly sacrificing substantial performance improvements. A credible testing ground
for new control techniques is needed to brid}ge’ the gap between theory and application.

The Robotics Research Laboratory at the University of California, Davis, has a Unimation PUMA 560 robot arm
representative of a large and popular cldss of modern industrial manipulators. The PUMA arm is controlled
through the sophisticated robot language, VAL-II. The user only has access to the arm through high level
‘move-type' commands. He therefore hds little control of the actual arm trajectory and no control over the low
level motor servo loops. In typical’ industrial applications, the inability to alter low level functions of the
controller does not represent a functional limitation. To the contrary, it actually affords both the arm and
the operator a fair degree of protection and safety. The academic researcher, however, is prevented from using
the arm to test and demonstrate new control strategies and is forced to rely on computer simulation, .

3. Objective -

The objective of this project was to design and implement a ccmputer based robotic controller which allows
the researcher to write programs and implement algorithms which control the robot arm from the lowest level of
the closed-l1oop servo system to the higher levels of kinematics, dynamics, path planning and robet language
[11]. The use of a familiar software environment was chosen with the intent of making the user interface as
clean and simple as possiblie,

The scope of this project is limited to the design and implementation of a controller consisting of (1) the
Joint Interface Board electronics, and (2) the operating system interface to this hardware. A simple low level
6-joint P.1.D. (Proportional Integral Derivative) controller is implemented and presented to serve as both a
functional test of the system and as an application example. The topics of joint kinematics and other high
level application software are beyond the scope of this project as is the advanced control law design.
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4. The Controller .System

The contru;ier presented here is designed around an Intel 310, 80286-based, microcomputer [2] running the.
UNIX-Tike operating system, XENIX [3]. A signal interface board was designed and constructed to provide the
interface between the microcomputer and the joint motors of the arm. The Unimation controller, supplied as part
of the PUMA 560, was modified to serve two low level functions: as a convenient access point for the joint
feedback signals from the arm and as a multi-channel power amplifier drive the joint motors. A1l other
electronics in the Unimation multi-channel power amplifier to drive the joint motors. All other electronics in
the Unimation controller are by-passed; closed~loop control is done in the Intel-based controller described
here. The controller system is depicted by the block diagram shown in Figure 1.

A single 80286 CPU running at 6 MHz is used to execute both high level (e.g. kinematics) and low level
(e.g. joint servo loops) control software. At a typical sampling rate of 100 Hz, about 30% of the CPU time is
required to execute the six P.[.D. controllers implemented in the design example. The remaining CPU time is
available for application programs and the operating system. The interface board jtself {s useful in systems
with sampling rates over 2 KHz, However, to utilize this speed, addftional CPU power is required.

5. System Design Requirements

Two basic elements constitute the controller system designed and implemented in this project: a digital
computer and special purpose interface hardware. The digital computer performs. all the control functions, from
the joint motor servo control law to the higher levels of coordinated joint motien. The i~terface hardware
function is to provide the basic 1ink between the computer and the physical signals requir=d to control the
robot arm.

5.1 The D.C. Servo Motor Position Measurement

The control of the robot arm is equivalant to the control of the joint motors. In this controller, 0.C.
servo motors are assumed to be equipped with potentiometer and/or incremental encoder position feedback devices.
It is also assumed that the D.C. motor can be driven by an analog (voltage) signal buffered by an appropriate
external power amplifier (servo motor amplifier). The Unimation PUMA 560 arm has six geared D.C. servo motors
with both encoder and potentiomenter position feedback elements and it is considered to be prototypical of the
class of- manipulators considered in this project.

Each motor, in general, does not directly drive a manipulator joint, but is typically connected through a
gear train requiring a multiple number of motor revolutions to drive the joint through its operating cange as
shown in Figure 2. In the configuration assumed in this project, feedback elements are directly attached to
the motor, not the actual joint member. Joint position ic inferred from the motor position. This requires that
absolute motor position must be measured over multiple revolutions. In the PUMA arm, both a geared {i.e. multi-
turn) potentiometer and an incremental shaft encoder are connected to the motor shaft to co'lectively supply
this data. The fncremental encoder is used to accurately measure both the relative motor position over an
arbitrary number of rotations and the absolute motor position modulo one rotation. The geared potentiometer
is used to measure the approximate absolute motor angle over the several revolutions needed to drive the joint
through its range. Once the absolute motor angle has been determined, only the relative data supplied by the
encoder is needed.

The incrementai encoder, which is directly attached to the motor, generates two types of data: (1) nhigh
resolution quadrature signals which are decoded into relative {incremental) angular displacement information and
(2) an index pulse which is produced once per revolution and can be used to accurately define the absolute
angular position of the motor modulo 360° (Figure 2).

The geared potentiometer supplies indirect, low resolution absolute joint position data. The gear ratio of
the potentiometer is designed so that when the joint is driven between its mechanical limits, the pot wiper
rotates within its mechanical limits {less than 360°). Logically, this pot could have been attached directly to
the robot joint. For manufacturability considerations, the pot has been included in the motor assembly.

Once the absolute motor position has been determined, it is continuously updated (incremented or decre-
mented) by the data from the incremental shaft encoders. As long as the electronics are not interrupted- (e.g.
‘power-down) the data from both the geared pot and the encoder's index pulse are not used. The difficulity is the
initial determination of the absolute motor position is rather involved. and will now be discussed.

When the absolute motor position is urknown, the potentiometer wiper voltage can be measured and the
apbsolute motor position estimated. Once estimated, further position measurement can be made by monitoring the
relative position data from the incremental encoders. While the incremental data is very accurate, the absolute
position can only be as good as the initial estimate., The standard technique to obtain an accurate measurement
of the initial absolute position is as follows. First, the motor is driven until the encoder's index pulse is
found. At this point the absolute position is known to be an exact multiple of 360°., Next, the potentiometer
voltage is measured to give the approximate absolute position. Combining the approximate absolute position with
the certain knowledge that the position is an exact multiple of 360°, the exact absolute can then be derived.

The above explanation serves to demonstrate the basic idea and what sort of precision is required. For

analysis, the actual parameters of the PUMA 560 joint motors are used to determine the system specifications and
Joint I[nterface Board requirements. .
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5.2 A Typical D.C. Servo Motor

The PUMA 560 servo motors are integral packages which contain four basic components: (1) a 0.C, motor;
(2) an electric brake; (3) an optical incremental encoder; and (4) a geared-down potentiometer. The currents
activating the motor and the electric brake are the inputs while the encoder and the potentiometer signals are
the outputs. The basic functions needed to operate the motor system are described below,

5.2.1 Reading the Incremental Encoder

The incremental encoder has three output signals: channels A, B, and the index pulse, Channels A and B
are used to determine both the amount and direction of rotation in discrete steps. The index pulse produces a
single short pulse each motor revolution which can be used by the system to determine the absolute angle of the
motor)and, with the addition of the potentiometer data, can be used to determine absolute position (described
above).

The output states of channels A and B are used to detect relative motion (rotation) of the motor shaft and
in turn, the joint itself. How this is done is well-known and is not described here.

5.2.2 Counting the State Changes

The incremental encoders on the PUMA §60's motors produces 1000 state transitions per revolution, except
for the shoulder joint (#2) which produces 800 transitions. The motor (with the encoder directly attached)
rotates fram 40 to 60 times during full joint travel (depending on the joint), corresponding to 40,000 to 60,000
state changes per complete joint motion, It is convenient if the hardware keeps count of the total joint range.
This way the total joint motion may be read directly from the hardware counters. 16-bit counters have a maximum
count of 65,532 and are sufficient to keep track of the joint motors of the PUMA arm. However, it is not
essential for the hardware to count the entire joint range. In a sampled data system, the software can keep
track of total joint motion, using the hardware only to count the relative motion which has occurred between
samples. If the hardware count is used in this manner, the absolute motion is limited only by software and the
incremental motion between samples is limited to motion of : 32K pulses,

5.2.3 Reading the Potentiometers

The potentiometers incorporated into the PUMA 560 joint motors are connected between +5 volts and ground.
Rotating the pot through 360° produces a proportional voltage output from 0 to 5 volts (e.g., 90° produces 1.25
volts, 180° produces 2.5 volts, etc.). These pots have been geared so that they rotate somewhat less than 360°
for a complete joint movement; depending on the joint, full joint travel may produce as little as 200° of
potentiometer motion. This restricted travel corresponds to 2 change in pot voltage of about 2.78 voits. If
the joint produces 60 index pulses (i.e. 60 motor rotations) per full joint motion, the pot voltage must be
measured to an absolute accuracy of 1/60th of 2,78 volts (0,046 volts) in order to determine the motor shaft
angle to within one revolution,

An Analog to Digital Converter (ADC) is used to measure the pot voltages. It must be ahle to measure a
voltage which spans a 0 to 5 volt range, and must have a resolution and accuracy of better than u.046 volts over
this range. This corresponds to a full-scale resolution of 0.92%. A seven-bit ADC has a resolution of 0.78%
and is sufficient for this voltage measurement.

Since the potentiometers are not part of the dynamic control scheme presented here, there is no constraint
on the conversion speed. For the PUMA arm, both speed and resolution requirements of the ADC are easy to meet,
However, to make the system more flexible, other possible applications should be considered., [t is often the
case where a symmetrical voltage signal (say -5 to +5 volts) needs to be measured and fast conversion time can
make dynamic control systems with analog feedback elements possible. Furthermore, since fast (30 microsecond)
12-bit ADCs with input range of 5 volts are conveniently available and at reasonable cost, this higher
performance device was chosen,

5.2.4 Driving the Motor

The drive current and voltage needed by a D.C. motor depends on the size and type of motor used; no
solution is appropriate for all motors. It is therefore considered impractical to include the power amplifier
as part of the design. The important requirement is how to drive these power amplifiers.

In general, two standard techniques for supplying the current needed for driving D.C. servo motors are
commonly used: linear amplifiers and pulse width modulated (PWM) amplifiers. FEach have advantages but the
important fact tc consider is that they both are controlled by a simple analog voltage.

In the particular case of the PUMA 560 arm, the Unimation PUMA controller's power amplifiers can be
conveniently used because they have been designed explicitly to drive the PUMA 560 joint motors. Using this
controller also makes the external connection to the arm joint motors simple and straightforward. Additionally,
the Unimation amplifier has several useful safeguards which automatically shut the amplifier off to prevent
damage to the arm.

Power amplifiers are controlled by analog voltages, and to generate these vol tage outputs from a digital
controller a Digital to Analog Corverter (DAC? must be used. Three basic specifications must be considered:
(1) voltage swing; (2) resolution (number of bits); and (3) the accuracy. Commercially available power
amplifiers typically require a voltage input of -10 volts to +10 volts. This also corresponds to typfcal DAC
device output characteristics, and the input specifications of the Unimation controller's power amplifier,
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selection of resolution and accuracy is more difficult. 8-bit corresponds to a resolution of one part in 256
(0.39%), 10-bit corresponds to one part fn 1024 (0.098%), and 12-bit corresponds to one part in 4096 (0.024%).
A 10-bit unit was chosen and considered to be a reasonable compromise between price and performance.

5.2,5 Releasing the Brake

The brake is used to lock each joint in position when the servo motor is turned off and s necessary to
keep the arm from collapsing. The brakc is much like a D.C. relay. When D.C. currant passes through the cotl
{an electromagnet), the brake plate is retracted from the friction plate allowing the motor to rotate., When ne
current {s flowing in the brake coil, the brake plate is forced into contact with the friction plate by
compression springs and the motor cannot rotate. On the Unimate controller, the brake release current fs
supplied whenever the 'amm power' is on. This is a fail-safe system, When the servo power (to the motors) is
turned on, the brakes are released. When the arm power is switched off, the brakes are automatically applied,
holding the joint in place.

5.2.6 Other 1/0 Requirements

The Joint Interface Board must not only accommodate the joint motor signals but must also provide the host
computer with additional functions to allow all subsystems to be integrated into a complete controller.
Included in the design are (1) a digital timer and associated interrupt circuitry, and (2) 24 bits of general
purpose [/0 lines.

5.3 Host Computer Requirements

The selection of a suitable host computer is very important, The machine must not only te capable of
meeting basic execution speed and 1/0 requirements, but should also be able to support the software tools needed
to implement a controller. In this section both the host computer hardware and software are discussed.

5.3,1 The Computer: Intel System 310

The Intel System 310 microcomputer was used because it satisfies the above criteria. It is based on the
Intel 80286 16-bit microprocessor [4]; the system also comes equipped with an 80287 floating point nath co-
processor [5). It is a Multibus based system [6], a bus standard which is particularly popular in the area
of industrial automation. A wide variety of interface board products, including memory, 1/0, and blank proto-
type boards, are available from Intel and third party vendors. A standard Mul tibus board is comparatively large
which allows complex circuits to fit onto a single board, allowing the use of a single bus interface circutt.
All the hardware for the Joint Interface Board was able to fit on a single board.

5.3.2 The Operating System Choice: XENIX 286

The Intel 310 can run several operating systems: the ubfquitous IBM PC's MS-DOS, the UNIX-1ike XENIX
system 0.S., and the real-time, multi-tasking systems RMX-86 and RMX-286.

XENIX was chosen to be the operating system of this project's implementation. A substantial learning
effort is required to become proficient with an unfamiliar operating system and new software tools. XENIX
minimizes this obstacle; many researchers are familiar with UNIX and need 1ittle time to master XENIX. Those
unacquainted with UNIX can be motivated to learn XENIX since this knowledge is useful on many other systems.
This is a very important consideration on short term projects where learnin) a new operating system may require
more time than the experiment itself.

The XENIX operating system is Microsoft's licensed version of UNIX IIl with scme of the Berkeley Software
Distribution (BSD) enhancements (e.g. 'vi' and the C-shell), and several of their own enhancements. [t is a
multi-user system. UNIX is a very powerful enviromment for developing software and is widely used in the
academic and research communities. The disadvantage is that it was not designed for real-time applicattons.
Details of the techniques used to construct a real-time controller for our purpose are given later.

6. The Design

This section details the design and implementation of the above specifications. The discussion is dividec
into three sections: (1) the hardware design of the Joint Interface Board (JIB); (2) the connection between tne
J.i.B. and the Unimate PUMA 560 controller; and (3) the software interface between the XENIX operating system
and the JIB.

6.1 Joint Interface Board Design

The block diagram which outlines the J.I.o. hardware is shown in Figure 3. As seen from the computer side
of the bus interface, the JIB is a small collection of 1/0 devices: six 16-bit encoder counters; arn encoder
reset circuit; two PIO (parallel input/output) devices; timer and the interrupts reset logic. One of the PI0s
is used exclusively to interface to the ADC and DAC subsystem, and the other PIO is used for off-board digital
expansion.
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~6.1.1 The Analog-Dry.tar Subsystem

Communicaticn and -ontrol sianzls for .11 seven DACs, the ADC and the analog multiplexer ar: R I 1)
one of the PIOS » # - -s..a. Tty * - Py} ie in the Multibus address space and control of thess 3 .vices must
be made through i -iv 'z ;i@ st (o~ designing the system this way was bus speed consi:izrations,

The P10, an 8255, can operate at .- full 80286 bus speed while the ADCs and DACs are about twice as slow (450
ns vs 180 n3). Rather than -‘ow the bus iown on this board and degrade performance of the other onboard devices
{e.g. the encoders), the ADC: and MAls «re given their own private slow bus.

6.1.2 Analog Output: The DACs

Six analog voltage outputs are necessary to drive the basfc joint servo motors. An additional! analog
voltage output was included to permit future expansion, possibly the control of a more sophisticated gripper.
To produce these outputs, seven independent DACs (digital to analog converters) were used. The independent DAC
approach offers the advantaye of a very straightforward interface, improved accuracy and simpler circuit design,

As described in the Analysis section above, the analog outputs must be capable of delivering a voltage from
.10 volts to +10 volts at a resolutfon of 10 bits (1 part in 1024) to properly drive the inputs of the servo
motor power amplifier,

6.1.3 Analog Input: The AOCs

As described in the analysis section, each of the PUMA 560 joint motors has a potentiometer which produces
an output fram O to 5 volts and, to be useful in absolute position determination, these signals must be resolved
to an 8-bit accuracy. Fast, high resolution analog to digital converters can be obtained at reasonable prices
which exceed the basic specification but give the Joint Interface Board more power. Analog Devices' AD574 (7]
is a popular example. It has a 12-bit resolution, a conversion speed of less than 30 micro-seconds, selectable
input ranges of 0 to +10, 0 to +20, -5 to +5, and -10 to +10 volts, and a cost of less than $35. At this speed
of conversion, one device is fast enough to convert all six joints' pot data in less than 0.2 milliseconds, a
speed :a?t enough to allow the pots alone to be used as the primary feedback element in situations where it may
be useful,

To use one ADC to convert several analog input signals requires the use of an analog selector or multi-
plexer. A typical analog multiplexer, the LF1308 has eight voltage inputs which are selected to one output,
This output can then be converted by the ADC, one at a time., Like the DAC outputs, ADC outputs must also be
latched. However, since the ADC output is digital, it may be easily stored inside the computer using software
without using any special hardware.

6.1.4 Timer Subsystem

Generating a constant sampling interval requires an external clock source to interrupt the CPU and cause
the control software to execute. The Multibus provides a 10 MHz clock requiring an onboard frequency divider
logic. To allow convenient changing of the sampling rate, a divide-by-ten prescaler followed by a micro-
processor compatible programmable timer was selected. An Intel 18254 triple 16-bit timer 1.C. [8] was used. It
features extensive programmability, high resolution (one part in 65K). In the divide-by-n mode it can be
programmed to generate a square wave with a period from 2 microseconds to 65 milliseconds in l-microsecond
steps. This corresponds to a rate from 22 Hz to 500 KHz (though rates above 200 Hz are not usable in the
present system). Timer #0 is used as the interrupt clock, leaving timers #1 and #2 available for future
applications.

6.1.5 Digitel 1/0

To make the Joint Interface Board a more flexible and general purpose interface, an additional parallel
input/output (PI0) I.C. was included in the design. All the 24 outputs from this device go directly off-board
via the connector J12 and are not used by any of the onBoard electronics.

6.1.6 The Encoder Subsystem

The JIB accepts six sets of incremental encoder signals. £Each input set is used to control its own 16-bit
counter, instructing it to count UP, count DOWN, do nothing, or RESET to zero. The encoder subsystem can be
divided into three parts: (1) the basic up-down counter; ?2) the decode logic; and (3) the reset logic.

A. -.The Counters

The 16-bit up-down counter is a straightforward cascading of four 4-bit up-down synchronous counter
with three control imputs: clock enable (CE), up-down select {UD), and reset (R). The system clock is
running continuously at 1 MKz.

To directly implement a state decoder, six decoders would have to be constructed. This would probably
require six 16-pin DIP packages. These would probably have to be either bipolar PROM (programmable read
only memory) or some type of PLA (programmable logic array)}. If the PROM approach is used, 2 16 x 2 =
32-bit PROM would be sufficient. The total number of bits required by all six units in this scheme is 196
bits.

This new 12-bit vector has 4096 possible states, each of which must be decoded to generate a 6-bit
output vector, 0, with the proper CE and UD signals for three counters,
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For six counters, a total of 4096 x 6 x 2 = 48 K-bits is required. This is two orders of magnitude
greater than the scheme where each counter has its own state decoder. The advantage of this bit wasteful
approach is that all this decoaing can be done using just two 8 K-byte EPROMs packaged in 28-pin DIPs.
These memory [.C.s are inexpensive and EPROM programmers are typically found in microprocessor developnent
laboratories. . . ' ‘

B. The Encoder Reset System

An index pulse signal is generated every incremental encoder (servo motor) rotation. This signal is
used to supply quasi absolute position information about the motor so that the motor revolutions (e.g. 0°,
360°, 720°, etc.) can be distinguished from one another. Typically these index signals are only used
during initialization of the hardware and software after system power up, Once the system has been
initialized, incremental information alone is sufficient to determine absclute position (provided no
encoder state changes are missed).

The basic scheme of the reset/calibrate routine is to rotate each motor until the index pulse is found
and then this position is defined to be the position zero. Conceivably, this could be done in software by
continuously reading the index signal until it is detected. This would require the software to sample the
signal fast enough so that the pulse is not missed when the motor is moving at some speed.

To overcome this limitation, a hardware scheme was devised which allows calibration of the system with
the motor to be running at any speed within its operating limits. Each counter has a synchronous reset .
input. The index signal from the encoder could be connected to this input causing the particular counter
to reset to zero whenever the index pulse occurs. However, since the motor typically rotates tens of times
during the joint travel, some form of selectively gating the index signal on and off was required.

This circuit is asynchronously set or 'armed' via the ARM RESET signal. Once armed, the next
occurrence of the index pulse generates a single reset pulse for the associated counter circuit. Once the
reset pulse is issued, the circuit disarms itself so that further occurrences of the index pulse will not
reset the counters. The software can monitor these signals to check if the reset circuit is armed or not
and can thereby determine if the index pulse has occurred.

6.1.7 The Multi-Bus Interface

Up to this point, all the subsystems described here have been computer independent (except for the general
requirement of a 16-bit bus). This allows easy conversion to many other 16-bit computers such as the I[BM-AT,
At this point the design Secomes specific to the hardware of the host machine. The Intel 310 system is based on
the Multibus. The Multibus supports direct addressability up to one megabyte through a 20-bit address and 8-
and 16-bit data transfers at a rate of five million transfers per second (10 MB/sec). The Joint Interface Board
has been designed as a simple slave and never controls the Multibus. The JIB only decodes the address lires and -
acts upon the command signals from the bus master.

6.2 The Unimation Interface

The following sections describe how the Joint Interface Board and the XENIX software interface runnirg on
the Intel 310 were connected to the Unimate PUMA 560 arm. Position feedback signals from the arm servo motors
are sent to the JIB, and the JIB sends analog voltage outputs to the power amplifier, which in turn drives the
servo motor in each joint,

The Unimate PUMA controller consists of an LSI-11/73, six 6503-based joint controller boards, several low
level interface boards, and a six channel-high current power amplifier. The controller presented in this
project makes use of only the power amplifiers and one of the feedback signal conditioning circuits. The LSI-1L
and the six microprocessor joint controllers are completely bypassed.

To close the loop around the joint motors, the feedback signais from the PUMA 560 have to be connectzg to
the Intel system and the output command voltages must be returned from the intel to the power amplifiers "n the
Unimate controller. It was considered desirabie to make the necessary modification to the Unimate contrciler in
such a way that switching between the Intel controller and the internal Unimate controller systems is as simple
and safe as possibie.

Connecting the feedback signals from the Unimate. Controller to the Joint Interface Board is accomplisned by
inserting a proto-iyping card {from nere on called the Ynimate interface 3pard) into one of the several &,zil-
able empty, unwired slots of the joint controller portion of the Urimate card cage [9). This technique was
selected for several reasons. All of the PUMA arm feedback signals. enter the controller through connectcr J-30
and are hard-wired directly to the ARM CABLE CARD in the card cage. Here some basic signal conditioning Is
performed, power is supplied to the joint pots and encoders, and the encoder outputs are then buffered to
produce clean logic levels. Since these functions are required and would have to be duplicated if this sun-
system was not used, it was convenient to use thé external hardware'and obtain these signals after conditianing.

The only place these feedback signals are found is un the backplane of the PUMA joint controller's card-
cage. One of the available slots was chosen and all the necessary connections were made only by adding wires to
the backplane, bringing all the feedback signals to the selected stot. This has the attractive feature cf not
having to break or cut any Unimate connections, leaving the controller intact. When_ the Unimation Interfzce
Card is removed from its slot, the system is electrically and logically in its original condition.. The card
whicn is inserted into this slot also contains an inverting line driver to buffer the encoder signal to drive
the wires connecting it to the I[ntel/JIB system.
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N While the feedback signals can be sensed without hreaking any connections in the Unimate controller, this
is not possible for the motor current command signals. In.general, either the Unimate or tne Intel/JIB joint

"motor current command signals (the DAC outputs) can he used, since only one controller can be selected to drive
any motor at any one time, Current command signals enter the power anplifier through connectors P73 ant PJ4,
These connectors are located an the top of the POWER AMP CONTROL card amd are readily detached., This is the
only point where these signals caen be 'intercepted’ and the I[ntel signals injected without permanently modifying
the circuit (e.g. cutting wires). A small interface panel with the appropriate connectors was fahricated to
allow the JIB and Unimate motor current command signals to he selectively sent to the lnimate's power amplifier
on a joint-by-joint hasis (which 's very useful during systsm debugqing).

6.3 The XENIX to the Joint Coatroller Board laterfare

The Joint Interface Board is installed in the [/0 space of the Intet 310 (distinct from the memory space)
and like all other system hardware in XENIX, the user can only access it through system device drivers. Drivers
for all the JIB devices have been written and installed 1nto XENIX (see software listing in Appendix H (1]).
Application programs access. these devices through symholic names fe.qg. “"dac 1", “adc_4", "timer_l", etc.), The
device driver controls the details of the data format amd of physically aadressing the hardware transparent to
the application program [10]. ’

Properly written drivers protect the system from the application programs and make the user interface
clean and simple. A motor controller can be implemented entirely at the application level, individually access-
ing the incremental encoders, DACs and the ADC through their respective device drivers. While this will work,
much of the CPU time 1S consumed in aperating system overhead, Each [/0 request {e.g, read and write) takes
substantially longer to execu.: than if the software is able to directly address the hardwure (not permitted in
XENIX]. An alternative to implementing the contraller at the application level is to piace it in the XENIX
kornel as a single loyical aevice (e.q. rather than “dac_l" and "encd 1" devices, a single “pid 1" can be
considered as the basic [/0 unit). Code written at the Fernel level Ras direct access to the 1/0 space and may
read and write to the JIB without going through the operating system, This reduction of overhead can reduce
execution time by aboul 50%.

f.4 Real-Time Issues

XEHIX is not a real-time operating system: it does not guarantee when a particular application program will
get executed, It is often said that XENIX (vis-a-vis UNIX) does not guarantee when an interrupt is serviced,
This only reters to the application level, not .the lowest level of interrupt handling. In the common applica-
tion ot & terminai handler, an interrupt is issued from the serial interface hardware (a UART) =ach time a rew
character is received from tne terminal. The interrupt handling software then services the hardware, takiny the
new character and putting it into the terminal handler's buffer. This software only competes with other
interrupt routines (e,q. otner terminals) tor CPU time, MNon-interrupt level operating system software which
pracesses the characters in the terminal handler's buffer must compete with the entire system {(including otker
applicatian programs) for CPY time and it is here where XENIX cannot guarantée response time. This issyz is
important in destgning 4 real-time controller,

A SEMIY hased real-time controller may he constructed in two fundamentally different wayc. Both methods
require that an erternal timer interrupt the P at fixed intervals and that kernel level device d./iver be
installed in the XEN[Y system to process this interrupt, In the first method, the intérrupt handler of the
AF1ver responds to the timer rnterrupt by only setting a flag in the driver's memory, When the ‘device’ is read
hy the applicatinn software, the read part of the driver tests this memory flag. [f the flag is set, it returns
Nack tn the application program, - 1f the tlag has not heen set (i.e. the timer has not yet interrupted the CPuy,
the read routine xeeps testing the flay until 1t 1S set hy the timer interrupt. This technique allows
application programs to syncnronize themselves to the external clock and produce a constant sampling rate for a
f1c1tal controller written at this level. iowever, XENIY dnes not quarantee when the application program will
be allowed to execute, and this may. lead to occasional missed sampling intervals, As Tong as XENIX §s run in
the stngle user mode 4nd the timer Interropt 1570t faster than LU0 Hz, a useful system.can be implemented.

In the second method, the ope used in this project, the entire control system software is installed at the
vorrel level At (ENIL and 15 evecyted as part ot the taterrupt service routine of the driver itself. Since the
interrust seryice routine does not nave to compete with the non-interrupt portion of XENIX lincluding al
apphication rograms}, tnis technique is juaranteed to he executed on each timer interrupt, procducing a reliable
Sdampiing 1ntervat.

This 15 an otfective method ot implenenting 4 real-time contrealler in XENIX, There are disadvantages to
naving tne contraller at the device driver level, nowever, First 1s software development time., Drivers must be
shystrally Tieeed ta the SE516 wernel,  This taves about 1% mrnutes ard substantially increases the develcpment
time for the ~ontroller code,  Secondly, sirce device drivers nave full access to the system, programming errors.

may S troy tNe Sottwars systes Creguiring (310 to te reloaded from disvette). In spite of these proolems,
this strll seems £0 me thb mnst’ cractical way of putlding a cantroller vn LENIX. -
I, Spplycation and Canciusion
’ Sppdicatien

pee the Carnt Intertace Yodrd wds constructed apd tehagcged, the basic (/0 drivers were installed into the
PPN a o b qrd tpstiel,  Atter the hasic SyStem hecane operattonal, 3 simple bhut complete evample of 2
sontroller LS e 1gred and teS T,
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The objective of this project was to design and construct the hardware and interface software to implement
a robot controllier. To perform a functional test on the entire system, a simple six-axis P.D, digital control-
ler was implene. ted, In aadition to testing the integrated system, 1t also served as a documented application
guide for use of tne JIB and the XENIX interface.

Figure 4 shows the basic controtier system. The controller is divided into five distinct subsystems:
(1) the application software wnich issues high leve! joint motion commands (kinematics, path planning, etc,) and
runs in the normal application enviromment ot XENIX; (2) «ernel level driver software which interprets the read
and write commands from the application programs; {3) tnterrupt level driver software which “services” the timer
interrupt by executing the control structure software, reading and writing directly to the JIB hardware; (4) the
Joint Interface Board which interfaces the computer joint motor signals; and (5) the robot arm itself, tncluding
power amplifiers, joint motors and feedback elements,

The simple P.D. controller implemented in this project was able to satisfactorily control all six PUMA 560
joint motors simultaneousty, Tne P.D, coefficients were experimentally determined by trial and error. This was
done one joint 4t a time while the other Joints were locked. When all joints were operated together, the stronj
coupling between joints 2 and 3 ishoulder and elbow) causea strong cscillations. The gains of these joinis were
reduced to produce a more stable system, This is an area where more sophisticated control techniques should
produce improved results.

7.2 Concl sion

The basic ohjective of designing and constructing a qgeneral purpose robotic controller was completed
successfully, The system has been used to control the PUMA 560 robot arms, demonstrating the functionality and
flexibility of the design. The Jeint Interface Boara has served its overall design objective well,

tising the XENIX operating system was done with mixed results. High level software is easily developed (at
Teast for UNIX users). Whereas the method of low-level servo-1oop software programming was somewhat less than
desirable in that routines on this level must be directly linked (using the 'id’ linked) to the XENIX kernel,
Therefore, it involves a fairly time-consuming task, XENIX also prohibits writing C-code in the kernel level
which uses the floating point coprocessor (via an undocumented c-compiler flag). This was disappointing, hut
there are ways around this problem. This last issue is an ares where more time and effort would be useful,
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