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the properties of a temporal l a m u a m  8m determined br its 
constituent elements: the temporal objects which it can represent. tho 
attributes of those objects. the relationships between them. the 
axioms which define the default relationships, and the rules which 
define the statements that can be formulated. The mothods of inference 
which can be applied to 8 temporal language are derived in part from a 
small number of axioms which define the waning of equality and order 
and hor those relationships can be propyated. hre complex inferences 
involve detailed analysis of the stated relationships. Perhaps the 
most challenging area of teaporal inference is reasoning over 
disjunctive temporal constraints. Simple f o r u  of disjunction do not 
sufficiently increase the expressive power of a langua8e while 
unrestricted use of disjunction makes the analysis NP-hard. In many 
cases a set of disjunctive constraints can be conmrted to disjunctive 
normal form and familiar methods of inference can ba applied to the 
conjunctive sub-expressions. This process itself is NP-hard but it is 
made more tractable by careful expansion of a tree-stmctured search 
space. / 

1. Introduction 

An intelligent autonomous system operating in a remote. unstructured 
environment must have three capabilities. First. it must be able to create a 
plan or course of action according to an initial state of the world. a goal 
state of the world. and SOM knowledge of its own abilities. Second, it must be 
able to determine a sequence of actions. according to the constraints on the 
steps of the plan and the evolving state of the world. Finally, it must be able 
to produce the desired effect of those actions according to its abilities and 
the present state of the world. 

of such a system can be very much affected by the language used to represent 
plans. The concepts of action must be suitable for the planner. which must 
reason about goals and effecta, but at the s a n  time be tractable for the 
executor. which must produce the desired effects. The concepts of order must be 
sufficient for the planner. which must control undesired interactions between 
operations. but at the same t i w  they muat not impose unnecessary constraint on 
the sequencer, which must adapt the sequence of actions to the dynamically 
changing state of the world. The methods of formulation must enable the planner 
to produce the most general plans possible. yet at the s a w  time it must be 
feasible for the sequencer to derive a sequence of actions from those plans. The 
language must be terse. The s i z e  of the plan must be proportional only to its 
complexity. 

The performance of the planner. the sequencer. and the executor components 
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I t  bu b.an m m t r d b  S-+.d t&t QI.t tb0 I S  .P O S S m t h l  
e1-t of pl- rad spocific t.qp0-1 reprosmatatim br*r boon oaopond to 
facilitate tln plumins ~XOCOSS. iocludiry a linou orolrrriru modal of #lik 
m d  Binford[ll. tln s0.cr-t- up. of Millert21. tln internal algmbra of 
Allm[Sl. the point alsebr8 of Vilain u u i  Iturt.[l]. a d  +& ad-point  -p-- 
tation of C h e e ~ [ S l .  AltbDaUh not conCuB4 rith pl..ainS but instead rith 
the p m b l r r  of aequrnciag tho activities of robots. Far m d  K a p f [ b ]  pmpou a 
1- of tarporal constraints as the Wt rapramatation for plaumrs. 

With t h i s  abundance of w r a l  luaguues for planairy rpd -flu. it 
is important to establish the properties of the proposed luagwges rpd to 
understand the inference methods rhtch cam be applied to *em. Althouda a 
complete suxvei of temporal roasoni- is beyond the smpm of this m. ut 
examination of the basic elemants of trporal reprosentatian md tho rsUlods of 
temporal inference will establish th. pri.url criteria for commrimg &so 
IUWU-. 

2. nut8 of trg0ra.l hprmmaDtatiam 

Tho properties of a language are ombodied in its syntactic forr and its 
seaantic interpretation. Tho concern hero is with thr -tic el-ta of a 
language rather than with its syntactic details. Nevwtheless. in order to 
discuss the variety of possible temporal langu-a. 1, is necessary to introduce 
some simple syntactic structures which represent abstract semantic entities. 

Temporal languages are concerned primarily with w r a l  objects: instants 
and intervals of time. S o n  author8 maintain that instauts of time present s m  
seaantic difficulties and therefore propose that tima intervals should bo tbe 
primitive element of temporal reasoning[3]. Others maintain that intervals of 
time can be defined by their endpoints and propose that instants shoald be 
treated as the basic elomnt of temporal reasoning. S a m  sequencin# problems 
involve activities. which in reality occur ovmr soma iaterval of time. but for 
purposes of analysis can ba treated as aumic and indivisible. In tha followin# 
discussion. instants of t i n  will be treated as primitive objects. &noted by 
alphanumeric symbols such as X. 1. and mine-o'clock. Likewise. intervals will 
be denoted by alphanumeric symbols. such as 2. U. hstd l - c l ip .  and drill-bole. 
but when useful or necessary. the initial and final d p o i n t s  of an intenval 
will be denoted by a suffix letter i or f attached to the interval naae. such 
as Zi and Zf. 

Some languages may allow the specification of the absolute t i n  of s o n  instant 
or it may be possible to specify the duration of interval. Specialized 
systems may associate the properties of pbsical procerres with intervals, such 
as rates. loads. or volumes. Planning systems may associate propositional 
variables and their values with temporal objects. Ultimately. each temporal 
object is associated with some event. activity. or proposition. For instance. it 
is possible to refer to the instant which begins an occultation. or the interval 
of time when the action install-clip is performed, or the interval 3f time over 
which the proposition chanoel-is-available is true. 

objects. The most primitive involve the relationships between instants of time. 
Two instants may be equal, denoted by the operator =. they may be inequal. 
denoted by the operator 0 ,  or they MY be ordered, as denoted by tbu operator 
<. In order to avoid any syntactic ambiguity. such relationships are written in 
fully parenthesized infix notation. as in the expression (X < 1). The relation- 
ships between two intervals of time. as defined by Allen, are shown scheaati- 
cally in Fimre 1. The relationships between instants and intervals of time can 
be defined in a similar fashion. All of these relationships can be specified b 
their respective endpoint relationships as indicated in the right hand column of 
Figure 1. 

In addition to the facilities for explicitly stating the relationships 
between temporal objects, a temporal l a m a p e  must include some u i a s  which 
define the relationships between objects that are not otherwise constrained. 
Commonly. it is assumed that, in the absence.of other explicit constraints. tro 
instants of time. X and Y, are ordered as either (X < 1) or (Y  < X I ,  or they are 
equal. (X = Y ) .  Likewise, unless otherwise constrained. two intervals can be 
related in any of the 13 possible ways shown in Figure 1. In some applications 
involving the serial execution of a set of operations, there is no opportunity 
for any of the operations to be done concurrently. In such cases an u i o m  which 
defines the default relationship between intervals states that, unless otherwiw 
constrained. two intervals. X and Y are disjoint and ordered as either 
( X  before 'I) or (Y bafore X ) .  Such axioms play a significant role in the 
treatment of negation and the processes of inference. 

Temporal languages are concerned with the attributes of temporal objects. 

Temporal languages are concernc* rith the relationships b e t w e e n  temporal 
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Temporal 1mW.a~ M subject to certain ~ l e s  of formalation. The 
simplest  le i a  to ass- that a given set of primitive conatrainta is to be 

coatrut, thm l-go &find br Allon allows a rrstrictd form of dhjunction. 
?lam rdationship ktrrrn a givrn pair of intorvals can k s0.cifi.d u a 
disjuoctioo of rry of tho 13 possiblo priritive relationships. Thh makea it 
possible to circrrrcriba indefinite relationahips or to 9roscribe aam rehti00- 
ahips which cannot bo uprasaed 8s on0 of the 13. lor instance, auppoae that two 
intar*rls. I .ad Y. rust begin at tbe same t h o  but that thoro ia no constraint 
on tboir trrri~tioo. It r w l d  utiffciallt constrain tho intorvals to atatr 
that (x Y) b u a w  thi8 primitin rolationahip rmquiros th8t x torminrtr 
kfora Y. L i b i a r  it warld k an utificial cooatraint to roquire t h t  
(I ba#h8 I). Using this rocabulur of 13 priritiw relationships. the 
relationship between X and 'I can only h a t a t d  as a disjunction. ((1 be&m '1) 
or (Y baghs I)). In Allens's language, disjunction is restricted to phrases 
that define the relationship between a ailule pair of intervals and cannot be 
used to pose conatrainta auch aa, ((I boforr 'I) or (2 Worm U)). 

these elements: tbu objects. attributes. relationships. default ui-. and 
rules of forulation. Together these elements determine the set of problems that 
can be represented. For instance, the 1.1uuage of strict partial orders is 
composed of smbols which denote instants of time. the primitive ordering 
relationship <. the default axiom that states for all X and Y either (X < 'I) or 
('1 < X), and a rule of formulation that allows only conjunctions of primitive 
ordering constraints. A given constraint expression in this language defines a 
set of admissible total orderings over a set of instants of time. For example, 
The conjunction ((X < 2) and (I < 2)) defines 2 admissible orderings of I(. Y, 
and 2: [X,Y,Z] and [Y.X,t]. The limited rule of formulation in the language of 
strict partial orders makes it impossible to state the constraints for a problem 
which admits the 4 linear orderings [X,Y,Z]. [Y.X,t]. [Y,Z.X], and [Z.Y,X]. 
There is no conjunction of primitive ordering constraints which defines exactly 
this set of linear orderings! The limited forms of disjunction included in 
Allen's interval algebra or the point algebra defined by Vilain and Kautz 
encompass s o w  sense of indefiniteness in the relationship between temporal 
objects but these forms of disjunction are not sufficient to represent the full 
range of possible ordering problems. 

A number of common temporal representations can be quickly distinguished by 
their constituent elements. For instance. the language of equivalence classes is 
composed of symbols which denote atomic temporal objects, the equality and 
inequality relationships. = and <>, an axiom which states that for all X and Y, 
( X  = Y) or (X <> 1).  and a rule of formulation which allows only conjunctions of 
equality constraints. In contrast, the language of graph coloring problems has a 
similar structure but the rule of formulation allows only conjunctions of 
inequality constraints. The language of temporal constraints proposed by Fox and 
KempfC61 is composed of symbols which denote atomic temporal objects, the 
ordering relation- ship <. an axiom of serial processes which states that for 
all X and Y. (X < Y) or (Y < X) .  and a  le of formulation which allows 
arbitrary use of conjunction. disjunction, and negation. This axiom limits the 
scope of this language to problems that involve activities that must be done one 
at a time. such as a robot performing an assembly task. However. the 
unrestricted use of disjunction guarantees that this language can represent any 
problem within that domain. Portrait, a temporal language under development by 
Fox and Green allows arbitrary use of equality. ordering, conjunction. 
disjunction, and negation. 

3. Cbthods of Temporal Inference 

t-tOd 8s 8 colrj-tion rod that t&l Ilut d l  br -ti.fird 8frultrP.ouSlI. In 

The proporties of a temporal language are deterdned br the carbination of 

Temporal reasoning is a process of deriving the properties of temporal 
objects and the relationships between temporal objects that are implied but may 
not be explicitly stated in a given set of teaporal constraints. The most 
familiar form of temporal reasoning is constraint propogation. In the language 
of equivalence classes constraint propogation is based upon two axioms. The 
first defines the symmetry of equivalence: for all X and Y. (X = Y) implies that 
(1 = X I .  The second defines the method for propogating equivalence: for all X. 
I. and 2. (X = '1) and (Y  = 2 )  implies that (X = 2) .  There is no sympetry in the 
language of strict partial orders. only an axiom which defines the method for 
propagating order: for all X, Y. and 2, (X < Y) and (Y < 2 )  implies that 
(X < 2) .  The language of partially ordered sets includes an axiom which defines 
how a disjunction of order and equality can be propogated: for all X, Y, and 2, 
(X <= Y) and (Y <= 2) implies that (X <= 2) .  Coupled with this is an axiom which 
defines how constraints over a given pair of temporal objects can be resolved: 
for all X and Y, (X <= I) and (Y  <= X)  implies that (X = Y ) .  If, after the 
complete propogation of constraints, only one of the constraints (X <= Y)  or 
(Y <= X) has been imposed then it can be assumed that the two objects are not 
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equal. Vilain 8nd Rautz define a language over instants of t i n  which, for a 
given pair of instants. allows an arbitrary disjunction of the 3 possible 
relationships tmtuean.that pair. In this context. the propogation of constraints 
can be boat defined by a matrix as shown in Figure 2. Conjunctions of 
constraints w e r  8 single pair of instants can be resolved by a rule of 
intersection as ahom in  the matrix of Pigum 4. Vilain has demonstrated that 
constraint propogation within this language is both colplete and correct. 
Allen's interval algebra relies upon similar. tabular rules of inference. but 
because of the added complexity of this language, constraint propagation is not 
#U8rmtOUd to be Cmplete. 

In m a t  circurstances these constraint propagation axioms can be applied in 
reverse i n  order to identify the essential constraints in a problem and to 
e l h i n a b  any implied constraints. Given the COaplete set of implied and 
essential constraints it is a simple matter to identify the equivalence class of 
s m  t q r a l  object along w i t h  all of its predecessors. direct predecessors, 
siblings. successors, and direct successors. For instance. the a x i o m  w h i c h  
defines the prodecessors of a temporal object Z states that X is a predecessor 
of Z if (X < 2). The direct predecessors of Z include all those temporal objects 
X such that (X < I )  but there does not exist I such that (X < Y) and (Y < 2). 
These can be easily identified by scanning the set of essential constraints. 

Reasoning about the admissible ordering of temporal objects is directly 
related to an analysis of precedessors and successors. For instance, in  the 
1.ryua.e of strict partial orders. the controlling axiom specifies that a 
temporal object X can occur only after all of the predecessors of X. Of course. 
those objects which have no predecessors can occur at any time. This axiom can 
be used to incrementally build sequences of activities. At each step of the 
process simply choose one of those activities which can occur next. 

admissible sequences of activities but do not remove every sequencing. option. In 
most problems them are many admissible sequences. The number of admissible 
sequences can serve as a useful indicator of the available sequencing options. 
In some problems this may provide an estimate of the effort required to find the 
best sequence of activities. In other problems it may provide an estimate of the 
inherent flexibility that can be exploited in sequencing those activities. The 
naive approach to computing this number would be to explicitly enumerate all of 
the feasible sequences by exhaustive application of the sequencing axiom or 
other more sophisticated algorithms[7]. Unfortunately, the simplest of problems 
will prove the most intractable. Consider a serial task of 15 steps with no 
sequencing constraints. There exists 15!  = 1,307,671,368.000 sequences. Even if 
one sequence could be generated each microsecond it would still requie 15 days 
to enumerate the entire set. Fortunately. general methods are available which 
can determine the number of feasible sequences over a strict partial order 
uithout explicit enumeration. These methods are first reported in a textbook by 
Wells[8] but several refinements of these methods were developed at MDRL by the 
authors. Generally, this computation can be accomplished by recursive 
application of 3 simple rules: 

In most sequencing problems the combined ordering constraints limit the 

(1) if a set of activities can be divided into two subsets such that 
all of the activities in the first set must precede all of the 
activities in the second set, then the total number of feasible 
sequences equals the number of feasible sequences for performing the 
activities in the first set times the number of feasible sequences for 
performing the activltiea in the second set. 

(2) if a set of activities can be divided into two subsets such that 
all of the activities i n  the first set can be performed independently 
of the acitvities in the second set. then the total number of feasible 
sequences equals the total number of feasible sequences for performing 
the activites in the first set times the number of feasible sequences 
for performing the activities in the second set times the number of 
ways that one sequence from the first set can be interleaved with one 
sequence from the second set. 

3) if a set of activites cannot be divided into two subsets according 
to rules (1) or (2) then that set of activities can be partitioned into 
two strategies for performing those activies which have no feasible 
sequences i n  common, and the the total number of feasible sequences 
will be the number of feasible sequences under the first strategy plus 
the number of feasible sequences under the second strategy. The 
partition is generated by identify a pair of unconstrained activities, 
X and Y .  The first strategy is defined by the orginal set of 
constraints plus the constraint that X must precede Y, (X < "1, and 
the second strategy adds the constraint that Y must precede X, 
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('I < X). (Repeated application of these 3 rules is guaranteed to work 
regardless of the X axid Y &son wbea uni- -10 3, but the number of 

cuefully selecting the steps X .nd 1, it is possib1e.to control the 
number of partitions ultimately generated.) 

By recursire application of these ~ 1 0 s  it is possible to determine the 
number of feasible sequences for performing a set of activiites from start to 
finish, or it can be used to determine the number of ways of completing tho task 
from any liven state. In most circumstances the number of feasible sequences 
corresponds closely to the degree of flexibility inherent in the sequencing of 
the activites and it can be used as a valuable metric for comp8ring different 
plans or strategies. As a side-effect, application of the 3 rules stated above 
results in the decomposition of a given t8sk into sets of dependent activities. 
sets of independent activities. and into dinjoint sub-strategies. This 
decomposition can be used by human analysts to batter understand the structure 
of the tasks that they must plan and coordinate. 

Unfortunately, inference over a disjunctive language, such as that 
developed by Fox and Rempf, Is much more difficult. One way of resolving the 
constraints in a disjunctive constraint expression is to convert a given set 
constraints into disjunctive normal form, i.e. a disjunction of conjunctions of 
the primitive ordering constraints, keeping only the satisfiable and non- 
redundant subexpressions. In that form, the aethods of inference sketched above 
CM be applied separately to each conjunction of constraints and the results 
combined under an appropriate interpretation of disjunction. The production of 
this reduced disjunctive normal form is very difficult, in fact it is NP-hard, 
but it is an essential part of more general temporal reasoning 

For instance. the constraint expression shown in Figure 4 is typical of the 
constraints imposed on small issembly problems. Production of the disjunction 
normal form of that constraint expression, using the distributive law of boolean 
algebra, (X and (Y or 2) )  --> ( ( X  and Y) or (I and Z)), results in a set of 1024 
conjunctions. In general, the size of the disjunctive normal form grows 
exponentially with the number of applications of the distributive law. Some of 
the resulting conjunctions are inconsistent and should never be considered, 
others are specific cases of more general sub-expressions in the result and can 
safely be removed. Other simple methods for producini the disjunctive normal 
form have the same result. However, all of the admissible sequences for 
performing the task defined by these constraints are embodied in only 22 
conjunctions. 

m i t i m S  #Wlrratrd f S  S i @ l i f i O U I t l *  dfrokd +hO choice. 

An efficient method for deriving that set of 22 conjunctions is closely 
related to methods for determinins the satisfiabliity of boolean expression and 
is based on the expansion of a tree structured search space. Each node in the 
search space consists of 2 parts. The first is a partially formed conjunction, 
and the second is a constraint expression which remains to be satisfied. The 
root node consists of an empty conjunction coupled with the initial constraint 
expression. Successor nodes are formed by propagating primitive constraints from 
the constraint expression into the conjunction being constructed. The target 
leaf nodes consist of a completed conjunction which satisfies the original 
constraint expression and an empty set of constraints remaining to be satisfied. 
Specific heuristics have bean developed which make it possible to prune 
redundant or inconsistent solutions early in the tree expansion. Using these 
methods the constraint expression shown in Figure 4 produced 28 consistent 
conjunctions, 6 of which were subsequently idsntifed as redundant. Subtree 
expansion was terminated 58 times because inconsistencies were detected and 12 
times because redundancies were detected. This is considerably more efficient 
than producing 1024 conjunctions and then attempting to prune the 
inconconsistent and redundant sub-expressions. 
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4. copolusion 

The properties of a temporal hn#ua#o are determined by its constltueat 
elements: the tamporal objocts which it cam reprosent, the attributos of thoso 
objects, the relationehips betwoon thoso objocts, the axioms which define tho 
default relationships, m d  tho rules which dofino tho statomontr that CUI bo 
formulated. The wthods of inferonco which can be applied to a tompord lmguago 
are derived in part from a a u l l  nwbor of axioms which defino the m e m i n g  of 
equality and order and how those relationships can be prop.#ated. nore corglex 
inferences involve detailed analysis of the stated relationship.. Perhag. the 
most challenging area of tamporal inference 1s reasoning wer disjunctive 
temporal constraints. Simple forms of disjunction do not sufficiently increase I 

the expressive power of a language while unrestricted use of disjunction make8 
the analysis NP-hard. In many cases a set of disjunctive constraints caa be 
converted to disjunctive normal form and familiar methods of inference can be 
applied to the conjunctive sub-expressions. Thia process itself is NP-bard but 
it is made more tractable by careful expansion of a tree-structured aeuch  
space. 

Ref erencos 

[l]Malik, J .  and Binford, T.O., Reasoning in time and space, Proceedings Eighth 
International Joint Conference on Artificial Intelligence, Karlsruhe, West 
Germany, 1983. 
[2]Miller, D., Scheduling heuristics for problem solvers, Research Report 264, 
Yale University Computer Science Department, New Haven, Conn., 1989. 
[3]Allen, J.F., and Koomen, J . A . ,  Planning using a temporal world model, 
Proceedings Eighth International Joint Conference on Artificial Intelligence, 
Karlsruhe, West Germany, 1983. 
[IIVilain, M. and Kautz. H., Constraint propogation algorithm for temporal 
reasoning, Proceedings Fifth National Conference on Artificial Intelligence, 
Philadelphia, Penn., 1986. 
[5]Cheeseman, P., A representation of time for automatic planning, Proceedings 
Second IEEE international Conference on Robotics and Automation, Atlanta, 
Georgia, 1983. 
[6]Fox. B.R. and Kempf, K.G., A representation for opportunistic scheduling, 
Proceedings Third International Symposium on Robotics Research, Paris, Prance, 
1985. 
[7]Kalvin, A.D. and Varol. Y.L., On the generation of all topological sortings, 
Journal of Algorithms, v4, pp. 150-162, 1983. 
C81Wells. M.G.. Elements of Combinatorial CO~xpUting. Pergamon Press, Elnsford. 
New York, 1971. 

X before Y, Y after X +----- x-----+ 

X meets Y, Y met-by X +----'x-----+ 

X overlaps Y,  Y overlapped-by X +-----x-----+ 

X starts Y.  Y started-by X + - -x- -+ 

+----- y--'--+ 

y-----+ +----- 

y-----+ 

+----- y-----+ 

X ends Y, Y ended-by X 

X contains Y, Y contained-by X +----- x----- + 
t--y--+ 

X equals Y 

Figure. 1. 
Thirteen possible interval relat 
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xi < X f  < Yi < Yf 

x i  < x i  = Yi < Yf 

Xi < Yi < xf < Y f  

xi = Yi < x i  < Yf 

Yi < Xi < X f  = Yf 

xi < Yi < Yf < Xf 

xi = Yi < Xf = Y f  

PS . 
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yRs < = > <= >= <> <=> 
< < <=> < <=> <=> <=> < - < = > <= >= <> <=> 

> <=> > > <=> > <=> <=> 
<= < <= <=> <= <=> <=> <=> 
>= <=> >= > <=> >= <=> <=> 
<> <=> <> <=> <=> <=> <=> <=> 
<=> <=> <=> <=> <=> <=> <=> <=> 

*rR. - 

Figure 2. 
Matrix of constraint propalation in the point algebra. 

XRY 
< 

> 
<= 
>= 
<> 
<=> 

* <  = > 
XRY 

< x x  
x = x  
X I >  
< = x  
x = >  
< x >  
< = >  

<= >= <> 

< x <  - = x  
X > >  
<= = <  - >= >= 
< > <> 
<= >= <> 

- 
<=> 

< 
> 
<= 
>= 
<> 
<=> 

- - 

Figure 3. 
Matrix of constraint resolution in the point algebra. 

Typical disjunctive 

before cl) 
before cl 
before at) or (co before d r ) )  
before co) or (dr before ba)) 
before dr) or (ba before ca)) 
before co) or (ra before ba)) 
before ra) or (mi before ma)) 
before co) or (mi before ba)) 
before mi) or (am before ba)) 
before co) or (am before ba)) 
before co) or (ri before ba)) 

and 
and 
and 
and 
and 
and 
and 
and 
and 
and 

Figure 4. 
constraints on the steps of an assembly problem. 
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