
NSQ- 26596

DIAGNOSTIC TOLERANCE FOR MISSING SENSOR DATA

Ethan A. Scar1

Boeing Computer Services
P.O.Box 24346 Seattle, WA 98124-0346

Abstract

For practical automated diagnostic systems to continue functioning after failure, they must not
only be able to diagnose sensor failures but also be able to tolerate the absence of data from the
faulty sensors. We show that conventional (associational) diagnostic methods will have combinatoric
problems when trying to isolate faulty sensors, even if they adequately diagnose other components.
Moreover, attempts to extend the operation of diagnostic capability past sensor failure will
necessarily compound those dificulties. Model-based reasoning offers a structured alternative that
has no special problems diagnosing faulty sensors and can operate gracefully when sensor data is
missing.

Introduction

The success of space missions will depend critically upon the robustness of space systems’ abilities
to monitor, diagnose, and compensate for faults. Since sensors are at least as likely to fail as other
components, an unforeseen loss of sensor information should degrade onboard diagnostic capabilities as
little as possible. Ideally, diagnostic performance should degrade only to the extent that the
information needed to isolate a fault is unavailable, and never because they are incapable of using the
information which is still available in the altered environment.

Autonomous systems may be confronted by missing data for many reasons. For example, sensor
polling machinery can fail, certain conditions may render a given sensor untrustworthy or invalid (e.g.,
the wrong fluid may be passing over a thermometer, or a radar may be tracking the wrong object), or
a filter may reject the reading as spurious. The most common case, however, is the loss of data due to
unpredicted sensor failure.

Knowing how to operate with missing data is distinct from the problem of recognizing the loss of
a working sensor (diagnosis). It must be known that the data is missing. Both conventional methods
and model-based reasoning may reach wrong conclusions if they try to make inferences from obsolete
data instead of knowing that the data is not available. For some conditions, like a glitch in the sensor
polling machinery, it is the responsibility of the supporting and interface systems to notify the
diagnoser. On the other hand, the diagnoser will be the source of knowledge of a sensor failure, and
may well have deduced the presence of an inappropriate sensor mode or environment.

Model-based reasoning permits a diagnostic algorithm that reasons explictly about the behavior of
physical or computational system components and the connections between them. It will be seen that
this algorithm approaches the ideal utilization of available information and does not suffer from
combinatoric problems which afflict conventional methods trying to accommodate missing data from
sensor failure.

The method suffers only from the requirement that system knowledge be properly represented and
manipulated. Contrary to some common misconceptions, it is not necessary to have a model that is
complete to any particular level of detail.

The next section describes the associational diagnostic approach most commonly used today, and
which includes much of the work in rule-based expert systems as well as more traditional
implementations of diagnostic logic with procedural languages. (Readers familiar with the short-
comings of conventional methods may wish to skip over this section.) The last section summarizes the
model-based approach to diagnosis and then contrasts it with associational methods in its ability to
diagnose sensor failure and to tolerate missing data.

Conventional Methods

Traditional approaches have tended to see diagnosis as the analysis of sensor data to determine
the most likely faults. Automated diagnostics are usually implemented by rules or procedures which
associate faults with patterns of sensed observation; hence the term associational.

Some of these inference methods chain forward directly from sensor data to faulty component
likelihoods using an arbitrary distillation of expertise (rule- or table-driven associational methods),
while others postulate faults, (manually) determine the resulting patterns of sensor readings, and
finally reverse-index these faults by symptom (Failure Modes and Effects Analysis, or FMEA
methods). In either case, the operating logic is to take sensor inputs and match them against patterns
that indicate specific failures or classes of failure.

A matched pattern associates the present system condition with a predetermined failure. A
successful match means that a fault has been located (or at least deemed likely), while an unsuccessful
match means only that that particular fault mode is unlikely. Only after all fault modes havefailed
to match can the system be assumed to be operating properly. This is such an ungainly method for
monitoring a healthy system that a number of applications have used model-based simulation (below)
for monitoring, only to fall back on associational methods for fault location [e.g., Hofmann 88;
Zwinglestein 851.

The implementation of an associational diagnostic inference may use production rules, a decision
table, a programmed procedure, a decision tree, or an FMEA tree, but we will think of the knowledge
it contains as equivalent to a collection of rules. A typical such rule might say that:

"if

then
sensor A = 0, sensor B E (100, lSO), sensor C > 10, and sensor D = ON,

there an 80% chance that component E is broken and a 20% chance that component F is broken."

214

One might add:

"else
E and F are probably working, and there may even be nothing wrong with anything."

Broken Sensors

The first major problem is that this rule depends upon sensors A, B, C, and D all working
properly. If any of them is faulty, the rule will deduce a wrong conclusion.

In principal, sensor failures would be inferred by similar rules, specially written for that purpose.
These rules for determining sensor health are special in that they must be run before the above
system health rule to prevent it from running with bad data; [Fox 831 refers to these as meta-rules.

As a simpler example, consider determining the health of four totally redundant sensors (call them
P, Q, R, and S) which all measure the same parameter X. With perfect redundancy, it is possible to
use simple "voting." A voting meta-rule might be:

"if P = Q, and Q = R, and P f S, then S is faulty,"

Unfortunately, three more such rules are needed to determine the guilt of P, Q, and R. Note that
four rules, one per sensor, are sufficient only because it is being assumed that no other sensors are
relevant to X. Additional sensors would not only add more rules but would add complexity to the
rules just given.

It is usually too burdensome to continually rerun all of these fault isolation rules just to be sure
that everything is working. A speedup (if not a simplification) to determine that nothing is broken
would be to use a special (hyper-meta- ?) rule for monitoring:

"if

then
P = Q and Q = R and R = S,

none of P, Q, R, or S is broken, so skip their fault isolation meta-rules and go directly to the rules
that use P, Q, R, and S to diagnose other components."

Totally redundant sensors are not often available, and information from sensors that yield
different but related quantities must be fused by less obvious meta-rules to infer the poor health of
each in turn. For each sensor, another meta-rule must be written for each of the ways that its failure
can be identified. This is rarely attempted for complex systems, and serious attempts have ended in
failure due to the sheer number of cases that must be analysed, programmed, and validated [Delaune
85; Jamieson 861.

In summary, conventional associational methods have serious methodological and combinatoric
difficulties in coping with sensor failure. This problem is often misleading to software developers,
since they tend to feel that if each condition is coded methodically enough, or they just debug the
most recent unexpected rule interactions, they will succeed. Unfortunately, the problem is inherent in

215

the associational approach. It is also worth noting that relatively minor subsequent changes made to
the system may require substantial changes to the associational diagnostic code, with considerable
effort expended in revalidation.

Missing Data

Missing sensor data corresponds to variables in the hypotheses of sensor-fault meta-rules being
unbound. What happens to the inference that

"if P = Q, and Q = R, and P # S , then S is faulty,"

after sensor P stops working? One possibility is that no rule using P is permitted to fire, so that an
additional meta-rule like

"if Q = R, and Q # S , then S is faulty,"

is needed for every possible combination of sensed data being present or absent, along with
corresponding methods for propagating uncertainty, for every meta-rule. (Remember that the number
of meta-rules is already likely to be a serious problem.) The only other alternative is to let the
meta-rules fire in spite of missing data; they then must bear the responsibility of internally testing for
all the possible combinations of missing data, and responding appropriately. In either case, special code
must be written in advance for each such combination.

One may attribute associational reasoning's inadequate handling of breaking or broken sensors to
its unprincipled mixing of structural and behavioral knowledge with environmental knowledge (sensor
readings). This can force a great many repetitive representations of the same knowledge.

For example, consider again the four identical sensors P, Q, R, and S. Since the isolation of
multiple faults involves combinatoric problems by any method (and since these combinatorics are more
obviously expressed in the rules of associational systems than in the algorithms of model-based
reasoning), let us consider the number of rules required for isolating a single fault and then for
continued operation after multiple faults have occurred. This is not altogether unreasonable since
multiple faults that did not happen simultaneously, and therefore can be diagnosed as single faults, will
have a cumulative effect on continued operation. Our four sensors then require one monitoring rule,
four diagnostic rules, 15 rules to cover all possible combinations of multiple breakage among sensors P,
Q, R, and S in the monitoring rule, and 7 additional rules for each diagnostic rule (e.g., how to prove
that S may be faulty if one or more of P, Q, and R are already known to be broken). This means that
a total of 48 rules need to be written to support the continued diagnosis of this configuration after
failures.

Of course, an actual associational architecture would try to minimize this by combining the
repetitive representations in some way. We predict that such compaction will be achieved either
through ad hoc mechanisms like deleting all conjunctive or disjunctive terms that mention a defunct
sensor, or through references to something equivalent to a model-based representation.

216

The combinatorics of missing sensor data compound the combinatorics of sensor diagnosis. The
traditional methods for developing and maintaining monitoring/diagnostic software are costly , time
consuming, and incapable of handling situations that were unforeseen when the system was written.
We conclude that associational methods are unsuitable for the complete and robust diagnosis of
complex systems after failure.

Model-Based Generate and Test

An alternative approach has been (with differing nuances) variously referred to as "causal
reasoning,'' "deep reasoning,'' "reasoning from first principles,'' and "reasoning from knowledge of
structure and function." More recently, it has been simply called "model-based reasoning," because the
"depth," "first principles,'' or "knowledge of structure and function" were invariably embedded in a
model which (at some level of detail or abstraction) was isomorphic to the system, both in structure
and behavior (function). This approach is described elsewhere [Davis 85,88; Genesereth 85; Scar1 87,
881 in a variety of implementations, but will be summarized here.

The view embodied here is that all system components are initially under suspicion as possible
causes of a perceived malfunction, and the job of diagnosis is to eliminate inconsistent suspects by
showing that the assumption that they are responsible is contradicted by sensory observation. In
model-based reasoning, the system is represented by some network of significant components or
computational quantities whose outputs are determined by transfer functions upon their inputs.
Suppose, for example, that components A and B have outputs connected to the inputs of component C,
and that the output of C is directly measured by sensor S . When the states of A and B have been
determined by setting their inputs, then their outputs determine the inputs to C, whose output in turn
determines S.

The original conception was that these components corresponded one-to-one to physical system
components, and that the structure of the model corresponded one-to-one to the connections between
the physical components. This is often still true, but it has become clear that some systems need to
have local properties (e.g., the voltage across a resistor) defined in terms of more global properties that
are derived from the compaction or simultaneous analysis of different parts of the system (e.g., the
current through a series circuit). This leads to the introduction of objects which represent global
abstractions (e.g., total path resistance) rather than physical components.

An inversion facility is also required: given a component's output (by measurement, inference, or
assumption), what can we say about its inputs? Usually (especially when a single point of failure is
being sought), the inputs can be considered one at a time, with the others assumed to be as computed
from the system commands. This uses a very broad sense of "inversion." If the component's transfer
function is a "trapdoor function" that cannot be practically inverted, so that the output tells us
nothing about the input, then the "inverse" is its whole domain. The trick is to be able to represent
whatever information is thus provided.

The model is a behavioral simulation which can be used to monitor the system's operation.
Choosing a set of commands (system inputs) for the model causes predictions to be computed for the
system's sensors. Although the health of.the system is again determined by matching sensor readings
against these prescribed values, there are important differences from the associational approach:

217

A match means a healthy system, instead of a fault

The set of sensors to be matched can be computed dynamically and interactively

The matching is done against values computed dynamically from system commands, rather than
statically predetermined. (Note that associational rules could also compute the comparison value
dynamically from commands, but, if so, they would be performing model-based reasoning rather
than associational reasoning.)

Any discrepancy between predicted and measured values indicates either a failure in the physical
system or an inaccuracy in the model. We will assume in this discussion that the model accurately
describes the system's proper behavior.

Faults are located by generating hypotheses and testing those hypotheses against all available
sensor data. Hypotheses usually are generated directly from sensor readings by using the inversion of
the functional relationships in the model. A hypothesis typically concerns some particular object C,
and has the form:

"The inputs of component C have the values expected for them, but C's output 0 is broken so that it
has the unexpected value (or range of values, if analog) X."

For example, if the observed value of a discrepant sensor S is passed through inverted
functionalities to component C, then the resulting hypothesis is a single fault in component C with the
specific wrong value X at its output. C is then a suspect for the failure consistent with S . If C is
the only suspect, then C has been determined to be the single point of failure, as determined by this
model.

If a hypothesis is generated by simultaneously using all sensors, then it needs no further
validation; since all available observational information has been used to manufacture it, there is none
left that could contradict it. Usually, however, the hypothesis is generated from the reading of a
single discrepunt sensor that disagrees with the model's prediction, and all the other related sensors
are used to verify the hypothesis. Whatever mechanism is used to generate a hypothesis, the
hypothesis is testable in the model by inserting its hypothesized value (or range) for 0 in place of 0 ' s
expected value.

Broken Sensors

Model-based reasoning has no need of any additional knowledge (such as meta-rules) to tell
whether sensors are broken, but is able to simply treat a sensor like any other component [Scarl88].
A sensor with a discrepant reading is always included as a suspect. A hypothesis will be generated to
say that the sensor is broken so as to read what it actually did rather than what the model predicted
for it. That hypothesis is tested for consistency with other sensor readings, just as any other
component would be, and rejected or retained accordingly.

Thus, no special rules are needed just because a component is a sensor. Nor need sensors be
cleared of suspicion before testing other objects. Instead, the hypotheses generated for all components
are tested (simultaneously or in parallel) against current sensor readings, which, after all, constitute uZZ

218

I the useful knowledge available, and the only source of available knowledge (in addition to the model’s
knowledge of system structure and function). The inherent parallelism of the model-based approach is
a distinct advantage: a faulty sensor hypothesis can be tested in parallel with hypotheses about other
objects.

The complexity of diagnosing sensors is therefore no greater than diagnosing other types of
component. In fact, certain assumptions can simplify the generate-and-test algorithm for sensors to
the point of being trivial [Scarl88]. This happens when the structure is such that sensors cannot be
responsible for each other’s discrepancies. If a maximum of N simultaneous faults is assumed, then
more than N simultaneously discrepant sensors will validate each other. Thus, each sensor S that
gives a discrepant reading is the onfy sensor in its associated suspect list (in the language of [de Kleer
871, its minimal conflict set). The existence of N other discrepant sensors will clear S of participation
in an N-tuple failure.

This shortcut does not apply if sensed values are used for control (feedback), but it does apply
to sensors whose control is independent of their actual readings. For example, an ammeter will control
the current through its circuit by virtue of being in series, but it can be separated into a resistor and
a virtual sensor. It is then its resistor and not its sensor that controls other sensors in the circuit,

l and any other discrepant sensor will clear the ammeter of being a single point of failure.

In summary, the model-based reasoning approach to finding faults in sensors is no more difficult
than finding faults in other objects, and does not become more complex as more sensors are added to
the system.

Missing Data

When data is lost, for any of the reasons mentioned in the Introduction, model-based reasoning
takes account of that loss in rather obvious ways. First, we do not monitor the missing data, and so it
cannot trigger diagnosis. Second, we simply exclude missing data from the pool of data against which
failure hypotheses are tested. This is similar to deleting terms referring to faulty sensors from
associational rules, but simpler and free of ad hoc character.

Any number and combination of sensor failures can therefore be handled in a straightforward
and uniform way, with no need for special coding.

Returning to the four-sensor example from the discussion of associational diagnostics, if some
fault is hypothesized which affects the predicted value of parameter X, then only those sensors known
to be operational are used to confirm that hypothesis.

Recall that while only four diagnostic rules were required (and that only because no other system
sensors were considered) by an associative diagnoser, 48 rules were required to continue diagnosis
after sensor failures. Model-based reasoning, on the other hand, will perform all inferences required
for continued operation using only four functional descriptions, one for each sensor, plus the
information that they are all connected to X. Each functional description simply declares that its
sensor’s predicted reading is given by the value of its input parameter. In the KATE representation
[Scarl88], this functional description would simply be the name of (the output of) some object which
is supposed to set parameter X. Furthermore, if all four sensors are identical, the four functional
descriptions need not be written manually but may be inherited from a generic sensor type description.

219

The model-based method of handling missing data is conservative, in that fault hypotheses may
be retained which could have been ruled out were the data available, but there is no possibility of
wrongly abandoning a valid hypothesis.

In conclusion, a brief analysis has shown that traditional associative approaches to diagnosis
cannot be extended effectively to operate after sensor failure, not only because structure and function
is not explictly represented, but also due to the sheer numbers of redundant representations of the
knowledge that is present. The model-based generate-and-test algorithm elegantly avoids these
difficulties and promises much more robust diagnostic capabilities.

References

[Davis 851 R. Davis, "Diagnostic Reasoning Based on Structure and Behavior," in D. G. Bobrow (ed.), Qualitative Reasoning
about Physical Systems, MIT Press, Cambridge, MA, 1985, pp. 347-410.

[Davis 881 R. Davis and W. Hamscher, "Model-based Reasoning: Troubleshooting," in H. E. Shrobe (ed.), Exploring
Artificial Intelligence: Survey Talks from the National Conferences on Artificial Intelligence, Morgan Kaufmann, San
Mateo, CA, 1988, pp. 297-346.

[de Kleer 871 J. de Kleer and B. C. Williams, "Diagnosing Multiple Faults," Artificial Intelligence, 32, No. 1, April, 1987,
pp. 97-130.

Pelaune 853 C. I. Delaune, E. A. Scarl, and J. R. Jamieson, "A Monitor and Diagnosis Program for the Shuttle Liquid
Oxygen Loading Operation," Proceedings of the First Annual Workshop on Robotics and Expert Systems, Houston, TX,
June, 1985.

Fox 831 M. S. Fox, S. Lowenfeld, and P. Kleinosky, "Techniques for Sensor-Based Diagnosis," Proceedings of the Eighth
International Joint Conference on Artificial Intelligence (IJCAI-83), August, 1983, pp. 158-163.

[Genesereth 851 M. Genesereth, "The Use of Design Descriptions in Automated Diagnosis," in D. G. Bobrow (ed.),
Qualitative Reasoning about Physical Systems, MIT Press, Cambridge, MA, 1985, pp. 41 1-436.

[Hofmann 881 A. G. Hofmann, J. G. Allard, L. B. Hawkinson, and M. Levin, "Object Oriented Simulation Models and the
Uses in Real Time Expert Systems," Proceedings of the Third Artificial Intelligence and Simulation Workshop at
AAAI-88, St. Paul, MN, August, 1988.

[Jamieson 861 J. R. Jamieson, "A Mandate for Autonomous Control and Monitor Systems (The Failure of Hard
Automation)," 1986, available from the author.

[Scar1871 E. A. Scarl, J. R. Jamieson, and C. I. Delaune, "Diagnosis and Sensor Validation through Knowledge of
Structure and Function," IEEE-Transactions on Systems, Man, and Cybernetics, SMC-17, No. 3, MayIJune, 1987, pp.
360-368.

[Scar1881 E. A. Scarl, J. R. Jamieson, and E. New, "Deriving Fault Location and Control from a Functional Model,"
Proceedings of the Third IEEE Symposium on Intelligent Control, Arlington, VA, August, 1988.

[Zwinglestein 851 G. Zwinglestein, J. L. Tyran, P. Bajard, "Failure Detection Based on Multilevel Dynamic Models Applied
to a U-Tube Steam Generator for a PWR," Proceedings of the Symposium on New Technology in Nuclear Power Plant

220

