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Abstract 

A new approach to integrated structure/control law 
design based on multilevel optimization is presented. 
This new approach is applicable to aircraft and spacecraft 
and allows for the independent design of the structure and 
control law. Integration of the designs is achieved 
through use of an upper level coordination problem 
formulation within the multilevel optimization 
framework. The method requires the use of structure and 
contiol law design sensitivity information. A general 
multilevel structure/control law design problem 
formulation is given, and the use of LQG control law 
design and design sensitivity methods within the 
formulation is illustrated. Results of three simple 
integrated structure/control law design examples are 
presented. These results show the capability of structure 
and control law design tradeoffs to improve controlled 
system performance within the multilevel approach. 

Introduction 

Modem day air and space vehicles are complex 
systems made up of components which are often in and of 
themselves high-order dynamic systems. For example, 
the airframe, engine, and flight controls of a modem jet 
fighter aircraft individually require sophisticated 
mathematical modeling, simulation, and testing to achieve 
good performance with appropriate dynamic 
characteristics. 
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. 
The integration of good individual dynamic 

components into a single aerospace vehicle can, however, 
result in dynamic interactions which lead to unsatisfactory 
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vehicle performance. The F-16 and F-18 exhibited adverse 
dynamic interactions between the airframe aeroelastic 
characteristics and flight control systems in flight. The 
X-29 aircraft was predicted to have adverse dynamic 
interactions as well. These actual and predicted dynamics 
problems were ultimately fixed by expensive and time 
consuming flight control system redesigns. Similar 
dynamic interaction problems are predicted for such future 
large-scale space vehicles as the proposed space station and 
satellites with large solar arrays and antennas. 

Analytical methods to predict aeroservoelastic 
stability of aircraft and servoelastic stability of spacecraft 
have been developed. The ability to predict servoelastic or 
aeroservoelastic interactions leads naturally to the desire to 
integrate, that is, include, dynamic interaction effects in 
aerodynamic, structure, and/or control system designs, 
such that adverse dynamic coupling in the final vehicle is 
eliminated. Numerous papers outlining integrated 
structure/control law design methods for large space 
structure applications have a p e  in recent years.1-7 

The purpose of this work is to develop the means to 
include dynamic vehicle response characteristics and well 
known control law design methods in an existing general 
framework for multidisciplinary (aerodynamics, 
propulsion, structures, etc.) design. The existing general 
framework is based on formal design problem 
decomposition, multilevel optimization techniques, and 
design sensitivity information. The formulation of a 
design problem decomposition for dynamic aerospace 
vehicles and the use of Linear Quadratic Gaussian (LQG) 
optimal control law design and sensitivity analysis 
methods leads to an alternative structure/control law 
design method which is applicable to both air and space 
vehicles. Development within the general framework 
retains the use of independent design tools for both the 
structure and the control law, and provides for the future 
addition of other design tools for aerodynamics, 
propulsion, and the like. 



The paper is organized as follows. A summary of 
existing structure/control law design methods and a 
summary of multilevel optimization theory are given 
first. These are followed by a description of the 
multilevel structure/control law design algorithm. Three 
structure/ control law design cases are presented for a two- 
bar truss example problem. The frrst design case was to 
improve the closed-loop system stability robustness using 
control law and structural design freedoms, while the 
second and third cases were formulated to expressly 
examine structure and control law design tradeoffs. 

Existing Design Methods 

Numerous methods have been developed in recent 
years for structure/control law design of large space 
structure systems. These existing methods can generally 
be categorized by their approach to the problem as either 
simultaneous or sequential.1 

Simultaneous Methods - A simultaneous 
structure/control law design method is one in which the 
control law design problem and the structural design 
problem are directly combined into a single problem. 
Examples of existing structure/control law design 
approaches which can be characterized as simultaneous 
include those reported by Haftka, Martinovic, and 
Hallauer2, Salama, Hamidi, and Demsetz3, Hale4, and 
Miller et. al? 

Sequential Methods - A sequential structure/control 
law design method is one in which the control law design 
and the structural design are conducted in an iterative, 
multiple step manner. Examples of reported sequential 
structure/control law design methods are those by Messac, 
Turner, and S o o s d ,  and Khot et.al.7 

Multilevel Optimization Theory 

A theory of multilevel optimization for large scale 
engineering design problems has been developed in recent 
yea r~ .~*9  This theory is based on hierarchal problem 
decomposition methods8-l and the use of the sensitivity 
of optimization problem solutions to fixed problem 
parameters.12-14 

The theory is perhaps best explained by use of a 
conceptual multilevel optimization problem as shown in 
Figure 1. The conceptual problem is to minimize the 
performance index J by selection of the design variable a 
at the upper level, and to minimize the performance 
indices K and L by selection of the design variables p and 
x respectively at the lower level. Note that in this 
example, K and L are functions of a and p and a and x 
respectively, while J is a function of a, p. and x. 

The basic idea behind multilevel optimization is to 
treat the design variable a as a fixed constant during the 
minimization of K and L. With a fixed, the 
minimizations of K and L are decoupled, and are performed 
independently. Once the design variables p = p* and x = 
x* which minimize K and L are known, the performance 
index J of the upper level minimization can be evaluated 
and the gradient of J with respect to a computed. 

Clearly the p = p* and x = x* which minimize K and 
L respectively are functions of the design variable a. The 
evaluation of J at the upper level is for the fixed value of 
a and p = p* and x = x*. Thus, proper calculation of the 
gradient of J with respect to a must also include the 
effects of the changes in p* and x* with respect to changes 
in a. This gradient of J with respect to a can of course be 
calculated by a direct finite difference method at the upper 
level. In this case, J is evaluated for small perturbations 
in a, where the minimizations of K and L for p* and x* 
are repeated for each perturbation. The necessary gradient 
is then obtained by finite differencing of the perturbed 
values of J. 

Another means to calculate the gradient of J with 
respect to a is to use a chain rule approach. This results 
in a calculation for the gradient of J at the upper level 
which directly involves terms which are the gradients of 
p* and x* with respect to a. In this approach, the 
gradients of p* and x* with respect to a are calculated 
during the lower level minimizations of K and L, and are 
passed to the upper level along with the optimized design 
variables p* and x* as illustrated in the figure. This can 
simplify the overall multilevel optimization algorithm 
because the lower level minimizations do not have to be 
repeated for every perturbation of a at the upper level. 
(Multiple solutions of the lower level optimization 
problems may still be required however, if the gradients of 
p* or x*  with respect to a are calculated by a finite 
difference method, but they are independent of upper level 
perturbations of a.) 

* 

In many cases, analytical expressions for the gradients 
of p* and x* with respect to a can be derived from the 
necessary conditions of ~ p t i m a l i t y l ~ - ~ ~  for the 
minimization of K and L, also as shown in Figure 1. 
These expressions are evaluated once for p = p* and x = 
x*, and the gradient information is passed on to the upper 
level. Multiple solutions of the lower level optimization 
problems about a fixed value of the design variable a are 
eliminated by use of these analytical gradient expressions. 

, 
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A geometrical interpretation of the sensitivity of 
optimized solutions is shown in Figure 2a. In this figure, 
M(u,p) represents a generic performance index to be 
minimized by selection of a design variable u, and p is a 
parameter with some fixed nominal value for a solution of 
the optimization problem. A locus of optimal solutions 
as a function of the value of p is shown in the figure 
labeled as M*@). 

The sensitivity derivative of an optimal solution with 
respect to p gives the slope and direction of the locus of 
optimized solutions at the parameter value corresponding 
to the optimal solution. This derivative has a component 
in both the p and u directions as shown in Figures 2.b and 
2.c respectively. The projection of the sensitivity 
derivative onto the M,p plane gives the change in the 
optimized performance index due to changes in the fixed 
value of the parameter p. The projection of the sensitivity 
derivative into the M,u plane gives the change in the 
optimized perfonnance index which is due to the change in 
the (optimal) u. It would appear that this projection 
violates the necessary condition of the optimization 
problem since the derivative of M with respect to arbitrary 
variations in u must be zero at the optimum. In other 
words, the derivative dM/du must be zero along a line 
parallel to the u axis. This is in fact the case here also. 
The nonzero projection in the M,u plane is caused by the 
constraint that the sensitivity derivative be calculated for u 
= u*(p). That is, the M,u projection is really aM/ap 
mapped from the M,p plane by u = u*(p). 

The sensitivity of the optimized performance index is 
an incomplete measure of the change in optimal solutions 
since there is no information on the change in the design 
variables due to parameter variations. This is particularly 
evident in the simple example of Figure 1, where the 
lower level minimization of K is considered. In that 
problem, the optimized performance index is K* = 0 for 
all values of the parameter a. but the optimizing design 
variable is p* = a. Use of the sensitivity of K* with 
respect to the parameter a would not yield any useable 
information for the upper level optimization, since that 
sensitivity is identically zero for all values of a. In the 
example then, the square difference of p from a desired 
value was used as the criteria at the upper level which is 
related to the lower level K minimization problem. The 
introduction and use of additional criteria to measure lower 
level performance at the upper levels is a requirement of 
multilevel optimization algorithms. 

. 

Several iterations of the conceptual problem of Figure 
1 for the case B = a  = 1 are shown below as a final 
illus.tration of multilevel algorithms. Note in particular 
that once an a is selected, the lower level solutions for p* 

and x* are decoupled and are obtained independently of 
each other. (For the purposes of this illustration, a 
different scale factor in the computation for Aa was used 
at each step to limit the number of iterations.) 

Iteration 1: (ai = 1 assumed to start) 

1 
3 Aal = - J, Qc 

Iteration 2: 

Iteration 3: 

J3=~,x=% dJ + (p.3 - 1)(1) + (x; - 1)(2) = 0 

Analytical Solution: (Obtained by substituting the 
expressions for p*, x * ,  and their derivatives into the 
gradient of J with respect to a and setting the result equal 
to zero) 

= a  + (a - )(1) + (2a - x)(2) = 6a - p - 2 = O  

. 
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Multilevel Structure/Control Law Design 
Approach 

A multilevel optimization based method can be 
developed for integrated structure/ control law design. 
Specific formulations for such algorithms are of course 
highly problem dependent, however, a general formulation 
which uses Linear Quadratic Gaussian optimal control law 
design methods to determine the control law is outlined 
below. 

The general multilevel structure/control law design 
formulation is shown in Figure 3. In Figure 3, the 
structural design and the control law design are 
independent lower level design problems. These lower 
level designs are coordinated through the upper level 
optimization problem. The upper level optimization 
problem reflects the desired objectives of the integrated 
structure/control law design. For example, the upper level 
objective might be to reduce peak transient responses of 
the controlled system and to reduce the weight of the 
structure. The actual peak transient responses of the 
controlled system would come from analysis of the 
control law design at the lower level, while the actual 
structural weight would come from the lower level 
structural optimization. These could then be combined as 
a weighted sum of square errors between the actual and 
desired values to form a single upper level performance 
index. The upper level design variables would then be 
selected to minimize the objective function. 

The values of the upper level design variables at any 
time are treated as fixed parameters for the lower level 
optimizations. These parameters define either the 
mathematical model of the structure or dynamic system to 
be controlled, or they define the performance index and/or 
constraints of the optimization problems, or both. The 
sensitivities of the optimized lower level solutions to 
these fixed parameters are computed and used in turn to 
compute the sensitivity of the related part of the upper 
level performance index. That is, these final sensitivities 
are the gradients necessary to complete the top level 
optimization. In the earlier example, one of the upper 
level design variables may be a local structural stiffness 
requirement, which appears as an equality constraint in the 
lower level structural optimization. The sensitivity of the 
structural weight to this parameter is computed at the 
lower level and returned for use in computing the part of 
the gradient of the upper level performance index which is 
related to structural weight. Another of the upper level 
design variables might be a mean square weight on control 
effort, which would appear directly in the performance 
index of the lower level LQG control law design problem. 
The sensitivity of the optimized LQG control law with 
respect to this parameter would then be used to compute 
the sensitivity of the peak transient response of the 

controlled system, as required to complete the upper level 
optimization. 

For the purposes of this paper, the use of existing 
nonlinear programming based structural optimization and 
design sensitivity analysis methods is assumed. These 
methods may themselves be multilevel optimization 
algorithms, such as those of references 15 and 16, 

Also for this paper, the use of Linear Quadratic 
Gaussian optimal control law design methods is assumed. 
Expressions for the sensitivity of controlled system time, 
frequency, and stochastic responses in terms of state-space 
coefficient sensitivity matrices are available from the 
literature. The sensitivity of the optimized LQG control 
law to fixed parameters must be known to compute the 
necessary state-space coefficient sensitivity matrices. 
Analytical expressions for the sensitivity of the LQG gain 
matrices to fixed problem parameters have been derived 
elsewhere from the necessary conditions of optimality. l7 
The analytical expressions for the LQG sensitivity as well 
as analytical sensitivity equations for q u e n c y  responses, 
time responses, covariance responses, eigenvalues and 
singular values are summarized in reference 18. 

Two-Bar Truss Example 

, 

Description - A two-bar truss structure/control law 
design problem was taken directly from the literature7 and 
used to validate both the analytical sensitivity analysis 
developments and the multilevel structure/control law 
design method. The nominal truss structure geometry, 
definitions, and second-order differential equations of 
motion are shown in Figure 4. Note that the bar cross 
sectional areas and the Young's Modulus are scaled in this 
example, although the natural frequencies of vibration are 
consistent with an actual structure of this size and 
concentrated mass. With these scalings, the material mass 
density (= 2.59 x lb-sec2/in4) is such that the mass 
of the bars is negligible compared to the concentrated 
mass for the vibration equations of motion. The bar 
cross-sectional areas are, however, a direct measure of the 
actual truss structure weight, which is to be reduced as the 
structural design objective. - 
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State-space equations of motion for the truss are 
Gaussian distributed, "white" noise as well, with intensity 
W = w, w = 1.0 nominally. The noises w and v were 
assumed to be uncorrelated. 

{;;} = 

or 

0 1 0 0  , o  O O 1  
z1 2} 
z2 

X = AX + Bu + DW 

y = c x  

where the definitions of x, y, u, w, A, B. C, and D follow 
from the state equations, I is a 2 x 2 identity matrix, and 
the stiffness matrix K is 

Note that structural damping of 0.01 has been assumed in 
this model. 

An LQG optimal control law problem was formulated 
for the two-bar truss example. A cost function 

1 d 
was assumed, where E denotes expected value, and the 
weighting matrices Q and R are Q = qI and R = r, where 
the nominal values of q and r are 1.0 and 0.01, 
respectively. Noisy measured feedback signals were 
assumed as z = y + v, where the noise v is a zero mean, 
Gaussian distributed, "white" noise with intensity matrix 
V = VI, with the nominal value of v = 0.01. The 
disturbance input w was assumed to be a zero mean, 

Four parameters were selected for use as design 
variables at the top level of the multilevel 
structure/control law design algorithm for the three design 
cases presented below. These are the scale factor q (PI), 
the scale factor v (E), the cross-sectional area A1 of truss 
bar 1 b), and the force application angle 0 (p4). The 
upper level objective function for the three design cases 
was written to minimize the sum of the square difference 
between actual and desired design criteria as 

i =  1 

The design criteria for each design case are given below. 

Design Case 1 - Design case one was formulated to 
improve closed-loop stability robustness. Seven measures 
of controlled system stability robustness were used in the 
top level objective function. These included increasing 
the damping of the two structural modes by moving their 
eigenvalues to the left in the complex plane, raising the 
minimum singular value of the return difference at three 
frequencies, and reducing the magnitude of the loop 
transfer function at two frequencies. These criteria are 
further described in Table 1. 

The initial LQG optimal control law solution was 
computed for the nominal values of the design parameters. 
The initial values of the seven criteria and their sensitivity 
to each of the design variables were also computed. The 
sensitivity results for this initial iteration are summarized 
in Table 2. The sensitivity data was arranged accordingly 
in a gradient mamx and an incremental change in the four 
design variables was computed as 

where p is a vector of the four upper level design 
variables, c is a vector of the seven design criteria. the 
subscripts d and a denote desired and actual values, and t 
denotes the matrix psuedo-inverse. New values of the four 
design variables were then selected as 

Pn = Po + T A P  1 

where the subscripts n and o denote new and old and the 
factor of 1/2 was selected to reduce the effects of the 
linearization error. This process was repeated for five 
iterations. 
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The design results are shown in Figures 5 and 6. In 
Figure 5, the design criteria iteration history is shown 
with the results normalized by the desired value, so that 
satisfaction of a criterion occurs for a value of 1.0. All 
seven criteria are moving toward satisfaction with each 
iteration. Figure 6 shows the history of the upper level 
design variables, normalized by their initial (starting) 
value. There is a large increase in the V matrix scale 
factor v, which is effectively tuning the Kalman Filter 
design, a slight increase in the Q matrix scale factor q, 
which is tuning the regulator design, a slight increase in 
structural weight, and a decrease in the control force 
application angle. These results indicate that a 
combination of structure and control law design changes 
can be used to improve the overall stability robustness of 
a controlled system. 

Design Case 2 - The second design case was 
formulated to tradeoff structure and control design 
objectives. The upper level design objective was written 
to improve six integrated design criteria. The criteria 
included the mean-square response and control energy due 
to a random disturbance input w(t), the static controlled 
system structural deflections due to a static load, and the 
structural weight (directly related to the cross-sectional 
area of bar 1). The objective was formulated as in Case 1, 
with the desired values of the six criteria set to 95% of the 
initial values. The criteria are further described in Table 3. 

The normalized results are shown in the Figures 7 and 
8. Both the control force and the structural weight in 
Figure 7 were reduced toward their desired values, while 
the other four criteria were actually increased. Looking at 
the upper level design variable iteration history in Figure 
8, the cross-sectional area was. reduced to 95% of the 
original value, reflecting the direct influence of it's 
magnitude in the upper level objective. The control force 
application angle was increased, the Q matrix scale factor 
q was slightly decreased, and the V matrix scale factor v 
was increased 31%. The conclusion here is that the actual 
magnitude of the cross-sectional area dominates the 
design. 

Design Case 3 - Design Case 3 was the same as 
Design Case 2 except that the upper level design criteria 
were normalized by their initial values before the upper 
level objective function was formulated. The results for 
this case show that five of the six criteria are improved 
(Figure 9), the exception now being the structural weight 
which is increasing. The design parameter history in 
Figure 10 shows the 2% increase in bar cross-sectional 
area and also an 8-9% increase in force application angle. 
The results show the dependence of the design on the 
magnitudes of the design criteria relative to one another. 
They also indicate that small increases in structural weight 
may be worthwhile in terms of controlled system 
performance. This is intuitively satisfying since decreases 

in structural deformations are often associated with 
increased structural weight. 

Conclusion 

A new approach to integrated structure/control law 
design of aeroelastic aircraft and large space structures has 
been presented. This approach uses multilevel 
optimization techniques which are are based on the 
theories of hierarchal problem decomposition, 
optimization, and sensitivity of optimum solutions. 
Unlike existing sequential or simultaneous methods, the 
structure and control law designs are obtained 
independently. Integration of the structure and control law 
designs is achieved through an optimization problem 
formulation in which the independent disciplinary designs 
are coordinated at an upper level. Multilevel optimization 
has been explained by use of a simple conceptual 
example, and a general multilevel structure/control law 
design algorithm outlined. Results for three integrated 
structure/control law designs of a two-bar truss example 
problem were presented. These results illustrate the 
multilevel design method and show the potential tradeoffs . 
that are possible between the structure and control law 
designs. The examples point out once more the 
importance of the relative magnitudes of the design criteria 
to the final results. 

* 
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q= 
Criteria Original Desired 
Number Value Value Description 

1 -0.506 -0.531 Real Parts of Closed Loop Structural Mode Pair 1 
2 - 1.452 -1.524 Real Parts of Closed Loop Structural Mode Pair 2 
3 0.834 0.900 R e m  Difference Singular Value at 1 .OO rad/=. 
4 0.832 0.900 Return Difference Singular Value at 3.35 rad/sec. 
5 0.859 0.900 R e m  Difference Singular Value at 5.99 rad/sec. 
6 1.263 0.900 Loop Transfer Magnitude at 5.21 rad/=. 
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Table 2. Case 1 Original Design and Sensitivity Data for First Iteration 
& &i 
aP3 aP4 

Criteria Original &i kl 
Number ValUe aP 1 aP2 

1 -0.506 -0.210 0.000 -2.923 x -0.762 
2 - 1.452 -0.542 0.000 1.031 X 0.851 
3 0.834 5.148 x 10-3 4.274 2.874 x 10-4 -3.891 x 
4 0.832 -1.178 x 4.44 1 3.652 X -3.922 x 
5 0.859 -4.637 x 1.962 1.416 x -8.860 x 
6 1.263 0.451 -2.263 x lo1 4.245 x 10-3 1.874 

Table 3. Case 2 and Case 3 Design Criteria 

Number Value Value Description 
Criteria Original Desired 

1 1.194 x 1.135 x Mean-Square Deflection in x Direction 
2 3.125 x 10-2 2.968 x Mean-Square Deflection in y Direction 

4 3.629 x 3.447 x 10-2 Steady-State x Deflection to Step Load 
5 4.490 x 10-2 4.266 x Steady-State y Deflection to Step Lolad 
6 5.000 x 102 4.750 x lo2 Bar 1 Cross-Sectional Area (Truss Weight) 

3 0.646 0.614 Mean-Squm C~ntrol For~e 

Figure 1 - Conceptual Multilevel Optimization Problem 
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Upper Level Structure/ 
Control Law Design 

Figure 2a - Geometrical Interpretation of Sensitivity of 
Optimum Concept 

M 

* I  1 

* [ \., P m F f M * ( p )  

-*e 
M 2  ---. 2 

Figure 2b - M g  Plane Projection 

M 

Figure 2c - M,u Plane Projection 
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Figure 3 - General Multilevel Structure/Control Law 
Design Algorithm 

L-. 2 0  -_I 
Mass=m=2 
AreaBar1=A1=500 
AreaBat2=A2=1OOO 
Length Bar 1 = Length Bar 2 = 1 = 22.36 
Force Application Angle = 8 = 4 5 O  
Young's Modulus E = 1 

Figure 4 - Two-Bar Truss Geometry and Data 
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Criterion 1 - Criterion 2 
Criterion 3 

--C- Criterion 4 
Criterion 5 - Criterion6 
Criterion 7 

1 2 3 4 5 
Iteration 

Figure 5 - Case 1 Design Criteria Iteration History 

> __ DesignVar.l - DesignVar.2 

4 DesignVar.3 
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Figure 6 - Case 1 Upper Level Design Variable History 
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Figure 7 - Case 2 Design Criteria Iteration History 
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Figure 8 - 2  Case Upper Level Design Variable History 
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Figure 9 - Case 3 Design Criteria Iteration History 
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Figure 1 0 - 3  Case Upper Level Design Variable History  
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