
Parallel Matrix Multiplication
on the Connection Machine

Walter F. Tichy

November, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.41

NASA cooperative Agreement Number NCC 2-387

(N A S A - C R - 185423) PARBLLEL HATRIX N89-266 27
H U L T I P U C A T I O N ON THE COHNECTIUN H A C H I N E
(Research Ilnst . for Advanced Computer

Science) U 2 p CSCL 1 2 A Unclas
e3164 0 2 179 24

Rl ASS
Research Institute for Advanced Computer Science

I

Parallel Matrix Multiplication
on the Connection Machine

Walter F. Tichy*

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.41
November, 1988

Matrix multiplication is a computation and communication intensive problem Six parallel
algorithms for matrix multiplication on the Connection Machine are presented and compared with
respect to their performance and processor usage. For n by n matrices, the algorithms have
theoretical running times of O(n log n), O(n log n), O(n), and O(1og n), and require n, n , n , and
n processors, respectively. With careful attention to communication patterns, the theoretically
predicted runtimes can indeed be achieved in practice. The parallel algorithms illustrate the
tradeoffs between performance, communication cost, and processor usage.

2 2 2
3

~~ ~

This paper will appear in the International Journal of High Speed Computing, and the Scientific
Applications of the Connection Machine, World Scientific Publishing, June 1989

Work herein is supported by Cooperative Agreement NCC 2-387 between the National
Aeronautics and Space Administration (NASA) and the Universities Space Research Association
(USRA).

*Walter F. Tichy is located at the University of Karlsruhe, FRG. Work performed while visiting
at RIACS and performed at the University of Karlsruhe, FRG.

1 Introduction

Matrix multiplication is a conceptually simple problem that is computation
and communication intensive. I t is computation intensive, because multi-
plying two n by n matrices takes 0(n3) arithmetic operations. It is com-
munication intensive, because 0(n3) different pairs of operands have to be
brought together during the computation. Communication time is not an
issue for a single processor that fetches one operand a t a time from memory.
On multiprocessors, however, data and intermediate results are distributed,
and the communication delays for bringing them together for processing are
not negligible. Studying pa rde l matrix multiplication has the advantage of
exposing the tradeoffs among various degrees of pardelism, performance,
and communication patterns on a simple and easily understood problem.

The Connection Machine (CM) is well suited for experimenting with
large-scale parallelism. The CM model 2 is an SIMD computer with up to
65,536 (216) processors connected in a 16-dimensional hypercube network.
Each processor has 8 kilobytes of local memory; the entire primary memory
of the CM comprises half a gigabyte. A parallel I/O system matches the
speed of the processors. The CM is the first, and so far only, computer that
provides enough processors to credibly run large-scale parallel programs.
Although the processors are bit-serid and therefore quite weak, their large
total number permits realistic experimentation with massive parallelism.

The high connectivity of the hypercube network also contributes signifi-
cantly to experimenting with parallel algorithms, because the hypercube can
efficiently implement the routing patterns of many important regular and
irregular communication topologies. Regular topologies that can be embed-
ded efficiently include rings, multi-dimensional grids and tori, multigrids,
trees, and the perfect shuffle. A total of 4048 routing processors (1 routing
processor is shared by 16 of the regular processors)

handle irregular communication patterns. These special-purpose pro-
cessors compute communication paths, store and forward messages, and
manage contention. They make parallel communication among processors
as easy to program as array indexing.

The simultaneous availability of many communication patterns is impor-
tant, since many algorithms change communication patterns while running.
Our matrix multiplication algorithms use trees, forests, grids, tori, and the
perfect shuffle. Half of our algorithms actually need at least two patterns
out of this set. The high connectivity of the hypercube allows efficient im-
plementations of all relevant algorithms, and thus allows a fair comparison.

1

An important aspect that simplifies parallel programming is the concept
of virtual processors. Each of the 216 physical processors can simulate a
number of virtual processors. The maximum number of virtual processors is
limited by the available memory, because the virtual processors need to share
it. The firmware of the CM efficiently implements the time-multiplexing of
the physical processors, in a manner that is transparent to the programmer.
Using virtual processors means that programs are independent of the phys-
ical processors available. Transparency is important for scdability: in order
to solve a larger problem, one simply changes the relevant constants and
reruns the program. For more information on the CM, see references [1,2].

The following section describes the algorithms. Section 3 presents the
performance results.

2 Algorithms
The algorithms for parallel matrix multiplication are interesting in their own
right, but the reader less interested in the details can skim this section.

2.1 Ground rules

There are a number of parameters that affect the performance of the parallel
algorithms. In order to arrive at meaningful comparisons, some of these
parameters must be kept constant.

All algorithms are for dense, rectangular arrays:

c1,n = A h p , n

The usual specification of matrix multiplication is:
m-1

V i , j I 0 <= i < 1, 0 <= j < n : Ci,j = A;,k X B k , j
k=O

Our goal is to compare algorithms that work for arrays of any size. This
means that the algorithms do not take advantage of square matrices, nor are
they-limited to preferred array sizes, such as powers of 2. The algorithms do
not pad the matrices with dummy eiements to make them square or to adapt
them to preferred sizes. The only padding we allow in some of the algorithms
is to reserve the same amount of space, namely max(l, m) x max(m, n) for
all arrays. The space wasted by this type of padding cannot be put to other
uses anyway, given the architecture of the CM. For instance, by attempting

2

to save this padding, the maximum size of arrays that can be run on the Chf
would not increase. Furthermore, the algorithms do not introduce dummy
processors except proportional to the padding just discussed. Thus, the
algorithms waste neither space nor processors frivolously.

By leaving out special-casing for array sizes, we exclude some of the
faster algorithms. For example, a fast O(n) systolic algorithm requires
square matrices. However, by insisting on generality we obtain programs
that run efficiently and without waste, independent of whether the matrices
are square, skinny, or fat.

For brevity, however, section headings quote performance characteristics
for square arrays of size n x n; we leave it as an exercise to the reader to
derive the precise formulas for general, rectangular arrays.

A further aspect regarding generality is that all input and output ma-
trices for a given algorithm are allocated in the same manner, for example
row-major. We do not assume that matrices A or B are transposed be-
forehand to speed up communication. If a matrix must be transposed or
brought into some other special alignment, then our algorithms include the
necessary steps, and our measurements include the time consumed by these
steps.

All algorithms use double precision floating point.
All algorithms are implemented in C*, except the sequential one, which

is written in C. Reprogramming the C* programs in *Lisp would probably
make them run faster.

All algorithms use the general CM communication; they do not take ad-
vantage of the grid communication or reduction operations in CM microcode.
Most algorithms would run faster by using these features. Programming
with some of these features is difficult in C*.

2.2 The O(n3) (sequential) algorithm
The sequential algorithm is the standard textbook version with three nested
loops, highly optimized. In particular, code motion and strength reduction
(replacing multiplication with addition) make address computations fast.
Registers hold indices, offsets, and temporary results. This algorithm does
not use the CM at all, because it runs completely on the frontend. I t is
included for comparison purposes.

3

Figure 1: The O(n2 log n) algorithm

2.3

In this algorithm, each processor contains a row of each of the matrices A, B,
and C. Thus, we need max(1, m) processors. The algorithm computes 1 x n
inner products in sequence, one for each element of C. An inner product
executes m multiplications in parallel in constant time, and then a parallel
sum reduction to produce the sum in O(1og m) time. For details regarding
parallel sum reduction see reference [3].

The communication costs of this algorithm are as follows. Since arrays
are stored one row per processor, a single column of B is spread over m
processors. For the parallel multiplication in the inner product, each row
of A must be spread over the m processors containing the columns. The
spreading of a row takes O (m) communication steps, since a processor can
send only one element at a time. However, a given row of A must be spread
only once for computing n inner products. The multiplications require no
communication. The logarithmic sum reduction uses the router with the
reduction into the target coefficient of C. This step takes O(1og m) commu-
nication steps. See Fig. 1 for an illustration.

The O(n2 log n) algorithm

2.4

This algorithm is a straight-forward generalization of the previous one. In-
stead of using m processors to perform a single, parallel inner product step
at a time, we use I x m processors to produce an entire column of C at once.

Each processor contains one element of A, B , and C. Assume that ma-
trix elements are assigned in row-major order to the processors (see Fig 2).

The slow O(n Iogn) algorithm

4

A d cot j I B

duplicate
col j

Figure 2: The slow O(n log n) algorithm

For computing a column of C at once, we first need to broadcast the rel-
evant column of B to all rows of A, then execute I x n multiplications in
parallel, and then perform I sum reductions in parallel. The multiplications
take constant time and the sum reductions O(1ogm) time, including com-
munication. The broadcast of columns of B must be arranged carefully as
follows.

There are several alternatives for implementing the broadcast on the
CM. First, the frontend computer is highly efficient at broadcast: It could
first retrieve a column element from B and then pass it simultaneously to all
elements of A. However, the frontend can only broadcast one element at a
time, so the process would take O(m) steps, resulting in quadratic runtime
overall. The second alternative is to exploit the router for performing an
implicit broadcast: Each element of A could simply retrieve the required
coefficient from B directly. Unfortunately, this would again result in linear
broadcast time, since each element of B's column would be requested by I
rows of A simultaneously, and each processor can only honor one request a t
a time. Instead, we must program a fanout tree for each column element. A

5

.-

fanout tree has the same structure as a tree for reduction, except that data
flows from the root to the leaves instead of vice versa. Since we need a tree
for each column element, we actually need to construct a parallel fanout
forest. The fanout forest broadcasts B’s column in logarithmic time.

In detail, the fanout forest operates as follows. First, we “seed” the
column of B into the first row of A , in parallel for all elements. Next, we
instruct the first row of A to duplicate the seeded coefficients one row down,
also in parallel. Next, the first 2 rows of A to duplicate their elements 2 rows
down, then the first 4 rows duplicate 4 rows down, and so on. In each step,
the number of copies of the column of B doubles, until the entire matrix A
is filled. This process takes O(log I) communication steps. We programmed
the broadcast explicitly, although the CM actually provides a primitive for
it. Using the primitive instead would significantly speed up that portion of
the program.

Another detail concerns the sum-reductions. The I sum-reductions run
along the rows of A, orthogonal to the broadcast. Again, we programmed
this process directly rather than using the corresponding CM primitive.
Using this primitive also speeds up the program.

2.5 The fast O(n1ogn) algorithm

When analyzing the broadcast operation in the previous algorithm, one
notices that it uses processors and communication bandwidths poorly. In
the first step of the broadcast, only m of the I x m processors operate, and
in the last one, barely half of the processors operate. The algorithm in this
section eliminates the slow broadcast altogether.

As before, we lay out matrices one element per processor, in row-major
order. Figure 3 illustrates. First, we transpose matrix B and overlay it onto
A; the router performs this operation in constant time. The transposed
overlay has the effect that row i of A is lined up with column i of B. Next,
we perform 1 parallel inner product steps, producing the main diagonal of
C in O(1ogm) time. As the next step, we rotate the transposed matrix B
up one row, with the topmost row reentering at the bottom. NOW row i of
A is lined up with column (i + 1) mod n, and we compute the upper main
diagonal of C, along with element Ci-l,o. After n steps of inner product
computation and rotation, C is complete.

This algorithm uses the bandwidth of the communication network and
the processors effectively. Again, all communication is implemented directly,
rather than using CM primitives.

6

Transpose

B B t r v n B

i
Figure 3: The fast O (n log n) algorithm

A detail involves the relative sizes of A and B: In general, the number of
rows of A does not match the number of columns of B , so the transposition
and rotations must be done with care. Our approach was to keep the smaller
of the two arrays in place and rotate the larger, although the opposite might
improve performance somewhat.

2.6 The slow O(n) algorithm

A problem with the previous algorithms is that they all perform logarithmic
sum reduction. The algorithm in this section avoids the corresponding factor
of O(1og n) by distributing the cost of the addition over the communication,
and thus achieves linear runtime.

The algorithm is called “systolic”, because it alternates between two
distinct phases, a communication phase and a computation phase. Assume
we have I x n processors, each computing one element of the result matrix
C. The initialization sets C to zero. Rows of A enter C from the left and
shift horizontally through C. Similarly, columns of B enter C from the top

7

111111

B

Figure 4: The slow O(n) algorithm

and shift down (compare Figure 4). The shifts transport a new column
and row coefficient to elements of C in each step. The computation phase
multiplies these coefficients and adds them to C;,j. For the coefficients to
Line up in the right order, the rows and columns enter C in skewed order, i.e.,
they are delayed from entering by one step per row or column. Processors
without coefficients in a particular step are simply disabled. Figure 5 shows
the resulting configuration after 3 shifts. For more details on the systolic
algorithms, see reference [4], Chapter 8 or [SI.

The algorithm operates for a total of O(2 + m + n) steps, until the last
row and last column of A and B have shifted through C. Each step takes
cons tan t time.

We experimented with two variants of the systolic algorithm. The first
variant treats the first row and column of C as a special case: Elements in
these positions retrieve the relevant coefficients from A and B directly, rather
than moving A and B into place. The remaining elements of C retrieve their
coefficients from their north and west neighbors. Thus, the first row and
column of C inject the coefficients. UnfortunateIy, this approach does not

8

a 03

a 12

a 21 other
processors

idle

Figure 5: Configuration of C in Figure 4 after 3 shifts

lead to the most efficient implementation. Since the Connection Machine is
SIMD, the injection and the shifts cannot occur simultaneously: First, the
interior elements retrieve from the north and west, and then the leading row
and column of C send for their next elements. Thus, the communication
phase has two subphases, each of which idles a significant portion of the
processors.

We therefore modified the algorithm, realizing that the shifts are only an
artifact of the topology of systolic processor arrays. With general communi-
cation on the CM, any processor can retrieve data from any other processor
in essentially the same time. Thus, during each communication phase, every
element of C retrieves the required coefficients from A and B directly. The
address computation is identical for all elements and splitting the communi-
cation phase into subphases is avoided. Since no two elements of C retrieve
the same coefficients, there are no problems with fanout as in Section 2.4.
In section 3, we report only on the faster of the two variants.

2.7- The fast O(n) algorithm

A flaw of the previous algorithm is that even the faster variant underutilizes
the processors. The activation of processors spreads from the north-west
corner towards the south-east corner, with never more than half the proces-
sors busy. On average, processor utilization is only 1/3. How can we keep

9

0 1 2 3

1 2 3 0

2 3 0 1

Figure 6: Initial indices for the fast O (n) algorithm

all processors busy all the time?

for the elements of C need not be computed in the same order. Consider
The answer to this question derives from the fact that the inner products

m-1

k=O

Because of the commutativity of the addition, there is no need to accumulate
the sum starting with IC = 0. Instead, we could start with any ki,j in
[O.. . m - 11, sum to m - 1, then “wrap around“ and add the the terms from
0 to ki,j - 1. Observe furthermore, that in each of the I X n multiplications
we must make sure that no two use the same coefficients from A or B ,
because we would have a slowdown caused by fanout otherwise. We can
exploit the commutativity of the addition to achieve this separation. One
way to use different coefficients everywhere is to let ki,j = (i t j) mod m. In
other words, the starting index for building the inner product is skewed for
each row of A and column of B , guaranteeing that no element of A or B is
used twice in a single inner product step. Figure 6 illustrates the starting
assignment of k;,j in a 4 x 4 array.

For square matrices, this approach is equivalent to overlaying A , B , and
C, skewing the rows of A and the columns of B with wrap-around, and
then rotating the rows of A and the columns of B during each step. The
rotation does not work well for non-square matrices, and since we did not
use the general grid addressing on the CM, rotation has no advantage over

10

A

1-

z-

3-

1 -
7

*

2-

I
*

3 -
I

*

1- *
?P
II

2- *
7 ”

B

3 -

2
*

Figure 7: The O(1ogn) algorithm

1-

3 -
*

2-

3
*

3 -

3
*

general communication. We therefore simply used general communication
to retrieve the required coefficients directly from A and B. The resulting
program is actually the simplest of a,Il those considered here. It consists of
a loop over m, with two statements in its body: one for the inner product
step, and one for incrementing k;,j modulo m.

2.8 The O(1ogn) algorithm

The fastest algorithm is one that uses n3 processors to compute all n3 prod-
ucts .simultaneously, and then performs n2 sum reductions in parallel to
produce C. The multiplication takes constant and the sum reduction loga-
rithmic time. We also must take into account the duplication and alignment
of data prior to the multiplication. Each row of A and each column of B
must be dupIicated n and I times, respectively, and paired properly one with
the &her. Two fanout forests, one for A and one for B, broadcast and align

11

the data in logarithmic time. Figure 7 illustrates the pairings of rows and
columns for 3 x 3 matrices.

3 Performance Results

We implemented d algorithms in C* and timed them on a Connection Ma-
chine model 2 with 32K processors (system version 5.0, field test), without
floating point chips. As stated, all arithmetic (except address calculations)
used double-precision floating point. The frontend controlling the CM was
a DEC VAX under the ULTRIX operating system.

Since the speed of the VAX is often no match for the CM, we report
timings measured only on the CM. Although this may be unrealistic for
the given configuration, we believe this choice is justified for the following
reasons. When the virtual to physical processor ratio is 1, the frontend time
is typically more than twice as high as the CM time, with a CM utilization of
less than 50 per cent. This indicates that the VAX cannot keep up with the
CM, mainly because of its raw MIPS rating, but also because the frontend
is timeshared among other users. When the virtual to physical processor
ratio is high, such as 8, then the times on the frontend and the CM are
nearly identical (for both elapsed times and the combined system and user
times). This is an indication that the simulation of virtual processors is
slowing the CM enough to match the speed of the VAX.’ We are therefore
convinced that in this situation, the timings on the CM are more accurate.
For a well-matched, faster frontend, such as a Symbolics Lisp machine or a
SUN/4, timings would best be taken on the frontend.

For simplicity, all measurements were run with square matrices. The
results are summarized in Figures 8 and 9. Figure 8 shows all 7 curves for
array sizes of up to 250 x 250. We shall discuss the curves clockwise, starting
form the top left. The leftmost curve represents the O(n2 log n) algorithm,
using n processors. This algorithm appears slower than even the sequential,
0(n3) algorithm (second curve). This is not surprising, since the difference
between logn and n is not enough to offset the difference between a 1-bit
processor and a 32-bit processor for the small values of n shown. Note,
however, that the two curves will eventually cross, since the first is of a
lower order. We estimate that the crossover point is n zi 450.

‘Note that the virtual processor simulation is performed by the microcode of the CJI:
Each instruction issued by the frontend is repeated implicitly by the CM’s instruction
decoder for the number of virtual processors assigned to the physical processors.

12

ORIGINAL PAGE IS
OF POOR QUALITY

-1

I

0
0 133 233 30 C

Problem Size [SI
Figure 8: CM performance for moderate array sizes

Using n2 processors boosts performance far beyond that of the sequential
processor. The crossover points occur early, clearly demonstrating that slow,
but numerous processors can outperform a single, fast sequential processor.
The fast O(n log n) algorithm is almost twice as fast as the slower variant,
demonstrating the significance of communication costs. The faster algorithm
is almost as fast as the slow linear algorithm. The second linear algorithm
is another factor of 2 faster, demonstrating the effect of full utilization of
processor and communication bandwidth.

A curious effect is the jump in these 4 curves, occurring for a problem

13

size of about 180. Note that at this point, 32,400 processors are in use,
which is the capacity of the CM available (32,768 processors). An increase
of the problem size beyond 181 requires a virtual to physical processor ratio
of 2. Thus, execution times double, and the gradient of the curve doubles
also. The next such doubling would occur for n > 256, and then again for
n > 362. On a full connection machine with 65,536 processors, the first
jump would not occur until n > 256.

By doubling the virtual processor ratio, the times do not quite double,
since communication between virtual processors simulated on the same phys-
ical processor is more efficient than communication among separate physical
processors. However, the savings observable are minor. In the case of the
fastest linear algorithm, increasing the virtual to physical processor ratio
from 1 to 2 increased the time by a factor of about 1.93 rather than 2.
Thus, for matrix multiplication, the savings are only 7 per cent.

The last curve is for the O(1og n) algorithm, which requires n3 processors.
This algorithm is the fastest for small problem sizes, but requires a large
number of processors. At problem size 32, all processors of the available
CM are in use. For this size, the algorithm simply brings a.ll the available
hardware to bear on the problem. For a problem size of 60, the overhead
of virtualization is so high as to slow the program down below the fast lin-
ear algorithm. (Note that the virtualization overhead grows proportional
to n3/2I5.) For a problem size of 100, each real processor must simulate
16 virtual processors. At this point, all the available Connection Machine
memory of 256 Mbytes is used up by replicated array data and virtual pro-
cessor stacks. Larger problems simply do not fit the capacity of the 32K
processor CM.

The effect of the virtual to physical processor ratio for some of the less
processor-intensive problems is shown in Figure 9. For larger problem sizes,
the cubic behavior of the matrix multiplication cannot be denied. The per-
formance of the "linear" algorithm is still cubic, once the number of proces-
sors is exhausted. Essentially, the performance curve is a cubic parabola,
divided by the large constant factor of 32,000. The straight line a t the bot-
tom is the virtual time of each processor. This is the time we would see if
we had as many processors as memory words.

Note that the absolute performance achieved is hardly overwhelming.
Counting only double-precision floating point additions and multiplications,
the fast sequential algorithm achieves only about 4 Mflops for 1SO x 180 ar-
rays; this number would double for a full (64K processor) CM-2. Including
arithmetic instructions for address calculations, we come up with about 20

14

Mips, or 40Mips for a full CM-2. (This number excludes the instructions
for stack manipulation and communication). Thus, we achieved only about
1/60 of the ”typical application performance” quoted by Thinking Machines
Corporation for general computing. Apparently, our algorithms are commu-
nication bound, and using the special features of the communication network
would pay significant dividends. The numbers also demonstrate how diffi-
cult it is with the present programming languages to harness the power of
the CM.

0 200 400 600 800 1000
Figure 9: CM performance for large array sizes

15

The measurements in Figure 8 were taken in increments of 10, so the
'curves are quite accurate. Each individual point was computed by repeating
the same problem long enough to have a cumulative runtime of between 2
and 4 minutes, and then dividing by the number of actual runs. The variance
in time for the individual runs was so small as to be invisible on the diagram.
For Figure 9, we took measurements in increments of 50, with increments of
10 around the points were virtual to physical processor ratios change. Some
of the higher points in this diagram represent the average of only a few runs.

'

4 Conclusion

A number of conclusions can be drawn from this case study. First, even for
problems as simple as matrix multiplication, a surprisingly varied number of
different algorithms exists, and the tradeoffs among speed, communication
patterns, and processor usage are interesting and non-trivial. It appears
that with large-scale parallelism, all of our sequential algorithms must be
rethought. CM programmers have already discovered some new and inter-
esting, totally parallel solutions for many problems, from multi-grid methods
to document retrieval to ray tracing. Furthermore, we predict that many of
our sequential algorithms will turn out to be special cases of parallel ones.

A second important insight is that with the right choice of algorithm
and communication pattern, the speedup attainable is indeed proportional
to the number of processors used. With few exceptions, all previous experi-
ments with multiprocessors showed a point of diminishing and even revers-
ing returns, when the addition of processors did not speed up a program
proportionally or even slowed it down. At no time did we observe these
effects on the CM; performance was always within a constant factor of the
theoretically predicted, asymptotic performance. We suspect that earlier
multiprocessors simply had insufficient communication bandwidth and high
synchronization overhead. Because of the SIMD nature of the CM, there is
no synchronization overhead, and the bandwidth of the hypercube is well
matched to the demands that the processors can generate.

We can also confirm that the concept of the virtual processor is a great
simplification for parallel programming. Not having to write twisted code
for mapping a given problem onto a particular set of processors makes for
easily written, easily understood, and easily ported programs. Further study
is required to make this concept applicable when programs need to change
the number of virtual processors dynamically.

16

There are also a number of negative conclusions. First, using a super-
linear polynomial of processors severely limits the problem size, and the
resulting program may not run efficiently because of the overhead of virtu-
alization. In our example, using one processor per data element yielded the
best overall performance. However, for small problem sizes, a superlinear
number of processors is the best way to bring the entire available hardware
to bear on a problem.

Second, it became quite clear that automatically transforming "dusty
deck" sequential problems to large-scale parallel ones is a pipedream. Con-
sidering matrix multiplication, it is easy to see how a compiler would detect
the inner loop of the sequential program and transform it into a vector oper-
ation. However, we severly doubt whether a general compiler could be built
that could generate all six variants we discussed from a single, sequential
program. If automatic transformation can be done at all, it would have to
start with the problem specification and not with a sequential implementa-
tion. In a sequential program, too many opportunities for parallelism have
been hidden or eliminated.

A number of further studies should be done to get a better grasp of the
idiosyncrasies of the Connection Machine. First, all programs should be
rewritten in *Lisp, to compare the quality of the two two language imple-
mentations and the effect of the frontend. Second, to quantify the potential
gains from the special features of the router, all programs should be mod-
ified to use them. Preliminary experiments have shown that by using just
the reduction operators, the O(n1ogn) algorithms run almost as fast as the
corresponding linear algorithms. Of course, the linear algorithms could also
be improved by using grid addressing. Finally, the ratio of communication
time to computation time should be determined by simply leaving out the
floating point operations. It appears that all our implementations are com-
munication bound and that floating point operations actually consume a
negligible percentage of the time. Matrix multiplication shares this prop-
erty with many other problems. Perhaps communication cost will turn out
to be the dominant cost for all large-scale parallel algorithms.

References

[l] L. W. Trucker and G. B. Robertson, "Architecture and applications of
the connection machine," IEEE Computer, vol. 21, pp. 26-38, August
1988.

17

[2] W. D. Hillis, The Connection Machine. Cambridge, bIass: The MIT
. .

Press, 1985.

[3] W. D. Hillis and G. L. Steele Jr., "Data parallel algorithms," Cornrnu-
nications of the ACM, vol. 29, pp. 1170-1183, December 1986.

[4] C. Mead and L. Conway, Introduction to VLSI systems. Addison-Wesley
Publishing Company, 1980.

[5] S. Kung, "VLSI array processors: IEEE ASSP Magazine, pp. 4-22, July
1985.

18

A General remarks about the programs

All programs have a macro called DEBUG. When this macro is defined,
either in the program directly, or via the -D option on the cc or cs command
line, then detailed tracing information about the matrices will be printed.

With the exception of the sequential algorithm, array dimensions are
compiled into the programs. By using constants rather than variables, the
programs run about 10 percent faster on the CM. There is no noticeable
difference for the sequential algorithm.

For CAM programs, the macros L, M, and N determine the dimensions of
the arrays as follows:

Matrix A: L by M
Matrix B: M by N
Matrix C: L by N

If the macro DEBUG is defined, L, M, and N itre already predefined (to 3,
4, and 5 , respectively). Otherwise, the macros L, M, and N must be either
defined in the program itself, or on the command line. To compile a CM
program in file f.cs, one wouId use the following commands:

For tracing: cs f .cs -DDEBUC -0 f

For timing: cs f .cs -DL=lO -DM=20 -DN=30 -0 -0 f

When running a CM program, the first argument specifies the number
of times the matrix multiplication is to be performed. For accuracy, a high
enough number of runs should be chosen, such that the total time is above
60 sec.

For the sequential dgorithm, L, M, and N are variables. The first ar-
gument specifies L, M; and N simultaneously, and the second the number
of runs. If no argument is given, L, M, and N are set to defaults, and the
number of runs to 1.

19

B The O(n3) (sequential) algorithm
/* This is a sequential C-program f o r matrix multiplication.

It takes 0 , 1 or 2 numeric arguments:
0 arguments:

1 argument:

2 arguments:

*

*
*/

(for debugging) array dimensions are fixed.
The multiplication w i l l be executed once.
The argument gives the dimensions of a l l arrays:
The multiplication w i l l be executed once.
The f i r s t argument gives the dimensions of a l l
arrays; The second argument specif ies the number of
times t o run the multiplication.

tinclude <stdio.h>

/*#define DEBUG /* f o r debugging purposes */

tdefine T double
tdefine HAXSIZE 300

T AcHAXSIZE*HAXSIZE]; /* multiplicand matrix; dimenaions L.H */
T B[HAXSIZE*MXSIZE] ; /* multiplicand matrix: dimensions H,B */
T CL’HAXSIZE*KAXSIZE]; /* multiplicand matrix; dimensions L.N */

extern int a t o i 0 ;

reg is te r int i , j , k :
reg is te r T inner-prod:
reg is te r int istarn. i s t a r n . L s t a r N :
int run, nun-of ,NM :
int L,H,If;

switch (argc) {
case 1:

case 2:

case 3:

1

nun-of ,runs=l;
L-3; H 9 4 ; N=5:
break:
nun-of -runs-l:
L=H=N=atoi(argv[lI) ;
break:
L=H=N=atoi(argv[lI) ;
nu-of ,runs=atoi(argv C21) :
break:

i f ((L>H?L:H)*(H>N?H:N) > HAXSIZE+HAXSIZE) {

20

printf ('*&ray dimensions exceed Xd\n'* .UAXSIZE) ;
exit(0) ;

1

* ifdef DEBUG
/* i n i t i a l i z e A */
f o r (i = O ; i<L;i++)

f o r (j=O: j < H ; j++)
ACi*H+jl= i*j;

/* i n t i d i z e B */
for (i=O;i<H;i++)

f o r (j=O; j < N ; j++>
BCi*N+j]= i*j*2;

fputs (@'\nUatrix A: \n@@, stdout) ;print,Tarray(A.L.H) :
f puts (**\nUatrix B : \n**, stdout) ;print,Tarray(B ,H .N) ;

t endif

/* t h i s is the loop f o r timing */
f o r (runlo; run<nun,of,runs; run#) €

/* This is the matrix multiply, p i th strength reduction */
i 8 t a r H d ; i s t a r N = O ;
for (i = O ; i<L ; i++) €

f o r (j=O; j < N ; j++)
inner-prod=O;
kstarN=O ;
for (k=O; k<H; k++) <

/*inner,prod=inner,prod+A[i*H +k] *B Ck*N +jl ; */
k e r - p r o d = inner,prod+A[istarH+k]*BCkstarN+jl;
kstarN=kstarN+N:

/*C [i*N +j]=inner,prod;*/
C C i s t a r H + j] =inner,prod;

1
i s t a r U = i s t a r U + H ; i a t a r N = i s t a r N + N ;

1
% ifdef DEBUG

fputs(@*\nResult of Hultiplying A and B:\n",stdout) ;
print,Tarray(C,L.N) ;

t endif
1
printf(*@Humber of runs: %d; Number of processors used: %d\n**.

pr intf (' * h a y dimensions: (Xd*Xd) and (%d*%d)\n**,L,H,H.N);
nua,of-ruaa.l);

1

21

C The O(n210g n) algorithm

/* This program performs p a r d l e l matrix multiplication in n*n*logn s teps .
The matrices a r e allocated such tha t each processor
has one row of each matrix.
The algorithm perforas n*n inner products in sequence.
All communication is done by the router.
number of processors: n; performance: n*n*logn

*/

#include <stdio.hs>
#include <cm/cmtimer.hs>

/*#define DEBUG /* pr in ts out matrices f o r debugging */

#ifdef DEBUG
#define L 3
#define H 4
#define H 5
#endif /* othervise. define v i t h cs -DIr... */

#define TOTAL-SIZE (L>I¶?L:H)
#define T double

/* m u s t be max of L and H */

domain arrays {T poly Am]; /+ multiplicand matrix: dimensions LJ */
T poly B[N]; /* multiplicator matrix; dimensions U,N */
1 poly C[N]; /* destination matrix; dimensions L.N */

1 data[TOTAL,SIZE] ;

er te rn void arrays::print,Tarray(T arrays:: mono Tarray,

extern int atoi(char s);
ertern unsigned Cn-virtual-to-physicdl-processor-ratio; /* (v*w) /(p*q) */

int mono rows. int mono cols) ;

void main(int argc. char +argv[I) C
reg is te r int mono i . j ,k ; .
reg is te r i n t mono run. nu-of-runs;
CH-timeval-t mono timer-results;

nk-of -runs= (argc-1) ?I : atoi(argv [I] 1 ;
[domain arrays]. {

T poly Arov;
T poly temp; /* f o r holding products */

/* f o r holding a row of A */

ifdef DEBUG
/* i n i t i a l i z e
i f ((&data [Ol

A *I
<= th i s) *A (th i s < LdataCL]))

22

f o r (j = O ; j<H: j++)
A C j] = (this-&data[Ol)*j:

/* i n i t i a l i z e B */
i f ((kdataC01 <= th i s) && (t h i s < Matam]))

f o r (j=O: j < N : jcc)
B[j] = (this-Mata[O])*j * 2:

fputs ()l\nHatrix A:\n8* ,stdout) : print-Tarray(A,L,H) :
fputs ('*\nMatrir B : \nt*, stdout : print,Tarray(B ,H ,HI :
endif

CH,start,timer(i) ;
for (run=O: nm<num,of,runs: run-) C /* t h i s is the loop f o r timing */

i f (this<&data[X])
for (i=O: i<L: it+) {

/* l i n e up roo i of A v i t h column i of B: could do t h i s */
/* with the router (and col l is ions) or a front-end loop. */
for (k=O: k<H: k++)

/* compute inner product */
f o r (j=O: j<a: j++) C

datack] .Arov = dataci] .Ark] :

temp-Arov*BCjl :
dataCi].CCjl = (+- temp):
/* e l l h i n a t i n g temp causes a col l is ion bug*/

1

1
X ifdef DEBUG

fputs("\nResult of multiplying A vi th B:\n".stdout):
print-Tarray (C .L ,N) :

t endif
I/* end f o r (run) */
t iner-reaults=c!f,st op-t her (1) :
printf("Number of runs: %d: Number of processora used: %d\n'*,

printf ("Axray dimensions: (Xd*Xd) and (Xd*Xd): VP ra t io : % d b B s ,

printf("Rea1 CX time per run: %g\n".tiner,results->cmtv,cm/nun,of,runs):
printf("Vistua1 cn time per run: Xg\n",

num-of -runs ,TOTAL,SIZE) ;

L. H, H, H, CH,virtual,to,physical,processor-ratio) :

tiner,results->cmtv,cm/nun,of-nms/ . - CH,virtual,to,physical,processor,rat io) :
1 /I end domain arrays */

1 /* end main */

23

D The slow O(n1ogn) algorithm
/* This program perform para l le l matrix multiplication in n l o g n steps.

The matrices are allocated such tha t each processor has one elnent of
ot each matrix. Each c o l u u ~ of the second matrix is broadcast over the
rows of the f i r s t matrix. then the products are a l l formed i n para l le l ,
and the rows are sum~ed in paral le l . This is repeated fo r every column

* of the second matrix. A l l communication is done by the router.
* Number of processors: n**2; performance: nlogn
*/

*include Cstdio.hs>
#include <cn/cmtimer.hs>

/*#define DEBUG /* pr in t s out matrices f o r debugging */

llifdef DEBUG
tdef ine L 3
Sdefine H 4
+define N 5
tendif /* otherwise. define with cs -DL=... */

Xdefine TOTAL-SIZE ((L)H?L:H>*(n>N?H:H))
/* m u s t be he miu of L*H, H*N, L*N */
tdef ine T double

domain arrays {T A; /* multiplicand matrix: dimensions L.H */
T E: /* multiplicator matrix: dinemions H.N */
T C; /* destination matrix; dimemions L,N */
1 data [TOTAL-SIZE1 ;

#def ine THIS,ROY(columns) ((this-LdataCO]) / columns)
#define THIS,COL(columns) ((this-LdataCO]) % columns)

extern void arrays::print,Tarray(f arrays::iarray.

extern int atoi(char s);
extern unsigned ~~virtual,to,ph~sic~,processor~ratio; /* (V*W>/(p*q) */

int mono rows. int mono cols) :

void nain(int argc, char *argvO) €
reg is te r int mono s t r ide ;
reg is te r int mono E-col; /* runs through column numbers of B */
reg is te r int mono 1~11. nun-of-runs;
CH-timeval-t mono timer-results;

nus-of -runs- (argc== 1) ?I: a t o i (argv [11 1 ;
[domain arrays] . {

24

int poly this,A,rov; /*
int poly this,A,col; /*
T poly temp; /*

/*
/*

/* i n i t i a l i z e A */

y-coordinate of each element of A *I
x-coordinate of each element of A */
temporaq array f o r broadcaating cols of E.*/
multiplying with A. and SUB reduction; */
dimensions of temp: L*H*/

if ((tdata[O] <- th i s) && (th i s < M a t a ~ * H]))
A - TBIS,ROY(Q THIS,COL(H);

/* i n i t i a l i z e B */
if ((LdataCO] <= th i s) && (th i s < kdata[H*N]))

B - THIS,ROY(N) THIS,COL(H) 2;

ifdef DEBUG
fput s ("Watr i x A : \n", st dout ;
print,Tarray(A,L.H) ;
fputs (%Hatr ix B: \n",atdout) ;
p r i n t ,Tarray(B ,I!, I) ;

andif

Cn,start,timer(l) ;
f o r (run-0; nm<nun,of,runa; run*) { /* t h i s is the loop for timing */

i f (t h i s < kdata[L*H]) { /* se lec t vhole array A */

/* compute rov and column numbers f o r each element of A)*/
thia,A-roo - THIS,WU(I!) ;
thia,A,col = MIS,COL(H) ;

/* f o r each column rector of B , multiply it into A.*/
/* put resu l t rector into corresponding column of C */
f o r (8,col = 0; 8-col < I; B,col++) <

ifdef DEBUG

endif
p r h f ("\nUuStiplication with column %d of E" .B,col) ;

/* Step 1.1: Seed column elements of B */
/*
i f (th i s < &data[M) /* r e s t r i c t t o first roo*/

in to f i r s t row of temp f o r broadcast */

temp = data[this,A,col*N+B,co11 .B;

t

/* Step 1.2: Distribute elements down columns of temp.*/
/* (recursive doubling */
f o r (stride-H; s t r i d e < L*H; s t r i d e <<= 1) <

if ((this+str ide)< &data[L+Hl)
(this+stride)->temp = temp;

1
ifdef DEBUG
printf ("\nTemp a f t e r dis t r ibut ion of column %d of B:\n".B,col) ;

25

' . #
print,Taxray(teap, L ,HI :
endif

/* Step 2: multiply in to temp */
temp - temp*A:
ifdef DEBUG
fputs("Temp af te r multiplication v i th A:\n#*.stdout):
print,Tarray(t emp. L ,HI :
endif

/* Step 3: sum scan in para l le l . f o r a l l rows */
/* This is a sepented sum scan: segments of equal length */
for (s t r ide=l ; s t r i de < H: s t r i d e <<= 1) c

i f ((this-A-col + s t r ide) < HI
temp = (this+stride)->temp + temp:

1
i f d e f DEBUG
fputs(**Temp after rov-vise sum reduction:\n" ,stdout) :
print-Tanay (temp. L ,MI :
andif

/* Step 4: copy out of temp in to result matrix C*/
i f (this,A,col-O) /*Select f i r s t column of A t o send values */

/*Could save t h i s l as t assignment by l e t t ing l a s t i t e ra t ion */
dataCthis,A-rov*N+B,col] .C = temp;

/+of s tep 3 compute the r e s u l t i n to C instead of temp. */
3 /* end for (B-col) */

> /* end A select ion */

fputs("\nResult of multiplying A pith B:\n8*. stdout) :
print-Tarray (C ,L ,N) :

ifdef DEBUG

endif
3 /* end for (run) */

tipar,results-~-stop-timer (1) ;
printf("Number of runs: a; Number of processors used: %d\n",

printf ("Array dimensions : (M+xd) and (%d*%d) : VP r a t io : Xd\n" ,

printf ("Real CH time per run: %g\naa, timer,results->cmtv,cm/num,of ,runs) :
printf ("Virtual CH time per run: %g\n.",
. . timer,results->cntv-cm/nup,of,runs/

nun-of ,runs ,TOTAL-SIZE) :

L, HI H. N. CH-virtudl-to-physical-processor-ratio) :

CH-virtual-to-phys ical-proc essor-rat id :
1 /* end domain arrays */

1 /* end main */

26

E The fast O(n1ogn) algorithm
/* This program performa para l le l matrix multiplication in nlogn steps.

The matrices are allocated such tha t each proceasor has one element
of each m a t r i x . In th i a method, the second matrix is f i r s t transposed
over t he f i r s t , and then rotated up row by row.
A full parallel multiplication and sum reduction is done f o r
each rotat ion. All communication is done by the router.

* number of processors: 12-2: performance: n*logn
*/

$include <stdio.hs>
$include <cm/cmtimer.hs>

/*$def ine DEBUG
t i fdef DEBUG
$define L 3
tdef ine U 4
tdef ine I 5
$andif /* othervise, define with c s -DL=... */

/* prints out matrices f o r debugging */

$def ine L N m i n (L<N?L: N)
$define LNMX (L>N?L:N)
$define TOTAL-SIZE ((L>U?L:U)*(rr>H?X:H>)
/* must be m a x of L*H, H*N, and L*N */
Mefine T double

domain arrays CT poly A; /* multiplicand matrix; dimensions L.U */
T poly B; /* multiplicator matrix; dimensions U,N */
T poly C; /* deatination matrix; dimensions L.N */

3 dataCTOTAL,SIZE] ;

tdef ine THIS-ROV(columa) ((this-ldataCO]) / columns)
Sdef ine THIS-COL(column8) ((this-tdataCO]) % columns)
extarn void arrajs::print,Tarray(T arraya::iarray,

e r te rn int atoi(char a);
extern unsigned Cn,virtual,to,physical,processor,ratio ;

int mono rows, i n t mono cols);

/* (v*v) / (p*q) */

void. maincint argc. char *argoU) I
r eg i s t e r int mono s t r ide ;
r eg i s t e r i n t mono rotation-count; /* counts upward rotat ions of big*/
r eg i s t e r int mono run, nun-of-runs;
Cn-timeral-t mono timer-results:

27

T poly B t r : /* transpose of B */
T
T poly temp; /* temporaq variable fo r multiply, sum reduce */
ht poly rowB, c0I.B; /* row and column numbers of each element of B */
int poly r o d . colA; /* row and colunn numbers of each element of

/* init ialize A */
if ((kdata[O] <- thin) && (this < tdata[L*H]))

poly small, big; /* hold matrices A and B t r */

arrays A, temp, big, small*/

A = THIS,ROU(H) THIS,COL(H);

/* i n i t i a l i z e B */
if ((tdataC01 <= th i s) k& (th i s < tdata[H*N]))
B = THIS,ROW(N) THIS,COL(N) 2;

t ifdef DEBUG
fpu t s (" \da t r ix A:\n",stdout); print,Tarray(A.L.H):
f puts ("\nMatrix B : \n'*, stdout) ; print,Tarray(B, H ,N) :

s endif

C H - s t a r t - t i m e r (1) :
fo r (runr0; run<nun-of,runs; run++) < /* t h i s is the loop f o r t h i n g */

rorrA = THIS,ROY(H> ; colA = THIS,COL(H) :
rowB = THIS,KOU(N); colB = TZfIS,COL(N);

/* Step 1: t r a ~ p o s e B in to B t r */
if ((rouB<M) LL (colB<N) 1

data[colB*H+rowB] . B t r = E;

t

/* Step 2: multiply. sum reduce, then ro ta te rows of B t r up.
A and B t r have the same number of colunuu. but may have

* di f fe r ing number of rows. Rotate the larger one; keep the
smaller one in place, because t h i s is easier t o program.
The s m a l l e r one goes in to array s m a l l . the larger one in to
array big. Can only do t h i s for commutative operators.
(rotating the smaller array would mean l e s s communication.)

*/
i f (PN) < big-A; s m a l l - B t r ;)
e l s e < big=Btr; small=A; 1
ifdef DEBUG .
printf ('*\nHatrix small:\n") ;printJarray(smdl ,LNmin,H) ;
endif
for (rotation,count=O; l;/*end with break*/ rotation,count++) {

ifdef DEBUG
pr intf ("\nHatrix big a f t e r ro ta t ion Xd:\nt*,rotation-count) ;
print-Tarray (big ,LNnax,H) ;
endif

i f (rowA < L N m i n) <
temp = amall*big; /I commutativity enters here +/

t

ifdef DEBUG
fputs(ts\nHatrir temp after d t . of small and big:\n",

endif
atdout); print,farray(temp.LNmin,X);

/*Sum reduction in parallel, for all rows of temp */
/*This is a segmented am scan */
for (striderl; stride < H; stride <<= 1) {

temp = (this+stride)->temp + temp;
if (((colA%(stride<<l))PO) tt ((colA+stride)<H))

1
ifdef DEBUG
fp~ts(~~\dfatrix temp after sum reduction:\nwl,stdout) ;
print ,Tarray (t emp , Urnin, H) ;
endif

/* copy temp into result matrix C*/
if (colA -0) /* select column 0 for send I/

datakowA*N + ((rowA+rotation,count)XH)] .C = temp;

if (rotation,count>=(LNmax-1)) break; /*exit form middle*/
>

/moo rotate all TOES of big up one roo--could use grid*/
if ((rooACLNmax) LL (colA<H))

big = data[((ro~A+l)%~mar)*X+colA] .big;

1 /* end for (rotation-count) */

fputs("\nResult of multiplying A with B:\nwl, stdout) ;
print,Tarray(C ,L .H) ;

ifdef DEBUG

It endif
I/* end for (run) I/
t imer,result~=~~stop,t imer (1) ;
printf("Bumber of runs: M ; Humber of procesaors used: %d\n",

printf (wsArray dimensions: (Xd*Xd) and (%d*%d) ; VP ratio: %d\n" ,

printf("Rea1 cn time per run: Xgb",

printf ("Virtual c?t time per run: Xg\n",

nur,of-nms,fO~~~,SIZE~ :

L. lt. H. 1. CN,vixtual,to~physical,processor,ratio) ;

timer,results->cmtr,cn/nru,of ,NPS) ;

tirrer,results->crtv,cn/nun,of ,runs/
CH,virtual,to,physical,processor,rat io) ;

1 /* end domain arrays */
1 /* end in */

29

F The slow O(n> algorithm

/* This program perforas para l le l matrix multiplication.
The matrices a re allocated such that each processor
has an element of each ~ t r i x .

* This is a pipelined algorithm: "he rovs of the f i r s t matrix
and the columna of the second matrix are pumped into
the resu l t matrix from the West and North. resp.

* Each element of the resu l t aatrix re t r ieves coefficients
from the Vest and North, multiplies them. and adds them t o the

* m i n g t o t a l . A l l communication is done v i th router.
number of processors: n**2; perfoxmance: n

*/

#include <stdio.hs>
#include <cn/cmtimer.hs>

/*#define DEBUG /* pr in ts out matrices for debugging */

tttifdef DEBUG
#define L 3
#define X 4
%define N 5
%endif /* othervise. define pi th cs -DX=... etc. */

Mefine TOTAL-SIZE ((LN?L:H)*(?DN?X:H))
/* m u s t be the w of L*X, H*N, L*N */

#define T double

domain arrays I T poly A; /I multiplicand matrix; dimensions L.X */
T poly E; /* multiplicator m a t r i x ; dimensions M , l r */
T poly C; /* destination matrir; dinensions L,N */

1 dataCTOTAL-SIZE];

#define THIS,ROY(colunuur) ((this-LdataCO]) / ColUmnS)
#define THIS,COL(columns) ((this-tdata[O]) % Colupms)

extern void arrays::prht-tarray(T arrays::iarray.

extern int atoi(char * d;
extern unsigned CX,virtual,to,physical,processor,ratio; /* (v*v)/(p*q) */

i n t mono rows, int mono cols) ;

void main(int argc , char *argv[])

30

r eg i s t e r int mono run. num-of-runs;
r eg i s t e r int mono r; /* pipelining counter */
CH-timeral-t mono timer-results;

n~,of ,runs=(argc~l)? l :ato i (argv~i l) ;
[domain arrays] . C

int poly i. j;
int poly r-i-j;
T

/* row and column numbers of each element of C */
/* common subexpression */

poly north, West;/* f o r pumping columns of B and rovs of A */

/* init ialize A */
if ((tdataco] <= th i s) LI (th i s < tdataCL*Hl))
A = THIS,ROU(H) THIS,COL(H);

/* init ialize B */
i f ((tdataco] <= th i s) LI (this < MataCH*Nl))

B = THIS,ROU(N) THIS,COL(N) 2;

fF ifdef DEEUO
fputs(fl\riHatrix A:\IL”
print,Tarray(A ,L,H) ;
fputs(lq\nHatrix B:\nvl
print,Tarray(B ,H , N) ;

endif

stdout 1 ;

stdout) ;

C H , s t a r t , t i m e r (l) ;
fo r (run=O; run<num,of,runs; run*) /* t h i s is the loop f o r t h i n g */

i f ((tdataC01 <= th i s) LI (th i s C tdataCL*Nl))
/* select vhole array C */
C-0.0: /* i n i t i a l i z e C */
/* compute row and columu numbers f o r each element of C.*/
i - THIS,ROU(N) ; j = THIS,COL(N) ;

f o r (r = O ; r<H+N+L-2; rfc) {
r-i-j = r-i-j; /* common subexpression */
i f ((0 <= r-i-j) tL (r-i-j < HI) 1

west = data[i*H + r - i - j] . A ;
north= data[r,i,j*N + j] .E:
/* This code actually does not do any sys to l i c pipelining.

Instead, coefficients a re retrieved d i r ec t ly from
A and B . with general communication.
The pipelining code is belov, but it is slower. because
it does more communication (even with g r id addressing).

if (i !=O) / not f i r s t row -- get from north */
north=data[(i-l)*N + j].north; /*could use g r id here */

31

else / f i r s t r o v -- get data from E */
north=dataC(r,i,j)*H + jl .B;

if (j !=O) / not first column -- get from west */
* PestdataCirN + (j-111 .west; /*could use gr id here */
else / f i m t column -- get data from A */

vest=data[i*H + r-i-j] .A:
*/

C = C + oesttnorth;

1:
>
ifdef DEBUG
printf ("\nPhase %d:\n" ,r) ;
printf ("North elerents:\n8') ; print-Tarray (n0rth.L.N) ;
printf (West elements:\nt8) : print,Tarray(sest,L.N) ;
printf ("Hatrix C : b) ; print,Tarray(C,L.N) ;

1: endif
> /* end fo r r */

1 /* end A select ion */
3 /* end for run */
tinar,reaults=~,sto-t~er (1) ;
printf (tlNunber of runs: xd; b b e r of processors wed: Xd\ntl,

pr intf (iiArray diaensiona : (%d+%d) and (%d*%d) ; VP r a t io : %d\nll.
nu-of -runs .TOTAL,SIZE) :

L, H. H. N. CH,virtual,to,physical,processor,ratio) ;
printf ("Real Cll time per run: %g\n" ,tiaar,reeults->cmtv,cm/nurP,of ,runs) ;
printf("Virtua1 ct! time per nm: Xg\n".

timer,results->cntv,cn/nlu,of,runs/
CPI,virtudL,to,physicd~processor~ratio) ;

> /* end domain arrays */
1 /* end main */

32

/*
*

*
*
*
*
*

*
0

*

G The fast O(n> algorithm

This propam perforas para l le l matrix multiplication.
The matrices a re allocated such tha t each processor
has an element of each matrix.
This is a sys to l ic algorithm: A l l elements
of the r e su l t matrix perform a s tep of the inner product
during each i terat ion. The ordering of forming the inner
products is skewed, such tha t each elmemt of A and B
is needed exactly once i n each i te ra t ion .
A l l communication is done by the router.
number of processors: n**2; performance: n
Uith gr id communication, t h i s program could be speeded up
considerably by rotat ing the rows and columns of A and B i n t o place.

*/

#include <stdio.hs>
tinclude <ua/cmtimer.hs>

/*#define DEBUG

t i fdef DEBUG
Xdefine L 3
#define H 4
#define N 5
#endif /* othervise. define with c s -DM=... etc. */

/* prints out matrices fo r debugging */
I

Xdefine TOTAL-SIZE ((L)WL:H)*(n>N?H:N))
/* m u s t be the m a x of L*H, M*H, L*N */

#define T double

domain a r r a y s it poly A; /* multiplicand matrix; dimensions L.M */
T poly E; /* multiplicator matrix: dimensions X,N */
T poly C; /* destination matrix: dimensions L,N */

1 data[TOTAL,SIZE] ;

#define THIS,ROU(CO~~P~~) ((this-tdataCO]) / columns)
#define THIS,COL(coluans) ((this-tdataCOl) % columns)

extern void arrays::print,Tarray(T arrays::iarray,

extern int atoi(char 8) ;

extern unsigned Cn,virtual,to,physical,processor,ratio; /* (v*w>/(p+q) */

int mono rovs, int mono cols) ;

33

. . void main(int argc. char *argvn)
reg is te r int mono run. nu-of-runs;
reg is te r int mono r; /* inner product s tep counter */
CX-timeval-t * mono timer-results;

num-of -runa=(argc=-l)?i : atoi(argvC11) ;
[domain arrays] . {

int poly i, j ;
int poly k;
/* i n i t i a l i z e A */
i f ((kdataco] <= t h i s) kk (th i s C tdata[L*H]))

/* row and column numbers of each element of C */
/* index for inner product - avoids contention */

A = THIS,ROU(H) * MIS,COL(H);

/* i n i t i a l i z e B */
if ((tdataco] <= this) kk (th i s < &iatam*Nl))

B = THIS,RUY(I) THIS,CUL(N) 2:

t i idef DEBUG
fputs(*8\nHatrix A:\n" .stdout) ;
print,Tarray(A .L.X> ;
fpu t s (l a \da t r ix B:\n".stdout) :
print,Tarray(B A N) ;

t endif

CH-start-timer(1) ;
f o r (rungo; run<nup,of,runs; run++) { /* t h i s is the loop f o r timing */

/* se lec t whole array C */
i f ((kdataCO1 <= t h i s) &.& (th i s < MataU*NI)) {

/* i n i t i a l i z e c */
c 4 . 0 ;
/* compute row and colurm numbers f o r each element of C.*/
i = THIS,ROU(N);
/* k is i n i t i a l i zed such tha t access t o A and B is skewed */
k = (i+j)%X;

j = TAIS,COL(IV);

f o r (PO; ;) { /* exi t from middle */

t

t

ifdef DEBUG
printf ("\nPhase Xd:\n".r) ;
printf (lak:\nls) ; print,Tarray(k,L,N) ;
endif DEBUG
/* This code actually does not do any sys to l ic

8 pipelining. Instead, coeff ic ients are re t r ieved
d i rec t ly from A and B, with general communication. */

C = C + data[i*H + k1.A data[k*N + j 1 . B ;

34

t i fdef DEBUG

It endif
printf (Watrix C : \ n ") ; print,Tanay(C.L,N) ;

i f (r >= (H-1)) break;
k = (k+l)%H;
*;

1 /* end f o r r */
1 /* end C s e l e c t i o n */

1 /* end f o r run */
t in--resul ts-m-s top-t her (1 1 :
printf ("Number of runs: Xd: Number of processors used: Xd\ri',

printf (IIArray dimensions: (%d*%d) and (Xd*%d) ; VP r a t i o : Xdba",

printf ("Real CH time per run: %g\nll,tiner,results->cmtv,cm/n~-of ,runs) ;
printf(l*Virtual CH time per mn: X g W .

nun-of ,runs ,TOTAL,SIZE) ;

L, H , H. 1, CH,virtual,to,physical,procesaor-ratio) ;

t iner,results->cmtv,cn/nun,of runs/
~ ,v ir tua l , to ,phys ic~ ,processor~rat io) ;

1 /* end domain arrays */
1 /* end main */

35

H The O(1ogn) algorithm

/* This program performa para l le l matrix multiplication in log n steps.
* The matrices a re allocated such tha t each processor

has one element of each matrix.
The algoritbm rep l ica tes the arrays such t h a t a l l n**3 multiplication
can be done in para l le l , followed by the para l le l sum-reduction f o r
the n**2 inner products.
A l l communication is done by the router .
Number of processors: n**3; performance: log n.

*/

#include <stdio.hs>
#include <cm/cntimer.hs>

/*#define DEBUG /* pr in t s out matrices for debugging */

#ifdef DEBUG
#define L 3
#define H 4
Itdefine N 5
#endif /* othervise. define with cs -Db.. . */
/* f o r f u l l processor u t i l i za t ion ,

*L*H*N should equal the number of processors
28.15 - 28.5 2885 * 2885, or approx. 25883.
2**16 - 2885 * 28.6 2885, o r approx. 40883 */

#define TOTAL-SIZE (L*H*N)

#define T double

domain arrays I T A: /* multiplicand matrix; dimensions L,H */
t B; /* multiplicator matrix; dimensions H,N */
T C; /* resu l t matrix; dimensions L.N */

1 data[TOTU,SIZE] ;

#define THIS-ROU(columns) (proc-number / (colunns))
#define THIS,COL(columns) (proc-number % (colunns))
/* r equbes proc-number t o be i n i t i a l i t e d with (this-kdataCO]) */

extern void arrays::print,Tarray(T arrays::iarray.

extern in t atoi(char 9);

extern unsigned Cn_virtual,to,physical_processor_ratio; /* (v*v)/(p*q) */

int mono rows, int mono cols) ;

36

void maincint argc, char *arpn) i:
r eg i s t e r int s t r ide ;
r eg i s t e r int mono run, num-of-runs;
CI¶,timeral,t mono t iner-resul ts ;

nun,of,nurs=(argc~l)?l:atoi(argvE13) ;

[domain arrays] . E
int poly procpumber;
1 poly Aspread; /* A spread out */
T poly Bspread; /* B transposed and spread out */
int poly index;

proc,number=this-kdata[O] ; /* set processor number */

/* processor number */

/* temporary f o r CO~UBUI and roo indices */

/* i n i t i a l i z e B */
if ((&data[O] <= th i s) Lt (th i s < MataM*NI))

ifdef DEBUG
fputs (% t f a t r i x A: \n",stdout) ;
print,Tarray(A,L,H) ;
fputs (Iq\nHatrix B :\d* ,stdout) ;
print,Tarray(B ,I¶.N) ;
endif

B .I THIS,ROU(H) THIS,COL(N) *2;

/B Algorithm: the da ta of the tvo matrices A and B is repl icated
B and aligned such tha t all multiplications can be done in para l le l .
I Sum reductions are also done in para l le l . This is the layout:

A: Irou01roo01 ... Ired

B'i IcolOlcolll. .. IcolN-1
*/

CH-start-ther(1) ;

roo2 I roo2 I . . . I roo2 I IrooL-1 I . . . I rod.-1

col0lcollI ... IcolN-11 1 ~ 0 1 0 J . . . l~o lN- l

f o r (run=O; run<num-of-zuns; run++) 4 /* t h i s is the loop f o r timing */

proc-numberxthis-tdata[O]; /* set processor number */

37

/* Step 1: repl icate each r o v of A N t ines i n t o Aspread */
/* Step 1.1: Fi rs t . place i n i t i a l r o v s */
i f (proc-number<L*U)

/* Step 1.2: Duplicate each roo N times with recursive doubling */
/* View Aspread a s an arra). of L rovs vi th H*N columns. */
/* "he f k s t H columns have t o be spread r ight */
index = THIS,COL(H*N); /* column index in Aspread(L.H*N) */
f o r (stridein; s t r ide < H*N; s t r i d e <<- 1) E

dataCTHIS-ROW(H)*H*N+THIS,COL(H)].Aspread=A; /* send */

i f (index+stride < H*N)
(this+stride)->Aspread-Aspread; /* t h i s is a send */

€
ifdef DEBUG

pr intf ("\nAspread (A's rova repl icated Xd t h e s end t o end) :WB,N) ;
pr in t ,Tarray (Aspread, L, H*N) ;

endif

/* Step 2: Replicate the en t i re data of B L times into Bspread */
/* Step 2.1: F i r s t . transpose B into Bspread */
i f (proc-number<H*N)

/* Step 2.2: repl icate the f i r s t H+N elements of Bspread L times */
/* Vies Bspread as an L*(HN) array; spread rovs dovn */
f o r (stride=N*H; s t r ide < L*H*N; s t r i d e <<= 1) <

data[THIS-COL(N) *H+THIS-ROU(N)] .Bspread=B;

if ((this+stride) < &data[L*U*NI)
(this+stride)->Bspread=Bspread; /* this is a send */

€
ifdef DEBUG

pr intf ("\nBspread (B's rows repl icated Xd times:\nt8.L) ;
pr in t ,Tarray (Bspread , L, H*N) ;

endif

/* Step 3: Hultiply in para l le l */
Bspread=Aspread*Bspread;

printf (ts\nBspread (elmentvise product of Aspread and Bspread:)\n") ;
print,Tarray(Bspread.L,H*N);

ifdef DEBUG

endif

* / * Step 4: Sum scan (Could be done with a segmented sum scan) */
/* Vies Bspread as an array of L*H vectors of length If. */
/* Sum the vectors i n paral le l ; scan f a s t e r than reduction */
index=THIS-COL(H); /* column index i n Bspread(L*N.H) */
f o r (s t r ide=l ; stride<H; s t r ide <<= 1) <

if ((index+stride) < H)
Bspread=Bspread+(this+stride) ->Bspread; /* t h i s is a get * , I

33

: #

>
ifdef DEBUG
printf ("\nBspread (add reduction on subvectors of length Xd) :\n".H) ;
print,Tarray(Bspread,L,H*N);
endif

/* Step 5:Gather results into C I/
if ((O<-proc-number) Lt (proc,number< L*N))

C=data[proc,number*N .Bspread;

It ifdef DEBUG
fputs("\nResult of multiplying A with B:\n", stdout);
print,Tarray(C ,L ,N) ;

endif
1 /* end for (run) */
timer,results=C?!,stop,t imer (1) ;
printf ("Number of runs: %d; Number of processors used: Xd\n",

printf ("Array dimensions: (Xd+Xd) and (Xd*Xd); VP ratio: % d \ n l l ,

printf ("Real CH time per run: %g\n",tinat,results->cmtv,cm/num,of ,runs) ;
printf(~~virtua1 cn tine per run: Xg\n".

nu-of ,runs ,TOTAL,SIZE) ;

L. H. H. N. CH,virtual,to,phpsical,processor,ratio);

timer-results->cmtv,cm/nu-of -runs/
CH-virtual-to-physical-processor-ratio) ;

)/* end domain arrays */
)/* end main */

39

I The print routines for the CM programs
The following two routines are needed for the DEBUG option, to print
out matrices. These routines work for all CM programs, but not for the
sequential matrix multiply.

void arrays::print,Trow(Tarray, row. co ls)
/* p r i n t a row of length c o l s from an array in CH-memory */

T arraya:: Tarray; /* array */
int mono row: /* row number */
int mono cols: /* row length */

f o r (col=O; co l<cols ;) C
C int mono col ;

p r in t f ("%4g
if ((cols <= 14) I I (col !- 8))

else { /* skip some elements */

",data[row*cols + col] .Tarray) ;

col*; /* go on t o ner t element */

pr in t f (I*. . . 11) : col=cols-4;
>

3
>
void arrays::print,Tarray(Tarray,ross,cols)
/* p r i n t array Tarray */

T arrays::Tarray; /* array */
int mono rows; /* number of rows */
int mono co l s ; /* number of columns */

for (row=O; row<rovs;) C
C int mono row; /* row counter */

print,hrow(Tanay,roo,cols);
putc('\n' ,stdout) ;
if ((row8 <- 14) I I (row != 8))

else { /* sk ip some rows */
row++; /* go on t o next row */

fputs(".\n" ,stdout) ;
rowos'czows -4;

1
>

1

40

