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Matrix multiplication is a computation and communication intensive problem Six parallel 
algorithms for matrix multiplication on the Connection Machine are presented and compared with 
respect to their performance and processor usage. For n by n matrices, the algorithms have 
theoretical running times of O(n log n), O(n log n), O(n), and O(1og n), and require n, n , n , and 
n processors, respectively. With careful attention to communication patterns, the theoretically 
predicted runtimes can indeed be achieved in practice. The parallel algorithms illustrate the 
tradeoffs between performance, communication cost, and processor usage. 
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1 Introduction 

Matrix multiplication is a conceptually simple problem that is computation 
and communication intensive. I t  is computation intensive, because multi- 
plying two n by n matrices takes 0(n3) arithmetic operations. It is com- 
munication intensive, because 0(n3) different pairs of operands have to  be 
brought together during the computation. Communication time is not an 
issue for a single processor that fetches one operand a t  a time from memory. 
On multiprocessors, however, data and intermediate results are distributed, 
and the communication delays for bringing them together for processing are 
not negligible. Studying pa rde l  matrix multiplication has the advantage of 
exposing the tradeoffs among various degrees of pardelism, performance, 
and communication patterns on a simple and easily understood problem. 

The Connection Machine (CM) is well suited for experimenting with 
large-scale parallelism. The CM model 2 is an SIMD computer with up to 
65,536 (216) processors connected in a 16-dimensional hypercube network. 
Each processor has 8 kilobytes of local memory; the entire primary memory 
of the CM comprises half a gigabyte. A parallel I/O system matches the 
speed of the processors. The CM is the first, and so far only, computer that 
provides enough processors to credibly run large-scale parallel programs. 
Although the processors are bit-serid and therefore quite weak, their large 
total number permits realistic experimentation with massive parallelism. 

The high connectivity of the hypercube network also contributes signifi- 
cantly to experimenting with parallel algorithms, because the hypercube can 
efficiently implement the routing patterns of many important regular and 
irregular communication topologies. Regular topologies that can be embed- 
ded efficiently include rings, multi-dimensional grids and tori, multigrids, 
trees, and the perfect shuffle. A total of 4048 routing processors (1 routing 
processor is shared by 16 of the regular processors) 

handle irregular communication patterns. These special-purpose pro- 
cessors compute communication paths, store and forward messages, and 
manage contention. They make parallel communication among processors 
as easy to program as array indexing. 

The simultaneous availability of many communication patterns is impor- 
tant, since many algorithms change communication patterns while running. 
Our matrix multiplication algorithms use trees, forests, grids, tori, and the 
perfect shuffle. Half of our algorithms actually need at  least two patterns 
out of this set. The high connectivity of the hypercube allows efficient im- 
plementations of all relevant algorithms, and thus allows a fair comparison. 
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An important aspect that simplifies parallel programming is the concept 
of virtual processors. Each of the 216 physical processors can simulate a 
number of virtual processors. The maximum number of virtual processors is 
limited by the available memory, because the virtual processors need to share 
it. The firmware of the CM efficiently implements the time-multiplexing of 
the physical processors, in a manner that is transparent to the programmer. 
Using virtual processors means that programs are independent of the phys- 
ical processors available. Transparency is important for scdability: in order 
to solve a larger problem, one simply changes the relevant constants and 
reruns the program. For more information on the CM, see references [1,2]. 

The following section describes the algorithms. Section 3 presents the 
performance results. 

2 Algorithms 
The algorithms for parallel matrix multiplication are interesting in their own 
right, but the reader less interested in the details can skim this section. 

2.1 Ground rules 

There are a number of parameters that affect the performance of the parallel 
algorithms. In order to arrive at meaningful comparisons, some of these 
parameters must be kept constant. 

All algorithms are for dense, rectangular arrays: 

c1,n = A h  p , n  

The usual specification of matrix multiplication is: 
m-1 

V i , j  I 0 <= i < 1, 0 <= j < n : Ci,j = A;,k X B k , j  
k=O 

Our goal is to compare algorithms that work for arrays of any size. This 
means that the algorithms do not take advantage of square matrices, nor are 
they-limited to preferred array sizes, such as powers of 2. The algorithms do 
not pad the matrices with dummy eiements to make them square or to  adapt 
them to preferred sizes. The only padding we allow in some of the algorithms 
is to reserve the same amount of space, namely max(l, m) x max(m, n) for 
all arrays. The space wasted by this type of padding cannot be put to other 
uses anyway, given the architecture of the CM. For instance, by attempting 
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to save this padding, the maximum size of arrays that can be run on the Chf 
would not increase. Furthermore, the algorithms do not introduce dummy 
processors except proportional to the padding just discussed. Thus, the 
algorithms waste neither space nor processors frivolously. 

By leaving out special-casing for array sizes, we exclude some of the 
faster algorithms. For example, a fast O(n)  systolic algorithm requires 
square matrices. However, by insisting on generality we obtain programs 
that run efficiently and without waste, independent of whether the matrices 
are square, skinny, or fat. 

For brevity, however, section headings quote performance characteristics 
for square arrays of size n x n; we leave it as an exercise to the reader to 
derive the precise formulas for general, rectangular arrays. 

A further aspect regarding generality is that all input and output ma- 
trices for a given algorithm are allocated in the same manner, for example 
row-major. We do not assume that matrices A or B are transposed be- 
forehand to  speed up communication. If a matrix must be transposed or 
brought into some other special alignment, then our algorithms include the 
necessary steps, and our measurements include the time consumed by these 
steps. 

All algorithms use double precision floating point. 
All algorithms are implemented in C*, except the sequential one, which 

is written in C. Reprogramming the C* programs in *Lisp would probably 
make them run faster. 

All algorithms use the general CM communication; they do not take ad- 
vantage of the grid communication or reduction operations in CM microcode. 
Most algorithms would run faster by using these features. Programming 
with some of these features is difficult in C*. 

2.2 The O(n3) (sequential) algorithm 
The sequential algorithm is the standard textbook version with three nested 
loops, highly optimized. In particular, code motion and strength reduction 
(replacing multiplication with addition) make address computations fast. 
Registers hold indices, offsets, and temporary results. This algorithm does 
not use the CM at all, because it runs completely on the frontend. I t  is 
included for comparison purposes. 
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Figure 1: The O(n2 log n) algorithm 

2.3 

In this algorithm, each processor contains a row of each of the matrices A, B, 
and C. Thus, we need max(1, m) processors. The algorithm computes 1 x n 
inner products in sequence, one for each element of C. An inner product 
executes m multiplications in parallel in constant time, and then a parallel 
sum reduction to produce the sum in O(1og m) time. For details regarding 
parallel sum reduction see reference [3]. 

The communication costs of this algorithm are as follows. Since arrays 
are stored one row per processor, a single column of B is spread over m 
processors. For the parallel multiplication in the inner product, each row 
of A must be spread over the m processors containing the columns. The 
spreading of a row takes O ( m )  communication steps, since a processor can 
send only one element at a time. However, a given row of A must be spread 
only once for computing n inner products. The multiplications require no 
communication. The logarithmic sum reduction uses the router with the 
reduction into the target coefficient of C. This step takes O(1og m) commu- 
nication steps. See Fig. 1 for an illustration. 

The O(n2 log n) algorithm 

2.4 

This algorithm is a straight-forward generalization of the previous one. In- 
stead of using m processors to perform a single, parallel inner product step 
at a time, we use I x m processors to produce an entire column of C at once. 

Each processor contains one element of A, B ,  and C. Assume that ma- 
trix elements are assigned in row-major order to the processors (see Fig 2). 

The slow O(n Iogn) algorithm 
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A d cot j I B 

duplicate 
col j 

Figure 2: The slow O(n  log n) algorithm 

For computing a column of C at once, we first need to broadcast the rel- 
evant column of B to all rows of A,  then execute I x n multiplications in 
parallel, and then perform I sum reductions in parallel. The multiplications 
take constant time and the sum reductions O(1ogm) time, including com- 
munication. The broadcast of columns of B must be arranged carefully as 
follows. 

There are several alternatives for implementing the broadcast on the 
CM. First, the frontend computer is highly efficient at broadcast: It could 
first retrieve a column element from B and then pass it simultaneously to  all 
elements of A.  However, the frontend can only broadcast one element at a 
time, so the process would take O(m) steps, resulting in quadratic runtime 
overall. The second alternative is to  exploit the router for performing an 
implicit broadcast: Each element of A could simply retrieve the required 
coefficient from B directly. Unfortunately, this would again result in linear 
broadcast time, since each element of B's column would be requested by I 
rows of A simultaneously, and each processor can only honor one request a t  
a time. Instead, we must program a fanout tree for each column element. A 
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fanout tree has the same structure as a tree for reduction, except that data 
flows from the root to the leaves instead of vice versa. Since we need a tree 
for each column element, we actually need to construct a parallel fanout 
forest. The fanout forest broadcasts B’s column in logarithmic time. 

In detail, the fanout forest operates as follows. First, we “seed” the 
column of B into the first row of A ,  in parallel for all elements. Next, we 
instruct the first row of A to duplicate the seeded coefficients one row down, 
also in parallel. Next, the first 2 rows of A to duplicate their elements 2 rows 
down, then the first 4 rows duplicate 4 rows down, and so on. In each step, 
the number of copies of the column of B doubles, until the entire matrix A 
is filled. This process takes O(log I )  communication steps. We programmed 
the broadcast explicitly, although the CM actually provides a primitive for 
it. Using the primitive instead would significantly speed up that portion of 
the program. 

Another detail concerns the sum-reductions. The I sum-reductions run 
along the rows of A,  orthogonal to the broadcast. Again, we programmed 
this process directly rather than using the corresponding CM primitive. 
Using this primitive also speeds up the program. 

2.5 The fast O(n1ogn) algorithm 

When analyzing the broadcast operation in the previous algorithm, one 
notices that it uses processors and communication bandwidths poorly. In 
the first step of the broadcast, only m of the I x m processors operate, and 
in the last one, barely half of the processors operate. The algorithm in this 
section eliminates the slow broadcast altogether. 

As before, we lay out matrices one element per processor, in row-major 
order. Figure 3 illustrates. First, we transpose matrix B and overlay it onto 
A; the router performs this operation in constant time. The transposed 
overlay has the effect that row i of A is lined up with column i of B. Next, 
we perform 1 parallel inner product steps, producing the main diagonal of 
C in O(1ogm) time. As the next step, we rotate the transposed matrix B 
up one row, with the topmost row reentering at the bottom. NOW row i of 
A is lined up with column (i + 1) mod n, and we compute the upper main 
diagonal of C, along with element Ci-l,o. After n steps of inner product 
computation and rotation, C is complete. 

This algorithm uses the bandwidth of the communication network and 
the processors effectively. Again, all communication is implemented directly, 
rather than using CM primitives. 
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Transpose 

B B t r  v n B 

i 
Figure 3: The fast O ( n  log n) algorithm 

A detail involves the relative sizes of A and B:  In general, the number of 
rows of A does not match the number of columns of B ,  so the transposition 
and rotations must be done with care. Our approach was to keep the smaller 
of the two arrays in place and rotate the larger, although the opposite might 
improve performance somewhat. 

2.6 The slow O(n) algorithm 

A problem with the previous algorithms is that they all perform logarithmic 
sum reduction. The algorithm in this section avoids the corresponding factor 
of O(1og n) by distributing the cost of the addition over the communication, 
and thus achieves linear runtime. 

The algorithm is called “systolic”, because it alternates between two 
distinct phases, a communication phase and a computation phase. Assume 
we have I x n processors, each computing one element of the result matrix 
C. The initialization sets C to zero. Rows of A enter C from the left and 
shift horizontally through C. Similarly, columns of B enter C from the top 
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B 

Figure 4: The slow O(n)  algorithm 

and shift down (compare Figure 4). The shifts transport a new column 
and row coefficient to elements of C in each step. The computation phase 
multiplies these coefficients and adds them to C;,j. For the coefficients to  
Line up in the right order, the rows and columns enter C in skewed order, i.e., 
they are delayed from entering by one step per row or column. Processors 
without coefficients in a particular step are simply disabled. Figure 5 shows 
the resulting configuration after 3 shifts. For more details on the systolic 
algorithms, see reference [4], Chapter 8 or [SI. 

The algorithm operates for a total of O(2 + m + n) steps, until the last 
row and last column of A and B have shifted through C. Each step takes 
cons tan t time. 

We experimented with two variants of the systolic algorithm. The first 
variant treats the first row and column of C as a special case: Elements in 
these positions retrieve the relevant coefficients from A and B directly, rather 
than moving A and B into place. The remaining elements of C retrieve their 
coefficients from their north and west neighbors. Thus, the first row and 
column of C inject the coefficients. UnfortunateIy, this approach does not 
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a 03 

a 12 

a 21 other 
processors 

idle 

Figure 5: Configuration of C in Figure 4 after 3 shifts 

lead to the most efficient implementation. Since the Connection Machine is 
SIMD, the injection and the shifts cannot occur simultaneously: First, the 
interior elements retrieve from the north and west, and then the leading row 
and column of C send for their next elements. Thus, the communication 
phase has two subphases, each of which idles a significant portion of the 
processors. 

We therefore modified the algorithm, realizing that the shifts are only an 
artifact of the topology of systolic processor arrays. With general communi- 
cation on the CM, any processor can retrieve data from any other processor 
in essentially the same time. Thus, during each communication phase, every 
element of C retrieves the required coefficients from A and B directly. The 
address computation is identical for all elements and splitting the communi- 
cation phase into subphases is avoided. Since no two elements of C retrieve 
the same coefficients, there are no problems with fanout as in Section 2.4. 
In section 3, we report only on the faster of the two variants. 

2.7- The fast O(n)  algorithm 

A flaw of the previous algorithm is that even the faster variant underutilizes 
the processors. The activation of processors spreads from the north-west 
corner towards the south-east corner, with never more than half the proces- 
sors busy. On average, processor utilization is only 1/3. How can we keep 
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0 1 2  3 

1 2 3  0 

2 3 0  1 

Figure 6: Initial indices for the fast O ( n )  algorithm 

all processors busy all the time? 

for the elements of C need not be computed in the same order. Consider 
The answer to this question derives from the fact that the inner products 

m-1 

k=O 

Because of the commutativity of the addition, there is no need to accumulate 
the sum starting with IC = 0. Instead, we could start with any ki,j in 
[O.. . m - 11, sum to m - 1, then “wrap around“ and add the the terms from 
0 to ki,j - 1. Observe furthermore, that in each of the I X n multiplications 
we must make sure that no two use the same coefficients from A or B ,  
because we would have a slowdown caused by fanout otherwise. We can 
exploit the commutativity of the addition to achieve this separation. One 
way to use different coefficients everywhere is to let ki,j = ( i  t j )  mod m. In 
other words, the starting index for building the inner product is skewed for 
each row of A and column of B ,  guaranteeing that no element of A or B is 
used twice in a single inner product step. Figure 6 illustrates the starting 
assignment of k;,j in a 4 x 4 array. 

For square matrices, this approach is equivalent to overlaying A ,  B ,  and 
C, skewing the rows of A and the columns of B with wrap-around, and 
then rotating the rows of A and the columns of B during each step. The 
rotation does not work well for non-square matrices, and since we did not 
use the general grid addressing on the CM, rotation has no advantage over 
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general communication. We therefore simply used general communication 
to  retrieve the required coefficients directly from A and B. The resulting 
program is actually the simplest of a,Il those considered here. It consists of 
a loop over m, with two statements in its body: one for the inner product 
step, and one for incrementing k;,j modulo m. 

2.8 The O(1ogn) algorithm 

The fastest algorithm is one that uses n3 processors to compute all n3 prod- 
ucts .simultaneously, and then performs n2 sum reductions in parallel to 
produce C. The multiplication takes constant and the sum reduction loga- 
rithmic time. We also must take into account the duplication and alignment 
of data prior to the multiplication. Each row of A and each column of B 
must be dupIicated n and I times, respectively, and paired properly one with 
the &her. Two fanout forests, one for A and one for B,  broadcast and align 
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the data in logarithmic time. Figure 7 illustrates the pairings of rows and 
columns for 3 x 3 matrices. 

3 Performance Results 

We implemented d algorithms in C* and timed them on a Connection Ma- 
chine model 2 with 32K processors (system version 5.0, field test), without 
floating point chips. As stated, all arithmetic (except address calculations) 
used double-precision floating point. The frontend controlling the CM was 
a DEC VAX under the ULTRIX operating system. 

Since the speed of the VAX is often no match for the CM, we report 
timings measured only on the CM. Although this may be unrealistic for 
the given configuration, we believe this choice is justified for the following 
reasons. When the virtual to physical processor ratio is 1, the frontend time 
is typically more than twice as high as the CM time, with a CM utilization of 
less than 50 per cent. This indicates that the VAX cannot keep up with the 
CM, mainly because of its raw MIPS rating, but also because the frontend 
is timeshared among other users. When the virtual to physical processor 
ratio is high, such as 8, then the times on the frontend and the CM are 
nearly identical (for both elapsed times and the combined system and user 
times). This is an indication that the simulation of virtual processors is 
slowing the CM enough to match the speed of the VAX.’ We are therefore 
convinced that in this situation, the timings on the CM are more accurate. 
For a well-matched, faster frontend, such as a Symbolics Lisp machine or a 
SUN/4, timings would best be taken on the frontend. 

For simplicity, all measurements were run with square matrices. The 
results are summarized in Figures 8 and 9. Figure 8 shows all 7 curves for 
array sizes of up to 250 x 250. We shall discuss the curves clockwise, starting 
form the top left. The leftmost curve represents the O(n2 log n) algorithm, 
using n processors. This algorithm appears slower than even the sequential, 
0(n3) algorithm (second curve). This is not surprising, since the difference 
between logn and n is not enough to offset the difference between a 1-bit 
processor and a 32-bit processor for the small values of n shown. Note, 
however, that the two curves will eventually cross, since the first is of a 
lower order. We estimate that the crossover point is n zi 450. 

‘Note that the virtual processor simulation is performed by the microcode of the CJI: 
Each instruction issued by the frontend is repeated implicitly by the CM’s instruction 
decoder for the number of virtual processors assigned to the physical processors. 
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Figure 8: CM performance for moderate array sizes 

Using n2 processors boosts performance far beyond that of the sequential 
processor. The crossover points occur early, clearly demonstrating that slow, 
but numerous processors can outperform a single, fast sequential processor. 
The fast O(n  log n) algorithm is almost twice as fast as the slower variant, 
demonstrating the significance of communication costs. The faster algorithm 
is almost as fast as the slow linear algorithm. The second linear algorithm 
is another factor of 2 faster, demonstrating the effect of full utilization of 
processor and communication bandwidth. 

A curious effect is the jump in these 4 curves, occurring for a problem 
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size of about 180. Note that at this point, 32,400 processors are in use, 
which is the capacity of the CM available (32,768 processors). An increase 
of the problem size beyond 181 requires a virtual to physical processor ratio 
of 2. Thus, execution times double, and the gradient of the curve doubles 
also. The next such doubling would occur for n > 256, and then again for 
n > 362. On a full connection machine with 65,536 processors, the first 
jump would not occur until n > 256. 

By doubling the virtual processor ratio, the times do not quite double, 
since communication between virtual processors simulated on the same phys- 
ical processor is more efficient than communication among separate physical 
processors. However, the savings observable are minor. In the case of the 
fastest linear algorithm, increasing the virtual to physical processor ratio 
from 1 to 2 increased the time by a factor of about 1.93 rather than 2. 
Thus, for matrix multiplication, the savings are only 7 per cent. 

The last curve is for the O(1og n) algorithm, which requires n3 processors. 
This algorithm is the fastest for small problem sizes, but requires a large 
number of processors. At problem size 32, all processors of the available 
CM are in use. For this size, the algorithm simply brings a.ll the available 
hardware to bear on the problem. For a problem size of 60, the overhead 
of virtualization is so high as to slow the program down below the fast lin- 
ear algorithm. (Note that the virtualization overhead grows proportional 
to  n3/2I5.) For a problem size of 100, each real processor must simulate 
16 virtual processors. At this point, all the available Connection Machine 
memory of 256 Mbytes is used up by replicated array data and virtual pro- 
cessor stacks. Larger problems simply do not fit the capacity of the 32K 
processor CM. 

The effect of the virtual to physical processor ratio for some of the less 
processor-intensive problems is shown in Figure 9. For larger problem sizes, 
the cubic behavior of the matrix multiplication cannot be denied. The per- 
formance of the "linear" algorithm is still cubic, once the number of proces- 
sors is exhausted. Essentially, the performance curve is a cubic parabola, 
divided by the large constant factor of 32,000. The straight line a t  the bot- 
tom is the virtual time of each processor. This is the time we would see if 
we had as many processors as memory words. 

Note that the absolute performance achieved is hardly overwhelming. 
Counting only double-precision floating point additions and multiplications, 
the fast sequential algorithm achieves only about 4 Mflops for 1SO x 180 ar- 
rays; this number would double for a full (64K processor) CM-2. Including 
arithmetic instructions for address calculations, we come up with about 20 
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Mips, or 40Mips for a full CM-2. (This number excludes the instructions 
for stack manipulation and communication). Thus, we achieved only about 
1/60 of the ”typical application performance” quoted by Thinking Machines 
Corporation for general computing. Apparently, our algorithms are commu- 
nication bound, and using the special features of the communication network 
would pay significant dividends. The numbers also demonstrate how diffi- 
cult it  is with the present programming languages to harness the power of 
the CM. 

0 200 400 600 800 1000 
Figure 9: CM performance for large array sizes 
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The measurements in Figure 8 were taken in increments of 10, so the 
'curves are quite accurate. Each individual point was computed by repeating 
the same problem long enough to have a cumulative runtime of between 2 
and 4 minutes, and then dividing by the number of actual runs. The variance 
in time for the individual runs was so small as to be invisible on the diagram. 
For Figure 9, we took measurements in increments of 50, with increments of 
10 around the points were virtual to physical processor ratios change. Some 
of the higher points in this diagram represent the average of only a few runs. 

' 

4 Conclusion 

A number of conclusions can be drawn from this case study. First, even for 
problems as simple as matrix multiplication, a surprisingly varied number of 
different algorithms exists, and the tradeoffs among speed, communication 
patterns, and processor usage are interesting and non-trivial. It appears 
that with large-scale parallelism, all of our sequential algorithms must be 
rethought. CM programmers have already discovered some new and inter- 
esting, totally parallel solutions for many problems, from multi-grid methods 
to document retrieval to ray tracing. Furthermore, we predict that many of 
our sequential algorithms will turn out to be special cases of parallel ones. 

A second important insight is that with the right choice of algorithm 
and communication pattern, the speedup attainable is indeed proportional 
to the number of processors used. With few exceptions, all previous experi- 
ments with multiprocessors showed a point of diminishing and even revers- 
ing returns, when the addition of processors did not speed up a program 
proportionally or even slowed it down. At no time did we observe these 
effects on the CM; performance was always within a constant factor of the 
theoretically predicted, asymptotic performance. We suspect that earlier 
multiprocessors simply had insufficient communication bandwidth and high 
synchronization overhead. Because of the SIMD nature of the CM, there is 
no synchronization overhead, and the bandwidth of the hypercube is well 
matched to the demands that the processors can generate. 

We can also confirm that the concept of the virtual processor is a great 
simplification for parallel programming. Not having to write twisted code 
for mapping a given problem onto a particular set of processors makes for 
easily written, easily understood, and easily ported programs. Further study 
is required to make this concept applicable when programs need to change 
the number of virtual processors dynamically. 
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There are also a number of negative conclusions. First, using a super- 
linear polynomial of processors severely limits the problem size, and the 
resulting program may not run efficiently because of the overhead of virtu- 
alization. In our example, using one processor per data element yielded the 
best overall performance. However, for small problem sizes, a superlinear 
number of processors is the best way to  bring the entire available hardware 
to bear on a problem. 

Second, it became quite clear that automatically transforming "dusty 
deck" sequential problems to large-scale parallel ones is a pipedream. Con- 
sidering matrix multiplication, it is easy to see how a compiler would detect 
the inner loop of the sequential program and transform it into a vector oper- 
ation. However, we severly doubt whether a general compiler could be built 
that could generate all six variants we discussed from a single, sequential 
program. If automatic transformation can be done at  all, it  would have to 
start with the problem specification and not with a sequential implementa- 
tion. In a sequential program, too many opportunities for parallelism have 
been hidden or eliminated. 

A number of further studies should be done to get a better grasp of the 
idiosyncrasies of the Connection Machine. First, all programs should be 
rewritten in *Lisp, to compare the quality of the two two language imple- 
mentations and the effect of the frontend. Second, to quantify the potential 
gains from the special features of the router, all programs should be mod- 
ified to  use them. Preliminary experiments have shown that by using just 
the reduction operators, the O(n1ogn) algorithms run almost as fast as the 
corresponding linear algorithms. Of course, the linear algorithms could also 
be improved by using grid addressing. Finally, the ratio of communication 
time to  computation time should be determined by simply leaving out the 
floating point operations. It appears that all our implementations are com- 
munication bound and that floating point operations actually consume a 
negligible percentage of the time. Matrix multiplication shares this prop- 
erty with many other problems. Perhaps communication cost will turn out 
to  be the dominant cost for all large-scale parallel algorithms. 
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A General remarks about the programs 

All programs have a macro called DEBUG. When this macro is defined, 
either in the program directly, or via the -D option on the cc or cs command 
line, then detailed tracing information about the matrices will be printed. 

With the exception of the sequential algorithm, array dimensions are 
compiled into the programs. By using constants rather than variables, the 
programs run about 10 percent faster on the CM. There is no noticeable 
difference for the sequential algorithm. 

For CAM programs, the macros L, M, and N determine the dimensions of 
the arrays as follows: 

Matrix A: L by M 
Matrix B: M by N 
Matrix C: L by N 

If the macro DEBUG is defined, L, M, and N itre already predefined (to 3, 
4, and 5 ,  respectively). Otherwise, the macros L, M, and N must be either 
defined in the program itself, or on the command line. To compile a CM 
program in file f.cs, one wouId use the following commands: 

For tracing: cs f .cs -DDEBUC -0 f 

For timing: cs f .cs -DL=lO -DM=20 -DN=30 -0 -0 f 

When running a CM program, the first argument specifies the number 
of times the matrix multiplication is to be performed. For accuracy, a high 
enough number of runs should be chosen, such that the total time is above 
60 sec. 

For the sequential dgorithm, L, M, and N are variables. The first ar- 
gument specifies L, M; and N simultaneously, and the second the number 
of runs. If no argument is given, L, M, and N are set to defaults, and the 
number of runs to 1. 
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B The O(n3)  (sequential) algorithm 
/* This is a sequential  C-program f o r  matrix multiplication. 

It takes 0 ,  1 or  2 numeric arguments: 
0 arguments: 

1 argument: 

2 arguments: 

* 

* 
*/ 

(for debugging) array dimensions are  fixed. 
The multiplication w i l l  be executed once. 
The argument gives the dimensions of a l l  arrays: 
The multiplication w i l l  be executed once. 
The f i r s t  argument gives the dimensions of a l l  
arrays;  The second argument specif ies  the number of 
times t o  run the multiplication. 

tinclude <stdio.h> 

/*#define DEBUG /* f o r  debugging purposes */ 

tdefine T double 
tdefine HAXSIZE 300 

T AcHAXSIZE*HAXSIZE]; /* multiplicand matrix; dimenaions L.H */ 
T B[HAXSIZE*MXSIZE] ; /* multiplicand matrix: dimensions H,B */ 
T CL’HAXSIZE*KAXSIZE]; /* multiplicand matrix; dimensions L.N */ 

extern int a t o i 0 ;  

reg is te r  int i , j , k :  
reg is te r  T inner-prod: 
reg is te r  int istarn. i s t a r n .  L s t a r N :  
int run, nun-of ,NM : 
int L,H,If; 

switch (argc) { 
case 1: 

case 2: 

case 3: 

1 

nun-of ,runs=l; 
L-3; H 9 4 ;  N=5: 
break: 
nun-of -runs-l: 
L=H=N=atoi(argv[lI) ; 
break: 
L=H=N=atoi(argv[lI) ; 
nu-of ,runs=atoi(argv C21) : 
break: 

i f  ((L>H?L:H)*(H>N?H:N) > HAXSIZE+HAXSIZE) { 

20 



printf  ('*&ray dimensions exceed Xd\n'* .UAXSIZE) ; 
exit(0) ; 

1 

* ifdef DEBUG 
/* i n i t i a l i z e  A */ 
f o r  ( i = O ;  i<L;i++) 

f o r  ( j=O:  j < H ;  j++) 
ACi*H+jl= i*j; 

/* i n t i d i z e  B */ 
for (i=O;i<H;i++) 

f o r  (j=O; j < N ;  j++> 
BCi*N+j]= i*j*2; 

fputs (@'\nUatrix A: \n@@, stdout) ;print,Tarray(A.L.H) : 
f puts (**\nUatrix B : \n**, stdout ) ;print,Tarray(B ,H .N) ; 

t endif 

/* t h i s  is the  loop f o r  timing */ 
f o r  (runlo; run<nun,of,runs; run#) € 

/* This is the matrix multiply, p i th  strength reduction */ 
i 8 t a r H d ;  i s t a r N = O ;  
for ( i = O ;  i<L ;  i++) € 

f o r  (j=O; j < N ;  j++) 
inner-prod=O; 
kstarN=O ; 
for (k=O; k<H; k++) < 

/*inner,prod=inner,prod+A[i*H +k] *B Ck*N +jl ; */ 
k e r - p r o d  = inner,prod+A[istarH+k]*BCkstarN+jl; 
kstarN=kstarN+N: 

/*C [i*N +j]=inner,prod;*/ 
C C i s t a r H +  j] =inner,prod; 

1 
i s t a r U = i s t a r U + H ;  i a t a r N = i s t a r N + N ;  

1 
% ifdef DEBUG 

fputs(@*\nResult of Hultiplying A and B:\n",stdout) ; 
print,Tarray(C,L.N) ; 

t endif 
1 
printf(*@Humber of runs: %d; Number of processors used: %d\n**. 

pr intf  ( ' * h a y  dimensions: (Xd*Xd) and (%d*%d)\n**,L,H,H.N); 
nua,of-ruaa.l); 

1 
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C The O(n210g n) algorithm 

/* This program performs p a r d l e l  matrix multiplication in n*n*logn s teps .  
The matrices a r e  allocated such tha t  each processor 
has one row of each matrix. 
The algorithm perforas n*n inner products in  sequence. 
All communication is done by the  router.  
number of processors: n; performance: n*n*logn 

*/ 

#include <stdio.hs> 
#include <cm/cmtimer.hs> 

/*#define DEBUG /* pr in ts  out matrices f o r  debugging */ 

#ifdef DEBUG 
#define L 3 
#define H 4 
#define H 5 
#endif /* othervise. define v i t h  cs -DIr... */ 

#define TOTAL-SIZE (L>I¶?L:H) 
#define T double 

/* m u s t  be max of L and H */ 

domain arrays {T poly Am]; /+ multiplicand matrix: dimensions LJ */ 
T poly B[N]; /* multiplicator matrix; dimensions U,N */ 
1 poly C[N]; /* destination matrix; dimensions L.N */ 

1 data[TOTAL,SIZE] ; 

er te rn  void arrays::print,Tarray(T arrays:: mono Tarray, 

extern int atoi(char s); 
ertern unsigned Cn-virtual-to-physicdl-processor-ratio; /* (v*w) /(p*q) */ 

int mono rows. int mono cols) ; 

void main(int argc. char +argv[I) C 
reg is te r  int mono i . j ,k ;  . 
reg is te r  i n t  mono run. nu-of-runs; 
CH-timeval-t mono timer-results; 

nk-of -runs= (argc-1) ?I : atoi(argv [I] 1 ; 
[domain arrays]. { 

T poly Arov; 
T poly temp; /* f o r  holding products */ 

/* f o r  holding a row of A */ 

# ifdef DEBUG 
/* i n i t i a l i z e  
i f  ( (&data [Ol 

A *I 
<= th i s )  *A ( th i s  < LdataCL])) 
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f o r  ( j = O ;  j<H:  j++) 
A C j ]  = (this-&data[Ol)*j: 

/* i n i t i a l i z e  B */ 
i f  ((kdataC01 <= th i s )  && ( t h i s  < Matam])) 

f o r  (j=O: j < N :  jcc) 
B[j] = (this-Mata[O])*j * 2: 

fputs  ()l\nHatrix A:\n8* ,stdout) : print-Tarray(A,L,H) : 
fputs ('*\nMatrir B : \nt*, stdout : print,Tarray(B ,H ,HI  : 
endif 

CH,start,timer(i) ; 
for (run=O: nm<num,of,runs: run-) C /* t h i s  is the loop f o r  timing */ 

i f  (this<&data[X]) 
for (i=O: i<L: it+) { 

/* l i n e  up roo i of A v i t h  column i of B: could do t h i s  */ 
/* with the  router  (and col l is ions)  or  a front-end loop. */ 
for (k=O: k<H: k++) 

/* compute inner product */ 
f o r  (j=O: j<a: j++) C 

datack] .Arov = dataci]  .Ark] : 

temp-Arov*BCjl : 
dataCi].CCjl = (+- temp): 
/* e l l h i n a t i n g  temp causes a col l is ion bug*/ 

1 

1 
X ifdef DEBUG 

fputs("\nResult of multiplying A vi th  B:\n".stdout): 
print-Tarray (C .L ,N) : 

t endif 
I/* end f o r  (run) */ 
t iner-reaults=c!f,st op-t her (1) : 
printf("Number of runs: %d: Number of processora used: %d\n'*, 

printf  ("Axray dimensions: (Xd*Xd) and (Xd*Xd): VP ra t io :  % d b B s ,  

printf("Rea1 CX time per  run: %g\n".tiner,results->cmtv,cm/nun,of,runs): 
printf("Vistua1 cn time per run: Xg\n", 

num-of -runs ,TOTAL,SIZE) ; 

L. H, H, H, CH,virtual,to,physical,processor-ratio) : 

tiner,results->cmtv,cm/nun,of-nms/ . -  CH,virtual,to,physical,processor,rat io) : 
1 /I end domain arrays */ 

1 /* end main */ 

23 



D The slow O(n1ogn) algorithm 
/* This program perform para l le l  matrix multiplication in n l o g n  steps. 

The matrices are allocated such tha t  each processor has one elnent of 
ot  each matrix. Each c o l u u ~  of the second matrix is broadcast over the  
rows of the f i r s t  matrix. then the products are a l l  formed i n  para l le l ,  
and the rows are sum~ed in paral le l .  This is repeated fo r  every column 

* of the second matrix. A l l  communication is done by the router. 
* Number of processors: n**2; performance: nlogn 
*/ 

*include Cstdio.hs> 
#include <cn/cmtimer.hs> 

/*#define DEBUG /* pr in t s  out matrices f o r  debugging */ 

llifdef DEBUG 
tdef ine L 3 
Sdefine H 4 
+define N 5 
tendif /* otherwise. define with cs -DL=... */ 

Xdefine TOTAL-SIZE ((L)H?L:H>*(n>N?H:H)) 
/* m u s t  be he miu of L*H, H*N, L*N */ 
tdef ine T double 

domain arrays {T A; /* multiplicand matrix: dimensions L.H */ 
T E: /* multiplicator matrix: dinemions H.N */ 
T C; /* destination matrix; dimemions L,N */ 
1 data [TOTAL-SIZE1 ; 

#def ine THIS,ROY(columns) ((this-LdataCO]) / columns) 
#define THIS,COL(columns) ((this-LdataCO]) % columns) 

extern void arrays::print,Tarray(f arrays::iarray. 

extern int atoi(char s); 
extern unsigned ~~virtual,to,ph~sic~,processor~ratio; /* (V*W>/(p*q) */ 

int mono rows. int mono cols) : 

void nain(int argc, char *argvO) € 
reg is te r  int mono s t r ide ;  
reg is te r  int mono E-col; /* runs through column numbers of B */ 
reg is te r  int mono 1~11. nun-of-runs; 
CH-timeval-t mono timer-results; 

nus-of -runs- (argc== 1) ?I: a t  o i (argv [ 11 1 ; 
[domain arrays] . { 
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int poly this,A,rov; /* 
int poly this,A,col; /* 
T poly temp; /* 

/* 
/* 

/* i n i t i a l i z e  A */ 

y-coordinate of each element of A *I  
x-coordinate of each element of A */ 
temporaq array f o r  broadcaating cols of E.*/ 
multiplying with A. and SUB reduction; */ 
dimensions of temp: L*H*/ 

if ((tdata[O] <- th i s )  && ( th i s  < M a t a ~ * H ] ) )  
A - TBIS,ROY(Q THIS,COL(H); 

/* i n i t i a l i z e  B */ 
if ((LdataCO] <= th i s )  && ( th i s  < kdata[H*N])) 

B - THIS,ROY(N) THIS,COL(H) 2; 

# ifdef DEBUG 
fput s ( "Watr i x  A : \n", st dout ; 
print,Tarray(A,L.H) ; 
fputs  (%Hatr ix  B: \n",atdout) ; 
p r i n t  ,Tarray(B ,I!, I) ; 

# andif 

Cn,start,timer(l) ; 
f o r  (run-0; nm<nun,of,runa; run*) { /* t h i s  is the loop for timing */ 

i f  ( t h i s  < kdata[L*H]) { /* se lec t  vhole array A */ 

/* compute rov and column numbers f o r  each element of A)*/  
thia,A-roo - THIS,WU(I!) ; 
thia,A,col = MIS,COL(H) ; 

/* f o r  each column rector  of B ,  multiply it into A.*/ 
/* put resu l t  rector  into corresponding column of C */ 
f o r  (8,col = 0; 8-col < I; B,col++) < 

# ifdef DEBUG 

# endif 
p r h f  ("\nUuStiplication with column %d of E" .B,col) ; 

/* Step 1.1: Seed column elements of B */ 
/* 
i f  ( th i s  < &data[M) /* r e s t r i c t  t o  first roo*/ 

in to  f i r s t  row of temp f o r  broadcast */ 

temp = data[this,A,col*N+B,co11 .B; 

t 

/* Step 1.2: Distribute elements down columns of temp.*/ 
/* (recursive doubling */ 
f o r  (stride-H; s t r i d e  < L*H; s t r i d e  <<= 1) < 

if (( this+str ide)< &data[L+Hl) 
(this+stride)->temp = temp; 

1 
ifdef DEBUG 
printf  ("\nTemp a f t e r  dis t r ibut ion of column %d of B:\n".B,col) ; 
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' . #  
print,Taxray(teap, L ,HI : 
endif 

/* Step 2: multiply in to  temp */ 
temp - temp*A: 
ifdef DEBUG 
fputs("Temp af te r  multiplication v i th  A:\n#*.stdout): 
print,Tarray( t emp. L ,HI : 
endif 

/* Step 3: sum scan in para l le l .  f o r  a l l  rows */ 
/* This is a sepented  sum scan: segments of equal length */ 
for (s t r ide=l ;  s t r i de  < H: s t r i d e  <<= 1) c 

i f  ((this-A-col + s t r ide)  < HI 
temp = (this+stride)->temp + temp: 

1 
i f d e f  DEBUG 
fputs(**Temp after rov-vise sum reduction:\n" ,stdout) : 
print-Tanay (temp. L ,MI : 
andif 

/* Step 4: copy out of temp in to  result matrix C*/ 
i f  (this,A,col-O) /*Select f i r s t  column of A t o  send values */ 

/*Could save t h i s  l as t  assignment by l e t t ing  l a s t  i t e ra t ion  */ 
dataCthis,A-rov*N+B,col] .C = temp; 

/+of s tep  3 compute the r e s u l t  i n to  C instead of temp. */ 
3 /* end for (B-col) */ 

> /* end A select ion */ 

fputs("\nResult of multiplying A pith B:\n8*. stdout) : 
print-Tarray (C ,L ,N) : 

# ifdef DEBUG 

# endif 
3 /* end for (run) */ 

tipar,results-~-stop-timer (1) ; 
printf("Number of runs: a; Number of processors used: %d\n", 

printf ("Array dimensions : (M+xd) and (%d*%d) : VP r a t  io  : Xd\n" , 

printf ("Real CH time per run: %g\naa, timer,results->cmtv,cm/num,of ,runs) : 
printf ("Virtual CH time per run: %g\n.", 
. . timer,results->cntv-cm/nup,of,runs/ 

nun-of ,runs ,TOTAL-SIZE) : 

L, HI H. N. CH-virtudl-to-physical-processor-ratio) : 

CH-virtual-to-phys ical-proc essor-rat id : 
1 /* end domain arrays */ 

1 /* end main */ 
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E The fast O(n1ogn) algorithm 
/* This program performa para l le l  matrix multiplication in nlogn steps.  

The matrices are allocated such tha t  each proceasor has one element 
of each m a t r i x .  In th i a  method, the  second matrix is f i r s t  transposed 
over t he  f i r s t ,  and then rotated up row by row. 
A full parallel multiplication and sum reduction is done f o r  
each rotat ion.  All communication is done by the router. 

* number of processors: 12-2: performance: n*logn 
*/ 

$include <stdio.hs> 
$include <cm/cmtimer.hs> 

/*$def ine DEBUG 
t i fdef  DEBUG 
$define L 3 
tdef ine U 4 
tdef ine I 5 
$andif /* othervise,  define with c s  -DL=... */ 

/* prints out matrices f o r  debugging */ 

$def ine L N m i n  (L<N?L: N) 
$define LNMX (L>N?L:N) 
$define TOTAL-SIZE ((L>U?L:U)*(rr>H?X:H>) 
/* must be m a x  of L*H, H*N, and L*N */ 
Mefine T double 

domain arrays CT poly A; /* multiplicand matrix; dimensions L.U */ 
T poly B; /* multiplicator matrix; dimensions U,N */ 
T poly C; /* deatination matrix; dimensions L.N */ 

3 dataCTOTAL,SIZE] ; 

tdef ine THIS-ROV(columa) ((this-ldataCO]) / columns) 
Sdef ine THIS-COL(column8) ((this-tdataCO]) % columns) 
extarn void arrajs::print,Tarray(T arraya::iarray, 

e r te rn  int atoi(char a); 
extern unsigned Cn,virtual,to,physical,processor,ratio ; 

int mono rows, i n t  mono cols); 

/* (v*v) / (p*q) */ 

void. maincint argc. char *argoU) I 
r eg i s t e r  int mono s t r ide ;  
r eg i s t e r  i n t  mono rotation-count; /* counts upward rotat ions of big*/ 
r eg i s t e r  int mono run, nun-of-runs; 
Cn-timeral-t mono timer-results: 
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T poly B t r :  /* transpose of B */ 
T 
T poly temp; /* temporaq variable fo r  multiply, sum reduce */ 
ht poly rowB, c0I.B; /* row and column numbers of each element of B */ 
int poly r o d .  colA; /* row and colunn numbers of each element of 

/* init ialize A */ 
if ((kdata[O] <- thin)  && ( this  < tdata[L*H])) 

poly small, big; /* hold matrices A and B t r  */ 

arrays A, temp, big, small*/ 

A = THIS,ROU(H) THIS,COL(H); 

/* i n i t i a l i z e  B */ 
if ((tdataC01 <= th i s )  k& ( th i s  < tdata[H*N])) 
B = THIS,ROW(N) THIS,COL(N) 2; 

t ifdef DEBUG 
fpu t s ( " \da t r ix  A:\n",stdout); print,Tarray(A.L.H): 
f puts ("\nMatrix B : \n'*, stdout ) ; print,Tarray(B, H ,N) : 

s endif 

C H - s t a r t - t i m e r ( 1 )  : 
fo r  (runr0; run<nun-of,runs; run++) < /* t h i s  is the loop f o r  t h i n g  */ 

rorrA = THIS,ROY(H> ; colA = THIS,COL(H) : 
rowB = THIS,KOU(N); colB = TZfIS,COL(N); 

/* Step 1: t r a ~ p o s e  B in to  B t r  */ 
if ((rouB<M) LL (colB<N) 1 

data[colB*H+rowB] . B t r  = E;  

t 

/* Step 2: multiply. sum reduce, then ro ta te  rows of B t r  up. 
A and B t r  have the same number of colunuu. but may have 

* di f fe r ing  number of rows. Rotate the  larger  one; keep the 
smaller one in place, because t h i s  is easier  t o  program. 
The s m a l l e r  one goes in to  array s m a l l .  the larger  one in to  
array big. Can only do t h i s  for commutative operators. 
(rotating the smaller array would mean l e s s  communication.) 

*/ 
i f  (PN) < big-A; s m a l l - B t r ; )  
e l s e  < big=Btr; small=A; 1 
ifdef DEBUG . 
printf  ('*\nHatrix small:\n") ;printJarray(smdl ,LNmin,H) ; 
endif 
for (rotation,count=O; l;/*end with break*/ rotation,count++) { 

ifdef DEBUG 
pr intf  ("\nHatrix big a f t e r  ro ta t ion  Xd:\nt*,rotation-count) ; 
print-Tarray (big ,LNnax,H) ; 
endif 

i f  (rowA < L N m i n )  < 
temp = amall*big; /I commutativity enters here +/ 



t 

# 

ifdef DEBUG 
fputs(ts\nHatrir temp after d t .  of small and big:\n", 

endif 
atdout); print,farray(temp.LNmin,X); 

/*Sum reduction in parallel, for all rows of temp */ 
/*This is a segmented am scan */ 
for (striderl; stride < H; stride <<= 1) { 

temp = (this+stride)->temp + temp; 
if (((colA%(stride<<l))PO) tt ((colA+stride)<H)) 

1 
ifdef DEBUG 
fp~ts(~~\dfatrix temp after sum reduction:\nwl,stdout) ; 
print ,Tarray (t emp , Urnin, H) ; 
endif 

/* copy temp into result matrix C*/ 
if (colA -0) /* select column 0 for send I/ 

datakowA*N + ((rowA+rotation,count)XH)] .C = temp; 

if (rotation,count>=(LNmax-1)) break; /*exit form middle*/ 
> 

/moo rotate all TOES of big up one roo--could use grid*/ 
if ((rooACLNmax) LL (colA<H)) 

big = data[((ro~A+l)%~mar)*X+colA] .big; 

1 /* end for (rotation-count) */ 

fputs("\nResult of multiplying A with B:\nwl, stdout) ; 
print,Tarray(C ,L .H) ; 

# ifdef DEBUG 

It  endif 
I/* end for (run) I/ 
t imer,result~=~~stop,t imer (1) ; 
printf("Bumber of runs: M ;  Humber of procesaors used: %d\n", 

printf (wsArray dimensions: (Xd*Xd) and (%d*%d) ; VP ratio: %d\n" , 

printf("Rea1 cn time per run: Xgb", 

printf ("Virtual c?t time per run: Xg\n", 

nur,of-nms,fO~~~,SIZE~ : 

L. lt. H. 1. CN,vixtual,to~physical,processor,ratio) ; 

timer,results->cmtr,cn/nru,of ,NPS) ; 

tirrer,results->crtv,cn/nun,of ,runs/ 
CH,virtual,to,physical,processor,rat io) ; 

1 /* end domain arrays */ 
1 /* end  in */ 
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F The slow O(n> algorithm 

/* This program perforas para l le l  matrix multiplication. 
The matrices a re  allocated such that each processor 
has an element of each ~ t r i x .  

* This is a pipelined algorithm: "he rovs of the f i r s t  matrix 
and the  columna of the  second matrix are pumped into 
the resu l t  matrix from the West and North. resp. 

* Each element of the resu l t  aatrix re t r ieves  coefficients 
from the Vest and North, multiplies them. and adds them t o  the 

* m i n g  t o t a l .  A l l  communication is done v i th  router. 
number of processors: n**2; perfoxmance: n 

*/ 

#include <stdio.hs> 
#include <cn/cmtimer.hs> 

/*#define DEBUG /* pr in ts  out matrices for debugging */ 

tttifdef DEBUG 
#define L 3 
#define X 4 
%define N 5 
%endif /* othervise. define pi th  cs  -DX=... etc. */ 

Mefine TOTAL-SIZE ((LN?L:H)*(?DN?X:H)) 
/* m u s t  be the  w of L*X, H*N, L*N */ 

#define T double 

domain arrays I T  poly A; /I multiplicand matrix; dimensions L.X */ 
T poly E; /* multiplicator m a t r i x ;  dimensions M , l r  */ 
T poly C; /* destination matrir; dinensions L,N */ 

1 dataCTOTAL-SIZE]; 

#define THIS,ROY(colunuur) ((this-LdataCO]) / ColUmnS) 
#define THIS,COL(columns) ((this-tdata[O]) % Colupms) 

extern void arrays::prht-tarray(T arrays::iarray. 

extern int atoi(char * d; 
extern unsigned CX,virtual,to,physical,processor,ratio; /* (v*v)/(p*q) */ 

i n t  mono rows, int mono cols) ; 

void main(int argc ,  char *argv[]) 
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r eg i s t e r  int mono run. num-of-runs; 
r eg i s t e r  int  mono r; /* pipelining counter */ 
CH-timeral-t mono timer-results; 

n~,of ,runs=(argc~l )? l :ato i (argv~i l )  ; 
[domain arrays] . C 

int poly i. j; 
int poly r-i-j; 
T 

/* row and column numbers of each element of C */ 
/* common subexpression */ 

poly north, West;/* f o r  pumping columns of B and rovs of A */ 

/* init ialize A */ 
if ((tdataco] <= th i s )  LI ( th i s  < tdataCL*Hl)) 
A = THIS,ROU(H) THIS,COL(H); 

/* init ialize B */ 
i f  ((tdataco] <= th i s )  LI (this < MataCH*Nl)) 

B = THIS,ROU(N) THIS,COL(N) 2; 

fF  ifdef DEEUO 
fputs(fl\riHatrix A:\IL” 
print,Tarray(A ,L,H) ; 
fputs(lq\nHatrix B:\nvl 
print,Tarray(B ,H , N) ; 

# endif 

stdout 1 ; 

stdout) ; 

C H , s t a r t , t i m e r ( l )  ; 
fo r  ( run=O;  run<num,of,runs; run*) /* t h i s  is the loop f o r  t h i n g  */ 

i f  ((tdataC01 <= th i s )  LI ( th i s  C tdataCL*Nl)) 
/* select vhole array C */ 
C-0.0: /* i n i t i a l i z e  C */ 
/* compute row and columu numbers f o r  each element of C.*/ 
i - THIS,ROU(N) ; j = THIS,COL(N) ; 

f o r  ( r = O ;  r<H+N+L-2; rfc) { 
r-i-j = r-i-j; /* common subexpression */ 
i f  ( ( 0  <= r-i-j) tL (r-i-j < HI) 1 

west = data[i*H + r - i - j ] . A ;  
north= data[r,i,j*N + j] .E: 
/* This code actually does not do any sys to l i c  pipelining. 

Instead, coefficients a re  retrieved d i r ec t ly  from 
A and B .  with general communication. 
The pipelining code is belov, but it is slower. because 
it does more communication (even with g r id  addressing). 

*if ( i !=O)  /* not f i r s t  row -- get  from north */ 
north=data[(i-l)*N + j].north; /*could use g r id  here */ 
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*else /* f i r s t  r o v  -- get data from E */ 
north=dataC(r,i,j)*H + jl .B; 

*if ( j !=O)  /* not first column -- get from west */ 
* PestdataCirN + (j-111 .west; /*could use gr id  here */ 
*else /* f i m t  column -- get  data from A */ 

vest=data[i*H + r-i-j] .A: 
*/ 

C = C + oesttnorth; 

1: 
> 
ifdef DEBUG 
printf  ("\nPhase %d:\n" ,r) ; 
printf  ("North elerents:\n8') ; print-Tarray (n0rth.L.N) ; 
printf  (West elements:\nt8) : print,Tarray(sest,L.N) ; 
printf  ("Hatrix C : b ) ;  print,Tarray(C,L.N) ; 

1: endif 
> /* end fo r  r */ 

1 /* end A select ion */ 
3 /* end for run */ 
tinar,reaults=~,sto-t~er (1) ; 
printf  (tlNunber of runs: xd; b b e r  of processors wed: Xd\ntl, 

pr intf  (iiArray diaensiona : (%d+%d) and (%d*%d) ; VP r a t io  : %d\nll. 
nu-of -runs .TOTAL,SIZE) : 

L, H. H. N. CH,virtual,to,physical,processor,ratio) ; 
printf  ("Real Cll time per run: %g\n" ,tiaar,reeults->cmtv,cm/nurP,of ,runs) ; 
printf("Virtua1 ct! time per nm: Xg\n". 

timer,results->cntv,cn/nlu,of,runs/ 
CPI,virtudL,to,physicd~processor~ratio) ; 

> /* end domain arrays */ 
1 /* end main */ 
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/* 
* 

* 
* 
* 
* 
* 

* 
0 

* 

G The fast O(n> algorithm 

This propam perforas para l le l  matrix multiplication. 
The matrices a re  allocated such tha t  each processor 
has an element of each matrix. 
This is a sys to l ic  algorithm: A l l  elements 
of the r e su l t  matrix perform a s tep  of the inner product 
during each i terat ion.  The ordering of forming the inner 
products is skewed, such tha t  each elmemt of A and B 
is needed exactly once i n  each i te ra t ion .  
A l l  communication is done by the  router.  
number of processors: n**2; performance: n 
Uith gr id  communication, t h i s  program could be speeded up 
considerably by rotat ing the rows and columns of A and B i n t o  place. 

*/ 

#include <stdio.hs> 
tinclude <ua/cmtimer.hs> 

/*#define DEBUG 

t i fdef  DEBUG 
Xdefine L 3 
#define H 4 
#define N 5 
#endif /* othervise. define with c s  -DM=... etc. */ 

/* prints out matrices fo r  debugging */ 
I 

Xdefine TOTAL-SIZE ((L)WL:H)*(n>N?H:N)) 
/* m u s t  be the m a x  of L*H, M*H, L*N */ 

#define T double 

domain a r r a y s  it poly A; /* multiplicand matrix; dimensions L.M */ 
T poly E; /* multiplicator matrix: dimensions X,N */ 
T poly C; /* destination matrix: dimensions L,N */ 

1 data[TOTAL,SIZE] ; 

#define THIS,ROU(CO~~P~~) ((this-tdataCO]) / columns) 
#define THIS,COL(coluans) ((this-tdataCOl) % columns) 

extern void arrays::print,Tarray(T arrays::iarray, 

extern int atoi(char 8 ) ;  

extern unsigned Cn,virtual,to,physical,processor,ratio; /* (v*w>/(p+q) */ 

int mono rovs,  int mono cols) ; 
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. . void main(int argc. char *argvn) 
reg is te r  int mono run. nu-of-runs; 
reg is te r  int mono r; /* inner product s tep  counter */ 
CX-timeval-t * mono timer-results; 

num-of -runa=(argc=-l)?i : atoi(argvC11) ; 
[domain arrays] . { 

int poly i, j ;  
int poly k; 
/* i n i t i a l i z e  A */ 
i f  ((kdataco] <= t h i s )  kk ( th i s  C tdata[L*H])) 

/* row and column numbers of each element of C */ 
/* index for inner product - avoids contention */ 

A = THIS,ROU(H) * MIS,COL(H); 

/* i n i t i a l i z e  B */ 
if ((tdataco] <= this) kk ( th i s  < &iatam*Nl)) 

B = THIS,RUY(I) THIS,CUL(N) 2: 

t i idef DEBUG 
fputs(*8\nHatrix A:\n" .stdout) ; 
print,Tarray(A .L.X> ; 
fpu t s ( l a \da t r ix  B:\n".stdout) : 
print,Tarray(B A N )  ; 

t endif 

CH-start-timer(1) ; 
f o r  (rungo; run<nup,of,runs; run++) { /* t h i s  is the loop f o r  timing */ 

/* se lec t  whole array C */ 
i f  ((kdataCO1 <= t h i s )  &.& ( th i s  < MataU*NI)) { 

/* i n i t i a l i z e  c */ 
c 4 . 0 ;  
/* compute row and colurm numbers f o r  each element of C.*/ 
i = THIS,ROU(N); 
/* k is i n i t i a l i zed  such tha t  access t o  A and B is skewed */ 
k = (i+j)%X; 

j = TAIS,COL(IV); 

f o r  (PO; ; ) { /* exi t  from middle */ 

t 

t 

ifdef DEBUG 
printf  ("\nPhase Xd:\n".r) ; 
printf  (lak:\nls) ; print,Tarray(k,L,N) ; 
endif DEBUG 
/* This code actually does not do any sys to l ic  

8 pipelining. Instead, coeff ic ients  are re t r ieved 
d i rec t ly  from A and B,  with general communication. */ 

C = C + data[i*H + k1.A data[k*N + j 1 . B ;  
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t i fdef  DEBUG 

It endif 
printf  (Watrix C : \ n " ) ;  print,Tanay(C.L,N) ; 

i f  (r >= (H-1))  break; 
k = (k+l)%H; 
*; 

1 /* end f o r  r */ 
1 /* end C s e l e c t i o n  */ 

1 /* end f o r  run */ 
t in--resul ts-m-s top-t her (1 1 : 
printf ("Number of runs: Xd: Number of processors used: Xd\ri', 

printf  (IIArray dimensions: (%d*%d) and (Xd*%d) ; VP r a t i o :  Xdba", 

printf  ("Real CH time per run: %g\nll,tiner,results->cmtv,cm/n~-of ,runs) ; 
printf( l*Virtual  CH time per mn: X g W .  

nun-of ,runs ,TOTAL,SIZE) ; 

L, H ,  H. 1, CH,virtual,to,physical,procesaor-ratio) ; 

t iner,results->cmtv,cn/nun,of runs/ 
~ ,v ir tua l , to ,phys ic~ ,processor~rat io )  ; 

1 /* end domain arrays */ 
1 /* end main */ 
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H The O(1ogn) algorithm 

/* This program performa para l le l  matrix multiplication in log n steps. 
* The matrices a re  allocated such tha t  each processor 

has one element of each matrix. 
The algoritbm rep l ica tes  the arrays such t h a t  a l l  n**3 multiplication 
can be done in para l le l ,  followed by the  para l le l  sum-reduction f o r  
the  n**2 inner products. 
A l l  communication is done by the  router .  
Number of processors: n**3; performance: log n. 

*/ 

#include <stdio.hs> 
#include <cm/cntimer.hs> 

/*#define DEBUG /* pr in t s  out matrices for debugging */ 

#ifdef DEBUG 
#define L 3 
#define H 4 
Itdefine N 5 
#endif /* othervise. define with cs -Db.. . */ 
/* f o r  f u l l  processor u t i l i za t ion ,  

*L*H*N should equal the number of processors 
28.15 - 28.5 2885 * 2885, or  approx. 25883. 
2**16 - 2885 * 28.6 2885, o r  approx. 40883 */ 

#define TOTAL-SIZE (L*H*N) 

#define T double 

domain arrays I T  A: /* multiplicand matrix; dimensions L,H */ 
t B; /* multiplicator matrix; dimensions H,N */ 
T C; /* resu l t  matrix; dimensions L.N */ 

1 data[TOTU,SIZE] ; 

#define THIS-ROU(columns) (proc-number / (colunns)) 
#define THIS,COL(columns) (proc-number % (colunns)) 
/* r equbes  proc-number t o  be i n i t i a l i t e d  with (this-kdataCO]) */ 

extern void arrays::print,Tarray(T arrays::iarray. 

extern in t  atoi(char 9); 

extern unsigned Cn_virtual,to,physical_processor_ratio; /* (v*v)/(p*q) */ 

int mono rows, int mono cols) ;  
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void maincint argc, char *arpn) i: 
r eg i s t e r  int s t r ide ;  
r eg i s t e r  int mono run, num-of-runs; 
CI¶,timeral,t mono t iner-resul ts ;  

nun,of,nurs=(argc~l)?l:atoi(argvE13) ; 

[domain arrays] . E 
int poly procpumber; 
1 poly Aspread; /* A spread out */ 
T poly Bspread; /* B transposed and spread out */ 
int poly index; 

proc,number=this-kdata[O] ; /* set processor number */ 

/* processor number */ 

/* temporary f o r  CO~UBUI and roo indices */ 

/* i n i t i a l i z e  B */ 
if ((&data[O] <= th i s )  Lt ( th i s  < MataM*NI)) 

ifdef DEBUG 
fputs  ( % t f a t r i x  A: \n",stdout) ; 
print,Tarray(A,L,H) ; 
fputs  (Iq\nHatrix B :\d* ,stdout) ; 
print,Tarray(B ,I¶.N) ; 
endif 

B .I THIS,ROU(H) THIS,COL(N) *2; 

/B Algorithm: the da ta  of the  tvo matrices A and B is repl icated 
B and aligned such tha t  all multiplications can be done in para l le l .  
I Sum reductions are also done in para l le l .  This is the layout: 

A: Irou01roo01 ... Ired 

B'i IcolOlcolll. .. IcolN-1 
*/ 

CH-start-ther(1) ; 

roo2 I roo2 I . . . I roo2 I . . . . IrooL-1 I . . . I rod.-1 

col0lcollI ... IcolN-11 .... 1 ~ 0 1 0  J . . . l~o lN- l  

f o r  (run=O; run<num-of-zuns; run++) 4 /* t h i s  is the loop f o r  timing */ 

proc-numberxthis-tdata[O]; /* set processor number */ 
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/* Step 1: repl icate  each r o v  of A N t ines  i n t o  Aspread */ 
/* Step 1.1: Fi rs t .  place i n i t i a l  r o v s  */ 
i f  (proc-number<L*U) 

/* Step 1.2: Duplicate each roo N times with recursive doubling */ 
/* View Aspread a s  an arra). of L rovs vi th  H*N columns. */ 
/* "he f k s t  H columns have t o  be spread r ight  */ 
index = THIS,COL(H*N); /* column index in Aspread(L.H*N) */ 
f o r  (stridein; s t r ide  < H*N; s t r i d e  <<- 1) E 

dataCTHIS-ROW(H)*H*N+THIS,COL(H)].Aspread=A; /* send */ 

i f  (index+stride < H*N) 
(this+stride)->Aspread-Aspread; /* t h i s  is a send */ 

€ 
# ifdef DEBUG 

pr intf  ("\nAspread (A's rova repl icated Xd t h e s  end t o  end) :WB,N) ; 
pr in t  ,Tarray (Aspread, L, H*N) ; 

# endif 

/* Step 2: Replicate the en t i re  data of B L times into Bspread */ 
/* Step 2.1: F i r s t .  transpose B into Bspread */ 
i f  (proc-number<H*N) 

/* Step 2.2: repl icate  the f i r s t  H+N elements of Bspread L times */ 
/* Vies Bspread as an L*(HN) array; spread rovs dovn */ 
f o r  (stride=N*H; s t r ide  < L*H*N; s t r i d e  <<= 1) < 

data[THIS-COL(N) *H+THIS-ROU(N)] .Bspread=B; 

if ((this+stride) < &data[L*U*NI ) 
(this+stride)->Bspread=Bspread; /* this is a send */ 

€ 
# ifdef DEBUG 

pr intf  ("\nBspread (B's rows repl icated Xd times:\nt8.L) ; 
pr in t  ,Tarray (Bspread , L, H*N) ; 

# endif 

/* Step 3: Hultiply in para l le l  */ 
Bspread=Aspread*Bspread; 

printf  (ts\nBspread (elmentvise product of Aspread and Bspread: )\n") ; 
print,Tarray(Bspread.L,H*N); 

# ifdef DEBUG 

# endif 

* / *  Step 4: Sum scan (Could be done with a segmented sum scan) */ 
/* Vies Bspread as an array of L*H vectors of length If. */ 
/* Sum the vectors i n  paral le l ;  scan f a s t e r  than reduction */ 
index=THIS-COL(H); /* column index i n  Bspread(L*N.H) */ 
f o r  (s t r ide=l ;  stride<H; s t r ide  <<= 1) < 

if ((index+stride) < H) 
Bspread=Bspread+(this+stride) ->Bspread; /* t h i s  is a get  * , I  
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: # 

# 

> 
ifdef DEBUG 
printf ("\nBspread (add reduction on subvectors of length Xd) :\n".H) ; 
print,Tarray(Bspread,L,H*N); 
endif 

/* Step 5:Gather results into C I/ 
if ( (O<-proc-number) Lt (proc,number< L*N)) 

C=data[proc,number*N .Bspread; 

It ifdef DEBUG 
fputs("\nResult of multiplying A with B:\n", stdout); 
print,Tarray(C ,L ,N) ; 

# endif 
1 /* end for (run) */ 
timer,results=C?!,stop,t imer (1) ; 
printf ("Number of runs: %d; Number of processors used: Xd\n", 

printf ("Array dimensions: (Xd+Xd) and (Xd*Xd); VP ratio: % d \ n l l ,  

printf ("Real CH time per run: %g\n",tinat,results->cmtv,cm/num,of ,runs) ; 
printf(~~virtua1 cn tine per run: Xg\n". 

nu-of ,runs ,TOTAL,SIZE) ; 

L. H. H. N. CH,virtual,to,phpsical,processor,ratio); 

timer-results->cmtv,cm/nu-of -runs/ 
CH-virtual-to-physical-processor-ratio) ; 

)/* end domain arrays */ 
)/* end main */ 
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I The print routines for the CM programs 
The following two routines are needed for the DEBUG option, to print 
out matrices. These routines work for all CM programs, but not for the 
sequential matrix multiply. 

void arrays::print,Trow(Tarray, row. co ls )  
/* p r i n t  a row of length  c o l s  from an array in CH-memory */ 

T arraya:: Tarray; /* array */ 
int mono row: /* row number */ 
int mono cols:  /* row length */ 

f o r  (col=O; co l<cols ; )  C 
C int mono col ;  

p r in t f  ("%4g 
if ((cols <= 14) I I (col !- 8 ) )  

else { /* skip some elements */ 

",data[row*cols + col] .Tarray) ; 

col*; /* go on t o  ner t  element */ 

pr in t f  (I*. . . 11) : col=cols-4; 
> 

3 
> 
void arrays::print,Tarray(Tarray,ross,cols) 
/* p r i n t  array Tarray */ 

T arrays::Tarray; /* array */ 
int mono rows; /* number of rows */ 
int mono co l s ;  /* number of columns */ 

for (row=O; row<rovs;) C 
C int mono row; /* row counter */ 

print,hrow(Tanay,roo,cols); 
putc('\n' ,stdout) ; 
if ((row8 <- 14) I I (row != 8 ) )  

else { /* sk ip  some rows */ 
row++; /* go on t o  next row */ 

fputs(". . . . . . . .\n" ,stdout) ; 
rowos'czows -4; 

1 
> 

1 
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