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Abstract 
Programming multiprocessor architectures is a critical research issue. 

This paper gives a n  overview of the various approaches to programming 
these architectures that are currently being explored. We argue that two of 
these approaches, interactive programming environments and functional 
parallel languages, are particularly attractive, since they remove much of 
the burden of exploiting parallel architectures from the user. 

This paper also describes recent work by the author in the design of 
parallel languages. Research on languages for both shared and nonshared 
memory multiprocessors is described, as well as the relation of this work 
to other current language research projects. 
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1 INTRODUCTION 
One of the insights that has emerged in parallel computing research is that 
the design of portable and efficient software for parallel systems is a critical 
issue. Our success in inventing new high performance parallel architectures 
has not been matched by equal succesa in learning how to program them. We 
need mechanisms (languages, compilers, libraries, and tools) that  allow parallel 
algorithm to be mapped to high performance computers, and that fully exploit 
the variety of kinds of parallelism supported by current architectures. 

Today, each multiprocessor system typically comes equipped with its own 
dialect of C or FORTRAN, containing a variety of language extensions for ex- 
ploiting parallelism. These extensions are generally specific to a given archi- 
tecture and may require programming techniques unique to that architecture. 
Thus, programmers wishing to  use such a machine not only need to know the 
intricacies of their application, but must also become knowledgeable about the 
architecture and its programming environment. 

While it is clearly useful to have parallel languages available for each new 
architecture, in the end we must get away from the idiosyncratic languages 
provided by manufacturers. For one thing, manufacturers face a host of hard- 
ware and software problems and rarely have the resources or inclination to 
create carefully designed and well thought through programming environments. 
Of equal importance, parallel architectures continue to proliferate, and today's 
high-end machine will soon be replaced by new generations of machines, having 
new and different architectures. There is a clear need for programming envi- 
ronments which are portable acroes machines of different makes and a c r a s  the 
generations of architectures from each manufacturer. 

1 .l Parallel Programming Environments 
We are still some distance away from having portable and user-friendly parallel 
programming environments, but a great deal of progress has been made towards 
achieving them. Four basic approaches to the construction of such programming 
environments have emerged. 

1. Explicit-tasking languages. 
2. Direct compilation of existing sequential languages for multi- 

3. Interactive program restructuring systems for existing sequen- 

4. New high level parallel languages. 

processor execution. 

tial languages. 

In practice, the distinctions between these four approaches are often quite 
blurred. For example, language constructs intended for high level parallel lan- 
guages can easily migrate into interactive program restructuring systems. How- 
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ever, to keep the discussion here simple, we will treat these four approaches as 
distinct. 

In the following paragraphs, we give a quick overview of current research in 
each of these areas. After that, we will focus more deeply on our own efforts in 
parallel language design. 

Explicit-Tasking Languages 
This approach is based on the view that it is the programmer’s responsibility 
to control and manage the resources of the underlying parallel architecture. 
Explicit-tasking languages generally follow the concept of ”communicating se- 
quential processes,” advocated by C.A.R. Hoare and embodied in the theoretical 
programming language, CSP [9]. In such explicit-tasking languages, the pro- 
g r a m e r  defines and controls a system of interacting ”tasks” or ”processes.” 
Depending on the underlying architecture, the interaction between tasks is ei- 
ther via synchronized sharing of data structures or via messages. In either case, 
the language provides mechanisms for the programmer to explicitly manage this 
interaction. 

There ia a clear advantage to this approach, since it allows complete control 
of the machine resources, and allows the programmer to fully exploit the target 
architecture. Efforts in  this domain include the set of message-passing and 
synchronization primitives developed at Argonne National Laboratory [SI and 
a variety of new languages such as Occam [19], PISCES [20], FORCE [ll], and 
LINDA [l]. 

The fact that explicit-tasking languages allow programs to  exactly match the 
target architecture carries with it an attendant disadvantage: loss of portability. 
Portability is lost even with “portable languages” like PISCES and FORCE; 
though such languages can run on a variety of machines, programs generally need 
to be structured differently for different architectures. Moreover, the visibility 
of the underlying architecture makes such program quite difficult to design 
and debug. The programmer is faced with a variety of load-balancing, resource 
allocation, and commut~ication and synchronization issues which are not present 
on sequential machines. 

Direct Compilation of Conventional Languages 
The second approac ti to programming multiprocessors, direct compilation of 
conventional languages for parallel execution, provides a number of important 
advantages. First, it allows programmers to continue using familiar languages 
as they move to  newer and more complex machines. Second, there is a large 
body of existing programs which can be transported to parallel architectures 
without change. Third, the details of the target architecture are invisible to the 
programmer, so the complex load-balancing and program design issues, which 
must be faced with the explicit-tasking languages, are not present. 
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This approach is, in a real sense, a direct outgrowth of successful research 
in construction of vectorizing compilers. It is being actively explored by major 
groups at at Illinois [18], Rice [4], and IBM [2], and by smaller groups else- 
where. Since the millions of lines of existing sequential programs cannot be 
easily replaced, nor are they readily modifiable, there is clear importance to 
this approach, and it will surely continue. 

There are, however, a number of difficulties with this approach. The m s  
jor one is that the scinantics of conventional languages strongly reflects the 
sequential von Neumaiin architecture, making the task of automatic restructur- 
ing very dificult. Aliasing effects in virtually all current languages obscure data 
dependencies and severely limit the compiler’s ability to extract parallelism. 
Moreover, existing languages, especially FORTRAN, encourage programming 
styles which make it extremely difficult for compilers to extract much paral- 
lelism. When arrays are freely ”equivalenced,” and passing of ”pointers” is used 
to simulate dynamic allocation, the potential for parallel execution is quickly 
lost. The end result seems to be that direct compilation of sequential languages 
can extract only modest amounts of loop-level parallelism. 

Interactive Restructuring Systems 
The difficulties in direct compilation of sequential programs for multiprocessor 
execution has led to the exploration ofa  third approach to parallel programming, 
interactive restructuriiig systems. The problem with conventional sequential 
languages is that they do not provide the compiler with the ”right” information 
for mapping programs to multiprocessors, and the information which they do 
provide is thoroughly tiidden. 

One way to alleviate this problem is to design a compiler which asks for 
”help” during the program transformation process. Programmers know far more 
about their programs than is directly visible in a program. For example, the 
typical number of invocat>ions of a loop, the frequency with which a procedure 
is called, whether a procedures has ”side effects,” and so on, are all pieces of 
information a programmer might have. Interactive restructuring systems are 
systems which allow programmers to express this ”deeper” knowledge to the 
compiler and thereby guide the compilation process. 

There are several mechanisms through which the programmer can provide 
this information to the compiler. First, the programmer can modify the source 
code, inserting pragmas and assertions, to  help the compiler extract parallelism 
[8]. Second, the programmer can communicate interactively with the compiler, 
through a window-based graphics system, which allows the programmer to view 
and modify the program a t  various stages of the transformation process [3] [18]. 
Third, a variety of interactive performance analysis and debugging tools are 
possible, which can provide rapid feedback to  the programmer. 

There are two principal disadvantages to interactive program restructuring 
systems. First, the user of such a system has to be quite knowledgeable about 
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the target architecture to be able to provide appropriate guidance. A naive user 
would not understand the nuances of the architecture and the program transfor- 
mation process well enough to be of help. Second, the concept of a ”program” as 
a file containing an algorithm expressed in a high level language is lost. Instead, 
the ”program” is now the original source code, plus the sequence of hints and 
mouse clicks provided by the user during the interactive transformation process. 

High Level Languages 
The fourth approach to programming multiprocessors is to construct new high- 
level languages designed expressly for compilation to parallel architectures. 
There are a number of research projects focusing on the design of parallel lan- 
guages which will hide most details of the parallel runtime environment. Exam- 
ples of such projects include the Crystal [7], ParAlfl [lo], VAL [16], SISAL [15], 
and BLAZE projects. 

These language design projects, which are generally focusing on functional 
languages, are attempting to allow the programmer to concentrate on the spec- 
ification of the algorithm rather than on its implementation. The goal has been 
to provide languages with simple and clean semantics, which make them easy 
for programmers to use, while also enabling the compiler to produce efficient 
executable code for parallel systems. 

There are dificulties with this approach as well, though we tend t o  favor it 
over the other three approaches. One issue is that it is not yet clear whether 
these languages will enable programmers to extract the full potential of highly 
parallel architectures. All of the projects mentioned are in their infancy, and it 
is too early to  declare any of them successful. Also, there is a problem with user 
acceptance. Programmers are, in general, reluctant to move to new a language, 
no matter how elegant, unless the benefits to doing so are overwhelming. Finally, 
none of these new languages mates well with existing languages, so it is difficult 
to combine the millions of lines of existing code with procedures or modules 
written in these newer languages. 

1.2 Comparison of Approaches 
In describing these four approaches to parallel programming, we have listed 
some of the advantages and disadvantages of each. Each of these approaches 
is being actively explored, because each offers advantages lacking in the others. 
However, in the longer term, we feel that the latter two approaches will come 
to dominate. The following are our reasons for this conjecture. 

First, regarding explicit-tasking languages, such languages have been ex- 
tremely useful in allowing users to  experiment with parallel algorithm design. 
However, multiprocessor architectures are becoming increasingly complex, and 
now provide a variety of types of parallelism within the same system. As this 
happens, it is becomiiig increasingly unreasonable to expect programmers to 
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manage the variety of parallel resources available in a complex multiprocessor 
systems. Further, multiprocessors are changing from laboratory curiosities to 
everyday work-horses. As this happens, higher level programming environments 
will become essential. 

Second, regarding direct compilation of current sequential languages to par- 
allel architectures, this approach has a continuing role to play in allowing ex- 
ploitation of "dusty deck" programs. However, as multiprocessors become stan- 
dard, and as the number of processors in a high performance systems grows, the 
limitations of this approach will become apparent. As Kennedy and other ex- 
perts have pointed out, compilers cannot do everything; the programmer must 
help. 

The implication of all this is that in order to obtain maximum performance 
from existing code, those programs will have to be extensively "massaged" with 
interactive program restructuring tools and compilers. Heavily used "kernels" 
may be reprogrammed in new languages, but the bulk of these programs will 
remain essentially unchanged. Users will have to add various pragmas and com- 
piler directives either directly to the source, or indirectly through the program 
transformation system. However, the programs themselves will change relatively 
little. 

The situation for new programs is different. In this case, both of the last two 
approaches to parallel programming seem viable. One will either use one of the 
current sequential languages, together with a sophisticated interactive compiler, 
or one will write the program in a new high level parallel language. Both of these 
approaches are able to fully exploit the performance potential of highly parallel 
mrrltiprocessors, and both are also relatively user-friendly, hiding most of the 
complex details of the parallel runtime environment from the programmer. 

The choice between these two approaches is complex. Our research has 
focused on the design of new languages, though we fully appreciate the merits 
of interactive compilers and program restructuring systems. In the end we 
expect these two research directions to  merge, resulting in the eventual creation 
of elegant and friendly parallel programming environments combining the best 
aspech of both approaches. 

2 THE BLAZE PROJECT 
The focus of our research in the last few years has been the BLAZE Program- 
ming Environment. BLAZE [17] is a new functional programming language for 
scientific applications. The intention with BLAZE is to achieve highly parallel 
execution on a variety of shared memory multiprocessor architectures, while 
shielding the user from the details of parallel execution. In particular, neither 
the program structure nor the execution results will in any way reflect the multi- 
ple threads of control flow which may be present during execution. Our point of 
view is that such issues should be the responsibility of the compiler and runtime 
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environment. In this section, we provide an overview of the BLAZE language 
and its compiler. We also briefly sketch our efforts in targeting compilers to 
nonshared memory machines. 

2.1 The BLAZE Language 
BLAZE is a parallel language for scientific programming with its roots in mod- 
ern programming languages such as PASCAL, ADA, EUCLID, and MODULA 
2. It contains extensive data structuring facilities and structured flow control 
constructs. 

BLAZE is similar to data-flow languages in that it uses functional procedure 
invocation. That is, procedures in BLAZE act like functions which may return 
several values and operate without side-effects. In other words, they use value- 
result semantics for arguments and have no access to nonlocal variables. This 
simple semantics makes restructuring of BLAZE programs for parallel execu- 
tion much simpler than analogous restructuring of conventional languages. In 
particular, whenever there are no dependencies between the input and output 
values of two procedure calls, they can be executed in parallel. For example, 
the calls to the two procedures F and G in the following program fragment can 
be executed in parallel. 

With conventional languages, determining when two procedures can safely be 
executed in parallel requires a complex and expensive global analysis of the 
program. 

A t  the statement level, BLAZE differs from data-flow languages in that 
it uses traditional imperative semantics, rather than the "single assignment 
rille" used by data-flow languages. In BLAZE variables hold values that can be 
altered by assignment, just as in PASCAL, FOItTRAN, and other conventional 
languages. By contrast, in data-flow languages "variables" represent values 
rather than storage locations. Since names are bound to values rather than 
storage cells in these languages, the value of a "variable" cannot be altered once 
it has been set. Hence tlie idea of the single assignment rule. 

Using traditional semantics at the statement level makes BLAZE program 
rriing natural to  programmers accustomed to conventional languages. More 
surprisingly, the single assignment rule of data-flow languages does little to help 
compilation for multiprocessor architectures and in some cases can severely ham- 
per the compilation process. In particular, handling arrays and other large data 
structures in data-flow languages has proven quite awkward. 

In addition t'o the functional procedure calling semantics, which allows pro- 
cedures to be executed in parallel, there are two levels a t  which parallelism 



can br explicitly expressed in BLAZE. First, BLAZE provides extensive array 
manipulating facilities similar to those in ADA and FORTRAN 8x. Given the 
right hardware, these array operations can be executed in parallel. 

Second, BLAZE contains an explicit parallel loop construct, called a forall 
loop. This provides a mechanism for the programmer to specify low-level par- 
allelism not associated with vectors and arrays. Consider, for example, the 
loop: 

forall j i n  I .. I do 

end; 
. . .  

In this forall loop, each of the N invocations of the body can run in parallel. 
The actual number of parallel threads of control a t  runtime depends on the 
number of processors available on the target machine. 

Each invocation of the forall loop body is independent and cannot modify 
any variable which is bcing accessed by another invocation. The only interaction 
allowed between invocations is through reduction operators as shown below: 

x := 0 . 0 ;  

forall i in I .. 100 do 
x += yCi1; 
. . .  

and; 

In the above loop the values in the array y are summed across the loop invoca- 
tions. Other reduction operators provided by the language include: +=, MX=. 

and cat= where the last is used for concatenation of one-dimensional dynamic 
lists. Properly implemented, these operators can be executed in "log-time" on 
a sufficiently parallel machine. 

Below we give a BLAZE procedure which performs the forward elimination 
phase of Gaussian elimination without pivoting. 
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procedure gauss (A,b) returns : (A,b) 

param A: array [: , 1 of real;  
b: array [: 1 of real; 

const I = upper(A,l);  -- upper bound of the first 
-- dimension of the array A 

begin 

for  k i n  I .. I do -- loop over pivot rows 

fora l l  i in  k+l .. I do 
real scale; -- local  variable for  

-- each loop invocation 

scale := -A[i, kl / A[k,k]; -- compute scale factor 

A r i l  k .  .I1 += scale Ark, k . . I l ;  -- update row 
b[i] += scale * b[k]; -- modify data vector 

end; 
end; 

end; 

The outer loop is a sequential loop over all the rows of the array making 
each row the pivot row in turn. The inner loop is a parallel loop which updates 
all rows below the the pivot row. In this example, the reduction operator ”+=” 
is used simply as a notational convenience. Since the variables on both sides 
of these ”reductions” are local to the current loop invocation, no parallel ”tree- 
sum” is implied. 

Structure of the BLAZE Compiler 
The structure of BLAZE compilers is dictated by our desire to target this lan- 
guage to a number of sequential and shared memory systems and by the neces- 
sity of performing extcnsive transformation and optimization during compila- 
tion. There is a machine independent front-end which performs, lexical analysis, 
parsing, and the first few phases of optimization and machine-independent trans- 
formations. After this, further optimization and code generation is performed 
in machine specific coiiipiler back-ends. 

BLAZE source programs are first translated into an intermediate form repre- 
Renting the control-dependence between the statements of the program [12]. Ex- 
tensive data-flow analysis is then performed to augment the control-dependence 
graph with the data dependencies between the variables. These include flow- 
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dependencies, anti-dependencies, and output-dependencies, as described by Kuck 
et  al [14]. 

The functional procedure invocation semantics of BLAZE makes data-flow 
analysis much simpler and more "accurate" than it is with conventional lan- 
guages, since no inter-procedural analysis is required. Even when complete 
inter-procedural data-flow analysis is performed for conventional languages, the 
resulting information is imprecise, because language features such as pointers 
and common blocks frequently obscure data-flow information. 

An extensive set of program transformation techniques has been developed 
over the years for automatic vectorization of sequential code, most notably by 
the research groups a t  University of Illinois [14] and at Rice University [5]. 
The BLAZE compiler builds up upon this body of knowledge in an attempt to 
generate code for multiprocessor architectures. 

The underlying goal of this analysis and transformation phase is to expoee 
the parallelism available in the program. However, in most cases, the inherent 
parallelism of the algorithm does not exactly match that of the target architec- 
ture. Thus, the next step in the transformation process is to map the algorithm 
parallelism onto the architecture at hand. The independent threads of control 
in the program are "bundled" into a set of concurrently executing processes, 
which can efficiently exploit the parallel architecture. 

Implementations of the BLAZE compiler currently exist for Sequent, Al- 
liant, and Butterfly multiprocessors systems. These have been implemented by 
students at Purdue University, Indiana University, and the University of Utah. 
These are experimental versions and take a relatively naive approach to imple- 
menting parallel constructs such as the forall loop. We are currently exploring 
alternate implementations and are beginning to study the effect that alternative 
implementations have on runtime performance [13]. 

2.2 Targeting Nonshared Memory Architectures 
The BLAZE language is targeted primarily towards shared memory multiproces- 
sora. While nonehared memory architectures having very high performance can 
be built, programming them is substantially harder than programming shared 
memory multiprocessors. This is primarily because issues such as data  distri- 
bution and load balancing play a far more critical role on nonshared memory 
architectures than they due on shared memory machines. These issues make it 
very difficult for a compiler to automatically generate good code for nonshared 
memory machines. Instead, the user needs to explicitly specify data distribu- 
tions, and must carefully plan load balancing strategies, in order to effectively 
utilize these machines. 

The current approach to programming nonshared memory architectures is 
based on the use of explicit-tasking languages. Such languages seem to be 
ideally suited far some classes of algorithms, such as game tree searching and 
discrete event simulation, where the problem decomposes naturally into a sys- 
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. 
tem of cooperating processes. However, for algorithms relying on synchronous 
manipulation of distributed data structures, such languages have proven quite 
awkward. 

KALI is a research language designed to simplify the problem of pro- 
gramming nonshared memory architectures. I t  provides the semantic power of 
message-passing languages, such as CSP and Occam, while also providing a set 
of novel features for specifying and manipulating distributed data structures. 
The goal is to allow the user to  retain control over data distribution and other 
issues critical to efficient parallel execution, while leaving the complex details of 
data transmiseion to the compiler and runtime environment. In the next section 
we give an overview of the parallel constructs of KALI.  

2.2.1 Overview of KALI 

KALI  is a high-level, object-oriented language for distributed memory archi- 
tectures. A KALI  program is a sequence of cluster specifications, followed by 
an optional list of procedures. Clusters are a form of "object" or "process." 
T h a t  is, each cluster encapsulates a data structure and has its own independent 
thread of control flow. 

A t  program initiation, the unique cluster main begins execution. It may in 
turn dynamically create instances or actiuafions of other clusters during pro- 
gram execution by sending create messages. Arbitrarily many instances of any 
cluster may be created, except for main, which has only one instance. Cluster 
instances do not share variables and can interact only via asynchronous message 
passing. 

C1 us t ers 
There are two kinds of cliisters, sequential clusters and distributed clusters. A 
sequential cluster is a process or object having a single thread of control flow. 
Multiple instances of a sequential cluster may execute concurrently, but each 
executes as a sequential process. A distributed cluster, by contrast, supports 
SPMD-style (Single Program Multiple Data) parallel execution within each in- 
stance of the cluster. Since sequential clusters are quite conventional, we will 
fociis only on distributed clusters and on the data-parallel execution within 
them. 

KALI  assumes a nonshared memory architecture in which the programmer 
explicitly manages all critical resources. I t  further assumes that the architecture 
can support the idea of processor arrays, multidimensional arrays of physical 
processors, dynamically allocated by the user. This assumption is natural for 
hypercubes or mesh connected machines and can easily be accommodated on 

'The name "KALI" is taken from one of the Hindu goddesses with multiple -, suggest- 
ing the idea of parallel execution. 

1 
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a variety of other architectures. A t  the time of its creation, each instance of a 
diatrit)uted cluster is allocated a processor array, on which it will execute. 

Syntactically, a cluster specification has a single level of static nesting. There 
is a sguence of declarations a t  the beginning of the cluster specification declar- 
ing variables and constants visible to procedures within the cluster. For a dis- 
tributed cluster, this sequence of declarations also contains a declaration of a 
processor array as shown below: 

procr PCnp, npl; 
integer np - 10; 

These statements allocate a square array P of np2 processors, where np is an 
integer constant between 1 and 10 dynamically choeen by the runtime system. 

The programmer controls the distribution of the data  structures acroes the 
cluster's processor array. KALI currently supports only distributed arrays, 
though other distributed data structures will be allowed in future versions of the 
language. Arrays distributions are specified by a "distribution clause" in their 
declaration. This clause specifies a sequence of distribution patterns, one for 
each dimension of the array. Scalar variables and arrays without a distribution 
clause are simply rcplicated, with one copy on each of the processors in the 
procesor array. 

Data Distribution Primitives 
Each dimension of a data array can be distributed acroes processors in one of 
two patterns, or can be left undistributed. The distribution patterns are block 
and cycl ic .  With a block distribution, each processor contains a contiguous 
block of elements of the array. Conversely, with a cyc l i c  distribution, the array 
elements are distributed in  a round-robin fashion across the processors. As an 
example, consider the following declarations: 

proci PCnpl; 
integer np - 10; 
real AClOOl dirt  [block] ; 
real BC1001 dist [cyclic]; 

Here, I>  is an array o f  up to ten processors, and A and B are vectors having 
100 elcments. Assliming for simplicity that P contains exactly 10 processors, 
the subvector A[1..10] would be assigned to  processor P[1], A[11..20] would be 
assigned to processor P[2] ,  and so on. By contrast, with the cycl ic  distribution, 
processor P[1] will have elements 1, 11, 21, ..., 91 of the vector B, processor 
P[2]  will have elements 2, 12, 22, ..., 92 of B, and so on. 
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The number of dimensions of an array that are distributed must match the 
number of dimensions of the underlying processor array. Hyphens are used to 
indicate dimensions of data arrays which are not to be distributed. Consider, 
for example, the following declarations: 

Here the ith processor executes the i th loop invocation. 
More generally, the execution of a fora l l  loop can be tied to a distributed 

data structure through the use of a proc primitive in the on clause. Given an 
element of a distributed data structure, proc returns the processor on which it 
resides. This allows one to specify that a loop invocation be executed on the 
processor containing certain data, avoiding the necessity of messy index calcu- 
lations. In the program fragment below, 100 loop invocations are performed, 
with the i th  invocation cxecuted on the processor owning the i th element of the 
vector A. 

procs PCnpl; 
integer np - 10; 
integer C c l O O ,  IO01 d i e t  [block, -1 ,  

DCIOO,  1001 diet  [-, blockl; 

In  this case, the row dimension of C is broken into blocks. Thus, each processor 
in the processor array P contains a group of rows of C, and each column is 
distributed across  all processors in P. Conversely, in the case of the array D, 
each processor contains a group of columns, and the rows of D are split acroes 
processors. 

Forall L o o p  

Data-parallel computation on distributed data structures is specified via forall 
loops. The fora l l  loop header consists of a range specification and an on 
clause. The range specification specifies the number of invocations of the loop 
body, while the on clause specifies the processor on which each loop is to  be exe- 
cuted. The most elementary way of doing this is to simply specify the processor 
ex pi ic i tly : 

. . .  

fora l l  i in  1 : 10 on P C i l  do 

end; 
. . .  

t 
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proce P C l O l ;  
real A[lOO] d ie t  [block] ; 

. . .  
fora l l  i in  1 : 100 on proc( A r i l  ) do 

end; 
. . .  

The compiler will strip-mine the above loop and convert it into a system of 
cooperating processes, one per processor. Each process will contain a sequen- 
tial loop running over the elements of the distributed vector A local to that 
processor. 

Data Movement 

Each invocation of a fora l l  loop can directly access only those data elements 
local to the processor executing that loop invocation; nonlocal parts of the 
data structure cannot be implicitly accessed. In KALI, access to  nonlocal data 
must he explicitly specified via a set of high level primitives provided by the 
language. There are fivc communication primitives for data movement within a 
cluster: expand, <- (send), nbr, fetch, and reply. Though KALI requires 
the user to manage communication within a cluster, these are relatively high- 
level primitives. The compiler translates these primitives into the system of 
sends, receives, and synchronization barriers that will actually be executed. 

The first two of these primitives are used for sending data to other processors. 
Expand is uaed to broadcast data. I t  takes as argument data local to a processor 
and broadcasts it to all processors in the processor array. Thus, in the following 
example, the processor owning the element A[j] broadcasts it to all others. 

fora l l  i in  1 : I on proc( A r i l  ) do 
real x;  
x := expand ( A C j ]  ); 

. . .  
end; 

Since 2 is declared within the loop, each loop invocation has its own copy o f t .  
The other form of "send" is denoted by an arrow: <-. It is used in place of 

the normal assignmcnt operator : = to send data to a remote place. For example, 
consider the following program fragment: 

B r  f ( i >  1 <- A r i l  ; 
fora l l  i in  1 : 100 on proc( A r i l  ) do 

. . .  
end; 3 
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Here the values in the array A are "permuted" to form the array B. 
The next two primitives, nbr and fetch, provide software simulation of 

shared memory semantics. Ibr is used for fetching data from adjacent proces- 
sors in the processor array. This primitive is useful in a variety of numerical 
applications, such as relaxation schemes and "smoothing" algorithms, where the 
value at a point is computed from a set of neighboring values. As an example, 
consider the program segment: 

foral l  i in  I : 100 on proc( A C i l  ) do 
A [ i ]  := A c i ]  t nbr( ACi-I] t nbr( A C i t l ]  1; 

. . .  
end; 

If A is distributed block, most of the accesses to  A[i - 11 and A[i + 11 will be 
"local." However, communication is required at block boundaries, so the nbr 
primitive is needed. 

The fe tch  primitive is more general and can be used to access data from 
anywhere in the processor array. 

foral l  i in I : 100 on proc(A[i]) do 
real x; 
x := fetch ( ACf(i)l ); 

. . .  
end; 

Since this primitive amounts to direct software simulation of shared memory, it 
should be used with p a t  caution; the overhead involved is likely to be quite 
high. On a non-shared memory architecture, the compiler must translate each 
fetch request into a system of sends and receives. In this example, if the function 
f is not a permutation, each processor would have to field an arbitrary number 
of fetch requests. In gcneral processors must busy-wait for fetch requests until 
all outstanding fetches have been answered, before continuing on to the next 
cornpu tat ion. 

In order to make this approach tractable, the runtime environment must 
he designed so that communication between processors occurs in "phases." Be- 
tween communication phases, processors execute sequentially, without interfer- 
ence from other processors. A communication phase occurs whenever processors 
synchronize. Synchronization occurs: 

a. A t  the end of fora l l  loops, 
h. After any of the above communication operators, and 

c.  When induced by a reply statements. 



Whenever a processor encounters any of these synchronization points it blocks 
and handles pending fetch and send requests. The semantics of these synchro- 
nization constructs is subtle, but fortunately has no effect program correctness. 
If the synchronization is handled badly, only performance bugs results, not in- 
correct results or dead-lock. 

Comparison of KALI and BLAZE 
We have given above a brief overview of KALI, concentrating on its most novel 
features. KALI was not designed to be an "elegant" language, in the sense of 
Modula, BLAZE, or Sisal. Rather, KALI was driven by the needs of program- 
mers trying to map numerical algorithms to nonshared memory architectures. 
After one has seen programmers struggling enough times with the index arith- 
metic needed to implement cycl ic  and block distributions by hand, it becomes 
apparent that language features such as those given here are clearly needed for 
nonshared memory architectures. 

KALI has been designed only recently and is not yet implemented. Thus, it 
is impossible to estimate accurately the coat of the communication primitives 
described. However, in many cases we can guarantee that the KALI implemen- 
tation will execute as fast as the more laborious message-passing code. Consider 
for example the forward elimination phase of Gaussian elimination as shown be- 
low: 

procedure gauss(A, E, PI re tum(A,  B); 
procr PCnpl; 
real ACn, nl d i s t l cyc l i c ,  -1; 

begin 
B En3 d i s  t Ccyclic] ; 

for k in  l : n  do -- loop over pivot rows 
forall  i in  k+l:n on proc(ACi. -1) do 

real PivbuCnl,  scale; 

PivRow[k:n] := expand( A b ,  k : d  1; 
-- broadcart pivot row 

scale := -Ab,  kl / PivRowCkl; 

A [ i .  k:nl += scale*PivRowCk:nl; 
B Cil += scale*expand(B Ckl 1 ; 

end; 
end; 

end; . 



-16- 

This gauss procedure, as expressed in KALI, will perform as well as the 
analogous CSP or Occam procedure, since the output of the restructuring phase 
of the compiler is virtually identical to the analogous Occam procedure. Despite 
this, the above KALI procedure is shorter and much simpler than the analogous 
Occam code. In fact, it closely resembles the analogous BLAZE procedure given 
before. The precise differences are: 

1. The processor array is explicitly present here. 
2. Data distributions to accomplish load-balancing have been spec- 

3. Interprocessor communication was specified by the expand prim- 
ified here. 

itive. 

JIowever, despite this syntactic resemblance between KALI and BLAZE, 
one should not overlook the dramatic semantic differences. We do not want 
to suggest that KALI procedures like this are as easy to write as comparable 
nLAZE code; there are subtleties and land-mines here not present in analogous 
shared memory code. We are merely arguing that this is a moderately high level 
way to specify algorithm. for nonshared memory architectures, while retaining 
the full performance potential of these architectures. 

3 CONCLUSIONS 
Software technology has not kept pace with hardware technology in the domain 
of parallel processing. One of the major problems facing users of multiprocessor 
systems is the lack of adequate software tools. Until this problem is resolved, 
we will fail to  effectively utilize parallel architectures on most problems. 

In this paper we have briefly sketched the several directions that are being 
explored to  provide portable programming environments for parallel machines. 
As  architectures become more complex, tools such as the languages and com- 
pilers described will have to assume a greater role in making these architectures 
programmable and useful. Efficient utilization of parallel architectures requires 
a combination of good language design and advanced compiler technology. 
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