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ABSTRACT

An optical model description of energy and momentum transfer in
relativistic heavy-ion collisions, based upon composite particle multi-
ple scattering theory, is presented. Transverse and longitudinal
momentum transfers to the projectile are shown to arise from the real
and absorptive part of the optical potential, respectively. Compari-
sons of fragment momentum distribution observables with experiments are
made and trends outlined based on our knowledge of the underlying
nucleon-nucleon interaction. Corrections to the above calculations are
discussed. Finally, use of the model as a tool for estimating colli-

sion impact parameters is indicated.
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CHAPTER 1
INTRODUCTION

With the advent of relativistic heavy ion beams at Berkeley,
Saclay and Dubna, the experimental situation in high-energy nuclear
interactions has improved dramatically over the previous era of cosmic-
ray heavy-ion physics. Sophisticated experiments have challenged
theorists to come up with new theoretical tools and insights to under-
stand the new features apparent in relativistic heavy-ion collisions.
Traditional nuclear physics has been primarily about the nature of
nuclear matter at or near equilibrium. With heavy-ion beams, the
possibility of compressing nuclear matter to two or three times the
normal density and heating to temperatures ~ 100 MeV has opened up. It
is appropriate at this point then to review the salient features of
high energy heavy-ion collisions beginning with cosmic-ray heavy ion
physics.

Ever since the discovery of Z > 2 (where Z is the nuclear charge)
components In the primary cosmic radiation by Freier et al.1,2 which
fulfilled a prediction by Alfven3, the subject of high energy interac-
tions between nuclei has been of fundamental interest. The goal of
these pioneering studies focussed primarily on interaction mean free
paths and reaction cross-sections. The production of nuclear fragments
and determination of their isotopic composition was intensely studied
in order to infer from these data the conditions of their origin,

possible acceleration mechanisms and subsequent propagation. These
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aspects of cosmic-ray heavy ion physics are thoroughly reviewed by
Shapiro and Silberberg,4 Waddington5 and in the classic monograph by
Powell.6

The qualitative classifications of the nuclear interactions in
cosmic rays were performed first by Bradt and Peters.’ The concepts of
"Peripheral” (large impact parameter) and "Central" (small impact
parameter) collisions were introduced by these authors. 1In a peripher-
al collision, part of the nucleus overlapping the target is sheared off
while the remaining fragment proceeds at near the beam velocity. Both
projectile and target fragmentation may be described as peripheral
processes. In a central collision, both the nuclei are destroyed,
involving high levels of excitation and the emission of large numbers
of secondary fragments. Nucleons, light fragments and pions are copi-
ously produced in central collisions.

Experimental studies of cosmic rays revealed many important fea-
tures, in spite of low intensities and uncertainties in charge, mass
and energy determinations. Bradt and Peters’ analyzed the reaction

cross sections using a semi-empirical "black sphere" expression

- 2 1/3 1/3 . 2
areac * I§ (Ap 3 AT §) (1.1)

with Ap, AT the mass numbers of beam and target, and § an overlap
parameter representing the diffuseness and partial transparency of
nuclear surfaces. With fixed values of r, and é, reaction cross-sec-
tions could be reasonably predicted with equation (1.1). These cross-
sections were assumed to be energy-independent for bombarding energies
from .1 A GeV to 30 A GeV. The average number of fragments produced by

the fragmentation of a certain projectile was also found to be nearly
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energy-independent (to within ~20%). The Bradt-Peters "black sphere"
model was later refined and a "grey sphere™” model was proposed8 to
account for the reduction of geometric cross-section due to the trans-
parency of nuclear surfaces. Optical model calculations of reaction
cross-sections were also undertaken successfully by various authors?, 10
and satisfactory agreement was found with experiment.

For cosmic rays, the reaction products studied were mainly mesons
and nucleonsll-13, The experimental goal was to understand nucleus-
nucleus interaction as a superposition of independent nucleon-nucleon,
nucleon-nucleus or alpha-alpha collisions. Although successful in
achieving a broad understanding of such collisions, precise knowledge
of high energy interactions of nuclei could not be gained from these
studies due to low statistics and lack of control over experimental
conditions.

The first laboratory acceleration of relativistic heavy-ions was
accomplished in 1971 at the Princeton Particle Accelerator (PPA),
shortly followed by the Berkeley Bevatronl®. Acceleration of alpha
particles began in Dubna 1970. Similar proposals were made at CERN for
heavy-ion experimentsl7. With the closing of PPA in 1972, Berkeley
BEVALAC became the only high energy heavy ion accelerator in the U.S.A.
Proposal for a Relativistic Heavy Ion Collider (RHIC) to be built at
Brookhaven National Laboratory in the 1990’s is underway. Projects
that are also in progress are GANIL in France, Numatron in Japan,
Nuklotron in the U.S.S.R. and GSI in Darmstadt, West Germany.

The BEVALAC, proposed by Ghiorsols, employs an 8.5 A MeV heavy ion
linear accelerator, the SUPERHILAC, to inject the ions into the

Bevatron which continues the acceleration of these ions to a maximum
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energy of 2.6 A GeV. High intensity Uranium beams have recently been
accelerated at the BEVALAC.

Experimental techniques at high energy heavy ion accelerators
combine tools from both traditional low energy nuclear physics as well
as high energy particle physics because of the wide range of charge,
mass and energy. These techniques range from particle identification
by AE-E and time of flight over 4x steradians for target fragmentation
to high energy techniques such as magnetic spectrometers, measurements
of dE/dx, rigidity, Time of Flight (TOF) for slow projectile parti-
cles. For relativistic particles Cerenkov radiation as well as the use
of streamer chamber or other multiple track detectors are used. Detec-
tion by emulsions, plastics and AgCl monocrystals are also used because
of their wide range of sensitivities, versatility and small demand for
beam time. The availability of wide ranges of charge in heavy ion
experiments pose difficulties for charge identification by dE/dsz2
f(B) so that additional capabilities must be incorporated into the
system. Excellent reviews of these aspects of detector development are
the Heavy Ion Study Proceedings published by Lawrence Berkeley Labora-
tory (and GSI) every two years, where recent information on both exper-
imental and theoretical aspects can be found.

In this work, we shall examine one aspect of relativistic heavy-
ion collisions in detail. We shall formulate a theoretical framework
to describe how momentum and energy are transferred to relativistic
heavy ions. An optical model description of momentum and energy trans-
fer based on the multiple scattering theory of nucleus-nucleus colli-

sions will be presented.
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Aside from the fundamental importance of the topic itself, the
necessity for understanding these processes (energy-momentum transfer)
arose due to the increasing sophistication of experiments. Single-
particle inclusive experiments of the type Projectile + Target - Pro-
jectile Fragment[+ other produccs]form the basis of our knowledge on
heavy ion projectile fragmentation. It was observed experimenta11y19
in the fragmentation of 12¢ and 16o (2.1 A GeV) beams on targets
ranging from H through Pb that the isotope production cross-sections

were factorizable into

- JF
9%gr = "B T (1.2)

where opgr is the cross-section for producing the fragment; 7§ and v,
are two terms that depend on the beam-fragment and target respectively.
This suggests that the momentum of fragments in the projectile rest
frame should also exhibit independence of target structure and beam
energy. Indeed, in the rest frame of the projectile, the longitudinal
momentum distributions of fragments show a statistical Gaussian depen-
dence. Irrespective of projectile, beam energy (> 1.05 A GeV) and
target nucleus, the longitudinal momentum P" distributions for all
fragments from 12¢ and 160 projectiles are characterized by Gaussian
shape with rms width a(P") = 50 to 200 MeV/c. These longitudinal
spectra are also downshifted by <P"> = -20 to -130 MeV/c from the
beam, showing that the mean velocities of these fragments are less than
that of the beam. The rms widths a(P") and o(P;) of the longitudinal
and transverse momentum spectra are found to be equal to within -~10%,

consistent with isotropic production of fragments in a frame moving at
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a velocity less than the beam velocity. The widths a(P“) and o(P,),
independent of target mass and beam energy, depend on the masses of the
beam and the fragment. A parabolic shape reproduces the general trend

of the data

o(Rp) = 20,[x(1 - 1Y% x -:_F (1.3)
P
where Ap, Ap are the beam and fragment masses respectively, and o4 is
experimentally extracted from the data or predicted by theory.

The parabolic shape of the widths o(P") has been the subject of
considerable attention of theorists?0-22 yho explained this dependence
using conservation of momentum. According to these theories, the
Gaussian momentum distributions can be understood by treating the
fragmenting nucleus as a Fermi gas and assuming (i) Momentum conserva-
tion, (ii) No correlation among nucleons in the parent nucleus, and
(iii) Neglecting anti-symmetrization of the single particle states.

Within these assumptions, one would predict (1.3) where o, is related

to the Fermi momentum of the projectile (Pp) via

oo = °F

V5

and also that (1.4

U(P“) = U(P_L)

explaining the isotropic production of the fragments. These insights
form the basis of much of the analyses of experimental data.
The simple Fermi gas picture of projectile fragmentation has been

questioned by many authors. Nuclear structure and binding-energy
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effects in determining the momentum widths has been pointed out23,
Neglect of anti-symmetrization of single-particle states has been
questioned by Bertsch?4 who showed that the momentum widths would be
reduced from the free Fermi gas value due to correlations. Murphy25
has investigated the constraints of phase space on treating the projec-
tile as a Fermi gas which emits fragments that are also Fermi gases.
Recent experimental data26 on the transverse momentum widths of Lantha-
num fragments also indicate the inadequacy of the simple Fermi gas
picture. Indeed, an alternate formulation?/ of projectile fragmenta-
tion abandons the Fermi gas picture and attempts to explain widths in
terms of neutron separation energies. It is clear that one needs to
bring in sophisticated theoretical insights to address structure and
binding energy effects, correlations, phase space constraints etc.

In this work, we attempt to address important but as yet unre-
solved questions, 1.e. how are momentum and energy transferred to heavy
ions at high energies and how does energy-momentum transfer affect the
fragment momentum and energy spectra, fragmentation cross-sections and
their angular distributions.

To address the above questions, an optical model description of
momentum and energy transfer between relativistic heavy ion collisions
within the multiple scattering theory framework will be presented. The
inputs into our calculations will be the well-known nuclear ground
state densities and NN (nucleon-nucleon) two-body transition ampli-
tudes. The energy-dependence of the two-body amplitude will enable us
to address the above questions over the entire energy range from low to

intermediate and extremely high bombarding energies for any projectile-
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target combination. New insights gained from this work, it is hoped,
will unify a host of data on heavy ion (peripheral) fragmentation.

Previously, excitation energy calculations have been undertaken by
Hufner28 et al. within the Glauber theory framework. Fricke2? has
calculated the excitation energy of "anomalons"™ detected in heavy ion
experiments using an impulsive excitation picture. Phenomenological3o
and semi-empirical estimates of the excitation energy in heavy ion
collisions also exist (these are not based on two-body interaction
parameters).

The new feature of this work is the introduction of a complex
momentum transfer vector which results from the use of a complex two-
body transition amplitude that satisfies unitarity and is used to
analyze experiments. The real (imaginary) part of the two-body inter-
action, folded with the appropriate densities for nucleon-nucleus or
nucleus-nucleus scattering gives rise to the real (imaginary) part of
the optical potential. The imaginary part accounts for inelastic
scatterings as well as true absorption, and as will be shown, gives
rise to longitudinal momentum transfer. The reaction cross-section in
Glauber theory, for example, is obtained from the imaginary part of the
phase shift computed from the imaginary part of the optical potential.
The real part of the complex momentum transfer vector represents trans-
verse momentum transfer due to elastic scattering at high energy. 1In a
fragmentation experiment, the projectile (or target) fragments are
detected. It has been found that these fragments emerge with less than
the beam velocity i.e. the longitudinal momentum spectra of these
fragments are "downshifted” by -20 Mev/c to -130 Mev/c depending on the

fragment. This "momentum downshift" is naturally explained in this
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work as due to longitudinal momentum transfer to the projectile by the
target. This arises due to inelastic scatterings that occur as the
projectile traverses the target. The transverse momentum transfer due
to elastic scatterings, is separately obtained from the real part of
the interaction. Calculation of momentum transfer allows us to calcu-
late the means and widths of transverse (and longitudinal) momentum
spectra for fragments for any projectile-target combination, using as
inputs nuclear ground state densities, NN transition amplitude uti-
lizing the currently available theories of projectile fragmentation.

Since the two-body interaction that is used is energy dependent,
the validity of these insights can be tested at extremely relativistic
energies (> 10 A Gev) as well as at lower (< 1 A GeV) bombarding
energies, assuming the validity of the underlying model at these two
extremes. Silicon beams have now been accelerated to energies =14.5
A GeV (at Brookhaven), Oxygen and Sulphur beams to 60 A Gev and 200 A
GeV at CERN. The momentum spectra of fragments look remarkably similar
to those at 2.1 A GeV. Lower (< 1 A GeV) energy data on these same
fragments is harder to come by; the paucity of available data prevents
a systematic study of the reaction mechanism and its evolution as a
function of bombarding energy. With the methods described herein, one
can now perform a theoretical calculation within this model. Such
calculations have been included in this work for possible future com-
parisons.

Another often studied question in nucleon-nucleus as well as
nucleus-nucleus collisions is the validity of the constant velocity

assumption that is frequently made. Within this model,we have a
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computationally tractable scheme for addressing this question. Longi-
tudinal momentum transfer to the beam nucleus inherently challenges the
notion of constant velocity. The magnitude of the momentum transfer is
responsible for change in velocity. We have developed a scheme that
takes into account corrections to the constant velocity assumption used
in our formalism. Another correction we address is the possible Cou-
lomb effects as the electromagnetic fields generated at these energies
are substantial enough to require such an analysis.

We have also derived a theory of energy transfer (based on multi-
ple scattering theory) along the lines of our theory of momentum trans-
fer. Experiments are seldom able to measure the excitation energy of
fragments; it is rather inferred or extracted from observed cross-
sections (using models such as the "Ablation-Abrasion” model). Our
calculation of excitation energy for projectiles and projectile frag-
ments introduces a comprehensive framework for performing these energy
transfer calculations using NN interaction parameters as inputs. No
comparisons could be made with experimental data because of the absence
of the latter. However, sophisticated experiments in the future may
change this situation.

The remainder of this work is organized as follows: In Chapter
11, the multiple scattering theory of nucleus-nucleus collisions is
reviewed and the optical model discussed within this context. 1In
Chapter III, the formulation of momentum and energy transfer in
nucleus-nucleus collisions is made within the multiple scattering
theory framework. Chapter IV contains numerical results on momentum
transfer (longitudinal and transverse), momentum downshifts and momen-

tum widths, preceded by discussions on the theoretical understanding
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and experimental facts on these topics. Corrections are discussed in
Chapter V. The first is the "deceleration correction" arising from
the transfer modification of the constant velocity assumption at high,
intermediate and low bombarding energies. The second is the more
familiar Coulomb correction. We conclude by discussing the major new
insights gained in this work as well as indicating possible directions

for future research.



CHAPTER II
MULTIPLE SCATTERING THEORY OF NUCLEUS-NUCLEUS COLLISIONS

Multiple scattering theory provides a reliable and fundamentally
correct description of hadron-nucleus as well as nucleus-nucleus
collisions at intermediate (~ 100 A MeV to 500 A MeV) and high (>500
A MeV) incident energies.31'39 In these theories, the complex many-
body problem of Aj projectile nucleons interacting with Ay target
constituents is formulated in terms of two-body interactions. The
success of these theories is well documented and is reviewed quite
frequently in the literature.

Our goal in this chapter is to review multiple scattering theory
in order to formulate the problem of momentum transfer and excitation-
energy deposition in nucleus-nucleus collisions. We shall review the
main results of the multiple scattering theory of nucleus-nucleus
collisions. Following Wilson,39,40 a4 set of coupled equations relating
all entrance channels to all exit channels will be derived. An optical

potential Vopt will be extracted under certain approximations.

I1.a Review of Multiple Scattering Theory
We shall review multiple scattering theory of nucleus-nucleus
collisions to find an expression for the multiple scattering series.
Collision of a composite projectile (mass number Ap) with a composite
target (mass number Ar) will be considered. The formulation of this

problem and its solution can be found in references 39-42. The

12
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Hamiltonian for the combined system of N = (Ap + AT) nucleons can be

written as

A A
P
H=X T.+% V,.,+ X T + % V,_, +% V (2.1)
jul 3 qeg M a1 ap P oy

where Roman indices refer to the projectile constituents and Greek
indices to targets. The first two terms in (2.1) are, respectively,
the kinetic energy and potential energy operators for the projectile

and are written as

A
P
H =S T, +% V,, (2.2)
je1 3 i<y M

Similarly, the third and fourth terms are the target kinetic and
potential energy operators. The last term is the interaction term
between ath and jth constituents of the target and projectile. One can

decouple the center of mass motion of the projectile as

—

P2 A
p — p —
H = + h with P = ¥ P, (2.3)
% 2Mn Ap P P j=1 J

where hp is the internal Hamiltonian of the projectile which depends
neither on ;; nor on its canonically conjugate position variable.
Similar results obtain for the target
P2
PT
H., = + h ; PT -

—

Pa (2.4)

Ap
T T z

2Mn AT a=1

where hy is the internal Hamiltonian of the target. Then the full

Hamiltonian can be written as

P2 (A+A) o
He= — 4 __E_fEL_ K2 + ho o+ by + Vg Ch=1 (2.5)
2 (A +A) M A A

where the overall center of mass momentum operator is

P - Pp + PT



14

and the projectile momentum compared to the overall center of mass is
— A F-. P ——
~ B - M - P (2.7)
(Ap+AT) (Ap+AT)
and the interaction is the sum of two body interactions
AT A
i 2.8)
2 TV (2.
a=1 j=1 %
The first term in (2.5) is the N-body center of mass motion

VI -

energy, decoupled from the other terms. The second is the kinetic
energy of relative motion of the projectile and the target. The
projectile relative position variable appears only in the interaction
term VI' The projectile and target internal Hamiltonians hp and hT
are coupled to the relative motion through the interaction VI' As the
separation between the projectile and target becomes larger, VI tends
to zero. We assume that well defined states are prepared in the
entering state and observed in the final state. We define these (in
operator notation) to be eigenstates of the free projectile-target
Hamiltonian
(Hp+HT) ¢ = E¢ (2.9)
The full wave function satisfies the Schrodinger equation

Hy = Ey (2.10)
where ¥ consists of a superposition of a free state plus a scattered
state
v=04+ (2.11)

scat

with ¥ - GT ¢

scat

where the Green’'s function is defined as

-H _-H_) lG=-
(E-H -Hp)"iG-1 (2.12)



15

and the transition operator is defined as
T = V+VGT (2.13)
and the wave operator Q1 as
¥ = 0p (2.14)
The wave operator satisfies the Lippman-Schwinger equation
0 = 1+GVQ (2.15)
so that the transition operator is formally given by

T = Va (2.16)

The goal is to find a series for T. For nucleus-nucleus
collisions this series was derived by Wilson.*0 For a single
projectile, this series reduces to the familiar Watson3l series. Using
the Eikonal approximation, Glauber33 theory is recovered from
Wilson's.

Wilson39,40 observed that the transition operator for the
scattering of a constituent from the jth constituent can be written as
t . =v.+v Gt ' (2.17)
which satisfies a Lippman-Schwinger type equation. The wave operator
which transforms the entering free state up to the collision of a and j
constituents can be written as

w . =1+ z (2.18)

@] (k)™ (a))

The interpretation of the above equation is as follows. The

G tﬂk wﬂk

propagation to the time just before a and j constituents collide is the
sum of an operator which brings the initial free state plus the
scattered part from the scattering of all other S8 and k constituents.

The full wave operator then consists of the wave operator which
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transforms the system to the a-j collision plus the contribution due to

scattering of the ath and jth constituents i.e.

Q= waj + G taj waj (2.19)
which can be written as
=1+ 2 Gt w (2.20)

oy el ‘al
Wilson then proves that the series given by equations (2.17)-
(2.20) constitutes an exact representation of the scattering process

defined by these equations. Consider the product

Vajn - va

j waj + vaj G taj waj

= Taj Yaj (2.21)
Summing over a and j one obtains
T=- 2 Vaj Q= ij taj wmJ (2.22)

aj
This completes the proof.39

The Green’s function G are true N-body operators. One neglects
binding effects at high energy and replaces G by free N-body operators
Go which satisfy

(E-Z T
j

j - i Ta) G° =1 (2.23)

Watson’s form of the impulse approximation consists of writing taj as

taj - vaj + vaj Go taj (2.24)

so that the above operator acts as a two-body transition amplitude. By

iteration of the above the multiple scattering series obtains

Gt ,+ ... (2.25)

T=2 2t + pX tﬂk aj

a j M (Br)n(ai)
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which constitutes a formal solution to the exact scattering problem.

The replacement G-»G° renders the ta essentially two-body operators

]

and the series for T above, equation (2.25) becomes a series of two-

body operators.

The above series reduces to the Watson3l series when the
projectile is a single particle, as previously mentioned. Next we
shall derive an optical potential operator whose Born series is
equivalent to the multiple scattering series expansion (2.25). Such an
operator is Vopt, defined from

Topt - Vopt + Vopt G Topt (2.26)
as

v -z I t 2.27
opt j aj ( )

From which we obtain

T = Topt - Z t.6t e (2.28)

Retaining the first term in (2.26), the optical model is obtained with

Tope = T = Vope O Vooo/ (A +AD) (2.29)

Vot
since t , = P

aj
(A Ap)
projectile and the target, respectively.

where Ap’AT are the mass numbers of the

The approximate Lippman-Schwinger equation for the effective

potential operator is given by

Q' =1 +G Vopt Q’ (2.30)

where the first order correction to the model is O (_i__).

A Ay
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II.b Coupled Channel Equations
Using the multiple scattering theory of nucleus-nucleus collisions
following Reference 39-42, a set of coupled equations will be derived.
An equivalent Schrodinger equation will be extracted from the formalism

developed so far. We shall focus on the Green's function

g $> <8 ¢
G - z I P,mgT,# k P:mg'r,ﬂ k | (2'31)
T

P
k,m,u E - Em - Ep -y + in

where E:l, Ez refer to the projectile and target internal states and

_—2
(A +A )k -2
- P b -k (2.32)

ZMnApA’I‘ 2u red

with the Green’s function G from (2.31) inserted into (2.11) and

£

k

projecting onto configuration space yields

— —

POLELE ) ey o (6) By, (B dy

exp( ikmp |_£--)7| )

M A .
nPt o3 I a3y d3§; d3E;

(AP+AT) m,p 41r r{.;

— —_— * _" * ’
x g, (€8 (Epey o (€) Bp  (6p)

X Vopt (y,fp,ﬁT) ¢'(y,€p.€T) (2.33)
where
- L ke
$ (X)) = ——— e (2.34a)
k 3/2
(2n)
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- -> —» -
sp - (rl,rz,. .. rA } (2.34b)
P
—» — - -
€T - (sl,?z,. .. sAT} (2.34c¢c)
and
- ~  MA
KW -k« _®PT (g _EPy4+ (E. _E') ] (2.35)
my (A +A_) p,o m T,o m
otAT

—

and gp,m(sp) and gT’“(ﬁT) are the projectile and target internal
many-body wavefunctions. Now, following Foldy and Walecka®3, we assume

that the energy transfer is small compared to the incident kinetic

energy

km“ =« k (2.36)

Using the closure approximation, (2.33) can be written as

e d — — — - - e
, _ . o1 37 exp(ik|x-y})
B Gy E) < gy o (6) Bp o (D 4 (0 - — [&y ]
x |X-Y|
X et oot 0 £ &) ¥y €L £
(A ¥Ayp) P P P (2.37)
The equivalent Schrodinger equation follows from the above
equation
o2 *2 ' -7 np " '
(VKD 9 (% €, &) Ry Vopt (x, €, &) ¥ (%, €, €
(2.38)

We express the fact that the projectile and target internal wave
functions are not eigenstates of the optical potential operator and the

initial states are mixed into various modes of final excited states as

follows
POk, L 6 = L gy, (0 gy L (6) g, (B (2.39)

m,
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The coupled equations then can be written as42

2M A
2 2 —~ A > -
(T, + KD 9,00 = LR S ) Vo me KB 0 (0 (2.40)

t,,! ’

(Ap+AT) m'u
which is the desired equation. Here
Vo mepr 3= (B g gT.#IVOPCISP,m'ST.ﬂ') (2.41)

The coupled equations (2.40) for composite particle scattering
relate all the entrance channels of the system labelled by projectile
quantum number m and target quantum number u to all the exit channels.
In (2.40), Ap and AT are the mass numbers of the projectile and target,
subscripts m and p label the eigenstates of the projectile and target;
Mp is the constituent nucleon mass, ; is the projectile momentum
relative to the center of mass, ; is the projectilé position vector

relative to the target and

Voot £ Ep) = Byp £y (g, X)) (2.42)
- -

The internal coordinates fp and €T have been defined in (2.34) and the
transition amplitude taj have been introduced in (2.17).

Next we shall write the coupled equations (2.40) in matrix form.

Introducing the wave vector

FE = [ 95 ® (2.43)
¥y, ()

—’
Y10 (¥)

¥, (®

L : I
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and the potential matrix
ol - - — —
o A V00,00 Yo0,01(® V00,10
- n p i - -
v (A_+A) Vo1,00)  Vo1,00® Vo1,10¢%)
p - - -
V10,00%)  Vy0,00® V10,10%) -
> — -
V11,009 V11,00®) V11,1009
- ' ' (2.72)
The coupled equations (2.40) can be written in matrix form as
[Fat ¥ :]%?) -THTD (2.45)

Using the definition of the potential as given by equation (2.42),

(2.41) can also be written as
— -

Vg, me e 0 -a§ Bp,m'%p) Br,, (p) Itaj(xa’xj)lgp,m'(ép) ey, 10>
-3 (s () £ . m) p ) &r i (2.46)
aj I T,pup' " a’ "aj a’"j p,mm’ " j j a

where

o~ [& () 8 (r- € €y o (2.47)
Pp,mm’ *F; [ %om % im%p.3’ Bpm p ) '
and

g Yy 8 e e ——d3—’ 2.48)
pT,p#'(ra) - Ig-r,” (ET) 6 (ra' fT’a) ST’”, (fT) eor ( .

This completes our review of multiple scattering theory. We shall
now discuss the formulation of problems of momentum transfer and

excitation energy deposition in nucleus-nucleus collisions, guided by
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the multiple scatterihg approach. Before we proceed, however, a brief
review of the optical model is in order, since we shall use the optical

potential in our work.

IT.c The Optical Model
The optical model is defined as the approximation of (2.40) for
the elastic scattered part as39,40

2M A

- - e
(;}2{ +EY (0 = 2P T w0 (2.49)
(Ap+AT)
where
Y(x) = ¢00 (%) (2.50)
and
W) = (81 o 8po|VepelBr,0 &p,0) (2.51)

with coupling to various excited internal states neglected. This is
correct at small momentum transfer or near forward scattering. The
corresponding approximate wave function is called the coherent
scattered wave and it dominates the forward scattered component. To
evaluate the optical potential we éalculate the Fourier transform of a

single term of (2.51)

where this term will be recognized as the single scattering term of the

—

-
multiple scattering series; q is the momentum transfer and FP 0(q) and

i
FT 0(q) are the Fourier transforms of the single particle density of

the projectile and target, respectively. The nucleon-nucleon

interaction will be assumed to be constituent averaged as follows40
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+ (ZpN + szT) ., ] (2.53)

P

-.- _1
t (ApAT) [NpNT tn t szT t T

PP

T T
the projectile and target, respectively. The optical potential is

where Np, N.. are the neutron numbers and Zp’ Z,, are the proton numbers

obtained by evaluating (2.42) (summing over constituents) as40

- >

wo —aa [ &€ @ [ o xreren T, €y @50
pAT pT pp ’ .
where pp, pp are the projectile and target single-particle densities

—-— -

t(k,y) is the energy and space dependent two-body transition amplitude.
We have arrived at the expression for the optical potential used to
analyze heavy-ion scattering cross sections. The input parameters are

the nuclear ground state densities and the two-body transition

amplitudes which will be discussed in Chapter IV.



CHAPTER III
MOMENTUM AND ENERGY TRANSFER IN HEAVY-ION COLLISIONS

In this chapter we shall address the problem of momentum and
energy transfer in nucleus-nucleus collisions in the framework of
multiple scattering theory. In the last chapter, we reviewed the
multiple scattering series, derived the coupled channel equations and
discussed the optical model. We shall use these tools in the formula-
tion of the problems of momentum and energy transfer in nucleus-nucleus
collisions. Starting with the reduced Schrodinger equation for the
combined system, an approximate expression for the wave operator will
be derived. Momentum transfer to the projectile as well as its excita-

tion energy due to collision will then be evaluated.

I11.a Momentum Transfer
Our starting point will be the formulation of the problem of Ap
projectile constituents colliding with Ay target constituents as in
equation (2.1). Following equations (2.1)-(2.4), the combined

Hamiltonian has been written in (2.5) as

e (A +A.) -
H = P + pr k2+hp+hT+VI (2.5)
M (A +Ap) 2 A A

The N-body center of mass motion energy, the first term in (2.5) has
been decoupled from the other terms. The second term is the relative
motion kinetic energy, with -;- as in equation (2.7). The third and
fourth terms, hp and hy are the internal Hamiltonians of the projectile

and target with

24
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-

Bp Bp,m (8p) = 5 m Bp,m'ép)
h'l‘ gT’“(fT) CT’“ gT’“(ET)

—
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(3.1a)

(3.1b)

where g (fp), &r #(fT) are the internal many-body wave functions of

the prOJectile and the target respectively; cp m

corresponding eigenvalues.

plete

I s, m<sp> g % <e ) = 66, - €D

- - - -

L & L) Bp % (6 = 66y - €D
l-‘ r r

In the overall center of mass frame

— — 4

h|
-> - -
- ) P, = -k
o
- -~
and Pp + PT =0
Then, the Hamiltonian is
— m A
H=-_t k2+h Fho+ Vo pred-__“__‘ﬁ_
2“red (Ap + AT)

T,u

= reduced mass

and ¢ are the

The eigenstates are orthonormal and com-

(3.2a)

(3.2b)

(3.3a)

(3.3b)

(3.3¢)

(3.4)

The Schrodinger equation (in coordinate space) can now be written as

[‘

2u

We seek solutions of the form*2

-> —» -»

— Wi+ +h+v}¢<xe,e@-aw<xe,59

(3.5)
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e o
-y — — - - > — —» eik’x
b€ € = | 6 (ELED | gy n(6) By (6D S — (3.6)
(2")3/2

- > »

where the bracketed term [:¢ (x,Ep,ﬁT):] is the desired wave operator.

Assuming that the source of the beam is along the direction -z, we

expect
g o [qs (x,ep.sT>] -1 (3.7)
and
lim - 7 = - eﬂ:;
2 0 b g e gy a6 8, 6D — e
2m)/

Inserting (3.6) into (3.5) yields

- -> > -
1 v2 1 1 2

- - ikeVv + ___ k" + ¢ + K + € + + Vv
2 X 2% 2% po P To KT I
red red red
> > - —tp —P -
$(x, £, £) = E $ (%6 ,6p (3.9)

where (3.1la), (3.1b) have been used. Kp and Kt refer to internal
motion (Fermi motion) of the projectile and target respectively. We

now note that

E=__Lk™ + ¢ + ¢ (3.10)

-— - —p

Solving for the wave operator [ ¢ (x,fp,ﬁT)] in (3.9) is in gener-
al difficult. Considerable simplifications occur at high energy when
—_— - —

[ ¢ (x,fp,ET)] is assumed to be slowly varying. Then, the second

derivate in (3.9) can be dropped.43 Internal Fermi motion Kp and Kt
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can also be neglected. Using (3.10) and the above assumptions, the

>y >
approximate wave operator [ ¢ (x,fP,ET)] can be written as

- nd e d z - - -
- - “ ’ ’
$(x, &, f) =exp | -1k f V(X' £, £p) dz (3.11)
k -
e[ ]
i J‘z —7 - -
- exp - ; - VI (X', £p, €T) dz (3.12)
where - -
- — -
k = uv : v = relative velocity (3.13)
Now (3.6) reads
b R — 1 i z —n — -
¢ (x’ E ) ET) - —_—— exp s - I_m VI (x'! 6 H £T) dz'
P 3/2 v P
(27)
- —  ikex
x gy n(€p) 8p ,l6p) e (3.14)

Using (3.14), we shall next evaluate the total momentum of the
projectile. Total momentum can be defined as the expectation value of

the sums of single nucleon momentum operators of the projectile between

(3.14), i.e.

A
- — e p*—’ - > bl
P -<p (x, £, &) | -i) V¥ ¥ (x, &, £.)>
total p’ °T = Ep,j p T

R

- - > - z V , d ,
= < By (6 By ,(6p)|exe (ikex) exp (+i/v IS

p - z —.' -~ - )
S ) V€ exp (4/v Iw VI(x ! sp' €T)dz)
j-l p'J —- - —
exp {(ikex) | gp m'(ep) gT “,(fT)> (3.15)
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Equation (3.15) is our expression of interest. Note that the
single nucleon momentum operators act with respect to the internal
coordinates of the projectile. Note also that we write the interaction
term VI(;ré;, §éT) as the sum of two-body interactions between the ath
and jth constituent. Since the projectile and target internal
eigenstates gp n and gr y are not eigenstates of the wave operator, the
above is still a coupled channel problem.

We shall now make a series of approximations in order to solve
(3.15). Note that the wave operator in (3.f|) was obtained from equa-
tion (3.9) by integration. This assumes that the interaction Vi
commutes with itself along different points of a straight line trajec-

tory. If they do not commute, however, then a power series®* solution

is appropriate as

- — i Z - > - 12 4 z'
¢ (x, €p, fT) =1 -(;) I- VI(x', gp, gT)dz' + (-_.) I_deI I-de.

© v

- > - - - -
Vp 7 60 ) x Vp (1, £ £ L (3.16)
—exp | -1 f v (x ' E » §p)dz’ (3.17)

+

where bracket { ], implies an ordering in analogy with time ordering,
i.e., the argument with earlier z in Vj occurs to the left of the Vp
with argument with later z. However, if the interactions Vy at dif-
ferent points along a straightline trajectory commute, then (3.12)

becomes&4
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b, €, € - exp [ : [va €, sT)dz':l (3.18)

We will assume that the interactions along a straightline trajec-
tory commute and replace the wave operator (3.17) by (3.18). A plausi-
bility argument will be given to justify the above.

When the collision time is short compared to the period of orbital
motion of the constituent nucleons, then the interactions Vy at two

successive positions along a trajectory commute, i.e.45,46

-

[vlw, €0 €D o V'L £ eg] -0 (3.19)

Ordering in (3.17) becomes inconsequential, and the upper limit in all
the integrals can be replaced by infinity to yield (3.18). Using

(3.18), we can rewrite (3.15) as

—

P

total <gp’m (Ep) gT'#(ﬁT)|exp@ik-x)

A

-

- P —
exp [+i/v [P V.(x', €., €3dz') |-1 ¥ V
( E I T ) =1 %p,

- > i

exp (—i/v J: VI(x" €p’ 5T)dz') exp (ikex) | gp,m'(ep) gT,p'(ET)>
(3.20)
In the light of equations (2.43), (2.44) and (2.45) it may be

instructive to look at the following decomposition of the potential

matrix42

-V, +V (3.21)

V- Vdiag * Voff-diag d o.d.
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where diagonal and off-diagonal elements have been indicated explic-
itly. It has been shown that for forward scattering at high

energies, the diagonal elements in V dominate over the off-diagonal

elements40

Vdiag >> Voff-diag (3.22)

Then (3.20) can be written as

Procal™ Bp,m (4p) Br,,(Ep) |oxp €ikx)  exp (1/" J-_Q(Vd V. dz')
A, . R .
-ijEl pr , exp(-i/v -[-S?d + Vo.d)dz')exp(+ik-x)Igp’m,(fp) &p 58 )>

- ha e — - i -—
m(ﬁp)g.r,“(é‘,r)lexp(i/v Evd(x', € €p) dz)(l - f@vo.ddz’h..)
A
P ®_ - — . 0 __
iy v exp (-i/vJ. V. (x', €, ¢ )dz')(l - EJ. Vo dz'+...)
=1 %p.g w4 R v o
- -
* | By mr (§p) Bp 40 (Ep)> (3.23)
A
- - —_ - - - P —
= <8y, (&p) ST,”(fT)lexp i/v ITQVd(X’. o ET)dz') -ijEl v 6 s
exp (—i/v J'_mvd<x'. £ T>dz') | 8,a(ép) By ,p> (3.26)

It is now obvious that the other terms in the series will involve
the off-diagonal elements which are smaller (by (3.22)). The first

term in the series involves only diagonal elements. In the spirit of
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the coherent approximation“z, we shall retain only the first term in

(3.24).
Now, applying the identity45
iA o -iA i
e Be -B+1i[A, B +— [A, [A, B]] + .... (3.25)
2
leads to
A
S P — — -
Piocal™ Ep.m (&) B, W6 —1J§1 e \ 8, o &) Br,, (p>
A,
— — dz'
(e>gT<eT I"’V<x,asp.eT>T
J-l p ]
n €5) &p > (3.26)

Notice that the first term can be thought of as the momentum of the
projectile before the collision. It may be taken to the left-hand side

of (3.26) and momentum transfer defined as

—_ — -

Ptotal-_ Pbefore = Ptransfer

-» > P —» - - .
- —<g, o (6) B (eT>| L v [ vaes gy g &z
=1 e T

v
n (6p) Bp (60> (3.27)
— AP © - - - ’
- R dz
-.‘-<gp.0(€P) gT,o(gT)’ j§1 €p j I mvopt:(x ’ 6p’ €T) _;'

- -
o &p) &r o> (3.28)

where in the spirit of the optical model discussed in the last chapter,



-ﬂ-ﬂgr---“-

an a O e am

32

¢m# = woo has been used in going from (3.27) to (3.28),

Having identified through equation (2.27) the optical potential

v - 3.

we can substitute the above in equation (3.28) and obtain

[° I 1

P.J -o  a=l j=1

A
- —> ind p *
Ptransfer - <gp.° (EP) gTr°(ET)) J§1 Ve

- T 4y by g
taj (x', €p, §p) -v— 850 (ép) g’r,o(f'rb (3.30)

Equation (3.30) above is the desired expression for momentum
transfer in the relativistic heavy ion collisions. Using the multiple
scattering theory formulation of nucleus nucleus collisions of
Wilson,39,40 we have seen that the optical potential can be calculated
in terms of transition amplitudes rather than two-body potentials. We
obtained above an expression for momentum transfer in relativistic
heavy ion collisions using these experimentally well determined transi-

tion amplitudes. Equation (3.30) has been explicitly evaluated in

. . *aj g
the Appendix, with the result expressed as Ptran and Ptran

. s
. ﬁuJ where PaJ is the momentum transfer in the collision
aj ~tran tran

between ath and jth constituents. Explicitly, these are given by

-»> - >

*aj 3”7 - 3" SO Bl dz’

(3.31)
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where a and j refer to the ath and jth constituents of the target and
projectile, respectively; qk(é}) and pj(z;) are their single particle
densities, and the gradient is with respect to projectile coordinates
only. The total momentum transfer is

-

-
P -.3 ¢ p™
tran j

tran
a

3 —_ 3 - ~ °~ -: —- - 4z’
- - J % @) [ @ mpeep " Jfon 6. &
(3.32)

= ->
where p (Ep) and p (€1) are the nuclear densities of the projectile and

target with mass numbers A, and Ar, respectively, and the two-body

transition amplitude taj has been averaged over constituent type as

t - (APAT)'1 ZZp top * NN €+ (N 2y + N2 € (3.33)
with Zp, Zr the projectile and target charge numbers; Np, Ny the
neutron numbers and Ap, At the mass numbers, respectively. (The
notation for the transition amplitudes is tp, for proton-proton, tun
for neutron-neutron, and tnp for neutron-proton.)

A unique feature of this work is the use of the two-body transi-
tion amplitude (in (3.32)) which is complex. The constituent averages

two-body transition amplitude is obtained from the first order t-matrix

used in previous studies of nucleus-nucleus collisions as
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-3/2 -
T (e, X) = - ofJe/m  o(e) E(e)+£| ExB(eﬂ exp(- )
2B(e)
(3.34)

where e is the two-nucleon kinetic energy in their center of mass
frame; o(e) 1is the nucleon-nucleon total cross section; a(e) is the
ratio of the real to the imaginary part of the forward scattering
amplitude, and B(e) is the nucleon-nucleon slope parameter. Values for
these parameters, taken from various compilations, are listed in refer-
ences 39-42.

The resulting momentum transfer, equation (3.32), where the tran-
sition amplitude (3.34) appears is also complex. The real part of the
momentum transfer, which comes from the real part of the complex opti-
cal potential, is the contribution arising from elastic scattering. It
is purely transverse. The imaginary component, which comes from the
absorptive part of the complex optical potential, is the longitudinal
momentum transfer. To show this, we symbolically rewrite equation

(3.32) as

i

Ptransfer = (QR +1 QI) b (3.35)

where in-\/ri and b is the unit vector transverse to the beam

direction. If z denotes the beam direction (with -z the source) then

we know that

A

ib = - 2 (3.36)

since i =+~1 1is an operator which rotates a unit vector counter

clockwise through x/2 radians.4’ Therefore (3.35) becomes
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- A A
Ptransfer - QR b - QI 2 (3.37)
which can be relabelled as
- A A
Pt:ransfer =Q b - Q" z (3.38)

The transverse (Q;) and longitudinal (Q;) components can be immediatel
1 g " y

written as

- A .[d3—’ (">jd3+ &l . IQR E s ey 2
QU= - Ay | 98, ppep | ep artep| T | Re T x v g e

o d v
and (3.39)
37 T3 T T et a e ey 92

o - A | &, poce [ ep ppcep . I_mIm E gy b
(3.40)

The above has a close analogy in optics where complex refractive
index is used to account for absorption. The resulting attenuation of
the incident wave is then along the direction of incidence. Similarly,
momentum loss due to inelastic scatterings and absorption as the pro-
jectile traverses through the target is in the longitudinal direction,
while the elastic scattering gives rise to transverse momentum transfer

(specially true at high energy where forward scattering dominates).

II1b. Energy Transfet.
Having developed the formalism for momentum transfer, we shall
also find an expression for energy transfer (excitation energy) to the
projectile. Again, our basis will be the multiple scattering theory

framework discussed previously. We will assume in light of the discus-
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sion in Appendix B that the sudden approximation is valid, i.e., colli-
sion time tgoo1] is short compared with the period of orbital motion of
nucleons in the nucleus. This is best evaluated by taking the expecta-
tion value of the sum of nucleon energy operators (the internal

Hamiltonian of the projectile Hp) with approximate wave functions given

by (3.14).
A
¢<_’e-’;> T e B V| B b ) (340
E =< X : X, ] .
T I j=1 .1 1< iJl pT

Expanding the above yields

- -» »> > © > > »>
B <g, , (£) gT’“(éT)lexp (-ikex) exp (i/vI V', €, $T)dz')

A

1 s 2,5y (1/ va (_'_5’ Z)d)

- - exp ~1/v x', » z'

wm 3=l Spy i ol pr T

.-v-a - —

exp (ikex) | &y e (§5) By 0 (6p)>
%

<e ) &y (eT ’ exp (i/v r VY d)dz') LI ?g

- ' 2m  j=1 P.J

o (&) B, (6>

-]
+Z VvV, exp (-i/v I (V +V )dz')
i< ij o 4 o.d

<e ) gy (ep) | exo (i/vf Vope (%0 &5 eT>dz')x
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A
L zp Vs zov (i/vj'mv ', € g)d)
—_— — exp = X, ’ z'
m =1 %py i<y M ~w OPt p' T
x| <8y 0 (&) Bp o(8p)> (3.42)

The explicit derivation of the above expressions is detailed in

Appendix A. The final result for energy transfer is

£ E +0 (>
-E-O+ (r)

-»> - 2
- 1
"= < <s>gT (&T>| ( J‘:,vopt L€ o &) __)
m v
n
- - 1
] 8.0 (6p) Br o) > +0 () (3.43)
with P
E o (6) Bp (|- — = V. o+ Z Vg (£ (£,)>
o gT T zmn j=1 Ep,j 1< ij|®p,o p gT,o T
(3.44)

Evaluation of the above equation for E* yields an expression for energy

transfer as
J. 3-» - - ® - > "'d
-~ zl
E df p(f) d {. o (ED1 V JEx, €, ) —
ZmpAT P PP TITOT 6, 7= p’ T T,
(3.45)
where the definition of Vopt’ equation (3.29) has been used, and we

neglect terms 0(1/Ap). All the symbols above have been defined in our

previous derivation in section IIla.



CHAPTER IV
NUMERICAL RESULTS ON MOMENTUM AND ENERGY TRANSFER DISTRIBUTIONS
In this chapter, we address specifically the momentum and energy

transfer distributions in nuclear fragmentation reactions. Having
studied in Chapter II the multiple scattering theory of nucleus nucleus
collisions and in Chapter III the formulation of the problem of energy
and momentum transfer in heavy ion collisions based on the multiple
scattering theory, we shall discuss a variety of topics in heavy ion
reactions with these insights., First, we briefly review the experimen-
tal situation as it pertains to our topics of interest. We next dis-
cuss the currently available theories of heavy ion fragmentation
reactions. We present calculations on the momentum and energy transfer
distributions in relativistic heavy ion collisions and indicate how to
incorporate our results in the existing theoretical framework. Our
primary focus will be on the momentum spectra of fragments, including
the effects of momentum transfer on the spectra. Input parameters are
briefly discussed next. Numerical results on momentum "downshifts" and
widths are presented for a variety of projectile-target combinations

and compared with experiment.

IV.a The Experimental and Theoretical Background
Most of our information on fragmentation reactions comes from

single particle inclusive reactions of the type48’51

38
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Beam + Target -+ Fragment + Other Products 4.1)
Two concepts stand out in describing the projectile (or target) frag-
mentation data. They are called "limiting fragmentation" and "factor-
ization," respectively. "Limiting fragmentation” implies that
distribution of fragments approaches a limiting form as the bombarding
energy is increased. "Factorization" means that the cross section for

production of a particular fragment (written as oppT) is a product of a

factor yp which depends on the target and 1§ which depends on the beam

and fragment, i.e.

(4.2)

o - F
FBT ~ 'T 7B

Further ana1y51552 suggests that another prescription, called "weak

factorization" could better describe the data

F T
9%t = "B B (4.3)

where 1% depends both on the beam and the target.

Experimental measurementsl? of widths and means of longitudinal
and transverse momentum spectra of fragments of 12¢ and 160 on targets
ranging from H through Pb revealed the following features. In the
projectile rest frame, the longitudinal momentum distributions for all
fragments from 12¢ and 160 (with the exception of protons) show, irre-
spective of beam energy and target, the following characteristics:

(a) Gaussian shape, with root mean square widths a(P") = 50 to
200 MeV/c and downshifts <P"> = - 20 to - 130 MeV/c. Thus tﬁe mean
velocities of the fragments are less than that of the beam.

(b) Rms widths a(P") and o(P;) are equal to an accuracy of 10%,

consistent with isotropic production of fragments.
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(c) a(P") and <P"> are independent of target mass and beam energy
but depend on the beam and fragment.

The general trend of the widths a(P") is reproduced by a parabolic

dependence on the fragment mass where

A
a(P") - 20, [X(l-x)]1/2 . x = __ - Fragment mass number ., 4
Ap Projectile mass number

where o, is a constant.

The parabolic dependence has been explained by a variety of theo-
retical approacheszo'22 including the conservation of momentum.
Feshbach and Huangzo and later Goldhaber?2 pointed out that the
Gaussian momentum distributions could be understood by treating the
fragmenting nucleus as a Fermi gas and assuming (a) momentum conserva-
tion (b) no correlation among nucleons and (c) neglect of anti-
symmetrization of the single particle distributions. Based on this
model, the parabolic dependence of the widths a(P") on fragment mass Ay
could be reproduced (as in equation (4.4)), as well as the isotropy
a(P" ) = 0(P;) could be understood. More importantly, Goldhaber22

also pointed out that the widths and means of momentum distributions

could be modified according to

2
02 o 42 4 FC g2
o ax + ZE Qx (4.5a)
, F
P! =P +-Q (4.5b)
A

where ai is the unmodified Gaussian width, agz is the modified width,

Qx is the momentum transfer in any direction x; F and A are the frag-
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ment and parent mass numbers respectively and unmodified widths are

related to Fermi momentum Py of the parent as

02 = F(A-F) a2 (4.6a)
X o
A
F(A-F) g
- — (4.6b)
A 5
The longitudinal momentum downshift is given by (4.5b) as
F
A

where Q" is the magnitude of the longitudinal momentum transfer
obtained from equation (3.40). Recalling that Q" is a function of
impact parameter, an appropriate method for choosing it for each frag-
ment is necessary. Before that however, we shall present input parame-
ters required in our calculation. (Note the comprehensive list of

references 53-88 on the experimental and theoretical overview of the

subject).

IV.c. Input Parameters
Having derived expressions for momentum and energy transfer, we
shall use them to calculate quantities of interest.
The NN transition amplitude in coordinate space has been intro-

duced in equation (3.34) and the notation explained.

Values of o(e), a(e) and B(e) are discussed in references 62 and
86, including an estimate of experimental uncertainty. Average values

are given by
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o(e) = — 1 [(Zp + Zp) opple) + (N + Np)opp(e)] (4.8a)
(Ap + AT)

a(e) = [(Zp + Z7) app(e) app(e) + (Np + Np) anp(e) anp(e)] 6. 8b)

(Ap + Ar) [app(e) + onp(e)]

Some representative values are listed in Table 1. 1In addition,
the "non-diffractive" slope parameters B(e) from these references will

be replaced by "diffractive" slope parameters
B(e) = [10 + .5 1n (s'/so)] (ceV/c)'2 (4.9)

with S, = 1 (GeV/c)'2 and S’ = square of the NN center of mass ener-
gy. This is because diffractive slope parameters are appropriate for
scattering near forward directions. " The single particle densities are

related to the nuclear wave function by

A - -
p, (xr) = = § <g(€) |8 (c-1r) | g (£ )> (4.10a)
% A, o=l O P | 2 | &,
) o j§1 <B,(6p) | 6 (s - 5p) | g (ep> (4.10b)

for the projectile and target, respectively. The above are understood

as
-> 1 - >
”Ap< ) - = [:Np Pl T) +2 0 (x )] (4.11a)
P
— 1 - —
Pa (s - - [Fp e (s + 2, Py s )] (4.11b)

where Zp, My are the projectile proton and neutron numbers and Zr, Nt

are the target proton and neutron numbers, respectively. We assume for
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Table 1. Values of NN input parame .ters o(e) for NN = np and NN=pp
for various incident energies. Data from compilations in references
62,86.

EinC (A GeV) anp(e) (mb) app (e) (mb)
.025 378.255 130.31
.050 140.38 41.00
.075 98.35 39.63
.100 71.73 27.23
125 59.15 23.83
.150 52.09 24.13
175 46.59 23.79
.200 42.80 23.09
.225 40.09 22.45
.250 37.94 22.21
275 36.29 22.37
.300 35.15 22.78
400 34.03 25.19
.500 34.82 32.46
.600 36.03 39.28
.700 36.98 43.02
.800 37.84 45.51
.900 38.76 47.01
1.000 39.68 47.65
2.000 42.96 45.18
3.000 43.19 42.50
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-

light nuclei pp, (;) = fp (r) since Coulomb repulsion by protons plays
only a small role in light nuclei. Proton densities are taken from
compilation of charge radii from electron scattering experiments. The
effect of finite proton radius is taken into account by extracting the
matter densities according to reference 62. The nuclear charge density

is taken as

- —- — -»

_’
P AT = I by (£') py (xr + 1) a3 ¢ (4.12)

-’
where pp(r’) is the proton charge density.

In this work, the densities of nuclei for A > 20 was taken to be

of the Woods-Saxon type

-1
Py =5, |1+ exp(r - R) (4.13)

a

with R the half density radius and a related to the skin thickness
as t = 4 .4a. For A < 20, Harmonic-well densities were used. The

parameters are listed in Table 2.

IV.c. Numerical Results
A. Momentum Downshifts
Experimental data on momentum downshifts are availablel? for the
fragmentation of 160 and 12¢ on targets ranging from H through Pb. 1In
Figures 1-18, momentum transfers to 160(2.1 A GeV), 12C(2.1 A GeV) and
12¢ (1.05 A Gev) projectiles are plotted as a function of impact param-
eter b (fm). Momentum transfer is in units of MeV/c. Longitudinal and

transverse momentum transfers are shown separately.
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Table 2: Nuclear charge distribution parameters
from electron scattering data
(HW = Harmonic-well; WS = Woods-Saxon)
v (HW) or a, fm (HW) or
Nucleus Distribution t, fm (WS) R, fm (WS)
IBe HW 611 1.791
12¢ HW 1.247 1.649
169 HW 1.544 1.833
2741 WS 2,501 3.05
64cu ws 2.504 4.20
1084g WS 2.354 5.139
1391, WS 2.354 5.71
208pp ws 2.416 6.624
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From the figures, two features are readily apparent. First the
longitudinal momentum transfer is larger than the transverse, indi-
cating the primarily absorptive nature of nuclear collisions at this
energy. Second, the predicted momentum transfers decrease rapidly with
increasing impact parameter.

Another feature that stands out is that momentum transfers are
only slightly target dependent. The choice of the impact parameters
was of consequence in this and will be discussed shortly. The longitu-
dinal momentum transfer to 160 rises from ~230 MeV/c for IBe target to
~320 MeV/c for 208pp target at the closest impact parameters (see
figures 1 and 6). The transverse momentum transfer increase is only
~90 MeV/c to ~120 MeV/c. The projectile dependence is more noticeable,
however. The longitudinal momentum transfer to 12¢ (at 1.05 A GeV) is
~155 MeV/c (figure 7) for 9Be and rises to ~180 MeV/c (figure 12) for
208pp, Transverse momentum transfer is ~25 MeV/c - 30 MeV/c only for
all targets. At incident energy of 2.1 A GeV, however, the energy
dependence of transverse momentum transfer is noticeable. It ranges
from ~60 MeV/c for the 9Be target (figure 13) to ~70 MeV/c for 208pb
(figure 18). Longitudinal momentum transfer hardly changes between
1.05 A GeV and 2.1 A GeV. The increase in transverse momentum transfer
is related to a(e) which is the energy-dependent ratid of real to the
imaginary part of the NN forward scattering amplitude. These trends
show that while the longitudinal momentum transfer remains fairly
constant at high energies, the transverse momentum transfer is highly

energy-dependent.
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In Figures 19-21 and Tables 3-5, our results on momentum down-
shifts are reported. Experimental datal? have been averaged over

isotopes using

o4 <Pp> + 0 <P,> +
F1 | F2 T fo,
<P"> ave _ F1 F2 (4.14)

aFl + 0F2 +...

where of), opy are the fragmentation cross sections for isotopes 1 and
2, respectively, and <P">F1, <P“>F2 are their corresponding downshifts
(experimentally observed). These calculations are presented in Figures
19-21. To translate the calculated longitudinal momentum

transfers into "Momentum downshifts," we follow the following prescrip-
tions.

(1) The semi-empirical fragmentation code NUCFRAG89 developed at
NASA Langley is used to assign a range of impact parameters b; - by,
by - b3, for each fragment Ap = 1,2,3...(Ap-1) where Af, Ap are the
fragment and parent mass numbers, respectively. This range is divided
into ~ 30 intervals and corresponding longitudinal momentum transfer
calculated for these values of impact parameters. An arithmetic aver-
age is done and the average is multiplied by the Goldhaber factor.

This is the "momentum downshift"” for fragment Ap. Standard deviation
of the mean is computed following standard procedures.

(2) An impact parameter b is uniquely assigned by NUCFRAG for
each fragment Ap where Ap =~ 1,2...(Ap-1). The corresponding longitudi-
nal momentum transfer is calculated. The average longitudinal momentum
transfer is taken as the same as the above. This average, multiplied
by the Goldhaber factor (Eq. (4.7)) is the "momentum downshift” for

that fragment. The results are compared from the two approaches.
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Momentum downshifts of projectile fragments In the reaction 12C
(1.05 AGeV) + Target — Projectile Fragment + X, where X is
unidentified and targets are Be, 12C, 77Al, Cu, Ag and Pb. Harmonic-
well densities were used for A < 20, Woods-Saxon for A > 20.
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Extensive numerical work revealed that the second approach, while being

more efficient yields results comparable to the first approach, not
differing by more than 7 MeV/c. When accuracy was desired, the first
approach was always preferred over the second.

It may now be worthwhile to discuss the experimental results and
theoretical calculations. It is clear from figures 19-21 that the
momentum downshifts are overpredicted in all cases except for a few.
The source of this discrepancy is the impact parameters obtained from
the geometrical, semi-empirical code NUCFRAG. The projectile and
target densities are approximated in the above code as uniform spheres
with R = 1,26 al/3 (fm ). This is obviously an oversimplifi-
cation. Electron scattering87 from nuclei reveal that nuclei possess
diffuse surfaces. Realistic charge distributions (Woods-Saxon for
example) take the diffuseness into account through skin thickness
t(fm), which is a measure of the distance where nuclear density falls
from 90% to 10% of its value. A sharp cut-off of the density thus
neglects the extended, diffuse nuclear surface. Since realistic nucle-
ar densities were used in the calculations of longitudinal and trans-
verse momentum transfer, it is likely that the impact parameters from
NUCFRAG are not very realistic. An alternate procedure would be to
make our calculations compatible with uniform density calculations from
NUCFRAG.

This was accomplished in two steps. Realistic densities were
replaced by uniform densities[, R= 1.26 Al/3]in the momentum transfer
calculations. The zero-range of the two-body interaction in NUCFRAG

was implemented in our calculation by reducing the range arbitrarily by
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B(e)
5

equation (4.9) all projectile-target combinations. This amounted to

a factor of five i.e. B'(e) = where B(e) was given previously by

B’ (e) ~.08 fm-2 at 2.1 A GeV, for example. The effect on our calcula-
tion can be seen in figures 22-24. 1In figure 22, the imaginary part of
the optical potential Vope(r) for 160 . 9Be collision at 2.1 A GeV is
plotted using Harmonic-well densities as well as uniform densities with
variable slope parameter B(e). The first-order optical potential
follows closely the density distribution of the nuclei (actually ex-
tends beyond due to finite range of the interaction). As uniform
density was substituted and the range of the interaction reduced by a
factor of 5, the shape of the potential became steeper, thus approxi-
mating a sphere with a sharp cutoff. The effect on the longitudinal
momentum transfer to 160 in the collision of the 160-9Be pair (Ejpe =
2.1 A GeV) can be seen in figure 23. Compared with the realistic
density calculations (see also figure 1), the magnitude of the momentum
transfer is reduced. Setting B(e) = 0 outright involved numerical
difficulties.

The momentum downshifts of Oxygen fragments are plotted and
compared with experimental datal? in figure 24. The experimental data
have been averaged according to (4.14). Notice the significant agree-
ment between theory and experiment. Similar results obtain for 12¢
fragmentation at 2.1 A GeV and 1.05 A GeV.

It may be appropriate to point out that the above procedure can be
reversed and theoretical calculations utilized as an impact parameter
"gauge". With experimentally observed downshifts as inputs, one can

calculate with realistic densities the impact parameters where the same
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Fig. 22 Imaginary part of the optical potential Vopi(r) in MeV as a function of

separation r in fm for Oxygen with Berylllum at 2.1 A GeV. Harmonic
well densities were used for both the projectile and the target and
compared with uniform density calculations. Slope parameter was

" modified to B'(e)=D(e)/2 and B'(e)=B(e)/S respectively to simulate a

zero-range interaction.
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downshifts obtain. The practical advantage of these impact parameters
is that they can be utilized in localizing a reaction event as well as

used as guides to other calculations such as those of transverse
momentum transfer, fragmentation cross-sections, and Coulomb dissocia-
tion cross-sections.

The energy dependence of the momentum transfer is a quantity of
fundamental interest. As noted previously, the NN input parameters are
energy dependent. Longitudinal and transverse momentum transfers have
been plotted for 160 - 9e pair at incident energies Ejn. = 0.2, 0.4,
0.6, 0.8, 1.05 and 2.1 A GeV in figures 25 and 26, respectively. Note
the gradual increase of longitudinal momentum transfer as the bom-
barding energy increases, attaining a "limiting" value at Ejpe > 1
A GeV. The transverse momentum transfer can be readily obtained from
the longitudinal momentum transfer by multiplying the latter by a(e),
where a(e) 1is the ratio of the real to the imaginary part of the NN
forward scattering amplitude. As is well-known, a(e) < 0 at 2.1 A GeV
which implies a repulsive, real part of the optical potential. The
corresponding transverse momentum transfer is from a repulsive mean
field and is positive (according to our sign convention). At lower
bombarding energies, Vope(r) = -(Vpeal + iVimag) holds and the corre-
sponding mean field is attractive. Transverse momentum transfer is
negative indicating that deflection to negative scattering angles is
feasible. Coulomb effects have been ignored in our calculations. The
above predictions should be verifiable in sophisticated experiments in

the future.
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B. Momentum Widths

Equation (4.5a) is Goldhaber's result for the modification of the
fragment momentum width due to collisional momentum transfer. Specifi-

cally, the following equations can be derived from (4.5a)

2

o 2 . F(A-F) 02 + F Q2 (4.15a)

| =~ %*59 '

A
2 F(A-F) 2 . F° 2
o" - o, + — Q) (4.15b)
A A2
where 0’2, o' 2 are the modified widths, Q; , Q are the momentum
I ™ (I

transfers, and F and A are the fragment and parent mass numbers.
The first terms in (4.15a) and (4.15b) are the unmodified widths in the

longitudinal and transverse directions given in terms of Fermi momentum

as

p2
2 _FAR) 2 2. F (4.16a)
5

o2 - g FAF) 2 (4.16b)

The extra factor of 2 in (4.16b) is due to summing over x and ¥y
directions.

Moniz et gl*go measured the Fermi momentum of a range of nuclei
via electron scattering. We have developed in the last chapter the
theory of longitudinal and transverse momentum transfer. The expres-
sions for the longitudinal and transverse momentum transfer in nucleus-

nucleus collisions are given in equations (3.39) and (3.40).
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Experimental data on the widths of longitudinal momentum distribu-
tions of projectile fragments were measured by Greiner et al.19 The
widths of the transverse momentum distributions, when resolved onto the
detector plane were found to be similar to the longitudinal widths
o(P11) = a(Py) = o(By) (4.17)
within 10% suggesting isotropy of fragment production in the projectile

frame.

Brady et al.26 measured the widths of transverse momentum distri-

butions of projectile fragments in the reaction 123La (1.2 A GeV) + 12¢
+ Projectile Fragment + X. These measurements were made at the Bevalac
Heavy Ion Super-conducting Spectrometer (HISS) with the MUSIC detector.

Fragment momentum widths o(Py) were measured in the detector plane and

fit to the expression

o(By) = 0g ‘/F(A'F) (MeV/c) (4.18)
(A-1)

with variable o,. It was found that Goldhaber theory, based on inter-

polated value of Fermi momentum Pp = 250 MeV/c (-\Jg- go) under-
predicted the widths. Values of o, = 169 MeV/c was necessary, im-
plying an unreasonable value for the Fermi momentum of 377 MeV/c for
13912, Based on our theory of transverse momentum transfer, we show in
Table 6 and Figure 27 a much improved agreement with the experiment.
This shows that collisional momentum transfer is substantially respon-
sible for increased transverse widths.

These calculations were done using the following steps based on
our expression for transverse momentum transfer. In Equation (3.39) we

used a Woods-Saxon density for 13913 and Harmonic-well density for 12¢

<
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Table 6: Transverse momentum widths of{ (Q,) in MeV/c of projectile

fragments in the reaction 139La(1.2 AGev) + 12¢ - Projectile Fragment
+ X, calculated from equations (4.15b and (4.16b). The last column
lists the modified widths. When squared, the third column yields the
modifications due to momentum transfer.

Projectile o (Py) o¢(b) o(Py) 01(Q))

Fragment Goldhaber ours expt fit ours

(mass no.) (MeV/c) (MeV/c) (MeV/c) (MeV/c)

(ref. 26)

138 112.0 15.6 169 159.2
137 157.8 16.5 238 223.8
136 192.6 18.0 290 272.9
135 221.5 19.5 334 313.8
134 246.8 21.0 372 349.6
133 269 22.6 406 381.0
132 289.8 24.36 437 410.5
131 308.6 26.23 465 437.2
130 326 28.2 492 462.0
129 342 30.2 517 484.6
128 357.8 32.6 540 507
127 372 35.05 561 527.2
126 386.8 37.6 582 548.3
125 398.8 40.3 602 565.4
124 411 43.15 620 582.8
123 423 46.16 638 599.9
122 434 49.3 655 615.7
121 445 52.6 671 631.5
120 455 56.04 687 646




Table 6 (Continued)

Projectile o(Py) oe(b) o (Pyg) 0,(Qy)
Fragment Goldhaber ours expt fit
(mass no.) (MeV/c) (MeV/c) (MeV/c) (ﬁzgjc)
(ref. 26)
119 465 59.60 702 660.3
118 475 63.34 716 674.7
117 483.7 67.03 730 687.3
116 492.5 75.7 743 700.3
115 501 79.78 756 713
114 509 84.14 768 724.7
113 517 88.46 780 736.5
112 524.3 92.9 791 747.3
111 531.5 97.3 802 757.6
110 538.5 102 812.5 768.3
109 545 106.4 822 778.0
108 551.6 111 832.4 788
107 558 115.6 842 797.5
106 564 125.7 851 807.5
105 569.6 119 859.6 814.3
104 575 123.5 868 822.5
103 580 127.9 876 830
102 586 132.2 884 839
101 590.6 136.7 891 846
100 595.4 141 898 854
99 600 145 905 861
98 604.3 149.2 912 867.5
97 608.5 153 918 874
96 612.5 157 924 880.3

83



Table 6 (Continued)

Projectile o(Py) o¢(b) a(Py) o1(Qy)

Fragment Goldhaber ours expt fit

{(mass no.) (MeV/c) (MeV/c) (MeV/c) (;:;jc)

(ref. 26)

95 616 160.5 930 886
94 620 164.2 936 892
93 623.6 167.5 941 897.6
92 627 170.9 946 903
91 630 173.8 951 908
90 633 176.7 955 912
89 636 179.5 960 917
88 638.7 182.0 964 921
87 641 184.5 968 925
86 643.6 186.7 971 929
85 645.9 188.7 974.6 932.7
84 648 190.6 978 936
83 650 192.2 980.8 939
82 651.8 193.6 983.5 942
81 653.5 195 986 944.5
80 655 196 988 947
79 656.4 197 990 949
78 657.6 197.7 992 951
77 658.7 198.3 994 952
76 659.7 198.7 995.5 954
75 660.5 198.9 996.7 955
74 661 198.9 997.7 955
73 661.7 198.8 998.6 956.6
72 662.2 198.6 999.2 957.3
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Table 6 (Concluded)

Projectile a(Py) o (b) o (Pyg) 0;(Q))
Fragment Goldhaber ours expt fit
(mass no.) (MeV/c) (MeV/c) (MeV/c) (;Z;jc)
(ref. 26)
71 662.5 198.0 999.6 957.6
70 662.6 197.6 999.8 957.6
69 662.6 196.8 999.8 957.5
68 662.5 196 999.6 957.2
67 662.2 195 999.2 956.6
66 661.8 193.8 998.6 955.8
65 661.2 192.5 997.7 954.7
64 660.5 191.15 996.7 953.4
63 659.7 189.7 995.5 952
62 658.7 188.0 994 950
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Figure 27: Transverse momentum widths of projectile fragments in the reaction
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where the parameters have been listed before in table 2. Root mean
square momentum transfer Q; and squared rms momentum transfer Q; were
calculated, and widths 0{(Q;) were calculated using (4.15b). Since the
experimental widths are in the detector plane and momentum transfer is
calculated in the reaction plane, information on the azimuth of the
reaction plane is necessary. Since such information is not available,
we assumed that the momentum transfer in the reaction plane and detec-

tor plane are identical.



CHAPTER V
CORRECTIONS

Modifications to the above formalism will be addressed in this
chapter. These are called (i) The Deceleration correction and (ii) The
Coulomb correction. In theoretical calculations, the assumption of
constant velocity is frequently made. Momentum transfer introduces an
asymmetry into the problem; the assumption of constant velocity of beam
nucleons is then strictly not valid. Our evaluation of momentum trans-
fer in Chapter IV can only be correct if the corrections to our calcu-
lations are small. As will become apparent, this correction, related
to deceleration of the projectile due to momentum transfer is indeed
small at high energies (but not necessarily so at lower bombarding
energies). Modification of the expressions derived previously will be
made first. Numerical evaluation will be carried out for these cor-
rections, labelled collectively as "The Deceleration corrections”,

Coulomb repulsion of the charges in heavy-ions will be treated
next. Ever since the beginning of the science of heavy-ions, the
interplay of nuclear and Coulomb effects has unveiled new insights.
This is also true for the problem treated here. An analysis of elec-
tromagnetic dissociation cross-sections at high energy reveals the
importance of electromagnetic (EM) fields generated. The Weizsacker-
Williams method of virtual quanta will be used to show the importance
of the EM fields. Momentum transfer calculations will be performed and

compared with the nuclear contribution. Finally, modifications to the

88 C - <
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point-Coulomb assumption will be made in favor of a more realistic
charge distribution.
V.a Deceleration Correction

The assumption of constant velocity (per nucleon) is frequently
made in intermediate and high energy nucleus-nucleus as well as hadron-
nucleus collision calculations. The change in velocity is assumed
small at these energies. Momentum transfer to the projectile, as
evaluated in this work will enable us to evaluate the change in veloci-
ty (per nucleon) thus testing the assumption of constant velocity. We
shall develop, in addition a self consistent framework for evaluating
momentum transfer.

Consider a beam with kinetic energy per nucleon of T/A GeV. Then

the velocity per constituent nucleon is

- - . 2, 1/2
with ¥V Bc c (1 1/v4) (5.1)
vy=1+ Elé ; My = rest energy of nucleon (5.2)
Mp
Momentum transfer AP §EY to the beam implies a change in velocity
c
Av = ABc = __fglfi.per nucleon. (5.3)
Mp *» Ap

We parametrize the changed velocity as follows
v(z) = v + §(2) (5.4)
where §(z) is a path-dependent correction with §(z) << v.

Previous expressions for longitudinal and transverse momentum

transfer read (with AP" - Q“ , AP = QL)
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AP|| = - (ApAT) Jd3é; INGS! fd%’r p1(€T)

7 Jw Imt (3,8, &) & (5.5)

ep - 'SP v
and
AP} = -(ApAT) j a38, pp(Ep) J a3€r pr(d)

7 j:eE(i'ng)E (5.6)

€p o ’ p) - .

The bracketed expressions were z-integrable with a suitable choice

the two-body amplitude t. Now because of (5.4), this is not so.

For §(z) << v, the following expansion can be used

dz _  dz  _dz |, 8@ +(8(z))2_ 5.7
v(z) v + §(z2) v v v

Equation (5.5) now can be written as

AP" - '(ApAT) J.d3?p Pp(?p) J’d3gr pT(E?r)

-7 ¢, I m & E il 22D ]
-@ v v
(5.8)

Note that we have obtained a series that takes into account corrections
to our previous expressions, (5.5) and (5.6). The first term in (5.8)
is* (5.5), as expected. Successive terms are corrections to (5.5) due

to the asymmetry introduced as a result of momentum transfer. For §(z)
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<< v, the higher order corrections should be small at high energies,

and the series should converge rapidly.

A reasonable ansatz for 6§(z) is

3 5(z) a V(b,2)
dz

The above equation (5.9) implies

§(z) “J. Z_ V(b,z) dz
® x(b,z)
_ ox(.2)
x(b)

with Av as in (5.3) and the phase shift operator is

YA 4
x(b,z) - EJ' V(b,z)dz = - 1 I V(b,z)dz

k7o vrel )

Also note that

§(z) - §(=) - é! , as expected.

vV Z 4+ ® V v

Equation (5.8) can now be written as

' corr
AP, = APy - AP +..
| I I

where the correction, O(EZ) is
v

APﬁorr- - (ApAT) J 438, op(éD) I a3&7 pr(ED)

7, J' m & &8, fp X&2) dz’ v
PJ.o x(b) v v

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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Numerical evaluation of the ratio appearing in (5.11), x(b,z)/x(b)

has been carried out for various projectile target combinations for
impact parameters ranging from 0-15 fm. The energy dependence of this
ratio has also been checked. This ratio has been compared for 16g +
IBe (fig. 28) and 160 + 208pp at incident energy of 2.1 A GeV. Two
extreme values of impact parameter (b = 0,7 (fm) for 98e and b - 0,11
(fm) for 208pb) were chosen. The ratio is almost impact parameter
independent for the Be target whereas differences of 15-20% are

observed for the Pb target. Since the ratio x(®,2) _ §(z) , the above

x(b) Av

indicates that the z-dependent change in velocity 6§(z) is more pro-
nounced for a heavier target (208Pb) than a lighter one (gBe) at the
same impact parameter. This is in accord with our physical understand-
ing since 9Be matter density is roughly Gaussian so that the ratio is
independent of b. For a heavy target such as 208pp, matter density is
more appropriately of the Woods-Saxon type so that the ratio depends on
the impact parameter. Thus the ansatz (5.9) is physically reasonable.
The resulting asymmetry APi’°rr was evaluated for 160 (2.1 A GeV) + 9Be
and is plotted in figure 29 (the correction APS®TT has been multiplied
been multiplied by 10 for display). It can be seen that the correction
at impact parameters 4.52 - 5.53 fm is merely 3% or less. At smaller
impact parameters, however, the magnitude of the longitudinal momentum
transfer as well as the correction to it are slightly greater, indi-
cating the impact parameter dependence of these quantities.

Another question that we can investigate is the energy dependence

of the correction APSOTY  The energy dependence of longitudinal

I
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Figure 28: The ratio of phase-shift parameter x (b, 2)/x (b) as a function of b and z
(where z is the distance along the beam direction and b Is the impact
parameter) in the reaction O (2.1 AGeV) + ?Be — Projectile Fragmént + X.
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momentum transfer has previously been displayed in figure 25. It was

observed that longitudinal momentum transfer saturates around ~1 A GeV.
At 0.2 A GeV, for example, Longitudinal Momentum Transfer (ILMT) is ~160
MeV/c at 4.52 fm for 160 + 9Be. At 3 fm, the correction AP‘E°rr is ~100

MeV/c, which is ~27% of the longitudinal momentum transfer of 370

MeV/c. At 2.1 A GeV, there is only a ~10% correction at 3 fm.

Finally the ratio av is plotted as a percentage at 2.1 A GeV for
v

160 + 98e. Note that Av has been defined in (5.3). The ratio is ~1.6%
at these impact parameters and higher at 3-4 fm. At 0.2 A GeV, this
ratio is higher as expected, again indicating that momentum transfer
introduces relatively greater change of velocity (per nucleon) at .2

A GeV than at 2.1 A GeV.

These effects should be experimentally observable at intermediate
energy heavy ion collisions, Note that the higher order corrections in
(5.7) have not been evaluated because their magnitude is expected to be
small at high energies. At intermediate energy, these may not be small

so that all the higher order terms may need to be taken into account.

V.b Coulomb Corrections
A complete treatment of the problem of momentum and energy trans-
fer in relativistic heavy ion collisions must take into account Coulomb
effects. In low-energy heavy ion collisions, Coulomb effects play a
significant role. At relativistic energies, the importance of the
electromagnetic fields generated can be understood by analyzing the
91

Coulomb dissociation cross-sections in the fragmentation reactions”*.

It was found that these electromagnetic dissociation cross-sections are
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sometimes comparable to the nuclear contribution and may overwhelm the
latter for high Z (where Z is the charge number) targets such as Lead
or Uranium. This is specially true of single-nucleon knockout
reactions?2 of the type Ap + Target + (Ap-1) +X for projectiles such
as 12C(2.1 A GeV), 160(2.1 A GeV) and 12C(1.OS A GeV) on targets 27Al,
b4cy, 108Ag and 208ph, Excitation of the giant resonances?3 such as
the Giant Dipole Resonance (GDR) and to some extent the Giant
Quadrupole Resonance (GQR) and their decay contribute primarily to the
one-nucleon knockout cross-sections, although the contribution of
magnetic M1l resonance has also been pointed out.93 The common proce-
dure for the analysis of such Electromagnetic Dissociation cross-
sections is due to Fermi, Weizsacker and Williams; it is known as the
Weizsacker-Williams method of virtual quantaga. The EM fields gener-
ated by a relativistic projectile are equivalent to two plane wave
pulses of radiation P; and P2 impinging on the target, P} along the
beam direction and Py transverse to it. The equivalent photon spectrum
has been derived in many texts including Jackson; it is included in the
Appendix for completeness. It can be seen that the photon number
spectrum scales as Z% where ZT is the charge number of the target;
hence the overwhelming contribution for high Z targets can be under-
stood.

We shall treat Coulomb corrections at various levels beginning
with the proton-proton interaction. This will be generalized, via the

Weizsacker-Williams approach to heavy-ion collisions at relativistic

energies.
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Consider the two-body transition amplitude of this work for pp

interaction. This was given by

. : 32
tpp (&) = -\ opp(e) lapp(e) + 1] (2nBge)] > Zexp ( Y )(5.16>
m P 2B,p(e)
PP

= - t(o0) exp (-Ky2) (5.17)

with K = I/ZBpp(e) and t(o) is understood to be

£(o) = Ve/m opp(e) [app(e) + 1] [2«368)1'3/2 (5.18)

where app(e), app(e) and Bpp(e) are the pp cross-section, ratio of the
real to the imaginary part of the forward scattering amplitude and the
slope parameter respectively; ; is the relative separation between the
charges. With the parameters in Table 1 (with app(e) = -.374), the

transition amplitude at 2.1 A GeV is
. -> -
tpp(e,Y) = (35 - 941) exp(-1.19 Y2) MeV (5.19)

Momentum transfer to the target proton is semiclassically

-»> © >
AP = I Vtpp (Y2) 9z . 47 = vdt, v = fc
-a0 v
*Tar a-» d
- - I b+ %2z teo) exp(-1.19 (B2 + 22)) £
-o |db az v
T2, 2
~ (143 - 382 1) b e (P + 29(1.19) - MeV (5.20)
o]
For | bl =1fm z=1 fm,
ap= -13.2 MV ias4 MY gy
(o] (o] i
-(-13.2b-35.42) " yith ib - -z (5.21)
[
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At a separation of ~1.4 fm, an incoming proton imparts ~13 EEY of
c

transverse momentum due to strong interactions. The Coulomb repulsion

of the protons contributes only

2
- 2ef g MeV (5.22)

bv c

AP

of transverse momentum to the target. However, as the separation grows
large, the nuclear and Coulomb contributions become comparable. The
above calculation of the Coulomb effect was performed by evaluating
the z-integrated force in an impulsive collision. Only the transverse
electric field contributes, the longitudinal field’s contribution
vanishes due to symmetry.

For heavy-ions, the above method for treating the Coulomb repul-
sion can be generalized via the Weizsacker-Williams method.

Consider the collision of heavy-ions with charge numbers Zj,Zy
respectively, with relative velocity v = Bc per nucleon. The EM
fields generated at the projectile by the target (and vice-versa) can
be found from equation (D.1l) of Appendix D with q = Zte. The momentum

transfer in an impulsive collision is

© - 2 o
AP = Zp e I-Q Etran (t) dt = 2 ZpZT e/bv b (5.23)

with the longitudinal contribution vanishing due to symmetry.

The above equation is the basis of our calculations. For 12¢ and
169 projectiles (at 2.1 AGeV) on various targets ranging from Be
through Pb, we have previously calculated the transverse and longitudi-
nal momentum transfer in Chapter IV. Coulomb contribution is now shown

in Figures 31-33 and compared with the nuclear contribution. As can be
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readily seen for heavier targets, Coulomb effects are non-negligible
and may modify the transverse momentum spectra of fragments substan-
tially. Note that an impact parameter cutoff bpjn was included in the
calculations. This was done to separate the strong interaction effects
from the Coulomb.

Inherent in the Weizsacker-Williams approach is the point-Coulomb
assumption for the heavy-ions. For impact parameters b > bpji, this is
a reasonable assumption. However, for collisions with b < bpi, where
bmin = Ro.1 (Projectile) + Rgp 1 (Target) (i.e. the sum of 10% charge
radii of the projectile and target), the point Coulomb assumption
becomes questionable. This can be seen in the departure of the poten-
tial for a unit charge in a uniform charge distribution from that of

the point-Coulomb potential95 i.e.

2
v - 2|31 (r <R
R |2 2 \r

2
Ze” r>R (5.24)

r

N
w

with R the uniform charge radius of the distribution. This departure
in the potential has been plotted in figure 34. The corresponding
momentum transfer is reduced in magnitude as the overlap increases.

For heavy ions described as two uniform charge distributions, extension
of the above argument throws into doubt, for b < byjp, the Weizsacker-

Williams approach based on the point-Coulomb field.
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CHAPTER VI
SUMMARY

In this work, an optical model description of momentum (longitudi-
nal and transverse) transfer and energy deposition in relativistic
heavy-ion collisions has been presented within the multiple scattering
theory framework. Longitudinal and transverse momentum transfer have
been evaluated and compared with experiment for various projectile-
target combinations. Momentum "downshifts" of projectile fragments in
the collision of 12¢ (2.1 aGeV), 160 (2.1 AGev) and 12¢ (1.05 AGeV)
with targets ranging from IBe through 208pp have been evaluated using
the above theory and compared with target-averaged data from experi-
ments. Transverse momentum widths of Lanthanum fragments in the reac-
tion of 139La (1.2 AGeV) with 12¢ have also been calculated.
Quantitative as well as qualitative agreement has been found with
experiment. Thus the theory of this work can account for many features
of heavy ion momentum spectra in a comprehensive fashion.

Energy transfer calculations can also be undertaken using the
optical model description along the above lines. Such calculations are
significant because energy transfer determines the various channels
available for de-excitation (in the two stage Abrasion-Ablation model
of relativistic heavy ion collisions). Sophisticated experiments in
the future will hopefully address this question. Theoretical calcula-
tions are already in progress in this respect and await comparisons

with future experimental measurements.
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We have provided, through "The Deceleration correction," a method
for investigating and correcting the oft-used constant velocity assump-
tion. Momentum transfer to the projectile could invalidate such an
assumption. Based on our calculations, we find at relativistic speeds,
that this change is minor. Specifically, we found that the first-order
correction to our calculations were small at high energies (v = c).
These corrections, however, were found to be substantial at lower
bombarding energies, provided the impulse approximation remains valid
at these energies.

The very important question of Coulomb effects has also been
addressed. This has been done within the Weizsacker-Williams method of
virtual quanta. We find a substantial momentum gransfer (transverse)
due to repulsion of the charges. Use of more realistic charge distri-
butions in place of the point-Coulomb assumption made in the
Weizsacker-Williams approach resulted in reduction of the magnitude of
momentum transfer as the collision impact parameters grew smaller.

The future directions for research in this area remain open. Only
the single scattering term of the multiple scattering series has been
utilized so far. The importance of the double-scattering term and its
physical meaning within the context of our work remains to be explored
in detail. A comprehensive theory of energy-momentum transfer within
the framework of energy-momentum conservation requires the relativistic
theory of nucleus-nucleus interactions. Although a satisfactory theory
of proton-nucleus multiple scattering formalism (Dirac phenomenology)
already exists, similar approaches have had limited success for heavy-
ions. An alternate approach may be the theory currently known as

"Quantum Hadrodynamics"96 which is a relativistic field theory of
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strongly interacting mesons and baryons. Semi-classical solutions for
energy-momentum transfer can be obtained from the above theory for the
collision of heavy-ions. Such approaches already show substantial

promise. Future work should definitely proceed along these lines.
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APPENDIX A
DERIVATIONS (OF MOMENTUM AND ENERGY TRANSFER FORMULAE)
In this Appendix, we shall go through the derivation of the final
result for momentum transfer decran between the ath target constituent

and jth projectile constituent (equation (3.31)),

aj 3, x 3 - [° - . oz dz
P - I d Ep pJ(fp) I d ET PQ(ET) V{p I taj(xyépyfT) —

tran © v

(A.1)

and the total momentum transfer (equation (3.32)),

— gT gp'* 3
tot a=1 j =1 tran

'

. . . . - . d
- '(ApAT) fd3fp Pp(fp) Jd3€T PT(fT) pr I-Q t(X’fp'fT) —E

v
(A.2)
where the symbols have been explained in the text in Chapter 3.
Equation (A.l) was derived from the expression
AT Ap AP
YOOY PM - g () gr oD | - T OV,
a=l j=l tran P,0 P 'O j-1 £p,
- - - z - -
- Z Z taj (X,fp.fT) —_ I gpvo(fp)gT,o(fT)> (A.3)
j=1 a=1 v

where the projectile and target many-body wave functions lgp,o> and
lgT,°> are written in terms of single particle states in a Slater

determinant as follows
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Bp0lip)> = I [ 406D eh20épD) ... $3aplép) |
Vap! | e31Een) 412G ... #3ap(€R2)
55108 ) 2lp ) -o- $iap(ép )
| H1%e 4 2%%p ag APYSP A
(A.4)

and where the single particle states have been orthonormalized. The

ground state single-particle densities are defined as

p(ép) = <gp,o(€p) | 2 §(¢p - épp) | 8p,olép)>

1 . = P :
-1 Id3£p1...d3£p’Ap 38 - oy
J-

Ap!
* zPerm l ¢jl (g;;) |2 | ¢jAp (g;,A) 2
- Z 85 (&) | (A.5)
where ) means all permutations of fpj have to be taken. For a =

Perm
1,2...Ar target and j = 1,2...4p projectile nucleons, momentum transfer

due to collision of aj pair is ;:1an and the total momentum is obtained
by summing over all such pairs.

Explicitly, we can write
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~aj 1 1 [ 3. T2 - 2
P - - = = |a3¢py...d3¢,, |¢.<e )‘ |¢. (5A>'
tran Ayt Apl Pl Pra Zpern j1Spr/ .. .| Piap TP

jd3éT1...d3éT,AT Yoerm | b1 <£T1>|?__| Fa (5;AT>|2

fp _ Ap AT g
I v D) e & LE ) (A.6)
j=1 3N j=1 aml J.w aj Py T)
. L1 Ap AT Ap —
P - J‘Idf a3e. :
cran Ap! AT! Jz.l E_l er ‘Ta %_1 %32 (¥p3)
AT _ -
2 g ot b dZ'
LI e ||| % . J_éj g f) =
(A.7)

oo

z z 2 s - -z 3 . dz¢
- - I a8, py(&p) J 32y pa<eT)[ % J_:aj FE & = (D

v

v

- - (ApAT) f a3, pp(ép) I a3y mévli \’7€p f t(x}ép, &) i’f':l
(A.2)

as claimed.
The derivation of the energy transfer in relativistic heavy-ion

collisions is analogous to the above derivation for momentum transfer.
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We assume that the energy of the projectile can be evaluated by taking
the expectation value of the sum of projectile energy operators between

the full state vector (i.e. equation (3.14))
E=< ¢I (=) ‘ Hp | ¢I (=) > (A.8)

where Hp = Internal Hamiltonian of the projectile

Ap _
Ho-- - 3 Vﬁp + L Vi | (A.9)
P 2m,  j=1 Ioiq

Explicitly, the above (A.8) can be written as

- Ap AT ©
E = <gp,o(éP) 8T,o(fT) e'lk"‘exp(i/v r X I tyj(x’.€p.€T) dz’)
j=1 a=1 -
. Ap ) Ap AT
- ) Vf + ) Vij exp(-i/v ) ) '[ tuj(x7,€{,,§-i-) dz’
2my, j=1 pPJ i<j j=1 a=1 -®
eik'x| gp o(ép)er, oléT> (A.10)
Using the identity
. . .2
elfpe 1A _ B 4 1 [A,B] + 10 [A,[A,B]] +... (A.11)

2!
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yields
1 or = 2
exp[ i8) | - — ¥ Vs + ) vij | explis]
2m, j=1 P i<l
. fp . Ap
= - Z —V€+ Vij - — S, Z v
2my  j=1 PJ i<j 2my, J=l  &p;
A
12 P2
-2 | s, s, ¥ v (A.12)
’ 1 g
AT Ap © q
=, 3 - z'
s- 3% I G (A.13)
a=1 j=1 -
Using
[A,BC] = [A,B]C + B[A,C] (A.14)
One obtains the operator expression
Bp ., Ap _
s, v V -|s, ¥ v v
j=1 P =1 °pJ €p]
Ap _ _
+ Yy v s, Vv (A.15)
j=1 %P €pJ
Similarly,
Ap
s,|s, ¥ V2 can be evaluated using (A.15).
j=1 fp3
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Combining all the terms, one obtains
E = <gp,o(&p)eT,0(4T) | Hp | gp,0(€p)BT,0(é1)>
Ap
vt g seron | T 92 o s | gy olépler, o>
2, p,o\sp’/ET,0 I -1 £pj I p,o Sp/ET,0\ST
v L oce soaro@D] T (7. 8|2 | spotiper,oin>
my oL Ij-l oy ¥ | EroRET0
i i i Ap ) ) - -
+;_<@&@wmm@mh% VeosS 'V%jl%m@wmm@ﬂ>
m -
" (A.16)

The first term in (A.16) will be recognized as the initial energy
of the projectile Ey proj- This can be taken to the left hand side and

energy transfer defined as

Etran =-E - Eo (A.17)

The second and the fourth terms can be combined. The first term
in the resulting expression can be converted into a surface integral by
use of the divergence theorem. This will vanish if the single particle
states vanish sufficiently fast at infinity. The remaining expression
can be shown to contribute nothing to the excitation energy for even-

even nuclei such as 12C, 160 considered in this work. For odd-even

nuclei, this contribution is 0(}_), therefore this has been ignored.
Ap

The final result for energy transfer is then

Etran- E- Eo

A
. . p[= z :
-1 <gp,oipley (D | I Ve s\ 2 gp,0(épley (41>

2mp j=1
(A.18)
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The rest of the calculation is analogous to the momentum transfer

calculations i.e. one obtains

A A
tot P T aj
tran .Z Z Etran (A.19)
j=1 a=1
where

g% = Energy transfer in the collision of the a-j pair

tran 9
L (w2 sy [ @ ngp | T, [ E G &
= ___|d . d . -
y £, (&) & ) | Ve | Tyttt =
(A.20)
and
w 2
1 - - - - - o~ - - - [
E cran” o (APAT)Id35P pp(ép) [a¥ér oD | ¥ I E G dpEy &
Mp PY-w v
(A.21)

where pj(£p) and pa(€T) are the single particle density of the jth
projectile and ath target nucleon and pp(Ep), pr(%1) are the nuclear

densities of the projectile and the target, as before.



APPENDIX B
v
mu,m'p’ np,m’p

We want to discuss how our expression for momentum, equation
(3.20) relates to Wilson's expression for potential, equation (2.41).
We expect an analogy on physical grounds because momentum transfer in a
collision is directly related to the gradient of the interaction in a

one to one fashion. The coupled equations in (2.40)

A ey TV @ v, @ (.1
X my (AP+AT) m'p’ mﬂ,m'”' m'#:

define a potential matrix V with matrix elements

e

Vi, m e B = <85 p(€0) gT’#(éT)l VoptXr &5 €T)| 8y, m (Ep)8r, 0 (6>
(B.2)
with
- - —» — ——
Vopt(x» Ep» £T)— Ej taj(xa' xj) (3-3)
so that the matrix looks like (2.44) with
[ - - -»> )
V00,002 Vop,01® Vo0,10¢¥- - -
> nd - -
V() = V01 00(x) V01 01(x) V01 10(x). .. (B.4)
’ - - V -
V10,0090 V10,01 ® 10,108¥)+ - -
L ]
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We introduced in (3.20) similar expressions for the momentum of
the projectile and its matrix elements were defined in (3.20).

Equation (3.20) defines a coupled problem because the approximate wave

operator
- - ==p i » |
$(x, £, &) = exp {Z - f:vI &, &, & dz':] (B.5)

induces transition in the internal eigenstates gp o and &1 u of the

projectile and target, respectively. Equation (3.20) defines a matrix

P(x).

[P (X) P 1)) P 3.
00,00 00,01 00,10

— - - -> -
P(x) = POl,OO(x) P01’01(x) P01,10(x). .o (B.6)

-> -> -
P10,00%)  Pyp. 01X P19, 10(%)-

B L

This expression for momentum

+ -

-> - -l
Pmu,m'#(x) - <gp,m(€p) gT,u(fT)le

I: vy x4, €p, §p)dz’

< |

| Bp.m (p) By B>
(B.7)

can be compared to Wilson’s expression, (B.2) above.
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One can recognize that there is a close connection between the two
expressions. This connection should be one to one, since for each
channel defined by the eigenstates m,m’' of the projectile and u,u’' of

the target, an interaction Vm“ m' induces a momentum transfer

Pmu.m’u"
The Sudden Approximation
The connection between our derivation and the more familiar
formalism of time-dependent Schrodinger theory will be discussed

briefly.

Consider

A A A
1 %[y (t)y>=H [p (t)> = (H+H,) | ¢ (£)> A=l (B.8)
[ s o 1 s .
at
where ¢S(t)> is the time dependent Schrodinger state vector and where
H, and Hy are the unperturbed Hamiltonian and the interaction,

respectively. 1In the "Interaction Representation” the above

reads®3,46,47

5 i Aot -1 ﬁot
i 5; ws(t)> -e (-HO+HO+H1) e ¢I(t)>
- HI(t) ¢I(t)> (B.9)
with
iH t
pr(e)>=e ° |y (0> (B.10a)
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-~ ~
A iHot A -iHot
H_ (t) = e H.e (B.10b)
I 1
The time evolution operator is defined as
| $(€)> = U(t,t ) | (e )> (B.11)
Specifically,
|¢I<w)> - U(=, -=) | $r(-=)> (B.12)
where U must satisfy
) a A A A . A
i — U (¢, to) - HI(t) U (¢, to) ; U (to, to) -1 (B.13)
at
Writing the above as an integral equation, one obtains
A i t A A
U(t, £t)=-1-_ I H (t') U (¢', t ) dt’ + ... (B.14)
o 5 t I o

On iteration, the above yields

t t
~ © 1 n 1 n-1 ~ ~
U(t, co) - n§0 -; L dey .. L HI(tl). ] .HI(tn) (B.15)

The above is a formal solution to the time-development of the

state vector from initial time ty, to final time t. It is a power

A

series in the strength of the interaction Hj(t) and it is time-ordered,

i.e., earlier times occur to the left of later times. Explicitly,

U(t, to) =1-_ I HI(tl) dt1 +{- ~ I dt2 HI(tl) HI(tZ) +...
] to L to

(B.16)
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Consider adiabatic switching of the interaction. Define46

H.(t) = e <1ty (B.17)
I 1 )

which implies that instead of turning on the interaction at T = (t-t,),
turn it on and off slowly. As t » ¥ o

Hl(t) -0 and H - Ho (B.18)

and the solutions to the Schrodinger equation take the form

-iﬁot -iEot
[p(E)> = e |p > = e [¥> (B.19)

with Ho |¢ > = Eo|¢ > for stationary states.

Then in this limit

iH ¢
pr(e) =e B> = 4> (B.20)

which is independent of time. Therefore,

po(=)) = ¢

AENg | *e (B.21)
($r(-=)p = | ¢4>

Next, the sudden approximation will be discussed to justify

(3.19). We can write®6
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Br(@)> = U (=, -=) | ¥, (-=)>
t t
@ . )n -et 1 -¢t n-1 -¢¢t
-2 {- z ( Im e | 1'dtl I e ! 2ldt ...... I e ! nét
n=0 ] f -0 - - 2 - n
HI(tl) HI(tz)... HI(t“E] (B.22)

It has been shown in reference [47] that a necessary condition for

the sudden approximation to be valid is that the interactions at two

different times commute

[:Hl(tl)' HI(tz):] =0 (B.23)

so that time-ordering is unimportant in (B.22). Following reference

(47]

|¢I(w)> - exp {:~i Im Hl (t') dtZ] ‘¢I(-w)> (B.24)

which is the desired result.

Having derived (B.24) it is necessary to relate these equations
(B.22)-(B.24) to our previous discussion in equations in Chapter III.
Essential to the derivation of equation (3.19) was the commutativity of
interaction matrices at different points along a straight line

trajectory

- -)' - - -o” -»> 0 25
[vlm. 5, VG ,e>] - (B.25)
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In the Interaction Representation, this is entirely equivalent

to?7
HI(t'), HI(t") =0 (B.26)

provided one identifies dz’ = wvdt’ and dz" = vdt" assuming constant
velocity per nucleon. The latter can be justified on the basis of =
high energy assumption.

The physical basis for the sudden approximation in the high energy
context is as follows; the collision time tgg1] << tpyc where tp,c is
the period associated with orbital motion of the nucleons in the

nucleus. This condition

tcoll << tnuc (B.27)

is met in relativistic heavy ion collisions. We shall argue this by

teoll

t
nuc

calculating the ratio For incident beam energies above 1

GeV/N the nucleon velocity =~ Bc = ¢. For the distance we shall

6 fm For

take typical nuclear diameter = 6 fm. Then toll =
c

tnuc we will consider the period of nucleons in a Fermi gas i.e.

- '1-1- i i i =
huc (E/h) : t e For a typical nucleus with Fermi energy

40 MeV, the ratio is

t
coll | 6 fmx 40 MeV | 1 ; fic = 197.3 MeV.fm  (B.28)
5

tnuc 2x(ke)
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which is small enough to justify the Sudden Approximation. Although
details of the nuclear diameter and Fermi energy may vary, at
relativistic energies the ratio will be small. We have omitted the
Lorentz factor in the above argument, but the conclusions remain
unchanged because we have overestimated the Fermi energy (nmot all
nucleons are at the surface) and have considered the diameter of the

nucleus and not of the nucleons themselves.



APPENDIX C
ANALYTICAL RESULTS USING GAUSSIAN DENSITIES
Analytical results are useful in getting physical insights as well
as establishing the validity of numerical calculations. We present in
this section analytical calculations of momentum and energy transfer
using Gaussian densities. We know from Chapter III that momentum

transfer between ath constituent of the projectile and jth constituent
of the target is

? --fd3€p.<é')fd3e'p<£-}> v IQE<:?'+€—?T>SZ_'
aj LA D T4 fpd o @ P v

(C.1)
where the notation was explained following equation (3.32). The total
momentum transfer is obtained by summing over a and j as

-

trans E‘ § Paj

Ty

(C.2)

-]

- - - - - - ., > dz’
= - ApAT J- d3£p Pp(&p) J. adér o) [pr I-m t(x", 8,81 _V_}

A A A A

- A A "
Define a vector G = Gb b + G; |  with (X, Y, Z) = (b, 1, 2) (C.3)
with

e- |7 [ i@+ - ©.4)
6P - v
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so that equation (C.1l) be rewritten as

aj

and with

T o tioy o KE + 8D - 12

where t(o) is assumed to be real.

The components of ancan be written with fp,b (Ep L) as the

B, - [ e [OG o [TE 5B ]
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(C.5)

(C.6)

A A
components of E; along b (and perpendicular to b) and {T p (£Tl )

A

the components of E} along b (and perpendicular to b).

G, - t(o) E (2%) (b + £p b - £T,b)

v

i i 2 . i
w(b + & - &g P k(e cEp )

N N
[

v

(b + € - Ep )P k(e bp )

e

Define the thickness function
-» e 2
Fr (§1) = pr 6T,b * 2T ) dzt
-

where

-2

. 3/2 3
Pr(éT) = Ar. [. 3 exp [- T
2n a% ' 2 a%

2

(c.7)

(C.8)

(C.9)

(€.10)
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+2
g 3 3§T
Fr(ét) = ArT. . exp - (C.11)
2 2
2x ar 2 ar .
Similarly
22
Fy(éy) = Ap. . exp |- (€.12)
PP P ” 2
2x ap 2 ap

where ap, ar are the root mean square radii of projectile and target,

respectively. Therefore,

PO~ - I d2€7 Fr(ép) J d2¢, Fp(ép) [&’ @+ & - e'{)] (c.13)

or

- i 2 -» -

3 = = d ép Fp(&p) Q (b + fpb) (C.14)
where ’
E-J‘dzé‘.r Fr(€D) 5(§'+'€'p-5r):|-be+QL 1 (C.15)
with
Q, - I 267 Fr(€) Gp (b + €pb - £T,b) (C.16)
or

q, - 2kap L% Jf.. 3 I+ £p,bi fpy )

v X 2x aT

where we have used (C.7), and
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I(b+ €5 b €p, )-IJ%Lbﬁn (b + &\ + &py)
3 2 2 2
= (e +60] = O+ ey -t
x e T
2
-k | € - € ]
e [ Pl Tl (C.17)

On evaluation this yields (with a = 3/2a§),

a{b+€Ph}
1

I(b+ fp,b; spl ) =
(z+x)2

ax 2 2 '
exp | - b+ ¢ 13 (C.18)
e T )

substituting (C.18) into (C.16) yields

Q - (2k) Ar t(o) ’E 3 x a (b + ep,b)
114

v Zwa% (a+x)2

ax 2 2
exp | - {{b+§ } ¢ } (C.19)
[ (a+x) p,bf{ + ’p,L
Similarly, using the same method as in (C.16)-(C.19), we obtain

t(o) w 3 xa ¢
Q = (2K) Ay ————\’——- p,L
2 2

v k ZwaT (a+K)

exp [_ ax {{b + ep,b}z . ei.l}:l (C.20)

(a+x)

which yields the two components in (C.15).



Now we need to evaluate (C.1l4)

Pirans ~ D) Paj = - I dzfp Fp(ép) Qb + ép b)) = PBp D
a

-Pbb+P_L 1

On evaluation this yields (a' = 3/2a§),

A A 2 ’
Pp b - b Ajar (2K) (2 F 3 3 n7aa’b
K 2

v 2nap Zxa% (aa' + k(a+a'))

[ aa’'kb2
exp -

(aa’' + k(a+a'))

- " 2t (o) n , 2
Pbb- b(ApAT) . ‘[5 (aa'b) x exp I:-xb‘J

where x =
aa' + x(a+a')

Thus, finally,

-

Pirans Ppb b+ Py

-
- a§ Paj

=P, b and P) = 0 due to symmetry

= b ApAT ﬁ 2t(0) aa’'by exp |:- xb2]
K v

which is the analytical result for momentum transfer.
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+P.L 1

(C.21)

} (C.22)

(C.23)

(C.27)
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The above result holds for only real two-body amplitudes t(o). For
complex t(o), there is a longitudinal component of momentum transfer as

we have shown in Chapter III. The above result can be generalized to

the latter case.



APPENDIX D
THE EQUIVALENT PHOTON SPECTRUM
In this Appendix, we shall derive via the Weizsacker-Williams
method of virtual quanta the equivalent photon spectrum generated by
the target at the projectile.
For an incident particle of charge q, velocity V = S(c) passing
a system S at an impact parameter b, the spectrum of equivalent

radiation is obtained from the electromagnetic fields94

A

Ep(t) = arb b
(b2 + 42v2¢2y3/2

A

- 9Vt z (D.1)

Ej(t) =

(b2 + 42v2£2)3/2
A

By(t) = BEp(t); (1,2,3) = (2,b, Ib)
where E{(t), Eg(t) are the electric fields along the beam direction and
transverse to it and B3(t) is the accompanying magnetic field. For V
= ¢, the fields Ej(t), Ep(t) and B3(t) are completely equivalent to
plane wave pulses of radiation P; and Py incident on S, P} along beam
direction, Pp transverse to it. The equivalency is not exact for Py,
since there is no magnetic field accompanying E(t). If the
motion is nonrelativistic in the frame S, then the particles in this
frame respond to electric forces only so that one can add an extra
magnetic term to the fields without affecting the results. This field,

Bi(t) = B Ej(t) will be shown to be of minor importance in calcula-

tions.
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The equivalent frequency spectrum (energy per unit area per unit

frequency interval) of the pulses P1, Py are given by

dIj(w,b) )
" 12
dw 2x
(D.2)

dIo(w,b)
R IEl(W)Iz

dw 2x

with

Ep(w) = _* I Eo(t)e " dt (D.3)

V’z‘; -®

and similarly for Ej(w). Explicitly, these Fourier integrals are

-]

iwt
Ep(w) = Sltl‘[ e dt (D.4)
1J;; (b2 + 72V2t2)3/2

q 1 J PO LA L YVt
bV Jew 3/2 ®
\En (1 + x2)
-9 2 ﬂxl{"’_b} (D.6)
bv g YV YV
and Eq(w) = -1 3 2 ¥ xo{ﬁt_’} (D.7)
¥V oz Vv v

where Kp(Kj) are the modified Bessel functions of zeroth (first) or-
der.

The frequency spectra are

dIy(w,b)

2 2 2
_- .14 {E} 2 {ﬂ} K3 {‘it.’} (D.8)
dw .2 © v b2 24 W
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and
dIo(w,b) 2 2 2
IR o {E} _t {ﬂ} K3 {313} (D.9)
dw £2 © v 72b2 WV v

These have been plotted in reference 94 (Figure 15.7). The

intensity of pulse P2 involves a factor of ,l and is of minor
2

v
importance for V = c. To obtain the energy incident per unit fre-

quency interval, one sums the frequency spectra over all impact parame-

ters. This is

© dIq(w) dIo(w)
M) on + bdb (D.10)
dw bpin dw dw

where bpin is a minimum impact parameter beyond which other interac-
tions take over (strong interactions in heavy ion collisions, for

example). The result is

dI(w) 2 2 @
1 b
-2_"3_{2} 1 §%3 () + L6285 (&) | bab; £ -
dw 2 < v b2 bnin 42 ™
22 (cy 2 1,222 2
-2 {_} x Ko(x)K1(x) - = B x"(KJ(x) - K. (%)) (D.11)
1 0
® C A 2
wbpin
where x =
Vv
For low frequencies w << _ZY_ , equation (P.11l) reduces to
bpin
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2
A 24 {E} In {1'123} L2 (D.12)
dw L 2

For high frequencies (w >> YV/bpin), the result is an exponential fall-

off
" ) "bmin
2
aiw) _ af {E} {1 21 V2/c2} e W (D.13)
dw c \Y 2
The number spectrum of virtual quanta is
9T 4w = N(Aw) d (Aw) (Aw) = E N(E)dE (D.14)
dw
so that
a2 (c1? 1 1,22 .2 2
N(B) = % {..} X Ko(RKL (%) - = f%° (K (x) - KZ(x)
r (he) v (hw) 2

(D.15)

-2 2.4 1 Kk Ko(x)K1(x) - L ﬂ2x2 (Ki(x) - Kg(x» (D.16)
2

2 wb
e , x - _nin (D.17)

(he) v

For q = Z e, a=

From (D.9), the equivalent frequency spectrum for pulse Py is

shown to contain a factor _l . At relativistic speeds, this pulse Pjp

2
~

is, therefore, of negligible importance. This was the justification

for adding a magnetic field Bi(t) = 8 E1(t). The time integral of the
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field E1(t) was shown to yield zero by symmetry, so that this did not
contribute to momentum transfer. The frequency spectrum confirms the

above and justifies our retaining the transverse component in (5.21).
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