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T H E m T I C A L  INVXSTIGATION OF SUBMERGED 

INLETS A T  LOW SPEEDS 

By Alvin H. Sacks and John R .  Spreiter 

SUMMARY 

The general character is t ics  of the flow f i e l d  i n  a submerged air 
i n l e t  are  investigated by theoret ical ,  wind-tunnel, and visual-flow 
studies.  

Equations are developed f o r  calculating the laminar and turbulent 
boundary-layer growth along the ramp floor f o r  para l le l ,  divergent, and 
convergent ramp walls, and a general equation i s  derived re le t ing  the 
boundary-layer pressure losses t o  the boundary-layer thickness. It is  
demonstrated that the  growth of the boundary layer on the f loor  of the 
divergent-ramp inlet i s  retarded and that a vortex pa i r  i s  generated i n  
such an i n l e t .  
pressure losses in the vortices and the geometry of the i n l e t .  

Functional relationships are established between the 

A general discussion of the boundary layer and vortex formations is 
included, i n  which variations of the various losses and of the incremental 
external drag with mass-flow r a t i o  a re  considered. Effects of compressi- 
b i l i t y  are  a l so  discussed. 

ZNTRODUC TION 

Among the various types of air inlets  considered f o r  use with air -  
c r a f t  in te rna l  flow systems i s  the submerged or f lush i n l e t .  As a 
r e su l t  of extensive experimental research by the NACA a t  i t s  AXES Aero- 
nautical  Laboratory, reported i n  several papers and reviewed i n  refer- 
ence 1, a par t icular  i n l e t  of t h i s  type w a s  developed ( f i g .  1) exhibit ing 
pressure recovery and drag characterist ics which make it suitable for  
application t o  a i r c ra f t .  

In  contrast t o  the nose inlet and the wFng leading-edge i n l e t ,  the 
submerged i n l e t  does,not o p r a t e  i n  essent ia l ly  free-stream a i r .  The 
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air entrained by the submerged i n l e t  suffers  pressure losses,  the 
magnitude and dis t r ibut ion of which may be d ras t i ca l ly  affected by the 
geometry of the approach rauxp.1 
both profile and plan form, i s  a problem basic t o  the fur ther  develop- 
nent of submerged i n l e t s  i n  general. Although some of the basic concepts 
t o  be presented here regarding the flow i n  submerged i n l e t s  a re  known 
(see reference 1) , t he  purpose of the present paper i s  t o  analyze 
theoretically the re la t ive  importance of the various design parameters 
and t o  indicate, insofar as possible, methods f o r  calculating t h e i r  
e f fec ts  on the o v e r a l l  performance of a submerged in le t .  

The design of t h i s  approach ramp, i n  
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duct entrance area 

local  width of ramp 

fract ion of vortex losses entering duct 

depth of duct entrance measured between l i p  and ramp f loor  

local  depth of ramp 

boundary-layer-shape parameter (T) 6* 

free-stream t o t a l  pressure 

local  t o t a l  pressure 

ramp length 

(%) mass-flow r a t i o  

Mach number . 

local s t a t i c  pressure 

f r ees t r eam s t a t i c  pressure 

periyheral velocity i n  vortex f i e l d  

free-stream dynamic pressure (i P o ?  

Reynolds number 

The ramp i s  here defined as the inclined passageway leading t o  the duct 1 

entrance. (See f ig ,  1.) It i s  composed of a f loor  and two side walls. - 



r ad ia l  coordinate 

radius of vortex core 

width of fuselage surface from which boundary layer  enters  one 
vortex core 

veloci ty  component inside the floor boundary layer  i n  loca l  stream 
direction 

free-stream veloci ty  

loca l  velocity a t  edge of the boundary layer  

veloci ty  vector 

average veloci ty  at  duct entrance 

veloci ty  component inside the f loor  boundary layer  perpendicular 
t o  the ramp f loo r  

veloci ty  component perpendicular t o  ramp w a l l  

veloci ty  component inside the boundary layer  perpendicular t o  u 
and v 

rectangular coordinates 

loca l  ramp angle re la t ive  t o  the free-stream direct ion 

circulat ion 

incremental drag coeff ic ient  due t o  air  i n l e t  

l o s s  i n  t o t a l  pressure, to - H~) 
nondimensional average lo s s  i n  t o t a l  pressure defined i n  

equation (1) 

boundary-layer thickness 

boundary-layer displacement thickness 
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boundary-layer momentum thickness 
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nondimensional parameter involving Reynolds nwnber and pressure 
gradient 

d r  u1 

6 2  du, -- 
v d x  

f r i c t i o n  coeff ic ient  

kinematic viscosi ty  (t) 
mass density 

free-stream mass density 

average mass density at  duct entrance 

shear s t r e s s  

polar coordinate 

loca l  angle of ramp-wall divergence 

nondimensional she a r -s t re  ss vaxiable 

Subscripts 

bounclary layer  

bounbry-layer control on fuselage due t o  i n l e t  

ra.uxp f loor  boundary layer  

fuselage surface boundary layer entrained i n  vortex cores 

contributing t o  external drag 

contributing t o  in te rna l  pressure losses  

due t o  separation of fuselage boundary layer  at the edges of 
the i n l e t  

vortex 
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THE F L O W  I N  SUBMERGED ImTS 

General Observations 

?-dimensional character of the flow .Lai a submerged 
i n l e t ,  involving appreciable viscous effects  , makes d i rec t  mathematical 
analysis d i f f i cu l t .  In order t o  indicate the nature of the ideal izat ions 
t o  be made and t o  j u s t i f y  the simplifications introduced i n  the solution 
of the problem, the present section i s  concerned with a qual i ta t ive 
examination of the poten t ia l  and viscous flow f i e l d s  and their interaction. 

I n  general, there are three classes of plan forms possible f o r  an 
approach ramp (see sketch) - it may have pa ra l l e l  walls (a ) ,  divergent 
w a l l s  (b), or convergent walls (c). 

(a )  pa ra l l e l  w a l l s  (b) divergent walls (c)  convergent walls 

It appears t h a t  the flow i n  the parallel-walled ramp can generally be 
approximated with a two-dimensional analysis, at  least fo r  the case of 
moderate mass-flow rat ios .  
however, exhibi ts  two important differences from that of t h e  parallel-  
walled ramp. These differences rule out the use of a twdimens iona l  
analysis even as a first approximation. F i r s t ,  the boundary layer  
cannot be expected t o  behave as one i n  a two-dimensional flow since the 
flow near the f l o o r  of t h i s  ramp i s  divergent a t  all mass-flow rat ios .  
Second, the external stream, being no longer p a r a l l e l  t o  the ramp wal ls ,  
must flow over the top of the walls in to  the in le t .  It i s  well known 
that, if the veloci ty  over such a corner is t o  remain f i n i t e ,  the 
formation of a vortex sheet is  necessary.2 Thus, a vortex sheet i s  
formed along each edge of the divergent-walled inlet. The study of the 
flow f i e l d  i n  such an in l e t ,  then, involves not only the behavior of the 
boundary layer but a l s o  the behavior of the vortex sheets. 

The flow i n  the divergenlswalled ramp, 

Since a knowledge of the potent ia l  flow is  required t o  determine 
the character of the boundary layer,  it i s  f i rs t  necessary t o  consider 

c 

2This was i n  f a c t  statkd by Prandtl (reference 2) as a fundamental 
theorem: 
transversely, always l i nes  of confluence (and therefore as a ru le  
origins of vortex sheets). " 

"Projecting edges of bodies are, f o r  a flow meeting them 
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the general behavior of the vortex sheets and t h e i r  influence on the 
flow. Well forward i n  the divergent ramp, the vortex sheets,  having 
just l e f t  the ramp walls, are s t i l l  e s sen t i a l ly  f l a t ,  as shown i n  the  
sketch : 

A - A  

This arrangement of f r e e  vort ices ,  however, cannot p e r s i s t  f a r t h e r  
downstream i n  the in le t  since each vortex filament making up the sheet,  
being free t o  move,  m u s t  move i n  accordance with the ve loc i t i e s  induced 
upon it by a l l  the other vortices present i n  the f luid.  The induced 
velocit ies are such t h a t  the filaments w i l l  move i n t o  the  ramp and r o l l  
up as they proceed toward the duct entrance i n  a manner much as shown 
i n  the sketch. 

If the process described above were 
permitted t o  continue far downstream 
without fu r the r  change i n  i n l e t  cross 
section (i.e., i n  a parallel-walled open 
channel extending downstream from the 
divergent ramp), the two sheets would 
eventually become completely ro l l ed  up 
in to  two more o r  l e s s  cy l indr ica l  vortex 
regions. 

The t h i r d  -possible ramp plan form, 
the convergent ramp, presents a problem of 
analysis similar t o  tha t  of the divergent 
ramp i n  several respects. F i r s t ,  the  
boundary-layer growth along the ramp f loo r  

i s  affected by the convergence of the flow. Second, due t o  the non- 
para l le l  ramp w a l l s ,  there i s  again the poss ib i l i t y  of the formation and 
ro l l ing  up nf a pa i r  of vortex sheets. I n  t h i s  case, however, if such a 
vortex pa i r  is  formed, the ro l l i ng  up will generally occur outside the 
i n l e t  (due t o  the upward flow over the ramp edges) and therefore have 
l i t t l e  influence on the in te rna l  pressure recovery of the in l e t .  

Since, the divergent-ramp i n l e t  represents the most general case i n  
t h a t  i t s  pressure recovery i s  affected by a l l  of the influences discussed, 
and since it has shown promise expertmentally from the standpoint of 



NACA TN 2323 7 

o v e r 4 1  performance, the bulk of the present analysis w i l l  be developed 
fo r  t h i s  case. 
equations t o  be derived w i l l  be generally applicable t o  a l l  three 
classes  of ram$ plan forms unless a statement t o  the contrary i s  made. 

However, as will be mentioned from time t o  time, the 

V i s u a l 4 l o w  Studies 

The general observations made in the  preceding paragraphs regarding 
the vortex formations have been substantiated by visual-flow studies of 
a divergentramp in le t .  These t e s t s  were made i n  a water tank (f ig .  2) 
by driving the model ve r t i ca l ly  down in to  the water, the surface of which 
w a s  dusted with f ine  aluminum powder. 
w a s  observed by photographing the water surface w i t h  a motiowpicture . 
camera. 
the formation and ro l l ing  up of the vortex sheets are c lear ly  demonstrated. 

The motion i n  transverse planes 

A typ ica l  ser ies  of photographs i s  shown i n  figure 3, i n  which 

Behavior of the Boundary Layer 

The bomdary layers  of i n t e re s t  i n  the submerged inlet  are  those 
developed on the ramp f loo r  and the ramp walls. However, since the 
boundary layer on the ramp wall has a zero i n i t i a l  thickness and 
develops over a r e l a t ive ly  small wetted area, i ts contribution t o  the 
losses  i n  the i n l e t  is not l i ke ly  t o  be s ignif icant  unless the ramp 
divergence i s  so large t h a t  the flow separates from the w a l l s . 3  
the f l o o r  boundary layer  covers a larger wetted area and may have a 
substant ia l  i n i t i a l  thickness, it i s  of primary concern. 
equations will be developed f o r  the calculation of the boundary-layer 
growth along t h i s  surface. 

Since 

Therefore, 

As might be anticipated,  the rate of growth of the f loo r  boundary 
layer  will be shown t o  depend upon the pressure dis t r ibut ion and upon 
the divergence (or convergence) of the flow. The pressure dis t r ibut ion,  
i n  turn,  i s  determined by the i n l e t  geometry and by the mass-flow ra t io ;  
whereas the divergence of the f l o w  i s  primarily influenced by the plan 
form of the i n l e t  and by the induced ve loc i t ies  due t o  the rolled-up 
vortices.  

3 Calculations have indicated tha t  the order of magnitude of the w a l l  
boundary-layer loss  is 5 t o  10 percent of t ha t  due t o  the f loor  
boundary layer. , 
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. .  of the divergent-ramp 
f loor ,  a l l  the ve loc i t ies  induced by the 
vort ices  are i n  directions a m y  from the 

reaches a m a x i m u m  underneath the centers 
of the rolled-up vortex sheets. 

may be divided into two general types of 
regions, as shown i n  the sketch. The 
e f f ec t  of the vort ices  on the flow i n  

-vortex center l i ne  of the ramp. "his e f f ec t  -sc -- - -1 a 
l i ne  

Thus, the 
flow along the f loor  of the divergent ramp 

region I i s  essent ia l ly  t o  increase the divergence of the. flow; whereas 
tha t  i n  regions I1 i s  t o  reduce the divergence of the flow. It w i l l  be 
demonstrated i n  the analysis t ha t  the boundary-layer growth i s  
accelerated by convergence of the flow and retarded by divergence of the 
flow. 
grow most rapidly near the ramp w a l l s ,  while toward the center of the 
ramp it w i l l  grow more slowly or may, i n  f ac t ,  diminish i n  thickness as 
the duct entrance i s  approached. I n  any case, the boundary layer  on the 
f loo r  of a divergent ramp will be thinnest  near the center l i ne  and 
thickest toward the ramp walls. 

It can be seen, therefore, that the f loor  boundary layer w i l l  

I n l e t  Pressure Losses 

. 
l i p  L.E. 

vortex core 

wall B.L. 
\floor B.L. 

From the foregoing discussion, 
a qual i ta t ive picture  can be con- 
strutted of the flow which i s  f i n a l l y  
developed i n  the i n l e t  j u s t  ahead of 
the duct entzance a t  moderately high 
mass-flow ratios.* Such a picture  
i s  presented i n  cross section i n  the 
sketch. 
losses  i n  tLe duct entrance, then, 
are  the f l o o r  boundary layer  and 
some portion of the vortex cores 
(including entrained surface boundary 
layer) ,  depending upon the re la t ive  
locations of the duct l i p  and the 
vortices.  

{ 

The main sources of pressure 

I 
I 

It has become customary in low-speed i n l e t  work t o  express pressure 
l o s s  a s  the r a t i o  of the total-pressure loss t o  the free-stream impact 
pressure. Since it i s  a pract ical  cer ta in ty  tha t  the flow i n  a duct i s  
not uniform and tha t  the losses vary from point t o  point across the 
in l e t ,  it i s  desirable t o  compute an "effective" pressure l o s s  which i s  
indicative of the over-al l  performance of the in l e t .  That i s ,  it i s  

Effects o f  changes in  mass-flow r a t i o  w i l l  be discussed i n  a l a t e r  4 

se c t i on. 
t 

! 
L 
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desired t o  determine the difference between the t o t a l  pressure in the 
f r ee  stream and tha t  which would be measured in a plenum chamber a f t e r  
perfect  diffusion. While the exact determination of such an effect ive 
total-pressure l o s s  is, in  general, a d i f f icu l t  problem, several methods 
have been proposed which involve averaging the loca l  total-pressure 
losses  i n  a variety of ways. Among those tha t  have been used are  a 
simple area average and averages "weighted" according t o  the loca l  mass 
flows or the logarithm of the loca l  mass f lows .  Atheore t ica l  analysis 
of the diffusion in a s t ra ight  .pipe of flows having i n i t i a l l y  nonuniform 
velocity dis t r ibut ions indicates t ha t  a simple aree average, i n  addition 
t o  being the simplest t o  calculate, yields results which are  generally 
a s  accurate as (and in some cases more accurate than) those obtained 
with the more complicated weighted averages. 

I n  accordance with the r e su l t s  of the theoret ical  pipe-flow analy- 
sis, the pressure-loss parameter in t h i s  report  w i l l  be determined on 
the bas i s  of a simple area average. Thus a t  low speeds, 

where AD i s  the duct-entrance =ea. The portion of the quantity 
(z/qo) 
expressed as the sum of the losses discussed. 

which i s  taken in to  the duct entrance ( in te rna l  loss)  can be 
That is, 

( E )  = ($lu + c [(ZX + ( E )  ] 90 i 90 BIS 

where C i s  the f rac t ion  of the bracketed losses  taken internal ly .  The 
ensuing sections of t h i s  paper w i l l  be primarily concerned with the 
theoret ical  determination of the losses indicated i n  equation (2). 
external loss (E/qo), w i l l  a lso  be investigated. 

The 

VORTEX INVESTIGATION 

A detailed mathematical analysis of the rolling-up process by whizh 
the vortex sheets approach t h e i r  s table  f o r m  would involve a study of 
the t i m e  h i s tory  of each vortex filament leaving the ramp w a l l s .  
a detailed study may not be necessary, however, since the major i n t e re s t  
f o r  the present problem is the determination of quant i t ies  which w i l l  
influence the magnttude, and dis t r ibut ion of the  pressure losses  i n  the 
in le t .  It will be shown i n  the analysis that  the magnitude of the pres- 
sure losses i n  the vortex regions themselves i s  determined (within the 
l imitat ions of the theory) solely by the value of the circulation. 

Such 

The 

P 
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purpose here i s  therefore t o  develop an expression f o r  the vortex cir- 
culation a t  any s t a t ion  i n  the in l e t .  
had t o  the method of dimensional analysis, which w i l l  furnish much of the 
desired information without undue complication. 

Toward t h i s  end, recourse w i l l  be 

Determination of Circulation 

Consider a divergent-ramp i n l e t  of a r b i t r a r y  geometry mounted i n  
a,n i n f in i t e  f l a t  wall as shown i n  the  sketch. 

5 Plan vie 

,- Profi le  view 

Suppose now t h a t  the circulat ion 
of length dx i n  the stream direct ion is  taker, t o  be a function of the 
l o c a l  changes i n  width and depth of the i n l e t ,  the free-StreamReynolds 
number and Mach number, and the mass-flow r a t i o  of the duct. This state- 
ment may be expressed i n  functional notation as 

d r  shed from one w a l l  in  an element 

dr = dl" (db, dh, R,  M, m-&) (3 )  

The analysis will be concerned with an i n l e t  operating a.t a constant 
Reynolds number and Mach number, and the e f f e c t  of mass-flow r a t i o  will 
be taken in to  account by the introduction of another variable,  namely, 
the velocity component 
of the ramp. (See preceding sketch.) Equation (3) i s  thus reduced t o  

w perpendicular t o  the ramp w a l l  a t  the edge 

(4) d r  = d T  (w, db, dh) 

Dimensional analysis shows t h a t  there a re  only two basic dimension- 
less combinations of these four variables. They are  

d r  and db 
wdh dh 

- - 
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Therefore, there i s  same function 4 
the equation 

of these variables which satisfies 

That is, 

or 

d r =  w dh $($) 

Now, from the geometry of the i n l e t  (see preceding sketch), expressions 
can be wri t ten f o r  dh and db i n  terms of the loca l  angles a and w 
and the d i f f e ren t i a l  distance dx, thus 

d h = d x t a n a  

8 

or, f o r  small angles, 

db = 2wdx 

The velocity component w is  a function of the free-stream velocity, 
the mass-flow ra t io ,  and the geometry of the i n l e t .  
s iderations indicate tha t  it i s  reasonable t o  assume t h a t  
dependent upon the free-stream velocity and i s  composed of two additive 
par ts ,  one proportional t o  w and the other t o  a, t h a t  i s ,  

Similar i ty  con- 
w i s . l i n e a r l y  

w = (K1 w t K, a)uo (7 )  

where K1 and K, depend only upon the mass-flow ra t io .  . Since the 
ramp angle 
t ion if w equals 0 (pa ra l l e l  w a l l s )  there  w i l l  s t i l l  be some vor t i c i ty  
shed into the irilet; whereas a t  suff ic ient ly  large negative values of 
(convergent walls), the veloci ty  w 
values which have no meaning i n  t h i s  analysis. 

a i s  always posit ive,  it i s  apparent t h a t  under t h i s  assump 

w 
vanishes and then takes on negative 
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By use of t h e  subst i tut ions j u s t  discussed, equation (6) can be 
rewritten 

or  

The circulation a t  any s ta t ion  (say x=2) i s  then given by 

Before the integrat ion can be carr ied out by graphical o r  numer,cal 
methods, there remains the  problem of determining K,, K,, and f .  

Since the e f f e c t  of var ia t ions i n  mass-flow r a t i o  i s  primarily one 
of blockage a t  the duct entrance, it i s  apparent t h a t  such an e f f ec t  
w i l l  be confined largely -to s ta t ions  near the duct l i p ;  that i s ,  the 
v a r i a t i m  of  K, and K, with m l / R  w i l l  be small over most of the 
r a ~ ~  length. 
flow r a t i o  on the integrated circulat ion r w i l l  be small. Thus, 
except f o r  small changes due t o  mass-flow ra t io ,  equation ( 9 )  can be 
written 

Hence, f o r  smoothly faired i n l e t s  the net e f fec t  of mass- 

where g is  now a,n unspecified function of a s ingle  variable u/a. 
Within the assumptions of t h i s  analysis,  the function can be 
determined from a s ingle  t e s t  series involving divergent-ramp i n l e t s  of 
l i nea r  geometry since f o r  t h i s  case equation (10) can be writ ten 

g 

I n  equation (lo), the ci rculat ion var ies  d i r ec t ly  with the free- 
stream veloci ty  uo. However, t h i s  is  due t o  the assumption t h a t  the 
i n l e t  was mounted i n  an i n f i n i t e  f l a t  w a l l .  I f ,  on the other hand, the 
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i n l e t  were mounted i n  8 fuselage, the veloci ty  t o  be used would be a 
mean local velocity u1 
Thus, equation (10) would be 

over the region i n  which the i n l e t  is  installed.  

Due t o  the nature of the assunnptions made i n  t h i s  section with 
regard t o  the veloci ty  w, 
c i rculat ion are not generally applicable t o  convergent-ramp in le t s .  

the equations developed f o r  the vortex 

Vortex Pressure Lasses 

A simplified analysis w i l l  be carried out here t o  investigate %he 
pressure character is t ics  of the vortices and the i r  effect  on the losses 
i n  t o t a l  pressure. 
s ion f o r  the vortex pressure loss  . (E/S~)~ .  It will be assumed a t  the 
outset  t ha t  the i n l e t  i s  suff ic ient ly  slender tha t  velocity gradients 
i n  the stream direct ion are negligibly small i n  comparison With those 
i n  the transverse directions. In addition, each of the actual  vortex 
regions w i l l  be replaced by an idealized poten t ia l  vortex containing 
a ro ta t iona l  core of f i n i t e  diameter. 
pressure losses i n  each vortex w i l l  be unaffected by the presence of the 
other vortex or  by the bounding surfaces. 
equivalent t o  determining the pressure losses  i n  a single cyl indrical  
vortex rotat ing i n  a uniform incompressible stream flowing pa ra l l e l  t o  
the axis of rotation, as i l lus t ra ted  i n  the following sketches: 

In part icular ,  it i s  desired t o  determine an e-res- 

This implies t ha t  the total-  

The analysis i s  therefore 

Actua l  in le t  vortex flow 
i n  cross section 

\ c; 

Approximation t o  each vortex 
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With the preceding assumptions, the general expression f o r  the 
losses i n  both vortices can be writ ten 

I -:;;&:43'%:r< Moreover, since vortex total-pressure losses appear o n l y  inside the 
vortex cores,5 equation (12) can be expanded t o  give 

.- 

where rc i s  the radius of the vortex core. 

The t o t a l  pressure H1 anywhere i n  the f l u i d  i s  expressed i n  
general as the sum of the loca l  s t a t i c  and dynamic pressures. 

(14) 1 
2 11, = p + - p (uo2 + q2) 

where ~0 is the velocity of the uniform s t r e m  ( p u a l l e l  t o  the vortex 3 

axis) and q i s  a peripheral velocity i n  the vortex. The condition t o  
be sat isf ied by the transverse veloci t ies  q i s  tha t  the pressures must 
everywhere be balanced by the centrifugal force; t ha t  is, 

Therefore, the r ad ia l  variation of t o t a l  pressure through the vortex can 
be found by different ia t ing equation (14), using the relationship of 
equation (l?), thus 

% = d p + - ( - p q 2 )  d 1  
dr dr d r 2  

0 

5The vortex core will be defined i n  t h i s  analysis as  a c i rcu lar  region 
surrounding the vortex center i n  which the peripheral ve loc i t ies  
deviate from those of the poten t ia l  vortex. 
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This equation can be integrated t o  give an expression for  the t o t a l  
pressure a t  any point i n  the vortex. I n  general, 

= p f rc (9 + q z)dr+ psT f e' + q 3)dr 
r \ r  

r C  
00 

The f i r s t  integral  vanishes since 
giving 

q = r/21rr everywhere outside the core, 

H l ( r )  - Ho = p f ($ + q 2) dr 
u 

Substi tution of the above expression (with l i m i t s  reversed) in to  
equation (13) yields 

Now, by reversing the order of integration, equation (19) can be writ ten 

which reduces t o  
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Observing tha t  the expression i n  the parentheses i s  now a perfect  dif- 
fe ren t ia l ,  equation (21) c m  be integrated d i r e c t l y  t o  give 

But a t  the edge of the core the peripheral  ve loc i ty  q i s  

Thus, the total-pressure l o s s  i n  the vortex p a i r  i s  f i n a l l y  given by 

2 

= & (5)  
It i s  evident from equation (23) tha t ,  within the l imitat ions of 

the assumptions made, the integrated vortex pressure losses  are 
independent of the s ize  and veloci ty  d is t r ibu t ion  of the vortex cores, 
and depend only upon the circulation. 

BOUNDARY-LAYE8 INVESTIGATION 

Boundary-Laye r Analysi s6 

A s  w a s  mentioned e a r l i e r ,  the boundary layer  of primary i n t e r e s t  
i n  calculating i n l e t  pressure losses  i s  t h a t  on the f loor  of the ramp. 
I n  order t o  calculate the boundary-layer growth i n  a ramp having non- 
pa ra l l e l  w a l l s ,  it i s  convenient t o  construct a varia.tion of the K&dn 
momentum equation which w i l l  apply t o  a diverging flow over a f l a t  plate .  
For t h i s  analysis, the following assumptions are made i n  addition t o  
those usually used ir_ boundary-layer theory: 

1. Incompressible f l u i d  

'This section presents (with some modification) a condensation of a 
thesis  suhnitted by the senior author t o  Cornell University i n  1949 
f o r  the degree, Master of Aeronautical Engineering. 
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2. Straight  divergence of the ramp 
3. 

from the vertex of the s t ra ight  divergent ramp 
The flow near the ramp f loor  i s  i n  r ad ia l  l i n e s  emanating 

There a re  three poss ib i l i t i e s  regarding the character of the 
boundary layer  along the ramp floor:  
over the en t i r e  ramp; (2) the boundary layer i s  turbulent over the en t i r e  
ramp; or  (3)  t rans i t ion  occurs somewhere on the ramp. The first two 
cases will be t reated individually and the t h i r d  will be constructed by 
combining the f irst  two. 

(1) The boundary layer i s  laminar 

With the assumption of radial flow, 
it is  convenient t o  introduce a cylin- 
d r i c a l  coordinate system t o  use throughout 
the analysis. Since the tangential  
velocity w1 (see sketch) i s  ident ica l ly  
zero everywhere i n  a r ad ia l  flow, the 
equation of continuity can be expressed 
i n  cylindrical  coordinates by 

Y 

/ 
Z (Tu) + - = 0 - l a  div V = - - 

r ar  a Y  

while the boundary-layer equation i n  t h i s  coordinate system i s  given by 

(See reference 3.) 
equation f o r  r ad ia l  flow which can be integrated t o  give an expression 
f o r  the boundary-layer growth along the ramp floor.  

These equations w i l l  be used t o  derive a momentum 

I-- 

Equation (24) can be rewritten as 

v = -$” 1 r a ar (Tu) dy 

If t h i s  substi tution i s  made i n  equation ( 2 5 ) ,  noting tha t  . 

av 
(UV) - u - aU a 

a Y  a Y  a Y  
v - = -  
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(uv) dy = uv 11 = u l l ' ( - $ - : )  dy 
0 

then equation (25) can be integrated over the  boundary-layer thickness 
and reduced t o  the  form 

where u1 i s  the veloci ty  a t  the edge of the boundary layer  and To 
i s  the value of T at y = 0. Further, by introducing the def in i t ions  
of momentum thickness and displacement thickness of the boundary layer  

and I 

6 *  = - p:l ss P b l -  u) dY 

and noting tha t  a t  the edge of the boundary layer  equation (25) gives ' 

i 
i 
i 

equation (27) can be writ ten i n  terms of momentum and displacement 
thicknesses as 

i 

This i s  a. momentum equa.tion which reduces t o  t h a t  given by Karman 
(reference 4) f o r  the case when r i s  i n f i n i t e  (para.lle1 f l o w ) .  

! 
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Laminar Cas 

For the  laminar case, equation (28) can be put i n t o  a form involving 
only the t o t a l  boundary-layer thickness 6 by using the standard 
functional notation f o r  the veloci ty  prof i le  inside the boundary layer  

u = ulf(g, Y r )  = ulf(q,r) 

That is, the momentum and displacement thicknesses a re  replaced by the 
expressions 

where 

1 1 
G f (f-f2) dq j I (1-f) dv 

0 

Note t h a t  R and y are simply functions of r which a re  defined once 
the var ia t ion  of f with q ( i -e . ,  the veloci ty  p ro f i l e )  i s  known. 
If it i s  fu r the r  noted t h a t  

where 

then equation (28) becomes 

where V = p/p. 
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If a Pohlhausen veloci ty  p ro f i l e  ,s assumed t o  e x i s t  i n  the laminar 
boundary layer,  t h a t  is ,  

U - = f ‘ =  g7 + cq2 + dq3 + ev4 
U 1  

the expressions for Q ,  p, and y a r e  immediately found t o  be 

n = A+BX+CX2 

/3 = D+EX 

7 = F+GA 

where A, B, C, D, E, F, and G a re  constants. This leads t o  the  f i n a l  
expression f o r  the laminar boundary-layer growth ( i n  dimensionless form) 

where 

and 

u 2  
v R = Reynolds number = 0 = constant 

Equation (3) i s  seen t o  be an ordinary, f i r s t -order ,  nonlinear differ-  
e n t i a l  equation and can be solved numerically f o r  any known pressure 
dis t r ibut ion,  as long as laminar separation does not occur. Since a l l  
the quant i t ies  on the r igh t  side of the  equation a re  known at the 
beginning of the  ramp, the i n i t i a l  rate of growth ( the der ivat ive)  can 
be calculated d i r ec t ly  from the equation. Then, applying t h i s  rate of 
growth over a small increment of length, a new value of boundary-layer 
thickness i s  obtained which canbe  used again i n  equation (31) t o  calcu- 
l a t e  a new ra t e  of growth. By repeating t h i s  procedure, the  boundary- 
layer  thickness can be determined over the e n t i r e  ramp length. 
solution of equations of t h i s  type i s  discussed i n  appendix A. 

The 
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Turbulent Case 

21 

If the veloci ty  u i s  properly redefined, equations (27) and (28) 
can be applied t o  the case of the completely turbulent boundary layer. 
Thus, if u i s  interpreted as the mean veloci ty  a t  a height y i n  the 
boundary layer ,  and i f  the shape parameter i s  introduced, 7 

equation (28) becomes 
H = 6 */e 

This equation reduces to the familiar twdimensional  momentum equation 
f o r  the case when r 
ence 5 f o r  conditions along the center l ine.  
a l so  been derived in  reference 6. 

i s  in f in i t e ,  and t o  the equation derived i n  refer- 
The general equation has 

Unt i l  a r a t iona l  theory i s  developed which gives the veloci ty  
d is t r ibu t ion  through the turbulent boundary layer  and the corresponding 
skin f r i c t i o n ,  empirical re la t ionships  must be used t o  l i n k  H and 7 
with 8 .  
put  i n t o  dimensionless form by the  following transformations: 

By use of the method of reference 7, equation (32) can be 

1 /4  

P U l  

If these subst i tut ions are made i n  equation (32), i n  addition t o  the 
dimensionless quant i t ies  already introduced f o r  the  previous case, t he  
f i n a l  expression becomes 

ax 5 1 dU 5 5 1  
ag 4 u ag 5 4 u1/4 

- + -  [- -((H+'2) .'] X = - -  

Equation (33) can now be solved f o r  any given pressure d is t r ibu t ion  by 
using the var ia t ions of H and &, with g which m e  furnished by 

7 
The appl icabi l i ty  of such a pameter to r a d i a l  f lows  has been j u s t i f i e d  
experimentally by Kehl (reference 5 ) .  
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reference 7 i n  which it is  established that both are functions of 
only, where ( i n  t h i s  case) 

A 

d r  u1 

These curves are reproduced i n  figure kO8 
a d i f fe ren t ia l  equation f o r  the growth of the f u l l y  turbulent boundary 
layer  along the divergent-ramp floor.  
form as equation (a), can a l so  be solved numerically. 

Thus, equation (33) furnishes 

This equation, being of the same 
(See appendix A.) 

Other methods have been proposed f o r  solving equation (32)  which 
range from assuming tha t  H is  constant with 5 t o  using a rather  
involved expression f o r  the variation of H with 5 .  The latter 
method (see reference 8) i s  useful f o r  cases i n  Wtzich separation i s  
approached. 

Laminax-Turbulent Case 

A solution f o r  the case involving t rans i t ion  from the laminar t o  
the turbulent boundary layer can be obtained by combining the cases 
already discussed. 
up t o  the point of t rans i t ion  by equation (31) and after complete transi-  
t i on  by equation (33). 
required regarding the occurrence of t ransi t ion.  
present no sat isfactory theory fo r  predicting the location and manner of 
transit ion,  it w i l l  be necessary i n  application t o  make some appropriate 
assumptions, such as: 

That is, the boundary-layer growth can be calculated 

To complete the solution, some information i s  
Since there i s  a t  

1. Sudden t rans i t ion  from a laminar prof i le  of the Pohlhausen 
type t o  a f u l l y  turbulent boundary layer  at some reasonable 
location such as the minimum-pressure s ta t ion  on the ramp 

No discontinuity i n  momentum thickness a t  the point of t rans i -  2. 
t ion  

Under these conditions, the boundary layer  momentum thickness can be 
calculated over the en t i re  ramp f loo r  (if separation does not occur) by 
using the momentum thickness (as found by equations (31) and (29)) a t  
the assumed t rans i t ion  point t o  determine the i n i t i a l  value f o r  the 
integration of equation (33). 
a Note tha t  it has been assumed t h a t  the relationship given i n  

reference 7 can be applied t o  the case of r ad ia l  flow. 
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It can be seen in  the foregoing analysis that equations (31) and 
(33) can be applied t o  the case of the convergent ramp if a r ad ia l  flow 
i s  assumed and the distance r i s  nowmeasured in  the upstream direction 
from the point of convergence. Furthermore, i f  it i s  noted tha t  along 
the center l i n e  of the converging o r  diverging flow 
(l/b)(db/dx), it can be concluded that divergence has an e f f ec t  on the 
boundary layer which i s  analogous t o  that of a favorable pressure 
gradient. Thus, the  boundary-layer growth is retarded by divergence 
while it i s  accelerated by convergence. This phenomenon has been i l lus-  
t r a t ed  by wind-tunnel measurements of the boundary-layer growth along 
the center lines of parallel-aralled and d ive rgen t r a l l ed  ramps. A c o w  
parison of such measurements i s  presented in figure 5 which has been 
reproduced from reference 1. 

l/r = l /x  = 

Boundary-Layer Pressure Losses 

From the equations ju s t  developed, one can calculate t he  boundary- 
layer thickness a t  any s t a t ion  on the  ramp floor,  
primary in t e re s t  in determining the e f f i c i e n z  of an a i r  i n l e t ,  however, 
i s  the dynamic-pressure-recovery r a t i o  1 - &q0. Therefore, a 
relat ionship w i l l  be established between the boundary-layer thickness at 
the duct entrance and the loss i n  t o t a l  pressure due t o  the boundary 
layer. 
t i a l l y  constant across the inlet ,  this will amount t o  a two-dimensional 

The quantity of 

Since f o r  a radial flow the boundary-layer thickness i s  essen- 

analysis , 

The total+ressure loss  a t  any point i n  the boundary layer i s  > 

If the expression for the f loo r  boundary-layer pressure l o s s  i s  writ ten 
as 

( 35) 

where 
can be evaluated by noting, from the expressions previously given for  
6 and 6*, that  

d is the depth of the duct entrance (see f ig .  5), the in tegra l  

p u  ay = pu1(6 - s*) 
' l6 
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and 

pu2 dy = puL2(6 - s* - e)  
J 
0 

With these relationships,  equation (35) reduces t o  

NACA TN 2323 

Thus, if  the boundary-layer thicknesses 8 and 6* are  determined 
from equations ( 2 9 ) ,  (31), and ( 3 3 ) ,  the l o s s  i n  dynamic-pressure 
recovery due t o  boundary layer on the ramp f loor  can now be calculated 
f o r  any of the three possible conditions considered - the completely 
laminar case, the f u l l y  turbulent case, o r  the case involving transi-  
t ion.  Note tha t  the r a t i o  ul/uo of equation (36) i s  not the same a s  
the mass-flow r a t i o  but i s  determined by the  loca l  pressure coefficient 
on the ramp floor.  

If it i s  desired t o  calculate the boundary-layer pressure lo s s  a t  
one s ta t ion (say the duct entrance) without determining the boundary- 
layer  growth over the en t i r e  ramp length, the calculations can be 
great ly  simplified by using the approximations f irst  introduced by 
Falkner (reference 9 )  regarding the shape parameter 
stress To. By t h i s  expedient, one can integrate  the momentum equation 
d i rec t ly  t o  obtain an expression f o r  the boundary-layer momentum thick- 
ness at the desired s ta t ion  i n  terms of the i n i t i a l  momentum thickness 
and the velocity dis t r ibut ion over the ranp. 

H and the shear 

Since Falkner 's . integration was  performed on the two-dimensional 
momentum equation, the method will be extended here t o  the case of 
r ad ia l  flow. The momentum equation i n  the form of equation (32) 

i 
C '  
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can be simplified by introducing the shear stress relationship suggested 
by Falkner 

Equation (32)  can now be written ( i n  dimensionless form) as 

where 

This d i f fe ren t ia l  equation i s  of the Bernoulli type and can be integrated 
d i rec t ly  i f  H i s  assumed constant. The resu l t ing  solution i s  

where 1 and 2 r e fe r  t o  the i n i t i a l  and f i n a l  s ta t ions  on the ramp. 
Equation (38) then gives the value of 
equation (36), i f  the values of H, k, and n a re  specified. For .  
the laminar boundary layer H = 2.592 (Blasius prof i le ) ,  k = 0.2205, 
and n = 1. For the turbulent boundary layer, H i s  generally assumed 
t o  be about 1.5, n about 1/6, and k about 0.0065, although several 
other values have been suggested. These are discussed fur ther  i n  
reference 10. 

B(or S2) t o  be used i n  

EFFECTS OF MASS-FLOW RATIO 

Much of the analysis thus far presented has been formulated without 
a t tent ion t o  the presence of the duct entrance. A s  i n t e r e s t  i s  focused 
on s ta t ions  approaching the entrance, consideration must be given t o  
e f f ec t s  brought about by changes i n  mass-flow ra t io .  
of the most immediate consequences of changes i n  mass-flow r a t i o  may be 
gained by simple continuity considerations. 

An understanding 
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A s  the  mass-flow r a t i o  decreases, 
a i r  which would have gone in to  the 
must s p i l l  out over the l i p  and ramp . 

walls ahead of the entrance, a s  shown i n  
the  sketch. Since the vortex filaments 
must follow the paths cf the s t reanl ines ,  
it i s  apparent t ha t  the vortices may not 
be completely swallowed by the duct. I n  
f a c t ,  as the  vortices approach the duct 
entrance, they must, a t  very low inlet  
veloci t ies ,  pass over the l i p  and outside 
the  duct. 

In order f o r  the vortices t o  move 
away from the  ramp f loor  a t  s ta t ions  near 
the  duct l i p ,  the vortex sheets must leave 
the ramp walls a t  increasing angles u n t i l  
f i n a l l y  they break away from the main 
surface as shown in  the sketch. When the 
vortex sheet leaves the surface i n  t h i s  
manner, a region of secondary vo r t i ca l  
flow introducing additional pressure losses  
appears over the main surface j u s t  outside 
the  i n l e t .  I n  the extreme case, a d i s t inc t  
secondary pa i r  of vort ices  may be formed 
in these regions ro ta t ing  i n  a sense oppo- 
s i te  t o  t h a t  of the primary pa i r .  These 
additional losses  a re  a function of the 

mass-flow r a t i o  and the ramp divergence and may be expected t o  decrease 
w i t h  increasing divergence and with increasing mass-flow r a t i o .  Since 
these losses  occur on the main surface, however, i n  regions where the 
flow is  directed away from the in l e t ,  they cannot en ter  the duct and must 
appear U S  external drag. Thus, there  are,  in  general, three important 
d i rec t  consequences of reducing the  mass-flow ra t io :  (1) Due t o  the 
increased edverse pressure gradient, the f l o o r  boundary layer  i s  thickened 
and may separate; (2)  the  rolled-up vort ices  a re  moved fa r ther  away f r o r  
the ramp f loo r  and may move e n t i r e l y  outside the duct; and ( 3 )  regions of 
separated o r  vo r t i ca l  flow may appear on the  main surface near the ranp 
edges. This t h i r d  e f f e c t  i s  augmented by the f ac t  tha t  the vortices cause 
the  outboard sections of the l i p  t o  operate a t  a higher angle of attack 
than the  center section. This tends t o  produce regions of separated flow 
above the outer edges of the l i p ,  pa r t i cu la r ly  a t  low mass-flow r a t i o s  
where the angle of attack of the en t i r e  l i p  i s  increased. 

Since any pressure losses  t h a t  a re  not taken in te rna l ly  must appear 
as external drag, several in te res t ing  observations can be made regarding 
the  variations of ram recovery and external drag with mass-flow r a t i o .  
O f  the three e f f e c t s  of mass-flow r a t i o  enumerated above, the f i r s t  and 
th i rd  both represent increased losses  as the  mass-flow r a t i o  i s  reduced. - 

.-. 
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However, the f loor  boundary-layer loss  i s  en t i r e ly  in te rna l  while the 
main surface separation losses are  ent i re ly  external. The vortices, on 
the other hand, represent a loss which i s  r e l a t ive ly  constant with mass- 
flow r a t i o  but i s  sometimes taken internal ly  and sometimes taken exter- 
nally.  
a t  the duct entrance and external drag with mass-flow r a t i o  can be pre- 
dicted qual i ta t ively,  as  shown in  the  following sketch fo r  a given 
divergent-ramp inlet : 

With t h i s  information the variations of ram recovery (o r  loss) 

I 

mJ / 
mO 

r'!4 / 
*O 

Since pa r t  of the losses  swallowed by the duct a t  high mass-flow r a t i o s  
a r i s e  from boundary layer taken fromthe fuselage surface, the incre- 
mental external ea@; may be e q e c t e d  t o  become negative as shown. In 
fac t ,  an expression can now be w r i t t e n  f o r  the total-pressure lo s s  ccntri- 
buting to external drag: 

where (z/qo)gLc refers t o  the boundary-layer-control action which the 
i n l e t  performs on the fuselage, while (z/qo)SEP represents the  lo s s  
due t o  separation of the fuselage boundary layer near the ramp edges. 

The curve shown i n  the preceding sketch f o r  the var ia t ion of f loo r  
boundmr1ayer loss  can be calculated by the use of equations (36) and 
(38) if the ramp pressure distribution i s  known f o r  each mass-flow 
ratio.  The maximum value f o r  the vortex lo s s  curve i s  given by 
1 / 2 n A ~  (I'/Q)2 (equation (23)), while the values a t  lower mass-flow 
ra t ios  depend upon the portion C of the vort ices  which i s  swallowed 
by the duct. This quantity depends upon the actual  s ize  and location 
of the vortex cores, which have not been determined theoretically.  
Therefore, an eQeriIIlent w a s  conducted which will aid i s  establishing 



28 NACA TN 2323 
z 

. .  

the desired information. 
presented i n  a l a t e r  section.) 
the foregoing sketch t h a t  there w i l l  be an optimum mass-flow r a t i o  a t  
which the conibined loss  i n  ram recovery due t o  vortices and boundary 
layer  is a minimum. 

(The t e s t s  will be discussed and the r e su l t s  
It can be seen from the loss curves of - .  

It w i l l  be noted tha t  the losses due t o  vortices and f loor  boundary 
layer  have been added d i rec t ly  t o  obtain the t o t a l  loss i n  ram recovery. 
This raises the question of interaction between the vortices and the 
floor boundary layer. 
t ha t  the vortices cause the boundary layer t o  th in  near the center of 
the ramp and thicken near the w a l l s .  I n  addition, there w i l l  be some 
tendency fo r  a portion of the thickened f l o o r  boundary layer near the 
ramp walls t o  become entrained i n  the vortices.  
effects  on the t o t a l  losses w i l l  probably be small. 

It was pointed out i n  the e a r l i e r  discussion 

The magnitude of these 

Another boundary-layer phenomenon tha t  has not yet been discussed 
i s  the entrainment of fuselage boundary layer  i n to  the vortex cores. 
The total-pressure lo s s  due t o  t h i s  entrainment (E/qo)sts can be 
expressed i n  equation form i f  the width of fuselage surface from which 
boundary layer enters  one vortex is  denoted by s: 

The integral  i n  equation (40) has been evaluated previously 
(equations (35) and ( 3 6 ) ) ,  so that  equation (40 )  reduces t o  

20 s (1+H) ($e) 2 
- _ -  (ELLS AD 

Note tha t  i n  t h i s  instance 0 and u1 are measured ju s t  ahead of the 
i n l e t  ramp. 
does not separate a t  the ramp edges (as  discussed previously). 

Equation (41) requires, of course, tha t  the boundary layer 

The distance s will actual ly  depend on the mass-flow ra t io ,  
increasing with increasing mass-flow ra t io .  
magnitude of the loss (AH/qo)BLS can be obtained by taking s ' t o  be 
the projection of the ramp wall i n  the stream direction; t ha t  i s ,  

An estimate of the order of 
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A 

< A  deflect  or s 

A - A  

The losses due t o  the vortices and 
entrained boundary layer give r i s e  t o  the 
question of possible methods fo r  reducing 
these losses in the duct entrance. Since the 
portion of these losses entering the duct i s  
determined by the re la t ive  posit ions of the 
duct l i p  and the vortices, the obvious method 
of accomplishing the desired r e su l t  is  e i ther  
t o  submerge the l i p  deeper into the fuselage, 
or t o  force the vortices fa r ther  away from 
the ramp floor by the use of "deflectors." 
(See sketch.) 
that e i the r  of these expedients can a t  best  
only convert internal  pressure losses t o  
external drag. Furthermore, each method has 
additional disadvantages which might cancel 

It should be realized, however, 

en t i r e ly  the beneficial  e f fec t  on recovery. 
merged, the  boundary-layer thickness on the f loor  w i l l  then represent 
a larger  portion of the duct depth, thus increasing If, 
on the other hand, the vortices a re  moved out, then t h e i r  beneficial  
e f f ec t  i n  discouraging thickening and separation of the f loo r  boundary 
layer  i s  reduced. Thus, the designer must exercise great care i n  the 
choice of methods f o r  increasing the pressure recovery of a submerged 
in l e t .  

If the l i p  i s  fur ther  sub- 

(B/qO)BT;F. 

~ 

EFFECTS OF COMPRESSIBILITY 

The entire analysis presented i n  th i s  paper has been f o r  an incom- 
pressible f l u i d  (M=O).  
regarding the e f f ec t s  of compressibility on the  pressure losses  con- 
sidered. 

However, some pertinent observations can be made 

Studies of slender wings and bodies at small angles of a t tack have 
shown that the e f fec t  of Mach number becomes negligibly small as the 
slenderness is  increased. Similarly, f o r  the slender ramp plan forms 
customarily used i n  submerged inlets, the vortex losses, which r e su l t  
primarily from flows i n  the transverse planes, can be expected t o  show 
l i t t l e  e f f ec t  of Mach number. 



30 

The boundary-layer growth is ass 

NACA TN 2323 

ciated primarily w i t h  the longi- 
tudinal flow which is  influenced by compressibility t o  a greater degree 
thzn a re  the transverse flows. In par t icular ,  pressure gradients become 
steeper w i t h  increasing Mach number. 
i n l e t ,  where the pressure gradient i s  adverse over most of the ramp 
length, an increase i n  boundary-layer thickness may be expected w i t h  
increasing Mach number due to  the change i n  pressure dis t r ibut ion.  
the other hand, for  a fixed pressure dis t r ibut ion,  a decrease i n  
boundary-layer thickness is  indicated due t o  loca l  viscosi ty  changes 
brought about by aerodynamic heating. Since t h i s  l a t t e r  e f fec t  is  
known t o  be small a t  subsonic speeds, the e f fec t  of compressibility can 
be almost en t i r e ly  taken into account by using (as demonstrated i n  
reference 11) the actual  compressible pressure d is t r ibu t ion  i n  the incom- 
pressible boundary-layer equations. It is therefore concluded tha t  the 
analysis presented in  t h i s  report can be applied with reasonable accuracy 
t o  compressible flows a t  subcr i t ica l  Mach numbers. 

I n  the case of the submerged 

On 

I n  considering e f f ec t s  on the ram pressures due t o  increasing Mach 
number, care must be taken i n  the def in i t ion  of ram recovery, since the 
reference quantity 5 puo upon which the i n l e t  efficiency is based 
a t  low speeds no longer represents the actual  available ram pressure a t  
the higher Mach numbers. In  fact ,  i f  the in l e t  efficiency i s  based upon 
$ puo2 a t  higher Mach numbers, eff ic iencies  i n  excess of 100 percen; 
maybe obtained, purely as  a r e su l t  of the fa i lure  t o  account fo r  the 
increase i n  available ram pressure. Such a d i f f i cu l ty  i s  generally 
overcome by discarding the approximation of equation (1) and dealing 
w i t h  the quantity 
ery rat io .  This quantity d i f f e r s  from the dynamic-pressure recovery 

1 2  

(HI - po)/(Ho - p0),, which i s  called the ram recov- 

+ ..., M2 M4 
-4-+40 r a t i o  1 - - by the compressibility factor  F=l+q* = 1+ 

9, - 
s o  tha t  a t  low speeds the two eff ic iencies  are identical ,  as indicated 
i n  equation (1). 
reference 12.  

These and other re la ted quant i t ies  are  discussed i n  

WIND-TUNNEL EXPERIMENT 

A b r i e f  wind-tunnel t e s t  was conducted i n  t h e  Ames 7- by 10-foot 
wind tunnel t o  stady experimentally the vortex pressure losses discussed 
i n  t h i s  paper. A large-scale i n l e t  of l inear  geometry was mounted i n  a 
fa l se  w a l l  which allowed the tunnel-wall boundary layer t o  pass beneath 
it, and measurements were made of the total-pressure losses outside the 
ramp floor boundary layer, both inside and outside the duct entrance, 
The model and ins ta l la t ion  o f  total-pressure rakes are  i l l u s t r a t ed  in  
figure 6. 
the mass-flow r a t i o  range f o r  a number of ramp divergences, keeping the 
duct entranCe area and ramp length constant. 
i s  shown schematically i n  figure 7. 
an&ularity of the f l o w  i n  the vortices was of the order of 15'; conse- 
quently, the e r ror  i n  total-pressure measurements is  believed t o  be small. 

Distributions of total-pressure recovery were obtained over 

A typical  dis t r ibut ion 
It should be noted that  the maximum 



NACA TN 2323 31 

By t h i s  means, it was possible t o  obtain the approximate locations 
of the centers of the vortices,  and tomepsure the integrated total-  
pressure l o s s  due t o  the vortices and the main surface boundary layer 
entrained i n  the vortices,  and the  portion of t ha t  loss  which entered 
the duct. 
mass-f'low ra t ios ,  flow separation occurred on the main surface and it 
is  believed tha t  the failure t o  distinguish t h i s  loss  from the losses 
i n  the vort ices  is  responsible f o r  the apparent vaziation of t o t a l  vortex 
loss  with mass-flow rat io .  
that 
This i s  i n  keeping with the analysis since there should be a vortex loss  
proportional t o  the ramp angle 

The results are  given i n  figures 8 and 9. A t  the lower 

An important point regarding figure 8 i s  
does not go t o  zero at  zero divergence. (z /qo)v + (E/qo)BLs  

a which w a s  held constant i n  the test. 

It should be pointed out that the variation of the f rac t ion  C 
with mass-flow r a t i o  (fig. 9) depends somewhat upon the shape of the 
duct l i p ,  as well as upon i t s  ve r t i ca l  location. 
not investigated. 

Such influences were 

Since the pressure losses measured i n  the vortex regions include 
(wqo!BLs' it i s  not advisable t o  use these data with equation (23) t o  
deterrmne the unknown function g ( w / a )  of equations (10) and (11). 
"he ac tua l  determination of this function would require detai led 
measurements of the magnitude of the circulation over the en t i r e  range 
of mass-flow r a t i o s  and ramp divergences. 

CONCLUDING REMARKS 

A theore t ica l  study has been made of the flow i n  submerged a i r  
i n l e t s  i n  order t o  determine the effects  of some of the important design 
parameters on the ram-recovery character is t ics  of the i n l e t s  a t  low 
speeds. 
have been considered and t h e i r  fundamental differences discussed. .As a 
re su l t  of the analysis presented, the integrated total-pressure loss i n  
the entrance of a threedimensional submerged a i r  i n l e t  has been broken 
down into i ts  essent ia l  components which can now be calculated subject 
t o  the r e s t r i c t ions  discussed i n  the foregoing sections. 

I n l e t s  having paral le l ,  divergent, and convergent ramp walls 

I n  general, the major total-pressure lo s s  taken in te rna l ly  a t  the 
duct entrance can be expressed as 

where C i s  primarily a function of  the mass-flow rat io .  Some experi- 
mental values of t h i s  function have been given i n  figure 9 fo r  several 
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ramp divergences. 
calculating the other quant i t ies  contributing t o  

Equations have been developed i n  t h i s  report  f o r  
(E/qo)  

Similarly, the 
can be expressed as 

major total-pressure loss taken as external drag 

BLC 
= ( 1 - c )  [ ( E )  + (E)  ] +  (E) - (E) 

qO BLS SEP 90 v 

where 
boundary-layer?,ontrol action of the i n l e t  on the fuselage, while 
(LyIIqo)sEp represents the l o s s  due t o  separation of the fuselage 
boundary layer a t  the ramp edges. 
been determined, although t h e i r  dependence on the mass-flow r a t i o  has 
been discussed. 

(E/qo)BLC represents the reduction i n  external drag due t o  the 

Neither of these two quant i t ies  has 

The regions of total-pressure 
l o s s  t ha t  have been considered i n  
t h i s  report  a re  shown schematically \ 
i n  cross section i n  the sketch. 

It was found tha t  divergence of 
the ramp w a l l s  has two major e f f ec t s  

\ on the rauu-ecovery character is t ics  
of the submerged inlet .  On the one 
hand, a vortex pa i r  i s  created i n  ( $Bm the i n l e t  which introduces an addi- 
t iona l  source of pressure lo s s  - the . 

vortex cores. 
favorable effect  on the boundary-layer growth along the ramp f loor ,  thus 
reducing the pressure loss  due t o  the boundary layer. 

On the other hand, the ramp w a l l  divergence creates a 

The equations developed i n  the analysis indicate tha t  the pressure 
lo s s  in  the vortex cores i s  determined approximately by the inlet 
geometry, while the portion entering the duct entrance depends primarily 
upon the mass-flow r a t i o  and the shape and location of the duct l i p .  
Due t o  the nature of the flow f i e l d  created by the rolled-up vortex 
sheets in  the in le t ,  a measurement of ram recovery i n  the plane of the 
duct center l ine  can be taken only as  an indication of the m i n i m u m  
boundary-layer thickness on the ramp f loor .  
fore inadequate for  predicting the ram-recovery character is t ics  of a 
submerged in le t  having a divergent ramp. 

Such a measurement i s  there- 

A method ,has been presented for  calculating the boundary-layer 
growth along the ramp f loor  for  para l le l ,  divergent, and convergent ramp 
walls, for a known ramp pressure dis t r ibut ion.  It was found tha t  the 
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ef fec t  on the growth of t h i s  boundary layer due t o  divergence of the 
ramp walls i s  analogous t o  that of a favorable pressure gradient. 
vergence has a corresponding adverse effect .  

Con- 

Since the boundary-layer losses on the f loor  decrease w i t h  increas- 
ing mass-flow r a t i o  while. the internal  vortex losses increase with 
increasing mass-flow ra t io ,  there must be an optimum mass-flow r a t i o  
fo r  which the combined losses  in ram recovery a re  a min imum.  By the 
same reasoning, it can be concluded that there  must be an optimum diver- 
gence angle f o r  a s t ra ight  ramp which w i l l  give minimum total-pressure 
losses.  

The t o t a l  vortex pressure loss was found t o  depend upon the inlet 
geometry and the l o c a l  pressure coefficient, and t o  a lesser extent upon 
the mass-flow ra t io .  The ramp boundary-layer losses a re  determined by 
the momentum thickness, the loca l  pressure coefficient,  and the boundary- 
layer-shape parameter. 

Ames Aeronautical Laboratory, 
National Advisory Committee fo r  Aeronautics, 

Moffett Field,  Calif., Jan. 12, 1951. 
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SOLUTION OF THE BOUNDARY-LAYER GROWTH EQUATIONS 
, 

Since equations (31) and (33) are both of the general form 

dY 
= f(x,y) 

they can be solved by one of the standard numerical methods of integra- 
tion. Such a method consists, generally, of determining from equation 
(Al) the derivative or  slope dy/dx f o r  the given i n i t i a l  values of x 
and y ( i n  the present case, t h i s  amounts t o  specifying the boundary- 
layer thickness a t  the beginning of the ramp) and using tha t  slope over 
a small increment of x t o  determine the next value of y, and thereby 
the next value of dy/dx. This procedure i s  repeated u n t i l  the function 
y has been evaluated over the desired range of X. The following table  
outlines a systematic method i n  wbich the e r ro r  due t o  taking f i n i t e  
increments of x i s  kept re la t ive ly  small. Naturally, the accuracy of 
the integration will be impaired i f  the increments of 
large. 

x chosen are too 

X 

xo 

h xo + - 
2 

h xo + - 2 

xo + h 

Xl=xo+h 

Y f 

k 2  h 
f (xo + z, yo + - 2 

C =  1 (kl + 4) 
2 

+ k2 + k 3  

h = increment of x chosen f o r  integration 

The above table  has been reproduced from reference 13. 
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Figure 2.- Closeup of water tank w i t h  model mounted i n  posit ion for  
s t a r t i ng  a run. 
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A- 15007 

Figure 3.- Photographs of the transverse flow a t  successive s ta t ions i n  
a submerged i n l e t  having divergent ramp walls. 
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Figure 4.  - Variation of boundary-layer-shape 
parameter and shear-stress variable 
with parameter A involving R e y n o l d s  
number ond pressure gradient ( f r o m  
r e f e r e n c e  7) .  
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Divergent Wal ls  --, 
Par al l  e l  W a f  I s  

u Depth 1 

m / / % =  ,6 

Percent  of Ramp Length 

Figure 5 . -  Wind- tunnel  m e a s u r e m e n t s  o f  the b o u n d a r y -  
layer  momentum t h i c k n e s s  8 along t h e  center l i n e  
of s u b m e r g e d  inlets having p o r o l l e l  and  d i v e r g e n t  
romp w a l l s  ( f rom r e f e r e n c e  I ) .  
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f igure 8.- Wind-$unnel measurements  of  the vur ia t ion ot 
total vortex l o s s e s  with mass-f low r u t i o  a n d  r a m p -  
di ve r g en c e a n gle . 
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(a) Vertical locations of vortex centers. 
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{b) Portion of vortex losses taken internally. 

f igure 9. - Wind-tunnel measurements of the variation w i t h  
mass-flow rat io  of the vortex-center locations and - t h e  
porfion of total vortex losses entering the duct. 


