TECHNICAL NOTE

D-501

VERY RESTRICTED FOUR-BODY PROBLEM

Su-Shu Huang

Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

 WASHINGTON
VERY RESTRICTED FOUR-BODY PROBLEM

by

Su-Shu Huang

SUMMARY
First, a state of motion of three finite bodies m_{1}, m_{2}, m_{3} is idealized by an approximation to the law of mechanics such that m_{2} and m_{3} revolve around each other in circular orbits and that their center of mass revolves around m_{1} also in a circular orbit. The motion of a fourth body of an infinitesimal mass is then studied in a similar manner, as in the restricted three-body problem.

CONTENTS

Summary i
INTRODUCTION 1
AN INTEGRAL OF THE EQUATION OF MOTION FOR THE FOURTH BODY 1
ZERO-VELOCITY SURFACES 4
DOUBLE POINTS OF THE SURFACES 5
DEGENERATION OF THE CRITICAL ZERO-VELOCITY SURFACES 9
DISCUSSION 12

VERY RESTRICTED FOUR-BODY PROBLEM

INTRODUCTION

In another paper* the general behavior of an artificial satellite in the earth-moonsun system was studied in terms of two three-body problems. In the present paper some justification will be provided for that approach by treating dynamically an idealized case of motion of an infinitesimal body of mass m in a system of three bodies m_{1}, m_{2}, and m_{3} so arranged that the center of mass, 0^{\prime}, of m_{2} and m_{3} is revolving around the center of mass, 0 , of the entire system in a circular orbit and m_{2} and m_{3} themselves are revolving around 0^{\prime} also in circular orbits. Such a state of motion of the three bodies is obviously possible only in the form of approximation. However, if

$$
m_{1} \gg m_{2}+m_{3} \gg m
$$

and if the separation A between m_{1} and 0^{\prime} is very much greater than that separation a between m_{2} and m_{3}, both of these two conditions being true in the case of an artificial satellite in the earth-moon-sun $\left(m_{2}-m_{3}-m_{1}\right)$ system, the approximation will deviate from the actual solution of mechanics very little.

AN INTEGRAL OF THE EQUATION OF MOTION

FOR THE FOURTH BODY

Further assume that the three bodies m_{1}, m_{2}, m_{3} always remain in the same plane and let the distances of m_{1} and 0^{\prime} from 0 be A_{1} and A_{2}, and those of m_{2} and m_{3} from 0^{\prime} be a_{1} and a_{2}. Now choose a rectangular coordinate system with its origin at 0 and its three axes ζ, η, ζ fixed in space, the ζ-axis being perpendicular to the plane of the three finite bodies. Hence the coordinates of the four bodies may be written as $\mathrm{m}_{1}\left(\xi_{1}, \eta_{1}, 0\right), \mathrm{m}_{2}\left(\xi_{1}, \eta_{2}, 0\right), \mathrm{m}_{3}\left(\xi_{3}, \eta_{3}, 0\right)$, and $\mathrm{m}(\xi, \eta, \zeta)$. The equations of motion of the infinitesimal body m are given by

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \xi}{\mathrm{dt}^{2}}=-\mathrm{Gm}_{1} \frac{\xi-\xi_{1}}{\mathrm{r}_{1}^{3}}-\mathrm{Gm}_{2} \frac{\xi-\xi_{2}}{\mathrm{r}_{2}^{3}}-\mathrm{Gm}_{3} \frac{\xi-\xi 3}{\mathrm{r}_{3}^{3}} \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \eta}{\mathrm{dt}}{ }^{2}=-\mathrm{Gm}_{1} \frac{\eta-\eta_{1}}{\mathrm{r}_{1}{ }^{3}}-\mathrm{Gm}_{2} \frac{\eta-\eta_{2}}{\mathrm{r}_{2}{ }^{3}}-\mathrm{Gm}_{3} \frac{\eta-\eta_{3}}{\mathrm{r}_{3}{ }^{3}}, \tag{2}\\
& \frac{\mathrm{~d}^{2} \zeta}{\mathrm{dt}}{ }^{2}=-\mathrm{Gm}_{1} \frac{\zeta}{\mathrm{r}_{1}{ }^{3}}-\mathrm{Gm}_{2} \frac{\zeta}{\mathrm{r}_{2}{ }^{3}}-\mathrm{Gm}_{3} \frac{\zeta}{\mathrm{r}_{3}{ }^{3}}, \tag{3}
\end{align*}
$$
\]

where r_{1}, r_{2}, r_{3} represent the distances of the infinitesimal body m from m_{1}, m_{2}, and m_{3}, respectively.

Let Ω_{1} be the angular velocity with which the $m_{2}-m_{3}$ system revolves around 0 , and Ω_{2} that with which m_{3} revolves around 0^{\prime}. It can be easily seen that

$$
\begin{gather*}
\zeta_{1}=-A_{1} \cos \Omega_{1} t, \quad \eta_{1}=-A_{1} \sin \Omega_{1} t ; \tag{4}\\
\zeta_{2}=A_{2} \cos \Omega_{1} t-a_{1} \cos \Omega_{2} t, \\
\eta_{2}=A_{2} \sin \Omega_{1} t-a_{1} \sin \Omega_{2} t ; \tag{5}
\end{gather*}
$$

and

$$
\begin{align*}
& \zeta_{3}=A_{2} \cos \Omega_{1} t+a_{2} \cos \Omega_{2} t, \\
& \eta_{3}=A_{2} \sin \Omega_{1} t+a_{2} \sin \Omega_{2} t . \tag{6}
\end{align*}
$$

To the approximation involved in the assumption of circular motions of the three finite bodies, we have, from the result of the two-body problem,

$$
\begin{equation*}
\Omega_{1}=\left[\frac{G\left(m_{1}+m_{2}+m_{3}\right)}{A^{3}}\right]^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{2}=\left[\frac{G\left(m_{2}+m_{3}\right)}{a^{3}}\right]^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
A=A_{1}+A_{2}, \quad \text { and } a=a_{1}+a_{2} \tag{9}
\end{equation*}
$$

Next, choose a new rectangular coordinate system xyz centered at 0^{\prime} with the $\mathrm{x}-$ axis revolving with m_{2} and m_{3} and with the z-axis parallel to the ζ-axis. The equations of transformation from the old one to the new one can easily be found to be

$$
\begin{align*}
& \zeta=A_{2} \cos \Omega_{1} t+x \cos \Omega_{2} t-y \sin \Omega_{2} t, \tag{10}\\
& \eta=A_{2} \sin \Omega_{1} t+x \sin \Omega_{2} t+y \cos \Omega_{2} t, \tag{11}\\
& \zeta=z . \tag{12}
\end{align*}
$$

The coordinates of m_{1}, m_{2}, and m_{3} in the new system are given by

$$
\begin{array}{lll}
\mathbf{x}_{1}=-\mathbf{A} \cos \left(\Omega_{2}-\Omega_{1}\right) \mathbf{t}, & \mathbf{y}_{1}=\mathrm{A} \sin \left(\Omega_{2}-\Omega_{1}\right) \mathbf{t}, & \mathbf{z}_{1}=0 ; \\
\mathbf{x}_{2}=-\mathbf{a}_{1}, & \mathbf{y}_{2}=0, & z_{2}=0 ; \tag{14}
\end{array}
$$

and

$$
\begin{equation*}
x_{3}=a_{2}, \quad y_{3}=0, \quad z_{3}=0 \tag{15}
\end{equation*}
$$

Substituting Equations 4 through 6 and 10 through 12 in Equations 1 to 3, and utilizing Equations 9 and 13 through 15 give the following result:

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}-2 \Omega_{2} \frac{d y}{d t}=\Omega_{2}^{2}\left(x-\frac{A_{2}}{A} \frac{\Omega_{1}^{2}}{\Omega_{2}^{2}} x_{1}\right)-G m_{1} \frac{x-x_{1}}{r_{1}{ }^{3}}-G m_{2} \frac{x+a_{1}}{r_{2}{ }^{3}}-G m_{3} \frac{x-a_{2}}{r_{3}{ }^{3}}, \tag{16}\\
& \frac{d^{2} y}{d t^{2}}+2 \Omega_{2} \frac{d x}{d t}=\Omega_{2}^{2}\left(y-\frac{A_{2}}{A} \frac{\Omega_{1}^{2}}{\Omega_{2}^{2}} y_{1}\right)-G m_{1} \frac{y-y_{1}}{r_{1}{ }^{3}}-G m_{2} \frac{y}{r_{2}{ }^{3}}-G m_{3} \frac{y}{r_{3}{ }^{3}}, \tag{17}\\
& \frac{d^{2} z}{d t^{2}}=-G m_{1} \frac{z}{r_{1}{ }^{3}}-G m_{2} \frac{z}{r_{2}{ }^{3}}-G m_{3} \frac{z}{r_{3}{ }^{3}}, \tag{18}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
r_{1}^{2}=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+z^{2}, \tag{19}\\
r_{2}^{2}=\left(x+a_{1}\right)^{2}+y^{2}+z^{2}, \\
r_{3}^{2}=\left(x-a_{2}\right)^{2}+y^{2}+z^{2} .
\end{array}\right\}
$$

If a function U is defined as

$$
\begin{equation*}
\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv \Omega_{2}^{2}\left[\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-\frac{\mathrm{A}_{2}}{\mathrm{~A}} \frac{\Omega_{1}^{2}}{\Omega_{2}^{2}}\left(\mathrm{x}_{1} \mathrm{x}+\mathrm{y}_{1} \mathrm{y}\right)\right]+\frac{\mathrm{Gm}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{Gm}_{2}}{\mathrm{r}_{2}}+\frac{\mathrm{Gm}_{3}}{\mathrm{r}_{3}}, \tag{20}
\end{equation*}
$$

then Equations 16 through 18 assume the simplified form

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}-2 \Omega_{2} \frac{d y}{d t}=\frac{\partial U}{\partial x} \tag{21}\\
& \frac{d^{2} y}{d t^{2}}+2 \Omega_{2} \frac{d x}{d t}=\frac{\partial U}{\partial y} \tag{22}\\
& \frac{d^{2} z}{d t^{2}}=\frac{\partial U}{\partial z} \tag{23}
\end{align*}
$$

which can be integrated to give, for each epoch of an infinitesimal time-interval,

$$
\begin{equation*}
\mathrm{V}^{2}=2 \mathrm{U}+\text { constant }, \tag{24}
\end{equation*}
$$

where v is the magnitude of velocity in the xyz system of reference. Equation 24 plays a role in the present problem, just as Jacobi's integral in the restricted three-body problem.

ZERO-VELOCITY SURFACES

It follows from Equations 20 and 24 that the zero-velocity surface can be defined by

$$
\begin{equation*}
\frac{\Omega_{2}^{2}}{2}\left(x^{2}+y^{2}\right)-\frac{A_{2}}{A} \Omega_{1}^{2}\left(x_{1} x+y_{1} y\right)+\frac{G m_{1}}{r_{1}}+\frac{G m_{2}}{r_{2}}+\frac{G m_{3}}{r_{3}}=\text { constant. } \tag{25}
\end{equation*}
$$

Since $z_{1}=0$,

$$
\begin{equation*}
x_{1} x+y_{1} y=r A \cos \theta, \tag{26}
\end{equation*}
$$

where Θ is the angle between $0 . m$ and $0^{\prime} m_{1}$. In the case of the earth-moon-sun system, it is the angle subtended by the artificial satellite and the sun at 0^{\prime}. Thus, the zerovelocity surfaces are not fixed even in the rotating coordinate system; rather, they change with the position of m_{1}. However, an instantaneous (or osculating) zero-velocity surface can be defined for each position of m_{1}. It is in this sense that zero-velocity surfaces will be discussed. Indeed, the general behavior of the motion in the very restricted four-body problem can be understood by these osculating zero-velocity surfaces just as that of the motion in the restricted three-body problem by the zero-velocity surfaces themselves.

With the aid of Equations 7, 8, and 26, Equation 25 becomes

$$
\begin{equation*}
\frac{1}{2} \frac{\left(m_{2}+m_{3}\right)\left(x^{2}+y^{2}\right)}{a^{3}}-\frac{m_{1} r}{A^{2}} \cos \theta+\frac{m_{1}}{r_{1}}+\frac{m_{2}}{r_{2}}+\frac{m_{3}}{r_{3}}=\text { constant } \tag{27}
\end{equation*}
$$

Since the motion of m is of interest only when $r \ll A$, the term $1 / r_{1}$ in Equation 27 can be expanded in terms of spherical harmonics, $\mathrm{F}_{\mathrm{n}}(\cos \Theta)$; that is,

$$
\begin{equation*}
\frac{1}{r_{1}}=\frac{1}{A} \sum_{n=0}^{\infty}\left(\frac{r}{A}\right)^{n} P_{n}(\cos \theta) \tag{28}
\end{equation*}
$$

Taking only the first three terms in the right side of Equation 28 and substituting them in the place of $1 / r_{1}$ in Equation 27, we obtain

$$
\begin{equation*}
\frac{\left(m_{2}+m_{3}\right)\left(x^{2}+y^{2}\right)}{a^{3}}+\frac{m_{1} r^{2}}{A^{3}}(3 \cos \Theta-1)+\frac{2 m_{2}}{r_{2}}+\frac{2 m_{3}}{r_{3}}=\text { constant } \tag{29}
\end{equation*}
$$

where the term $2 m_{1} / \mathrm{A}$ has been absorbed in the constant term.
If a is now taken as the unit of length and $m_{2}+m_{3}$ as the unit of mass, Equation 29 reduces to

$$
\begin{equation*}
x^{2}+y^{2}+\frac{m_{1} r^{2}}{A^{3}}\left(3 \cos ^{2} \Theta-1\right)+\frac{2(1-\mu)}{r_{2}}+\frac{2 \mu}{r_{3}}=C \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\frac{m_{3}}{m_{2}+m_{3}} \tag{31}
\end{equation*}
$$

and c is a constant of integration. This differs from the zero-velocity surfaces of the restricted three-body problem only by the addition of a small perturbing term that contains the factor m_{1} / A^{3}.

DOUBLE POINTS OF THE SURFACES

Consider the change in position of the three double points L_{1}, L_{2}, L_{3} which are located on the x-axis when the perturbing term vanishes. Since this is now limited to the $x y$ plane,

$$
\begin{equation*}
\Theta=\theta-\theta_{0}, \tag{32}
\end{equation*}
$$

where θ and θ_{0} are the respective angles that the positive x-axis makes with the vectors $0^{\prime} \mathrm{m}$ and $0^{\prime} \mathrm{m}_{1}$. In the case of the earth-moon-sun system, θ_{0} changes from 0 to 2π in a period of the lunar month. Therefore, in a time-scale of a few hours θ_{0} may be regarded as constant.

Substituting Equation 32 into Equation 30, we obtain after reduction

$$
\begin{array}{r}
\mathrm{F}(\mathrm{x}, \mathrm{y}) \equiv(1+\beta)\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+3 \beta\left[\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \cos 2 \theta_{0}+2 \mathrm{xy} \sin 2 \theta_{0}\right] \\
+\frac{2(1-\mu)}{\mathrm{r}_{2}}+\frac{2 \mu}{\mathrm{r}_{3}}-\mathrm{C}=0 \tag{33}
\end{array}
$$

where

$$
\begin{equation*}
\beta=\frac{1}{2} \frac{m_{1}}{A^{3}} \tag{34}
\end{equation*}
$$

The conditions for double points are

$$
\begin{array}{r}
\frac{1}{2} \frac{\partial F}{\partial x}=\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right] x+3\left(\beta \sin 2 \theta_{0}\right) y \\
-\frac{(1-\mu)\left(x-x_{2}\right)}{r_{2}{ }^{3}}-\frac{\mu\left(x-x_{3}\right)}{r_{3}{ }^{3}}=0 \tag{35}
\end{array}
$$

and

$$
\begin{array}{r}
\frac{1}{2} \frac{\partial \mathbf{F}}{\partial \mathbf{y}}=\left[1+\left(1-3 \cos 2 \theta_{0}\right) \beta\right] \mathbf{y}+3\left(\beta \sin 2 \theta_{0}\right) \mathbf{x} \\
-\frac{(1-\mu) \mathbf{y}}{r_{2}^{3}}-\frac{\mu \mathrm{y}}{r_{3}^{3}}=0 \tag{36}
\end{array}
$$

from which all five double points can be determined on the xy plane. Double points are no longer the particular solution of the problem because they change with θ_{0} and also because the problem is being treated only approximately (by taking only the first few terms in the series expansion of $1 / \mathrm{r}_{1}$, etc.).

Since β is small, its second and higher orders can be neglected. It appears from Equation 36 that the three double points which approach the x -axis when $\beta=0$ have their \mathbf{y}-coordinates of the order of $\beta \sin 2 \theta_{0}$ when $\beta \neq 0$. Thus, the term $3\left(\beta \sin 2 \theta_{0}\right) \mathrm{y}$ in Equation 35 is of the order of $\left(\beta \sin 2 \theta_{0}\right)^{2}$ and can be neglected. Hence, Equation 35 is reduced to

$$
\begin{equation*}
\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right] x-\frac{(1-\mu)\left(x-x_{2}\right)}{r_{2}{ }^{3}}-\frac{\mu\left(x-x_{3}\right)}{r_{3}{ }^{3}}=0, \tag{37}
\end{equation*}
$$

which differs from its counterpart in the restricted three-body problem only by the factor $\left(1+3 \cos 2 \theta_{0}\right) \beta$.

Once the x-coordinates of the three double points are derived from the solution of Equation 37, their y-coordinates can be obtained by

$$
\begin{equation*}
\left(\frac{d y}{d \beta}\right)_{\beta=0}=F_{i} \sin 2 \theta_{0} \tag{38}
\end{equation*}
$$

where

$$
F_{i}=\left[\frac{3 x}{\frac{1-\mu}{r_{2}{ }^{3}}+\frac{\mu}{\mathrm{r}_{3}{ }^{3}}-1}\right]_{\mathbf{L}_{i}},
$$

which follows directly from Equation 36 except that now the values of x, r_{2}, and r_{3} are taken at one of the three double points $L_{i}(i=1,2,3)$ for the case $\beta=0$.

The change in position of the three double points with β and θ_{0} can be most conveniently seen by first taking the derivatives of their coordinates with respect to β and
setting $\beta=0$. Consider the three points separately: (1) L_{2} between $+\infty$ and x_{3}, (2) L_{1} between x_{3} and x_{2}, and (3) L_{3} between x_{2} and $-\infty$.
(1) Let the distance from m_{3} in the x-direction to the double point L_{2} be represented by ρ. Then Equation 35 becomes, by neglecting the second and higher orders of $\beta \sin 2 \theta_{0}$,

$$
\begin{equation*}
\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right](1-\mu+\rho)-\frac{1-\mu}{(1+\rho)^{2}}-\frac{\mu}{\rho^{2}}=0 . \tag{39}
\end{equation*}
$$

Differentiating Equation 39 with respect to β and setting $\beta=0$ give

$$
\begin{equation*}
\left(\frac{\mathrm{d} \rho}{\mathrm{~d} \beta}\right)_{\beta=0}=\mathbf{E}_{2}\left(1+3 \cos 2 \theta_{0}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{E}_{2}=-\frac{\left(1-\mu+\rho_{0}\right)\left(1+\rho_{0}\right) \rho_{0}^{3}}{3 \rho_{0}^{3}\left(1+\rho_{0}\right)+2 \mu\left(1-\rho_{0}^{3}\right)} . \tag{41}
\end{equation*}
$$

The symbol ρ_{0} at the right side of Equation 41 is the solution of ρ for Equation 39 with $\beta=0$. Similarly the change in value of c which corresponds to the variation in position of L_{2} can be computed. Differentiating Equation 33 with respect to β and setting $\beta=0$ afterwards give

$$
\begin{equation*}
\left(\frac{\mathrm{dC}}{\mathrm{~d} \beta}\right)_{\beta=0}=\left(1-\mu+\rho_{0}\right)^{2}\left(1+3 \cos 2 \theta_{0}\right) \tag{42}
\end{equation*}
$$

ρ_{0} in Equation 42 having the same meaning as that in Equation 41.
(2) Let the distance in the x-direction from m_{3} to the double point L_{1} be represented by ρ. Then by a similar approximation, as before, Equation 35 reduces to

$$
\begin{equation*}
\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right](1-\mu-\rho)-\frac{1-\mu}{(1-\rho)^{2}}+\frac{\mu}{\rho^{2}}=0 . \tag{43}
\end{equation*}
$$

By exactly the same procedure as before, we obtain

$$
\begin{equation*}
\left(\frac{\mathrm{d} \rho}{\mathrm{~d} \beta}\right)_{\beta=0}=\mathrm{E}_{1}\left(1+3 \cos 2 \theta_{0}\right), \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{E}_{1} & =\frac{\left(1-\mu-\rho_{0}\right) \rho_{0}^{3}}{3 \rho_{0}^{3}+2 \mu\left(1+\rho_{0}+\rho_{0}^{2}\right)} \tag{45}\\
\left(\frac{\mathrm{dC}}{\mathrm{~d} \beta}\right)_{\beta=0} & =\left(1-\rho_{0}-\mu\right)^{2}\left(1+3 \cos 2 \theta_{0}\right), \tag{46}
\end{align*}
$$

and ρ_{0} is the solution of Equation 43 with $\beta=0$.
(3) Let the distance in the x-direction from m_{2} to the double point L_{3} be represented by $1-\rho$. Then Equation 35 reduces by approximation to

$$
\begin{equation*}
\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right](1+\mu-\rho)-\frac{1-\mu}{(1-\rho)^{2}}-\frac{\mu}{(2-\rho)^{2}}=0 . \tag{47}
\end{equation*}
$$

From this is derived

$$
\begin{equation*}
\left(\frac{\mathrm{d} \rho}{\mathrm{~d} \beta}\right)_{\beta=0}=\mathrm{E}_{3}\left(1+3 \cos 2 \theta_{0}\right), \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{E}_{3}=\frac{\left(1+\mu-\rho_{0}\right)\left(2-\rho_{0}\right)^{3}}{3\left(2-\rho_{0}\right)^{3}+2 \mu\left[\left(2-\rho_{0}\right)^{2}+\left(2-\rho_{0}\right)+1\right]} ; \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d C}{d \beta}\right)_{\beta=0}=\left(1-\rho_{0}+\mu\right)^{2}\left(1+3 \cos 2 \theta_{0}\right), \tag{50}
\end{equation*}
$$

where ρ_{0} is the solution of Equation 47 with $\beta=0$.
Now if the positions and their corresponding values of C of the three double points on the x-axis are known for the case $\beta=0$, their positions and the corresponding values of c for the case of small β may be derived by

$$
\begin{equation*}
\rho=\rho_{0}+\beta\left(\frac{\mathrm{d} \rho}{\mathrm{~d} \beta}\right)_{\beta=0}, \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{C}=\mathrm{C}_{0}+\beta\left(\frac{\mathrm{dC}}{\mathrm{~d} \beta}\right)_{\beta=0} . \tag{52}
\end{equation*}
$$

The change in the ordinates of these points is given by Equation 38.
For the earth-moon system, $\mu=0.01216$. The values for the relevant quantities in this case are listed in Table 1. The derivative of the coordinates of these three points

Table 1
Values of $\rho, \mathbf{C}, \mathrm{E}_{\mathrm{i}}$, and F_{i} for the changes in position of L_{1}, L_{2}, L_{3} with $\beta=0$

$$
[\mu=0.01216]
$$

	$\mathrm{L}_{1}(\mathrm{i}=1)$	$\mathrm{L}_{2}(\mathrm{i}=2)$	$\mathrm{L}_{3}(\mathrm{i}=3)$
ρ	0.1510	0.1679	0.00709
C	3.18843	3.17223	3.01216
E_{i}	0.0741	-0.1566	0.3326
$\mathrm{~F}_{\mathrm{i}}$	0.6053	1.5831	-0.3820

(1)

(2)

\dot{m}_{2}

Figure 1 - Changes in position with β at $\beta=0$ of (1) the three double points, L_{1}, L_{2} L_{3}, and of (2) the intersecting points M and N with the x-axis of the zero-velocity surface passing through L_{1}. Notice the opposite directions of the changes in position of L_{2} and M.
with respect to β at their normal positions ($\beta=0$) are furthermore illustrated in Figure 1 for three positions of the sun $\left(\theta_{0}=0, \pi / 4, \pi / 2\right)$. The directions and magnitudes of the arrows in the figure indicate the derivatives of the coordinates of these points with respect to β for three values of $\theta_{0}(0, \pi / 4, \pi / 2)$.

In order to examine the change in position of the double points L_{4} and L_{5}, which make two equilateral triangles with m_{2} and m_{3} when $\beta \square 0$, we must resort to the original Equations 35 and 36. Differentiate them with respect to β, and set in the resulting equations:

$$
\beta=0, \quad r_{2}=r_{3}=1, \quad \mathbf{x}=\frac{1}{2}-\mu, \quad \mathbf{y}= \pm \frac{\sqrt{3}}{2} .
$$

The required quantities $(\mathrm{dx} / \mathrm{d} \beta)_{\beta=0}$ and $(\mathrm{dy} / \mathrm{d} \beta)_{\beta=0}$ are derived by solving the equations simultaneously.

DEGENERATION OF THE CRITICAL

ZERO-VELOCITY SURFACES

When $\beta=0$, which corresponds to the restricted three-body problem, the zerovelocity surface that passes through L_{1} is frequently known as the inner contact surface and that which passes through L_{2}, the outermost contact surface. The former intersects the x-axis at two more points besides L_{1}. Call the intersecting point on the positive x axis M and that on the negative x-axis N. From the change in position of M and N with β, the general behavior of the system of zero-velocity surfaces can be inferred.
(1) Point M : Let its distance from m_{3} be σ. Thus, from Equation 33,

$$
\begin{equation*}
\mathbf{C}=(1-\mu+\sigma)^{2}\left[1+\left(1+3 \cos 2 \theta_{0}\right) \beta\right]+\frac{2(1-\mu)}{1+\sigma}+\frac{2 \mu}{\sigma} . \tag{53}
\end{equation*}
$$

Differentiating Equation 53 with respect to β and utilizing the relation given by Equation 46 give

$$
\begin{equation*}
\left(\frac{d \sigma}{d \beta}\right)_{\beta=0}=E_{m}\left(1+3 \cos 2 \theta_{0}\right), \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{E}_{\mathrm{m}}=-\frac{\left(\rho_{0}+\sigma_{0}\right)\left(2-2 \mu+\sigma_{0}-\rho_{0}\right)}{2\left[\mathbf{1}-\mu+\sigma_{0}-\frac{1-\mu}{\left(1+\sigma_{0}\right)^{2}}-\frac{\mu}{\sigma_{0}^{2}}\right]}, \tag{55}
\end{equation*}
$$

in which σ_{0} is the solution of Equation 53 with $\beta=0$ and $\mathbf{C}=\mathbf{C}_{0}$, corresponding to the inner contact surface of the restricted three-body problem.
(2) Point N : Let its distance from m_{2} be σ. Following the same procedure as before, we derive

$$
\begin{equation*}
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \beta}\right)_{\beta=0}=\mathrm{E}_{\mathrm{n}}\left(1+3 \cos 2 \theta_{0}\right), \tag{56}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=\frac{\left(1-2 \mu-\rho_{0}-\sigma_{0}\right)\left(1+\rho_{0}+\sigma_{0}\right)}{2\left[\mu+\sigma_{0}-\frac{1-\mu}{\sigma_{0}^{2}}-\frac{\mu}{\left(1+\sigma_{0}\right)^{2}}\right]}, \tag{57}
\end{equation*}
$$

where σ_{0} is σ of N when $\beta=0$. In both Equations 55 and $57, \rho_{0}$ is the solution of Equation 43 with $\beta=0$.

For $\mu=0.01216$,

$$
\begin{equation*}
E_{m}=0.6217, \text { and } E_{n}=0.0589 . \tag{58}
\end{equation*}
$$

The changes in position of m and N are illustrated in Figure 1, from which it is seen that M moves out while L_{2} moves in as $\beta\left(1+3 \cos 2 \theta_{0}\right)$ increases. In other words, the inner contact surface will eventually meet the outermost contact surface at a certain value of $\beta\left(1+3 \cos 2 \theta_{0}\right)$. When this happens, the two surfaces degenerate into one surface. It is evident from Equations 40,54,58 and Table 1 that the smallest value of β for which the critical surfaces become degenerated occurs at $\theta_{0}=0$. This threshold value of β (denoted by β_{c} hereafter) can be determined in the following way: First calculate the two points L_{1} and L_{2} by Equation 35 with $\theta_{0}=0$. Denote the distances of L_{1} and L_{2} from m_{3} by ρ_{1} and ρ_{2}, from which the corresponding values of C (denoted by C_{1} and C_{2}, respectively) can be obtained from Equation 33. The degenerated case is given by the condition

$$
\begin{equation*}
C_{1}=C_{2} \tag{59}
\end{equation*}
$$

which gives the required value β_{c}. In Table 2 there is computed for the case $\mu=0.01216$ three sets of values from which we obtain

$$
\begin{equation*}
\beta_{c}=0.0064 \tag{60}
\end{equation*}
$$

by graphical interpolation. The corresponding values for $\rho_{1}, \rho_{2}=\sigma_{M}$, and $C_{1}=C_{2}$ are given in the last row of the table. Figure 2 illustrates the degenerated zero-velocity surface that passes through both L_{1} and L_{2}.

Table 2
Determination of β_{c}
[$\mu=0.01216]$

β	ρ_{1}	C_{1}	ρ_{2}	C_{2}	σ_{M}
0.0	0.15097	3.18843	0.16788	3.17223	0.12580
0.0025	0.15171	3.19542	0.16672	3.18557	0.13306
0.005	0.15246	3.20241	0.16482	3.19888	0.14442
0.0075	0.15321	3.20938	0.16334	3.21214	(No solution)
$\beta_{c}=$	$\beta_{c}=$	$\beta_{c}=$	$\beta_{c}=$	$\beta_{c}=$	$\beta_{c}=$
0.0064	0.15288	3.20632	0.16398	3.20632	0.16398

Figure 2 - Degenerate zerovelocity surface passingthrough both L_{1} and L_{2}; plotted for the case $\mu=0.01216$ corresponding to the earth-moon system

Further increase in β causes a fundamental change in shape of the critical zerovelocity surfaces. The surface that passes through L_{1} opens up at M as can be seen from Equation 53, which does not yield any significant solution when $\beta>\beta_{c}$. The general behavior of the critical zero-velocity surfaces for the cases $\beta>\beta_{c}$ is illustrated in Figure 3. In general the zero-velocity surfaces in the very restricted four-body problem are not symmetric even with respect to the x-axis. However, when $\theta_{0}=0$, they become symmetrical as is shown in both Figures 2 and 3.

> Figure $3-$ Zero-velocity surfaces passing through L_{1} and L_{2}, respectively, when $\beta>\beta_{\mathrm{c}} ;$ plotted for the case $\mu=0.01216, \beta=0.025$, and $\theta_{0}=0$ (figure is symmetric with respect to the x-axis only because $\theta_{0}=0$)

DISCUSSION

For the earth-moon-sun system, from Equation 34,

$$
\begin{equation*}
\beta=0.0028, \tag{61}
\end{equation*}
$$

which is smaller than the threshold value for degeneracy as given by Equation 60. Thus, the critical surfaces will never become degenerated for any value of θ_{0}. In other words, the inner and outermost contact surfaces for the earth-moon system can still be defined in spite of the presence of the sun, justifying the treatment in the previous paper of satellites in the earth-moon-sun system as restricted three-body problems.

For $\beta<\beta_{c}$, the inner and outermost contact surfaces may be regarded as oscillating when θ_{0} varies periodically. It follows from Equation 46 that a positive value of $\beta\left(1+3 \cos 2 \theta_{0}\right)$ makes a satellite escape easier than does a negative value. For example, a satellite with $\mathrm{C} \geq 3.18843$ will not escape from the neighborhood of the earth (or of the moon) in the framework of the restricted three-body problem (i.e., $\beta=0$). By the introduction of the fourth body $\left(m_{1}\right)$, a satellite will be retained inside the inner contact surface permanently only if $C \geq 3.19625$. Similarly, the limiting value of C for retaining a satellite inside the outermost contact surface is now 3.18714 , against 3.17223 in the restricted three-body problem.

Although the present method of approach does not give the perturbation of orbital elements of artificial satellites, it gives a general idea of where they could or could not go under given initial conditions when they are no longer very near to the earth.

[^0]: *Huang, S.-S., "Some Dynamical Properties of the Natural and Artificial Satellites," NASA Technical Note D-502.

