
PB89-175525

Mental Models in Human Computer
Interaction: Research Issues about
What the User of Software Knows

National Research Council, Washington, DC

i

Prepared for i!
Office of Naval Research, Arlington, VA

1987

1989068859

P,E89-175525

1989068859-002

i_ :-.

/
Abstract

Users of software systems acquire knowledge about the system
and how to use it through experience, training, and imitation.

Curreutly, there is a great deal of debate about exactly what users
know about software. This knowledge may include one or more of
the following:

. simple rules that prescribe a sequence of actions that apply
under certain conditions;

• general methods that fit certain general situations and
goals; and

r• meatal models, knowledge of the components of a system,
their interconnection, and the processes that change the
components; knowledge that forms the basis for users be-
ing able to construct reasonable actions; and explanations
about why a set of actions is appropriate.

Discovering what users know and how these different forms

of knowledge fit together in learning and performanceis impor-
tant. It applies to the problemof designingsystems and training
programs so that the systems are easy to use and the learning is
efficient. Research on the effects of different representations on

ultimate performance is mixed. Research on exactly what users

Xv

: ?

1989068859-003

know is scattered. Analytical methods and techniques for repre-
senting what the user knows are sparse but growing.

This report reviews current work and through the review,
identifies several important research needs:

• Detail what kinds of mental representations people have of
systems that allow them to behave appropriately in using
the software.

• Detail what a mental model would consist of and how a

would it decide what action takeperson use to to next.

• Produce evidence that people have and use mental models.

• Determine the behaviors that would demonstrate a mental
model's form and the operations used on the model.

" • Explore alternative views of goal-directed representations
I (e.g., so-called sequence/method representations) and de-

tail the behavior pl_edicted from them.
• Expand the types of mental representations that may exist

to include those that may not be mechanistic, such as
algebraic and visual systems.

• Determine how people intermix different representations in
producing behavior.

• l_xplore how knowledge about systems is acquired.
• Determine how individual differences have an impact on

learning of and performance on systems.
• Explore the design of training sequences for systems.
• Provide systems designers with tools to help them develop

systems that evoke "good" representations in users.
• Expand the task domain of this research to include more

complex software.

1989068859-004

!_ Mental Models in
i Human-Computer
i Interaction

t_

Research Issues About What the
User of Software Knows

John M. Carroll and Judith Reitman Olson, Editors

Workshop on Software Human Factors:
Users' Mental Models
Nancy Anderson, Chair

Committee on Human Factors
Commission on Behavioral and Social Sciences and Education
National Research Council

J

NATIONAL ACADEMY PRESS
Washington, D.C. 1987

\

1989068859-005

NOTICE: The project that is the auk,Sect of this report was approved by the Governing
Board of the National Rm_arch Counc[W,whose members are druwn from the councils
of the National Academy of Sciences, the National Academy of Engineering, and the
Institute of Medicine. The members of the committee reeponslble for the report were
chosen for their 8pecini competences and with regurd for appropriate balance.

This report hue been reviewed by a group other than the authors according to
procedures approved by s Report Revkw Committee consisting of members of the
Nutionul Academy of Sclencse, the National Academy of Engineering, and the Institute

in of Medicine.

i: The Nntlonnl Academy of Sciences is a prlwte, nonprofit, eelf-perpetunt|ug society
of distinguished scholars englged in scientific and engineering research, dedicated to the
furtherance of science and technolo_ and to their use for the general welfare. Upon
the authority of the charter Kranted to it by the Congress in 1863, the Academy h_

i s mlmdate that requires it to advise the fedem| government on scientific and technical
matters. Dr. Frank Pros is president of the National Academy of Sciences.

The National Academy of Engineerln z was estah|ished in 1964, under the charter
v_ of the National Academy of Sc;encas, u a parallel orgunisution of outstanding engineers.

It is autonomous in its administration and in the selection of its members, sharing with
the National Academy of Sciences the rseponslbillty for advising the federal government.
The National Academy of Engineerlng also sponsors engineering programs aimed at
meeting national needs, encourngse education and research, and recognises the superior
achievements of engineers. Dr. Robert M. White is president of the National Academy
of Eng|necring.

The Institute of Medicine wu established in 1970 by the National Academy of
Sciences to secure the services of eminent members of epproprinte profusions in the
exuminution of policy matters pertaining to the health of the public. The Instltute acts
under the responsibility given to the National Academy of Sciences by its congressional
charter to be an adviser to the federal government and, upon |ts own initiative, to
[dent|fy issues of m_tlcLi care, research, and education. Dr. Samuel O. Thinr is president
Of the Institute of Medicine. !

The N-.tlonai Research Council was organised by the National Academy of Sciences
in 1916 to eesoclute the broad community of ecknce and tachno[ot7 with the A_-.demy's
purposes of furthering knowledge and advising the federu[government. Functlonn,g ;n
accordance with general policies determined by the Academy, the Council hue become the
principal operuting agency of both the Natlonul Academy of Sclencee and the Nutlonnl
Academy of I_,nglneering in providing services to the government, the public, rand the
scientific and englnserlng communities. The Council k administered jointly by both
Academies and the Institute of Mud|clue. Dr. Prank Press and Dr. Robert M. White are

chuirman and vice chairman, respectively, of the National R_earch Council.

The United States government has at least a royalty-frce, nonexclnslve and irre-
vocable license throughout the world for government purposes to publish, translate.
reproduce, deliver, perform, dispose of, and to authorise others so as to do, all or any
portion of this work.

Available from
Committee on Human l_ctors
Commission on l_huv|oral _d Social Sciences _d Educntion

National Research Council !
2101 Constitution Ave., N.W.
Washington, D.C. 20418 i

Printed in the United States of America

i '
:L

4

"" 1989068859-006

WORKSHOP ON SO]_TWARE HUMAN _ACTORS:
USERS' MENTAL MODELS

NANCY ANDERSON (Chair),DepartmentofPsychology,
University ofMaryland

ELIZABETH K. BAILEY, Consultant,FallsChurch,Virginia
JOHN M. CARROLL, WatsonResearchCenter,IBM

Corporation,YorktownHeights,New York
RICHARD J.JAGACINSKI, DepartmentofPsychology,Ohio

StateUniversity
DAVID R. LENOROVITZ, Computer TechnologyAssociates,

Inc.,Englewood,Colorado
MARILYN MANTEl, CenterforMachineIntelligence,Ann

Arbor,Michigan
PHYLLIS REISNER, Almaden ResearchCenter,IBM Research,

San Jose,California
JUDITH REITMAN OLSON, DepartmentofComputer_ad

InformationSystems,GraduateSchoolofBusiness
Administration,UniversityofMichigan -.

JANET WALKER, Symbolics,Inc.,Cambridge,Massachusetts
JOHN WHITESIDE, DigitalEquipmentCorporation,Nasht:a,

New Hampshire

STANLEY DEUTSCH, StudyDirector

iii

\

1989068859-007

F

!
i COMMITTEE ON HUMAN _ACTORS1986-1987

THOMAS B. SHERIDAN (Chair), DepartmentofMechanical
Engineering,MassachusettsInstituteofTechnology

NANCY S.ANDERSON, DepartmentofPsychology,University
ofMaryland

CLYDE H. COOMBS, DepartmentofPsychology,Universityof
Michigan

JEROME I.ELKIND, InformationSystems,XeroxCorporation,
PaloAlto

BARUCH B.FISCHHOFF, DecisionResearch(abranchof
Perceptronics,Inc.),Eugene,Oregon

OSCAR GRUSKY, DepartmentofSociology,Universityof
California,Los Angeles

ROBERT M. GUION, DepartmentofPsychology,BowlingGreen
StateUniversity

DOUGLAS H. HARRIS, AnacapaSciences,SantaBarbara,
California

JULIAN HOCHBERG, Department of Psychology, Columbia
University

THOMAS K. LANDAUER, Information Sciences Division, Bell
Communication Research, Morristown, New Jersey

JUDITH REITMAN OLSON, Departmentof Computerand
InformationSystems,GraduateSchoolofBusiness
Administration,UniversityofMichigan

RICHARD W. PEW (PastChair),Computerand Information
SciencesDivision,BoltBeranekandNewman Laboratories,
Cambridge,Massachusetts

STOVER H. SNOOK, LibertyMutualResearchCenter,
Hopkinton,Massachusetts

1
\,

1989068859-008

ROBERT C. WlLLIGES, Department of Industrial Engineering
and OperationsResearch,VirginiaPolytechnicInstituteand
State University

STANLEY DEUTSCH, Study Director (1984-1987)
HAROLD VAN COTT, Study Director

i

i

F, .,,

I

vi

1989068859-009

Foreword

The CommitteeonHuman FactorswasestablishedinOctober
1980by theCommissionon Behavioraland SocialSciencesand
EducationoftheNationalResearchCouncil.The committeeis

sponsoredby the Oi_ceofNavalResearch,theArmy Research
Instituteforthe Behavioraland SocialSciences,the National
Aeronauticsand SpaceAdministration,and theNationalScience
Foundation.The principalobjectivesof thecommitteeareto
providenew perspectivesontheoreticalandmethodologicalissues,
to identifybasicresearchneededto expandand strengthenthe
scientificbasisofhuman factors,and to attractscientistsboth
withinandoutsidethefieldforinteractivecommunicationand to

performneededresearch.The goalofthecommitteeistoprovide
a solidfoundationofresearchasa baseon whicheffectivehuman
factorspracticescan build.

Human factorsissuesariseineverydomaininwhichhumans
interactwiththeproductsofa technologicalsociety.Inorderto
performitsroleeffectively,thecommitteedrawson expertsfrom
a wide range of scientific arid engineering disciplines. Members of
the committee include specialists in such fields as psychology, en-
gineering, biomechanics, physiology, medicine, cognitive sciences,
machine intelligence, computer sciences, sociology, education, and
human factors engineering. Other disciplines are represented in
the working groups, workshops, and symposia. Each of these dis-
ciplines contributes to the basic data, theory and methods required
to improve the scientific basis of human factors.

vii

\

1989068859-010

Contents

Preface..xi

_!! Abstract..xv

Introduction...3

IiI ModelsofWhat, Heldby Whom?3

Types of Representations of Users' Knowledge 5

i SimpleSequences,6

Methodsand Ways toChooseAmong Them, 8
MentalModels,12

_ Surrogates, 13 1
MetaphorModels,13

il GlassBox Models,14
NetworkRepresentationsoftheSystem,15

Comparisons, 17

How Users' Knowledge Affects Their Performance 19

Chaosand MisconceptioniP.BothNovicesand
Experts,20
SkilledPerf,,finance,21 i

Applying What We Know of the User's Knowledge to I
PracticalProblems...23 _I

Designing Interfaces, 24 i1User Training, 26

ResearchRecommendations.....................................29 I
i

References..34

ix

1989068859-011

i
Preface

f

There hasbeen a long-standingproblemwithinferringthecausesofcomplexbehavior.Mentaleventsarenotdirectlyob-
servable;theymust be inferredfromovertbehavior.Behaviorists

!_ reject mental events as legitimate scientific concepts. More re-
cently, however, developments in cognitive science and artificial

Ii intelligence, in which mental events are specifically modeled and '_
! found to have measurable correlates in behavior, have brought the q

Ii conceptsbackintofashion.Thesementalevents,theirdescription
and postulated interrelationships, are the subject of this report.

i We focus specifically on the mental events that are postulated to
occur as someone learns or performs complex tasks on computer
software.

From thepointofviewofcognitivescience,usersofcomputer
softwaresystemsbasetheirbehavioron storedknowledgeabout
particularsequencesof actions,on generalrulesabout how to
accomplishcertaintasks,or on a mentalmodel (anunderlying
understandingofhow thesystemworks).Knowingwhat theuser
knowsaboutorexpectsfroma systemhasimplicationsforboth
design and training purposes. From a design point of view, the
system could be designed to fit the user's goals in accomplishing
tasks or could display enough of how it works to make accomplish-
ing a task easy to understand. From the training point of view,

xi

1989068859-012

I

_ users could be given instructions and exercises that clearly present
sequences, rules, and/or a model in order to make learning and
performing easy.

At present, there is no satisfactory way of describing what
the user knows. There i_ r,o way to characterize the differences
among users of various systems as they go through the process
of developing an awareness and understanding of how the system
works or how a given task is to u. performed. Con_..luently, the
Committee on Human Factors conducted a two-day workshop on

l, May 15 16, 1984, to means achieving aand determine for better

understanding of what users know and its implications for system
'" and software design as well as user training. This workshop was

a continuation of the committee's efforts to define research needs
in the area of software human factors. Ten nationally known
researchers on software design, cognitive psychology, and human
factors met to discuss the issues having to do with what a user of
software knows.

As background for this workshop, John M. Carroll wrote an
invited paper entitled "Mental Models and Software Human Fac-
tors: An Overview." This was distributed to all participants in
advance of the meeting. In turn, the workshop members prepared
short two- to three-page position papers addressing additional top-
ie.s and issues that they believed were important and warranted
discussion at the workshop. Much of the discussion at the work-
shop centered on sifting through the many definitions of the term
mental model, gathering ideas from among the variety of methods
used to represent users' knowledge about software systems.

This report was prepared by merging the ideas generated by
the workshop members with those in Carroll's paper. It includes
his central organization and literature review, adds more recent •
information, and clarifies the distinction between mental models
and task representations. This report was then distributed to
workshop participants for changes and additions.

This report is written for the re.archer concerned with the
psychology of performance of complex tasks and for the prac-
titioner who would like to use information about how the user

thinks about both the task and the system in the design of con.-
purer software, its documentation, or training for its use. Most
of the research on these questions has used software-based text-
editing tasks as a domain and looked at the mental models people
are purported to build ofonly simple devices. The results should be

xil

.... 1989068859-013

generalised to even more complex tasks, such as process control,
tactical decision making, project planning, and graphics design;
but their scope has not been tested. The exclusion of these kinds
of tasks is not to be taken as an indication that the research re-
ported cannot cover these more complex tasks. But their scope is
an important research need.

Judith Reitman Olson

|

|

x_

Abstract

i

i

i Users of software systems acquire knowledge about the systemand how to use it through experience, traininl_, and imitation.
Currently, there is a great deal of debate about exactly what users
know about software. This knowledge may include one or more of
the following:

• simple rules that prescribe a sequence of actions that apply
under certain conditiolm;

• general methods that fit certain general situations and
goals; and

• " * mental models, knowledge of the components of a system,
their interconnection, and the processes that change the
components; knowledge that forms the basis for users be-
ing able to construct reasonable actions; and explanations
about why a set of actions is appropriate.

Discovering what users know and how these different forms
of knowledge llt together in learning and performance is impor-
tant. It applies to the problem of designing systems and training
programs 8o that the system8 are easy to use and the learning is
efficient. Research on the effects of different representations on
ultimate performance is mixed. Research on exactly what users

_fv

1989068859-015

know is scattered. Analytical methods and techniques for repre-
senting what the user knows are sparse but growing.

This report reviews current work and through the review,
identifies several important research needs:

• Detail what kinds of mental representations people have of
systems that allow them to behave appropriately in using
the software.

• Detail what a mental model would consist of and how a
person would use it to decide what action to take next.

' . Produce evidence that people have and use mental models.
• Determine the behaviors that would demonstrate a mental

model's form and the operations used on the model.
• Explore alternative views of goal-directed representations

(e.g., so-called sequence/method representations) and de-
tail the behavior predicted from them.

• Expand the types of mental representati.ns that may exist
to include those that may not be mechanistic, such as
algebraic and visual systems.

• Determine how people intermix different representations in
producing behavior.

• Explore how knowledge about systems is acquired.
• Determine how individual differences have an impact on

learning of and performance on systems.
• Explore the design of training sequences for systems.
• Provide systems designers with tools to help them develop

systems that evoke Ugoodz representations in users.
• Expand the task domain of this research to include more

complex software.

xvi

1989068859-016

t

I

F

i Mental Models in

Human-Computer Interaction:Research Issues About What the
User of Software Knows

1989068859-017

1
|

i
" : INTRODUCTION

-" Discovering what the users of a computer software system do
know and should know are important goals in current research on
human-computer interaction. Research on the kinds of knowledge
,eople have when they use computers, including the concept of

_ a mental model of the system.,! is one of the major topics that is
bringing the field of human-computer interaction from the tra-
dition of human factors closer to that of experimental/cognitive
psychology. Traditional human factors work has focused principal
attention on behavior and performance itself, and has avoided the
problem of describing the conceptual causes and effects of that
behavior. On the other hand, while academic cognitive psychol-
ogy does concern itself with theoretical interpretations of mental
processes, it has focused on narrowly restricted mental processes,
such as particular aspects of learning, memory, problem solving, or
planning, and has studied them in the context of highly controlled
and contrived laboratory tasksr The study of knowledge represen-
tations of users of computer-based systems affords an opportunity
to explore both the theoretical base of behavior as well as specific
behaviors in tasks that involve many different cognitive processes
in concert.

Because a number of researchers are concerned with mental

representations, and because this topic has an impact on cognitive
psychology and software human factors, there is an emerging need
to clarify the concepts underlying knowledge representation and
mental models as they apply to human-computer interaction..We ' ;_
intend to filh.this need by reviewing relevant current research
and presenting a preliminary framework of the kinds of mental
representations of procedures people might have. _.____

MODELS O1_WHAT_ HELD BY WHOM?

Several key distinctions need to be recognized in discussing
mental representations and mental models in human-computer in-
teraction. For example, var;ous individuals are concerned with
using or designing a piece of software, and they hold different
conceptions of it. These individuals include the user, the software

3

Precedingpageblank

1989068859-018

engineer,thehuman factorsanalyst,and thecognitivepsycholo- i
gist.Furthermore,therearedifferentaspectsofthesystemtobe
known: the task,knowingwhat thegoalisand ingeneralwhat i
subtasksneedtobe accomplishedtoachievethegoal;thesystem
interface,knowinghow toaccomplishthesequenceofsubtasksin
thissystem,giventhedatapresentationandinteractionlanguages
ofthissystem;and thesystemarchitecture,knowingtheway the
dataarestored,theinternalprocessestheinteractionsinvoke,and
ingeneralhow thesystemworks.

Confusionhas surroundedthe term mentalmodel because
differentauthorshavereferredtodifferentownersofthemodels

_ (theuser,thesoftwareengineer,etc.)and arenotclearastowhat
themodelactuallyrepresents(thetask,thearchitecture,etc.).

For example,some researchersand human factorsanalysts
acknowledgethatitisimportanttoknow theway usersthemselves
arebuiltand work,what theirmemory limitsare,theircommon
strategiesinproblemsolving,theirindividualdifferences,and so
on,inordertobuilduseful,usablesoftware.A systemthatrequires
theusertoremembera listof100codesthatrepresentareasofthe
countryorthetypesoftransactionsthatarerequired(asinsome
airlineorautomobilereservationsystems)ispredictablydifficult
becauseourmodel oftheuserincludesa long-termmemory that
isconfusedby similarmeaninglessitems.Theseresearchershave
sometimesusedthetermmentalmodeltorefertothemodelthat

they,asresearchers,haveoftheuser'smentalarchitecture, i
Similarly,softwareengineershaveideasaboutwhat theuser

wantstodo and how thesystemitselfisstructuredthatdictate
how theywillprogramthesystemandhow itwilloperatetoserve
theusers'needs.Engineershavementalmodelsoftheirdesign.

Thishighlightsanotherdistinction,thatbetweendescriptive
and prescriptiserepresentations.Researcherswant tobe ableto

analyzewhat theusercurrentlyknows sotheycan explainwhy
he orsheishavingdifficulty,whichaspectsarelearnedand which
areconfused,and socn.Inthiscase,theyareusinga descriptive
model,onethattellsuswhat theuserknows.Designers,however,
want toconstructa model ofwhat theusershouldknow. This
representationcouldbe usedto analyze,forexample,whethera
proposedsystemwillbe toodifficulttolearnorwheretheerrors

mightbe.And, indesigningcommands and screenpresentations,
designerswould liketoinvokea model intheuserthatfitsthe
dialog;theywould liketo gettheusertobuilda mentalmodel

4

t

1989068859-019

of the system that fits what the users have to do to operate the
system. Descriptive models are those held by the researcher to
approximate what the user does know; prescriptive models are
those held by the designer to approximate what the user should
know.

The concern of this report, however, is the representation that
the user has of how a computer system works. Furthermore, since
a mental model may be only one way of describing the know:edge
that a user has about a system, this report is broadened to include
all of what a user knows about using a particular piece of software,
including how to use it and how it works.

What users know differs in several important dimensions. It
differs according to the sophistication of the user. For example, a
user who is a programmer might have a very different understand-
ing of a piece of software than a person with no programming ex-
perience. Also, multiple mental models or several representations

i at different levels of abstraction might coexist within the same

individual. For example, a person who both designed and later
: used a system might develop two somewhat compartmentalized

understandings of the system. Analogous distinctions arise if we
consider different task environments. For example, the representa-
tion elicited for routine skilled behavior might differ substantively
from that elicited when a person tries to recover from an error or
otherwise solve problems (e.g., Rasmussen, 1983).

Because understanding what the user knows has practical
importance for designing software and its training_ and because
it has theoretical importance in understanding people as they
generally perform complex cognitive tasks, this report considers
only the representations the users have when using software_
re_resentations of the task being performed, the user-system in-
terface, and the system architecture.

TYPES O1_REPRESENTATIONS O1_
USERS' KNOWLEDGE

There are three basic types of representations that have been

formulated to characterize what a user of software knows. The t
most elementary is a simple sequence of overt actions that fit a
particular situation. The second is a more complex and general
characterization, the knowledge of methods. This kind of rep-
resentation of the user's behavior incorporates general goals, the

5

1989068859-020

subgoalsassociatedwithit,a setofmethodsthatcouldbe brought i
tobeartoaccomplishthesubgoals,and,finally,sequencesofop- i

_ eratorsfor thosemethods.Both of theseconceptualizationsare
task-orientedinthattheycontainnotheoryofhow thesoftwareor
systemworksorwhat theuser'sactionsdo internallytoproduce
theresults.

The third,thementalmodel,zisknowledgeofhow thesystem
works,what itscomponentsare,how theyarerelated,what the
internalprocessesare,and how theyaffectthecomponents.Itis
thisconceptualizationthatallowstheusernotonlytoconstruct
actionsfornoveltasksbutalsotoexplainwhy a particularaction
producestheresultsitdoes.

Simple Sequences

Users oftev have no knowledge of the underlying _ystem or
evengeneralrulesforgettingthingsdone.Novices,inparticular,
resorttoa learningmethod thatborderson rotememorization.
They learnsequencesofactionsthatwillgetthe systemto do
common typesoftasks.Forexample,inusingtheoperatingsystem
on theMichiganTerminalSystemtoprintthecontentsofa text
filewiththelaserprinter,many usersmerelymemorizethenearly
nonsense strings:

SRUN *textform scards = pc:fw.macros + file spunch - -x
'run a program called _tcztform" with input from a master file
of parameters plus the input file, send the output to a temporary
file called _z_''

SRUN *pagepr scards = -x par = onesided
trun a program called 'rpagepr" with input from the temporary
file _z" so th.t the output is printed on only one side o/each
page'

where the only free parameter to be entered is the name of the
file after the a+. in the first Uscards" designation. Similarly,
some word processors require the user to memorize short, common

ZThis k a subset of th_ knowledge Rouse and Morris(1986) call mental
models. We would include knowledge that helps the user to explain the
functionend statesofthe system and to predictitsfuturebehavior.We
would x,ot include descriptions of its purpose and form, information that
seems shallow and unhelpful in a performance context.

21, ,,=------ -

1989068859-021

•,,_;L_,,,,_,_.,_,_,._.,. __, _ _,,_,-,_,_.__._ _ _. _._ ,. _ _ • • _,,.,,_ _ - • ;, S_'J_ _i _.

| '_ command sequencestoaccomplishcertainrepetitiveactions,such
as_<cntl>XME _ toexit,and "<cntl>XLA _ toenacttheprinting
sequence.A good clueastohow oftenusersrelyon thesesimple
sequencesistonotethecheatsheetsthattheykeepavailablewhen
theyareusingsoftware,orthenotesmade and oftenstucktothe
sideofthecathode-raytubetoremindtheuserofsome commands
thatarecommonly usedbut difficulttoremember.

Young (1983)describedoneway inwhichusersthinkabout
a calculator,assimplesequencesorsetsoftask-actionpairs.A
task includes something the user wishes to accomplish (e.g., an
arithmetic calculation or formula evaluation), which is associated
with an action, or what the user must do in order to accomplish

_. the task (e.g., key presses on a calculator). This knowledge is
in the form of paired associates, and like the sequences to print
a file described above, it has simple slots that indicate the free

parameters the user must designate to fit the current situation.
A second description of simple sequences of actions is the !

keystroke model (Card et al., 1980a,b, 1983; Embley et al., 1978).
The analyses in the keystroke models contain notations that de-
scribe what sequences of actions users make in invoking simple
commands: the keystrokes, mouse movements and so on. In Card
et al. (1980a,b, 1983) keystroke analysis, the analyst assumes that
the user needs time to make each act in producing the command:
a time to make a keystroke, a time to point with a mouse, a time
to move the hands from the keyboard to the mouse or back, and a
timetomentallyprepareeachcommand and itsparameters.The I
anal_sisassumesthatuscrsmust retrie_'eeachcommand sequence
fromtheirmemory,incurringa pauseformentalpreparation,and
thenexecutethecomponentsofthecommand, pausingforaddi-
tionalmentalpreparationtimesbeforeeachcommand word,each _ i'

para_neter, aud each delimiter (such as pressing a parenthesis,
return, or other type of operator). For example, a command se-
quence for using a line-oriented editor to search a file for an error
and fix it:

s/f "errorstring"
_search the _hole file for an error'

a 16 oldstring newstring
'alter lin_ 16 so that the old string is replaced with th_ n_w
string'

7

1

1989068859-022

t

would include mental preparations before each line and before each i

I parameter, such as "/r and "16,_ and the strings to be searched !for and replaced. Analysis proceeds by attaching a constant time
_ for each keystroke, movement, or mental preparation, affording i

a prediction of how long the formulation and execution of each
command would normally require.

In the same spirit, Reisner (1984) assumes that the user needs
a fixed amount of time to make each individual act in producing
a command. Instead of one mental preparation time, however,

Reisner (1984) posits specific mental acts (e.g., retrieving from
long-term memory, calculating a number, copying a number), each
of which takes a different length of time. The analyst assumes (or

"' knows from prior experimentation) how the various parameters I
are related (e.g., the time to calculate a number will be greater _
than the time to copy that number from a display) without spec-
ifying each time exactly. Simple algebra is then used to predict i!

which of various whole design alternatives, or which of various user !
methods, will require the shortest time to perform.

These analyses of simple sequences serve to facilitate both
comparison of existing software packages for the one that will re-
quire the shortest time to perform and the design and development
of new system languages.

Methods and Ways toChooseAmong Them

Usersnotonlyelicitsimplesequencestofitsimplesituations :i
byrote;theysometimesalsochooseamong variouspossiblegeneral
methodsthatfita particularsituation.2

A number ofinvestigatorshave studiedtheorganizationof
more generalactionsas a functionoftaskgoalsinthe domain
of programming.A generalfindingisthatskilledprogrammers
recognizeaspectsof particularsituationsand selectgeneralac-
tionsappropriateto them. For example,individualstatements

or sets of lines of code in a program are _chunked _ into higher- i
order task-re!evant structures. Skilled programmers can recall at a
glance more lines of code than novice programmers (Adekon, 1981;
McKeithen et al., 1981; Shneiderman, 1980). This is consistent

2These methods are similar to the procedures remembered and used
in the st,_ge of =deciding and testing actions" in supervisory control tasks,
described by Sheridan et el. (1986).

1989068859-023

F

with prior studies of expertise and the organization of memory
(Chase and Simon, 1973; Egan and Schwartz, J079; Reitman,
1976). These studies suggest that in the skilled programmer's
knowledge base there is a mapping between chunks of actions or
methods (that often go together) and general task features, so that
the actions will be recalled and used at appropriate times in the
future. These chunks reflect a developed, deeper understanding
G outine programs, which are useful to a programmer writing
pr_o:ams. Similarly, Ehrlich and Soloway (1984) have shown that
skilled programmers tend to employ patterns of actions, called
plans, consisting of routinely occurring sequences of programming
statements.

'" Furthermore, by examining the structure of recall protocols,
McKeithen et al. (1981) determined that skilled programmers or-
ganize their vocabulary of programming statements more stereo-
typically than do novice programmers. It appears that with ex-
pertise, the users' understanding converges to a similar set of
representations of concepts in the programming language. Data
base designers reveal mental organizations that become increas-
ingly homogeneous with greater expertise (Smelcer, 1986).

A more complete theory about what the user knows about
how to accomplish a particular task is the GOMS model (Card et
al., 1983). GOMS is an acronym that stands for the elements of
what the user knows: the goals, the operators, the methods, and
selection rules. In the GOMS model, the user has a certain goal
to accomplish (such as editing a manuscript that has been marked
up). The user recognizes that this large goal can be broken into
a set of subgoals (such as finding each editing mark and making
the requisite changes). Subgoals are broken down into smaller and
smaller subgoals until they match a basic set of methods, that is,
sequences of operations that satisfy a small subgoal.

The GOMS model states that users have some rules by which
they choose the method that will fit the current situation. For
example, users may know that there are several methods that can
be used to find the first place in the manuscript to be edited: using
the search function with a distinguishing string to be found, using
the page-forward key until the target page is found visually, or
using the cursor key to find the specific target loc_tion visually.
People will choose whether to use the search, page-forward, or
cu.-sor key me_hod depending on how far away the next editing
target is assumed to be. Each of these methods is made up of

9
q

!

1989068859-024

r

!

certain operators, key presses, and hand motions, as specified in
the keystroke model described above in the discussion of simple
sequences.

A number of empirical studies have shown that the predictions
of GOMS and the keystroke model are reasonably accurate, and
that sometimes one can even use the same time parameters across
applications. Card et al. (1983) showed that their parameters for
keystrokes and mental processing time were similar across text
processors, operating systems, and graphics packages. Olson and
Nilsen (1987) extended the analysis to show that the basic param-
eters applied well to spreadsheet software. However, additional
time parameters were required. One was to account for the time
it took users to scan the screen (for example, to find on the screen

'_ the coordinates of a particular value in a spreadsheet). A second
time parameter was required to account for the time it takes the
user to choose between methods: the more methods to choose
from, the longer the pause before executing a simple sequence in
a command.

Command grammars usea differentanalyticrepresentation,
butareanalyzingthesame kindsofmentalevents.The command
languagegrammar (CLG) (Moran,1981)and Ba_kusnormalform
(BNF) (Reisner,1981,1984)havebeenusedtodescribetheorga-
nizationofsequencesofactionsthatfulfillgoals.Thesegrammars
aresetsofrulesthatshow thedifferentways inwhichan °alpha-
bet_ ofactioEscanbe formedtoproduceacceptable_sentences_
thatareunderstandabletoa systemora device.

For example,Reisner(1981,1984)treatsuseractionsthat
areacceptableto thesystemas a language.She describesthe
structureofthislanguageasa BNF grammar.Figure1 showsa
sampleofwhat inthisformalismarecalledrewriterules.At the
higherlevelsaretheuser'staskgoalsandthepossiblemethodsthat
can achievethegoal.Thisispresumablya representationofthe
componentsofplanstheuserhasreadytoevoketofillan overall
taskgoal.Belowthesearethevarietiesofactionsequencesthat
canbe elicitedina method.The topseverallinesofFigure1 are
similartothegoals/subgoalsandmethodsoftheGOMS analysis;
thelowerlevelsaresimilartothekeystrokemodelsequences.

Compared to GOMS, thisrepresentationmore compactly
showsthe alternativeways to accomplisha taskor to enacta
seriesofkeystrokes;GOMS requiress new method foreachal-
ternative.Whilevariousmethods(representedassentencesfrom

10

i

!,'.,c¸,_.,,,_-_:,,-,_-, •I: • .-. •• _....

Use Dn ..>Identify fireSFine+ enter Dn commend +

press ENTER

Identify first line ..>Get first Uneon screen + Move cursor to
fires line

Get first line on screen ..>Use "locate" strategy use scroll strategy

"Locate" strategy ..>Move cursor to comm,_.,d input field + type t

"locate" command + press ENTER

Move cursor to command input field

..>Use cursor keys press PFCURSOR null

Type locate command ..>Type "locate" keyword + type line number !

Type locate keyword ..>L+O+CL L+O+C+A+T+E i
Type line number ..>Type number

FIGURE 1 A command grammar representat|on of actlon| necessary to
edlt a line using a word processor. Rewrite rules applied to this domain are
compact definitions of the many acceptsbl,, ways to get something, done |n a
particular command language. One r_a_s these rules from left to right; the
left-hand terms are made up of the elements listed on the right-hand side.
Elements con-_ected by a a+, are executed in sequence, elements connected
by a E , represent alternative w_ys of invok|ng the sa_ne goal. For example,
aUse Dn j consists of identifying the first llne, then entering the Xl)nn
command, and then pressing enter. Typing the locate keyword, however,
includes typ|ng mLOC,_ aL,S or _LA)CATE._ Source: Reisner (1984:53).

sucha grammar)canbe comparedtoseewhich'akeslesstime,a
grammaticalrepresentationislessadequatethanGOMS inthat
itlacksanyway torepresenthow a userselectsthemethod appro-
priateforthecurrentsituation.

The languageformatofgrammars,however,allowstheuseof
standardsentencecomplexitymeast_res_o predictsome aspects
of userbehavior:themore rules,the longittakess userto
learn;thegreaterthesentence(sequence)complexity,thelonger
thepausesbetweenkeystrokes;themore terminalsymbolsinthe
language,theharderthelanguageistolearn.Thesepredictions
havenot beenfullytested,and thereissome suggestioninthe
literatureaboutlanguageunderstandingthatthesemeasuresdo
notadequatelypredicthow di/_cultitistounderstandsentences
(Fodoretal.,1974;Miller,1962).The formalism,however,allowsa
numberofintriguin_predictivepossibilitiesforunderstandingand
recallingcommand Isnguages.SeeReisner(1983)fora discussion
ofthepotentialvalueofsuchgrammars.

1989068859-026

M_,Ud Modds

In its most generic application, the term mental model could

! be applied to any set of mental events, but few if anyone would
claim such meaning for the word model. Somewhat narrower in

meaning, the term could be used for any thought process in which

there are defined inputs and outputs to a believable process which
operates on the inputs to produce outputs. In this sense, one

could have a mental model of one's own behavior ('If I do this,
then that will happenS), another person's behavior, the input-

output characteristics of any software process run ca a computer,
or any information process mediated by people or machine. It
could be a series of paired nssociates by which the user predicts,
through a causal chain, outputs of a process given its inputs.

Given these general possibilities for the term mental model, it

is most commonly used to refer to a representation (in the head)
of a physical system or software being run on a computer, with

some plausible cascade of causal associations connecting the input
to the output. Accordingly, the user's mental model of a system is |
here defined as a rich and elaborate structure, reflecting the user's i
understanding of what the system contains, how it works, and why
it works that way. It can be conceived as knowledge about _he 1
system sufficient to permit the user to mentally try out actions I
before choosing one to execute. A key feature of a mental model i
is that it can be _run" with trial, exploratory inputs and observed

for its resultant behavior (Sheridan et al., 1986).
Mental models are used during learning (such as using an

analogy to begin to understand how the system works), in problem
solving (such as in trying to extricate oneself from an error or

performing a novel task), and when the user is reflecting on
attempting to rationalize or explain the system's behavior.

Users are typically described as using a mechanistic model;
that is, the user is assumed to have a conceptual amachinem whose

simulated function matches the actual target machine in some

way. s Three general kinds of models are called surrogates (Young,
1983), metaphors (Carroll and Thomas, 1982), and giau boxes
(DuBoulay et al., 1981). A fourth kind of model, the network

SThi# may be more due to the fact that r_earcherl are good at
de_:riblng mechanktic models than to the fact that it k the only kind
of model people have. In fact, expioration of other repreeentatiost8 is an
important research need.

12

r-

1989068859-027

__'_"_'_--t_•_ _ _ _, *_ _ _• _ _z,_,_-,._

I i

model, is a composite, blending the features of surrogates andglass boxes.

i Surrogates

A surrogate i_ a conceptual analysis that perfectly mimics the
target system's input/output behavior and that does not assume
that the way in which output is produced in the surrogate is the
same process as that in the target system. It is a system that
behaves the same, but is not assumed to be isomorphic in its inter-
nal workings. Thus, while the surrogate always provides the right
answer (the one that the target system would have generated), it

"_ offers no means of illuminating the real underlying causal basis
for the answer. It is a good, complete analogy that may allow the
user to construct appropriate, behavior in a novel situation, but it
does not help the user explain whey the system behaves the way
it does.

Young (1983) noted that it is very ditt_cult to construct an
adequate surrogate, even for a fairly simple system like a hand-
held calculator. This raises the question of whether people ever
hold surrogates in their minds, even for simple devices.

Metaphor Models

A metaphor model is a direct comparison between the target
system and some other system already known to the user. A com-
mon example, referred to widely in the literature, is the metaphor
that _a text editor is a typewriter." Many investigators have
observed that new users spontaneously refer to this typewriter
metaphor during early learning about text processors (Bott, 1979;
Carroll and Thomas, 1982; Douglas and Moran, 1983; Mack et al.,
1983). The explanations people offer for system behavior are often
couched in the vocabulary of the metaphor. Furthermore, the ex-
tent to wh;.ch knowledge in the metaphor source domain matches
the target domain correlates with performance. That is, the task-
action pairs that fit both the metaphor source and the target
system are easy to learn; those that do not are often learned last
or remain constant sources of error. For example, learners have
less trouble learning how to use character keys than the backspace
and carriage return keys; the latter typically operate differently in
text processors than they do in typewriters.

13

• _ __ :/_i. i_:̧

1989068859-028

Unlike surrogates, metaphor models are easy to construct or
learn_ and they provide explanations of why the system behaves
as it does. However, metaphors vary greatly in accuracy. For
exam_e, athe interface is a deaktopm s_crr_ less accurate than i
%atues are put into storage locations. _

One di_culty with using metaphors in analyzing users' be- i
havior with computers is it is difficult to find out what the users' t
metaphors are. A_ Young (1983) put it, a metaphor analysis ex-

I

changes the problem of describing what the user knows about
the target system for the problem of describing what the user
knows about the metaphor source. For example, user have to
know enough about pipelines for the metaphor "a flow chart is

" a pipeline _ to be useful. In addition, metaphors that map one
domain perfectly into another are rare. Consequently, metaphors
can sometimes be misleading as well as helpful The hydrody-
namic metaphor for electric current, for example, is only good for
a limited subset of phenomena, and k misleading for many others.
Similarly, the typewriter metaphor for a word processor helps with
some actions (like using the backspace key), but interferes with
the learning of others (lik,_ the return key) (Douglas and Moran,
1983).

Glass Box Models

Glass box models lie between metaphors and surrogates. They
are surrogates in that they are perfect mimics of the target sys-
tem. But they are metaphors in that they offer some semantic
interpretation for the internal components. For example, Mayer
(1976) dkcusses a glass box mimic for a BASIC-like program-
ming language. This glass box is not simply a surrogate, because
its components are presented via metaphors (input as a ticket
window, storage as a file cabinet). It can be run to perfectly
predict outputs from inputs, but it can also be interpreted via
these metaphors. Yet it is also not a simple metaphor; it is a
composite metaphor (Carroll and Thomas, 1982; Rumelhart and
Norman, 1981). It does not merely exchange the target system for
a metaphor source in toto; it uses aspects of several metaphors to
provide the surrogate behavior.

Glass boxes have been used primarily in a prescriptive context
rather than in a descriptive one. Msyer's (1976) glass box is not a
mental structure that was discovered; it is a mental structure that

14

'i
" 1989068859-02

was taught to the user (e.g., subjects were instructed to think of in-
put as a ticket window). Studies of prescriptive conceptual models _
tell us something about what kinds of models are useful, and about
models that people could generate. On the other hand, they can
validate prescriptive models that help users of complex systems
when it is hard for the user to deduce an adequate representation
merely from experience.

Network Representatimas of the System

Network representations contain the s_ates a system can be
": in and the _ctio_s the user can take that change the system to

another state (Miller, 1985). One particular type of network rep-
resentation, the generalized transition network (GTN), contains !
detailed descriptions of what the system does (Kieras and Poison,
1983). GTN's are state transition diagrams that represent the vis-
ible states of the system (i.e., the display on the screen) as nodes,
and the actions the user can take at each state (the commands or
menu choices) as arcs. The connected nodes and arcs form a net-
work that shows the sequence of states that follow user actions at
each point in the software interaction. GTN's and other network
diagrarne are often used as tools in system development, to give
the designer a picture to refer to in order to keep track of what
can be done at every state in the transaction. Figure 2 illustrates
a portion of one of these networks for the actions that can be
taken when a user enters a system and loads the word processing
application.

Networks can also be used to describe what the user knows

about the system (Olson, 1987). Olson (1987) suggests that GTNs
be used to represent users' knowledge of system states and allow-
able actions; these c._n be compared to the GTN of the actual
target system to measure the user's level of learning or under-
standing. Examination of the parts of the real GTN that are
missing in the user's representation could indicated areas in which
learning or remembering certain functions is di_cult.

The GTN is like a surrogate representation in that it does
not give an underlying explanation about why the elements are
related in the way that they are nor how the internal system com-
ponents behave. Nor is there any indication of the purpose these
actions fill toward a user's goal. It does, however, represent what

i
! 15

1989068859-030

IMUT.,o,, N_L_.

ENI"ER _- G
ADO CHAR TO INPUT

_WAIT FOR KEYSTROKE
KEY _-- KEYSTROKE _-

FIGURE 2 A generalised tre,nsltion network (GTN) representLtion of po,rt
of the tssk of editing s document. C[rctes represent ststes or tLsks, srcs
represent the connections between ststes, snd lsbels to the arcs represent
the sctlons the user takes. Source: Kieras s.nd Poison (1983:104).

16

1989068859-031

the user knows about how the system works in simple stimulus-

reponse terms. A GTN displays the simple response that can be
expected from the system given each action the user takes. And,
importantly to the user, knowledge of these actions and their con-

sequences can be useful when the user must solve prob!_.rns, either
when an error has just occurred or when a novel goal has arisen
and the user needs to decide on an appropriate sequence o.t actions.

Cmnp_Isons

It is useful to consider the relation between sequence/method
._, representations and mental models. People undoubtedly have both

kinds of knowledge when they use computing systems. But re-

search on these two approaches is largely complementary in that
the kinds of questions addressed about one kind of representa-

tion have been different from those about the other. Briefly, the

sequence/method representations are more "_na_ytic in that they
can predict behavior (except errors) in some detail. Although the

_ sequence/method approach has not typically deal_ with predicting
user errors, attempts have been made to show how user learning
takes place. The mental models approach, on the other hand,
accounts for errors as well as accurate behavior in novel and stan-

dard situations, but does not predict the details of behavior well
nor how the models are learned.

Sequence/method representations, because they are composed
of goal-action pairs, by their very nature predict how knowledge
is used. To date they have represented only how to accomplish

routine tasks (in which all the goal-subgoal and subgoal-action
relations have been worked out) but have little or nothing to
say about how knowledge is used in nonroutine tasks, such as
in recovering from an error or behaving in an entirely unfamiliar

situation. They do not have much generality in their conditions.
And, there is no posited mechanism for problem solving when a
new situation fits several general condition-action pairs. Without
this mechanism, these analyses cannot account for errors.

Some attempt has been made to account for how sequence/method
representations are learned. Lewis (1986) provides an account of
how users might acquire 8oal-action knowledge after they watch
another person use the system. Through several simple heuristics

that link actions to probable causes, the user begins to build a

t reasonable set of rules. The acquisition of rules is detailed by

17

1989068859-032

Lewis (1986), but the further learning in fine-tuning those rules
is not covered. Kieras and Bovair (1986) do not explain original
learning per se, but have shown that learning a new system is
speeded up if the user is familiar with another system that has
many of the same rules in common. Neither of these approaches
addresses the continued learning that goes on as the user acquires
or discovers new strategies for efficiency.

Research on mental models, on the other hand, has not con-
centrated on the details of how a user uses a mental model nor how
it is acquired. Douglas and Moran (1983) have produced the most
detailed analysis of the behavior of a user who has a mental model.

! They examined the analogy of _a text processor is a typewriter"
by noting _.hetypewriter condition-action sequences that matched
and mismatched those in the new system. Those condition-action |
pairs that matched were learned easily and quickly, and those t

that did not match produced continued _rrors and pauses. Other
researchers have attempted to make the analysis of the behavior
of the user who has a mental model more specific and revealing
(Foley and Williges, 1982; Moran, 1983; Payne and Green, 1983). .!
What is missing from these analyses, however, is how users use
their mental models to come up with a set of appropriate actions.
There are likely to be some very interesting cognitive actions going
on in the pause between the presentation of the problem (e.g., the
feedback from the screen after an error) and the choice of the next
action.

Most of the empirical work on the effectiveness of mental
models and the predictive power of sequence/method analyses has
been at a gross behavioral level. The studies of experts' chunking
of information (Chase and Simon, 1973, for example) are almost
completely empirical; they focus enti_ly on the acquisition of the
condition part of a condition-action pair and offer little bask for
theory. The grammatical approaches often hold a key assumption:
that the fewer actions there are per task, the cognitively simpler
the task. Recent work has raised questions about the accuracy of
this assumption (Olson and Nilsen, 1988; Rosson, 1983). There
are occasions when a task has a few actions, but the planning and
calculating necessary to make those actions is difficult.

Moran has described a number of connections and contrasts

between sequence/method and mental model approaches. The

GOMS analysis (a methods analysis) and CLG (a blend of method i1
and mental model) sprang from common theoretical roots. Indeed,

1989068859-033

[

GOMS can be viewedas a simplifiedand more parameterized,
I compiled CLG. Moran (1981), however, stresses two contrasts.

First, where CLG incorporates a limited mental model of the
_ system in its semantic level, GOMS incorporates no mental model

whatsoever. GOMS incorporates only the knowledge required to
perform a task. Second, where the focus of CLG is the functional
description of various levels of user knowledge and the mappings
between these levels, the focus of GOMS is the sequencing of
operators and the time requirements for each. The bottom line for
GOMS is predicting performance times, i

Kieras and Poison (1983) simulate users' behavior on partic- !
ular computer systems. They have two representations in their
simulations, which with an additions] twist can be viewed in much

_ the same spirit as Moran's (1981) view of the relation between
CLG and GOMS. In the Kieras and Poison (1983) model, a job-
task representation describes the person's understanding of when

I and how tocarryouttasks(verymuch likeGOMS). The simulated
user's behavior is responded to by a simulation of the system, a
device representation, which is a GTN of the states and transi-

! tions between them in the system. Some knowledge of this sys-
tem behavior, a mental GTN, can represent what the user knows

i about the system_a thin, surrogate mental model. The former
GOMS-like representation is the user's knowledge that produces
performance, while the latter, the mental GTN, could be the user's
theory during learning, problem solving, and explaining how the
system works.

HOW USERS' KNOWLEDGE AI_FECTS
THEIR PERFORMANCE

, The discussionup to thispointhas treatedwhat the user
knows as a staticstructure.While we have alludedto itsun-

derlyingroleinbehavior(learning,ploblemsolving,explanation,
skill),we havenotfocusedon thesebehavioralprocessesperse.
Nevertheless,thisaspectiscriticalbothtoassessingtheempirical
contentofcurrentanalysesand todetermininghow theseanaly-
sesmightbe appliedtopracticalproblemslikethedesignofuser
interfaces and training materials.

19

\

1989068859-034

Chaos and Mtscc_cepticu in Both Novices and Experts

i
Learning involves internalizing, constructing, or otherwise at-

taining a representation of the system being learned. How does
this process proceed and what are its early results? The summary
picture is of a halting and often somewhat nonconvergent pro-
cess of problem solving and invention (e.g., Bott, 1979; Mack et
al., 1983; Rumelhart and Norman, 1981). Indeed, the models that
learners spontaneously form are incomplete, inconsistent, unstable J
in time, overly simple, and often rife with superstition.

A person may develop an understanding that is adequate for
simple cases but that does not extend to more complex cases. For

. example, Mayer and Bayman (1981) found that users of calculators
often believed that evaluation only occurs when the equals key is
pressed. Scandura et al. (1976) describe a student who concluded
that the equals key and plus keys on a calculator ha_ no function
because they caused no visible change in the display. Norman
(1983) describes learners who superstitiously pressed the clear key
on calculators several times, when a single key press would do.
People learning to use a simple programmable robot developed
wrong analogical models of its behavior that they accepted without
testing until the models failed to predict the actions the robot
took (Shrager and Klahr, 1983). Mantel (1982) found that users
performing a task in a menu-based retrieval system developed and
maintained simplistic sequences of actions that were eventually
ineffective in accomplishing their search goals.

Chaotic and misconceived conceptual models are not merely
an issue cf early learning and something that users outgrow. Expe-
rienced users hold them as well. For example, Mayer and Bayman
(1981) asked students to predict the outcomes of key press se-
quences on a calculator. Even though all of the students were
experienced in the use of calculators, their predictions varied con-
siderably. For example, some predicted that an evaluation occurs
immediately after a number key is pressed, some predicted that
evaluation occurs immediately after an operation (e.g., plus) key
is pressed, and some predicted that an evaluation occurs immedi-
ately after equals is pressed.

Rosson (1983) found that even experienced users of a text
editing system often had rather limited command repertoires, rou-
tinely employing nonoptimal methods (such as making repeated

20

...................... 1989068859-035

localchangesinsteadofa singleglobalchange).Even inlargepow-
erfulsystems,mostoftheactivityinvolvestheuseofonlya very
smallportionofthesystem.InthecaseofUNIX, forexample,20
oftheavailable400commands accountedforabout70 percentof

_ theusage(Krautetal.,1983).LiketheMayer and Bayman work
(1981),thissuggeststhatevenan extensiveamount ofexperience

! does not necessarily lead the user to a complete, consistent, or
even correctconceptualmodel. Therearesome thingsabouta

i systemthatmostusersneverlearn. !

•. Skilled Performance I

|Human performanceanalyseshavebeenwelldevelopedinve-
hicularcontrol(e.g.,aircraft,ship,automobile)andtargetpursuit
tasks.Many of theseanalysesexplicitlyhypothesizea mental
model of thesystembeingoperated(e.g.,Baron and Levison,
1980;Jagacinskiand Miller,1978;Pew and Baron,1983;Veld-
huyzenand Stassen,1976).In thesecases,thementM model is
usedtoanticipatetheresponseofa dynamicsystemand henceto
overcomethedeleteriouseffectsoftimedelayseitherfrom other
humans orhardware.Thesemodelshaveproducedgood descrip-
tionsand predictionsofhuman performance.

Becausethesemodelsdealwithspatio-temporaltrajectories,
theirapplicabilityislimitedtocontinuousdetectionandmovement
tasks.Incontrast,episodicmodelsofmovement thatincorporate
an additional,abstractlevelofdescriptionin termsofdiscrete
situation-_tionpairshavemuch incommon withgoal-actionmod-
elsinhuman-computerinteraction.Discreterepresentationaland
datareductiontechniquesdevelopedforepisodicskilledperfor-
mance (Jagacinskietal.,inpress;Miller,1985)may proveuseful
inthedomainofhuman-computerinteraction.Softwareusertasks
do,however,typicallyinvolvea largersetofsituation-actionpairs
thaniscoveredinhuman performanceanalyses,and theyproba-
blyinvolvemorevariedcategorizationandplanningby thehuman
operator.Whethertheycan be generalizedtothegreatercogni-
tivecomplexityofhuman-computerinteractiontasksisan open
question.

Ifwe assumethatknowledgeof simplesequencesisin the
formofgoal-actionpairs,thenwe shouldbeabletoapplywhatwe
know fromtraditionalverballearningstudiesabouttheretention
ofpairedassociates(e.g.,Hilgardand Bower,1975;Postman and

1989068859-036

• .7

r

Stark, 1969) to predict which systems will be easy to learn and
what kinds of errors will occur. For example, presumably, those

systems that have few paired associates to be learned or those that
have distinct, nonconfusable goal-action pairs win be easy to learn
and remember.

Landauer et al. (1983), Barnard et al. (1981), and others have
explored certain aspects of this issue with mixed results. Lan-
dauer et al. (1984) discuss the difficulties of constructing command
names that are natural, that is, those that would have existing
goal-action paired associates in memory and ready to transfer eas-
ily to a new task. They argue that if one incorporates command
names generated by naive users, these names are natural but often

. are not distinctive enough to allow users to keep from getting them
confused among each other. Preexisting paired associates can help

transfer, but if they are not distinct paired associates as a set (e.g.,
A-B may be good until it must be learned along with A-C), the
confusion can offset any positive effect from their naturalness.

Poison and Kieras (1984, 1985) embody the GOIV[S model in a
production system-based simulation of users' behavior while using
software. This is a very concrete representation of what the user
knows when performing well-learned tasks and has a number of

confirmed behavioral correlates. Their analyses postulated that

the number of productions (the number of rules needed to decom-
pose goals into subgoais, to find methods to fit the subgoals, and to

execute the sequence of actions in a method) necessary to perform
i, a task is a good predictor of the time it takes to learn a system,

_l that the number of productions that two systems have in common

predicted the ease of learning the second after the first, that the
number of productions used in constructing the next overt action

predicted the delay from one overt action to the next, and that the
number of items held temporarily in a working memory predicted
the likelihood nf errors or delays (Kieras and Bovair, 1985; Kieras

and Poison, 1985; Poison and Kieras, 1984, 1985; Poison et _l.,
1986). Some of the predictions afforded by this specific analysis
have been successfully tested; others are being tested now.

Though this approach is to be lauded for its specificity and
the accuracy of some of its predictions, its weakness lles in de-

termining how one counts the number of productions required for *
a task. Since production rule formalisn_ are general program-
ming languages, a single function can be programmed in many
ways. Consequently, for purposes of replicability, it is important

i 22

1989068859-037

for Kieras and Poison (1985) to specify further what production ,;
language style underlies these production analyses, and further,
whether this style can be argued to be consonant with a the-
oretically reasonable model of the architecture in which human
iuformation processing operates.

The chief limitation of the GOMS analysis is that it considers i
only error-free performance. This is a serious limitation since even _
skilled users spend at least a quarter of their time making and 1recovering from errors. In GOMS, goals are very specific to task
situations; they are not currently in a general form (Card et al.,
1983). This is not a limitation in principle, however, since GOMS

_ is a deliberate simplification of Newell and Simon's (1972) general
problem solver, a model that is general enough to describe any
goal-directed behavior. Robert_on (1983) suggests how error and
error recovery could be incorporated into a GOMS-like analysis.

Rumelhart and Norman (1982) present a performance analysis
! of skilled typing that takes the description of errors as a primary

concern. The treatment of errors in their analysis raises an im-
! portant issue. In order to describe the occurrence of some kinds

of errors, they were forced to change the assumption of how in-
formation is stored in memory. The analysis was fundamentally
altered in order to qualitatively predict the typical errors for the
task. This raises the question of whether GOMS, in which only
error-frse behavior was analyzed, embodies a representation that
can be generalized to real performance that includes errors.

APPLYING WHAT WE KNOW OF THE USER'S
KNOWLEDGE TO PRACTICAL PROBLEMS

The foregoing discussions have reviewed various representa-
tions of the user's knowledge of a system. We have described t
them in terms of the theoretical representations posited and some
of the cognitive processes included in each type of analysis. It
seems safe to conclude that while the area of research on users'
mental representations is very active, it is not yet well developed
(see the Research Recommendations section below). NevertheleM,
software human factors is an applied area, and there is conti._ual 1
pressure to apply what we do know in this work to the task of
design and training.

Applying what we know about mental representations to prac-
tical ends raises many questions. For example, if we knew what

23

' t\ .:
i,

i

1989068859-038

the user knew, how would we use this knowledge in design? Do
we build the user interface to reflect a consistent mental model?
If so, what does the input and presentation look like? Should we
tell the learner what model to build?

Designing Interfaces

If the interface suggests or reflects an appropriate model, then
the user could conceivably learn it with less guidance and perform
it with fewer errors. The question is: What should the model be?

One approach to picking a model is to design user interfaces
to accord with naive user conceptual models (Carroll and Thomas,

' 1982; Mayer and Bayman, 1981). Although _his approach is simple
and straightforward, its general utility is open to queP.tion. For
example, Wright and Bason (1982) designed two software packages
for s casual user population. One package was designed to be
maximally consistent with the users' prior knowledge; users were
asked how they thought about their data and what they wanted
to be able to do with it, and this formed the basis for the user
interface. The second package was also designed wi_h input from
potential users, but in this case, the designer used this information
to determine how the users ought to think about their data and
operations on it. The finding was that, in every way, the second
package was a better design.

In a similar vein, Landauer et al. (1983) replaced the verbs
in a word processor's command names (like append, substitute,
and delete) with those that secretaries generated most often when
describing to another secretary how to change a marked up manu-
script (such as add, change, and omit). Paired associate learning
theory would have predicted that these well-learned goal-action
pairs from the secretaries' own vocabulary would have been good
command names for secretaries learning a new word processor.
The goal-action pairs are presumably preexisting paired associates,
ones not needing new learning. Learning the word processor with
these command names, however, was no better than learning the
one with the system developerw' names or even one with random
names like allege, cypher, and deliberate. Naive users do not
necessarily design better systems.

A variant of the naive model approach is to enter into the
dasign process with a preconceived model, and then to iteratively
build a prototype, test it, and refine the design (including the user's

] "
_, -

model)untilacceptableusabilityisattained.Thistechniqueisthe
classicempiricalapproach(Dreyfus,1955);ithasbeenemployed
inrecentdesignsthatusethedesktopmetaphorintheinterfacefor
officesystems(Bewleyetal.,1983;Morgan etal.,1983),aswell
as in other application system designs (Gould and Boles, 1983;
Wixon et al., 1983). The theoretical problem with this approach
is that in the context of iterative and often radical redesign of a
user interface, it is difficult to clearly separate the effect of the 1
model on usability from that of other aspects of the redesign. 4

A seconddesignapproachistoreducetheproblemofcomm,l- _
nicatingan appropriateconceptualmodel totheuserby simpli- _
fying the system and its interface. DuBoulay et al. (1981) stress _. _l
this in their characterization of a glass box model that consists
of only a small number of components and interactions, all ob-
viously reflected in the feedback that learners get from running
the system. Carroll and Carrithers (1984) implemented this ap-
proach by providing new users with only a small but sufficient
subset of commands to learn. This small set fits a relatively sim-
ple conceptual model. Carroll and Csrrithers (1984) called this the
_training wheels n approach, borrowing the analogy from learning
to ride a bicycle. Once the subset of commands was learned, the
user was gradually introduced to more complicated or more rarely
usedcommands. Thisapproachledtofasterand more successful
learning.An importantquestionraisedinthiswork,however,is
how to decidewhichsubsetofcommands issufficienttodo the

taskand fitsa simplemodel.Furthermo_e,itzaisesthequestion
ofhow to embellishthe initiallysimplifiedconceptualmodel so
thatthechangedoesnotdisruptthelearningtheuserhasalready
accomplished.

A thirddesignapproachfocuseson th,:method thattheuser
learnsratherthanon thementalmodel.Moran (1981),Reisner
(1981, 1984), and Young (1981) all stress the potently' utility
of task-oriented knowledge for design. Such knowledge can be
represented formally. The suggestion is that these representations
can be examined or manipulated prior to actual construction of
the user interface to determine the least complex organization for

4However, Olson st al. (1984) highlight the importance of running
prototype tests with two prototypes that differ in only one variable at a
time, so that the effects of indiv_dual design changes can be measured

, independently.

T

25

(

[the interface. For exsmpk, the designer can calculate values of
merit for a syatem based on the number of rules in a grammar,

i the number of different terminal symbols , or various oO__ermetricsknown in computational linguistics.This approach could also make
it possible to define precisely concepts like consistency: similar
tasks or goals should be amociated with similar or identical actions
(Moran, 1983). For example, deleting a sentence ought to have
similar actions to deleting a paragraph. Empirical work has shown
the importance of such concepts (e.g., Barnard _t al., 1981; Black
ard Sebrechts, 1981; Thomas and Carroll, 1981; but see Landauer
et al., 1984, for a caveat).

It should be noted that analysis of _,heserelations, like consis-
tency, may not go very far toward describing the interface design

•_ fully. For example, two interfaces with exactly the same grammat-
ical description d a command language may have very different
visual layouts. The visual layouts may lead to performance dif-
ferences not predicted by a calculated complexity measure that
is based only on inconsistencies in the command language. With
the exception of Dunsmore (1986), most grammars do not re_
resent features of visual layout that are known to be important.
Dunsmore (1986) predicted and then experimentally verified that a
crowded display would be more difficult for users to deal with than
an uncrowded one. Furthermore, with the exception of Shneider-
man (1982), whose multiparty grammars can be used to describe
both a user's action and the system's response, there has been little
attempt to integrate models of the various components of a sys-
tem. Moreover, optimizing a design with respect to a task-oriented
analysis will not necessarily include any of the design considera-
tions that would be indicated by optimizing the presentation of a
good mental model.

User _alnlus

If a system has been built to conform to a consistent model or a
we"-formed set of methods, training may simply involve presenting
the user with the model or methods. Several researchers have been
concerned with developing techniques for providing users with
appropriate conceptual models, something that even state-of-the-
art instructional materials for software often fail to do (Bayman
and Mayer, 1984; DuBoulay et al., 1981; Halaas and Moran, 1982).
The benefits from presenting a mental model, however, are unclear.

.)_ 26

..... 1989068859-041

: , • _ :.4._',_ r

!
Schlager and Ogden (1986), for example, incorporated both a I

method representation and a mental model in the training mate- !
rials for teaching students how to form successful queries in s data
base. For those specific query types that fit the model or meth-
ods presented, both representations speeded learning, regardlees
of whether the representation was a method representation or a
mental model. Errors and difficulty occurred only when queries
were different from the method or model taught.

Mayer (1976, 1981) provided students with a diagrammatic
tool which incorporated a variety of concrete metaphors (e.g.,
input as a ticket window and storage as a file cabinet). Students
who were exposed to this tool before studying a training manual

•, were later able to perform better on both programming and recall
tasks.

Kieras and Bovair (1984) taught people how a simple device
worked either by a rote sequence of steps, wi_,h a model of the
system, or with an analogy. The sequence of steps showed them
what to do when. One model displayed what part was connected
to another part beneath the surface, as if a flow diagram were
painted on the control panel. The analogy described the control
panel as being part of a mock spaceship, explaining what each
control knob did in terms of battle-relat_t actions. The results
shc'_ed no benefit from either of the models over the rote sequence.
On closer inspection, Kieras and Poison (1985) noted that neither
of the models save the user any action-oriented help; the models
merely gave a story about what the connections were, not how
they worked.

Halasz and Moran (1982) taught students how to use a cal-
culator using either a step-by-step action sequence to do stan-
dard calculations or instructions which included a verbal model

of how the internal registers, windows, and stacks worked. They
found that performance on standard tasks was identical for the
two groups, but that the group who learned the model performed
better on novel tasks.

Foes et al. (1982) provided a file folder metaphor to students
learning to use a text editor. They found that students who were
provided with the metaphor learned more in less time. In the
same domain, Rumelhart and Norman (1981) used a composite _!
of three metaphors: a secretary metaphor, which was used to
explain that commands can be interspersed with text input; a
card file metaphor, which was used to describe the deletion of a

27

1989068859-042

single numbered llne from a file; and a tape recorder metaphor,
which was used to convey the need for explicit terminators in files. I,
Although performance was good overall, the fact that there were
several metaphors produced cases in which a subject would employ
one of the metaphors when another was appropriate.

Most of this work has focused on the use of mental models

narrowly in training, namely, by telling the student the model or
by providing simple and explicit advanced organizers (Ausubel,

• 1960). In another approach, an explicit mental model was pre-
i scribed; a system's tr_ning manual had a diagrammatic model of
i control flow for a menu-based system (Galamboe et al., 1985). The

resultant benefits were equivocal, however. Even greater integra-
' tion between model and training appears necessary. The feasibility

of this approach is exemplified in systems that have mental model
analyses in their expert systems to interactively diagnose learner
problems and to provide tailored support (e.g., Burton, 1981). No
systematic behavioral studies have been carried out, however, to
evaluate the effectiveness of this approach.

A more theoretical issue in the area of training pertaina fun-
4amentally to the nature of learning and the implications for

i designing training programs. One view of human learning and

memory conceives of learning as an active process of problem solv-
ing in which concepts are created by the learner (e.g., Jenkins,
1974; Wittrock, 1974). This view contrasts with one in which

i learning is merely the storage of concepts in memory. In the latter
view, a learner can be given a conceptual model explicitly (by
diagram or a verbal explanation). In the active learning view,
however, a conceptual model musL be invented by the learner after

D_

an appropriate _ries of experiences.
Mayer (1980) adopted the active learner view. He asked learn-

era to generate a metaphorical elaboration of programming state-
ment types as they were learned. For example, after lea-_ing a
FOR statement, the student was asked to describe its function
using a metaphorical desktop vocabulary. He found that learners
who had provided these elaborations were later able to perform
better on novel and complex programming problems.

Carroll and Mack (1985) suggested that taking a serious active
learnin8 view raises the pmeibility that metaphors are useful not
only when they provide familiar descriptions of novel experiences,
but also when they provoke thought by failing to accord perfectly
with the target of the metaphor comparison. Carroll and Mack

28

1989068859-043

(1985) described a learner who was trying to learn a desktop !
interface and who initially tried to get a piece of paper from a
paper pad icon by sweeping the cursor across the icon in a tearing
motion. Here the desktop metaphor failed but also served to
highlight effectively a specific fact about icon manipulation for the !
learner.

The active learning view provides a means of reconciling the
observation that mental models are often chaotic and misconceived

and the fact that users do often succeed in learning and using soft- _!ware. The suggestion is that people develop models that are good

| enough to suit their current goals. Defective conceptual models !
_ may ultimately play useful roles in learning and adequately sup- i

i port some user activity. It is an op._:,question, however, whether
_, they can actually facilitate learning and be used more effectively i

than more explicitly provided and more correct models (Mack et ._
al.,198,).

RESEARCH RECOMMENDATIONS

These observations on the state of research and application of
the concept of what the user knows lead to the following research
recommendations.

I. Detail what a mental model would consist of and ho_v a

: person woldd uJe it to predict a system's behavior. The term mental
model has been used confusingly in the literature as referring to
goal-oriented procedural knowledge, as well as knowledge about
the components of the device, their functions, their relations to

' other components, and their workings. To date there have been
no concrete characterizations of what a mental model is and how

a person would run it to try out various simulated inputs. One
attempt at this specification of a working mental model, a device
model that is used for guiding external actions, resides in Davis's
(1982) expert system for diagnosing electrical circuit failures. This
model is used by the system to determine where physically a fault
might be and, if it were at a particular location, what the device's
expected behavior would be. Perhaps Davls's (1982) formalization
of an internalized device model might serve as a base from which
to build specifications of what a mental model would be and what
mental operations would be necessary in order to use the mental
model to make predictions about a system's behavior.

•\
i

1989068859-044

Yet, specification6 of how a person would use a mental model
to predict what a system will do is not sufficient to predict the
user's behavior. Our understanding of mental models (if they ex-
ist) needs to be embedded in a model of a full-blown cognitive
system, one that has problem-solving and decision-making pro-
cess_ that are sufficient to initiate the model runs, collect the
results, and decide on an external action.

2. Investigate whether people have and use mental models of
various kinds. Probably the most basic question in this area, still
far from being answered, is whether people construct and use
ment_ models at all. And, because of confusion of terminology in

_. the literature, behavioral evidence is not clearly supportive. Even
when we confine ourselves to the specific definition of mental mod-
els used in this report, however, there is little evidence that people
have and use mental models. So far, the majority of evidence for
mental models has come from people's self-reports that they form
and use them (which may be post-hoc rationalizations), and from
some evidence that when taught a system model or analogy, per-
formance is sometimes better and learning may be faster. Specific
research is needed to demonstrate whether people have models and
that their behavior is clearly distinguishable from that produced
by having stored sequence/method representations.

3. Determine _he behat_ors that would demonstrate the model's

form and the operations used on it. If a person has a mental model,
there may be some observable behavior that would give an analyst
evidence of its form. Traditionally, experimental psychologists
have made inferences about the existence of mental events by
carefully constructing test situations with systematically varied
features and observing particular overt responses such as the time
that it takes to make a certain judgment or carry out an action,
or the amount and kinds of errors made. The construction of the
appropriate comparative test situations and the inferences that
can be drawn from the responses, times, and errors must be based
on a clearer notion of the form that the model might have and the
processes that may act on it.

If the analyst can predict behavior knowing that the person
has a mental model of a particular sort, then the analyst should be
able to discover the mental models of other people from systematic
examination of their behavior. Multidimensional scaling (Shepard
et al., 1972), unfolding theory (Coombs, 1964), and ordered tree

80

1989068859-045

i analysis (Reitman and Rueter, 1980) are examples of techniques
i that allow the analyst to infer particular mental representations

from behavior. Perhaps aspects of behavior can reveal the form of
a working mental model. This work could follow from a program
of research that built on the theoretical work outlined above.

4. Ezplore aUernative _ews of sequence/method representa-
tions and the behat_or predicted from them. We currently have

I a be'_terconceptionofwhat itmeans to havesequence/method
: representationsand what processesmay acton them toproduce

behaviorthanwe do ofmentalmodels. GOMS representsthe

structureof goals,methods,and actionsin a mentalhierarchy
_ _ forwell-learnedcognitivetasks.Kierasand Poison's(1985)pro-

ductionsystemformalismand itsinferenceengine(astandardset
ofproceduresforkeepingtrackofwhereone isin a processand
choosingthesubsequentactions)isa concretespecificationofthis
kindofknowledgeandtheprocessesthatactonit.From thatfor-
realismfollowconcretepredictionsofbehavior,suchasparticular

responses(keypresses),theirtimes,and theerrors.A body ofem-
piri_Jdataisgrowing,answeringquestionsaboutwhichaspects
oftherepresentationaffectbehavior.

What isneededismore researchinthisvein.Formalismsof i

knowledgeand operationalmechanismswouldbespecifiedandthe i
behaviorofotherkindsofsequence/methodrepresentationswould
be predicted.Empiricalstudiescouldthenbe formedto answer
specificquestionsabouttheadequacyoftheformalism,indetail,
replacingthevaguegeneralizationsand contradictionsthatseem
to plague research in this area today. -i

5. Ezplore the types of mental repre#entations that may ez- i
istthatare not mechanistic.Most ofthe mentalmodelsthat ii
areconceivedinthisresearcharemechanisticinnature.The se-

quence/methodrepresentationsaremechanisticand serial.These
consistofcomponentsand processesthatmimicphysicaldevices.
There may be mentalrepresentationsof othertypes,however,
thatdrivepeople'sexploratoryand explanatorybehavior.People
claimtomake inferencesand explorationsfromstoredvisualand
auditoryimages;mathematiciansexperimentmentallywithcom-
putationalsystems,makinginferencesbeforeshowingany exter-
nalbehavior;peoplelikelyreasonatdifferentlevelsofabstraction
abouta system,making inferencesof a verygeneralnaturein
planningbeforeexploringdetailsina step-by-stepfashion.There

31

I

1989068859-046

|,

may be visual, auditory, computational, or hierarchical systems
that form helpful bases for people's reasoning. These other possi-
ble types of mental representations should be made concrete, and
their behavioral correlates should be explored.

6. Determine how people interm/z different repreeentatlons in
producing behavior. This report has reviewed a variety of types
of knowledge that may be held by a user of a computer system. :J
It is likely that users have some knowledge stored in several of
these representations: some well-known procedures for executing
simple sequences; some well-formed GOMS-like structures for do-
ing familiar but more complicated tasks; and some mental models

°. that help the user explore alternative actions to take when an error
occurs or when a novel task is presented to them. if all of these rep-
resentations exist simultaneously, then we need to know when each
is used and how the person moves between them and/or combines
their operations or products. There is likely to be some problem-
solving or decision-making apparatus that guides the overall task
behavior, sometimes exploring unknown territory with a process
like means-ends analysis or running a mental model, and other
times executing well-learned actions from stored goal structures
(see, for example, the extensive literature on automaticity; Shiffrin
and Schneider, 1977). An integrated performance view is called !
for.

7. gzplorehow knowledgeaboutaystem8isacquired.Ifwe
can discover the form of the representation of knowledge that
people have about computer systems, we would like also to know
how that information was acquired. Lewis's work (1986) on how
people make inferences about a system from watching its behavior
is a good example of how to specify concretely how people learn
complicated tasks on computers. Work is also needed on how
people acquire mental models, simple sequences, and methods.
This work would have an impact not only on the design of systems
and their training, but also would give some basic knowledge about
the problem of learning complex behavior in general.

8. Determine how individual di_erences ha_e an iml:act on
learning of and performance on systems. Individuals' cognitive
capacities differ, making different computer users more and less
capable. Some of these differences are likely to arise from simply
having more knowledge from longer exposure to the system. Expo-
sure could provide a user with more task knowledge as well as more !

32

.. 1989068859-047

specific and more accurate mental models. Some of the differences
in performance, however, may arise from basic individual differ-
ences in abilities. For example, Gomez et al. (1983) have shown

i that people who are not good at visual memory have difficulty
with some word processors. Further, they found that a system
that required less recall of a command syntax reduced the perfor-
mance differences found between those who could recall locations

i and those who could not. We need to know more about individ-
ual cognitive differences and their concomitant effect on people's

i mental representations of and performance on complex tasks. The
results will have implications for both the design of systems and

i_ the construction of training sequences for a particular system for
i_ particular users.
i!

i 9. Ezplore the design of training sequences for systems. A
related training issue surrounds the idea of _training wheels, _
the notion that a scaled-down system is easier to learn initially.
Specifying and analyzing the mental model or sequence/method
representations implied by the scaled-down system may lead de-
signers to build more coherent systems and more effective training
sequences. Further, this analysis may indicate how information
about the full system should be taught as an add-on to the train-
ing wheels system.

10. Provide system designers with tools to help them develop
interfaces that invoke good representations in users. There is proba-
bly some guidance that can be provided to systems designers while
they design the user interface to ensure that the sequence/method
representation or the mental model will be an effective guide to
accurate performance. Such tools may come in the form of user in-
terface management systems; which constrain the design set. The
goal may be to constrain the ways that the designers can display
things or constrain the ways that they can allow the user to invoke
a command so that a coherent, easily understood set is formed,
one that inwkes in the user a good mental model or a coherent
set of goal-actions pairs. Designing these guidance tools is an im-
portant research topic, one that can aid the transfer of technology
from the laboratory to the design and development arena.

11. Ezpand the task domain to more eomplez software. Most,
of the research in the area of mental models and sequence/method
representations for human-computer interaction has focused on
text processing and simple device models. Whatever results

33

1989068859-048

emerge from these areas should be tested]br their applicability
to more complex, nonexclusively text-based tasks, such as graph-
ice design, tactical decision making, project planning and tracking,
and data base query. It is likely that the complexity of these tasks,
in which the user is almost never doin_ a task that is well-learned,
requires the user to use mental models and to try out actions
never used before. These may be ideal domains in which to test
notions of the use of mental models, the productive interaction
of sequence/method representations and mental models, and the

i involvement of general problem-solving skills, reasoning, and deci-
sion making.

REI_ERENCES

i Adelson, B. (1981) Problem solving and the development of abstract cate-
gories in programming]_nguages. Memory am/ (7o_t/o_ 9, 422-433.i

; Ausubel, D. P. (1960) The use of advance organisers in the learning and
retention of meaningful verbal material. Journal o[Educational PsllCholo_

!" 51,267-272.
Barnard, P. J., Hammond, N. V., Morton, J., Long, J. B., and Clark, 1.

A. (1981) Consistency and compatibility in human-computer dialogue.
International Journal o/ Man-Machine b'tudlse, 15, 8T-134.

Baron, S., s_ad Levkon, W. H. (1980) The optimal control model: Statue
and future direction. Proessdi, g, of IEEE Cor_fsrence on Cllbsrnst/em and
Society. Cambridge, MA.

Bayman, P., and Mayer, R. E. (1984) Instructional manipulation of users'
mental models for electronic calculators. /ntsmafl'ona/?ouma/of Man-
Mach/ne Biud/ej, 20, 189-199.

Bewley, W. L., Roberts, T. L., Schroit, D., and Verp]ank, W. L. (1983)
Human factors testing of Xerox's 8010 "Starm O/_ice Workstation. Pvo-
ceeds'ngso the 1985 CfIl Confir_nce on Htmtan Factors in (7ompu_'nO.New
York: AJsociatinn of Computing Machinery.

Black, J. B., and Sebrechts, IV[. Iv[. (1981) l_cilltatlng human-computer
communication. Applied PelleAolinOt_tlcs_ _._87-134.

Bott, R. (1979) A study |n complex learning: Theory and methodology.
Report 82. Center for Human Information Processing, University of
Californla at S,m Diqo, La ,lolls, CA.

Burton, R. B. (1981) DEBUGGY: Diagnosing bugs in a simple procedural
skill. In D. H. Sleeman and J. S. Brown (eds.), Irddliosnt Tutoring
,.qVstcm.London: Academic Press.

Card, S. K., Moran, T. P., and Newell, A. (1980a) Computer text edlt|ng:
An information processing analysis of a routine cognlt|ve skill. Oo0nd/vs
PsVd_olooy,12, 32-74.

Card, S. K., Moran, T. P., and Newell, A. (1980b) The keystroke level model
for user pedonnLnce time with interactive systems. Com_ n/ca_/0m of
the AGM, _3, 396-410.

i 34

989068859-04 .

4

i Card, S. K., Moran, T. P., and Newell, A. (1983) The Psychology of Human-
Computer Interaction. Hilkdale, N J: Erlbanm.

i Carroll, J. M., and Carrithers, C. (1984) Training wheels in a user interface.

Oommun/catiomo/the ACM, 27, 800-806.
Carroll, J. M., and Mack, R. L. (1985) Metaphor, computing systems, and

active learning. International 3ournal o/ Man-Maehin* Stua_es, 22, 39-57.

i Carroll, J. M., and Thomas, J. C. (1982) Metaphor and the cognitiverepresentation of computing systems. IEEE Tran*actiona on Systems,

l Man, and Cpl_meties, SMC-12, 107-116.
Chase, W. G., and Simon, H. A. (1973) Perception in chess. Cognitlve

Psychology,4, 55-81.

CoombJ, C. H. (1964) A Theory o_fDat_ New York:John Wiley & Sons.

Davis,R. (1982)Expertsystems:Where arewe? And, where do we go from
here? The AIMa#azlne, Spring, 3-22.

Douglas, S. A., and Moran, T. P. (1983) Learning text editor semantics
by analogy. Proeeed/n0a o/the 1983 CHI Conference on Human Factors in

," Computino. New York: Kesociation of Computing Machinery.
Dreyfus, H. (1955) Dedoning for People. New York: Simon & Schuster.
DuBoulay, B., O'Shea, T., and Monk, J. (1981) The black box inside the glass

box: Presenting compu *'_ _,icepts to novices. International Journal of
Man-Machine b'tudie# _7-249.

Dunsmvre, H. E. (19t" _ _ formal gr-mmar approach to human fa_ton
research. Technical Report 623, Department of Computer Science,
Purdue University, West Lafayette, IN.

Egan, D. E., and Schwarts, B. J. (1979) Chunking in recall of symbolic
drawings. Memory and Cognition, 7, 149-158.

Ehrlich, K., and Soloway, E. (1984) An empirical investigation of the tacit
plan knowledge in programming. In J. Thomas and M. Schneider (eds.), _
Human Fo_tors in Computing S_stcmt. Norwood, NJ: Ablex.

Embley, D. W., Lau, N. T., Leinbangh, D. W., and Nag'/, G. (1978) A _
procedure for p.'edi_tit_ program editor performance from the users
point of view. International Journal of Man-Machine Studies, 10, 639-650.

Fodor, J. A., Booer, T. G., and Garret,, M. F. (1974) The Psvchoiooll o/
l_nguage. New York: McGraw-Hill.

Foley, L. J., and Willigss, R. C. (1982) User models of text editing command !
languages. Human Faetorm in Computer System_ Proeeedin90. Washington,
DC: National Bureau of Standards.

Foes, D. J., Rosson, M. B., and Smith, P. L. (1982) Reducing manual labor:
An experimental anMysls of learning aids for a textedltor. Human Factors
in Computer Sy_enu Proeesdinos. Washington, DC: National Bureau of
Standards.

Galambos, J. A., Sebrechts, M. M., Wikler, E. S., and Black, J. B. (1985) A
diagrammatic language for instruction of s menu-based word processing
system. In S. Williams (ed.), Human, and Machine,: The lnter/oze Throwh
Lanpuaoe.Norwood, N J: Ablex.

Gomes, L. M., Egan, D. E., Wheeler, E. A., Sharma, D. K., and Gruch_s, A.
M. (1983) How interface design determines who has difficulty learning
to use a text editor. Pp. 178-179 in Proeee&'nomo_the 198# CHI Conference
on Human Factors in Computing. New York: Association of Computing
Machinery.

35

1989068859-050

Gould, J. D., and Boles, S. J. (1983) Human factors challenges in creating
a principal support office system-the speech filing approach. At_Ir
2q_m_t/on, on O_cs In/ormat/on Sy_tenu,1,273-298.

HalMs, F., and Moran, T. P. (1982) Analog/considered harmful..;/uman Fac-
tors in Compulsr Sv_enu, Proceedings. Washington, DC: National Bureau
of Standards.

Hilgard, E. R., and Bower, G. H. (1975) Theor/es o/Learning. Englewood
Cliffs, NJ: Prentice-Hall.

3agaclnskl, R. J., and Miller, R. A. (1978) Describing the human operator's
internal model of a dynamic system. Human factors, 20, 425-433.

Jagncinski, R. J., Plamondon, B. D., and Miller, R. A. (in press) Describing
movement at two levels of abstraction. In P. A. Hancock (ed.), Human ._
Yactora P_cholofv. Amsterdam: North-Holland.

Jenkins, J. J. (1974) Remember that old theory of memory? Well, forget itl
American Psycholol_, 29, 785-795.

Kieras, D. E., and Bovair, S. (1984) The role of a mental model in learning
to operate s device. Oo_itiee So/enos, 8, 255-274.

_, Kieras, D. E., and Bovalr, S. (1986) A production system analysis of transfer
of training. Journal o/Memory and Lan_afs, 25, 507-524.

Kieras, D. E., and Poison, P. G. (1983). A generalised transition network rep-
resentation for interactive systems. Pp. 103-106. Proce_/ngs o/the 1988
CH! Coherence on Human Facton in Oompu6ng. New York: Association
of Computing Machinery.

Kieras, D. E., and Poison, P. G. (1985) An approach to the formal analysis of
user comp!exity. International Journal o/Man.Machine ,ftudiu, 22, 365-394.

Kraut, R. E., Hanson, S. J., and Farber, J. M. (1983) Command use and
interface design. Proceedinfs o the 1985 Cltl Oon_srzncs on Human Factors
in Computing. New York: Association of Computing Machinery.

Landauer, T. K., Galottl, K. M., and Hartweil, S. (1983) Natural command
names and initial learning: A study of text-edlting terms. Oommunica-
tior_ o/ the Auo¢iation o_OompuZingMachine_, 26, 495-503.

Landaner, T. K., Galottl, K. M., and Hartwell, S. (1984) What makes a
difl'erence when? Comments on Grudin and Bernard. HtnnGn Factor,,
26(4), 423-429.

Lewis, C. (1986) A model of mental model construction. Proceedings o_ the 1986
Ctll Gor_erenee on Human Factors in Oomputinf. New York: Association
of Computing Machinery.

Mack, R. L., Lewis, C. H., and Carroll, J. M. (1983) Learning to use
word processors: Problems and prospects. ACM Tramaetior_ on O_cs
Ir_orma6on Systen_, 1, 254-271.

Mantei, M. (1982) Di, orient_on Behat_or in Peraon-Oomputsr Intsraet/o_ Un-
publisheu PhD dissertation. Department of Communication, University
of Southern California.

Mayer, R. E. (t976) Some conditions of meanin_ul learning for computer
programming: Advance organisers and subject control of frame order.
Jo=,n_ o/£duea6onal Pey/ckolofV, 87, 728-734,

Mayer, R. E. (1980) Elaboration techniques for technical text: ._, exper-
imental test of the]earning strategy hypothesis. Journal o[Educah'onal
Psy¢&aloly, 72, 770-784.

Mayer, R. E. (1981) The psychology of how novicee learn computer program-
ming. Oompu6ng Survey, 13, 121-141.

36

i

1989068859-051

F
Mayer, R. E., and Bayman, P. (1981) Psychology of calculator languages: A

framework for describing differences in users' knowledge. Co_r.mun/cat/ons
of the ACMt 24, 511-520.

McKeithen, K. B., _,,man, J. S., Rueter, H. H., and Hirtle, S. C. (1981)
Knowledge organization and skill differences in computer programming.
Coomtive PsVcAoloov,13, 307-325.

Miller, G. A. (1962) Some psychological studies of grammar. American
Pellchologiat,17, 748-762.

Miller, R. A. (1985) A systems approach to modeling discrete control perfor-
mance. In W. B. Rouse (ed.), Adv_ss in Man-Machine Systems Research,
Volume 2. Greenwich, CT: JAI Press.

Moran, T. P. (1981) The command language grammar: A representation for
the user interface of interaction computer systems, lrgernat/or_olJourn_
o/Man-Machine _tudies, 15, 3-50.

Moran, T. P. (1983) Getting into a system: External-internal task mapping
_ analysis. Pp. 45-49 in Pro_zedinos of the 1985 CHI Co_feren¢_ on Human

F_ctors in Computino. New York: Association of Computing Machinery.
Morgan, C., Williams, G., and Lemmons, P. (1983) An interview with Wayne

Posing, Bruce Danlels, and Larry Tesler. BYTE, February, 33-50. i
Ne sell, A., and Simon, H. A. (1972) Huron Problem Solving. Englewood /

Cliffs, N J: Prentlce-Hall.
Norman, D. A. (1983) Some observations on mental models. In D. Gentner

and A. Stevens (ads.), Menta/Modds. Hilizdale, NJ: Erlbaum.
Olson, J. Reitman (1987) Cognitive analysis of people's use of software. In

J. Carroll (ed.), lntsrfadng Thought: Coondive Asp_ts of Human-Oomptdcr

Interaction. Cambridge, MA: Bradley Books/MIT Press.
Olson, J. Reitman, and E. Nilsea (1988) Cognitive analysis of people's use

of spreadsheet software Technical Report. Humor-Computer Interaction,
1988, in press.

Olson, J. Reltman, Whltten, W. B., II, and Gruenenfelder, T. M. (1984)
A general user interface for creating and displaying _ree-structures,
hierarchies, decision trees, sad nested menus. In Y. Vassiliou (ed.), 1
Human Factors and Interactive Computer System*. Norwood, N J: Ablex. i

Psyne, S. J., and Green, T. R. G. (1983) The user's perception of the i
inter_tion language: A two-level model. Proce_lings of the 1985 GHI !
Confirmce on Human Factors in Compuh'ng. New York: Association of
Computing Machinery. _

Pew, R. W., and Baron, S. (1983) Perspsctlves on human performance

modeling. Automatic_ 19, 663-676. i
Poison, P. G., and Kieras, D. E. (1984). A formal description of user's

knowledge of how to operate at device and user complexity. Behavior
Research _hthod_, ln_trumcnt_, and Computers, 16, 249-255.

Poison, P. G., and Kieras, D. E. (1985) A quantitative model of the learning _!

and performance of text editing knowledge. Proceedings o/the I./85 GHI t
Cor_sren_s on Human Factors in Compuh'n_. New York: Association of 1
Computing Machinery.

Pokon, P. G., Muncher, E., and Enselheck, G. (1986) A test of a common

elements theory of transfer. Procee_ngs of the 1986 CtlI Con/erenge on I
Human Factors in Computin O. New York: Association of Computing
Machinery. !

37

1989068859-052

* Postman, L., and Stark, K. (1969) Role of response availability in transf.r
and interference. Journal el F_puimenta] PevchololN, 79, 168-177.

Rasmussen, J. (1983) Skills, rules, and knowledge: Signals, signs, and
symbols, and other distinctions in human performance models. IEEE
gkzmac_om on Sykes, Man, and _m_s, SMC-13, 257-266.

Relsner, P. (1981) Formal grammar and human factors design of an inter-
active graphics system. /EEL? 2bin, act/one oj"Software Eng/neer/ng, SE-7,
229-240.

Rekner, P. (1983) Analytic tools for human factors software. In A. Bluer
and M. Zoepprlts (ads.), End-User Sydenu and Theb" Human Factors.
Proceedings of the ectenti6,c symposium conducted on the occasion of
the 15th anniversary of the Science Center Heidelberg of IBM Germany,
in G. Goos and J. Hartmanis (eds.), Lac_ve Notzm m Gompu_er Sdencs,
Series No. 150. Berlin: Sprlnger-Verlag.

Relsner, P. (1984) Fo_.ual grammar u a tool for analysing ease of use: Some
fundamental concepts. P. $3 in J. Thomas and M. Schneider (eds.),

_ Human Factora in Oom#u_ng Sllatema. Norwood, NJ: Ablex.
Reitman, J. S. (1976) Skilled perception in Go: Deducing memory structures

from iuter-retponse times. Uol_e Psychoio_, 8, 336-377.
Reltman, J. S., and Rueter, H. H. (1980) Organisation revealed by recall

orders and confirmed by pauses. Oofn/6ve PsVcholo_, 12, 554-581. t
Robertson, S. R. (1983) Go,d,Plan, and Otdcome 27rackingin Uomputcr Te_-

Editin 0 Per/orma_e. Cognitive Science Technical Report 25. Yale Unl-
versify, New Haven, CT.

P,osson, M. B. (1983) Patterns of experience in text editing. Pp. 171-175
in Pmcesd/ngs o[_ke 1985 GH_ Con/errata on Human Factors in Compu_ng.
New York: Association of Computing Machinery.

Rouse, W. B., and Morris, N. M. (1986) On looking into the black box:
Prospects and limits in the search for mental models. Psychological
Bulletin, Vol. 100, No. 3, pp. 349-363.

Rumelhart, D. E., and Norman, D. A. (1981) Analogical processes in learning.
In J. R. Anderson led.), Cogni6ve Skills and Their Acqtd_'on. Hillsdale,
N J" Erlbaum.

Rumelhart, D. E., and Norman, D. A. (1982) Simulating a skilled typist: A
study of skilled cognitive-motor performance. G'_ $c/_nes, 6, 1-36.

Scandura, A. M., Lowerre, G. F., Veneekl, J., and Scandura, J. M. (1976)
Using electronic calculators with elementary children. Educah'onai Tech-
no|oOy_16, 14-18.

Schlager, M. S., and Ogden, W. C. (1986) A cognitive model of database
querying: A tool for novice instruction. Pmcssdi,_ of th_ 1986 UHI
Cen[s_ncz on Humms Factors in Computinp. New York: Association of
Computing Machinery.

Shepard, R. N., Romney, A. K., and Nerlove, S. B. (1972) Mul6dimzn,ional
$ca_ng: Theory and Applications in the Bdmeioml $cicncu. New York:
Seminar Press.

Sheride.n, T. B., Charuy, L., Mendel, M. B., and Roesborough, J. B. (1986)
Supervisory Control, Mental Models, and Decision Aids. MIT Depart-
ment of Mechanical Engineering Technical Report, July. Massachusetts
Institute of Technolow.

Shiffrin, R. M., and Schneider, W. (1977) Controlled and automatic human
inform,talon processing. PsFcholo_ical Ret_w, 84, 137-190.

38

i

t

1989068859-053

r _ ' ,'; +,, k _

: Shneiderman, B. (_ _3) Software Psychology: Human Factors of Computer and

i lr4ormaKon SVs,-ma. Cambridge: Winthrop.
Shnelderman, G. (1982) Multiparty grammars and related features for defin-

) ing interactive systems. IEEE 7_anaactiona on .e"atema, Man, and Of/her-
net/ca, SMC-12, 2.

! Shrager, J., end Klahr, D. (1983) Learning in an instrnctlonlese environment:
Observation aud analysis. Pro_c_ngs o[_e lg&_ 0111 Oonfcrcnce on Human
Factors in Compz_ing. New York: Association of Computing Machinery.

Smeicer, J. B. (1986) Expertise in data modeling or what is inside the head of
an expert data modeler? Pvoce_ings oils 1986 CHI Con[erev_ on Hum4n
Factors in Computing. New York: .4ssociatlou of Computing Machinery.

i Thomas, J. C., aad Carroll, J. M. (1981) Human factors in communication.
IBM ,,°tmtem,Journal, 20, 237-263.

Veldhuysen, W., and Stassen, H. G. (1976) The internal models: What does
it mean in human control. In T. B. Sheridan and G. Johannsen (eds.),
Mor_torlng Behavior and St_r_eory Control. New York: Plenum.

Whlteside, J., end Wixon, D. (1984) Developmental theory u a framework

for studying human-computer interaction. In H. R. Hartson (ed.),
Advancs, in Human-Computer Interaction. Norwood, NJ: Ablex.

Wittrock, M. C. (1974) Learning as a generative process. Educational Pq/.
chologv,11, 87-95.

Wright, P., and Bason, G. (1982) Detour routes to usability: A comparison
of alternative approaches to multipurpose software design. International
Journal o[Man-Machine Studies, 18, 391-400.

Young, R. M. [1981) The machine inside the machine: Users' models of
pocket calculators. International Journal of Man-Machlne Stud/e#, 15, 51-85.

Young, R. M. (1983) Surrogates and mappings: Two kinds of conceptual
models for interactive devices. In D. Gentner _nd A. Stevens (eds.),
Mental Modeb. Hilkdale, N J: ErIbaum.

39

1989068859-054

