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ABSTRACT

Development of a responsive, high-bandwidth missile autopilot for airframes which
have structural modes of unusually low frequency presents a challenging design task.
Such systems are viable candidates for modern, state-space control design methods.
The PC-MATLAB interactive soltware package provides an environment well-suited to
the developement of candidate linear control laws for flexible missile autopilots. The
strengths of MATLAB include: (1) Exceptionally high speed -- MATLAB's version for
80386-based PC's offers benchmarks approaching minicomputer and mainframe
performance; (2) Abllity to handle large design models of several hundred degrees of
freedom, If necessary; and (3) Broad extensibility through user-defined functions. To
characterize MATLAB capabilities, a simplified design example is presented. This
involves interactive defintion of an observer-based state-space compensator for a
flexible misstile autopilot design task. MATLAB capabilities and limitations, in the
context of this design task, are then summarized.
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INTRODUCTION

’

. JHU/APL acts as technical direction agent
for US Navy weapon system programs

u A key task of APL’s Guidance, Control, and
Navigation Systems Group is the evaluation
or conceptual design of missile guidance and
control systems

= Analysis and design work requires a flexible,
interactive linear modeling tool

. PC-MATLAB resident on 80386 engineering work-
stations provides such a tool

= Work presented here shows general attributes of
MATLAB, demonstrating use of PC-MATLAB/386
‘for linear design of a flexible missile autopilot

14 3



MATLAB BACKGROUND
o ———————————— L —

. MATLAB (MATrix LABoratory) provides an interactive,
matrix-oriented environment

- MATLAB is based on the EISPACK and LINPACK routines
for matrix computations

. PC-MATLAB/386 is a high-performance MATLAB
implementation for 80386-based workstations

L] MATLAB built-in functions, plus higher-level
functions developed for control system calcula-
tions, allow for effective controls design
studies
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HARDWARE AND SOFTWARE CONFIGURATION

/

= COMPAQ 386/20 computer

" Weitek 1167 numeric coprocessor

. PC-MATLAB/386 with Control Systems Toolbox
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PC-MATLAB/386 ATTRIBUTES

\

m Interactive, high-level command environment

L Very high processing speed

L] Easy extensibility via user-defined functions
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A MATLAB INTERACTIVE COMMAND LINE EXAMPLE

—
>> k = Iqr(a,b,q.tho*r); eig(a-b*k), y = step(a-b*k,b,c,d,1,t); plot(t.y):
. The single line above, typed at the MATLAB
command line prompt, does several things:
- Computes a quadratic regulator gain vector
- Displays the closed-loop eigenvalues -- often
useful for confirming that actuator band-
width requirements are not excessive
- Computes and plots a unit step response
L By varying the control cost (rho) above, a very

large family of compensators may quickly be
considered

. The above command line suggests the power and
utility available from a high-level, inter-
active matrix language
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PC-MATLAB/386 PROCESSING SPEED

. MATLAB's LINPACK Benchmark: 460 double precision KFLOPS

L This processing speed is:

- 25 x faster than standard PC/AT
- 6 x faster than Mac lI
- 3 x faster than MicroVax Il

L Implication: the fast response time resulting from
such performance allows for truly interactive
design iterations on complex control laws
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MATLAB EXTENSIBILITY
|

L User-defined functions may be developed
through creation of simple text files

. Some typical user-defined functions:
- Frequency-response plotting routines
- Application-specific linear transformations

- Multivariable Nyquist criterion

L Complex state-space or transfer-function
models also defined through user text files
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AN EXAMPLE OF A USER-DEFINED COMMAND FILE

- Below command set calculates and plots the
maximum and minimum singular values of
a plant and observer-based compensator,
for a loop broken at plant input

function [smin,smax]) = svdinput(a,b,c,kcon,kobs,w);
X

Jay = sqrt(-1);
[nn,xx]}=size(a); i2=eye(nn); [ng,xx)=size(c*axd); phi = ’(s*i2-a)’;
for i = l:nc;
s = w(i)*jay; phieval = eval(phi);
g8 = c/phieval*b; ks = kcon / (phieval+b*kcon+kobs*c) * kobs;
xx=svd(ks*gs); smin(i)=zxx(ng); smax(i)=xx(1);
end;
%
%
% convert to decibels and plot output
X
smin=20%logl0(smin); smaxz=20*loglO(amax);
semilogx(w,smin,w,smax,'r--'); grid;
title('Max and Min Singular Values; Loop Broken at Plant Input ');
xlabel(’'Frequency (rad/sec)’'); ylabel('Magnitude (db)');

. Procedure requires only eleven lines of
executable MATLAB code
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CLASSICAL CONTROL CAPABILITIES

L Frequency response

» Root locus

m Nyquist plots

. Development of dynamic compensators
(lead-lag, notch filters, etc)
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MODERN CONTROL DESIGN EXAMPLE
L —

= Design plant describes tactical missile at
a high-altitude flight condition

" Design plant includes single-plane rigid-
body dynamics and effect of first flexible
mode on sensed pitch rate

= Objective is to develop an autopilot to track
commanded accelerations

u Design challenge is to achieve high closed-loop
bandwidth in presence of low-frequency
bending modes
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DESIGN APPROACH

/

= Establish design goals for closed-loop
responsiveness and stability

L Develop full-state feedback (LQR) gains
for design plant

L Define linear observer to reconstruct full state
vector

- Use "robust observer” design (Doyle and Stein,
1979 IEEE Transactions on Automatic Control)

- Adjust observer gains to recover original LQR
loop transfer in desired frequency range
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DESIGN PLANT MODEL

e

n Fifth-order state vector X x= Ax + bu

n X = [qr q,/s a/s q¢/s q¢]

L First three state variables are associated with
rigid-body airframe; the last two describe
flexible mode dynamics

u Rate gyro measurement: [1000 1] * x

. (Integrated) accelerometer measurement: [001 0 0] * x

0 -2.3557¢+02  1.7967e4+02 0 0
A= 1.0000e+00 0 0 0
= 0  2.6158e+00 -1.9951e+00 0 0
0 0 0 0 1.,0000e+400
0 0 O -2.4649¢+04 -3.14008+00
-2.8031e+02
0
b= 9.2587¢-02

0
3.0723e+02
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SOME OBSERVATIONS ON DESIGN PLANT MODEL
=

L Feedback of the first three states describes
a very standard (rigid-body) autopilot
topology, used by tactical missiles since

1950's

= Open-loop plant is characterized by lightly
damped airframe (weathercock) poles, and
by bending mode poles

- Airframe pole frequency lies at
nominal 2.5 Hz

- Bending mode has nominal 25 Hz natural
frequency

u Desired autopilot crossover frequency here
will lie near the bending mode frequency
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EFFECT OF STRUCTURAL MODE ON SENSED PITCH RATE
(RATE GYRO MEASUREMENT)

—

Response to Unit Fin Deflection
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CONTROLLABILITY AND OBSERVABILITY PROPERTIES OF PLANT

(5 —

. System (A,b) is controllable

L System is unobservable if rate gyro alone,
or accelerometer alone, is used as the
measurement to reconstruct state vector

L Both sensor outputs thus should be used in the
observer design

. Approach taken for this application:

- Define a (non-square) design plant having
one input (fin deflection) and two inde-
pendent outputs (gyro and accelerometer)

- Use extensions of loop transfer recovery

(Williams and Madiwale, 1985 ACC) valid
for non-square systems
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FREQUENCY RESPONSE OF FULL-STATE FEEDBACK (LQR) SYSTEM
(LOOP BROKEN AT PLANT INPUT)
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OBSERVATIONS ON LOOP TRANSFER RECOVERY PROCEDURE
{5

= For this application, recovery at both the
(rigid-body) airframe and bending mode
frequencies may only be achieved with very
high observer gains

L For practical ranges of observer gains, recovery
at airframe frequencies is obtained at the cost
of lessened robustness in the structural mode

frequency range

L Use of a set of user-defined MATLARB files, to
implement a range of observer gain calcu-
lations, makes evaluation of this robustness

tradeoff straightforward
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RECOVERY OF DESIRED FULL-STATE FEEDBACK SYSTEM
WITH MODEL-BASED COMPENSATOR

—

Asymptotic Loop Transfer Recovery Properties of Compensator
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ACCELERATION STEP RESPONSE OF FINAL COMPENSATOR DESIGN

;

Response to 1-Gee Acceleration Command
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RESPONSE OF FLEXIBLE MODE STATE DURING
ACCELERATION STEP RESPONSE

Pitch Rate Response Due to Flexible Mode
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ACCELERATION STEP RESPONSE FOR CASE WHEN
BENDING MODE IS PERTURBED TO 25 % LOWER VALUE

Response to 1-Gee Acceleration Command
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COMPARISON OF ACTUAL AND RECONSTRUCTED FLEXIBLE
MODE STATE DURING STEP RESP

ONSE -- BENDING MODE
PERTURBED TO 25 % LOWER VALUE

\

Actual (-) and Reconstructed (--) Flexible Mode State
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SUMMARY OF DESIGN RESULTS

f

= Model-based compensator yields a high-bandwidth
autopilot, which is robust to at least a 25%
perturbation in bending mode frequency

] A number of issues still not addressed:

Detailed noise sensitivity assessment

Effect of higher-frequency structural modes

Phase lag from actuator dynamics

Effect of structural modes on accelerometer
measurement

Tolerance to uncertainties in aerodynamics

L Above concerns could also be addressed using MATLAB
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SUMMARY: MATLAB APPLICABILITY FOR
CONTROL DESIGN OF FLEXIBLE SYSTEMS

. MATLAB provides the necessary tools for a
variety of control system design techniques

= Extensibility of MATLAB allows development
of tools to implement recent modern control
design methods, including loop transfer
recovery

L Implementation for 80386-based machines (PC-
MATLAB/386) has very high performance,
allowing for interactive control design of
complex systems such as flexible structures

" Any flexible structures control problem which
can be cast into a state-space framework
may benefit from design work with MATLAB
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