SHAPE CONTROL OF HIGH DEGREE-OF-FREEDOM VARIABIE GEOMETRY TRUSSES

By

R. J. Salerno, C. F. Reinholtz, and H. H. Robertshaw Virginia Polytechnic Institute and State University Blacksburg. Virginia

Abstract

Common static trusses are constrained to permit no relative notion between truss elements. A Vartable Geometry Truss (VGT), however, is a trusis which contains some number of variable length links. The extensible links allow the truss to change shape in a precise, controllable manner. These changes can also be used to control the vibrational response of a truss structure or to perform robotic tasks.

Many geometric configurations, both planar and spatial, are jossible candidates for VGT manipulators. For this presentation only two geometries will be discussed; the three degree-of-freedom (DOF) spatial octahedral/octahedral tiuss and the three DOF planar tetrahedral truss. These truss geometries are used as the fundamental element in a repeating chain of trusses. This results in a highly dexterous manipulator with perhaps 30 to 60 degrees of freedom that retains the favorable stiffness properties of a conventional truss. From a fixed base, this type of manipulator could perform shape or vibration control while extending and "snaking" through complex passageways or moving around obstacles to perform robotic tasks.

In order for this new technology to be useful in terms of robotic applications the forward and inverse kinematic solutions must be efficiently solved. The approach taken here is to first concentrate on fully understanding the firward and inverse kinematics of the fundamental elements and then utilizing the insight thus gained to solve the more complex problem of the kinematic chains. The inverse solution of a 30 DOF planar manipulator will be discussed. The discussion will focus on how to specify parameters for an underspecified system by using shape cont rol algorthms.

Shape Control of High
Degree-of-Freedom
Variable Geometry Trusses

984

985

986

988

990

Approach Fitting Curve

992

994

spacing

995

Results

1 |

998
Spatlal

Forward
$\begin{array}{ll}1 & 0 \\ 0 & \vdots \\ 0 & - \\ 0 & J \\ 0 & 0 \\ 0 & 0 \\ 0 & J\end{array}$
 es
SPHERIC
JOINT

999

Equations $\overline{\Pi_{1} \Pi_{2}}=f\left(\theta_{1} \cdot \theta_{2}\right)$
$\overline{\Pi_{2} \Pi_{3}}=f\left(\theta_{2}, \theta_{3}\right)$
$\overline{\Pi_{3} \Pi_{1}}=f\left(\theta_{3} \cdot \theta_{1}\right)$ \| \|〕 ${ }^{N}$ -

1002

