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SUMMARY

Materlals for future generations of aeropropulslon systems w111 be

required to perform at ever-lncreasing temperatures and have properties supe-

rior to the current state of the art. Improved engine efficiency can reduce

specific fuel consumption and thus increase range and lower operating costs.

The ultimate payoff gain is expected to come when materials are developed that

can perform without cooling at gas temperatures to 2200 °C (4000 °F). This

report presents an overview of materials for applications above ]650 °C

(3000 °F), some pertinent physical property data, and the rationale used (l)

to arrive at recommendations of materlal systems that qualify for further

investigation, and (2) to develop a proposed plan of research. From an analy-

sis of available thermochemlcal data it was concluded that such materials sys-

tems must be composed of oxide ceramics. The required structural integrity

will be achieved by developing these materials into fiber-reinforced ceramic

composites.

INTRODUCTION

Materials for future generations of aeropropulsion systems will be

required to perform at ever-lncreaslng temperatures and have properties supe-

rlor to the current state of the art. The general scenerio is indicated in

figure l, where the operating temperature reglmes for various aeropropulslon
systems are shown as a function of required operating time. For aircraft

engines the drive is to increase temperature capability and extend operating

llfe. In both the commercial and military aircraft engine contexts, these

goals derive from the desire to improve engine performance whlle reducing oper-

atlng costs. Improved engine efficiency can reduce specific fuel consumption

and thus Increase range and lower operatlng costs. Additional savings of

dollars and time also result from the ablllty to achieve greater speed. These

payoffs can be attained by operating at higher gas temperatures, by reducing

the cooling air needed to keep the materials of various components within their

temperature capabilltles, and by reducing the weight of the propulsion sys-

tem. Considerable research and development effort Is belng expended to pro-

vide lighter weight materials that can sustain Iong-duratlon exposure to tem-

peratures of 1650 °C (3000 °F) in hlgh-veloclty-flow oxidizing environments.

Although developing such materials certalnly presents challenges, potentially

viable candidate materlal systems exist, as evidenced by the variety of

research and development projects currently being pursued.

Attaining this amb|tlous goal will yleld high payoffs, but the ultimate

payoff is expected to come when materials are developed that can perform with-

out cooling at gas temperatures between 1650 and 2200 °C (3000 and 4000 °F).

This sltuatlon is conslderably more speculatlve. At present, carbon-carbon



composites are the only materials receiving extensive attention. Although they

are lightwelght and have attractive mechan|cal properties at these ultrahlgh

temperatures, carbon/carbon composites are susceptible to severe oxidative deg-

radation and this presents formidable problems. An obvious way to combat this

inadequate environmental durability Is to develop coatings that will provide

the necessary oxidation resistance and, indeed, this route is being pursued

vigorously by many research organlzat|ons. Although progress has been made on
this front, no completely satisfactory coating system has been demonstrated

for Iong-duratlon use. Coatings have been developed that perform reasonably
well for relatively short times for non-human-rated applications under very

special operating conditions. However, even for the best coatings so far
developed, life prediction has been elusive. This stems mainly from the fact

that coatings generally possess flaws that ultimately limit their lives. Thus

for Iong-duratlon cyclic use and human-rated applications, coatings for carbon-
carbon are still considered to be extremely risky. A viable coating for

carbon-carbon must be "prime reliant" (i.e., it must guarantee protection for

a substrate that would catastrophically fall under use conditions without a

coating). Furthermore coatings add weight; if a suitable coating system is

developed, it might be sufficiently heavy to negate the desirable weight advan-

tage of carbon-carbon. On the basis of these considerations, it seems prudent
to look for alternatlve material systems for use above 1650 °C (3000 °F).

This study assessed what is currently known about such materials and iden-

tlfied potential candidate engine system materials for long-duration use. This

report presents an overview of materials for applications above 1650 °C

(3000 °F), some pertinent physical property data, and the rationale used (1) to
arrive at recommendations of materlal systems that qualify for further investi-

gation and (2) to develop a proposed plan of research.

BACKGROUND

The current major emphasis in the development of materials for high-

temperature (<1650 °C (3000 °F)) use is directed at carbon/carbon, silicon car-

bide, and sllicon nitride composite systems. For ultra-high-temperature
(>1650 °C (3000 °F)) use sllicon-based systems are not viable candldates in

oxidizing environments because, as shown later, their oxidation character-
istics limit their upper use temperature to about 1650 °C (3000 °F). Carbon/

carbon composites possess adequate mechanical properties at ultrahigh tempera-
tures as noted earlier but require coatlngs for use in oxidizing environments.

Extensive effort is being expended to develop coatings for carbon/carbon com-

posites. The inherent risks associated with the use of coatings have been
identlfled, but sultable coating systems for long-duration cyclic use at ultra-

high temperatures in high-velocity oxidizing flows have yet to be demonstrated.

Recent review articles by Fleischer (ref. I) and Hillig (ref. 2) proved

helpful in that they focus on critical material characteristics. Properties

such as melting (or dissociation) temperature, specific gravity, Young's

modulus, strength, creep resistance, and thermal expansion are addressed as

being especlally important. Beyond these properties, environmental stability

is highllghted as the most Important requirement, with special emphasis given

to oxidation resistance. This, together with fundamental thermodynamic consid-

erations of chemical reactions (based in many cases on necessarily extrapo-

lated thermochemical data), ultimately led Hillig to consider only oxides to



be vlable composite matrlces or monolithic ceramics for appllcatlons in air to
2100 °C (3800 °F).

Morre11's handbook (ref. 3) compares limiting materlal use temperatures

In regard to melting temperatures, dlmenslonal stabI11ty, creep, and oxidation

and provides some helpful background information. Also of value are the mate-
rial property compllatlons from the Battelle Memorlal Institute series (refs. 4

to 7), the volume on hlgh-temperature oxides edlted by Alper (ref. 8), and

Shaffer's (ref. 9) handbook on hlgh-temperature materials.

We have been especially cognizant of the current U.S. Air Force program

dealing wlth ultra-hlgh-temperature englne materials and the particulars of
the 12 current material screening contracts funded by the Air Force. l These

contracts are directed at Identifying and developlng materials for use above

1650 °C (3000 °F). Eight of the contracts take the ceramic matrix composite

approach, where the matrix Is usually an oxide and the reinforcing second phase

Is a carbide, borlde, or nltrlde. Fiber matrix compatibility and mlcrostruc-

rural stablllty are apparently the major concerns, but environmental durability

Is also receiving consideration. The other four contracts focus on protective

coatings for carbon/carbon composites. The approach here Is to develop coat-

Ing systems that are layered structures of various materials Includlng silicon

carblde, hafnlum carbide, titanlum carbide, and Iridium alloys. Coating sys-

tems are evaluated primarily by oxidation testing.

Considerable research effort Is being expended to develop monolithic

ceramic materials for use in advanced heat englne applications to 1650 °C

(3000 °F). The primary candidate materials are s11icon carbide (SIC), silicon

nltr|de (SI3N4), and partlally stabilized zlrconia (PSZ). Although SI3N 4 and
PSZ are stronger than SIC, their strength degrades above ~1200 °C (2200 °F).

SiC, on the other hand, retains Its strength to nearly 1480 °C (2700 °F). As

discussed later, both SIC and SI3N 4 suffer from oxidation problems above
~1650 °C (3000 °F).

In spite of recent successes In producing monolithic bodies of these mate-

rlals wlth increased strength, SIC, SI3N 4, and PSZ still have a major IImlta-
tion in their |nherent brittleness, which can lead to catastrophic failure.

This 11mltatlon Is being addressed by developlng toughening schemes based on
the use of either short or continuous fibers. Such composites as carbon/

carbon (C/C), SiC/glass ceramic, SIC/SIC, and SIC/S13N 4 have demonstrated bet-

ter fracture strength, thermal shock resistance, and fracture toughness than

monollthlcs. As already noted, C/C materials are totally dependent on protec-

tlve coatings. The glass ceramic systems are limited In temperature capablII-

ty to ~1315 °C (2400 °F). Therefore the most attractlve candidates for use to
1650 °C (3000 °F) are ceramic composite systems that use SiC reinforcing
fibers In a sillcon-nltrlde- or sI11con-carblde-based matrix. Commercially

available SIC/SIC composites, as well as most composites under development, use

the Nlcalon 2 SIC fiber, which Is appropriately coated (usually wlth chemically

lprogram Review, Materials and Process Screening PRDA, Wrlght-Patterson

Alr Force Base, Ohlo, December 9-I0, 1986.
2NIcalon Is a trade name for an SIC fiber made by Nippon.



vapor deposited SIC), to toughen a composite by developing a weak interfacial
bond between the fiber and the matrix. One example of this type of composite,

the one-dimensional Soci_t_ Europ_ene de Propulsion CERASEP, has room-

temperature strength of ~410 MPa (60 ksl); however, this strength decreases to
~240 MPa (35 ksl) at ~1200 °C (2200 °F). This strength decrease is consistent

with the expected behavior of Nicalon, which is subject to thermal instability

due to oxygen and excess carbon in the mlcrostrucutre. Surmounting this llmi-

ration of Nicalon is being actively pursued, along with other fiber develop-

ments, by many organizations.

In the final analysis the prospects look promising for developing fiber-

reinforced ceramic composites with use temperatures near 1650 °C (3000 °F).

Other composlte systems will have to be conceived and developed for use above
1650 °C (3000 °F) because silicon-based systems cannot be expected to survive

above this temperature. This reality derives from fundamental thermochemlcal
considerations. Worrell 1 demonstrated this graphically. An appreciation of

the situation can be gained by examining the data presented herein as figures

2 and 3. The sillcon-based systems derive their limited oxidation resistance

from the development of a protective silica (SiO 2) scale. Volatile vapor spe-
cies also form to maintain thermodynamic equilibrium; as can be seen from the

figures, the SiO and N2 pressures or CO and SiO pressures at the oxide/ceramic

interfaces for the respective Si3N4 or SiC systems reach l atm at ~1800 °C
(3300 °F), causlng cracking and spalllng of the protective SiO 2 scale. This

intrinsic thermodynamic limit would in practice not be expected to be the real

limit because variations in composition probably would lower the temperature

at which 1-atm total vapor pressure at the interface is obtained. Addition-

a11y, detrlmental bubble formation would likely take place at an even lower

temperature. Therefore, the maximum use temperature of 1650 °C (3000 °F)
for silicon-based systems appears to be an optimistic limit. And thus current

state-of-the-art ceramic composite systems do not offer any potential for use

above this temperature.

Research in high-temperature chemistry began to flourish in the early
1950's when scientists recognized the significance of the work of Brewer and

his associates. The decade of the 1960's was particularly fruitful, and the

work of this era provides most of the pertinent data presently available.

Since the early 1970's, research in high-temperature chemistry has declined

significantly for various (but scientifically unacceptable) reasons. This

fact can be readily appreciated by noting the publication dates of the refer-
ences cited in this report. Today, when there is an urgent need for additional

hlgh-temperature chemistry data, much of the expertise has been lost. Renewed
efforts in this area are required to provide the fundamental information needed

to cope with anticipated high-temperature materials technology. This situation

has made the study reported hereln, as well as similar work of others, particu-

larly difficult. The complete lack of data for certain materials and the

incomplete state of much of the available data have made it impossible to pre-

dict with any certalnty the thermochemical stability of many potential ultra-

high-temperature materials. Although our study has by no means been exhaus-
tive, we feel that the data presented are a good representation of the best

available. We have avoided, as much as possible, extrapolating existing data,

have made no assumptions regarding congruency in vaporization, and have not

Iprogram Review, Materials and Process Screening PRIDA, Wright-Patterson
Air Force Base, Ohio, December 9-10, 1987.



madejudgments about confllcting data. For a definitive study more work must
be done.

In the course of our study we becamepalnfully aware of the paucity of
hlgh-temperature data for manymater|als. This is particularly true in regard
to thermodynamic data. Most thermochemlcal data required to determine the
hlgh-temperature stability of materlals derive from the research area generally
termed "high temperature chemistry." In broad terms this field of endeavor
deals mainly, but not exclusively, with the chemical and physical nature of
hlgh-temperature vapors. Investlgatlons in this area establish the nature of
hlgh-temperature chemical reactions, the nature and energetics of chemical
bonding, and the thermodynamic properties of solids, liquids, and gases.
High-temperature chemists have ingeniously applied nearly every kind of exper-
imental apparatus to elucidate the chemistry of materials in the high-tempera-
ture regime. Building on the early work of Hertz, Knudsen, and Langmuir, they
have provided vapor pressure data, dissociation energies, and thermodynamic
data for a broad range of materials that find applications at high tempera-
tures. Although their work has been prollflc, there still remains a paucity
of data.

SELECTION CRITERIA

The followlng general selection criteria were established on the basis of

the knowledge we acquired from the general literature and our experience in
hlgh-temperature structural materials:

(I) Mechanical and microstructural stability

Ca) Melting (decomposition) temperatures above 2000 °C (3600 °F)

(b) Absence of phase transformations

(c) Low atomic and dislocation mobility (creep rate or grain growth

rate versus temperature)
(d) Thermal shock resistance (shock factor R)

(e) High inltla] ratio of strength to stlffness (specific modulus

E/p)

(2) Environmental stability
(a) Surface recession due to volatility
(b) Surface recession due to oxidation

(3) Nonhazardousness in fabrication or use (nonradioactive and nontoxic)

In order to operate above 1650 °C (3000 °F), a material must be a solid and

have sufficient structural integrity to meet intended use applications. Thus

as a flrst conslderatlon a material's meltlng temperature Tm, or decomposl-

tlon temperature Td, must be sufficiently high. A minimum of 2000 °C
(3600 °F) was chosen as the initial property requirement.

Second, a material must maintaln its mechanical stability for extended
times at temperature and during thermal cycling. This implies no significant
plastlcity or atomic diffuslon and, of course, no deleterious phase changes.
Good thermal shock resistance is also a must. Because metals and metallic

alloys display considerable atomic dlffuslon at about O.6T m (even tungsten,
with a Tm of 3410 °C (6170 °F) shows mechanical instability at ~1300 °C
(2400 °F), these materlals were essentially ellminated from consideration.



Third, a material must possess sufficient environmental resistance to

withstand the gas conditions and temperatures typical of those anticipated in

advanced aeropropulslon systems. A material therefore should not undergo any

significant long-term surface degradation in hlgh-temperature oxidizing envi-
ronments. This requirement immediately eliminates from consideration all mate-

rlals that react with oxygen to form volatile products. Such materials would

Include, but not be limited to, carbon, boron, and the refractory metals.

Finally, to avoid the handling of hazardous materials and the attendent

problems associated with their processing, we decided that all materials that

contained radioactive elements or had any propensity to evolve toxic gases
would be eliminated from consideration.

The general class of materials remaining after application of these crite-

ria is ceramics, which in bulk monolithic form typically display brittle

fracture, low fracture toughness, and poor thermal shock resistance. An engi-
neering approach that can significantly mitigate these deleterious effects

involves creating composite structures in which a ceramic matrix is reinforced
by a hlgh-strength, continuous ceramic fiber. Indeed, Bhatt (ref. IO) at the

NASA Lewis Research Center and researchers at other laboratories have made

ceramic matrix composites (CMC) that at temperatures to 1300 °C (2400 °F) dem-

onstrate metal-like graceful failure, insensitivity to crack size, and signifi-
cantly better thermal shock behavior than the unreinforced matrix material.

For this reason, we believe that if a ceramic material can be identified that

has the required environmental and mechanical stabllity above 1650 °C (3000 °F),

ceramic composltes with optlmum structural performance could probably be engi-

neered. Such engineering would be based on placing a ceramic fiber in the
same type of ceramic matrix. Current experience has shown that, because flaws

are minimized during processing, ceramics can be significantly stronger in

fiber form than in bulk form. The engineering challenge would be to produce
the fiber and make It compatible with the matrix.

In summary, establishing general selection criteria focused attention on

hlgh-temperature ceramic materials such as oxides, carbides, borides, and

nltrides. We anticipated that to maintain structural reliability these materi-
als would be processed into ceramic matrix composites.

The next step was then to rank candidate materials according to their

probabillty of success as structural materials with the necessary high-

temperature capability. To accomplish this, we acquired property data from

the literature (appendix A). The properties needed for evaluation were ranked

according to the two prlmary selection criteria, mechanical and envlronmental
stabillty.

Mechanical stability is related to microstructural stability. These prop-
erties can be measured by the absence of phase transformations and such parame-

ters as creep strain or grain growth as a function of temperature and stress.
These parameters are a measure of the existence of internal-defect-controlled

processes that can eventually result in tlme-dependent mechanical failure.

Also related to mechanical stability is the ability to survive thermal shock

conditions. For brittle materlals thermal shock degradation is minimal in ma-

terials with high R values, where R = _/_ and o is the material strength,
Is the thermal conductivity, and m is the thermal expansion coefficlent.

For structural applications in alrborne turbine engines it is desirable that,



besides mechanical stability, potentlal ceramic materials also have high spe-

clflc strength and high specific stlffness. Because stiffness is measured by

Young's modulus E and since the strength of a brlttle material generally
increases with modulus, this requirement reduces to ranking materials accord-

ing to their specific modulus ratio E/p, where p is material density.

Because of the oxidative environments anticipated In advanced gas turbine

engines, the first key issue is surface stability in oxygen partial pressures

ranging from near zero to many atmospheres. As discussed later, this property

can be quantified in terms of vapor pressure and oxidation-induced surface
recession rates as a function of temperature.

SURFACE STABILITY

Volatillty

At high temperatures volat111ty is a major criterion for assessing the

suitability of materials. Vapor pressure data provide a quantitative measure
of volatility. Because vapor pressures are measured in a vacuum under equilib-

rium conditions, one might inquire, in the context of the present study, what

bearing this has on materlals operating in the elevated-pressure environment

of turbine engines. However, it must be recalled that this environment is

also characterized by hlgh-velocity flow. High flow velocity increases the

mass transfer coefflclent, which governs the mass flux rate at whlch gaseous

species escape across the boundary layer present as a result of the system

pressure. For sufficiently hlgh velocities this mass flux rate can approach
the equilibrium value, which is the maximum possible rate. Lowell (ref. ll)
and Stearns (ref. 12) show this to be the case for velocities typical of tur-

bine engines. Thus vapor pressure data are relevant to the considerations of

thls study in that they measure the worst-case rate of materlal loss.

Vapor pressure data for a varlety of high-temperature materlals are

presented in figures 4 to 7. These data were taken from several compendia and

original sources (refs. 13 to 23). It should be recognized that most solids

do not vaporize as a slngle molecular species - often the vapor consists of

multiple species. If the net vapor composition is the same as the solid compo-
sltlon, the solid composition will not change with tlme and the solid is said

to vaporize congruently. However, if the net vapor composition is different

from the solid composltion, as Is often the case, the solid composition will

change wlth time and the solid is said to vaporize Incongruently. This change

in compositlon, in addltion to materlal loss by vaporization, can also be an

important degradation route for materlals at high temperature. Table I lists

the major vapor species for the materials covered by figures 4 to 7. It must
be stressed here that no attempt was made to critically review available data

since the purpose was only to roughly estimate the volatilities of some candi-
date materials.

To provide more relevance to the vapor pressure data, we calculated mass

flux rates per unlt surface area J with the Hertz-Langmuir equation given by

Ji =

P
i

I/2
(2Mi_RT)



or

31(g/cm2 hr) = 1.6xlO5pi/_-!/1/2

where Pi is the vapor pressure of species i, expressed in atmospheres, Mi

is the molecular weight of species i, R is the gas constant, and T Is the

temperature in degrees Kelvin. Maximum vapor fluxes at 2200 K (3500 °F) for

materials of interest here are tabulated in appendix A. The term MI was cal-

culated by assuming equal contributions of the respective vapor species for
each material listed in table I, and the vapor pressures of the indivldual spe-

cies were summed. Another meaningful measure of material vaporization behavior

is the recession rate Rr, which can be calculated for a congruently or nearly

congruently vaporizing material by the expression

where p is the density in grams per cubic centimeter.

If we expect that an engine component should operate for at least I000 hr

without detrimental degradation, a recession of lO mils is reasonable to

assume. This translates to a rate of 0.25 pm/hr. Putting this value into the

preceding equation and rearranging gives

IM__I112P = 1.6xi0 -I0
P

For a wide variety of materials of conslderatlon here, the quantity Mil/2/p

varies between l and 2, and this equation becomes approximately

P lo-lO

Tl/2 -

For temperatures from 1900 to 2500 K (3000 to 4000 °F) this yields a pressure
P of ~5xlO -9 arm. Thus for a congruently vaporizing material to have the

assumed acceptable recesslon rate of 0.25 pm/hr, its vapor pressure must be

roughly 5xI0 -W arm or less.

In general, materials that meet the vaporization criteria will be found
in the lower left corners of flgures 4 to 7. Examining the data for oxides

(figs. 4 and 5 and table I) reveals some clear trends. The alkaline earth
oxldes tend to have high vapor pressures. Zirconia, yttria, and hafnla have

quite low vapor pressures; however, at 1925 °C (3500 °F) only hafnia meets the
recession rate criterion. There are few data for complex oxides, which llkely

exhlbit vaporlzation with one component more volatile than another. An exam-

ple of this is BaZrO 3, where BaO is the primary vapor species. In figure 5

it was assumed that CaZrO 3 and SrZrO 3 vaporize similarly so that some vapor
pressures could be estimated. Data for the carbides, borides, and nitrides

(figs. 6 and 7 and table I) are derived from measurements made under vacuum.

The presence of an oxygen atmosphere rapidly oxidizes these materials, as will

8



be discussed. Nonetheless, nonoxides with high vapor pressures are not suita-
ble as ultra-hlgh-temperature materials. In general, the carbides tend to have
lower vapor pressures than the borides or nitrldes although AI4C3 and SiC are
exceptions. The nltrides have higher vapor pressures because they decompose
to nitrogen, although the vapor pressures of HfN and ZrN are rather low. Few
data could be found for the borldes, but ZrB2 does have a low vapor pressure.
Again, the Interaction of these materials with oxygen must be considered.

Oxidation

The oxidation behavior of materials Is crucial for their usefulness in an
oxidizing environment at the high temperatures examined in this study. The
oxidation characteristics of numeroushigh-meltlng-point materials reported in
the literature were investigated. Surface recession rates (the rate of conver-
sion of the base material to a solid oxide) after isothermal oxidation for I
and lO0 hr were calculated for several categories of materials. Manyassump-
tions were madein calculating the recession rates. Often the oxidation tests
from which data were obtained were conducted for relatively short times (e.g.,
less than lO hr). It was assumedthat the oxidation rates measuredat short
times were valid to lO0 hr. Similarly the reaction products and surface scales
observed after short exposure were assumedto be identical to those that would
be present after longer exposure. Weoften found oxidation rates calculated
and reported that were based on simple weight change measuredduring high-
temperature exposure. Numerousmaterials, such as the nitrides and the car-
bides, are knownto evolve gaseous reaction products, and in these cases we
corrected the weight change according to the reported or most probable reaction
to account for the evolved gas. For example, the oxidation of silicon nitride
can be described by the reaction

Si3N4 + 302 = 3SiO2 + 2N2(g)

For this system the weight change measuredduring oxidation is a combination
of a weight increase due to oxygen pickup and a weight decrease due to nitro-
gen evolution. Similar correctlons must be madefor carbides to account for
carbon monoxide evolution. In someInstances researchers were able to measure
actual amountsof oxygen consumedduring oxidation (e.g., refs. 24 and 25),
and in such cases no corrections were necessary. Recession rates were calcu-
lated on the assumption that the material tested had the reported theoretical
density (refs. 4 to 7). Many researchers actually reported less than full den-
sity for the materials they studied, but we did not take this into considera-
tion. In general, we madeno attempt to critically evaluate reported data.

Results for each of the material categories are summarized in figures 8
and 9. The materlals examlned within each category, the reported or assumed
oxidatlon reaction and pertinent references are presented in table II. The
data for SI3N4 and SiC were put in a special category designated "silica
formers" because these materials exhlblted drastically different recession
rates from those of other nitrldes and carbides. Oxldatlon kinetics for most
materials followed a parabolic rate relationship. Several carbides were
reported to follow a linear oxidation rate as a result of scale cracking and
spallation at elevated temperatures. For materials following a parabolic
rate, the difference between the surface recesslon after 1 and lO0 hr is sim-
ply a factor of lO, as can be seen from the figures. However, the difference



in recession for materials obeying linear kinetics is a factor of lO0. This
accounts for the relative upward shift in the position of the carbides.

Difficulties often arise whencomparing the oxidation rates for the same
materials whenmeasuredand reported by different investigators. This Is
illustrated in the oxidation results reported for MoSi2. Onereported rate
(ref. 24) was three to four orders of magnitude greater than that reported by
other researchers (ref. 26). This difference probably resulted from the fact
that the rates reported in reference 24 apply to measurementsmadebefore the
formation of a silica scale. The lower rates reported in reference 26 are slm-
llar to other reported rates for sillca formers (refs. 27 to 32). Several
studies presented anomalousoxidation rates that could not be resolved with
other data. The oxidation rates for TISi 2 and WSi2 (refs. 25, 26, 33, and 34)
appeared unusually hlgh for the formation of a silica scale and may also have
been measuredbefore the formation of a continuous silica scale. These data
are shown in table II but not included in figures 9 and IO. As expected, the
lowest surface recession rates are associated with materials that are current-
]y belng used for oxidation protection, namely, alumina and silica formers.
In aeroturblne engines a conservative recession rate for hot-sectlon compo-
nents such as turbine blades is assumedto be 0.25 _m/hr. Furthermore it is
assumedthat the recession rate is linear in time. This latter assumption is
considered reasonable for a componentundergoing thermal cycling, where scale
cracking and spallatlon are expected to prevail. Taking the assumedmaximum
allowable recession rate permitted us to evaluate each material examined in
this study for hlgh-temperature usefu|ness. Dashed lines indicating the
acceptable amount of recession after I and IO0 hr are shown in figures 8 and
9. In the temperature range of interest (1650 to 2200 °C: 3000 to 4000 °F)

all materials, with the exception of the sIllca formers, exhibited unaccepta-

bly high amounts of recession. For reasons previously stated, thermochemical
considerations disqualify sillcon-based systems from use in this temperature

range. Several comments should be emphasized at this point. First, the data

For each material category shown in the figures are For isothermal oxidation.

As noted earlier, thermal cycling always results in accelerated recession

rates because of scale cracking and spallation (ref. 35). Consequently sur-

face recession in a turbine engine environment will be greater than that shown

in figures 8 and 9. Second, the oxides SiO 2 and B203 are noncrystalline and

viscous liquids above certain temperatures. Thus they might not be expected

to remain on the surface of a component in a high-velocity gas flow character-

Istlc of turbine englnes. Centrifugal forces on rotating components may also

cause loss of a viscous scale. Furthermore at the temperatures of interest

certaln scales may slmply melt and thus be of little value (e.g., Al203 melts

at 2045 °C (3713 °F)). A final, but certainly not trivlal, concern is the vol-

atillty of protective scales. It has been establlshed that certain oxide

scales that are protective in statlc environments become nonprotectlve in

dynamlc environments (e.g., Cr203 scales, ref. 36).

In summary, figures 8 and 9 show conservative results from which we con-

cluded that no nonoxlde material has sufficient surface stability to be gener-

a11y useful throughout the temperature range from 1650 to 2200 °C (3000 to
4000 °F).

lO



EVALUATION OF OXIDES

On the basis of the analysis a large number of oxide ceramics (appen-

dix B) were initially suggested as possible components of an oxide-containing

composite system. (There are, of course, many other oxides, including those
containing several different metal atoms, but property data for them are
nearly nonexistent.)

Materials that were clearly unsuitable for use above 1650 °C (3000 °F)

were then eliminated from further consideration (appendix B). As discussed

earlier, the properties of primary interest in evaluating mechanical or micro-

structural stability above 1650 °C (3000 °F) are, first, the absence of phase

transformations at or below potential use temperatures and, second, such prop-

erties as creep rate and grain growth rate at the highest use temperatures.
Thus, for evaluatlng the long-term structural capabilities of the oxides that

pass the environmental stability tests, it becomes necessary to examine the

literature for phase and defect data that can be used to evaluate resistance

to mlcrostructural change.

Applying the phase stability criteria to the oxides listed in appendix B,

we flrst eliminated from consideration those materials with melting tempera-
tures that are too low. Melting temperatures are listed in many sources

(refs. 9 and 37 to 43 as well as the Wright-Patterson Program Review and unpub-
lished data taken by Cerac, Inc., of Milwaukee, Wisconsin), but the values

given for any one material vary by as much as 300 deg C. This variation is

due to several factors, incIudlng the difficulty of accurately measuring such
high temperatures and the inability to obtain very hlgh-purity materials. When
such a range of temperatures was found, either the most common value or a value

from mldrange was selected. We found similar variation in other property data.

These data must be determined more accurately as part of a materials evalua-

tion program. Other oxides may also be eliminated because of various types of
solid-state phase transformations.

Turning next to dlffusion-related properties, a llterature search for the

remaining oxides revealed that in all cases creep or grain-growth data are

either absent or subject to erroneous interpretation because impurity oxide

phases or nonstolchiometric conditions were present in the material specimens.

In both cases defect-controlled processes can occur at a lower temperature or
at a significantly greater rate than in a pure stoichiometric material. In

additlon, essentially all the available literature data were obtained on poly-
crystalline specimens, in which graln-boundary diffusion rather than bulk

lattice dlffusion Is probably the overwhelming source of time-dependent micro-
structural change. Thus we judged the current status of defect-controlled
property data for hlgh-temperature oxides to be inconclusive regarding quanti-
tative or even qualitative evaluation of their mechanical stability.

Other physical and mechanical properties related to the structural per-
formance of the remalning oxide ceramics are their thermal expansion character-

istics, such as total expansion and expansion coefficient, and their specific
stiffness. For some materials these properties are obtainable from the litera-

ture and are indicated in the appendix A. However, these properties are sec-

ondary to the defect-controlled properties and therefore cannot at present
serve to focus the search for an oxide material with high potential for struc-
tural use above 1650 °C (3000 °F).
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The oxldes that remain posslble candidates for composite systems to be

used above 1650 °C (3000 °F) as follows: CaO • HfO 2, CaZrO 3, HfO2(÷Y203),

3MgO • Y203, MgO ZrO2, NIAI204, SrZr03, SrZr204, Y4Ge08, ZrO2(+Y203), Sc203,

Y203, and the rare earth oxides (e.g., Pr203 and SrYb204).

A PROPOSED PROGRAM

At this point the task at hand is to generate a research and development

program that wlll take us from the selection of these few candidates to the
identification and ultimate demonstration of ceramic composite systems as spe-

cific engine components. A proposed program to span this gap from fundamental
materials science to component development is shown in figure lO. The abso-

lute tlmeframe for accomplishing this program Is not shown because it is

greatly dependent on available resources.

The three phases of the program are
(I) Material studies

(II) Composite materials development and verification

(III) Component development

Each phase of the program is discussed here, but first some caveats are in
order.

The program as outlined here assumes success. That is, no iteratlve loops
are shown in the layout although in reality many such loops will be required

as unforeseen obstacles are met. Also, substudies, which surely will be neces-

sary, are not shown. For example, during phase II (composite material develop-
ment and verification) attention must be directed to characterizing and

improving fibers and fiber surfaces. Also, fiber/matrix interface characterl-
zation will have to be addressed under verification of thermal stability in

phase II. Although these necessary substudles are not shown in figure lO,

they will be addressed as more detailed plans are generated for each phase of
the program. At this point only an overview of the program is presented in

order to display the starting point, the end polnt, and the logical steps to

get from start to end.

Phase I - Material Studies

Phase I is intended to take us from a selection of potentlal materials

based on the literature and past experience to a selection of composite sys-
tems (fiber material and matrix material) based on experimental evaluation of

key properties.

Three efforts will be pursued in parallel during the _nitial portion of

phase I. First, a more detailed literature search will be conducted of the
candidate materials (table III). Second, efforts will be made to personally

communicate with selected key authors relevant to each material. Such con-

tacts can be extremely helpful in learning nuances of materlals and evaluation

technlques that often are not included in Journal articles. Third, procure-
ment of materials will be started. Materials will be procured in whatever

forms are readily available. No fibers of the candidate materlaIs are expected

to be available at this stage.

12



Cursory and general evaluations will be conducted as materials are
received. Evaluations will depend somewhaton the form in which a given
material is available. Generally, it is anticipated that such properties as
density, purity, X-ray phase identification, melting point decomposition tem-
perature, and sinterablllty will be determined.

At point A worthy materials will be selected for continued study.
Selected materlals will be subjected to detailed studies in three areas:
modynamicstabllity, surface stability, and mechanlcal stabllity.

ther-

Thermodynamicstability wlll involve primarily vaporization and phase sta-
bility studies. Vapor species and pressures as well as phase stability will
be determined or verified.

Surface stablllty studies wlll be conducted in static and flowing oxidiz-
ing environments under both isothermal and cyclic exposure conditions. Weight
changes and recesslon rates will be measured and surface phases identified.

Both oxygen partial pressure and flow rate are expected to effect surface
stabillty.

Mechanical stability will be judged by observing defect-controlled proper-
ties such as sinterability, grain growth, and creep, where possible, as a func-

tion of time-and-temperature exposures to combustion gases. Thermal shock
resistance, a potentially major problem wlth oxides, will be evaluated and

residual strength measured as a function of number of cycles and temperature
of exposure.

At decision point B specific materials will be identified as candidates

for fibers and as candidates for matrices. At thls point specific material
comblnations, fiber candidate and matrix candidate, will be selected for com-

patibility studies. Up to this point all candidates will have been evaluated

as individual materials. Bulk material couples wlll be subjected to appropri-

ate time, temperature, and atmosphere combinations, and any interfacial insta-
bilities will be noted.

Point C is a major decision point at which specific composite systems

(fiber/matrix combination) will be selected for development in phase II.

Phase II - Composite Materials Development and Verificatlon

Fiber synthesis and composite fabrlcation will be pursued in parallel
efforts. It is anticipated that these efforts will be primarily contracted to
industry. Once fiber and composite approaches are available (point D in
fig. 10), studies will be started to verify that the composite systems (fiber/
matrlx comblnatlons) are indeed thermally stable. At the same time the mechan-
ical behavior of the composite systems will be documented. As soon as a com-
posite system is found to be thermally stable and have adequate mechanical
properties, it will be evaluated under simulated mlssion conditions. This will
test the composlte at combinations of time, temperature, stress, oxygen pres-
sure, gas velocity, etc., that simulate a proposed mlsslon for the advanced
englne. At point E, the completlon of phase II, the most promising composite
systems will be chosen for contlnued development as components.

13



Phase III - Component Development

At this point a complete profile of thermal and mechanical behavior will

be avallable for each composite system that has survived phase II. This infor-

mation will then be compared with the design requirements of some speclfic

engine components. The most promlsing composite system will be chosen for each

of several engine components; then manufacturing studies will commence for each

composite/component combination. Likely components that will benefit most from

ceramic composite capabilities are turbine blades, vanes, shrouds, combustors,
and exhaust nozzles. As prototype components become available, they will be

evaluated by mission simulation testing.

At point F some successful compositelcomponent combinations should be

identified that can be made immediately available to the engine industry. It

is also quite like|y that some composite/component combinations with shortcom-

ings will be Identified. Depending on the specific problems identified, these

systems will be iterated back through the appropriate portions of the program.

CONCLUSIONS

The program outlined in this report is believed to be a logical and or-

derly approach to evaluating ceramic matrix composites for engine components.
It covers the required basic materials science early in the program. It also

reflects a realization that advanced high-temperature materlals cannot be

developed without due attention to the final application. Thus design and man-

ufacturing requlrements are an Integral part of the program.

The three phases of the proposed program identify three major work areas:

materials science, composite development, and component design and manufacture.

Major efforts are required in each of these three areas if ceramic matrix com-

posites are to reach full fruition as advanced engine components. Specific

plannlng is now required in each area so that each program phase may be suc-

cessfully executed in relevant NASA programs.
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APPENDIX

CERAMIC

Material

A1203

BaO

BeO

CaO

CeO 2

Cr203

HfO 2

Melting
temper-
ature, a

Tm ,
°C

2045

1920

2550

Materi al

density,

3.98

5.72

3.01

2610 3.32

2600 7.28

2266 5.21

2758 9.68

La203 2300 6.57

MgO 2800 3.58

Pr203 2200 6.32

Sc203 2300 3.84

1725 2.32

2420 4.70

1872

SiO 2

SrO

Ta205

ThO 2

TiO 2

U02

Y203

ZrO 2

BaO • ZrO 2

CaO • HfO 2

2CaO • SiO 2

CaZrO 3

HfO2(Y203)

LaCrO 3

MgO • Al203

3220

1850

2850

8.02

I0.00

4.25

I0.96

2410 5.03

2700 5.56

2647 6.26

2470 6.05

2130 3.28

2327 4.76

2400 9.70

2510 ....

1995 3.59

Young's modulus, b GPa

ERT EllO0°C

443 415

___ ___

400 352

169 98

___ ___

387 323

225 ---

74 82

253 204

288 ---

204 183

169 ---

253 148

239 190

E/PRT

lll.3x106

132.9xi06

23.2xi06

108.1xi06

58.6xi06

31.9x106

25.3xi06

67.8xi06

18.6xi06

33.6xi06

45.5xi06

66.6xi06

EIplIO0OC

104.3x106

I16.9xi06

13.5xlO 6

90.2xi06

35.3xi06

20.4x106

16.7xi06

26.6x106

52.9x106

aReferences 9 and 37 to 43 as well as Wright-Patterson Program Review and

bunpublished data taken by Cerac, Inc., of Milwaukee, Wisconsin.
References 4 to 7.

CReference 44.
dReference 45.

eReferences II to 23.
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A

PROPERTY DATA

Thermal expansion
coefficient, c

_m/K

c(293K (X1300K

5.4 9.9

6.3 11.6

11.2 14.7

9.5 14.1

8.8 7.6

3.8 9.7

10.8

I0.2 15.7

7.8 9.2

6.6 II .3

1.14 1.14

7.7 10.6

7.3 9.2

8.8 I0.5

7.9 13.9

7.0 10.6

Thermal
diffu-

sivity, d

kl3OOK,
W/cm K

0.055

0.35

0.24

0.35

0.061

Crystal
structure

Cubic

Cubic

Orthorhombic

Cubic

Cubic

Cubic

Hexagonal

Perovskite

Cubic solid
solution

Cubic solid
solution

Ca ferrite

Rhombohedral

Cubic

Cubic

Tetragonal

Hexagonal

Cubic

Cubi c

Cubic

Hexagonal

Vapor flux

at 220_ K, e
g/cm hr

4.8x10 -4

5xi03

3xi0 -4

5xi0-6

9xlO -1

5x10 -6

3x10 -4

3xlO -7

4.1x10 -3

Comments

Tm < 2000 °C

Tm < 2000 °C

Tm < 2000 °C

Tm < 2000 °C

Phase stability

Moderately high

vapor pressure

17
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Material

MgO" SiO 2

MgO • ZrO 2

NiA1204

2SiO 2 • 3A1203

SrO " Al203

SrZrO 3

Sr2ZrO 4

Y4GeO 8

ZrO2(Y203)

Yb203

Ba3Yb409

YbCrO 3

Yb203(ThO 2)

Yb203(Nd203)

SrYb204

Al4C 3

HfC

NbC

PrC2

SiC

TaC

TiC

ZrC

AIN

BN

HfN

Si3N 4

TaN

Melting
temper-
ature, a

Tm ,

°C

1890

2110

2020

1850

Material

density,

P,
g/cm 3

4.45

3.20

Young's modulus, b GPa

ERT EIIO0°C

84

148

1900 ---

2650 5.48 84

2200 ---

2OOO

2805

2400

2200

2335

2400

2400

5.70

9.25

2.99

2200

3652

295

190

2100

3890 12.67 324

3480 7.82 455

2535 5.73 ---

3.212827 414

3880 14.50 510

3140 4.92 448

3420 6.56 386

2570 3.26 345

2.28

13.94

25OO

3300

1900

3087

3.18

14.36

69

296

E/PRT

18.9xi06

46.3xi06

15.3x106

51.8x106

20.5xi06

EIPlIO0OC

296 25.6xi06 23.4xi06

379 58.2xi06 48.5xi06

379

462

365

310

129.0xi06

35.2xi06

91.1x106

58.8xi06

I05.8xi06

30.3xi06

93.1xi06276

aReferences 9 and 37 to 43 as well as Wright-Patterson Program Review and

unpublished data taken by Cerac, Inc., of Milwaukee, Wisconsin.
bReferences 4 to 7.

CReference 44.
dReference 45
eReferences l] to 23.

I18.1xi06

31.9x106

55.6xi06

95.1x106

86.8xi06



Thermal expansion
coeffi cient,C

_m/K

_293K _1300K

0.75 I.21

4.9 7.2

5.7 7.8

3.3 5.8

5.6 7.3

6.4 8.9

4.0 8.3

1.8 7.1

0.8 3.7

Thermal
diffu-

sivity, d

kl3OOK,
W/cm K

O. 283

0.017

0.057

0.072

0.029

0.032

0.27

0.25

0.14

0.06

Crystal
structure

Cubic

Cubic

Vapor flux

at 220_ K, e
g/cm hr

6.5x10 -2

Comments

Tm < 2000 °C

Toxic

Reacts with water

Cubic 28 High vapor pressure

Hexagonal High vapor pressure

2.lxlO -5Monoclinic

Hexagonal 2.2xi0 -2

Phase changes

High vapor pressure

Cubic 0.61 High vapor pressure

Cubic

Cubic

Tetragonal

Cubic

Orthorhombic

Cubic

Tetragonal

Cubic

Cubic

Monoclinic

Cubic

Orthorhombic

Monoclinic

Monoclinic

Cubic solid
solution

Hexagonal

16

1.7xi0 -4

4.5x10 -4

O.40

9.6xi0 -4

2xlO 3

60

lxlO-2

lxlO 4

Hexagonal

Cubic

Hexagonal

Hexagonal

Phase stability;
Tm < 2000 °C

High vapor pressure

Tm < 2000 °C

Toxic

Tm < 2000 °C

Toxic

Phase stability

Phase stability

High vapor pressure
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Material

TiN

HfB 2

TaB 2

Melting
temper-
ature, a

Tm ,

°C

2950

3250

3100

2980

Material

density, a

9%m3

5.44

11.20

12.60

TiB 2

ZrB 2 3050

MoSi 2 2030

WSi 2 2165

BaZrO 3 ....

aReferences 9

bunpublished data taken by Cerac
References 4 to 7.
CReference 44.
dReference 45

eReferences II to 23.

4.52

6.09

6.26

9.87

Young's modulus,

ERT

600

248

496

496

379

448

b GPa

E1100oc

276

262

E/PRT

110.3xi06

19.7xi06

109.7x106

81.4x106

60.5×106

45.4xi06

Lnd 37 to 43 as well as Wright-Patterson Program Review and
, Inc., of Milwaukee, Wisconsin.

E/PlIO0OC

44.1xi06

26.5xi06
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Thermal expansion
coefficient, c

_u_/K

=293K

6.3

6.8

7.2

=I300K

10.4

9.6

9.7

Thermal
diffu-

sivity, d

kl300K,

W/cm K

Crystal
structure

Cubic

Hexagonal

Hexagonal

Hexagonal

Hexagonal

Tetragonal

Tetragonal

Vapor flux

at 2202 K,e
g/cm hr

lx10 2

lxlO-3

0.23

Comments
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APPENDIX B

OXIDES CONSIDERED AS POSSIBLE COMPONENTS OF OXIDE-CONTAINING

COMPOSITE SYSTEMS

Oxides inltlally suggested:

A1203 ZrO 2 3MgO • Y203 Y4GeO 8

BaO Sc203 BaO • ZrO 2 MgO Zr02
BeO S_02 CaO • HfO 2 NIAI204

CaO SrO 2CaO • SIO 2 2Si02 3A1203

Ta205 CaZrO 3 SrO • A1203 ZrO2(+Y203)

Cr203 ThO 3 HfO2(+Y203) SrZrO 3
HfO 2 TiO 2 LaCrO 3 Sr2Zr04

La203 UO 2 MgO • Al203 MgO SiO 2

MgO Y203

and the rare earth oxides (e.g., Pr203, YbCrO 3, and Ce02).

Oxides ellminated from consideration for use above 1650 °C (3000 °F):

(1) Melting temperature below 2000 °C (3600 °F)

BaO Ta205 Mgo • A1203 Sr • Al203

SiO 2 TiO2 2SiO 2 3A1203

(2) Toxic or radioactive

BeO ThO 2 UO 2 Yb203(+Th02)

(3) Vapor pressure too high

A1203 Cr203 MgO LaCrO 3

CaO La203 SrO BaO . ZrO 2

CeO 2

(4) Phase instability

CaO

HfO 2

ZrO 2

Yb203

MgO SiO 2

2CaO SlO 2
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Oxide

CeO2

SrO

MgO

CaO

La203

A1203

Z rO2

Y203

HfO 2

BaZrO 3

CaZrO 3

SrZrO 3

TABLE I. - PRINCIPAL VAPOR SPECIES

Principal vapor Carbide Principal vapor
species species

CeO2,CeO ZrC

SrO, Sr, 02 TaC

Mg, 02 , MgO NbC

Ca, 02 HfC

La, O, 02 TiC

Al, 02 , Al20, AlO SiC

ZrO 2 Al4C 3

YO, O, 02

HfO 2

BaO

CaO a

SrO a

apredicted.

Zr, C

C

C

Hf, C

Ti

Si, Si2C, SiC 2

Al

Nitride Principal

vapor
species

TaN N2

TiN Ti, N2

HfN N2

ZrN Zr, N2

BN N2

Si3N4 N2

AIN Al, N2

ZrB 2 Zr, B

TiB 2 Ti, B
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TABLE II.

Category Material

Silica formers

Alumina formers

Carbides

Silicides

Borides

Nitrides

MoSi 2

SiC

- OXIDATION CHARACTERISTICS OF MATERIALS

Reaction Rate a Reference

MoSi 2 + 202 = Mo + 2SiO 2 P 24,26

2SiC + 302 = 2SiO 2 + 2C0 27-29

Si3N 4

Numerous
metallic

alloys
TiC 2TiC

HfC

ZrC

B4C

NbC

Mo2C

W2C

WSi 2

TiSi 2

TiB 2

ZrB 2

HfB 2

BN

TaN

ZrN

NfN

TiN

AIN

Si3N 4 + 302 = SiO 2 + N2 30-32

4Al + 302 = 2A1203 ,, 46,(b)

+ 302 = 2TiO 2 + 2C0 L

2HfC + 302 = 2HfO 2 + 2C0

2ZrC + 302 = 2ZrO 2 + 2C0

B4C + 402 = 2B203 + CO 2

4NbC + 702 = 2Nb205 + 4C02

2Mo2C + 702 = 4MoO 3 + CO2

2W2C + 702 = 4WO 3 + 2C02

2WSi 2 + 702 = 2WO 3 + 2SiO 2

TiSi 2 + 302 = TiO 2 + 2SiO 2

2TiB 2 + 502 = 2TiO 2 + 2B203

22rB 2 + 502 = 2ZrO 2 + 2B203

HfB 2 + 02 = HfO 2 + B203

4Bn + 302 = 2B203 + 2N2

4TaN + 502 = 2Ta205 + 2N 2

2ZrN + 202 = 2HfO 2 + N2

2HfN + 202 : 2HfO 2 + N2

2TiN + 202 = 2TiO 2 + N2

4AIN + 302 = 2A1203 + 2N 2

ap denotes parabol c and L denotes l
bunpublished data taken by G.C. Rybicki

inear.
and J.L. Smialek of Lewis.

47,48

49

50

51

52

53,54

53,54

25,33

26,34

34,49,55,56

48,57-63

60-62

64,65

66

67

67,68

68

69

Comments

Reference 46
presents compila-
tion of 14 studies

Liquid product B203

Weight loss during
oxidation

Weight loss during
oxidation

Liquid product B203

Liquid product B203

Liquid product B203

Alumina former
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Figure 1 .--Temperature-time requirements of oxidation-resistant materials for

aerospace propulsion systems (Courtesy of Aerojet General)
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Figure 2.--Total pressure of N 2 and SiO at SJoNa/SiO 2 interface (After
Worrell, Wright-Patterson Program Review.)
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