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SUMMARY

An optimized resolved rate control scheme for real-time control of seven-degree-of-freedom
manipulators with spherical wrists was recently developed at the Oak Ridge National Laboratory.
The scheme generates a least-squares solution for joint angle rates, which move the robot hand at a
commanded velocity while (optionally) trying to configure the arm to satisfy a specified performance
criterion of joint angles.

The present paper discusses the use of this scheme for controlling a prototype of a seven-degree-
of-freedom robot arm—the Laboratory Telerobotic Manipulator (LTM)—built by the Oak Ridge
National Laboratory for NASA. Axis systems and homogeneous transformation matrices based on
the Denavit-Hartenberg parameters are established for the LTM along with appropriate resolved
rate control equations. When the optimization scheme cannot be used due to kinematic singularities
that result in less than six degrees of freedom, special resolved rate equations are also presented.

A three-dimensional graphics model of the LTM was driven by velocity commands from a six-axis
hand controller to assess the equations developed in this paper. For the motions simulated, the robot
hand moves as commanded and the special resolved rate equations for kinematic singularities appear
reasonable.

INTRODUCTION

The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm built by
the Oak Ridge National Laboratory for NASA. A prototype structure with two of the arms (fig. 1(a))
has been delivered to the Langley Research Center for evaluation in ground-based research to assess
the role of redundant degree-of-freedom arms in space operations. Each arm has three pitch-yaw
joints (fig. 1(b)): one at the shoulder, another at the elbow, and a third at the wrist. The seventh
degree of freedom is provided by a wrist roll joint. The problem of interest in this paper is velocity
control of the LTM.

Velocity control is a popular way to control robot arms. The velocity of the robot hand is known
(or commanded by an operator) and this velocity is resolved into joint angle rates (resolved rate
control, ref. 1) to move the hand as commanded. Six independent joints are all that are needed
for general movement of the hand in its workspace; but the LTM has a seventh joint, which means
there are more choices for joint angle rates to move the hand as commanded. A reasonable solution
from among the many choices is one for which the sum of the squares of the joint angle rates is the
smallest—a least-squares solution. The solution may also be a trade-off between small rates and
those rates which work toward satisfying a specified performance criterion of the joint angles.

An optimized resolved rate control scheme for seven-degree-of-freedom manipulators with spher-
ical wrists (called Dubey’s method in this paper (ref. 2)) is applied to the LTM. Dubey’s method
generates a least-squares solution for the joint angle rates which move the robot hand at the com-
manded velocity while (optionally) trying to configure the arm to satisfy a specified performance
criterion of joint angles. In essence, Dubey’s method is a fast way to compute the least-squares so-
lution for arms like the LTM. Real-time control was the impetus for the development of the scheme.

A problem with using Dubey’s method is that it requires selecting a column of the Jacobian
matrix so that the remaining six columns (or, equivalently, six joint angle rates) are independent.
A method to determine quickly which column to select is presented in this paper and is different
from the approach in reference 3, a recent application of the scheme to the LTM. However, such a
selection is not always possible—in which case the scheme does not apply—and alternate control
equations are devised.

SYMBOLS

Aj- homogeneous transformation matrix from axis system ¢ to axis system j

a; Denavit-Hartenberg parameter, perpendicular distance between Z;_; and
Zj

C; cosf;

d; Denavit-Hartenberg parameter, distance between coordinate systems 7 — 1

and ¢ along Z;_



\'%

Vr3,Vp3,Vr3

Vrs,Vp4,Vra

Xial/ivzi

Xy Y2y

XllaYl/»ZU

I, Y, 2

scalar-valued performance criterion
gradient of H(#)

gradient defined in equation (9)

gradient defined in equation (10)
identity matrix

Jacobian matrix (6 by 7)

generalized inverse of J

submatrices of J (see eq. (8) or eq. (D2))
submatrix (3 by 3) of J;

constant which determines rate of convergence to H(8)
length from elbow to shoulder (constant)

length from hand to wrist (constant)

length from wrist to elbow (constant)

line-of-sight distance from wrist to shoulder

index which indicates component of d)p,arm and ‘ﬁh,arm set to 0 and 1,
respectively, when using Dubey’s method

position vector from joint axis system 7 — 1 to joint axis system i; expressed
in joint axis system ¢ — 1

rotational part of homogeneous transformation matrix from axis system i
to axis system j

rotation matrix (3 by 3) representing a rotation about S axis by angular
amount

sinf;

time, sec

commanded translational velocity of robot hand

thrusting, pitching, and rotating velocities of hand relative to line-of-sight
from shoulder to wrist, used in forming equations to fully extend robot
arm when elbow pitch angle 83 is involved

thrusting, pitching, and rotating velocities of hand relative to line-of-sight
from shoulder to wrist, used in forming equations to fully extend robot
arm when elbow yaw angle 4 is involved

axes associated with joint ¢ + 1, Z; is axis of rotation; also, unit vector
along axis

corresponding axes after rotation of axis system (X9,¥2,Z3) by angle u
about Yy; when both elbow joints are +90°, velocity cannot be produced
along X,

corresponding axes after rotation of axis system (X,,Y,,Z,) by angle

v about Z,,; with loss of shoulder and elbow pitch, velocity cannot be
produced along Y},

coordinates



X

a;

Bi
62,63,04,66
b;
0;

63,91

6

81l
farm
Bopt
Bopt,arm

owrist
7}

51

P2

g1

o2

¢

on
d’h,arm
¢h,arm
¢h,wrist
¢i

@p
¢p,arm

d’p,arm

commanded velocity (translational and rotational) of robot hand

Denavit-Hartenberg parameter, angle between Z;_y and Z;, measured
positively about positive X;

constant joint angle offset bias
small positive angles used to specify singularity regions
angle associated with joint 7 (6; = 0° for i = 1 to 7 in fig. 2)

Denavit-Hartenberg parameter, joint angle between X; 1 and X, mea-
sured positively about positive Z;_;

last values of 63 and 6, respectively, before singularity region of special
solution 1 was entered (fig. 6), initialized to initial values of 63 and 64

vector of seven joint angle rates

Euclidean norm of 8

vector of four arm joint angle rates 6, 63, 83, and 04
optimized vector of seven joint angle rates
optimized vector of four arm joint angle rates

vector of wrist joint angle rates 05, 6g, and 07

angle between elbow-to-shoulder link and line-of-sight from shoulder to
wrist (fig. 3)

angle between Y, and Z, x X3, used in showing velocity component that
cannot be produced with loss of shoulder and elbow pitch (defined by
eqs. (81) and (82))

angle from plane of X and Zy to line of sight from shoulder to wrist when
elbow is not yawed (fig. 5(a))

angle from X axis to line of sight from shoulder to wrist when elbow is
not pitched (fig. 5(b))

angle between elbow-to-shoulder link and line of sight from shoulder to
wrist when elbow is not yawed (fig. 5(a))

angle between elbow-to-shoulder link and line of sight from shoulder to
wrist when elbow is not pitched (fig. 5(b))

vector of joint angle rates (eq. (4))

homogeneous solution of equation (4)

vector of four rates ¢p[1], #x[2], #1[3], and o]
subvector of (bh,arm

vector of three rates ¢[5], @x[6], and @4[7]
component % of ¢

particular solution of equation (4)

vector of four rates ¢p[1], #p[2], dp[3], and ®pl4]

subvector of @parm



d’p,wrist vector of three rates ¢,[5], ¢p[6], and ¢,[7]
w commanded rotational velocity of robot hand
3-D three-dimensional

Arm reference points:

E ~ elbow

H hand

S shoulder
w wrist

A dot over a quantity indicates the derivative with respect to time. A caret (") over a vector
indicates that the vector is expressed in base coordinates (X¢,Yy,Zp). The component index of a
vector is listed as a subscript or in brackets ([ ]). If a vector has a label subscript, the component
index is always listed in brackets. For example, the second component of the joint angle rate vector
@ is 62 or 6(2]. The second component of the arm joint angle rate vector Gapm is 8arm{2].

DESCRIPTION OF APPENDIXES

To reduce material in the main body of the paper and to present other pertinent information,
six appendixes have been included at the end of this paper. Appendix A lists the homogeneous
transformation matrices A}_,, from joint axis system 7 to joint axis system 7 — 1 and presents a fast
way to compute the composite transformation matrix from the hand axis system to the base axis
system (hand-to-base transformation Ag). Appendix B extends the usefulness of the equations in the
analysis by showing that operator inputs need not be restricted to the hand axis system (at wrist).
Appendix C derives an example performance criterion which may be used to encourage movement
away from some of the singularities of the LTM. Appendix D presents a method for computing
quickly several submatrices of the Jacobian matrix in desired reference frames. The solution for the
wrist joint angle rates is given in a generic form, which applies directly to four other similar equations
in the analysis. Also, a means of dealing with the wrist singularity is presented. In appendix E an
expression for a submatrix of the Jacobian is derived in the axis system of the second joint (shoulder
yaw 83} for analyzing the singularities of the LTM. Appendix F describes a computer program used
to implement the equations in this paper.

ANALYSIS o R

The LTM with axis systems is depicted in figure 2, where all joint angles are defined to be zero.
In this initial position, 8;, #3, and 65 produce a pitching motion of the hand; 6,, 84, and 8¢ produce
a yawing motion of the hand; and 87 rolls the hand. As the LTM moves, the X3 axis is always
aligned with the elbow-to-shoulder link; the X4 axis is always aligned with the wrist-to-elbow link;
and the Zg axis (and Z7 axis) is always aligned with the hand-to-wrist link. By convention, 6;
rotates about Z;_;. Denavit-Hartenberg parameters for the LTM are listed in table I. Homogeneous
transformation matrices based on these parameters are given in appendix A.

The axis system chosen for operator inputs is the robot hand axis system (X7,Y7,Z7), although
this need not be true. (See appendix B.) A simplifying assumption is that Iy = 0 to locate the
origin of the hand axis system at the intersection of the rotational axes of the robot wrist. Thus,
wrist rotation (85, 8¢, and 67) does not translate the origin of the hand axis system.

A robot needs only six independent degrees of freedom to translate and orient its hand, so there
is a redundant degree of freedom among the seven joints of the LTM. This redundant degree of
freedom means different configurations of the arm can be used to produce identical motions of the
hand (which can be important, for example, when reaching around obstacles), but the redundancy

complicates real-time control.
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Joint angle rates of a robot arm cause the hand to move at a velocity
x=10 (1)

where J is the Jacobian matrix and @ is a vector of joint angle rates. The idea of resolved rate
control is to specify x and calculate 8.

Performance Criterion

A solution of equation (1), optimized by a specified scalar-valued performance criterion H(6) is
(ref. 4)

Bopt =¥+ k [T - J*J] VH
= J*[& — kIVH] + kVH (2)

where 8yt is the vector of optimized joint angle rates, J * is the generalized inverse of the Jacobian
matrix, I is the appropriate identity matrix, and VH is the gradient of the performance criterion.
In this paper, J* is computed by singular value decomposition of J. The constant scalar k in
equation (2) is a weighting factor which determines the trade-off between a least-squares solution
for the joint angle rates (J*x), and a solution which optimizes the performance criterion H(f). As
|k| — 0, preference is given to minimizing joint angle rates. If the goal is to maximize H(f), k should
be positive; if the goal is to minimize H(#), k should be negative. An example performance criterion
which may be used to avoid some of the singularities of the LTM is discussed in appendix C.

Dubey’s Method of Computing Optimized Joint Angle Rates

The method in reference 2 for calculating optimized joint angle rates for seven-degree-of-freedom
robot arms (called Dubey’s method in this paper) assumes that equation (2) can be expressed in
the form .

¢p ) ¢h y

éopt=¢p- d’h' 'h¢h+kVH (3)

where ébp and ¢, are particular and homogeneous solutions, respectively, of the equation
x-kJVH=1J¢ (4)

(The reader should note the following nomenclature: Joint angle rates which are solutions of

equation (1) are always denoted @. The Jacobian matriz and the performance criterion are both

functions of the joint angle vector 8, formed by integrating . Particular and homogeneous solutions

of equation (4) are denoted ¢p and ¢y, respectively, and are used to calculate an optimized 6.)
Specifically, the particular solution c'in satisfies

x — kIJVH = J¢, (5)

with one component of d.')p assigned the value 0 by choice, and the homogeneous solution satisfies
the equation .
0=1J¢ (6)

with one component of @y, assigned the value 1 by choice. The component assigned the value 0 in
¢p corresponds to the component assigned the value 1 in ¢. Once the particular and homogeneous
solutions are found, the homogeneous solution is multiplied by a scalar (the dot product of the two
solutions divided by the dot product of the homogeneous solution with itself) and is subtracted from
the particular solution. The gradient of the performance criterion times the rate-of-convergence

constant is added to the result to form the optimized solution (eq. (3)). Dubey’s method implicitly

5



assumes full rank for the 6 by 6 Jacobian submatrix which must be inverted in equations (5) and (6)
to find the six unknown joint angle rates, respectively, of the particular and homogeneous solutions.

An alternative method must be used if the Jacobian matrix has rank five or less (i.e., if the robot
loses the ability to move along or rotate about some direction in Cartesian space). The advantage

of Dubey’s method is that the optimized solution can be found without formally computing the

generalized inverse. For a more detailed discussion of Dubey s method, see references 2 and 5. The
remainder of this analysis presents an efficient method for using Dubey’s method to control the LTM
and suggests some alternative solutions when the method cannot be used. However, these alternative
solutions are by no means the only possible approaches for coping with singular configurations of
the arm in which Dubey’s method does not apply.

Particularized Algorithin for Dubey’s Method

The vector x in equation (4) is partitioned as

A%
w

where V and w are commanded translational and rotational velocity vectors, respectively, of the
hand axis system. Since the hand axis system is assumed to be located at the wrist in this paper,
the wrist produces only rotational motions of the hand axis system, and equation (4) can be written

as
| | .
A\ J1 l 0 VHarm J1 : 0 ¢arm
U S I I R S D I 8)
w J2 gl J3 VHyrist J2 ; J3 Pwrist
where
8H /06,
_ ) aH/98,
8H /08,4
8H /805
Verist = aH/agﬁ (10)
8H/897
‘.ﬁarmf': gz (11)
¢4
. s
Pwrist = ¢6 (12)
#7

With respect to translational motion of the hand (the V-part of eq. (8)), any redundancy must
reside in the first four joints, since the three wrist joints cannot translate the hand (at wrist).

Dubey’s method relies on being able to solve for six mdependent joint angle rate components,
each of which is either a component of Parm OF Purist. If J3 is not singular, the solution for Gyrist
provides three of these components. The other three independent components must come from the
four components of ¢arm, provided Jy has full rank.

Therefore, if J3 is not singular and if J; has full rank, one of the components of @arm is chosen
to be 0 and 1, respectively, in forming the particular and homogeneous solutions of equation (8).
The details of calculating these particular and homogeneous solutions follow.

6



Computation of the Particular Solution
Equation (8) allows formation of the particular solution from the translational and rotational
velocity equations:

V - kJIVHarm = Jld’p,arm (13)

w—Jg [‘bp,arm + kVHarm] — kJ3VHyyist = JSd’p,wrist (14)

Equation (13) is solved for qbp,arm with one component assigned the value 0 by choice. Once ('j)p,arm
is calculated, equation (14) is solved for ¢p wrist-

For discussion purposes, set the mth component of cbp,arm to 0 in equation (13) and delete the
mth column of J;. Let the remaining submatrix of J; be denoted by J; and let the vector of the

remaining three components of ti‘)p,arm be denoted by (;Sp‘arm. Assuming that J 1 Is invertible, the
reduced equation yields

(Z’p,arm = jl_l [V - kJIVHarm] (15)
By properly associating indices, one can assemble ¢'>p‘arm from the components of é’)p,arm with the

missing component given by &)p,arm[m] =0.
Once @p arm is known, equation (14) can be solved by

d’p,wrist = ‘13_1 [w - J2 (‘i’p,arm + kVHarm) - kJ3Verist] (16)

Equation (16) formally represents the solution of equation (14), but simple expressions are derived
in appendix D to expedite the calculation of ¢, wrist and deal with the singularity of J3. Finally,

the complete particular solution is _
. ¢p,arm
$p={ o (17)
¢p,wrist

Computation of the Homogeneous Solution

Equation (8) allows formation of the homogeneous solution from the two equations:

0= Jld’h,arm (18)
_J2¢h,arm = JIi(ish,wrist (19)
Equation (18) can be expressed in the form:
Lo Jl[l, m] )
0= Jl¢h,arm + ¢ J1[2,m] ¢h,arm[m] (20)
J1[3,m]

where removing the mth column of J; leaves the submatrix J, and removing the mth component

from d’h,arm leaves &h‘&rm.
Recall that the value 1 is assigned to the mth component of the homogeneous solution in Dubey’s

method. Consequently, with the assignment @, arm[m] = 1, the solution of equation (20) is

. Jl[lam]
Sham = —J7! { 3,(2,m] } (21)
J1[3,m]



By properly associating indices, one can assemble d’h,arm from the components of Jnh’arm, with the
missing component given by c'bh’arm[m] = 1. Note that J 1_1 appears in both equations (15) and (21).

Once éh,arm is known, the solution of equation (19) is
(bh,wrist = _ng [J2¢h,arm] (22)

Equation (22) formally represents the bso‘l}'xti'on of equation (19), but simple expressions are derived
in appendix D to expedite calculation of @}, yrist 2nd to deal with the singularity of J3. Finally, the

complete homogeneous solution is
. ¢h,arm
$h=14 ———_ (23)
¢h,wrist '

The solutions of equations (13), (14), (18), and (19) together with equations (17), (23), and
(3) thus reduce the problem of computing an optimized solution to equation (1) to the problem of
inverting two 3 by 3 matrices—J; in equations (15) and (21) and J3 in equations (16) and (22).
However, it is not always possible to find an invertible Iy, nor is it always possible to invert J3. The
method outlined in this section for generating an optimized solution to equation (1) is used only if
an invertible J, exists and J3 is also invertible. Cases in which Dubey’s method cannot be used are

discussed later.
Determining an Invertible J;
The matrix J; for the LTM expressed in the (X2,Y2,7Z2) axis system is

—C483Calyg =Sylwg —CyS3lyg  —S4Cslyg
Jy = | Colgs + (C4C3Ca — §482)lug 0 CiCslwg  —S4S3lpe (24)
~C4S3S2lwe —lgs — C4Chlyg 0 =Cylwg

as derived in appendix E. The lengths of the elbow-to-shoulder link (Igg) and the wrist-to-elbow
link (lyg) are shown in table I. Table II lists the determinants and associated singularities for each

of the four possible 3 by 3 submatrices (J1) that can be formed by deleting a column from J;. Any

submatrix J; can always be inverted as long as its determinant is not zero (which occurs at its
singularities). Although shown in table II, the singularity conditions |63] = 180° and |04] = 180° are
not considered physically realizable and are ignored. In this paper, mutually exclusive partitions of
the motion of 84 are used to decide which column of J; to delete. These partitions are (1) |64] # 0°

and |04] # 90°%; (2) |64 = 0°; and (3) |64] = 90°.
The equalities and inequalities in the following discussion are treated in a strict sense. But, on
a computer, these equalities and inequalities must be defined in terms of regions. Appropriate sizes

for the regions are discussed in appendix F.
Partition (1): |64] # 0° and |04] # 90°

Notice in table IT that after column 1 of J; is deleted the remaining J; can always be inverted
as long as |,] is not 0° or 90°. Therefore, if |04] is neither 0° nor 90°, the index m used in forming

the particular and homogeneous solutions is chosen as m =1 (i.e., ‘i’p,arm[l] =0 and éh,arm[l] =1).

Partition (2): |04] = 0°

If |84] = 0°, then neither the elimination of column 1 nor column 3 from J; will result in an
invertible J;. However, it is possible to eliminate column 2 to produce an invertible Jy if |6g] # 90°
and |03 # 0°. Therefore, when |64] = 0°, if |f2]| # 90° and |f3] # 0°, the index m used in forming
the particular and homogeneous solutions is chosen as m = 2 (i.e., {b,,,a,mp] =0 and (bh,arm 2] = 1).
If |02] = 90° or |83] = 0° then it is not possible to form an invertible Jy from J;.

8
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Partition (3): |04] = 90°

If |64] = 90°, then neither the elimination of column 1, column 2, nor column 4 from J 1 will
result in an invertible J;. However, it is possible to eliminate column 3 to produce an invertible J;
if |03] # 90° and ~lggCy # lyg(C4C3Cy — 5453).

Since |64 = 90°, —lgsCy # lyg(C4C3Cs — 5452) simplifies to lggCy # sign(Sy)lwg Sz where the

sign function is defined as:
. 1 >0
sign(z) = {1-1 E; < 0; } (25)

where z is a general argument. Geometrically, the equality condition IggCy = sign(S4)lygSo
holds when the arm lies in the plane of Zy and X; with the wrist located on Zj, as shown in
figure 3. As discussed in a later section, it is more convenient to describe the inequality condition
IgsCy # sign(Sy)lyg Sz in terms of the shoulder joint angle 8. Toward this end, the angle between
the elbow-to-shoulder link and the line-of-sight distance from the shoulder to the wrist (Ijy;g) when
4] = 90° is called p and is defined to be positive when 65 = 90° (as in fig. 3). Mathematically,
lpsCa # sign(Sy)lwg Sy if and only if |03 + u| # 90°:

sign(Sy)lwg (26)
Vids + 25

cosp = —tES___ (27)

(Note that || is constant, and in this paper, |u| = arctan(20/23) = 41.01°.) Then,

sinpy =

cos(fz + ) = Cycos p — Sysinp

_ lesCo — :lgn(?)lmsz (28)
Vis+ 2
Therefore, the condition lggCy # sign(S4)lygSs is equivalent to the condition cos(6y + 1) # 0 or
02 + ] # 90° (29)

When |6,] = 90°, if |63] # 90° and |62 + u| # 90°, the index m used in forming the particular
and homogeneous solutions is chosen as m = 3 (i.e., ¢y [3] = 0 and ¢h,arm[3] = 1). If |#3] = 90°
or |3 + u| = 90°, then it is not possible to form an invertible J; from J;.

Figure 4 is a flowchart which uses the logic just described to determine which column to eliminate
from J; to form an invertible J; (or which component to set to 0 and 1 when forming the particular
and homogeneous solutions, respectively). Equality conditions are shown in the figure for simplicity,
but singularity regions are defined when using the logic in a computer program (appendix F). The
flowchart also indicates when it is not possible to form an invertible J; and identifies the associated
special solution to use for the arm joint angle rates (each special solution is discussed in a later
section).

Determining the Invertibility of J;

The Jacobian submatrix J3 expressed in the hand axis system is derived in appendix D as

—C7C¢ S7 O
Js=| §7C¢ C7» O (30)
—Sg 0 1



ool

Nt

The determinant of Js is easily calculated from equation (30) as —cos . Hence, J3 is invertible as

long as ,
66| # 90° @Y

Optimizing 8. When J3 Is Not Invertible

Even when J3 is singular, it may still be possible to find six independent joint angle rates from

among the components of @arm and @urist. SO that Dubey’s method could be applied. But this
solution would involve inverting a 6 by 6 submatrix of J (after it was determined). An alternate
solution -optimizing only Oarm when J; has full rank and J3 is singular—is used in this paper.

A region about the singularity of J3 is defined as :

l|66] — 90°| < b6 (32)

where &g is a small specified positive angle (the minimum value for &g is given in appendix F). When
an invertible J; exists, but g is inside this singularity region, only the arm joint angle rates are

optimized:
. éopt,arm
0= ____
Bwrist

pr,arm 4 fi-t’h arm |

- 7 h,arm + kVHarm
= 'i’h,arm : dfh,arm

(33)

owrist

where d)p,arm and d’h,arm are assembled from equations (15) and (21), along with (ﬁp,arm[m] =0 and
(}Sh,arm[m] = 1. Using the method outlined in appendix D, @rist in equation (33) is solved from

equation (D2) with the substitution éarm = @optarm*

w — J2bopt,arm = JCibwrist (34)

Computing Joint Angle Rates When Dubey’s Method Does Not Apply

In this paper, Dubey’s method does not apply when an invertible J; does not exist. Instead,
special solutions for the arm and wrist joint angle rates are formed from the two equations (see

eq. (D2)):
V = Jléar[n (35)
w = JQGarm = J39wrist (36)

The wrist joint angle rates are calculated by the method outlined in appendix D (regardless of
whether J3 is invertible or not). Special solutions for @arm are discussed in the following section.

Special Solutions for f,:n When an Invertible J Does Not Exist
There are {our sets of configurations of the arm for which Dubey’s method does not apply because
an invertible J; does not exist (see fig. 4):
1. |84 =0° and |63] = 0°
2. |64) =0° and |62] = 90°
3. |84] = 90° and |f3] = 90°
4. |04] =90° and |02 + p| = 90°

10
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In these configurations, the arm cannot physically produce a component of the commanded
translational velocity vector V, as shown later.

Special solutions for 8;;m are used in singularity regions defined around these four conditions.
The singularity regions are

164] < 64 and [63] < 83 (37)
104 < 64 and [|82] — 90°| < (38)
[[6a] — 90°| < 64 and [|83] — 90°] < &3 (39)
|64] — 90°] < 84 and [|62 + p| — 90°| < &2 (40)

where 62, 83, and 84 are small specified positive angles, and p is defined by equations (26) and (27).
Minimum values for 8, 63, and &4 are given in appendix F.

For discussion purposes in the sections that follow, joints 2 and 4 are described as the shoulder
and elbow yaw joints, respectively, and joints 1 and 3 are described as the shoulder and elbow pitch
joints, respectively. (See fig. 2.) Motion produced by 62 or 64 is referred to as yaw motion of the
arm, and motion produced by 6 or 3 is referred to as pitch motion of the arm.

The four special solutions developed in the following sections are by no means the only ones
possible nor may they be the best. However, in the tests performed with a 3-D graphics model of
the LTM and a six-axis joystick controller, they do seem to produce reasonable responses of the arm.
Further experimentation is needed to better evaluate the usefulness of the special solutions and to
determine any modifications or refinements which would be beneficial.

Special Solution 1: Full Extension via Elbow Pitch and Elbow Yaw

Special solution 1 applies when the robot arm is at or near full extension, when 63 = 0° and
84 = 0° (for example, as shown in fig. 2). When the arm is fully extended, joints 2 and 4 can only
translate the robot hand in either the same or exactly opposite directions; this is also true for joints 1
and 3. Mathematically, substituting equation (24), with 83 = 8, = 0°, into equation (35) yields

Vxo 0 0 0 0 )
Vyo ¢ = | Callps + lyg) 0 Iwe 0 Oarm (41)
Vza 0 —(lgs+we) 0 —lug

where the components of V are subscripted to denote the (X9,Y2,Z2) axis system. The row of zeros
in equation (41) means that it is not possible to produce Vxa. Therefore, there are not enough
independent arm joints to apply Dubey’s method, and special solution 1 is used.

Qverview of Proposed Solution

A scheme to control a six-degree-of-freedom robot arm with a single-jointed elbow in the vicinity
of full extension was devised in reference 6. This scheme is extended here to encompass the more
complex situation of a double-jointed elbow. Special solution 1 is activated and deactivated as the
arm moves in and out of the singularity region defined by equation (37). The pitching joint rates 8;
and 3 are used as a pair to extend (thrust) the robot arm as far as possible, so that the hand (at
wrist) travels along the line of sight from the shoulder to the wrist. The yawing joint rates 6y and
04 have the same function. When the arm is fully extended, thrust motion of the hand stops. The
extended arm can be maneuvered like a turret at the shoulder, with 8; doing the pitching and 6
doing the rotating (yawing). For now, only the pair of yawing joints are used to retract the arm in
the singularity region. When the arm is commanded to retract, the elbow bend (in yaw) is opposite
to that on entering the singularity region. '

11



Solution for Pitching Joints

_ Figure 5(a) shows the geometry that is used in deriving equations for 93 (elbow pitch rate) and
61 (shoulder pitch rate). Notice that the elbow is not yawed (64 = 0°). Equations based on this
geometry are still used even for a slightly yawed elbow.

Hand velocity components Vrs, Vps, and Vgs. The translational velocity components V3
(thrust), Vps (pitch), and Vg (rotate or yaw) of the hand relative to the line of sight from the
shoulder to the wrist (the dashed line from S to W in fig. 5(a)) are calculated by rotating the
commanded velocity vector expressed in the (X3,Y2,Z2) axis system by the angle o, about the Z;

axis:
Vrs Vxo
Vps ¢ = Rot(Z3,01) ¢ Vy2
VR Vza

{ coso;  sinoy

—singy coso; O

0 0

Vxo
Vya (42)
Vzo

The pitching joint angle rates 63 and ) coordinate to produce a velocity along the dashed line that
is proportional to Vg3, and 0; is used to produce Vp3 (Rotatlng (yawing) motions are produced by

0y and are discussed later.)
Expressions for coso; and sinoy. From figure 5(a),

cosoy = M (43)
ws
sing; = e S3 (44)
lws
where (by the law of cosines)
lws = /1% + By + 2gslypCs (45)

The length lyg (wrist to shoulder) varies with 63. Physically, the origin of the wrist axis system
cannot coincide with the origin of the shoulder axis system, so lyyg # 0. The link lengths {gg (elbow
to shoulder) and lyg (wrist to elbow) are constants listed in table I.

- Equation for 93 in singularity region. The contribution of the elbow pitch rate 63 in extending
the robot arm in response to the commanded thrust velocity Vrj3 is computed as

. — K3 Vg sign(6;) (VT3 > 0, 9395 > 0)

B3 = . (46)
0 (Otherwise)

where 63 is the value of f3 just before the singularity region was entered, and K3 is a specified

positive constant, which is assumed to be unity in this paper. Equation (46) extends the arm until

f3 changes sign (i.e., 83 passes through 0° but is still approximately 0°) and then freezes 63.

Equation for &;. The shoulder pitch angle f; is used to keep the hand from moving off the
line of sight from the shoulder to the wrist by nulling the angular rate &7 due to f3. Differentiate
equations (44) and (45) with respect to time and form the two expressions:

b3 —1
by = JWE (lwscsg WSS.'S) (47)
cos 01 Lvs
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Lgslug S303 (48)

s = 5T
ws

With equations (43) and (48), equation (47) is written as

. lwgé‘g lEleES%
= |+ = =2 4
a1 lps + lwpCs ( 3t 12 (49)

Equation for p;. The angular rate p; pitches the robot arm in response to an operator’s command
and is used in computing #;. The hand at the wrist has a moment arm lyg relative to the shoulder,
and the linear pitching rate Vpg (commanded) is the product of this moment arm and the angular
pitch rate p;. Thus,

(50)

where lyg is defined by equation (45).

Equation for 0, in singularity region. The shoulder pitch rate 0, has two functions in the
singularity region: (1) keep the wrist on the dashed line in figure 5(a) as 63 extends the wrist and
(2) allow the operator to pitch the extended arm.

Components of 8 expressed in the (X2,Y2,Z7) axis system are (see appendix A for transformation

matrices) )
0 —Sy6,
RIR{{ 0 § = 0 (51)
61 Ch6;

These components are shown in figure 5(a). The component —~S56, produces an unwanted yaw
velocity of the wrist, but this yaw velocity is later nulled by subtracting it from the commanded yaw
velocity. The component C2b; is used to pitch the line of sight with rate p; and to null the rate 4;:

Coby = p1 — 61 (52)

or . .
ho_ P1— 01
0, = o (53)

where &) and p; are given by equations (49) and (50), respectively. Since equation (53) is singular
when [02| = 90°, it is used only when 82 is outside a region defined around |03| = 90°:

[0 el <) 3
1= ELC_'{;E]' (Otherwise) (54)

where Ag is a positive angle. When 60° < |#3] < 120°, half or less of 6, is in the direction of p; — &1
(eq. (52)). This was the criterion used to choose Ay in equation (54). Thus, Ay = 30°.

Subtracting Unwanted Yaw Component Due to 6,

From figure 5(a) the moment arm for the component —S30; is S3lye and the unwanted yaw
velocity due to 8; is therefore —SgSngEHI This yaw component (which is parallel to the Z5 axis)
is subtracted from the commanded velocity Vzo:

Vzo = Vzo — (—S2Sslyeb) (55)

The adjusted commanded velocity component sz 1s used instead of Vz9 when solutions for the
yawing joints, 62 and 94, are computed.

13



Solutions for Yawing Joints L
Figure 5(b) shows the geometry that is used in forming equations for 84 (elbow yaw rate) and
f5 (shoulder yaw rate). Notice that the elbow is not pitched (3 = 0°). Equations based on this

geometry are still used even for a slightly pitched elbow.

Hand velocity components V4, Vpy, and Vga- The translational velocity components Vr4,
Vpy, and Vg relative to the line of sight to the wrist (the dashed line in fig. 5(b)) are calculated by

rotating the adjusted commanded velocity vector by the angle o9 about the Y axis:

V14 Vxa
Vp4 ¢ = Rot(Ya,02) { Vr2
VR4 Vz2
cosog 0 —sinop Vxa
=l 0 1 0 Vy2 (56)
sinog 0 cosog Vzo
The rotating (yawing) joint angle rates 84 and 0 coordinate to produce a velocity of the wrist along

the dashed line in figure 5(b) that is proportional to Vipy. The shoulder rotate (yaw) rate 05 is used
to produce Vgy. (Recall that 61 is used to produce a commanded pitch velocity.)

Expressions for cosoq and sinog. From figure 5(b),

l l
cosog = ET—VYE& (57)
wSs
l
singg = VIVES4 (58)
ws

where (by the law of cosines)

lws = \/l2s + g + 2lEslweCl (59)
The length lyg varies with 6. Physically, the origin of the wrist axis system cannot coincide with
the origin of the shoulder axis system; therefore, lyg # 0.

Equation for 04 in singularity region. The equation for elbow yaw rate 64 to extend and retract
the arm in proportion to commanded thrust velocity Vrq is

. 0 Vrg =0, 9405 <0
by = (Vrq 20, 6467 <0) (60)
— K4 Vg sign(6s) (Otherwise)

where 6} is the value of 64 just before the singularity region was entered, and Ky is a specified
positive constant, which is assumed unity in this paper. Equation (60) extends the arm until the
sign of 84 changes, which means that 6 passes through 0° but is still approximately 0°. The arm
holds this extension (but is still free to move in pitch or yaw) until a negative Vr4 is commanded
to retract the arm, whereupon the arm retracts by yawing the elbow in a direction opposite to that
with which it entered the singularity region. If an elbow bend does not suit the operator, he simply
straightens and retracts the arm again. o

Equation for &5. The shoulder yaw angle f, is used to keep the hand from moving off the
line of sight from the shoulder to the wrist by nulling the angular rate &9 due to 84. Differentiate

equations (58) and (59) with respect to time and form the two expressions:

Gy = WE IwsCafs — lws S (61)
cos 02 I%VS

14

LR IR R T T I R

\‘l



Ipslwg Sabs (62)

s = = lws

With equations (57) and (62), equation (61) is then written as

. lygby lgslwe St
o9 = oy p—y (04 + I%V (63)

- Equation for p. The angular rate p yaws the robot arm in response to an operator’s command

' and is used in computing . The wrist has a moment arm lyg relative to the shoulder, and the
linear pitching rate Vg4 (commanded) is the product of this moment arm and the angular pitch rate
p2. Thus,

pr = —— (64)

where [y is defined in equation (59). Note that the minus sign is needed in equation (64) due to
the assigned direction for positive py (fig. 5(b)).

Equation for 0, in singularity region. The shoulder yaw rate f has two functions in the
singularity region: (1) keep the wrist on the dashed line in ﬁgure 5(b) as f4 extends the hand (null
d9) and (2) allow the operator to yaw the arm according to pg. Consequently,

by = p2 — &2 (65)
where 69 and pp are given by equations (63) and (64), respectively.

Flowchart for Special Solution 1

The joints 02 and 64 play exactly the same role as the shoulder and elbow joints, respectively,
in reference 6. The elbow yaw rate 64 is calculated by equation (60). When positive thrust is

commanded, 8; extends the arm until 6, changes sign (crosses 0°), and then 64 is frozen (i.e.,
04 = 0). When a negative thrust is commanded, 8, retracts the arm. The shoulder yaw rate 92
is calculated by equation (65). The elbow pitch rate 83 is calculated by equation (46) to extend
the robot arm when positive thrust is commanded. The shoulder pitch rate 8; is calculated by
equation (54). Figure 6 is a flowchart describing special solution 1.

Special Solution 2: Full Extension via Elbow Yaw, at £90° Shoulder Yaw

Special solution 2 applies near the singular configuration |#5| = 90° and 84 = 0° (for example,
as shown in fig. 7). In this configuration, the hand velocities produced by 6;, f2, and 84 are all
collinear. Mathematically, substitute equation (24), with |#| = 90° and 64 = 0°, into equation (35)
and transform the result into (X3,Y3,Z3) coordinates to get

Vxs 0 0 —Sslyg 0 .
{ Vs } =R} [ 0 0 Calwe 0 } farm
B Vzs —sign(82)Sslur  —(lgs + Calyg) 0 —lwg
0 0 o o7&
= |sign(S2)Sslprg lpgs+Cslyg 0 lpg 92 (66)
0 Iwg O 02

where Rg is the transpose of Rg (see appendix A). The row of zeros in the matrix in equation (66)
means that it is not possible to produce Vx3. Therefore, there are not enough independent arm
joints to apply Dubey’s method, and special solution 2 is used.
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Overview of Proposed Solution

When the arm enters the singularity region defined by equation (38), the commanded velocity
V3 is ignored. The shoulder yaw rate 6, is used to produce the commanded velocity Vy3, and the
elbow pitch rate 83 is used to produce the commanded velocity Vz3. The joint angle rates §; and

#4 are set to zero.

Computation of the Arm Joint Angle Rates

Figure 7 shows the geometry that is involved in forming special solution 2. Equations are based
on this geometry even when |62 and 8, are slightly away from 90° and 0°, respectively. For this
solution, REEE o

b1=06,=0 (67)
Therefore, from equation (66), :
; Vya
by = — 3 8
277 s + Cslyg (68)
and
: V,
by =12 (69)

Transition Back to Optimized Solution

The operator can move the arm out of the singularity region in a controlled manner by
commanding Vy3 (i.e., |f2| moves away from 90°). Once outside the singularity region, both special
solution 2 and the optimized solution for the entire commanded velocity are calculated. If the sign
of the 6 from the optimized solution matches the sign of 3 from special solution 2, control switches
back to the optimized method and the special solution computation is stopped. If these signs do not
match, control with special solution 2 continues. This transition back to the optimization method

is used to prevent possible oscillations in the motion of the arm.

Special Solution 3: Both Elbow Joints at £90°

Special solution 3 applies near the singular configuration |83] = 90° and |64] = 90° (for example, as
shown in fig. 8). In this configuration, 3 cannot translate the hand, and the hand velocities produced

by 0, and 84 are collinear. Mathematically, substituting equation (24), with |63] = |#4] = 90°, into
equation (35) yields - - :

Vya 0 —sign(Sy)lye 0 0
{ }= Colps — sign(Sy) Salwe 0 0 —sign(S3S4)lpg | Oarm (70)

Vyo
Vz2 0 —lgg 0 0

The angle p (shown in fig. 8) was defined in equations (26) and (27), which are written here as

i l

sin g = Eﬁ‘%ﬂ (71)
lgs

cosp = —— 72
Tws (72)

where

lws = /14 + Uiz (73)
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Rotating the commanded velocity in equation (70) by the angle y about the Y; axis reveals that

Vxu Vxa
Vyu ¢ = Rot(Yo, 1) § Vyo
Vz 7 Vza

cospy 0 —sinp
= 0 1 0

sing 0 cospu

0 —sign(Sy)lwg 0 0 ]
x CzlEg - Sign(S;;)SleE 0 0 —sign(S3S'4)lWE earm
0 —lgg 0 0
0 0 0 0 .
= | Colps —sign(Sg)Salwg 0 0 —sign(S5354)lug | Oarm (74)
0 —lws O 0

The row of zeros in the matrix in equation (74) means that it is not possible to produce Vx,.
Therefore, there are not enough independent arm joints to apply Dubey’s method and special
solution 3 is used.

Overview of Proposed Solution

When the arm enters the singularity region defined by equation (39), the commanded velocity
Vx, is ignored. The shoulder yaw rate 63 is used to produce the commanded velocity Vz,; and the
elbow yaw rate 64 is used to produce the commanded velocity Vy,. The pitch rates 6; and 63 are
set to zero.

Computation of the Arm Joint Angle Rates

Figure 8 shows the geometry that is involved in forming special solution 3. Equations are based
on this geometry even when |03| and |8,| are slightly away from 90°. For this solution,

8, =063=0 (75)
Therefore, from equation (74),
. -V,
gy = 28 (76)
lws
and "
. Y'#
by = b 77
1T sign(S354)lue 77)

Transition Back to Optimized Solution

The operator can move the arm out of the singularity region in a controlled manner by
commanding Vy, (i.e., |4] moves away from 90°). Once outside the singularity region, both special
solution 3 and the optimized solution for the entire commanded velocity are calculated. If the sign
of 84 from the optimized solution matches the sign of 84 from special solution 3, control switches
back to the optimized method and computation of the special solution stops. If these signs do not
match, control using special solution 3 continues. This transition back to the optimization method
is used to prevent possible oscillations in the motion of the arm.

Special Solution 4: Loss of Shoulder and Elbow Pitch

~ Special solution 4 applies near the singular configuration [f4] = 90° and |62 + u| = 90° (for
example, as shown in fig. 9). In this configuration, neither 8; nor 63 can translate the hand (at
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the wrist). 7Mé'rch?efmatically,v substituting é(il';;tii’oﬁ;’(:fifif),"with |04] = 90° and |6 + u| = 90° (or
equivalently, Colgg = sign(S4)S2lwg) into equation (35) yields

VX2 0 —sign(SA)R@ 70 —Sigil(&;)CglpVE )
{ Vy2 } =10 0 0 —sign(S4)Ssine | Garm (78)
Vz2 0 —Igg 0 0

The velocity component which cannot be produced by the arm in this configuration is determined
as follows. Multiply equation (78) by the matrix Rot(Y3, 1) defined in equation (74) and substitute
equations (71), (72), and (73) into the result to get

Vi, [0 0 0 —sign(Sy)Cslyg cos u
Vau 0 —sign(Sy)lpgsinpy —lggcospy 0 —sign(Sy)Calyg sinp

[0 0 0 —sign(Sy)Cslyg cospu
=0 0 0 —sign(S)Slwr | Garm (79)
0 —lws 0 —sign(Sy)Cslygsiny

The second column of the resulting matrix in equation (79) indicates that #5 can produce a velocity
in the Z, direction only. Transforming equation (78) into the (X3,Y3,Z3) coordinate system yields

Vs 0 —sign(Sy)iyr 0 —sign(Sy)Cslyr
{Vy3}=R§ 0 0 0 —sign(S4)S3iuE | Oarm
Vzs 0 ~lgg 0 0
0 -—sign(Sy)Cslyr 0 —sign(Sy)lwg
=10 IES 0 0 Oarm (80)
0 —sign(S4)Sslye O 0

The fourth column of the resulting matrix in equation (80) indicates that 84 can produce a velocity
in the X35 direction only.

Since 92 can produce a velocity in the Z,, direction only and 64 can produce a velocity in the X3
direction only, the direction of the velocity which cannot be produced in the singularity |64 = 90°
and |0y + | = 90° is the direction perpendicular to Z,, and X3 (i.e., the direction of the cross product
of Z, and X3). The angle between X, and Z,, x X3 is called v and is defined as

— S5

COSY = ———— (81)
/53 + C%cos?
C3cos (82)

siny =
\/Sg +C§cos2p

(The expressions for sinv and cosv are derived by expressing the cross product of Z, and X3 in
(XY, Z,) coordinates, using the dot product of X, and Z, x X3 to define cos v, and using the cross
product of X, and Z,, x X3 to define sinv.) Transforming equation (79) into (X,,Y,,Z,) coordinates

then yields
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"X v VXu
W, ? = Rot(Z,,,,u) Vyﬂ
Vzu Vzu

[ cosv  sinv 0:| 0 0 0 -—sign(S4)Cslygcosp

0 0 0 —sign(S4)S3lwg Oarm
0 —lwg 0 —sign(S4)CngEsinu

= | —sinv cosv O
0 0 1

0 0 0 -—sign(Sy)lyr(Cscospcosy + S3sinv)
=10 0 0 sign(Sy)lwr(Cscos usiny — S3cosv) Oarm (83)
|0 —lws O —sign(Sy)Calwg sin u

Substituting equations (81) and (82) into equation (83) yields

v 0 0 0 0
Xv .
{ Vvu } =0 0 0 sign(Sy)lygy\/S?+Chcos?pt | Barm (84)
Va 0 —lys O —sign(Sy)Cslwg sin

The row of zeros in the matrix in equation (84) means that it is not possible to produce the

commanded velocity Vy,. Therefore, there are not enough independent arm joints to apply Dubey’s
method and special solution 4 is used.

Overview of Proposed Solution

When the arm enters the singularity region defined by equation (40) the commanded velocity
Vy, is ignored. The elbow yaw rate 64 is used to produce Vy,, and the shoulder yaw rate 63 is used
to produce Vz,. The pitch joint angle rates 6, and 63 are set equal to zero.

Computation of the Arm Joint Angle Rates

Figure 9 shows the geometry that is involved in forming special solution 4. Equations are based
on this geometry even when |02 + | and |64] are slightly away from 90°. For this solution,

6 =03=0 (85)
Therefore, from equation (84),
by = Yy (86)
sign(Sq)lwg /S + C3cos?
and . .
by = Vz, + sign(S4)Cslygfy sin u (87)

—lws
Transition Back to Optimized Solution

The operator can move the arm out of the singularity region if the commanded velocity has
a component in the Vz, direction (i.e., |#3 + u| moves away from 90°), or in the Vy, direction
(i.e., |#4] moves away from 90°). Once outside the singularity region, both special solution 4 and
the optimized solution for the entire commanded velocity are calculated. If the sign of 6y from
the optimized solution matches the sign of §, from special solution 4 and the sign of 84 from the
optimized solution matches the sign of §; from special solution 4, control switches back to the
optimized method and calculation of the special solution is stopped. If the signs of the rates do
not match, control using special solution 4 is continued. This transition back to the optimization
method is used to prevent possible oscillations in the motion of the arm.
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RESULTS AND DISCUSSION

A real-time computer simulation was used to evaluate the optimized and special solution resolved
rate equations developed in this paper (see appendix F). The current version of the simulation runs
on a DEC VAX 11/750 computer and (optionally) interfaces to a GTI POLY 2000 graphics system
which animates the motions of a 3-D model of the LTM. An operator used a six-axis joystick to
issue velocity commands and watched the motions of the LTM model to assess the equations. For
the motions simulated, the robot hand moved as commanded and the special solution equations
appeared reasonable.

Time histories of selected simulations of the LTM are presented here to add credence to the
resolved rate equations and to examine use of the special solutions for the joint angle rates. The
data in this paper were taken at a simulation time step of 1/16 sec.

Using Dubey’s Method With Performance Criterion

The joint angle rate solution calculated with Dubey’s method is a trade-off between trying to
minimize the sum of the squares of the joint angle rates and trying to configure the arm to optimize
a performance criterion of joint angles. The trade-off depends on a scalar weighting factor k. As
|k| — 0, preference is given to minimizing the rates.

The effect of different values of k is shown in figures 10, 11, and 12 for an example performance
criterion (appendix C). In figure 10, k = 0; in figure 11, ¥ = —1; and in figure 12, k = —
(Negative values of k mean that the tendency is to minimize the performance criterion.) Minimizing
the performance criterion tends to keep 83, 64, and g close to 0°, or away from 90° (away from
singularities). The initial configuration of the arm and commanded velocity of the hand for figures 10
to 12 are listed in table I1I(a). The commanded velocity is exactly produced by the movement of the
arm in each figure. However, as can be seen by comparing corresponding figures, the time histories
of the joint angles and joint angle rates are quite different.

In figure 10, the performance criterion is ignored (k = 0) in the computation of a least-squares
solution for the joint angle rates. In figures 10(a) and (b), the joint angles 63, 84, and 8 move away
from 0°. The index m is 1 throughout the simulation run. The results in figure 10 were verified by
a generalized matrix inverse (via singular-value decomposition).

Notice in figures 11 and 12, as k takes on the values —1 and —2, the tendency of 8, 84, and f¢ to
move away from 0° becomes more pronounced in comparison with figure 10. The index m switches
from 1 to 2 and back to 1 in these ﬁgures as 64 moves through 0° (logic in fig. 4).

As more precedence is given to minimizing the performance criterion of joint angles, the norm of
@ increases. This is indicated in figure 13, which shows the effect of k on the time history of [|@] for
k =0 (fig. 10), k = —1 (fig. 11), and k = -2 (fig. 12). It should be noted that, in general, the curve
for k = 0 may not remain below the curves for other values of k, because as the joint angles change,
different trajectories are being compared. However, if k = 0 is used anywhere on a curve generated
for a nonzero value of k, a lower value of |{9|] will be computed in this vicinity.

Inherent Error in Special Solutions

Four special solutions for arm joint angle rates have been developed as alternatives to using a
generalized inverse solution for joint angle rates when the configuration of the arm is such that
Dubey’s method does not apply. The reason for alternate solutions is that the generalized inverse
solution can cause undesirable oscillations of the arm in these configurations and is computationally
intensive. Oscillations are avoided by the special solutions, at the expense of allowing an error
between the commanded velocity of the hand and that which is actually produced. It is assumed
that a human operator can compensate for this error as time progresses; however, if continuous
positional accuracy is an important issue, the special solutions are not applicable. Some examples of
the error produced by the special solutions are presented.

Errors Due to Special Solution 1

Joint angles, joint angle rates, and the actuarlﬂvelocity of the hand for full extension of the arm~

using a generalized-inverse solution and using special solution 1 are shown in figures 14 and 15,
respectively. The initial configuration of the arm and the commanded velocity of the hand for
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figures 14 and 15 are listed in table ITII(b). Oscillations which occur when using a generalized inverse
solution at full extension are evident in figure 14. These oscillations are due to the integration time
step (1/16 sec) used in numerically integrating the joint angle rates. A reduction in the oscillations
will result by decreasing the integration time step. However, use of the generalized inverse very close
to arm singularities can result in sluggish arm response and compromised hand velocities.

Special solution 1 eliminates oscillations, and, as shown in figure 15(e), there is very little
extraneous motion of the hand. Of the four special solutions developed in this paper, special
solution 1 produces the most acceptable response of the arm. The reader should also note that the
motion of the elbow upon retraction of the arm (which may be important in avoiding obstacles, for
example) can be anticipated by the operator if special solution 1 is used. If further experimentation
reveals that it is better to use the elbow pitch joint 83 (or a combination of the elbow joints #3 and
f4) instead of the elbow yaw joint 64 to retract the arm, special solution 1 can be modified to perform
the desired elbow motion. When the generalized inverse is used to retract the arm, the motion of
the elbow cannot be anticipated by the operator in most cases.

Errors Due to Special Solutions 2, 3, and 4

Commanding an outward thrust of the hand when the arm is fully extended makes no sense,
and thus the consequences of ignoring commanded outward thrust when the arm is fully extended
(special solution 1) are slight. On the other hand, ignoring a component of the commanded velocity
in other singular regions (special solutions 2, 3, and 4) can produce unfavorable errors in the motion
of the arm. Fortunately, using Dubey’s method tends to keep the arm out of these singular regions
if the arm starts movement far enough away from the regions. This action happens because a least-
squares solution for the joint angle rates attempts to keep the arm away from configurations that
induce large joint angle rates.

Special solutions 2, 3, and 4 provide the operator with a means of moving the LTM in and out
of singularity regions in a controlled manner and without oscillations. The solutions are computed
quickly and are applicable for real-time control. However, since they can result in erroneous motion
of the arm, the angles &3, 83, and §;—which define the spans of the singularity regions-—should be
made as small as practical to prevent the control program from switching to the special solutions
most of the time. Some examples which characterize the nature of the errors are presented in
figures 16 and 17. The initial configuration of the arm and the commanded velocity of the hand for
figures 16 and 17 are listed in table III(c).

Figure 16 shows time histories of joint angles, joint angle rates, and actual velocity of the hand for
motion of the LTM near the singularity associated with special solution 2 ({#2] = 90° and 64 = 0°),
but calculated with a generalized inverse solution. Oscillations occur as the arm passes close to the
singularity, although components of the actual velocity are still in the correct proportion (the actual
velocity of the hand is a scaled version of the commanded velocity due to joint angle rate scaling).
Figure 17 corresponds to figure 16, except that special solution 2 is used. The arm does not oscillate,
but there is significant error in the actual velocity of the hand when the control program switches
to special solution 2, as shown in figure 17(e). (Recall that the component Vx3 of the commanded
velocity is ignored for special solution 2. This component is approximately equal to the commanded
velocity Vz (75 mm/sec) for this simulation.) Once the arm enters the singularity region associated
with special solution 2, it remains in the region because the component of the commanded velocity
which can move it out of the region—Vy in this case—is zero. An operator can compensate for such
errors by simply moving the arm far enough out of the singularity region that control switches back
to Dubey’s method, and then commanding a different approach path to the point of interest.

Figures 18, 19, and 20 are included here to show how subtle changes in the configuration of the
arm in singularity regions can vary the response of the hand. In all three figures, the arm is in
the singularity associated with special solution 4 (]f2 + x| = 90° and |64] = 90°). Only the initial
position of the elbow pitch joint (f3) is different in each figure. (For special solution 4, #3 does not
translate the hand (at the wrist) so that, regardless of the value of 83, the hand remains at the same
point in the workspace.) The commanded motion of the hand is also identical for the three figures
and is expressed in base coordinates. The initial configuration of the arm and commanded velocity
of the hand for figures 18, 19, and 20 are listed in table III(d).
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In figure 18, the commanded velocity does not have a component in the direction ignored by
special solution 4. Therefore, there is very little error in the actual velocity of the hand, as shown
in figure 18(e). ,

Figure 19 is a time history of the response of the arm with conditions identical to those of figure 18,
except that the elbow pitch joint is at 45° initially. For this simulation, a portion of the commanded
velocity is in the direction which is ignored by special solution 4; thus, there is significant error in
the actual velocity of the hand (fig. 19(e)) until control switches back to Dubey’s method at 0.45 sec.

Figure 20 is a time history of the response of the arm with conditions identical to those of
figures 18 and 19, except that the elbow pitch joint is at 85° initially. In this case, practically all the
commanded velocity is in the direction which is ignored by special solution 4; thus, the hand moves
very little. Therefore, the operator must command the arm to move in another direction to get it
out of the singularity region before the desired motion can be accomplished.

It is emphasized that the special solutions developed in this paper are by no means the only
possible approaches for coping with singular configurations of the arm in which Dubey’s method
does not apply. They are presented here to give a physical interpretation to the problems which
occur when the arm reaches the singular configurations and are intended to represent a starting
point for controlling the LTM with the assurance that real-time performance can be maintained and
that damage to the hardware due to high-frequency oscillations of the arm will not occur.

CONCLUDING REMARKS

A set of optimized resolved rate equations have been developed for real-time control of the
seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM). The equations, which are based
on a recent innovative optimization scheme developed at the Oak Ridge National Laboratory,
represent a trade-off between two solutions: (1) a least-squares solution for the joint angle rates
to produce a commanded velocity of the hand and (2) a solution to minimize joint angle rates while
compromisingly configuring the manipulator to satisfy a performance criterion of the joint angles.

A problem with using the scheme to formulate control equations is that it requires selecting a
column of the Jacobian matrix so that the remaining six columns (or equivalently, six joint angle
rates) are independent. A method for determining quickly which column to select is presented in this
paper. But, such a selection is not always possible- in which case the scheme does not apply—and
alternate control equations were devised.

A three-dimensional graphics model of the LTM was driven in response to velocity commands
from a six-axis hand controller to assess the equations developed in this paper. For the motions
simulated, the robot hand moves as commanded and the singularity fixes appear reasonable.

NASA Langley Research Center
Hampton, VA 23665-5225
August 15, 1989
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APPENDIX A

MATRICES AND VECTORS ASSOCIATED WITH THE LTM

Homogeneous Transformation Matrices

Homogeneous transformation matrices are commonplace in the description of robotic manipula-
tors. In general, the homogeneous transformation matrix from coordinate system i to coordinate
system ¢z — 1 is (ref. 7)

cosf —cosa;sind. sina;sind, a;cosd!

) sinf! cosa;cosd. —sina;cosf a;sind.
i i i i i Al
-1 = . (A1)
0 sin a; COS d;
0 0 0 1

which is expressed in terms of Denavit-Hartenberg parameters a;, d;, a;, and 6] (in ref. 7, 6; replaces
6.). The three parameters a;, d;, and a; are constants, and g, is the varlable joint angle. The

rotational part of the transformation matrix A: 1 is the upper—left 3 x 3 submatrix denoted as

cosf] —cosa;sing sineq;sind,
- ot . o . /
i—1 = | sinfl;  cosa;cosd; sin a; cos 6; (A2)

0 sin a; COS @;
The position vector associated with A}_, is

a; cos 8]
p. ! ={ a;siné) (A3)
d;
which is expressed in axis system ¢ — 1 and is directed from axis system i — 1 to axis system 1.

The robot’s motion is usually expressed in terms of joint angles 6; that are initially referenced to
some initial position. But, the matrix Al 1 in equation (Al) is expressed in terms of the Denavit-

Hartenberg joint angle 6. To switch joint angle descriptions, make the substitution
0; = 6; + 5 (A4)
where [3; is a constant offset bias to account for different starting positions.

Homogeneous Transformation Matrices for the LTM

The home position and axis systems for the LTM are shown in figure 2. Denavit- Hartenberg
parameters for the LTM are shown in table I. For this paper, 8; = 6;, except for the matrix A5, in
which 65 = 05 +90° (i.e., Bg =90°, all others are zero). Note that the parameter d7, which locates
the hand axis system from the wrist, is considered zero in this paper (Igw = 0).

Using these parameters and replacing the angles 8 with the angles 6 except for #f, which is

replaced with 8g + 90°, the transformation matrices A::_l become

¢ci 0 -5 0

1_ {5 0 C; 0
Av=lo 1 0 0 (A5)
0 0 o0 1
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'Cz 0 Sy IESC2
Sy 0 —Cqy lIgsS
At=10 1 o | (A6)
L0 0 O 1

rCy 0 =53 0
Se 0 C3 O

Aj= 03 -1 03 0 (A7)
Lo 0 o0 1
'C'4 0 54 lWEC4
Sy 0 —Cy4 IygS

As=1% 1 ot % (A8)
Lo 0 0 1
'C'5 0 -85 0
Se 0 C; 0

Al=1T 1 0 o (A9)
o0 0o o0 1
—S¢ 0 Cg 07
Ce 0 Sg 0

Al=170 17 o (A10)
L0 0 0 1.
rCr =857 0 07
S; C; 0 0

Al = 07 07 L 0 (A11)
Lo 0 o0 1.

where C; means cos §; and S; means sin 6;.

Calculation of Hand-to-Base Transformation

Commanded translational velocities in the hand axis system are transformed down to the base
axis system of the robot arm when controlling the LTM. Consequently, the transformation matrix
from the hand axis system to the base axis system must be calculated each time the joint rates
are updated. The hand-to-base transformation (the transformation from axis system seven to axis
system zero in fig. 2) is the product of the seven homogeneous matrices. That is,

Al =AJA%A3A%A5A8A] (A12)

This same transformation can be calculated in fewer operations as follows.
The rotational part of the matrix A; is

X, 1Y | Z,} ' (A13)

where X;, Y;, and Z; are the axes of coordinate system i expressed in coordinate system j. For
example,

~ o~ | =
X h zl] (A14)

where the caret (") means that the vector is expressed in the base axis system. Therefore, from
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equation (A5), the Z; axis expressed in base coordinates is
. —51
Zi=¢ (A15)
0

~

Y, EZJ (A16)

Similarly,

- ’
%:%ﬁ:k2
Multiplying the rotational parts of the matrices A(I) and A% given by equations (A5) and (A6) and
substituting the result into equation (A16) yields the following expressions for the Xy and Z5 axes
expressed in base coordinates:

R C1Cy

Xog= ¢ 510y (A17)
~5,

R C15;

Zy =4 55 (A18)
Cy

The X3 axis expressed in base coordinates is

0
| | Cs
=X | Vo | Z,]{ 5
[ |
0
= 0322 + 53?2 (Alg)
However, Y3 projects totally to Z:
C; 10 S
2 P02 0 0
RiY; = So } 0 { —-Cy { 1 } = {0} =27 (A20)
I I 0 1
| |
0 } 1 } 0

Therefore, expressed in any common axis system, Y, and Z; are the same. Hence, }72 = 21, and
equation (A19) can be written as

)?3 = 0322 + 5321 (A21)

where X3 is given by equation (A17) and Z; is given by equation (A15). The following coordinate
system axes can be calculated in a manner similar to the calculation of Xj:

Z3 = -$3%X3+ C32; (A22)
)?4 = 04)?3 - 5422 (A23)
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24 = S4j(3 + C422 (A24)

X5 =CsXy+ S523 (A25)
Zs = —SsX4+Cs2Z3 (A26)
X = —56X5 — Co 24 (A27)
Zs = CgX5 — SeZ4 (A28)
X7 =C:Xe+ S125 (A29)
V7 = 5% + C1Z5 (A30)
Z7 = Zg (A31)

The rotational part of the hand-to-base transformation is formed as

- ~ 1 A
X7 1 Y7 | 27] (A32)

where X7, ¥, and 77 are calculated by equations (A15), (A17), (A18), and (A21) to (A31).
As seen in figure 2, the X axis is always aligned with the shoulder-to-elbow link of the LTM.
Therefore, the position vector from the origin of the base axis system to the origin of the (X3,Y3,27)

axis system expressed in base coordinates is

P} = Ipgs X, (A33)

where lgg is length of the elbow-to-shoulder link listed in table I, and Xy is calculated from
equation (A17). Also, the X, axis is always aligned with the wrist-to-elbow link of the LTM.
Therefore, the position vector from the origin of the (X2,Y7,Z5) axis system to the origin of the
(X4,Yy,24) axis system expressed in base coordinates is

3 = lup X4 (A34)

where lyg is length of the wrist-to-elbow link listed in table I, and X4 is calculated from
equation (A23). The position vector from the base axis system to the (X4,Yy,Z4) axis system
expressed in base coordinates is

p{ = b3 + i (A35)

Since in this paper the hand-to-wrist distance ({gw in fig. 2) is zero,

b = p§ = 3 = P} (A36)
So, from equations (A32) and (A36), the hand-to-base transformation is
| ~
. |RE | P
AO = — — (A37)
l e —
0o 1

Equations (A32) and (A33) to (A36) may be used to compute the hand-to-base transformation
matrix more efficiently than equation (A12). Several of the vectors calculated in this appendiz are
also needed when computing the Jacobian matrizx for the LTM as discussed in appendiz D.
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APPENDIX B

EXTENDED APPLICATION OF EQUATIONS

The resolved rate equations in the main text take the robot hand velocity (at wrist) as an input
and calculate joint angle rates to produce this commanded velocity. This appendix explains how to
use the equations in a more general setting, namely in moving an object relative to some arbitrarily
specified axis system. The equations in this appendix are based on the general control structure for
one or more robot arms described in reference 8.

Reference Frames

A robot hand and an object (held by the hand) are considered as one composite body; that is,
hand and object move as a single body. The object may be the hand itself. An operator specifies the
location and orientation of an axis system on the composite body, called the moving reference frame
(mrf) in reference 8. The relationship between the hand axis system and the mrf remains fixed as
the robot hand moves.

An operator also specifies an axis system for his inputs, called the control reference frame (crf)
in reference 8. Operator inputs represent the commanded velocity of the composite body (mrf),
expressed in the crf. The commanded velocity is used to compute the velocity that the hand should
have so that the object moves as desired.

The object axis system (mrf) plays no role other than to influence the commanded velocity. For
example, in teleoperation, an operator watches the movement of an object as he makes velocity
inputs to control its motion. Or, the presently known position of the object axis system may be
known and a new position is desired, in which case the commanded velocity is based on a positional
error.

Computing Hand Velocity To Move Object

Velocity is commanded in the crf to move the object; but, once issued, this velocity represents the
velocity of the composite body (hand and object). For example, when the object rotates about a line
in the control reference frame, the composite body rotates about the line with the same rotational
velocity as the object. Thus, the hand must also rotate with this commanded velocity. Hence, the
velocity that is used to command movement of the object can be used directly to tell the hand how
to move. Toward this end, form the matrix

erf hand
Rhand I pcr?fn

-1
_acerf hand erf
- - = | === _Ahand_[ base] Abase (B1)
0 0 0 | 1
where the matrix Agg;‘g is a known function of the arm configuration (joint angles), and the matrix
Alc)rf o 1s specified by the operator.
ince the hand and object are a composite body,

Whand = Rﬁgnd“"crf (B2)

where werf 18 the commanded rotational velocity of the object. Then, the translational velocity of
the hand is 5 hand
CT,
Vhand = Rhandvcrf — Whand X pc:.zfn (B3)

where V¢ is the commanded translational velocity of the object, and p?j}nd is the moment arm from

the hand to the crf. The translational and rotational hand velocities, Vianq and wyang, respectively,
computed in equations (B2) and (B3) are used in resolved rate equations to cause the commanded
movement of the object with respect to the control reference frame.
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APPENDIX C

EXAMPLE PERFORMANCE CRITERION (H(6))

Suppose the intent is to avoid arm and wrls§51néula;1t1esof the LTM by keeping |62/, |04, and
|85] away from 90° whenever possible. For this purpose, define the performance criterion H(#) as

H(9) = -;- (sin2 0y + sin? 04 + sin? 96) (C1)

The gradient of the performance criterion is

r OH/00; ( 0 )
OH /06, sin g cos O
VH OH/063 0
ari .
VH = { ____} .y OH/004 - sin 04 cos f4 > (C2)
VHyrist 5H_/5é; R
OH /06 sin g cos g
\ 0H/897 / \ 0 7

To keep |62[, |64], and |fg| away from 90°, H(f) is minimized; i.e., the rate-of-convergence constant
k should be negative. Assume k = —1. In applying the performance criterion, equation (C2) is
used in computing kVH in equation (3), kJ1VHarm in equation (15), kVHarm and kJ3VHypist In
equation (16), and kVHarm in equation (33).

The reader should note that when joint angle rates are optimized (with eq. (3) or (33)), the arm
may continue to move even when the commanded velocities of the hand are zero. Motion will occur
if a configuration of the arm can be reached which minimizes H(0) without moving the hand. This
action may not be desirable. To ensure that the arm does not move when the commanded velocity
of the hand is zero, the rate-of-convergence constant is assigned as follows:

L {0 (V| < by and |w] <6w)}

= (C3)
k (Otherwise)

where 8y and §,, are small positive deadbands. The magnitude of k may also be changed to speed or

slow the rate of convergence. However, large values of k can cause oscillations as the robot arm nears

the joint configuration which minimizes the performance criterion (ref. 9). The maximum value of

k which can be used depends on the integration time step size.
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APPENDIX D
COMPUTING J;, J3, AND SOLUTIONS OF WRIST EQUATIONS

Joint angle rates of a robot arm cause the hand to move with velocity z, described by the familiar
kinematic equation _
x=JO (D1)
If a robot has a three-axis, spherical wrist, and the hand axis system is located at the wrist,
equation (D1) can be partitioned as

I .
A\ Ji { 0 Oarm
= (D2)

w l owrist

Jp | 3

where V is the commanded translational velocity of the hand, w is the commanded rotational velocity
of the hand, @y, is a vector of the arm joint angle rates (which translate the hand), and 8, is a
vector of the wrist joint angle rates.

For the LTM, J; and J; are 3 by 4 matrices, and J3 is a 3 by 3 matrix. The joint angle rate
vector Oarm is a vector of the joint angle rates 91, 62, 63, and f,; and the joint angle rate vector
Oynist 1s a vector of the Jomt angle rates 05, fg, and f7. A method for real-time computation of
an optimized @ is described in the main text. For singular configurations of the arm or wrist in
which the optimization method does not apply, special solutions for 8, and 0wmt are presented.
Explicit computation of the matrices J; and J3 (which is necessary when using the optimization
method) is discussed in this appendix. A general method for solving wrist equations (14), (19), and
(34) (when optimizing joint angle rates) and wrist equation (36) (when special solutions are used)
is also presented.

Computation of J; in Base Axis System

The translational velocity of the robot hand is the vector sum of the translational-velocity
contributions from each of the arm joint angle rates. Consequently, the Jacobian submatrix J;
in equation (D2) has the form:

~ . R ~ s
J1 = | Zy x pY | Zixpt | Z %{ Z3 x p3 (D3)

where the caret (") signifies that the vector is expressed in the base axis system. The position vector
pt extends from the origin of axis system ¢ to the origin of axis system 7 (the hand axis system).

Physically, Z;, whose elements are the first three entries in the third column of the homogeneous
transformation matrix A%, is a unit vector dlrected along the rotational axis of joint i + 1.

Referring to figure 1, the position vectors p7 and p7 are equal to the position vector from the
base axis system to the (X4,Yy,Z4) axis system:

p? = p} = p (D4)

and the position vectors f)% and f)% are equal to the position vector from the (X3,Y5,75) axis system
to the (X4,Yy,2Z4) axis system:

b} = b7 = pj (D5)
Therefore, the Jacobian submatrix J; may be expressed as

Ji=|Zoxp] | Z1xp) | Zaxb} | Zsxp} (D6)
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The position vectors p4 and p4 are assumed already known from equations (A35) and (A34); -

respectively, in appendix A. Furthermore, the vector Z is the first three elements of the third column
of the identity matrix A (base axis system transformed to itself), and the remaining vectors 7, -

Z,, and Z3 in equation (D6) are assumed already known from equations (A15), (A18), and (A22),

respectively.
The first column of Jy is
Ji(1,1] R ' 0 -pJlvly
121 p=Zgxpd =40 xPf =1 pllz] (D7)
J1[3,1] 1 0
The second column of Jj is 7
Jq[1.2] -8 C1p§[z]
N2 p=2Zxpi=4 C1 pxpi= S1p3(2] (D8)
J1[3.2] 0 —C1ple] - S1p3ly]
The third column of Jj is
31[1.3] Zsly] B3lz] - Zalz) Y]
11[2,3] p = Zy x pf = { Za[z] Pilx] — Zalz] P3(e] (D9)
J1[3.3] Zy[z] p2ly] - Zaly] P3le]
The fourth column of Jj is
J1[1,4] Z3ly] p3lz] — Zal2] B3]
(2.4] § = 23 x 9} = { Zyls] plla] - Zsle) B3] (D10)
$1[3.4] Z3[z) p3ly] - Za[y] Bile]

Equations (D7) to (D10) are used to calculate the Jacobian submatrix J; when solving equations (13)
and (18) in the main text.

Computation of J3 in Hand Axis System

The rotational velocity of the hand contributed by the wrist is the vector sum of the three wrist
joint velocities. Therefore, in equation (D2), the columns of J3 are the axes of rotation of the wrist

joints:

] |
Jy = [Z4 E Zs l Zs} , (D11)
When expressed in the hand axis system, the rotational axes of the wrist are
0
Zs=RSRZRES O (D12)
1
0
Zs =RSR2{ 0 (D13)
1
0
Zg =RE{ 0 (D14)
1
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(See appendix A for the required rotational transformation matrices.) Expanding equations (D12)
to (D14) and substituting the results into equation (D11) yield

-C7C¢ S7 0
Jy=| §Cs C7; 0 (D15)
—Sg 0 1

Equation (D15) is used to compute kJ3VHps in equation (16) in the main text.

Solving Wrist Equations (14), (19), (34), and (36)
Wrist equations (14), (19), (34), and (36) are all of the form

¥ — J2O@arm = J3O urist (D16)

where « and @, are known and a solution is sought for @ist. In equation (14), ~ corresponds
to w — kJ3VHyrist, Ourm corresponds to d)p,am, + kVHyrm, and anst corresponds to 45,, wrist -
In equation (19), 7 is 0, @um corresponds to ¢h arms and Oyrie, corresponds to ¢;, wrist In
equation (34), 7 corresponds to w, @arm corresponds to Oopt arm, and Ownst corresponds to Gwmt
In equation (36), v corresponds to w, @arm corresponds t0 Garm, and @wnst corresponds to Gwmt
In equations (14) and (19), J3 is mvertlble and in equations (34) and (36), J3 is not invertible. A
general method for computing a solution of equation (D16) (and, therefore, solutions of eqs. (14),
(19), (34), and (36)), regardless of the invertibility of J3, is presented.
J2@,m in Hand Axis System

In equation (D2), the contribution of the arm joint angle rates to the rotational velocity of the

hand is J20arm This contribution is the vector sum of the rotational velocities of the arm joints.
Thus,

(i) {i) {8 (1)
onfulsfoff 5G] o

Equation (D17) simply transforms the rotational rates of the arm joints to the hand axis system.
The term J2@,ry in equation (D16) (analogous to J 20arm) is therefore expressed:

(el )R] ) o

Equation (D18) is expanded by using two temporary vectors, 3 and 4s. First, let

J20am = RER3 { R}

—035291 + 5392
vz = —C30; — O3 (D19)
535291 + 03@2 + 94
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which takes rotational rates 0, 62, @3, and @4 to axis system 3. Next, let
CsCyyslz] + CsSyv3ly] + Ssv3(z]
¥s = —Syvslz] + Cav3ly]
—S5C4v3[z] — S5S473[y] + C573[2]
which takes 43 to axis system 5. Finally, compute J 9@arm as
—C1Sgvs)x] + C7Cevs[y] + S7v5(2]
J20urm = {  S1Ses[z] — S7Cs75[Y] + Crslz]
Cevs[z] + Sevs[y]

which takes ~5 to the hand axis system.

Components of Oyrist
Once J2@,m is calculated, the O,ris; is computed by inverting J3:

Qwrist = J;;lr

where '
I'=v-J2@nm

The expression for the submatrix J3 shown in equation (D15) is easily inverted as
. Cy —57 0
Jl="| -5 —-C:Cs ©
3 Cs
C78¢ —S75¢ —Cs
Therefore, equation (D22) can be written as the three simple scalar equations:

Or = —C7T'y + 57Ty
[ N 06
66 =S5+ Cqly

@7 =I;+ 5695

(D20)

(D21)

(D22)

(D23)

(D24)

(D25)

(D26)

(D27)

Notice that equation (D25) has a singularity at |6g| = 90°, which implies the same for matrix J3.

To prevent a division by zero in equation (D25), the assignment

Cﬁ = K5 Sign(Cﬁ)

is made whenever
|Csl < Ke

(D28)

(D29)

where Kg is an arbitrary small number (assumed 1072 in this paper (ref. 10)). Rate scaling must
also be employed to avoid large commanded wrist joint angle rates when using this approach.
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APPENDIX E
ANALYTIC EXPRESSION FOR J; IN (X3,Y2,Z5) AXIS SYSTEM
From appendix D, the columns of the Jacobian submatrix J; for the LTM are
Jl=[20><pg E Z1 x p} i Z3 % pj i stpi] (E1)

As a convenience in the development of special solutions for singular arm configurations, J; is
expressed in the (X2,Y2,Z2) axis system—which means the vectors Zy, Z;, Z3, Z3, pg, and pj in
equation (E1) are expressed in the (X3,Y3,Z3) axis system. These vectors are (see appendix A for
the necessary rotational transformation matrices)

0 -5
Zy=RiR{{03={ 0 (E2)
1 Cy
0 0
ZI=R5{0}= 1 (E3)
1 0

0 -85
Z3=R3{ 03 ={ C3 (E5)
1 0
lgs
0
0

p8~lmX2={ } (E6)
1 CyCslyg

Pi =lueXs = lygR3RI{ 0 3 = { CiSsipp (E7)
0 —Sylwg

lgs + C4C3IWE } (ES)

p]=p)+pi= CySalyg
—Sylwg

Taking the appropriate cross products in equation (E1) gives the expression for J; in the (X5,Y3,25)
axis system:

—-C4S3Cslug —Salwe —CyS3lywrg  —-S4Csluyr
Ji1 = | Calgs + (C4C3C; — S482)lyg 0 CiCslwe  —S4S3lur (E9)
—C4S3S2iwg —lpg — C4Csluyg 0 —Cylwr
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APPENDIX F
COMPUTER PROGRAM FOR RESOLVED RATE CONTROL OF THE LTM

A computer program which controls the LTM by using the optimization and special-solution
resolved rate equations developed in the main text is described in a stepwise manner in this section.
The commanded translational and rotational velocities of the hand are read as inputs (from a
joystick, for example), and the joint angle rates necessary to produce the commanded velocities
are calculated. These joint angle rates are then integrated and sent as joint angle commands to
the servo controllers of the LTM. The process of reading operator inputs, calculating joint angle
rates, integrating the rates, and sending the updated (desired) joint angles to the servo controllers
is repeated in a continuous loop. The time between successive reads of the operator inputs (i.e., the
time to complete one iteration of the loop) is denoted At.

Since joint angles are integrated over the time interval At, the angles 89, 63, 64, and 6g, which
determine the span of the singularity regions of special solutions, cannot have arbitrarily small values.
Minimum values for these deltas are

Sminlt] = émaX[i] At (F1)

where Bmax[z] is the physical maximum (absolute value) joint angle rate which can be produced by
joint %, and 6i,[i] is the minimum value for é;. In this paper, Omax[i] = 30 deg/sec for i = 1 to 7,
and At = 1/16 sec. The angles 62, 63, 64, and ¢ are assumed to be 2.0°—slightly larger than their
minimum values (30/16 or 1.875°).

Given that the LTM is in a known configuration 6(t) at time ¢, the steps necessary to calculate
the next set of desired joint angles 8(t + At) at time ¢ + At are

Step 1: Calculate the hand-to-base transformation Ag and the Jacobian submatrix J;, expressed
in base coordinates, as outlined in appendixes A and D.

Step 2: Calculate V and w, which are the translational and rotational velocities, respectively,
of the hand axis system, expressed in the hand axis system, as discussed in appendix B,
unless these are already known as operator commands in the hand axis system. Transform
V to base coordinates with Ag that was calculated in step 1.

Step 3: Use the logic outlined in figure 4 to determine which column of J; {column m), if any, can
be eliminated to form an invertible J; (the equality conditions in fig. 4 should be replaced

with the singularity regions defined in equations (37) to (40)). If an invertible J exists,
proceed to step 4. If a singularity region has been entered, set a special solution flag to
indicate that a special solution is being used. Then, calculate 0.:m using the appropriate
special solution, calculate 85 from equation (36) as discussed in appendix D, and go
to step 8.

Step 4: If a performance criterion of joint angles is to be satisfied, calculate the gradient of the
performance criterion times the weighting factor kVH (see appendix C for an example).
Also calculate kJ;VHarm and kJ3VHyyst with the Jy calculated in step 1 and the
expression for J3 (in hand coordinates) in equation (30).

Step 5: Assemble the particular and homogeneous solutions for the arm joint angle rates from
equations (15) and (21) with @parm[m] = 0 and ¢4 arm[m] = 1. Cramer’s rule or any

other convenient method may be used to calculate (}p,arm and ‘?’h,arm-

Step 6: If J3 is near its singularity (eq. (32)), optimize the arm joint angle rates only and calculate
the wrist joint angle rates required to produce the commanded rotational velocity of the
hand (egs. (33) and (34)). If J3 is not near its singularity, calculate the particular and
homogeneous solutions for the wrist joint angle rates from equations (14) and (19), as
discussed in appendix D, and calculate the optimized solution for the joint angle rates
using equation (3).
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Step 7:

Step 8&:

Step 9:

Step 10:

Check the condition of the special solution flag. If the special solution flag is not set,
proceed to step 8. If the special solution flag is set, the arm has left one of the singularity
regions defined in equations (37), (38), (39), and (40). If special solution 2, 3, or 4 was
in use, calculate the arm joint angle rates for this special solution and then compare the
appropriate arm joint angle rates of the special solution with the corresponding arm joint
angle rates of the optimized solution calculated in step 6. If the signs of the corresponding
rates match, reset the special solution flag, discontinue calculation of the special solution,
and switch to the optimized solution. (Recall that for special solution 2, the sign of 6
of the special solution must match the sign of @5 of the optlmlzed solution; for special
solution 3, the sign of 84 of the special solution must match the sign of 04 of the optimized
solution; and for special solution 4, the signs of 0, and f4 of the special solution must
match the signs of 2 and 64 of the optimized solution, respectively.) If the signs of the
corresponding joint angle rates do not match, calculate 8,5 from equation (36) and
continue using the special solution. If special solution 1 was in use, reset the special
solution flag, discontinue calculation of the special solution, and immediately switch to
the optimized solution.

Scale the calculated joint angle rate solution, if necessary, as follows. Using the vector of
physical maximum (absolute value) joint angle rates which can be produced by the joints

of the robot, Omay [#], calculate
& = 10;] — Ormax|i) (F2)

for i =1 to 7. If all ¢;’s are less than or equal to zero, the joint angle rates do not need
to be scaled. If one or more are greater than zero, find the largest positive element of
¢—denoted ¢;—and scale the joint angle rates by using the corresponding 9 and Opax [5]
(ref. 10) as follows:

j - Bmaxli] 5
6= F3
6| (F3)

Equation (F3) sets 9 to its physical maximum rate (with the proper sign), and propor-

tionally scales the other rates (recall that fax[j] is assumed 30 deg/sec for k =1to 7 in
this paper).

Integrate the scaled joint angle rates, for example, by using Euler integration,

o(t + At) = 8(t) At + 6(t) (F4)

or Adams-Bashforth second-order predictor integration,

o(t + At) = (30(t) — bt — At)) +6(t) (F5)

If all the joint angles (¢ + At) are inside their corresponding physical joint angle limits,
command the servo controllers of the LTM to move to the calculated joint angle positions,
8(t + At), and repeat the loop starting at step 1 with the updated joint angles. If any
of the updated angles are outside their limits, do not move from the current position and
repeat the loop starting at step 1 with the previous joint angle command (6(t)).

The steps outlined in this section are not computationally intensive and calculate the optimized
solution (when possible) without formally computing the generalized inverse of the Jacobian matrix
(which is time consuming).
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Table I. Denavit-Hartenberg Parameters for the LTM

Joint i a; d; a;, deg 6]
1 0 0 -90 4
2 *lEs 0 90 99
3 0 0 -90 03
4 t WE 0 90 8,
3 0 0 -90 5
6 0 0 90 6 + 90°
7 0 ] HW 0 6,

*lgs = Elbow-to-shoulder distance = 23 in. (5842 mm).
flwg = Wrist-to-elbow distance = 20 in. (5080 mm).
Hiw = Hand-to-wrist distance = 9 in. (2286 mm).

(In the equations in the text, gy is assumed to be 0.)

Table II. Singularities Associated With the Four J;’s Formed by Deleting Column m of J;

(163] = 180° and || = 180° are not physically realizable]

Eliminated column

Determinant of remaining 3 by 3

of J;,m submatrix of J;, det(J;) Singularities
1 —lgsiZ/ECeS, 64] = 0° or 90° or 180°
2 —lpsllpC353C, |62] = 90°
|63] = 0° or 180°
64] = 90°
3 leslweS4Cs[lpsCa + lwg(CyC3Cy — 5452)] |62] = 90° and |84] = 0° or 180°
|63] = 90°
|64] = 0° or 180°
~lpsCs = lwg(C4C3C; — S4.57)
4 lEslwgC4Ss|lgsCa + Iwg(CsC3Cy — 5459)] [82] = 90° and |84] = 0° or 180°

|63] = 0° or 180°
164] = 90°
—lgsCh = lwp(CyC3Cy — S457)
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Table III. Initial Arm Configuration and Commanded Velocities for Figures 10 to 12 and 14 to 20

Initial configuration

Commanded velocity

(a) Figures 10, 11, and 12
6; = —45° 5 = —45° Vx = 30 mm/sec wy = 10 deg/sec
0y = —45° fg = —10° Vy = =30 mm/sec wy = 15 deg/sec
f3 = 45° 67 = 0° Vz =0 mm/sec wz = —10 deg/sec
g, = 10°

(b) Figures 14 and 15
6, = 10° 65 = 10° “Vx = 0 mm/sec wx = 0 deg/sec
B = 10° B¢ = 10° y =0 mm/sec wy = 0 deg/sec
f3 = —20° 67 = 0° Vz = 75 mm/sec wz =0 deg/sec
0y = —20°
(c) Figures 16 and 17

6, = —45° 65 = 0° Vx = 0 mm/sec wyx = 0 deg/sec
6y = 85° B = 0° Vy = —50 mm/sec wy = 0 deg/sec
03 = —45° 67 =0° Vz = 75 mm/sec wz =0 deg/sec
fs = 11.5°

(d) Figures 18, 19, and 20
6, =0° 65 = 0° {ZX = 0 mm/sec wx =0 deg/sec
0y = 48.99° fg = 0° Vy =0 mm/sec @y = 0 deg/sec
by, = 0° 67 = 0° Vz = =75 mm/sec wgz =0 deg/sec
64 = 90°

aVelocities in hand coordinates for parts (a), (b), and (c) and in base coordinates for part (d).
b9, = 0° in figure 18; #3 = 45° in figure 19; 83 = 85° in figure 20.
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Figure 10.
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(a) Arm joint angles.
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Motion of arm using Dubey’s method with no perfoﬁnﬁnce criterion, k = 0.
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Figure 10. Concluded.

51



60 L
50 ;___/ e[3]

40

30 |

arm’ o+ —— ]

deg D

_30 b
-40 <
50 6[1j

-60

Time, sec

(a) Arm joint angles.

30 -
20 - —

10 016]

0 wrist® 30 + \

deg

-40

50 \

60 [ 0[5]

70 -
-80 [~ \
! I 1 L ]
0 5 1.0 15 20 25

-90

Time, sec

(b) Wrist joint angles.

Figure 11. Motion of arm using Dubey’s method and example performance criterion in appendix C with
k=-1
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Figure 12. Motion of arm using Dubey’s method and example performance criterion in appendix C with
k=-2.
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Figure 17. Motion of arm near the singularity |f2] = 90° and 64
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Figure 19. Motion of arm near the singularity |f2 + u| = 90° and 64 = 0° with elbow pitch joint #3 = 45° using
special solution 4,
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Figure 19. Continued.
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(e) Actual velocity of hand (in base coordinates).

Figure 19. Concluded.
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Figure 20. Motion of arm near the singularity |02 + x| = 90° and 64 = 0°
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Figure 20. Continued.
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