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SUMMARY

An optimized resolved rate control scheme for real-time control of seven-degree-of-freedom

manipulators with spherical wrists was recently developed at the Oak Ridge National Laboratory.
The scheme generates a least-squares solution for joint angle rates, which move the robot hand at a

commanded velocity while (optionally) trying to configure the arm to satisfy a specified performance

criterion of joint angles.
The present paper discusses the use of this scheme for controlling a prototype of a seven-degree-

of-freedom robot arm--the Laboratory Telerobotic Manipulator (LTM)--built by the Oak Ridge

National Laboratory for NASA. Axis systems and homogeneous transformation matrices based on

the Denavit-Hartenberg parameters are established for the LTM along with appropriate resolved

rate control equations. When the optimization scheme cannot be used due to kinematic singularities

that result in less than six degrees of freedom, special resolved rate equations are also presented.

A three-dimensional graphics model of the LTM was driven by velocity commands from a six-axis

hand controller to assess the equations developed in this paper. For the motions simulated, the robot

hand moves as commanded and the special resolved rate equations for kinematic singularities appear
reasonable.

INTRODUCTION

The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm built by

the Oak Ridge National Laboratory for NASA. A prototype structure with two of the arms (fig. l(a))
has been delivered to the Langley Research Center for evaluation in ground-based research to assess

the role of redundant degree-of-freedom arms in space operations. Each arm has three pitch-yaw

joints (fig. l(b)): one at the shoulder, another at the elbow, and a third at the wrist. The seventh

degree of freedom is provided by a wrist roll joint. The problem of interest in this paper is velocity
control of the LTM.

Velocity control is a popular way to control robot arms. The velocity of the robot hand is known

(or commanded by an operator) and this velocity is resolved into joint angle rates (resolved rate
control, ref. 1) to move the hand as commanded. Six independent joints are all that are needed

for general movement of the hand in its workspace; but the LTM has a seventh joint, which means
there are more choices for joint angle rates to move the hand as commanded. A reasonable solution

from among the many choices is one for which the sum of the squares of the joint angle rates is the

smallest a least-squares solution. The solution may also be a trade-off between small rates and

those rates which work toward satisfying a specified performance criterion of the joint angles.

An optimized resolved rate control scheme for seven-degree-of-freedom manipulators with spher-

ical wrists (called Dubey's method in this paper (ref. 2)) is applied to the LTM. Dubey's method
generates a least-squares solution for the joint angle rates which move the robot hand at the com-

manded velocity while (optionally) trying to configure the arm to satisfy a specified performance

criterion of joint angles. In essence, Dubey's method is a fast way to compute the least-squares so-
lution for arms like the LTM. Real-time control was the impetus for the development of the scheme.

A problem with using Dubey's method is that it requires selecting a column of the Jacobian

matrix so that the remaining six columns (or, equivalently, six joint angle rates) are independent.
A method to determine quickly which column to select is presented in this paper and is different

from the approach in reference 3, a recent application of the scheme to the LTM. However, such a

selection is not always possible in which case the scheme does not apply--and alternate control

equations are devised.

SYMBOLS

i
Aj

gi

Ci

di

homogeneous transformation matrix from axis system i to axis system j

Denavit-Hartenberg parameter, perpendicular distance between Zi-1 and

zi

cos Oi

Denavit-Hartenberg parameter, distance between coordinate systems i - 1

and i along Zi-1



H(O)

VH

VHarm

VHwrist

I

J

j+

J1,J2,J3

31

k

1ES

IHW

IWE

IWS

m

i
Rj

Rot(S, ¢)

Si

t

V

VT3, Vp3, VR3

Yr4,YP4,YR4

X ,Yi,Zi

X ,Y. ,Z

,Zv

x, y, z

2

scalar-valued performance criterion

gradient of H(0)

gradient defined in equation (9)

gradient defined in equation (10)

identity matrix

Jac0bian matrix (6 by 7)

generalized inverse of J

submatrices of J (see eq. (8) Or eq. (D2))

submatrix (3 by 3) of J1

constant which determines rate of convergence to H(0)

length from elbow to shoulder (constant)

length from hand to wrist (constant)

length from wrist to elbow (constant)

line-of-sight distance from wrist to shoulder

index which indicates component of _bp,arm and _h,arm set to 0 and 1,

respectively, when using Dubey's method

position vector from joint axis system i - 1 to joint axis system i; expressed
in joint axis system i - 1

rotational part of homogeneous transformation matrix from axis system i
to axis system j

rotation matrix (3 by 3) representing a rotation about S axis by angular
amount ¢

sin 0i

time, sec

commanded translational velocity of robot hand

thrusting, pitching, and rotating velocities of hand relative to line-of-sight
from shoulder to wrist, used in forming equations to fully extend robot
arm when elbow pitch angle 03 is involved

thrusting, pitching, and rotating velocities of hand relative to line-of-sight
from shoulder to wrist, used in forming equations to fully extend robot
arm when elbow yaw angle 04 is involved

axes associated with joint i + 1, Zi is axis of rotation; also, unit vector

along axis

corresponding axes after rotation of axis system (X2,Y2,Z2) by angle #
about ]I2; when both elbow joints are ±90 °, velocity cannot be produced

along X_

corresponding axes after rotation of axis system (X_,Yg,Zp) by angle
v about Zg; with loss of shoulder and elbow pitch, velocity cannot be
produced along Yv

coordinates



0i

o[

IlOll

Oarm

_opt

_opt,arm

_wrist

#

I]

Pl

P2

cr1

_r2

_h,arm

_h,arm

_h,wrist

_bp,arm

_p,arm

commanded velocity (translational and rotational) of robot hand

Denavit-Hartenberg parameter, angle between Zi-1 and Z i, measured

positively about positive Xi

constant joint angle offset bias

small positive angles used to specify singularity regions

angle associated with joint i (Oi = 0 ° for i = 1 to 7 in fig. 2)

Denavit-Hartenberg parameter, joint angle between Xi-1 and X i, mea-

sured positively about positive Zi-1

last values of 03 and/94, respectively, before singularity region of special

solution 1 was entered (fig. 6), initialized to initial values of 03 and 04

vector of seven joint angle rates

Euclidean norm of

vector of four arm joint angle rates 61, 62, 63, and 04

optimized vector of seven joint angle rates

optimized vector of four arm joint angle rates

vector of wrist joint angle rates 65, 0(i, and 67

angle between elbow-to-shoulder link and line-of-sight from shoulder to

wrist (fig. 3)

angle between Ytz and Z_ × X3, used in showing velocity component that
cannot be produced with loss of shoulder and elbow pitch (defined by

eqs. (81) and (82))

angle from plane of X0 and Zo to line of sight from shoulder to wrist when

elbow is not yawed (fig. 5(a))

angle from X1 axis to line of sight from shoulder to wrist when elbow is

not pitched (fig. 5(b))

angle between elbow-to-shoulder link and line of sight from shoulder to
wrist when elbow is not yawed (fig. 5(a))

angle between elbow-to-shoulder link and line of sight from shoulder to

wrist when elbow is not pitched (fig. 5(b))

vector of joint angle rates (eq. (4))

homogeneous solution of equation (4)

vector of four rates _h[1], ¢h[2], _h[3], and _h[4]

subvector of _h,arrn

vector of three rates ¢h[5], _h[6], and _h[7]

component i of _b

particular solution of equation (4)

vector of four rates _bp[1], _bp[2], _bp[3], and _p[4]

subvector of _p,arm
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_p,wrist vector of three rates _p[5], _bp[6], and _p[7]

_o commanded rotational velocity of robot hand

3-D three-dimensional

Arm reference points:

E • elbow

H hand

S shoulder

W wrist

A dot over a quantity indicates the derivative with respect to time. A caret ( ^ ) over a vector
indicates that the vector is expressed in base coordinates (Xo,Yo,Zo). The component index of a
vector is listed as a subscript or in brackets ([ ]). If a vector has a label subscript, the component

index is always listed in brackets. For example, the second component of the joint, angle rate vector
is 02 or 0[2]. The second component of the arm joint angle rate vector 0arm is 0arm[2].

DESCRIPTION OF APPENDIXES

To reduce material in the main body of the paper and to present other pertinent information,
six appendixes have been included at the end of this paper. Appendix A lists the homogeneous
transformation matrices A__I, from joint axis system i to joint axis system i- 1 and presents a fast
way to compute the composite transformation matrix from the hand axis system to the base axis
system (hand-to-base transformation A_). Appendix B extends the usefulness of the equations in the
analysis by showing that operator inputs need not be restricted to the hand axis system (at wrist).
Appendix C derives an example performance criterion which may be used to encourage movement
away from some of the singularities of the LTM. Appendix D presents a method for computing
quickly several submatrices of the Jacobian matrix in desired reference frames. The solution for the
wrist joint angle rates is given in a generic form, which applies directly to four other similar equations
in the analysis. Also, a means of dealing with the wrist singularity is presented. In appendix E an
expression for a submatrix of the Jacobian is derived in the axis system of the second joint (shoulder
yaw 02) for analyzing the singularities of the LTM. Appendix F describes a computer program used
to implement the equations in this paper.

ANALYSIS

The LTM with axis systems is depicted in figure 2, where all joint angles are defined to be zero.
In this initial position, 01, 03, and 05 produce a pitching motion of the hand; 02, 04, and 06 produce
a yawing motion of the hand; and 07 rolls the hand. As the LTM moves, the X2 axis is always
aligned with the elbow-to-shoulder link; the X4 axis is always aligned with the wrist-to-elbow link;
and the Z6 axis (and Z7 axis) is always aligned with the hand-to-wrist link. By convention, Oi
rotates about Zi-1. Denavit-Hartenberg parameters for the LTM are listed in table I. Homogeneous
transformation matrices based on these parameters are given in appendix A.

The axis system chosen for operator inputs is the robot hand axis system (XT,YT,Z7), although
this need not be true. (See appendix B.) A simplifying assumption is that IHW = 0 to locate the
origin of the hand axis system at the intersection of the rotational axes of the robot wrist. Thus,

wrist rotation (05, 06, and 07) does not translate the origin of the hand axis system.
A robot needs only six independent degrees of freedom to translate and orient its hand, so there

is a redundant degree of freedom among the seven joints of the LTM. This redundant degree of
freedom means different configurations of the arm can be used to produce identical motions of the
hand (which can be important, for example, when reaching around obstacles), but the redundancy
complicates real-time control.



Joint angle rates of a robot arm cause the hand to move at a velocity

 =Jb (1)

where J is the Jacobian matrix and 0 is a vector of joint angle rates. The idea of resolved rate

control is to specify :_ and calculate 0.

Performance Criterion

A solution of equation (1), optimized by a specified scalar-valued performance criterion H(0) is

(ref. 4)

0opt = J+5: + k [I- J+J] VH

= J+ [5: - kJVH] + kVH (2)

where 0opt is the vector of optimized joint angle rates, J+ is the generalized inverse of the Jacobian
matrix, I is the appropriate identity matrix, and ffH is the gradient of the performance criterion.

In this paper, J+ is computed by singular value decomposition of J. The constant scalar k in

equation (2) is a weighting factor which determines the trade-off between a least-squares solution

for the joint angle rates (J+±), and a solution which optimizes the performance criterion H(0). As

Ikl ---* 0, preference is given to minimizing joint angle rates. If the goal is to maximize H(0), k should

be positive; if the goal is to minimize H(0), k should be negative. An example performance criterion

which may be used to avoid some of the singularities of the LTM is discussed in appendix C.

Dubey's Method of Computing Optimized Joint Angle Rates

The method in reference 2 for calculating optimized joint angle rates for seven-degree-of-freedom

robot arms (called Dubey's method in this paper) assumes that equation (2) can be expressed in
the form

0opt : _p

Oh "¢_h

where _p and _h are particular and homogeneous solutions, respectively, of the equation

- kJVH = J¢ (4)

(The reader should note the following nomenclature: Joint angle rates which are solutions of

equation (1) are always denoted 0. The Jacobian matrix and the performance criterion are both

functions of the joint angle vector O,.formed by integrating 0. Particular and homogeneous solutions

of equation (4) are denoted _p and Ch, respectively, and are used to calculate an optimized 0.)

Specifically, the particular solution _bp satisfies

- kJVH = J_bp (5)

with one component of _bp assigned the value 0 by choice, and the homogeneous solution satisfies

the equation
o = JCh (6)

with one component of _h assigned the value 1 by choice. The component assigned the value 0 in

_p corresponds to the component assigned the value 1 in Ch. Once the particular and homogeneous
solutions are found, the homogeneous solution is multiplied by a scalar (the dot product of the two

solutions divided by the dot product of the homogeneous solution with itself) and is subtracted from

the particular solution. The gradient of the performance criterion times the rate-of-convergence
constant is added to the result to form the optimized solution (eq. (3)). Dubey's method implicitly

5
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assumes full rank for the 6 by 6 Jacobian submatrix which must be inverted in equations (5) and (6) = : *
to find the six unknown joint angle rates, respectively, of the particular and homogeneous solutions.
An alternative method must be used if theJacobian matrix has rank five or less (i.e., if the robot _--_
loses the ability to move along or rotate about some direction in Cartesian space). The advantage _=-"
of Dubey's method is that the optimized solution can be found without formally computing the

generalized inverse. For a more detailed discussion of Dubey's method, see references 2 and 5. The |
remainder of this analysis presents an efficient method for using Dubey's method to control the LTM
and suggests some alternative solutions when the method cannot be used. However, these alternative

m

solutions are by no means the only possible approaches for coping with singular configurations of Z
the arm in which Dubey's method does not apply.

KParticularized Algorithm for Dubey's Method

The vector x in equation (4) is partitioned as

{v}X= _

03

(7)

where V and 03 are commanded translational and rotational velocity vectors, respectively, of the
hand axis system. Since the hand axis system is assumed to be located at the wrist in this paper,
the wrist produces only rotational motions of the hand axis system, and equation (4) can be written
as

/ v }03-- -- k [J_ [ 0 ] { _Tnarnl}[ J3- _n_ri_t : I'JJ21 [ :1 /_arm/[ (_)wrist

I I

where

(8)

OH/DO: }

0H/002
VHarm -.-= OH/O03

OHIO04

(9)

0H/005 }
VHwrist = OHIO06 (10)

OHIO07

• 42 (11)
Carm= .¢3

¢4

_bwrist = .¢6 (12)

¢7

With respect to translational motion of the hand (the V-part of eq. (8)), any redundancy must
reside in the first four joints, since the three wrist joints cannot translate the hand (at wrist).

Dubey's method relies on being able to solve for six independent joint angle rate components,
each of which is either a component of _barm or _wrist. If J3 is not singular, the solution for _wrist

provides three of these components. The other three independent components must come from the
four components of _arm, provided J1 has full rank.

Therefore, if J3 is not singular and if J1 has full rank, one of the components of ¢_arm is chosen
to be 0 and 1, respectively, in forming the particular and homogeneous solutions of equation (8).
The details of calculating these particular and homogeneous solutions follow.



Computation of the Particular Solution

Equation (8) allows formation of the particular solution from the translational and rotational

velocity equations:

V - kJ1VHarm = Jl(_p,arm (13)

¢d -- J2 [(_p,arm + kVHarm] - kJ3VHwrist : J3_bp,wrist (14)

Equation (13) is solved for (_p,arm with one component assigned the value 0 by choice• Once _bp,arm

is calculated, equation (14) is solved for _bp,wrist•

For discussion purposes, set the mth component of (_p,arm to 0 in equation (13) and delete the

ruth column of J1. Let the remaining submatrix of J1 be denoted by 31 and let the vector of the
• .

remaining three components of _bp,ar m be denoted by _bp,arm• Assuming that J1 is invertible, the

reduced equation yields

_bp,arm -- ,]11 IV - kJ1VHarm] (15)

By properly associating indices, one can assemble _bp,arm from the components of _bp,arm with the

missing component given by 4)p,arm[m] -- 0.

Once _bp,arm is known, equation (14) can be solved by

_p,wrist---- 531 [_) -- 32 ((_p,arm d- kVnarm) - kJ3_TUwrist ] (16)

Equation (16) formally represents the solution of equation (14), but simple expressions are derived

in appendix D to expedite the calculation of _bp,wris t and deal with the singularity of J3- Finally,

the complete particular solution is

_p,wrist

Computation of the Homogeneous Solution

Equation (8) allows formation of the homogeneous solution from the two equations:

0 = Jl_bh,ar m (18)

-J2_bh,arm : J3_h,wrist (19)

Equation (18) can be expressed in the form:

J

0 = J 1 _bh,arm +
J1 [1, m] }
Jl[2,m]
Jl[3, m]

(2o)

where removing the mth column of J1 leaves the submatrix ,11 and removing the ruth component

from _h,arm leaves _bh,ar m.
Recall that the value 1 is assigned to the ruth component of the homogeneous solution in Dubey's

method• Consequently, with the assignment (_h,arm[m] ----1, the solution of equation (20) is

J111, m]}
_bh,arm = -J11 Jl[2, m]

Jl[3, m]

(21)

7



By properlyassociatingindices,onecanassemble_h,armfronl tile componentsof _bh,arm,with the
missingcomponentgivenby Ch,arm[m]= 1. Note that J11 appears in both equations (15) and (21).

Once ¢_h,arm is known, the solution of equation (19) is

Equation (22) formally represents the solution of equation (19), but simple expressions are derived

in appendix D to expedite calculation of Ch,wrist and to deal with the singularity of J3. Finally, the

complete homogeneous solution is

_h: ;2w_i: (23)

The solutions of equations (13), (14), (18), and (19) together with equations (17), (23), and

(3) thus reduce the problem of computing an optimized solution to equation (1) to the problem of

inverting two 3 by 3 matrices--`]l in equations (15) and (21) and J3 in equations (16) and (22).

However, it is not always possible to find an invertible 31, nor is it always possible to invert J3. The

method outlined in this section for generating an optimized solution to equation (1) is used only if

an invertible `]1 exists and J3 is also invertible. Cases in which Dubey's method cannot be used are
discussed later.

Determining an Invertible `]1

The matrix J1 for the LTM expressed in the (X2,Y2,Z2) axis system is

J1 --

-C4S3C21_F_,

C21ES + (C4C3C2 - S4S2)IwE

-C4S3S21wE

-S41wE -C4S31WE -S4C3IwE ]

0 C4C31wE --S4S3IwE I

--IEs -- C4C31wE 0 --C4IwE j

(24)

as derived in appendix E. The lengths of the elbow-to-shoulder link (I/_) and the wrist-to-elbow

link (IwE) are shown in table I. Table II lists the determinants and associated singularities for each

of the four possible 3 by 3 submatrices (`]1) that can be formed by deleting a column from J1. Any

submatrix ,]1 can always be inverted as long as its determinant is not zero (which occurs at its

singularities). Although shown in table II, the singularity conditions 1031= 180 ° and [041 = 180 ° are

not considered physically realizable and are ignored. In this paper, mutually exclusive partitions of

the motion of 04 are used to decide which column of J1 to delete. These partitions are (1) [041 # 0 °

and I041 # 90°; (2) 1041 = 0°; and (3) 1041 = 90 °.

The equalities and inequalities in the following discussion are treated in a strict sense. But, on

a computer, these equalities and inequalities must be defined in terms of regions. Appropriate sizes

for the regions are discussed in appendix F.

Partition (1): I041 ¢ 0° and 104[ # 90 °

Notice in table II that after column 1 of J1 is deleted the remaining ,]l can always be inverted

as long as [041 is not 0 ° or 90 °. Therefore, if [04l is neither 0° nor 90 °, the index m used in forming

the particular and homogeneous solutions is chosen as m = 1 (i.e., ¢pp,arm[1] = 0 and _h,arm[1] = 1).

Partition (2): 104[ = 0 °

If 104[ = 0 °, then neither the elimination of column 1 nor column 3 from Jl will result in an

invertible ,]1. However, it is possible to eliminate column 2 to produce an invertible ,]1 if 102[ # 90 °

and [031 # 0°. Therefore, when 1041 = 0 °, if [02[ # 90 ° and 1031 # 0 °, the index m used in forming

the particular and homogeneous solutions is chosen as m = 2 (i.e., Cp,arm[2] = 0 and _h,arm[2] = 1).

If [021 = 90 ° or 1031 = 0 ° then it is not possible to form an invertible `]l from J1-

|

|
i

E

mE

m
m_



]

Partition (3): 1041 = 90 °

If [04[ = 90 °, then neither the elimination of column 1, column 2, nor column 4 from J1 will

result in an invertible ,]1. However, it is possible to eliminate column 3 to produce an invertible ,J1
if 1031 ¢ 90 ° and -lEsC2 ¢ lwE(C4C3C2 - $4S2).

Since 1041 = 90 °, -lEsC2 ¢ IwE(C4C3C2 - $4S2) simplifies to IEsC2 _ sign(S4)IwES2 where the
sign function is defined as:

sign(x) = { +1 (x>0)}-1 (z < 0) (25)

where x is a general argument. Geometrically, the equality condition IEsC2 = sign(S4)lwES2
holds when the arm lies in the plane of Zo and X1 with the wrist located on Zo, as shown in

figure 3. As discussed in a later section, it is more convenient to describe the inequality condition

1EsC2 _ sign(S4)lwES2 in terms of the shoulder joint angle 02. Toward this end, the angle between

the elbow-to-shoulder link and the line-of-sight distance from the shoulder to the wrist (Iw8) when

104[ = 90 ° is called # and is defined to be positive when 04 = 90 ° (as in fig. 3). Mathematically,
IEsC2 _ sign(S4)lwES2 if and only if 102 + #1 # 90°:

sign(S4)/WE

sin#- V/I_-s + I_VE (26)

IES

cos/z- + (27)

(Note that [/Zl is constant, and in this paper, I/z[ = arctan(20/23) = 41.01°.) Then,

cos(02 +/Z) = C2 cos/Z - $2 sin #

lEsC2 - sign(S4)/WES2
(28)

Therefore, the condition IEsC2 _ sign(S4)lwES2 is equivalent to the condition cos(02 +/z) ¢ 0 or

102 +/Zl # 90° (29)

When 1041 = 90 °, if 10a[ ¢ 90 ° and [02 +/Zl # 90°, the index m used in forming the particular

and homogeneous solutions is chosen as m = 3 (i.e., t_P,arm[3 ] = 0 and _h,arm[3] ---- 1). If 1031= 90°
or 102 + p[ = 90 °, then it is not possible to form an invertible ,ll from J1.

Figure 4 is a flowchart which uses the logic just described to determine which column to eliminate

from J1 to form an invertible/_1 (or which component to set to 0 and 1 when forming the particular

and homogeneous solutions, respectively). Equality conditions are shown in the figure for simplicity,

but singularity regions are defined when using the logic in a computer program (appendix F). The

flowchart also indicates when it is not possible to form an invertible ,11 and identifies the associated

special solution to use for the arm joint angle rates (each special solution is discussed in a later
section).

Determining the Invertibility of J3

The Jacobian submatrix J3 expressed in the hand axis system is derived in appendix D as

J3 = [c7 s7i]$7C6 C7

-& 0
(30)

9



The determinant of J3 is easily calculated from equation (30) as -cos 06. Hence, J3 is invertible as
long as

[06] # 90° (31)

Optimizing 0arm When J3 Is Not Invertible

Even when J3 is singular, it may still, be possible to find six independent joint angle rates t;rom
among the components of _arm and _bwrist, so that Dubey's method could be applied. But this

solution would involve inverting a 6 by 6 submatr!x of J (after it-was determined). An alternate
solution optimizing only 0arm when Jt has full rank and J3 is singuiar is used in this paper.

A region about the singularity of J3 is defined as

[[061- 90°[ < 66 (32)

where 66 is a small specified positive angle (the minimum value for 66 is given in appendix F). When

an invertible ,11 exists, but 06 is inside this singularity region, only the arm joint angle rates are

optimized:

' _p,arm" _h,arm _h arm 4- kVHarm

0wrist

(33)

where _p,arm and Ch,arm are assembled from equations (15) and (21), along with _p,arm[rrt] = 0 and

Ch,arm[m] = 1. Using the method outlined in appendix D, 0wrist in equation (33) is solved from

equation (D2) with the substitution 0arm -- 0opt,arm:

-- J20opt,arm = J30wrist (34)

Computing Joint Angle Rates When Dubey's Method Does Not Apply

In this paper, Dubey's method does not apply when an invertible J1 does not exist. Instead,

special solutions for the arm and wrist joint angle rates are formed from the two equations (see
eq. (D2)):

v = Jlba m (35)

w -- J20arm = J30wrist (36)

The wrist joint angle rates are calculated by the method outlined in appendix D (regardless of

whether J3 is invertible or not). Special solutions for 0arm are discussed in the following section.

Special Solutions for 0arm When an Invertible ,11 Does Not Exist

There are four sets of configurations of the arm for which Dubey's method does not apply because

an invertible ,_1 does not exist (see fig. 4):

1. t041= 0° and le31= 0°
2. 104[=0 ° and [021=90 °

3. 104l = 90° and 1031= 90 °

4. 1041-- 90° and ]02 + #l = 90°

10



In these configurations, the arm cannot physically produce a component of the commanded

translational velocity vector V, as shown later.

Special solutions for Oarm are used in singularity regions defined around these four conditions.

The singularity regions are

1041< 64and t031< 63 (37)

[041< 64and 11821-90°1< 62 (38)

[[841- 90°1< 64and [[83[- 90°[ < 63 (39)

[[84[- 90°[ < 64and [[82+ #[- 90°[ < 62 (40)

where _2, 63, and 64 are small specified positive angles, and # is defined by equations (26) and (27).

Minimum values for 62, _3, and 64 are given in appendix F.

For discussion purposes in the sections that follow, joints 2 and 4 are described as the shoulder

and elbow yaw joints, respectively, and joints 1 and 3 are described as the shoulder and elbow pitch
joints, respectively. (See fig. 2.) Motion produced by 02 or 04 is referred to as yaw motion of the

arm, and motion produced by 01 or 03 is referred to as pitch motion of the arm.

The four special solutions developed in the following sections are by no means the only ones

possible nor may they be the best. However, in the tests performed with a 3-D graphics model of

the LTM and a six-axis joystick controller, they do seem to produce reasonable responses of the arm.

Further experimentation is needed to better evaluate the usefulness of the special solutions and to

determine any modifications or refinements which would be beneficial.

Special Solution 1: Full Extension via Elbow Pitch and Elbow Yaw

Special solution 1 applies when the robot arm is at or near full extension, when 03 = 0 ° and

04 = 0 ° (for example, as shown in fig. 2). When the arm is fully extended, joints 2 and 4 can only

translate the robot hand in either the same or exactly opposite directions; this is also true for joints I

and 3. Mathematically, substituting equation (24), with 03 = 04 = 0°, into equation (35) yields

0 0 0Vy2 = C2(IES + 1WE ) 0 IWE 0arm

vz2 o -(tF_S + tWE) 0 --tWE
(41)

where the components of V are subscripted to denote the (X2,Y2,Z2) axis system. The row of zeros

in equation (41) means that it is not possible to produce Vx2. Therefore, there are not enough

independent arm joints to apply Dubey's method, and special solution 1 is used.

Overview of Proposed Solution

A scheme to control a six-degree-of-freedom robot arm with a single-jointed elbow in the vicinity

of full extension was devised in reference 6. This scheme is extended here to encompass the more
complex situation of a double-jointed elbow. Special Solution 1 is activated and deactivated as the

arm moves in and out of the singularity region defined by equation (37). The pitching joint rates _1

and 03 are used as a pair to extend (thrust) the robot arm as far as possible, so that the hand (at

wrist) travels along the line of sight from the shoulder to the wrist. The yawing joint rates 02 and

04 have the same function. When the arm is fully extended, thrust motion of the hand stops. The

extended arm can be maneuvered like a turret at the shoulder, with 01 doing the pitching and 02

doing the rotating (yawing). For now, only the pair of yawing joints are used to retract the arm in

the singularity region. When the arm is commanded to retract, the elbow bend (in yaw) is opposite

to that on entering the singularity region.

11



Solution for Pitching Joints

Figure 5(a) shows the geometry that is used in deriving equations for 03 (elbow pitch rate) and

01 (shoulder pitch rate). Notice that the elbow is not yawed (04 = 0°). Equations based on this

geometry are still used even for a slightly yawed elbow.

Hand velocity components VT3 , Vp3 , and VR3. The translational velocity components VT3

(thrust), Vp3 (pitch), and VR3 (rotate or yaw) of the hand relative to the line of sight from the
shoulder to the wrist (the dashed line from S to W in fig. 5(a)) are calculated by rotating the
commanded velocity vector expressed in the (X2,Y2,Z2) axis system by the angle cr1 about the Z2
axis:

Vp 3 = Rot(Z2,al) Vy2
vR3 Vz2

cos, msinai-sinal COSO"1 Yy2 (42)
o o Vz2

The pitching joint angle rates 03 and 01 coordinate to produce a velocity along the dashed line that
is proportional to VT3, and 01 is used to produce Vp3. (Rotating (yawing) motions are produced by
02 and are discussed later.)

Expressions for cos a 1 and sin O"1 . From figure 5(a),

IES+ lwEC3
COS O"1 -- (43)

IWS

IwE S3
sinai -- (44)

IWS

where (by the law of cosines)

(45)

The length Iws (wrist to shoulder) varies with 03. Physically, the origin of the wrist axis system
cannot coincide with the origin of the shoulder axis system, so 1ws _ O. The link lengths 1/_ (elbow
to shoulder) and IwE (wrist to elbow) are constants listed in table I.

Equation for 03 in singularity region. The contribution of the elbow pitch rate 03 in extending

the robot arm in response to the commanded thrust velocity VT3 is computed as

03 = {-K3 VT30 sign(03) 0 * }

(VT3 > O, 303>o)

(Otherwise)
(46)

where 0_ is the value of 03 just before the singularity region was entered, and K3 is a specified
positive constant, which is assumed to be unity in this paper. Equation (46) extends the arm until
03 changes sign (i.e., 03 passes through 0 ° but is still approximately 0 °) and then freezes 03.

Equation for &l. The shoulder pitch angle 01 is used to keep the hand from moving off the
line of sight from the shoulder to the wrist by nulling the angular rate &l due to 03. Differentiate
equations (44) and (45) with respect to time and form the two expressions:

_1- lIVE (IwsC303:iWSS3_ (47)
cos a 1 \ Iws

12



iWS = IESIWES303 (48)
IWS

With equations (43) and (48), equation (47) is written as

al - IEsT_C 3 C3 + _ ] (49)

EquationfoY ])1. The angular rate ])1 pitches the robot arm in response to an operator's command
and is used in computing 01. The hand at the wrist has a moment arm Iws relative to the shoulder,

and the linear pitching rate Vp3 (commanded) is the product of this moment arm and the angular

pitch rate ])1. Thus,

yp3 (50)
])1=

where Iws is defined by equation (45).

Equation for 81 in singularity region. The shoulder pitch rate 01 has two functions in the

singularity region: (1) keep the wrist on the dashed line in figure 5(a) as 03 extends the wrist and

(2) allow the operator to pitch the extended arm.

Components of 81 expressed in the (X2,Y2,Z2) axis system are (see appendix A for transformation

matrices)

{0}{ 0 01}1 0 0 = (51)
R2R1 81 C201

These components are shown in figure 5(a). The component -$201 produces an unwanted yaw

velocity of the wrist, but this yaw velocity is later nulled by subtracting it from the commanded yaw
velocity. The component (7201 is used to pitch the line of sight with rate ])1 and to null the rate hi:

c281 = hi - _i (52)

or

b_ - ])1- _1 (53)
C2

where o1 and ])1 are given by equations (49) and (50), respectively. Since equation (53) is singular
when [021 = 90 °, it is used only when 02 is outside a region defined around 1021 = 90°:

. 0 _ II021- 90°1 < A2) )01 = _ (Otherwise) (54)

where A2 is a positive angle. When 60 ° < 1021 < 120 °, half or less of 81 is in the direction of Pl - &l

(eq. (52)). This was the criterion used to choose A2 in equation (54). Thus, A2 = 30 °.

Subtracting Unwanted Yaw Component Due to 01

From figure 5(a), the moment arm for the component -$281 is S31WE and the unwanted yaw

velocity due to 01 is therefore -S2S31wEbl. This yaw component (which is parallel to the Z2 axis)

is subtracted from the commanded velocity Vz2:

VZ2 = Vz2 - (-S2S3/WE81) (55)

The adjusted commanded velocity component VZ2 is used instead of VZ2 when solutions for the

yawing joints, 82 and 84, are computed.

13



Solutions for Yawing Joints

Figure 5(b) shows the geometry that is used in forming equations for/94 (elbow yaw rate) and

02 (shoulder yaw rate). Notice that the elbow is not pitched (03 = 0°). Equations based on this
geometry are still used even for a slightly pitched el-bow. _

Hand velocity components VT4, Vp4, and VR4. The translational velocity components VT4,
I_p4, and VR4 relative to the line of sight to the wrist (the dashed line in fig. 5(b)) are calculated by
rotating the adjusted commanded velocity vector by the angle 0.2 about the Y2 axis:

Vp4 = Rot(Y2, a2) Vy2
VR4 VZ2

Ic°:20-sin 2]{0
Lsina2 0 cosa2 VZ2

(56)

The rotating (yawing) joint angle rates 04 and 02 coordinate to produce a velocity of the wrist along

the dashed line in figure 5(b) that is proportional to VT4. The shoulder rotate (yaw) rate 02 is used

to produce VR4. (Recall that 01 is used to produce a commanded pitch velocity.)

Expressions for cos a2 and sin a2. From figure 5(b),

ILS + IwEC4 (57)COS 0"2 =
lws

IWES4
sin a2 = -- (58)

Iws

where (by the law of cosines)

(59)

The length 1ws varies with 0 4. Physically, the origin of the wrist axis system cannot coincide with
the origin of the shoulder axis system; therefore, Iws # O.

Equation for 04 in singularity region. The equation for elbow yaw rate 04 to extend and retract
the arm in proportion to commanded thrust velocity VT4 is

0 (VT4 >_0, 040 _ _< 0))04 = -K 4 VT4 sign(04) (Otherwise) (60)

where 0_ is the value of _4 just before the singularity region was entered, and /(4 is a specified
positive constant, which is assumed unity in this paper. Equation (60) extends the arm until the
sign of 04 changes, which means that 04 passes through 0° but is still approximately 0°. The arm
holds this extension (but is still free to move in pitch or yaw) until a negative VT4 is commanded
to retract the arm, whereupon the arm retracts by yawing the elbow in a direction opposite to that

with which it entered the singularity regio n . If an elbow bend does not suit the operator, he simply
straightens and retracts the arm again.

Equation for &2. The shoulder yaw angle 02 is used to keep the hand from moving off the
line of sight from the shoulder to the wrist by nulling the angular rate b2 due to 04. Differentiate
equations (58) and (59) with respect to time and form the two expressions:

dr2 = IWE [IwsC404 - "lwsS4 I\ (61)
C0s r t, ]

L

a

E:

B
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iws = IEslwES404
lw S (62)

With equations (57) and (62), equation (61) is then written as

IEs¥ C4 C4+ 12ws] (63)

Equation for ]_2. The angular rate/32 yaws the robot arm in response to an operator's command

and is used in computing 02. The wrist has a moment arm Iws relative to the shoulder, and the
linear pitching rate VR4 (commanded) is the product of this moment arm and the angular pitch rate
i)2- Thus,

vR4
- -- (64)

i_ = Iws

where Iw8 is defined in equation (59). Note that the minus sign is needed in equation (64) due to
the assigned direction for positive P2 (fig- 5(b)).

Equation for 02 in singularity region. The shoulder yaw rate _)2 has two functions in the

singularity region: (1) keep the wrist on the dashed line in figure 5(b) as 04 extends the hand (null
dr2) and (2) allow the operator to yaw the arm according to _. Consequently,

02 = P2 - &2 (65)

where &2 and P2 are given by equations (63) and (64), respectively.

Flowchart for Special Solution 1

The joints 02 and 04 play exactly the same role as the shoulder and elbow joints, respectively,
in reference 6. The elbow yaw rate 04 is calculated by equation (60). When positive thrust is

commanded, _74 extends the arm until 04 changes sign (crosses 0°), and then 04 is frozen (i.e.,

04 = 0). When a negative thrust is commanded, 04 retracts the arm. The shoulder yaw rate 02

is calculated by equation (65). The elbow pitch rate 03 is calculated by equation (46) to extend

the robot arm when positive thrust is commanded. The shoulder pitch rate 01 is calculated by
equation (54). Figure 6 is a flowchart describing special solution 1.

Special Solution 2: Full Extension via Elbow Yaw, at +90 ° Shoulder Yaw

Special solution 2 applies near the singular configuration [021 = 90 ° and 0 4 ---- 0° (for example,

as shown in fig. 7). In this configuration, the hand velocities produced by 01, 02, and 04 are all

collinear. Mathematically, substitute equation (24), with [021 = 90° and 04 = 0°, into equation (35)
and transform the result into (X3,Y3,Z3) coordinates to get

Yy 3 = a 2 _ 0 C31WE 0 0arm

VZ3 -sign(S2)S31wE -(IEs + C31WE) 0 -lwE

o o o
sign(S2)S31WE IE8 + C31WE 0 IWE J l i030 0 IWE 0 04

(66)

where tt._ is the transpose of l:t 3 (see appendix A). The row of zeros in the matrix in equation (66)
means that it is not possible to produce Vx3. Therefore, there are not enough independent arm
joints to apply Dubey's method, and special solution 2 is used.
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solution,

Overview of Proposed Solution

When the arm enters the singularity region defined by equation (38), the commanded velocity

VX3 is ignored. The shoulder yaw rate 02 is used to produce the commanded velocity Vy3, and the
elbow pitch rate 03 is used to produce the commanded velocity VZ3. The joint angle rates _)1 and
04 are set to zero. :_

Computation of the Arm Joint Angle Rates

Figure 7 shows the geometry that is involved in forming special solution 2. Equations are based

on this geometry even when 102] and 04 are slightly away from 90° and 0°, respectively. For this

01----04=0 (67)

Therefore, from equation (66),

and

02 -- Vy3 (68)
IES + CalwE

03 = Vz----_a (69)
1WE

Transition Back to Optimized Solution

The operator can move the arm out of the singularity region in a controlled manner by
commanding Vy3 (i.e., 1021moves away from 90°). Once outside the singularity region, both special
solution 2 and the optimized solution for the entire commanded velocity are calculated. If the sign
of the _)2from the optimized solution matches the sign of t?2 from special solution 2, control switches
back to the optimized method and the special solution computation is stopped. If these signs do not
match, control with special solution 2 continues. This transition back to the optimization method
is used to prevent possible oscillations in the motion of the arm.

Special Solution 3: Both Elbow Joints at -t-90°

Special solution 3 applies near the singular configuration 1031= 90 ° and 104[ = 90 ° (for example, as

shown in fig.. 8). In this configuration, 03 cannot translate the hand, and the hand velocities produced
by 01 and 04 are collinear. Mathematically, substituting equation (24), with I031= 1041= 90°, into

equation (35) yields-

Vy 2 =
vz2

0 -sign(S4)lwE 0 0 ]

C2IEs - sign( S4)S21vvE 0 0 -sign( S3S4)IwE J Oarm0 -IEs 0 0

(70)

The angle # (shown in fig. 8) was defined in equations (26) and (27), which are written here as

sign(S4)lwE
sin# = (71)

lws

IE8 (72)
cos # = lw S

where

= + (73)

|
|

[
F
__=-
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Rotatingthecommandedvelocityinequation(70)by theangle# about the ]I2 axis reveals that

Vyp = Rot(Y2, #) Vy2
Yz, Yz2

leo.0 1= 1

[.sin# 0 cos/z j

0 -sign(S4)lwE 0 0 ]
x C21ES - sign(S4)S21WE 0 0 -sign(S3S4)IwE

o --IES 0 0

O&rm

0 0 0 0
= C21ES - sign(S4)S21WE 0 0 -sign(S3S4)IwE 0arm (74)

o -Iws 0 0

The row of zeros in the matrix in equation (74) means that it is not possible to produce VX_.
Therefore, there are not enough independent arm joints to apply Dubey's method and special
solution 3 is used.

Overview of Proposed Solution

When the arm enters the singularity region defined by equation (39), the commanded velocity

VXu is ignored. The shoulder yaw rate 02 is used to produce the commanded velocity Vzu; and the

elbow yaw rate 04 is used to produce the commanded velocity Vyu. The pitch rates 01 _nd 03 are
set to zero.

Computation of the Arm Joint Angle Rates

Figure 8 shows the geometry that is involved in forming special solution 3. Equations are based
on this geometry even when 103[ and ]04[ are slightly away from 90°. For this solution,

01 = 03 = o (75)

Therefore, from equation (74),

and

02 -- -VZ_ (76)
lws

_4 = Yyp (77)
-sign( S3S4)lwE

Transition Back to Optimized Solution

The operator can move the arm out of the singularity region in a controlled manner by

commanding Vyu (i.e., [041 moves away from 90°). Once outside the singularity region, both special
solution 3 and the optimized solution for the entire commanded velocity are calculated. If the sign
of _4 from the optimized solution matches the sign of 04 from special solution 3, control switches

back to the optimized method and computation of the special solution stops. If these signs do not
match, control using special solution 3 continues. This transition back to the optimization method
is used to prevent possible oscillations in the motion of the arm.

Special Solution 4: Loss of Shoulder and Elbow Pitch

Special solution 4 applies near the singular configuration. [04l = 90 ° and [02 + #[ = 90 ° (for
example, as shown in fig. 9). In this configuration, neither 01 nor 03 can translate the hand (at
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the wrist). Mathematically, substituting equation _24), with [04[ = 90 ° and [02 + #[ = 90 ° (or

equivalently, C2IEs = sign(S4)S21wE) into equation (35) yields

{Vx2} [0-sign(S4)IwE 0 -sign(s_)C31wE]
Vy2 = 0 0 0 sign( )S31wE

VZ2 0 -IEs 0

Oarm (78)

Tile velocity component which cannot be produced by the arm in this configuration is determined
as follows. Multiply equation (78) by the matrix Rot(Y2, #) defined in equation (74) and substitute
equations (71), (72), and (73) into the result to get

0 0si n   c3  cos 1Vy# = 0 0 -sign(S4)S3lwE

VZ_ -sign(S4)lwEsin#- lEseos# 0 -sign(S4)C31wEsin#

arm

[i°0
-Iws

0 -sign(S4)C3/wEcos#-

0 -sign(S4)S3lwE

0 -sign(S4)CalwE sin #

0arm (79)

The second column of the resulting matrix in equation (79) indicates that 02 can produce a velocity

in the Z# direction only. Transforming equation (78) into the (X3,Y3,Z3) coordinate system yields

Vy3 = R 2 0 0 -sign(S4)S31WE

Vz3 -IF_ 0 0

arm

! -sign( S4 )C31_E 0 -sign(S4)lwE-
lES 0 0

-sign(S4)S31WE 0 0

0arm (80)

The fourth column of the resulting matrix in equation (80) indicates that 04 can produce a velocity
in the X3 direction only.

Since 02 can produce a velocity in the Z# direction only and 04 can produce a velocity in the X3
direction only, the direction of the velocity which cannot be produced in the singularity I04] = 90 °
and ]02+ #l = 90° is the direction perpendicular to Zu and X3 (i.e., the direction of the cross product
of Z_ and X3). The angle between X_ and Z_ x X3 is called u and is defined as

-83
cos u = ___ (81)

_/S_ + C_ cos2 u

6"3 cos #
sin v = (82)

v/S32 + C 2 cos 2 ,

(The expressions for sin u and cos u are derived by expressing the cross product of Zu and X3 in

(Xu,Y_,,Zu) coordinates, using the dot product of Xu and Zu x X3 to define cos u, and using the cross
product of Xu and Zp x X3 to define sin u.) Transforming equation (79) into (Xv,Yv,Zv) coordinates
then yields

18
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Vyv = Rot(Zu, v) Vyu

Vz_ Yz,

[cos sin [i0-sinu cosy 0

0 0 -1WS

0 -sign(S4)C3lwEcos#"

0 -sign(S4)S31wE

0 -sign(S4)C31wE sin #

arm

0 0 0 -sign(S4)lwE(C3cos#cosv + S3sinv)]0 0 0 sign(S4)lwE(C3cospsinv - S3cosv) [
0 -Iws 0 -sign(S4)C31wE sin p J

0arIll (83)

Substituting equations (81) and (82) into equation (83) yields

Vyv = 0 0 sign(S4)IwEffS2+C2cos2p Oarm

VZv -Iws 0 -sign(S4)C31wE sin/z

(84)

The row of zeros in the matrix in equation (84) means that it is not possible to produce the

commanded velocity VXu. Therefore, there are not enough independent arm joints to apply Dubey's

method and special solution 4 is used.

Overview of Proposed Solution

When the arm enters the singularity region defined by equation (40) the commanded velocity

VXv is ignored. The elbow yaw rate 04 is used to produce Vyv, and the shoulder yaw rate 02 is used

to produce VZu. The pitch joint angle rates 01 and 03 are set equal to zero.

Computation of the Arm Joint Angle Rates

Figure 9 shows the geometry that is involved in forming special solution 4. Equations are based

on this geometry even when 102 + Pl and 1041 are slightly away from 90 °. For this solution,

b 1 =03 =0 (85)

Therefore, from equation (84),

04 = VYv (86)

sign(S4)lwE _/S 2 + C 2 cos 2 #

and

02 = VZu + sign(S4)C31wE04 sin# (87)
-Iw8

Transition Back to Optimized Solution

The operator can move the arm out of the singularity region if the commanded velocity has
a component in the Vzv direction (i.e., 102 + tt I moves away from 90°), or in the Vyv direction

(i.e., 104] moves away from 90°). Once outside the singularity region, both special solution 4 and

the optimized solution for the entire commanded velocity are calculated. If the sign.of 02 from

the optimized solution matches the sign of 02 from special solution 4 and the sign of 04 from the

optimized solution matches the sign of 04 from special solution 4, control switches back to the

optimized method and calculation of the special solution is stopped. If the signs of the rates do
not match, control using special solution 4 is continued. This transition back to the optimization

method is used to prevent possible oscillations in the motion of the arm.
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RESULTS AND DISCUSSION

A real-time computer simulation was used to evaluate the optimized and special so!ution resolved

rate equations developed in this paper (see appendix F). The current version of the simulation runs

on a DEC VAX 11/750 computer and (optionally) interfaces to a GTI POLY 2000 graphics system
which animates the motions of a 3-D model of the LTM. An operator Used a six-axis joystick to

issue velocity commands and watched the motions of the LTM model to assess the equations. For

the motions simulated, the robot hand moved as commanded and the special solution equations

appeared reasonable.
Time histories of selected simulations of the LTM are presented here to add credence to the

resolved rate equations and to examine use of the special solutions for the joint angle rates. The

data in this paper were taken at a simulation time step of 1/16 sec.

i

=

Using Dubey's Method With Performance Criterion

The joint angle rate solution calculated with Dubey's method is a trade-off between trying to

minimize the sum of the squares of the joint angle rates and trying to configure the arm to optimize

a performance criterion of joint angles. The trade-off depends on a scalar weighting factor k. As

Ikl -_ 0, preference is given to minimizing the rates.
The effect of different values of k is shown in figures 10, 11, and 12 for an example performance

criterion (appendix C). In figure 10, k = 0; in figure 11, k = -1; and in figure 12, k = -2.

(Negative values of k mean that the tendency is to minimize the performance criterion.) Minimizing
the performance criterion tends to keep 02, 04, and 06 close to 0°, or away from 90 ° (away from

singularities). The initial configuration of the arm and commanded velocity of the hand for figures 10

to 12 are listed in table III(a). The commanded velocity is exactly produced by the movement of the

arm in each figure. However, as can be seen by comparing corresponding figures, the time histories

of the joint angles and joint angle rates are quite different.

In figure 10, the performance criterion is ignored (k = 0) in the computation of a least-squares
solution for the joint angle rates. In figures 10(a) and (b), the joint angles 02, 04, and 06 move away

from 0 °. The index m is 1 throughout the simulation run. The results in figure 10 were verified by

a generalized matrix inverse (via singular-value decomposition).

Notice in figures 11 and 12, as k takes on the values -1 and -2, the tendency of 02, 04, and 06 to

move away from 0° becomes more pronounced in comparison with figure 10. The index m switches
from 1 to 2 and back to 1 in these figures as 04 moves through 0° (logic in fig. 4).

As more precedence is given to minimizing the performance criterion of joint angles, the norm of
increases. This is indicated in figure 13, which shows the effect of k on the time history of l[0Jl for

k = 0 (fig. 10), k = -1 (fig. 11), and k = -2 (fig. 12). It should be noted that, in general, the curve
for k = 0 may not remain below the curves for other values of k, because as the joint angles change,

different trajectories are being compared. However, if k = 0 is used anywhere on a curve generated

for a nonzero value of k, a lower value of JI0][ will be computed in this vicinity.

Inherent Error in Special Solutions

Four special solutions for arm joint angle rates have been developed as alternatives to using a

generalized inverse solution for joint angle rates when the configuration of the arm is such that
Dubey's method does not apply. The reason for alternate solutions is that the generalized inverse
solution can cause undesirable oscillations of the arm in these configurations and is computationally

intensive. Oscillations are avoided by the special solutions, at the expense of allowing an error
between the commanded velocity of the hand and that which is actually produced. It is assumed

that a human operator can compensate for this error as time progresses; however, if continuous

positional accuracy is an important issue, the special solutions are not applicable. Some examples of

the error produced by the special solutions are presented.

Errors Due to Special Solution 1

Joint angles, joint angle rates, and the actual velocity of the hand for full extension of the arm

using a generalized-inverse solution and using special solution 1 are shown in figures 14 and 15,

respectively. The initial configuration of the arm and the commanded velocity of the hand for

F
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figures14and15arelistedin tableIII(b). Oscillationswhichoccurwhenusingageneralizedinverse
solutionat full extensionareevidentin figure14.Theseoscillationsaredueto theintegrationtime
step(1/16sec)usedin numericallyintegratingthejoint anglerates.A reductionin theoscillations
will resultbydecreasingtheintegrationtimestep.However,useof thegeneralizedinverseveryclose
to armsingularitiescanresultin sluggisharmresponseandcompromisedhandvelocities.

Specialsolution1 eliminatesoscillations,and, as shownin figure 15(e),there is very little
extraneousmotion of the hand. Of the four specialsolutionsdevelopedin this paper,special
solution1producesthe mostacceptableresponseof thearm. Thereadershouldalsonotethat the
motionof theelbowuponretractionof thearm(whichmaybeimportantin avoidingobstacles,for
example)canbeanticipatedbytheoperatorif specialsolution1isused.If furtherexperimentation
revealsthat it is betterto usetheelbowpitchjoint 03 (or a combination of the elbow joints 03 and

04) instead of the elbow yaw joint 04 to retract the arm, special solution 1 can be modified to perform
the desired elbow motion. When the generalized inverse is used to retract the arm, the motion of

the elbow cannot be anticipated by the operator in most cases.

Errors Due to Special Solutions 2, 3, and 4

Commanding an outward thrust of the hand when the arm is fully extended makes no sense,

and thus the consequences of ignoring commanded outward thrust when the arm is fully extended

(special solution 1) are slight. On the other hand, ignoring a component of the commanded velocity
in other singular regions (special solutions 2, 3, and 4) can produce unfavorable errors in the motion

of the arm. Fortunately, using Dubey's method tends to keep the arm out of these singular regions

if the arm starts movement far enough away from the regions. This action happens because a least-

squares solution for the joint angle rates attempts to keep the arm away from configurations that

induce large joint angle rates.

Special solutions 2, 3, and 4 provide the operator with a means of moving the LTM in and out

of singularity regions in a controlled manner and without oscillations. The solutions are computed

quickly and are applicable for real-time control. However, since they can result in erroneous motion

of the arm, the angles 52, 53, and 54--which define the spans of the singularity regions--should be

made as small as practical to prevent the control program from switching to the special solutions
most of the time. Some examples which characterize the nature of the errors are presented in

figures 16 and 17. The initial configuration of the arm and the commanded velocity of the hand for

figures 16 and 17 are listed in table III(c).

Figure 16 shows time histories of joint angles, joint angle rates, and actual velocity of the hand for

motion of the LTM near the singularity associated with special solution 2 (1021 = 90 ° and 04 = 0°),

but calculated with a generalized inverse solution. Oscillations occur as the arm passes close to the

singularity, although components of the actual velocity are still in the correct proportion (the actual

velocity of the hand is a scaled version of the commanded velocity due to joint angle rate scaling).

Figure 17 corresponds to figure 16, except that special solution 2 is used. The arm does not oscillate,
but there is significant error in the actual velocity of the hand when the control program switches

to special solution 2, as shown in figure 17(e). (Recall that the component VX3 of the commanded

velocity is ignored for special solution 2. This component is approximately equal to the commanded

velocity VZ (75 mm/sec) for this simulation.) Once the arm enters the singularity region associated

with special solution 2, it remains in the region because the component of the commanded velocity
which can move it out of the region--Vx in this case--is zero. An operator can compensate for such

errors by simply moving the arm far enough out of the singularity region that control switches back
to Dubey's method, and then commanding a different approach path to the point of interest.

Figures 18, 19, and 20 are included here to show how subtle changes in the configuration of the

arm in singularity regions can vary the response of the hand. In all three figures, the arm is in

the singularity associated with special solution 4 (102 + #l = 90° and [041 = 90o) • Only the initial

position of the elbow pitch joint (0a) is different in each figure. (For special solution 4, 03 does not

translate the hand (at the wrist) so that, regardless of the value of 03, the hand remains at the same
point in the workspace.) The commanded motion of the hand is also identical for the three figures

and is expressed in base coordinates. The initial configuration of the arm and commanded velocity

of the hand for figures 18, 19, and 20 are listed in table III(d).
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In figure18, thecommandedvelocitydoesnot havea componentin the directionignoredby
specialsolution4. Therefore,thereisvery little error in theactualvelocityof thehand,asshown
in figure18(e), :

Figure 19 is a time history of the response of the arm with conditions identical to those of figure 18,

except that the elbow pitch joint is at 45 ° initially. For this simulation, a portion of the commanded

velocity is in the direction which is ignored by special solution 4; thus, there is significant error in

the actual velocity of the hand (fig. 19(e)) until control switches back to Dubey's method at 0.45 sec.

Figure 20 is a time history of the response of the arm with conditions identical to those of

figures 18 and 19, except that the elbow pitch joint is at 85 ° initially. In this case, practically all the

commanded velocity is in the direction which is ignored by special solution 4; thus, the hand moves

very little. Therefore, the operator must command the arm to move in another direction to get it

out of the singularity region before the desired motion can be accomplished.
It is emphasized that the special solutions developed in this paper are by no means the only

possible approaches for coping with singular configurations of the arm in which Dubey's method

does not apply. They are presented here to give a physical interpretation to the problems which

occur when the arm reaches the singular configurations and are intended to represent a starting

point for controlling the LTM with the assurance that real-time performance can be maintained and

that damage to the hardware due to high-frequency oscillations of the arm will not occur.

CONCLUDING REMARKS

A set of optimized resolved rate equations have been developed for real-time control of the

seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM). The equations, which are based
on a recent innovative optimization scheme developed at the Oak Ridge National Laboratory,

represent a trade-off between two solutions: (1) a least-squares solution for the joint angle rates

to produce a commanded velocity of the hand and (2) a solution to minimize joint angle rates while

compromisingly configuring the manipulator to satisfy a performance criterion of the joint angles.

A problem with using the scheme to formulate control equations is that it requires selecting a
column of the Jacobian matrix so that the remaining six columns (or equivalently, six joint angle

rates) are independent. A method for determining quickly which column to select is presented in this

paper. But, such a selection is not always possible in which case the scheme does not apply and
alternate control equations were devised.

A three-dimensional graphics model of the LTM was driven in response to velocity commands

from a six-axis hand controller to assess the equations developed in this paper. For the motions

simulated, the robot hand moves as commanded and the singularity fixes appear reasonable.

NASA Langley Research Center

Hampton, VA 23665-5225
August 15, 1989
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APPENDIX A

MATRICES AND VECTORS ASSOCIATED WITH THE LTM

Homogeneous Transformation Matrices

Homogeneous transformation matrices are commonplace in the description of robotic manipula-

tors. In general, the homogeneous transformation matrix from coordinate system i to coordinate

system i- 1 is (ref. 7)

"cos 0[ -cos ai sin 0_ sin ai sin 0_ ai cos 0_ ]

sin0[ cos a/cos 0[ -sin ai cos 0_ aisinO_]

0 sinai :i ]0 0 0

(A1)

which is expressed in terms of Denavit-Hartenberg parameters ai, di, c_i, and 0[ (in ref. 7, 0i replaces
0,'.). The three parameters ai, di, and ai are constants, and 0,'. is the variable joint angle. The

rotational part of the transformation matrix A{ -1 is the upper-left 3 x 3 submatrix denoted as

[cos0_ -cosaisinO_ sin_isin0_ ]=[sio0: cosoi 0: -s n cos0:
sin a i cos ct i

(A2)

The position vector associated with A__ 1 is

_i cos o_}
i-1 a i sin O[Pi =

di

(A3)

which is expressed in axis system i - 1 and is directed from axis system i - 1 to axis system i.

The robot's motion is usually expressed in terms of joint angles 0i that are initially referenced to

some initial position. But, the matrix A__ 1 in equation (A1) is expressed in terms of the Denavit-

Hartenberg joint angle 0_. To switch joint angle descriptions, make the substitution

O_ = Oi + 13i (A4)

where fli is a constant offset bias to account for different starting positions.

Homogeneous Transformation Matrices for the LTM

The home position and axis systems for the LTM are shown in figure 2. Denavit-Hartenberg

parameters for the LTM are shown in table I. For this paper, 0_ = 0i, except for the matrix A 6 in5,
which 0_ = 06 + 90 ° (i.e., /36 = 90 °, all others are zero). Note that the parameter d7, which locates

the hand axis system from the wrist, is considered zero in this paper (lHw = 0).

Using these parameters and replacing the angles 0' with the angles 0 except for 0_, which is

replaced with 06 + 90 °, the transformation matrices A__ 1 become

Sl!]A! = S1 CI
O - 0

0 0

(A5)
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[ Ci_ 0 82
A21 = 0 -C2

1 0
0 0

IEsC2 1

lESS2
0
1

(A6)

(A7)!1A_= c_
- 0
0 0

A 4 $4 0 - 4 l S 4
3 1 0

0 0

(A8)

i]A 5 = C5- 0
0 0

(A9)

A_= o &1 0
0 0

(A10)

 :0i]A76 = $7 00 1
0 0 0

(All)

where Ci means cos Oi and S i means sin Oi.

Calculation of Hand-to-Base Transformation

Commanded translational velocities in the hand axis system are transformed down to the base

axis system of the robot arm when controlling the LTM. Consequently, the transformation matrix
from the hand axis system to the base axis system must be calculated each time the joint rates
are updated. The hand-to-base transformation (the transformation from axis system seven to axis
system zero in fig. 2) is the product of the seven homogeneous matrices. That is,

A_ A1.2a3a4_5a6a7: _0_i_2_3_4_5_6 (A12)

This same transformation can be calculated in fewer operations as follows.
i isThe rotational part of the matrix Aj

R j= I I (A13)

where Xil Yi, and Zi are the axes of coordinate system i expressed in coordinate system j. For
example,

where the caret (") means that the vector is expressed in the base axis system. Therefore, from

==

24



equation(A5),theZ1 axis expressed in base coordinates is

-$1 }
21 = C1

0
(A15)

Similarly,
r -1

= R°R1 = I I (A16)

k. j

Multiplying the rotational parts of the matrices A 1 and A 2 given by equations (A5) and (A6) and
substituting the result into equation (A16) yields the following expressions for the X2 and Z2 axes
expressed in base coordinates:

C1C2 }
22 = $1 C2

-82

22 = 8]$2
C2

The X3 axis expressed in base coordinates is

(A17)

(A18)

X3 w1D21_3 { 1 }
= *_._,q.t*. 2 0

0

I2 i ,= 2 I I

= C322 + $3Y2 (A19)

However, Y2 projects totally to ZI:

it!0,l/0//!/R12Y2 = II 0 II -0C2 01 = = Z 1

I 1 ]
t

(A20)

Therefore, expressed in any common axis system, Y2 and Z1 are the same. Hence, Y2 = 21, and
equation (A19) can be written as

-X3 = C3_'2 + _3Z1 (A21)

where X2 is given by equation (A17) and Z1 is given by equation (A15). The following coordinate

system axes can be calculated in a manner similar to the calculation of X3:

(A22)

(A23)
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Z4 = $4X3 + C4Z2 (A24)

25 = c524 + s 23 (AZS)

25 --_ -SsX 4 "['- CsZ 3 (A26)

26 = -$625 - C6Z4 (A27)

26 = C6X5 - S6Z4 (A28)

27 = C7X6 + $7Z5 (A29)

77 = - s7 + c7 (m0)

27=26 (A31)

The rotational part of the hand-to-base transformation is formed as

(A32)

where 27, 97, and 27 are calculated by equations (A15), (A17), (A18), and (A21) to (A31).
As seen in figure 2, the X2 axis is always aligned with the shoulder-to-elbow link of the LTM.

Therefore, the position vector from the origin of the base axis system to the origin of the (X2,Y2,Z2)
axis system expressed in base coordinates is

150 = l/_22 (A33)

where IE8 is length of the elbow-to-shoulder link listed in table I, and 22 is calculated from
equation (A17). Also, the X4 axis is always aligned with the wrist-to-elbow link of the LTM.
Therefore, the position vector from the origin of the (X2,Y2,Z2) axis system to the origin of the
(X4,Y4,Z4) axis system expressed in base coordinates is

02 = IwEX4 (A34)

where lH_E is length of the wrist-to-elbow link listed in table I, and 24 is calculated from

equation (A23). The position vector from the base axis system to the (X4,Y4,Z4) axis system
expressed in base coordinates is

Since in this paper the hand-to-wrist distance (IHw in fig. 2) is zero,

(A36)

So, from equations (A32) and (A36), the hand-to-base transformation is

11

(A37)

Equations (A32) and (A33) to (A36) may be used to compute the hand-to-base transformation

matrix more efficiently than equation (A12). Several of the vectors calculated in this appendix are
also needed when computing the Jacobian matrix for the LTM as discussed in appendix D.

m

I

=

!

i

!

!
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APPENDIX B

EXTENDED APPLICATION OF EQUATIONS

The resolved rate equations in the main text take the robot hand velocity (at wrist) as an input
and calculate joint angle rates to produce this commanded velocity. This appendix explains how to
use the equations in a more general setting, namely in moving an object relative to some arbitrarily
specified axis system. The equations in this appendix are based on the general control structure for
one or more robot arms described in reference 8.

Reference Frames

A robot hand and an object (held by the hand) are considered as one composite body; that is,
hand and object move as a single body. The object may be the hand itself. An operator specifies the
location and orientation of an axis system on the composite body, called the moving reference frame
(turf) in reference 8. The relationship between the hand axis system and the turf remains fixed as
the robot hand moves.

An operator also specifies an axis system for his inputs, called the control reference frame (crf)
in reference 8. Operator inputs represent the commanded velocity of the composite body (turf),
expressed in the crf. The commanded velocity is used to compute the velocity that the hand should
have so that the object moves as desired.

The object axis system (turf) plays no role other than to influence the commanded velocity. For
example, in teleoperation, an operator watches the movement of an object as he makes velocity
inputs to control its motion. Or, the presently known position of the object axis system may be
known and a new position is desired, in which case the commanded velocity is based on a positional
error.

Computing Hand Velocity To Move Object

Velocity is commanded in the crf to move the object; but, once issued, this velocity represents the
velocity of the composite body (hand and object). For example, when the object rotates about a line
in the control reference frame, the composite body rotates about the line with the same rotational
velocity as the object. Thus, the hand must also rotate with this commanded velocity. Hence, the
velocity that is used to command movement of the object can be used directly to tell the hand how
to move. Toward this end, form the matrix

Rcrf "`hand

hand [ _'crf

I
0 0 0 I

__ A crf [Ahand]-I crf
hand = IrLbase J Able (B1)

where the matrix Ahand is a known function of the arm configuration (joint angles), and the matrix"_base
cry

Aba_e is specified by the operator.
_inee the hand and object are a composite body,

_hand : R_raJ'ndCOcrf (B2)

where Wcr$ is the commanded rotational velocity of the object. Then, the translational velocity of
the hand is

l:)crf xr _hand (B3)Vhand : XthandVcrf -- _hand × l_crf

where Vcrf is the commanded translational velocity of the object, and .,handVcrf is the moment arm from
the hand to the crf. The translational and rotational hand velocities, Vhand and _hand, respectively,
computed in equations (B2) and (B3) are used in resolved rate equations to cause the commanded
movement of the object with respect to the control reference frame.
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APPENDIX C

EXAMPLE PERFORMANCE CRITERION (H(0))

Suppose the intent is to avoid arm and wrist singularities of tile LTM by keeping [02[, 1041, and

[06] away from 90 ° whenever possiblel For tla{s PUrpose, define tile performance criterion H(0) as

1 (sin 2 02 + sin 2 04 + sin 2 06) (C1)H(O) =

The gradient of tile performance criterion is

/ H1 01//0
OH/OO2 sin 02 cos 02

OH/O03 0

VHarm / = OHIO04 = sill 04 COS04

OH/O06 sin 0 6 cos 0 6

OH/OOz 0

(C2)

To keep 1021,1041,and 1061away from 90 °, H(0) is minimized; i.e., the rate-of-convergence constant
k should be negative. Assume k = -1. In applying the performance criterion, equation (C2) is

used in computing kVH in equation (3), kJ1VHarm in equation (15), kVHarm and kJ3VHwrist in

equation (16), and k_THarm in equation (33).
The reader should note that when joint angle rates are optimized (with eq. (3) or (33)), the arm

may continue to move even when the commanded velocities of the hand are zero. Motion will occur

if a configuration of the arm can be reached which minimizes H(0) without moving the hand. This

action may not be desirable. To ensure that the arm does not move when the commanded velocity
of the hand is zero, the rate-of-convergence constant is assigned as follows:

k={0 (IVl < Sv and lw[ < 5_) }k (Otherwise)
(C3)

where 5 V and 5w are small positive deadbands. The magnitude of k may also be changed to speed or

slow the rate of convergence. However, large values of k can cause oscillations as the robot arm nears

the joint configuration which minimizes the performance criterion (ref. 9). The maximum value of
k which can be used depends on the integration time step size.
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APPENDIX D

COMPUTING J1, J3, AND SOLUTIONS OF WRIST EQUATIONS

Joint angle rates of a robot arm cause the hand to move with velocity k, described by the familiar
kinematic equation

= J# (D1)

If a robot has a three-axis, spherical wrist, and the hand axis system is located at the wrist,
equation (D1) can be partitioned as

(v/ 0](0arm = "]2 J-3 _Zi: (D2)

where V is the commanded translational velocity of the hand, w is the commanded rotational velocity
of the hand, 0arm is a vector of the arm joint angle rates (which translate the hand), and 0wrist is a
vector of the wrist joint angle rates.

For the LTM, J1 and J2 are 3 by 4 matrices., and J.3 is a 3.by 3 matrix. The joint angle rate
vector 0arm is a vector of the joint angle rates 01, 02,./93, and 04; and the joint angle rate vector
0wrist is a vector of the joint angle rates 05, 06, and 07. A method for real-time computation of

an optimized 0 is described in the main text. For singular configurations of the arm or wrist in
which the optimization method does not apply, special solutions for 0arm and 0wrist are presented.
Explicit computation of the matrices J1 and J3 (which is necessary when using the optimization
method) is discussed in this appendix. A general method for solving wrist equations (14), (19), and
(34) (when optimizing joint angle rates) and wrist equation (36) (when special solutions are used)
is also presented.

Computation of J1 in Base Axis System

The translational velocity of the robot hand is the vector sum of tile translational-velocity
contributions from each of the arm joint angle rates. Consequently, the Jacobian submatrix Jl
in equation (D2) has the form:

t I I ]
Jl= go ×150 [ Zl ×151 1 Z2 ×152 [ Z3 ×153 (D3)

where the caret (A) signifies that the vector is expressed in the base axis system. The position vector

159 extends from the origin of axis system i to the origin of axis system 7 (the hand axis system).

Physically, _7i, whose elements are the first three entries in the third column of the homogeneous

transformation matrix A_, is a unit vector directed along the rotational axis of joint i + 1.

Referring to figure 1, the position vectors 15o and 151 are equal to the position vector from the
base axis system to the (X4,Y4,Z4) axis system:

150: 15_ = 150 (D4)

and the position vectors 15_and 153 are equal to the position vector from the (X2,Y2,Z2) axis system
to the (X4,Y4,Z4) axis system:

15_ = 153 = 152 (D5)

Therefore, the Jacobian submatrix J1 may be expressed as

I I I ]
J1 = Z0×150 1 Zl ×1540 1 Z2×1542 1 Z3×1542 (D6)
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The position vectors 150 and 042 are assumed already known from equations (A35) and (A34),

respectively, in appendix A. Furthermore, the vector Z0 is the first three elements of the third column

of the identity matrix A ° (base axis system transformed to itself), and the remaining vectors Zi_ :

22, and Z3 in equation (D6) are assumed already known from equations (A15), A18), and (A22),

respectively.
The first column of J1 is

J111,11
Jl[2,11
J113,11

} {0}=20×00= o
1

-0%]}×00= p0[xl
0

(DT)

IF

|
|

i

2-

The second column of J1 is

Jl[1, 2] }
J 1 [2, 2]

J 1 [3, 2]
{_sx}{ cloo,z,}= 21× 0°= c, ×0 ° = &O_[Z]

0 -Cllb°[xl- S10°[y]

(D8)

The third column of J1 is

J1[1,31
J112, 31

J113, 31
} { 22[_1154_[z1- 22[z]1542[y]}

= 22 ×15_= 22[z1024[x]- 2_[_]0_[z]

22[_1042[y]- 22[y]042[_1

(D9)

Tile fourth column of J1 is

{ ltX4j/ {  3,z,}Jl[2, 4] = 23 x 02 -- Z3[z ] p2[x] -- Z3[x ] 152[z]

J 113, 41 23 [x] 152[y] -- 23 [y] 152[x]

(D10)

Equations (D7) to (D10) are used to calculate the Jacobian submatrix J1 when solving equations (13)

and (18) in the main text.

Computation of J3 in Hand Axis System

The rotational velocity of the hand contributed by the wrist is the vector sum of the three wrist

joint velocities. Therefore, in equation (D2), the columns of J3 are the axes of rotation of the wrist

joints:

[ 1Ja = Z4 I Z5 I Z6 (Dll)

When expressed in the hand axis system, the rotational axes of the wrist are

{0}Z4 = _,,7L,_6-,-5 0
1

(D12)

{0}Z5 = R_It_ 0
I

(D13)

{0}Z6 = R67 0
1

(D14)

3O --



(See appendix A for the required rotational transformation matrices.) Expanding equations (D12)
to (D14) and substituting the results into equation (Dll) yield

--C7C6 S7 !1
J3 = $7C6 C7

-56 0

Equation (DI5) isused to compute kJ3_THwrist in equation (16) in the main text.

Solving Wrist Equations (14), (19), (34), and (36)

Wrist equations (14), (19), (34), and (36) are all of the form

(D15)

"Y - J2Oarm - J3Owrist (D16)

where -/and Oarm are known and a solution is sought for Owrist. In equation (14), _' corresponds

to o_ - kJ3_THwrist, Oarm corresponds to _p,arm + k_THarm, and Owris t corresponds to (_p,wrist.

In equation (19), _/ is 0, Oarm corresponds to 0h,arm, and (_wrist corresponds to _bh,wris t. In

equation (34), -/ corresponds to oa, Oar m corresponds to 0opt,arm, and Owris t corresponds to 0wrist.

In equation (36), _' corresponds to ua, _)arm corresponds to 0arm, and Owrist corresponds to 0wrist.

In equations (14) and (19), J3 is invertible, and in equations (34) and (36), J3 is not invertible. A

general method for computing a solution of equation (D16) (and, therefore, solutions of eqs. (14),
(19), (34), and (36)), regardless of the invertibility of J3, is presented.

J2Oarm in Hand Axis System

In equation (D2), the contribution of the arm joint angle rates to the rotational velocity of the

hand is J20arm . This contribution is the vector sum of the rotational velocities of the arm joints.
Thus,

J2barm - n0z0

P l

i R_Z2 i R3Z_ 0armR_Z1 I J

{o}{o}{o}{o}0 +R 1 0 +R 2 0 +R 3 0
= R° 01 02 03 04

0 0 0 0

Equation (D17) simply transforms the rotational rates of the arm joints to the hand axis system.

The term J2Oarm in equation (D16) (analogous to J20arm) is therefore expressed:

{ [ {0}){0}j{0}}J2Oarm 5 5 R32 R 1 R 0 (_1 62 (_3 (_4
= R7R 3 + 0 + 0 + 0 (D18)

Equation (D18) is expanded by using two temporary vectors, _'3 and _/5. First, let

-C3S2(_,+ Sa(_2 }
"Y3 = -C2(_I - 03 (D19)

6'3_¢26, + C302 + 64
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which takes rotational rates _1, (_2, (_3, and E)4 to axis system 3. Next, let

c5c473[x] + css473[y] + ss'y3[z] I

--S4"Y3[X ] + C4"Y3[y]

-$5c473[_] - s_s473[y] + c5_3[z]

(D20)

which takes _'3 to axis system 5. Finally, compute J2Oarm as

-cTs675[x] + c7c_75[y] + s775[z] ]

$7s_75[x] - $7c675[y] + c77_[z] (D21)

which takes "75 to the hand axis system.

Components of Owrist

Once J2Oar,n is calculated, the Owrist is computed by inverting J3:

{gwrist = J31F (D22)

where
r ---- "7 -- J2Oarm

The expression for the submatrix J3 shown in equation (D15) is easily inverted as

(D23)

C7 -$7 0 ]

]-$7C 6 -C7C 6 0

C7S6 -$7S6 -C6

(D24)

Therefore, equation (D22) can be written as the three simple scalar equations:

• -C7Fx + STFy
6)5 = (D25)

C6

_6 = S7Fz + C7Fy (D26)

E)7 = Fz + $605 (D27)

Notice that equation (D25) has a singularity at 106[ = 90°, which implies the same for matrix J3.

To prevent a division by zero in equation (D25), the assignment

C6 -- K6 sign(C6) (D28)

is made whenever
IC61 < K6 (D29)

where K6 is an arbitrary small number (assumed 10-5 in this paper (ref. 10)). Rate scaling must
also be employed to avoid large commanded wrist joint angle rates when using this approach.

m

32



APPENDIX E

ANALYTIC EXPRESSION FOR J1 IN (X2,Y2,Z2) AXIS SYSTEM

From appendix D, the columns of the Jacobian submatrix J1 for the LTM are

[ lJ1 = Zo×pO[ZI×pOIZ2×p2IZ3×p24 (El)

As a convenience in the development of special solutions for singular arm configurations, J_ is
expressed in the (X2,Y2,Z2) axis system--which means the vectors Zo, Z1, Z2, Z3, p40, and P4 in
equation (El) are expressed in the (X2,Y2,Z2) axis system. These vectors are (see appendix A for

the necessary rotational transformation matrices)

lO{0}Z0 = R2R 1 0 =

1 C2
(E2)

{o}{o}Z1 = R_ 0 = 1
1 0

(E3)

{0}Z2= 0
1

(E4)

{s3}z3= R3 = c3
0

(E5)

pO = IEsX2 = 0
0

(E6)

{1}{c4c3l }p24 = lwEX4 = lwER23R 4 0 = C4S31WE

0 -S41WE
(E7)

p° p° +p42= = { 1ES + C4C3IWE }C4S31wE_S41WE
(ES)

Taking the appropriate cross products in equation (El) gives the expression for J1 in the (X2,Y2,Z2)
axis system:

J1 =
-C4S3C21wE -S41WE -C4S31WE -S4C31wE"

C21ES + (C4C3C2 - S4S2)IwE 0 C4C31wE -S4S31WE

-C4S3S21WE -lEs -- C4C3lwE 0 -C41wE

(E9)
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APPENDIX F

COMPUTER PROGRAM FOR RESOLVED RATE CONTROL OF THE LTM

A computer program which controls the LTM by using the optimization and special-solution

resolved rate equations developed in the main text is described in a stepwise manner in this section.

The commanded translational and rotational velocities of the hand are read as inputs (from a

joystick, for example), and the joint angle rates necessary to produce the commanded velocities

are calculated. These joint angle rates are then integrated and sent as joint angle commands to

the servo controllers of the LTM. The process of reading operator inputs, calculating joint angle
rates, integrating the rates, and sending the updated (desired) joint angles to the servo controllers

is repeated in a continuous loop. The time between successive reads of the operator inputs (i.e., the

time to complete one iteration of the loop) is denoted At.

Since joint angles are integrated over the time interval At, the angles 62, 63, 64, and 66, which

determine the span of the singularity regions of special solutions, cannot have arbitrarily small values.
Minimum values for these deltas are

6min[i] ----bmax[i] At (F1)

wtmre 0max[i] is the physical maximum (absolute value) joint angle rate which can be produced by

joint i, and 6min[i ] is the minimum value for 5 i. In this paper, 0max[i] = 30 deg/sec for i = 1 to 7,

and At = 1/16 sec. The angles 62, 63, 64, and 66 are assumed to be 2.0°--slightly larger than their

minimum values (30/16 or 1.875°).

Given that the LTM is in a known configuration 0(t) at time t, the steps necessary to calculate

the next set of desired joint angles 0(t + At) at time t + At are

Step 1: Calculate the hand-to-base transformation A 7 and the Jacobian submatrix J1, expressed
in base coordinates, as outlined in appendixes A and D.

Step 2: Calculate V and ca, which are the translational and rotational velocities, respectively,

of the hand axis system, expressed in the hand axis system, as discussed in appendix B,

unless these are already known as operator commands in the hand axis system. Transform

V to base coordinates with A07 that was calculated in step 1.

Step 3: Use the logic outlined in figure 4 to determine which column of J1 (column m), if any, can

be eliminated to form an invertible J1 (the equality conditions in fig. 4 should be replaced

with the singularity regions defined in equations (37) to (40)). If an invertible J1 exists,

proceed to step 4. If a singularity region has been entered, set a special solution flag to
indicate that a special solution is being used. Then, calculate _arm using the appropriate

special solution, calculate 0wrist from equation (36) as discussed in appendix D, and go

to step 8.

Step 4: If a performance criterion of joint angles is to be satisfied, calculate the gradient of the

performance criterion times the weighting factor kVH (see appendix C for an example).
Also calculate kJ1VHarm and kJ3VHwris t with the J1 calculated in step 1 and the

expression for J3 (in hand coordinates) in equation (30).

Step 5: Assemble the particular and homogeneous solutions for the arm joint angle rates from

equations (15) and (21) with _bp,arm[m] = 0 and (_h,arm[m] = 1. Cramer's rule or any
J .:

other convenient method may be used to calculate _bp,arm and _bh,ar m-

Step 6: If Ja is near its singularity (eq. (32)), optimize the arm joint angle rates only and calculate

the wrist joint angle rates required to produce the commanded rotational velocity of the

hand (eqs. (33) and (34)). If J3 is not near its singularity, calculate the particular and

homogeneous solutions for the wrist joint angle rates from equations (14) and (19), as
discussed in appendix D, and calculate the optimized solution for the joint angle rates

using equation (3).
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Step 7:

Step 8:

Step 9:

Check the condition of the special solution flag. If the special solution flag is not set,

proceed to step 8. If the special solution flag is set, the arm has left one of the singularity
regions defined in equations (37), (38), (39), and (40). If special solution 2, 3, or 4 was

in use, calculate the arm joint angle rates for this special solution and then compare the

appropriate arm joint angle rates of the special solution with the corresponding arm joint

angle rates of the optimized solution calculated in step 6. If the signs of the corresponding

rates match, reset the special solution flag, discontinue calculation of the special solution,
and switch to the optimized solution. (Recall that for special solution 2, the sign of 02

of the special solution must match the sign of 02 of the optimized solution; for special

solution 3, the sign of 04 of the special solution must match the sign of 04 of the optimized

solution; and for sp.ecial solution 4, the signs of 02 and 04 of the special solution must

match the signs of 02 and 04 of tile optimized solution, respectively.) If the signs of the

corresponding joint angle rates do not match, calculate 0wrist from equation (36) and

continue using the special solution. If special solution 1 was in use, reset the special

solution flag, discontinue calculation of the special solution, and immediately switch to
the optimized solution.

Scale the calculated joint angle rate solution, if necessary, as follows. Using the vector of
physical maximum (absolute value) joint angle rates which can be produced by the joints

of the robot, Omax[i], calculate

_i = [0i[ -- 0max[i] (F2)

for i = 1 to 7. If all _i's are less than or equal to zero, the joint angle rates do not need

to be scaled. If one or more are greater than zero, find the largest posit!ve element of

denoted _j and scale the joint angle rates by using the corresponding 0j and 0max[J]
(ref. 10) as follows:

_-- 0max[J] 0 (F3)

Equation (F3) sets 0j to its physical maximum rate (with the proper sign), and propor-

tionally scales the other rates (recall that 0max[j] is assumed 30 deg/sec for k = 1 to 7 in

this paper).

Integrate the scaled joint angle rates, for example, by using Euler integration,

o(t + At) = o(t) At + o(t)

or Adams-Bashforth second-order predictor integration,

(F4)

O(t + At)= -_ (30(t)- 0(t- At)) + O(t) (F5)

Step 10: If all the joint angles O(t + At) are inside their corresponding physical joint angle limits,

command the servo controllers of the LTM to move to the calculated joint angle positions,

0(t + At), and repeat the loop starting at step 1 with the updated joint angles. If any

of the updated angles are outside their limits, do not move from the current position and

repeat the loop starting at step 1 with the previous joint angle command (0(t)).

The steps outlined in this section are not computationally intensive and calculate the optimized
solution (when possible) without formally computing the generalized inverse of the Jacobian matrix

(which is time consuming).
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Table I. Denavit-Hartenberg Parameters for the LTM

Joint i ai di hi, deg 0_

0

*lEs
0

tIwE
0
0

0

0
0
0

0
0
0

¢I/-/W

-90
90

-90

90
-90

90

0

01

02
O3
04

05
06 + 90°

07

*lE8 = Elbow-to-shoulder distance = 23 in. (5842 mm).

tIwE = Wrist-to-elbow distance = 20 in. (5080 ram).

tlHw = Hand-to-wrist distance = 9 in. (2286 mm).
(In the equations in the text, IHW is assumed to be 0.)

Table II. Singularities Associated With the Four Jl's Formed by Deleting Column m of J1

[[03[ = 180 ° and 104[ = 180 ° are not physically realizable]

Eliminated column Determinant of remaining 3 by 3

of J1, m submatrix of J1, det(,ll) Singularities

1 -IEsI2,EC4S4 I04[ = 0° or 90 ° or 180 °

2 -lEsI_vEC24 $3C2 102[ = 90 °

[03[ = 0° or 180 °

[041 = 90°

3 IESIwES4C3[IEsC 2 + lwE(C4C3C 2 - ,_.q482)]

4 IESIwEC4S3[IEsC2 + IwE(C4C3C2 -- $4,5'2)1

]02[ = 90° and ]04[ = 0° or 180 °

1031= 90°

1041= 0 ° or 180 °

-@sC2 = IwE(C4C3C - &S2)

1021= 90 ° and IO41= o° or 180 °

1031= 0° or 180 °

104[ = 90 °

--lEsC 2 = IwE(C4C3C 2 -- S4S2)
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Table III. Initial Arm Configuration and Commanded Velocities for Figures 10 to 12 and 14 to 20

Initial configuration Commanded velocity

(a)

(a) Figures 10, 11, and 12

81 = -45 ° 05 = -45 °
02 = -45 ° 06 = -10 °
03 = 45 ° 07 = 0°
84= 10 °

VX = 30 mm/sec
Vy= -30 mm/sec
VZ = 0 mm/sec

wX = 10 deg/see
wy = 15 deg/see
wz = -10 deg/sec

(b) Figures 14 and 15

81 = 10° 85 = 10° Vx = 0 ram/see wX = 0 deg/sec
02 = 10° 86 = 10° Vy = 0 mm/sec wy = 0 deg/sec
83 = -20 ° 07 = 0° Vz = 75 mm/see wZ = 0 deg/sec
84 = -20 °

(c) Figures 16 and t7

01 = -45 ° 05 = 0° VX = 0 mm/sec _x = 0 deg/sec
82 = 85 ° 06 = 0° Vy = -50 mm/sec Wy = 0 deg/sec
03 = -45 ° 07 = 0° VZ = 75 mm/sec wz = 0 deg/see
0 4 ----- 11.5 °

(d) Figures 18, 19, and 20

81 = 0 ° 85 = 0 ° l_X = 0 mm/sec d_X = 0 deg/sec
02 = 48.990 06 = 0 ° Vy = 0 mm/sec d:y = 0 deg/see

b03 = 0° 87 = 0° F'Z = -75 mm/sec &z = 0 deg/sec
04 = 90°

aVelocities in hand coordinates for parts (a), (b), and (c) and in base coordinates for part (d).

bo3 : 0 ° in figure 18; 83 = 45 ° in figure 19; 83 = 85 ° in figure 20.
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(a) Arm joint angles.
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Figure 10. Motion of arm using Dubey's method with no per-form-ance c----riterion, k-- O.
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Figure11.
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Motion of arm using Dubey's method and example performance criterion in appendix C with
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Figure12.
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