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Abstract

An analytic theory is presented for the width selection of Saffman-Taylor fingers in the

presence of thin film effect. In the limit of small capillary number Ca and small gap to

width ratio e , such that e << Ca << 1 , it is found that fingers with relative width

1 _ where the positive constant k dependsA < _ are possible such that = k c,-_r ,

on the branch of solution and equals 2.776 for the first branch. A fully nonlinear analysis

is necessary in this problem even to obtain the correct scaling law. It is also shown how in

principle, the selection rule for arbitrary Ca can be obtained.
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I. Introduction

In recent years, considerable theoretical work, both numerical (see McLean & Saffman

(1981), Romero (1982), Vanden-Broeck (i983), Kessler & Levine (1985), Wanveer (1986)

and Tanveer (1987a)), and analytical (see, for example, Combescot et al (1986), Shraiman

(!986), Hong & Langer (1986), Wanveer (1987b), Combescot et al (1988), Dorsey & Martin

(1987), Comescot & Dombre (1988), Hong & Langer (1988) and Tanveer (1989a)) has been

focussed on the singular effect of surface tension that breaks the continuum of Saffman-

Taylor (Saffman & Taylor (1958), Taylor & Saffman (1959)) exact solutions for steadily

propagating fingers and bubbles through a viscous fluid in a Hele-Shaw cell under the

assumption that the thin film of the more viscous fluid in the narrow gap direction plays

no significant role and that there is no variation of curvature in the transverse (narrow gap)

direction. The above simplifying assumptions leads to a set of relatively simple boundary

conditions on the flow variables at the interface and will be referred to as the McLean-

Saffman (MS) boundary conditions henceforth. In this simplification, the mathematical

equations for a finger contain a single non-dimensional parameter _ = _'_ , where

b is the gap width and 2a the cell width of the Hele-Shaw ceil; T , # and U are the

surface tension, viscosity of the displaced fluid and the finger velocity respectively. The

analytical and numerical evidence to date suggests that with the MS boundary conditions,

for G over some range, a discrete set of steady solutions are possible, each characterized

by a different velocity. In the limit of zero _, the finger or bubble velocity U ---, 2 V for

all branches of solution, where V is the velocity of displaced viscous fluid at infinity. For

the finger, with the MS boundary conditions, the continuity of fluid flow implies that its

relative width ._ = V/U , from which follows that as _ ---, 0 , _ ---, ½ . It is also

known that the selection of the finger (Combescot et al (1986), Shraiman (1986) and Hong

& Langer (1986)) or bubble velocity (see Combescot & Dombre (1988), Hong & Family

(1988) and Tanveer (1989a)) as well as its symmetry (see Wanveer (19875) and Combescot

& Dombre (1988)) about the channel centerline for small _ is caused by transcendentally
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small corrections in _ that arebeyondall orders of an asymptotic series in powers of G.

It has also been shown that such terms play a crucial role in the linear stability (see

Wanveer (1987c), Bensimon et al (1987), Tanveer (1989a)) as well (for the MS boundary

conditions). When _ = 0 , there is a continuum (see Tanveer (1987c) , Tanveer &

Saffman (1987)) of unstable modes for the finger or the bubble suggesting that the time

dependent problem with zero surface tension is ill-posed. However, if G is small but

non zero, there are in general no eigenvalues close to the eigenvalues of the zero _ lln-

ear stability operator. In the small _ limit, it has been shown that this is due to the

effect of transcendentally small terms in _ . Numerical (see Kessler & Levine (1986),

Bensimon (1986) and Tanveer & Saffman (1987)) and analytical (see Tanveer (1987c) and

Tanveer (1989a)) calculations show that only one branch of finger solutions is stable, while

others are unstable for arbitrary _ . However, numerical simulation by Degregoria &

Schwartz(1986) of the time dependent problem based on the MS boundary conditions

show instability at sufficiently small values of the surface tension parameter, despite the

linear stability of these solutions. It is now understood (Bensimon (1986) that the insta-

bility observed in the time dependent calculations is a manifestation of all the branches

1 Saffman-Taylor solution. Since all but one isof solution tending to the same ), =

unstable, the threshold amplitude of instability must tend to zero as surface tension tends

to zero. Bensimon (1986) further conjectures that the threshold amplitude of instability

tends to zero exponentially with surface tension and his numerical results tends to support

this though accurate verification of the claim does not appear possible by direct numerical

calculations. It has been suggested (Kessler & Levine, 1988) that the different branches of

solution differ by an exponentially small amount as G tends to zero and this would there-

fore explain the exponential dependence of threshold amplitude of instability. However,

we disagree with this explanation since )_ and the shapes on different solution branches

differs by terms of order _2/3 for small G , which is not consistent with exponential

dependence of the threshold level of instability, if indeed it is true as Bensimon suggests.



Aside from the point about the threshold level of instabihty raised in the last para-

graph, the behavior of solutions to mathematical equations based on the McLean-Saffman

boundary conditions appear to be quite well understood. However, experiments by Saffman

& Taylor (1958), Tabeling et al (1987) and Kopf-Sill & Homsy (1987) with the finger show

quantitative discrepancies with the theoretical finger width predictions of the MS theory.

The bubble experiments (Maxworthy (1986), Kopf-Sill & Homsy (1988)) also show signifi-

cant disagreements. Detailed experiments with the finger by Tabeling et al (1987) suggest

that there isn't a single control parameter _ as would be the case if the MS theory were

accurate. Experiments of Tabehng et al (1987) also show that to a significant extent, the

b _b r
gap to width ratio e = _ and capillary number Ca = _ are two independent control

parameters. Equivalently, one can think of _ ( = _ ) and Ca as two independent

parameters. This suggests that the thin film effects play a significant role in the fingering

problem that have to be accounted for to explain discrepancies between the MS theory

and experiment for the the finger width prediction. There is also a significant discrepancy

on the onset of instability for small _ . Experiment (Tabeling et al, 1987) shows that the

finger is unstable for small _. However, there does not appear to be a sharp critical value

of _ below which the finger is unstable; the instability point appearing to depend on the

noise level in the experiment. This suggests perhaps a nonlinear instability mechanism

(at least under some experimental conditions) as suggested by Bensimon (1986) for the

MS boundary conditions. However, the threshold noise level that destabilizes the finger

depends both on _ and Ca suggesting that the Bensimon mechanism for non-linear

stability needs significant modifications if it is to be valid for boundary conditions that

include thin film effects.

Saffman (1982) discusses the general form of the boundary conditions necessary to

include the thin film effects. Park & Homsy (1985) and Reinelt (1987a) further develop

details of these conditions that incorporate thin film effects into gap averaged 2-D bound-

ary conditions for the steady finger, which we call Saffman-Park-Homsy-Reinelt (SPHR)
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conditions. In addition to the pressure drop across the interface due to the lateral curva-

ture of the interface that is included in the MS boundary conditions, the SPHR conditions

include an additional pressure drop term due to variation of transverse curvature at dif-

ferent points on the interface in the lateral plane. It also includes terms in the kinematic

boundary conditions that account for flow into the thin film region. The SPHR conditions,

as we shall see in this paper, are quite complicated since they involve knowledge of func-

tions that have to be determined by solving an associated 3-D problem in the transverse

plane. In general, the solution to this associated three dimensional problem has to be com-

puted numerically. For small Ca, using Bretherton (1961) results, Park & Homsy (1985)

and Reinelt (1987a) have found asymptotic expressions for these functions. Numerical

calculations by Reinelt (1987b) and Sarker & Jasnow (1987) show that the discrepancy

between theory and experiment on the finger width dependence on the control parameters

is greatly reduced when the SPHR boundary conditions are used. Equivalent boundary

conditions for the bubble or for the time dependent problem are yet to be deduced.

The numerical work incorporating thin film effects cited in the last paragraph is impor-

tant; however it leaves some other important questions unresolved. First is the existence

of other branches of solutions. Reinelt (private communication) has found some other

branches over some parameter ranges. For reasons stated earlier, it is important to know

if all these steady state solutions tend to the same width as _ ---* 0 , or if it is possible

for the limiting finger width to be different for different branches. Also, the precise de-

pendence of A on _ and Ca in the limit of small _ is difficult to conclude from the

numerical solutions for we now have two control parameters. To compound our problem,

the problem is numerically ill posed as G _ 0 for any Ca as a continuum of solution

with arbitrary width exists for _ = 0 and, as seen in this paper, transcendentally small

terms in _ have to be resolved for determination of A . The need of an analytic theory

to resolve this limit is therefore obvious.

The purpose of this paper is to incorporate the thin film effect into an analytic theory



which is valid for small _. Further, we restrict ourselvesprimarily to the caseof small Ca,

where simplifications of the SPHR boundary conditions are possible by using Bretherton's

formulae, though in section 7, we show how the analytic theory can be extended for any

Ca by some subsidiary numerical calculations. Also, our primary concern will be the

possibility of solution for A < ½ , though we show that selection of finger width with

A > ½ is possible for a few restricted cases in the two-parameter space. We also present

conditions under which the selection results of the theory based on MS boundary conditions

hold. However, we do not present an exhaustive study of selection for all possible relative

orderings of the small parameters Ca and G •

For A < ½ , we conclude that it is possible for solutions to exist for G << Ca <<

1 with _' (1-_) = _ g,/21-2_ v"'W-, where the positive constant k depends on the branch of

solution and equals 3.061 for first 1st branch. In terms of control parameters e and Ca ,

this implies that for e << Ca << 1 = k "- where the positive constant' i-2_ Ca3/2 '

k depends on the branch of solution and equals 2.776 for the first branch. The lower limit

on Ca for the validity of the above relation is sufficient to ensure that the solutions found

satisfy the assumptions made in the analysis. Whether the relation hold over a larger range

of the parameter space is an open question. We notice that when _1/2 <<: Ca ,(< 1 ,

A is close to zero. On the otherhandif 1 >> _1/2 >> Ca >> _ , A is close toa

half. If _1/2 = O(Ca) , for sufficiently small values of the two parameters Ca and Q ,

one can obtain fingers with width in the open interval (0, ½) . In this range of Ca and

, the )_ on different branches do not tend to the same value as Ca , _ --, 0 .

For A > ½ , We conclude that the finger solutions calculated on the basis of the MS

theory for which _ ,-_ ½ + constant Q2/3 persists when Ca << Q7/3 << 1. This is

rather unexpected since on inspection of the SPHR boundary conditions and their limiting

form using Bretherton's formulae, it would appear that thin film or transverse curvature

term or both (call them the 3-D effects) are significantly bigger than the lateral curvature

term that is included in the MS theory when Ca >> C a . Thus for _3 << Ca << Q7/3,



wehave a situation whereto the leading order, the solutionsbasedon the MS theory gives

the correct finger shapeand the width scaling with _ even when the 3-D terms in the

SPHR boundary conditions far exceedsthe lateral curvature term on the finger boundary.

The reasonfor this unexpected validity of the MS theory is, first, that both Ca and

are small so that the deviation from the Saffman-Taylor finger solutions is actually small.

Indeed, the role of terms such as lateral curvature and transverse curvature is not so much

to change the Saffman-Taylor shapes as to determine the finger width which is arbitrary to

zeroth order. Second, the finger width is being determined by transcendentally small terms

in _ in the physical domain which can only be determined by analytic continuation of the

equations to the neighborhood of some point in the unphysical plane that is the source of

the transcendentally small correction. The relative size of lateral, transverse curvature and

thin film leakage terms in an 'inner' region near this point is rather different from what

they are in the physical domain; yet it is this relative size which determines the finger

width. It turns out that the lateral curvature is far bigger in the 'inner' region than the

thin film leakage or the transverse curvature term when Ca << _7/3 ,_< 1 and that

explains the unexpected persistence of the solutions based on the MS theory. However,

in this paper, for this range of parameters, we do not address the question of existence of

other kinds of solutions not found in the MS theory.

Our analysis also shows the importance of doing a nonlinear analysis in the region

of nonuniformity of the original perturbation expansion. We point out that in the case

of the McLean-Saffman boundary condition, nonlinear analysis is only necessary on an

equation containing one parameter (_-1/2D If the nonlinear equation is replaced by
g_13

a linear equation, the linear equation still contains this parameter. Only the numerical

value of _ obtained by matching to the outer solution will be affected by the ad
g_lJ "

hoc linearization. Thus, only the proportionality constant between )_ - ½ and _2/3 is

affected if one resorts to a simpler linearized analysis. With the thinfilm effects, there

are, in general, nested inner regions surrounding the point of non-uniformity of the outer



perturbation expansionand the form of the nonlinear equations together with the type of

parameters in each such region is determined by the nonlinearity of the equation in the

next outer region. If the equations werelinearized at the outset, one is unable to identify

the correct scaling law between the three parameters A , _ and Ca , let alone determine

the scaling constants.

2. Mathematical Formulation and leading order solutiom

We consider the two-dimensional averaged flow in a Hele-Shaw cell of width 2 a where

a finger of zero viscosity, moving with velocity U , displaces a viscous fluid of viscosity # .

The 2-D averaged velocity field in the region not occupied by the finger is the gradient of

a harmonic potential function ¢ . The finger boundary is assumed to be asymptotically

parallel to the walls. Here, in this paper, we will take each of a and U to be unity without

any loss of generality since this is equivalent to non-dimensionalizing all our variables using

these two parameters. We will now proceed with the understanding that all the variables

have been non-dimensionalized. The flow domain in the frame of the steady finger, the

z = x + iy plane, is shown in Fig. 1. We introduce the complex velocity potential,

W ¢ + i¢ , which will be an analytic function of the complex variable z in our flow

domain. :In the frame of the steadily mov]ng finger, the boundary conditions on the finger

that incorporate the the transverse thin film effect (see Reinelt (1987b) for details) are:

¢ % x = --_ --_ Ca -1/2 n°(Ca n,) % nl(Ca n,) (2.1)

¢,, : - [m°(Ca n.) + )_/-_" G I/2 2R] (2.2)ml(Ca n. v-'_ Cal/ Y"

where _ = *'z** Ca = e.E. (capillary number), n,
_'_ U _ 2 ' T

the outward unit normal to the finger (see Fig. 1) along the

= cos _9 is the component-of

x -axis, u is some parameter

in the interval (0, rr) (specific choice given later) parametrizing the finger boundary and

the subscript with respect to u denotes derivative with respect to u. R is the radius of

curvature of the interface in the lateral ( x - y ) plane. The functions n 0, _;! , m 0 and

l

i

-=

i

_m

w_

=i



--q

m 1 have have been calculated by Reinelt (1987a) numerically over a range of arguments.

The appearance of n, in the argument of these functions is because only the normal

component of the finger velocity is relevant in the thin film effect. In the limit of small

Ca , following Bretherton, Reinelt found that

g°(Ca) = constant-3.878 Ca 2/a + ... (2.3)

gl(Ca) = -7r/4 + 4.153 Ca 2/3 +

m°(Ca) = 1.3375 Ca 2/3 + ...

ml(Ca) = -1.3375 rr Ca2� 3
4

(2.4)

(2.5)

The values of the constant coefficients in (2.3) and (2.4) are different in their third signifi-

cant figures from those originally quoted in Reinelt (1987b). Reinelt (private communica-

tion) found these revised values after a more accurate calculation than previously reported.

Note that the constant term in (2.3) does not affect the finger shape or the fluid velocity

field since it can be always absorbed as part of x on the left hand side of (2.1) by suitably

choosing the origin of x. Thus from this point onwards, we will neglect the constant term

on the right hand side of (2.3). The MS theory corresponds to neglecting all other terms

involving powers of Ca , while replacing _;1 by -1 . A rational approximation when

Ca << 1 and Ca << _3 would be to replace nl by -_ while neglecting all terms

in (2.1) and (2.2). However, this only modifies the sole control parameter _ of the MS

theory by a factor of _ . Also the range of Ca and _ investigated in the experiments

to date, it is clear that Ca is not small enough to justify this approximation.

The mathematical formulation here is a generalization of the previous formulation

(Tanveer, 1987b) developed for the MS boundary conditions. In the previous work with

the MS boundary conditions, no assumption was made on the symmetry of the finger about

the channel centerline. As part of the conclusion, it was found that only symmetric fingers

are possible for non zero _ . In this case, for the sake of simplicity, we will assume apriori



that the finger is symmetric about the channel centerline. The existence of nonsymmetric

finger with the SPHR boundary conditions is still an open question.

Consider the conformal map of the flow domain in the z -plane into the interior of

the unit semi-circle in the e-plane (Fig. 2) such that z = co, z = -co + i and

z = -co - i are mapped to ( = 0 , +1 and -1, respectively. The finger boundary

is mapped to the arc of the semi-circle in the ( -plane. Introduce analytic functions

f(() and g(() in the unit _ -semicircle so that

2 2 2
z -- In ¢ + -- (l--A) In (¢2 1) -- i (1--2A) + -- f(¢) (2.7)

71" ?r

2(1-A+a) 2
W(() = -2 (l-A) /n ((2-1) + ln¢ + i(1-A-a) + -g(_) (2.8)

7r 7F 7f

where

where _ =

a =- du m 0 + m I -_ _1/2
"0 --_ Ca 112 y,, du (2.9)

e i_ on the semi-circular boundary. Note a accounts for the total flow across

the interface edge. From conservation of fluid flow, it is easy to show that the fluid velocity

V far ahead of the finger in the laboratory frame is given by V = (A - a) U . Then the

condition that the real diameter of the unit semi-circle in the _ plane corresponds to the

walls of the cell where Im z = ±1 implies

Im f = 0 (2.10)

The condition that On the upper and lowercell walls ImW = _:(1 - A + a) implies

==

i

t

-;_

i

_.-

zm g = o (2.11)

The boundary conditions (2.1) and (2.2) can then be written as the following boundary
:;Z-Z ZE]Z LSS- . .

conditions on f and

interval (0, _r):

Re (f + g)

g on the semi-circular boundary

= _ 3-1/2 _1/2 Ca-1/2

= e_v , where u is in the

_o 2g nl
_" R (2.12)

10
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1,/--_ Gv2 ca112 1Re(¢g') = -m ° Re ¢ (f' + h) - m v _ _ ne _ (f' + h) - _ (2.13)

where primes denote derivatives with respect to the argument and

(I --p2_'2) (2.14)
h(_) - ¢(_2_1)

where

p2 =_ 2A-1

is in the open interval (-1, 1) for A in the open interval (0, 1). Note that a can be

expressed as:

[= -- d,_ m° + _1 --_ _1/2 call2 Re e"[/'(e") + h (e' ")] (2.15)

Also note that owing to Schwartz's reflection principle each of (2.12) and (2.13) hold in

the lower half semi-circular boundary as well.

One can establish that on ( = e_" , u in the interval (0, r) ,

1
n® - Re [((f' + h)] (2.16)

If' + hi

1 _ [ _'" + h']= 2[(f, + h)l Re 1 + ( f' + l_ (2.17)

There is an alternate way of writing each of (2.16) and (2.17) which defines analytic

1
continuation of n= (() and _ (() off the arc of the upper half unit ( semi-circle:

_.(_) = i 12(¢) - I_(¢) (2.1s)
2 (i_(;))V2(12(¢))_/2

1

_(¢) =
_.i(_.2 1) [--1+ ½_z__. + ½ _]-- z_(_) h_) J

(l_(q))_12(12(;))I12
(2.19)

where

/1(() = (2_p2 + ¼f'(1/() (2.20)

12(() = l-p2( 2 + (((2_l)f,(() (2.21)
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For Ca = O(1) and _ << 1 , the leading order approximation can be found by

setting _ = 0 in (2.12) and (2.13). Thus, to the leading order, g = -f0 , f = f0 ,

where f0 is determined by the boundary condition

I, /0 = 0 (2.22)

on the diameter of the unit semi-circle and on the arc of the unit circle, ( = e_ ,

0
Re ( f_ - m°(Ca n_:(()) Re [((f_) 4- h)] q- a ° (2.23)

where n:0 is n: with the substitution f = f0 in (2.16)and a 0 is the constant a as

0 is substituted as the argument ofdetermined by (2.15) when m 1 is neglected and Ca n,:

m 0 . The solution to (2.23) was found numerically for arbitrary p2 in the open interval

(-1,1) , i.e. ), in (0,1) , by expanding f0 in a power series

/0 = a° C2+ a0 ;4 + .. (2.24)

be found by expanding

truncating the series to N terms and satisfying (2.23) at N uniformly spaced out points

on the arc of the unit ( quarter circle. The condition (2.10) is automatically satisfied by

restricting to real a°,, . The resulting system of nonlinear algebr_c equations was solved

using Newton iteration and consistency of results checked by doubling N .

Higher order formal corrections to the perturbation expansion in powers of _1/2 can

f and g as:

f = fo -I- _1/2 fl q- .. (2.25)

g = go + G 1/291 + ..

where f0 and go are as determined above, fl and gl

equations:

(2.26)

are determined by satisfying

Im fl = 0 (2.27)

Im gl -- 0 (2.28)

12
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on the real diameter and on the arc of the unit semi-circle in the ( -plane,

Re (fl + gl) = -3-1/2 Ca- 1/2 _0(n0 Ca) (2.29)

where

1
Re _ g_l + mO (Ca n o ) Re _fi + m°'(Ca n O) Ca Re _(f_} + h) n,

= _ml(CanO ) _12_ Cal/2 R"-'olRe ((f6 + h) - cq (2.30)

1 1 Re_(f_ + h) ( f_. )
n: = If_ + hi Re _f_ + If6 + hi Re f6 + h

For each A and Ca, by truncating power series representations in powers of _2 for each

of fx and gl to a finite number of terms and satisfying (2.29) and (2.30) at a discrete

set of uniformly spaced out points on the unit ( quarter circle, we solved the resulting

system of linear algebraic equations. The resulting a,, and b,, were found to decay with

n for large n and there was consistency on doubling the collocation points and unknowns.

This suggests that a regular perturbation expansion fails to select A in contradiction to

direct numerical results of Reinelt (1987b). A similar contradiction occurred earlier in the

context of McLean-Saffman boundary conditions (McLean & Saffman, 1981) which was

later resolved (Combescot et al (1986), Shraiman (1986) and Hong & Langer (1986)) by

extracting transcendentally small terms in _ .

When Ca << 1 , the absence of selection from terms of a regular perturbation

expansion can be more clearly demonstrated. Since the right hand side of each of (2.12)

and (2.13) are small for small Ca and Q as is clear from (2.3)-(2.6), to the leading

order, f = 0 and g = 0 , i.e. we get the Saffman Taylor finger solutions in which

,k and hence p2 is arbitrary. Now, if we were to try to improve this approximation by

including the next order correction, we would substitute f = 0 and g = 0 into

each term on the right hand side of (2.12) and (2.13) and determine the first non trivial

g and f term on the left hand side. One can systematically proceed to determine each of

f and g in a perturbation expansion involving powers of G 112 and Ca 1/6 , the precise

13



form depending on the relative ordering of the two small parameters. This can clearly

be done again without any constraint on p2 , since solving at each stage corresponds to

calculating two harmonic functions Re (f,_ + g,_) and Re g,_ with specified Dirichlet

and Neumann data respectively on the unit circular boundary where the Neumann data

consistency condition is easily seen to be satisfied. The solution go is only determined

to an arbitrary additive constant that does not affect fluid flow or the finger shape. There

are no sources of nonuniformity of this outer perturbation expansion except possibly near

= =t=l , i.e. the tail of the finger' For the MS boundary conditions, McLean & Saffman

(1981) have shown that a secondary expansion near the tail is possible and that this

matches with the outer expansion without any constraint on _ . We expect that such a

matching is possible in this problem as well. We will assume this is indeed the case. Thus,

given this assumption, it is clear that ), remains undetermined by a regular perturbation

series.

Thus, to calculate A analytically for any Ca , one must calculate terms for f and

g that are transcendentally small in _. These are terms beyond all orders of the regular

perturbation expansion in powers of _ and are subdominant except when every term of

the regular perturbation expansion is zero. Kruskal & Segur (1986), in their pioneering

work in calculating terms beyond all orders for a model third order nonlinear ODE, give

a careful account of the issues involved in calculating terms beyond all orders.

As with the earlier case of MS boundary conditions, it will turn out that there is

some open interval on the imaginary _ axis containing i where the condition of a

finger boundary with a smooth tip, Im f = 0 , is satisfied by every term of the

regular perturbation series of f in powers of _1/2 for any _ ; yet the leading order

transcendentally small term in _ violates this condition except when _ is restricted to

a discrete set of values.

We note that to find transcendentally small terms in the physical domain, we must

find the source of non-uniformity of the regular perturbation expansion in the unphysi-

14

!

J

I

=

.



r_

analytic function F(_)

cal domain. Such sources of non-uniformity of the perturbation expansion contribute to

transcendentally small terms in the physical domain. One needs to rescale dependent and

independent variables in the immediate neighborhood of the source of non-uniformity and

construct an inner perturbation expansion. An inner-outer matching is then carried out

and the terms that are beyond all orders in the matching procedure are transcendentally

small in the outer region that includes the physical domain. In this paper, only the leading

order inner and outer matching is carried out since only the leading order transcendentally

small terms will be found. As a first step, it is necessary to locate the source of nonuni-

formity of the regular perturbation expansion and construct an inner expansion near the

source of non-uniformity. For that purpose, it is necessary to continue analytically each of

(2.12) and (2.13) outside the unit _ circle across the arc of the upper half semi-circle.

3. Analytical continuation of the equations to I_I > 1

First, we note that from Poisson's integral formula relating a harmonic function and

its conjugate inside the unit circle to its value on the boundary, one finds that for any

in the unit semi-circle with vanishing imaginary part on the real

,/o {<+<F(_) - 27ri _' ¢'-

diameter,

where the contour of integration C in the _'

1 +
_¢' ! Re F(_') (3.1)

-[-1 --CC'

plane is along the the semi-circular arc

from +1 to -1. For convenience, we define the operation on Re F on the right hand side

of (3.1) as :[(Re F) . If Re F(_') = G(C') for (' on the unit semi-circular arc, where

G(_) is an analytic function defined off the semi-circular arc as well, then by deforming

the contour in the _' plane, one finds that the analytic continuation of F(¢) across the

semi-circular arc for I_l > 1 must be

F(C)= Z(G)+ 2 G(C) (3.2)

Note that on the arc of the unit circle, C'" - C-1 and Re F - ½IF(C) + F(C-1)] for

any function F which has vanishing imaginary part on the real diameter of the unit
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semi-circle. Using this and the continuation property (3.2), one finds that the analytic

continuation of (2.12) and (2.13) to [(1 > 1 across the arc of the upper half semi-circle

must be

4 g D(ca n.(0) + h2(¢) 4g 1/ + g = hl(O- _ _ a(() _l(Ca_.(O) (3.3)

m

g' = h3(_') -- 12(_)_ 2-1/1(() m 0 (Ca n_(()) -I-h4(()

_/12_ Ca 1 /2(() - /1(() m 1 (Ca n_.(()) - a (3.4)
- 7r2 R (() _2 _ 1

where we assume each of the functions m ° , m 1 , n 0 and _1 are locally analytic

functions of their argument and

h1(¢) = - _ Z (_0) (3.5) :

1
h2(() = -"_-2_ 2" ( _1 _) (3.6)

12" (mO 12 -- 11) (3.7)h3(O = -5 _2_ 1

h4(_') = _/3_]Ca ( 1 12 - /.1) (3.8)

Note that each of the functions hl , h2 , h3 and h4 involve integration of values of

functions f and g on the arc of the unit (' circle and therefore analytic everywhere in

I¢1 > I.

Equations (3.3) and (3.4) are a pair of nonlinear integro differential equations for

f and y that appears too formidable to be of any practical utility. However, it is

amenable to simplifications when 6 is small. When 1_1 > 1, 1_--11 < 1 and so terms

1
such as f'(1/(), f"(1/() appearing in _ and n_ in (2.18) and (2.19) can be replaced

by the regular perturbation (2.25) even when the deviations of f(() from the regular

perturbation series (2.25) is not small as is true near the point of nonuniformity of the

Z

=

i

i

+

regular perturbation series. To the leading order, it is appropriate to replace if(l/() by

f_(1/() and /"(l/C) by f#(1/(). The same substitution is appropriate for f
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in the integrand in eachof hz through h4. Then the pair of equations (3.3) and (3.4)

become a pair of nonlinear second order differential equation for f and g . We are

interested in solutions to these equations that match with (2.25) and (2.26) as one moves

away from the points of nonuniformity of the regular perturbation expansion towards the

arc of the upper half unit semi-circle.

4. Nature of transcendental correction

We now seek the form of the leading order transcendentally small correction terms

in _ to the regular expansion (2.25) and (2.26). As has been discussed before (see, for

example, Kruskal & Segur (1986), Combescot et al (1986), Tanveer (1987b), Combescot

et al (1988), Combescot & Dombre (1988) and Tanveer (1989)) linearizing the nonlinear

equations about the leading order behavior given in (2.25) and (2.26) and looking for WKB

type of solutions to the homogeneous part of the linearized equation.

In our case, the resulting homogeneous equations arising by linearizing (3.3) and (3.4)

about f = f0 + _1/2 fl are:

fH + gH -- Q1 G1/2f_ G ,,
L L [fH + Q2 f_ ] (4.1)

, Q4 2 ,i i
g_z = _ Q3 f_ + _ -_- _1/ [f_ + Q2 fH ] (4.2)

where

Q1 = 4n1(((2_ 1) "--7 n°' (Ca 4 _1/2 )n O) -F ---- Ca n 1' (Ca n O) (4.3)
zr RO

i
- Ca

4

-i /lo 1/2 1203/2
L =

nl (Ca nO(_)) _2 (_2_ 1)2

3_ 2 1 3 l' l'- 2o 1 1 20 (1/()

Q2 = ¢ (_2 1) 2 120 + _ 2 110

Q3 = - m°(Ca n o (_)) - i
12 Ca 1

7r2 Ro

(12o+ /lo)
(/2o-/1o) {m °' (Ca n°) _- i

,,_ (c. ,s° (_))

(4.4)

(4.5)

12 G Ca

7r2 1 0}no m_' (ca n. (¢))

(4.6)
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i o12Ca 12o- l_o m_(Ca_ (¢)) (4.7)
Q4 = -- 1-d _2 _ I) ,_(C__O(c))

1<'"D((:) <,_ (1/(),

! _-_i(C2 i)[-1+_,,_T;:-_-)-+ ½- ,_--zC?_-FJ (4.s)
no 2 qlo(C))I/2q2o(C))1/2

where the zero subscript on each term here refers to the evaluation of that term with the

the subsitution f = f0 + G1/2fl • Eliminating gH between (4.1) and (4.2), one obtains

the following second order linear homogeneous equation for ]_

+ Q2-{- _1/2 + 6]/2 L fH

L' Q_ Q1 L' L Q4 )+ f_ Q_ - _-Q2+ G1/2 L _1/2 -[- _-(1-1-Q3) ÷ _1/2 Q2 = 0 (4.9)

In the limit of _ -* 0 , one can seek WKB solution of the type

f_ = e ¢-_/' Wo + w, + o(_ '/') (4.10)

to find that

W_ = Q4 + Q1 =t=/V(Q4 + 0_.,,1,2 _ L (l+Q3) (4.11)
2 4

w{ = -w5' - w6 (Q2 L, :,L ) -- Q'I + Q1 T-Q4Q2 (4.12)
2W_ + Q4 + Q1

Let us define .ql and g2 as the asymptotic solution in (4.10) corresponding to the two

different choices of the sign of the squareroot in (4.11). Thus

and

._ ---- e¢-'," w+ + w+ (4.13)

w0 _ + w 7_ = _--' -

where the plus and minus superscript on Wo and W 1

(4.14)

correspond to the choice of plus

or minus sign in (4.11). Further, to the order of approxmation that the WKB solutions

(4.13) and (4.14) are valid, it appropriate to neglect G1/2 in the zero subscripted terms

in Q1, Q2, Q3, Q4 and L appearing in the right hand side of (4.12) but not (4.11).
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The condition Re Wo+ = 0 and Re W 6" = 0 (called the Stokes lines) divide

the upper half _ plane into different sectors. Including the leading order transcendental

correction in the description of the asymptotic behavior of f in some sector of the complex

( plane adjoining the arc of the upper half unit semi-circle I(I = 1 , Im ( > 0 , we

can write

f = fo + 61/2 fl + ... + C1 gl + C2_2 (4.15)

where the transcendental term C1 gl + C2 g2 is assumed small. It is generally sub-

dominant to every other term of the perturbation solution denoted symbolically by ... in

the above equation. If Re W0+ > 0 .ql is transcendentally large. If Re W_ > 0 ,

.q2 is transcendentally large. In each case, the corresponding coefficient C1 or C2 has

to be zero since each of Re Wo+ and Re W_ increase without bounds as ( = 4-1 or

( - 0 is approached as can be seen from the integration of (4.11) once expressions for

Q1 , Q4 and L are substituted. As we cross any Stokes line, the coefficients C1 or

C2 in (4.15) can change. The actual determination of the coefficients C1 and C2 is

possible only by matching an inner perturbation expansion carried out in the neighbor-

hood of points where the outer perturbation expansion (2.25) and (2.26) to (3.3) and (3.4)

as well as the leading order WKB solutions (4.13) and (4.14) to (4.9) are invalid. This

is rather an involved procedure for arbitrary Ca since the exact solution for f0 is not

known and even the source of nonuniformity of the outer perturbation expansion has to be

determined by a nontrivial numerical procedure. Further, no analytical formulae for the

functions m ° , m 1 , n ° and _1 exist for arbitrary values of their argument. In section

7, we will show more precisely what pieces of information would complete the selection

theory for arbitrary Ca and give indications on how they might be obtained.

From now on till section 7, we will limit ourselves to small Ca and assume the

formulae (2.3)-(2.6) to be valid. In this case, as noted earlier, the Saffman-Taylor exact

finger solution f = 0 and g = 0 provides a convenient starting point. Higher order

approximations involve powers of Ca 1/6 and _1/2 , the precise form depending on the
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relative ordering of the two small parameters Ca and _ . We will symbolically denote

the leading order correction with algebraic dependence on Ca and _ by ft. Thus, away

from the points of nonuniformity of the regular perturbation expansion, which in this case

are at _ = ±_1
p

/ ~ /1 (4.16)

To this, one can add terms with higher order algebraic dependence on Ca and _ . The

behavior of the analytic continuation of /1 in the region [(I > 1 can be obtained from

(3.3) and (3.4) by setting f' and f" to zero in every term involving these on the right

hand side of (3.3) and (3.4) after the Bretherton approximations (2.3)-(2.6) are invoked.

One can see that /1 is singular at _ = +l/p which are then the sources of nonuniformity

of the regular perturbation expansion. We also _, rice that ]1 is real on some open interval

on the imaginary axis that includes ( = i . The same can be shown to be true to every

order of the regular perturbation expansion. However, transcendentally small corrections

to (4.16), as we shall see in a moment, do not generally satisfy this condition h_lplying

that the finger tip is not smooth for arbitrary _

Terms that are transcendentally small in _ , which to the leading order are constant

multiples of gl or g2 as determined by (4.13) and (4.14), can be added to (4.16). When

]1 _p2 (2 I >> Ca2/7 _: -_, the expression for the asymptotic WKB solutions to (4.9)

simplify even further because the capillary number Ca has been assumed to be small and

so each of Q1 , Q2 , Q3 and Q4 can be neglected. In that region, to the same order

that (4.13) and (4.14) are asymptotic solutions, .0_ and _ can replaced by g_ and

g_ where gl and g2 are defined as

Note that gl

gl,2 --"

and g2 are transcendentally small or large d,_pending on the sign of Re P ,

where

(1_p2¢2)3/4 (;2 _ p2)v4P = i 3/2 d_ (4.18)
/, ¢ (;2 _ 1)

2O

|

|

=

r_

!
7-
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The Stokes lines here are the same as for the Mclean-Saffman boundary conditions as dis-

cussed earlier (Tanveer, 1987b). We have differefit cases depending on p2 < 0 or p2 > 0 .

The Stokes lines in each case are shown in Figs. 3 and 4. Note that p2 < 0 corresponds

1
to A < ½ and p2 > 0 corresponds to A > ].

1
5. Restriction to A <

It is appropriate in this case to define q, a positive real parameter, so that p --- -iq.

In that case the point of nonuniformity of the regular perturbation expansion in the upper

_ 1 '-" as shown in Fig. 3.half plane ( - _ = q

Away from the immediate neighborhood of

for f must be

the desired asymptotic behavior

/ = A + ..+ cigl (5.1)

in sector I of Fig. 3; in sector II, one must have

/ = A + ...+ c2g2 (5.2)

and in sector III

f = )q + ....+ C3g2 (5.3)

because gl is transcendentally small in sector I, and g2 transcendentally small in sectors

II and III. No transcendentally large terms are allowed in this three sectors as each of

the sectors I, II and III extend all the way to the physical region inside the unit upper

half ¢ semi-circle. If the finger boundary is smooth, the solution f to the analytically

continued equations (3.3) and (3.4) that match with the regular perturbation expansion

as the physical region is approached must be unique and thus (5.1), (5.2) and (5.3) are the

different behavior of the same global analytic function continued across the Stokes lines.

Further, we note that gl and g2 are both real on the imaginary axis in the interval

(i q, _) and therefore, the assumed finger symmetry about the eh,_nnel centerline implies

C_ = C3 • Thus, to the leading order, it is enough to require that each of (5.1) and (5.2)
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hold in sectorsI and II and in addition require

Im C1 = 0 (5.4)

Generally, for any A , it is possible to find asymptotic solutions to (3.3) and (3.4)

satisfying (5.1) and (5.2). However, (5.4) is violated. This implies that the tip is not

smooth. Further, from the behavior Im f _ Im Ci gl on the imaginary axis in the

vicinity of ( = i , one is able to deduce that the singularity of f at ( - i isabranch

cut corresponding to a cusp at the finger tip. At this point, it is appropriate to point out

that this generalized solution with cusp is an asymptotic solutions to (3.3) and (3.4) for

]([ > 1 in the 1st quadrant that matches with the perturbation series (2.25) and (2.26)

as the physical region [([ = 1 is approached from the exterior. It is not an asymptotic

solution to the original equations (2.12) and (2.13) on the entire arc of the entire semi-

circle as a cusp would imply infinite curvature at the tip which is clearly not possible if

(2.12) were to be s_ti¢fied at the tip as well. A solution to (3.3) and (3.4) is also a solution

to (2.12) and (2.13) only when we require a unique analytic continuation of f across

the semi-circular arc satisfying conditions (5.1), (5.2) and (5.3); which for a symmetric

finger is equivalent to satisfying just (5.1) and (5.2) along with the requirement that on

the imaginary ( axis there is some interval containing ( = i where Im f = 0 . To the

leading order, this latter condition is equivalent to (5.4). To find the actual expression for

C1 , it is necessary to find and solve inner equations near ( = ,5 where both the outer
g

perturbation expansion and the WKB Solutions gl and g2 are invalid. In the following,

A together with Ca and _ will be treated as parameters and solutions found that satisfy

(5.1) and (5.2). Once such solutions are found, the condition (5.4) will be imposed to see

if they can be satisfied for some constraint relation between the three parameters.

The details of the inner region for A < ½ depend on the assumptions made on Ca ,

and A . tIere we will consider three different cases:

(a) °°(1_2;_)2¢ (( 1 or order unity,

-4 << Ca ....
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(c) Ca _-1/2 (1 - 2A)-IA 2 >> 1 or order unity.

It will be assumed that in case (a), r >> 1 ,incase (b) r /_3/2 >> 1 and in

case (c), r f12 21/8 >> 1 , where r , /31 and /_2 are as in (5.8), (5.11) and (5.12)

below. However, as shall be seen later, a sufficient but perhaps not necessary condition

for the above assumptions to be valid is that Ca = O(_ 7/3) or larger in case (a) and

Ca = O(_) in case (b). In case (c), the necessary assumption is equivalent to requiring

that Ca -7/4 A-7/2 (1 -2A) 7/2 >> 1 . The solutions found in this case are found to

satisfy this condition aposteriori provided Ca >> _ . However, the possibility is open

for new kind of solutions not described here with A < 1/2 but approaching ½ in the

limit _ _ 0 provided Ca = O(G) or smaller.

5a. Case of c_ x'
(1_2_)_ << 1 or order unity.

In this case,itis appropriate to introduce introduce inner variables

__

g __

1 +

2q2 4]7 (5.5)
1 -{- q2 F(+) r-

2q2 r- 4/7
1+ q2 (5.6)

iq_ = r -2/7 _ (5.7)

where

23/2q3(1 _ q2)1/24
= (5.8)

r (1 -b q2)3/2_Tr

We will assume that (1- 2A) 3/2 A1/2 >> _ so that

This assumption can become invalid in two ways: first, if

r is indeed a large parameter.

A is so small that A ,-_ G2,

For the first case, since1 such that _ 0(1) .and secondly when A ,-_ _ ¢_/_ =

A >> e , i.e. )_ >> _1/2 Cal/2 for the SPHR boundary conditions to be valid, it is

clear that the assumption can possibly be violated only when _1/2 Cal/2 << _2 , i.e.

when Ca << _3. However, a glance at the original equations (1) and (2) would seem

to suggest that under these conditions this film effects can be neglected and that the MS

boundary conditions are valid. We will assume this is indeed the case. Earlier work on the
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MS boundary conditions rule out any possibility of ), < 1/2 . For the second case when

1 the assumptions made in this case imply that (1 - 2A) = O(Ca 1/2 _-1/2) or

larger. Thus the assumption of r large can be violated only if Ca << _7/3 . Thus if

Ca = O(_7/3) or larger, the assumption of large r follows. However, this may not be

a necessary assumption. When r is not large because q is small, one can use the scaling

in section 6 with p replaced by q ; however the analysis for such a case is not presented

here.

From the transformations (5.5) and (5.6), to the leading order in r -2]7 , we find that

(3.3) and (3.4) reduces to

F+w
1 (F"-I)

= --ill (_-F')l/3 + (_-F')3/2 (5.9)

and

where

(F" - 1)
w' = /32 1 + _3 (5.10)

_ p,)1/3 _ F,)1116

3.878 (Ca) 1/6 (1 -b q2) 4/3 (1 -- q2) 1/3 (5.11)
_1 -- 2 V/3 _ q8/3 r-2/3 _-2/3

Ca 2/3 (l-q4) 4/3
(r  )8/21 (5.12)

_2 -- 1.3375 G8/21 4q8/3
==

and

-3 7r Ca 7/6 (1 q- q2)
_3 = 1.3375 2 32 _13/42 (1 - q4j5/6_ q11/3

Eliminating w between (5.9) and (5.10), we obtain

_2 (F"- 1) _1 (1 - F')
F' + + /33 = +

(_ _ F,)1/3 (_ _/,,)11/6 3(_ - F') 4/3

(r _)17/21 (5.13)

F"' 3 (F"- 1) 2
+

(( _ F,)3/2 2 (_ _ F,) 5/2

(5.14)

Note that in order to obtain (5.9) and (5.10) from (3.3) and (3.4), we have to assume

Ca << G 1/7)-4/7 (l _ 2)_)2/7 or otherwise the product Ca n_(() for _ = O(1)is

not small making the Bretherton approximation (eqns 2.3-2.6) invalid.

|

i

Further, in this case _1 , _2 and /33 are far smaller than unity and one can neglect

to the leading Order all terms in (5.14ilnvolving /_1 , /32 and f13- Going back to (5.9)
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and (5.10), this meansthat to the leading order

and

w = 0 without any loss of generality

F - (F"-I)
F,)3/2 (5.15)

which is the same equation as for the MS case when thin films and the variation of trans-

verse curvature are totally ignored. The solution F to (5.15) matches with the outer

solution in sectors I and II provided we require that the F goes to zero as _ --, oo for

Arg _ in the interval [0, 6_-/7) . This requirement gives a unique solution to (5.15) and

thus matching with (5.1) and (5.2)for [lq-iq_ I << 1, one finds C1 and C2. The details

of this case have been discussed in the context of the analytic theory of velocity selection

of a bubble using the MS boundary conditions (Tanveer, 1989a) and also in the context

of dendritic crystal growth (Tanveer, 1989b), where the same equation (5.15) appears.

Im C1 can only be zero if the solution to (5.15) satisfying thc above stated conditions is

real on the real axis and this is found not to be the case. Thus there are no solutions in

this case.

When Ca -- 0(_ (1-2A)2)_-4), /31 -- O(1), while other parameters _2 and

/33 are small. Thus to the leading order, one can ignore the /32 and /33 terms in (5.14).

This means that in this situation, we can ignore the thin film effect on the kinematic

equation but include it in the dynamic conditions. Then going back to (5.9), the relevant

equation in this case to the leading order is

1 (F"- 1)
F - -/31 ((- F,)l/3 + F,)3/2 (5.16)

Numerical solutions of this equation for /31 in the range (0, 10) were sought and a

unique solution to (5.16) was found that tends to 0 as ( _ oo for Arg _ in the interval

[0 67r/7) as necessary to match with (5.1) and (5.2). However, such a solution was not real

on the real _ axis as would have to be the case to satisfy (5.4). The numerical method

is a trivial modification of the earlier procedure (Tanveer, 1989b) for finding appropriate

solutions to (5.15). Indeed with increase in /31 , the resirlual of the numerically imposed
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condition for a smooth tip increasedwith increasing /31 suggesting that an increase in

/_1 causes larger mismatch in the tip slope between the two sides of the cusp.

5b. Case of(1-2)`)2_)` -4 <:< Ca << _1/2(1-2)`))` -2

In this case, /31 is large. /33 is small; but f12 can be large or small compared to

unity. It is appropriate to introduce rescaled variables

_1 = Z-3/7r2/7 (1 + i q _) (5.17)

FI(_I) = --/_1-6/7(1-t-q2) r 4/7 f(_) (5.18)
2q 2

wl(_l) = --;31-6/7 (1 + q2) r 4/7 g(¢) (5.19)
2q 2

where r and /31 are as defined earlier in (5.8) and (5.11).

We will assume that r _1 3/2 >> 1, implying Ca -1/4 _-3/4 )`-1/2 (1 - 2)`) 2 >> 1.

The only way this assumption can be violated is if )` is very close to ½ . However,

in this case, when )` ,-_ ½ , (1- 2),) >> Ca _-1/2 Thus a sufficient con-

dition for the validity of the assumption is that Ca O(_)

Bretherton approximation is valid, i.e. Ca n= << 1

Ca n® = 0(Ca27/28 _-3/28 )`3/7 (1- 2)`) -3/14) <<

e_----[_and Ca 3/4 << 1.(1- 2)`)>>
Then to the leading order in /323/7 r -2/7 , for _1 =

or larger. Note that the

for _1 = O(1) , since

1 . This is true because

O(1), equations (3.3) and (3.4)

become

1 3/2 (Fi'- 1) (5.20)
wz + F1 = -(_ _ Fi)!/3 + /_; (_i- Fi) 3/2

_2 1 _3 (F_.' -- 1) (5.21)

wl -- ;34/7 (_1 -- Fi) 1/3 + _ (_1- Fi) 11/6

From the definition of /_1 , f_2 and /33 , it is clear that each of the quantities /_13/2 ,

-_- and _ are much smaller than one. Thus to the leading order, the appropiate

equation is : :

(5.22)
Flo = (_1 - Fio)l/3"
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FI0 must be

For large _1 , the solution must match with f _ ]1 • On examination of (5.22) the

behavior of FI((1) needed to assure this matching is: This implies that for large _1 , the

asymptotic behavior of

1

F_o .-, _/3{ (5.23)

On linearizing (5.22) about this behavior, we obtain the homogenous equation

F;, + 3 i 3 = 0
(5.24)

The solution to this is of the form

FH, : _14/3 e- _ _ ,/, (5.25)

and transcendentallyThis is transcendentally small for Arg _1 in (-3 7r/14, 37r/14)

large for Arg _1 in (37r/14, 9_-/14). A second possible transcendental behavior for large

_1 is found by retaining the highest derivative term in (5.20). Linearizing about (5.23),

and examining the homogeneous equation it is easy to see that a possible transcendental

behavior for large ( is

FH_ =

and this is transcendentally large for

scendentally small in (37r/7, 97r/7) .

Aa[ 2
e_, _ e:'°[1 + o(1)] (5.26)

Arg _1 in the interval (-3r/7, 3r/7) and tran-

However, none of the transcendental behavior in

(5.25) or (5.26) match with multiples of gl and g2 directly. This is because there is an

intermediate scale when I1 + iq_ 1 = Ca2/7_ where the effect of nonzero Ca enters

into the WKB solutions (4.13) and (4.14) and the further approximation gl and g2 as

given by (4.17) are invalid. One can obtain the correct asymptotic behavior by going back

to (4.13) and (4.14). It is easier in our case to directly obtain the same results from equa-

tion (5.20) and (5.21). By linearizing about F1 = 0, which is valid for large enough _1,

we obtain a pair of linear differential equations. The homogeneous part of those equations

generate transcendentally small terms. By intoducing rescaled variables

= Z /7 (5.27)
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into the resulting equations, they can be reduced to one homogeneous equation for the

homogeneous solution FH (E3) • For E3 = O(1) and fll >> 1 , this equation reduces

to:

d3._,, 1 _3cl/6 [1 + o(1)]d2F" dP,,
dE_ 3-1_3 _ - Z_E_/2[1 + o(1)] dE3 - 0 (5.28)

The two independent WKB approximations to the independent solutions are:

For large E3 , the behavior in (5.29) and (5.30) matches with gl and g2 as given by

(4.17) for small I1 + i q_[. On the otherhand, for small E3 , the behavior matches with

F_, and F_, as given by (5.25) and (5.26) respectively. The o(1) in the expressions

(5.29) and (5.30) are not important in our analysis other than that they are real for real

E3.

Including the leading order transcendentally small correction term, the asymptotic

behavior of solution F1 for Arg E1 in the interval [0, 37r/7) is

1

F1 ,'., El�3 + .. + A1Fu, (5.31)

On the other hand for Arg E1 in (37r/7, 9rr/7) , the transcendental correction cannot

include a multiple of FH1 which gets large in this sector as E1 _ oo and does not

match:with a multipleof:(5.30) as it must in order to match with the behavior (5.2)in

secto_ofThe: _ plane iffFig:-3.

As far as the differential equation (5.22), a unique solution is obtained by numerically

integrating the solution from _1 = Lei3_/7 to _1 = _1 where L is chosen to be 12

and E1 = 1 with the condition (5.23) i_aposed as an initial condition. The choice of the

initial point and initial condition was made to suppress Fu, where it is transcendentally

large at E1 = _1 for large L . The solution was found to have a non zero _maginary part
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at _1 implying that the coefficient of Fn, is not purely real implying that Im C1 in

(5.1) is not zero. Thus no finger solution with smooth tip exists in this case. The results

were checked by varying L and _1 •

The leading order asymptotic solution Flo is not valid for all _1 • Its derivative

is singular at some _1 - _10 in the upper half _10 plane where the local singularity

behavior can be directly deduced from (5.22) to be

3/4F{ o '_ -( ) (_1 - _1o) -3/4 (5.32)

Thus the approximation F1 "_ Flo becomes invalid near _ = _10 as the next order

approximation F1, becomes singular owing to inclusion of the fll 3/2 term in (5.20).

However, this does not affect the conclusion about the non-existence of solution. Here, we

present the details of the analysis of this innermost region for the sake of completeness.

We rescale variables once again in the neighborhood of _1 = _1o :

_1 = _1o + /3112/7 _2 (5.33) i

Then for _2 = O(1)

F1 = -ill 3/7 F2(_2) --," (5fi-)
J ]

]

, ]to the leading order (5.20) and (5.23) simplify to i
// ]

1 F,," - .,-
F2- + i (5.35)

F,1/3 F"'j /
/

For large _2, it is clear that the asymptotic beh_ '_r that is consis_ with (5.32) is given
J

by := f

['S( 314 e-3/4 f
¢2F2 =_) _ (5.36)

J

.. . _hisihavior found by linearizing (5.35) about (5.36) andThe transcendentalcorrecuo___ n _o =_
J

• • j=_he
examining the homogeneous_, r_' equation is a multiple of

/ e,,,,, _,'/' [1 -+:o(1)]
........ (537)

J

/
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This is transcendentally large for Arg (2 in (-4_r/7, 47r/7) and transcendentally small for

Arg (2 in (4r/7, 12_r/7). It is necessary to suppress the transcendentally large behavior

for large _2 when Arg _2 is in (-4_r/7, 47r/7) since the transcendental behavior given

in the above equation matches to the following transcendentally small correction for small

_., (_,-F:. ,_, [1 + ,,(1)]
e "0 (5.38)

This was determined by linearizing (_, ?0) and (5.21) about F1o and looking for WKB type

solutions for small fll to the resulting homogeneous equation. The expression in (5.38)

matches to a constant multiple of (5.30) for large (1 and small (3 • On the otherhand,

for large (3 and small [1 + iq([ , a multiple of (5.30) will match with C2 g2 in sector

2 in Fig. 3 as required. Since (5.35) is autonomous, the other degree of freedom of the

solution]h the sc._n i order differential equation is the arbitrariness of the choice of origin

of _2 , but this does not affect the matching. Thus a unique value of C2 in (5.2) can be

determined in this matching procedure. However, as we concluded before, the finger tip in

this case is not smooth.

_c. Case o_f Ca G:l/2(1- 21)-1_ 2 >> 1 or order unity.

In this case, each of 72, /31 are large, but 83 can be large or small or O(1) compared

to uniuz. It is appropriate tc _sduce the transformation

FI((I)

/_23/4 r 2/7 (1 + iq()

? 2q2

W1(_I) -----" fl_--r4/7(I H-q2)
2q . g(¢) (5.40b)

(5.39)

(5.40a)

into equations (3.3) and (3.4), which to the lem,lgo_r in /33/4 r -2/7 , assumed small,

for _1 O(1) on elimination ofwl , reduces to

i 83

r_', :'_
ORIGINAL PAGE IS_:::-_ ........._

OF POOR QUAtl_,A4,_ :--'*::'_

!

30



w

T"

1 [ Fi" 3 (F_.'- 1) 2 ]+ _1/8 (_1_Fi)3/2 + _ (_l_yi72j (5.41)

Here, in this case we assume that Ca -1/2 A-1 (1-2A) >> 1 in order that

r_2/7 /_3/4 >> 1 . This assumption is found to be satisfied for the class of solutions

found for Ca >> _ . This will be assumed to be the case. Note that for (1 = O(1) ,

Ca n, = O (A 1/2 (1 -2A) -1/2 r 117 Ca/_2 3/8 ) and using the definition of r and /_2, this

is found to O(Ca 3/4) << 1 . Thus the Bretherton approximation used in the derivation

of (5.41) from (3.3) and (3.4) is indeed valid.

First, when Ca _-1/2 (1- 2A)-IA 2 >> 1 , it is clear that /_3_2 17/8 << 1,

/_ _-7/4 21/8
lP2 << 1 and /32 << 1 . Of these small parameters _1 f12 7/4 is the largest.

To the leading order

F{ = F{o (5.42)

where F'lo is determined by the nonlinear algebraic equation

1
F'1o + ,1/3 = 0 (5.43)

(¢1 F' )

The next order correction is clearly

81 (1- F_') (5.44)
F_, - -2_v*3(¢1- FL)4/3+ 1

Note that in the upper half _1 plane, F{, is singular when

_1 -- 4ei3"/43-3/4 -- _1° (5.45)

where the local behavior of F_o and F_, are given by _._

3 3 1/2 //

FL ~ _io - (g_lo) (_1-_10)1/2+ .. -/ (5.46)

F_, ,_ /_1 1 1 _,_-I-- (5.47)

as can be seen by analyzing (5.43)a_d (_.44). The minus sign preceding the (_1o)1/2 term

in (5.46) is .the only choice consistent with the behavior F{o ,,_ -_" 1/3 for large _1 on
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the real positive _1 axis (with the principal branch choice) as was determined numerically

by solving the nonlinear algebraic equation (5.43) for F' for each ff taking care thatlo

there is no large jump in the the argument of _1 - F_ 0 between neighboring _ points

(assuring us that we are on the same branch of the Riemann sheet). Now, it is possible to

continue to try to find the next order correction

our purpose it will suffice to note that for Ca

leading order behavior of F1 is:

F1, in a similar fashion. However, for

>> G112 (1-2),) :k-2 , the two term

F1 "_ FI, + Fll -- FA (5.48)

To find transcendentally small corrections to this behavior, we linearize equation (5.41)

about Fa and look at the homogeneous part of the equation whose solution will generate

terms with transcendental dependence in /31 , /32 and /33 • By a standard dominant

balance argument on the resulting linear equation, tedious, but routine calculation shows

two possible behaviors for the solution to the homogeneous equation. These will be denoted

by FHI and FH, and their derivatives are given by

__,_[f,1 )"' + + c1-,,,
fix o 1o [3((1- e_o _4/3+1lF' = (_1 _, _4/3

HI -- _'1o/ e

z TIo , 11e

F_, = e z_'_' [fo _1 (_1-F10) de1 + o(1)1

(5.49)

(5.50)

Note that in (5.49), the occurrence of the second term in the exponent is due to the

inclusion of F_, as given by (5.47). The product of _-_ and o(1) term appearing in

the exponent, in (5.49) depends on the coefficients /31 , f12 and f13 and terms of this

!

r

W

product can in some _es be larger than unity and therefore exceed the second term in

the exponent in (5.49) which does not contain any parameter. However, it is convenient

in our case to isolate the parameter-independent O(1) term in the exponent in (5.49), as

we have done, and write the remainder which hasuo pa_meter_jndependent O(1) term , :

as the product of :.z_ and o(1) For our purpose in-determining-the lea_ng order_
_01 "
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selection rule, it will not be necessary to find any of the o(1) terms in the exponents in

(5.49) and (5.50) aside from noting that they are real on the real _1 axis. To connect the

behavior the behavior of transcendental terms in (5.49) and (5.50) to the far field behavior

where transcendental terms are linear combinations of gl and g2 as defined in (4:17),

one needs to introduce an intermediate scale variable:

-P,, = F,,

Then for _3 = O(1) , _1 ---* oo , one finds the equation for __

d3-P/_ 1 n3cl/6 [1 -I- o(1) 1 d2-_R ¢3/2 dFH
_,3 d_3d_ 3 _'1_3 -_3 _6 [1 -4- o(1) 1 _

(5.52)

reduces to

= 0 (5.53)

The two possible solutons to this equation for large _1 are

HI = e

,,, = (5.55)

For large _3 , the behavior in (5.54) and (5.55) matches with g[ and g_ respectively.

On the other hand for small _3, it is clear that (5.54) and (5.55) correspond to F_, and

F_, as given by (5.49) and (5.50) respectively. The details of the Stokes fines in different

nested inner regions _1 = O(1) and _3 = O(1) are shown in Figs. 5 and 6. The solid

lines are the Stokes lines with respect to F_, and the dotted lines are the ones respect

to F_ Thus, in order that there be no transcendentally large term in sector I and II

of Fig. 3, it is necessary that the form of transcendental of transcendental correction to

(5.48) for large _1 be given by a multiple of F_, in sector I and of F_ in sector II of

Fig. 5. Also, note that gl is completely real for ( on the imaginary axis between iq and

i/q . Also, P_, is real on the real and positive _3 axis. Thus the requirement that the

imaginary part of the transcendental correction for f be completely real on some interval
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on the imaginary ( axis including i , to the leading order, is equivalent to requiring that

the multiple of gl in the transcendental correction in sector I of Fig. 3 be real, which in

turn implies that the coefficient of F_, in sector I of Fig. 5 be real. Now, to find what

this coefficient must be, we introduce an inner variable in the neighborhood of _1 = (1o ,

where the approximation F' ,-_ F_o becomes invalid.

( )2/3 11_1 ( 1

) 113 213 2/3
1( )

_2

= O(1) , to the leading order (5.41) reduces to:Then for ,,2

113

_2 (5.56)

F_(_2) (5.57)

-_2 + F_2 = -F_' + Z4F_" (5.58)

where

_4 = 3 5 _,ho ,o_5/3 (5.59)

Under the conditions of this case, we note that f14 <_< 1 . To the leading order, if we

ignore the _4 term completely, we get the exact solution

Ai'(_2)
F_.- Ai(_2) = F_ (5.60)

and this matches with (5.46) for [_21 >> 1 for argument _2 in the interval (-7r, 7r/3) cor-

responding to small ]_1 - _1ol with Arg (_1-(1o) in the range (-37r/4, 7_r/12) as can

be seen from the asymptotic expansion of the Airy function and properties of its analytic

continuation in different sectors over different ranges of arguments. To the behavior (5.60),

one can add a transcendentally small correction for small _4 or large _2 that is a multiple

of e_:1 (e'-e',) away from the immediate neighborhood of the set of _2_ , the j th zero of

Ai(_2) , j ranging from 1 to c_ . For large _2 this correction is transcendentally small

onlywhen Arg_l_2 is in the range (7r/2, 3_r/2),i.e. Arg(_l-_lo)in (3_-/8, 117r/8).

This transcendental term matches with FH_ The multiplicative constant term is found
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by requiring that the solution to (5.58) contain no transcendentally large term in _2 for

Arg _2 in the interval (-7_r/8, _r/8). However, we will not need this constant multiple in

the determination of the finger width. The transcendental correction for large _2 with the

argument of _2 in the interval (-Tr, -7r/3), i.e. Arg (_1 - _10) in (-3_r/4, -r/12)" can

be directly calculated from the behavior (5.60). We find that for Arg _2 in (-Tr, -7r/3),

F_. -_21/2 - i _1/2 xF _/_~ e.-. (5.61)

and this matches with the behavior

1o + A1F_ (5.62)

provided that

A1 -- i u_V2u2 e-_3_'''_-'[Io''° [(_'-_°_, '0)-'" + '_]+ o(1)]d.

[.c,_-.; #. ,,-._' , ]
13C_2_p,_o )4/_ +11 _(e_.- elo ) -T

e (5.62)

where

Ul ---- ) 2/3 1/3 1/3_1 ( i

u2 = -_1o

On numerical evaluation, we found

Im d(1 (_1- F_o -[- _ = -0.473

Im

L [3(_1 - FJ.o) 4/3 "_ 1]

The condition that A1 be real is then equivalent to

_ ,_714 1

0.473 ""2 [1 -I- o(1)]- 1.27 "t- -Arg Ul
131 2

?r
+

2
Arg u2 ÷ ?2 7r

(5.64)

(5.65)

(5.66)

-1.27

(5.67)

(5.68)
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Thus, if we drop the o(1) term in (5.68), we obtain

r_7/4 (n 7r - _ -{- 1.27)
3 "2- ,-., (5.69)

81 0.473

Where n is a positive integer. Then going back to the assumption made in this case,

n must be a large integer. Generally, there is not much point in including the t_rm

-7r/8 + 1.27 in the right hand side of (5.68) because the product of /3_/4/fll and o(1) in

(5.68) that is neglected in (5.69) is larger than unity. However, we still include it to make

the formula more accurate in the special case when this product is smaller than unity as

is the case when each of the conditions _ << 1 and f12 21/8 87/4/81 << 1 i.e.

)2 Ca

for large but not too large n . Equation (5.69) implies that for _ a-ZTV >> 1 , for

sufficiently small Ca ,

 2(1 - A) 6 /2
,-, 2.06 (n -4- 0.279)_ (5.70)

Ca

The above expession is only valid for large

_= Ca

small n , this would imply _ _-77T -

For the lower branches, i.e. when n

Ca g-1/2 (1- 2 = O(1)

solution to the differential equation

n ,i.e. higher branches of solution since for

o(1).

is order unity, _Er_ - O(1) implying

one has to resort to numerical calculations of the

1 _1
=

_7/4Fi) "3 (_I-F_) 4/3j _ :: _:: :;_ _
(5.71)

with the requirement that the behavior of F_

(-_r/12, 7zr/12) be given by

for large (1 with Arg _1 in the interval

i fll 1 (5.72)
F; _ _11/3 + 3fl27/4 _4/3

and that it be real on the positive real _1 axis for sufficiently large _1 • Such solutions were

found numerically by integrating the first order equation (5.71) for F_ from L e i ,,/2 to
i

_z = _1, where we chose L = 12 and _1 = 0. with the asymptotic condition (5.72)

36



satisfied at the far end point. We required that Im F_(_I) = 0 in order to determine

_ga_ We doubled /) and changed 41 to other real positive values without noticing

any change in the final results to the accuracy quoted. We found the first two values of

to be 9.848 and 15.69 implying

)`2(1_ )`) gii2
- 3.061 (5.73)

(1-2)`) Ca

for the first branch compared to

)`2(1_ ),) 61/2- 4.878 (5.74)
(1-2)`) Ca

for the second branch. If we were to base the prediction on the formula (5.70), then for

n

been 2.634 and 4.695. Though formula (5.70) is formally invahd for small n , for

already we have a 4 percent accuracy of the asymptotic formula (5.70).

If we compare with the experimental situation where the gap to width ratio

and Ca

= 1 and 2, the coefficients on the right hand sides of (5.73) and (5.74) would have

n = 2,

are the two convenient control parameters, we have the prediction that for

1 >> Ca >> e,

)`2(1- )`) - 2.776 _ (5.75)
(1 - 2_) Ca 3/2

for the n = 1 branch and for n = 2,

)`2(1"- )`) - 4.424 _ (5.76)
(1 - 2),) Ca 3/2

Note that for 1 >> Ca >> _1/2, i.e. 1 >> Ca >> e2/3 , from formulas (5.71),

°'/' '_]= If on
(5.73) and (5.74), for fixed integer n , )` approaches zero like ca1/, or v=,/-----7

1 isthe other hand _ << Ca << _1/2 << 1,i.e. for e << Ca << e2/3 , )` -

Caal =Ca
proportional to _ or ,

The most interesting case is when Ca

that case the selected )` is in the open interval (0,

different n , do not asymptote to the same limiting

O(_1/2), i.e. Ca = e2/3 because in

½) and the different branches, i.e.

)` . This means that if one of the
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solutions were stable and the others unstable, there would be no mechanism for nonlinear

stability as put forward by Bensimon.

1
6. Case of _ >

For A > ½ , i.e. p2 > 0 , we will restrict the analysis to the case of p << 1 , i.e.

A close to one half. Our primary concern in this section will be to confirm the validity of

the previously calculated selection rule (Combescot et al (1986), Shraiman (1986), Hong &

Langer (1986), Tanveer (1987b), Dorsey & Martin (1987b) and Dorsey & Martin (1987))

for Ca << _7/3 . In this case, it is appropriate to introduce the following transformation

of dependent and independent variables:

1

¢ = p-_ (6.1)

/ = p2 (6.2)

g = p2 (6.3)

Then to the leading order in p, equations (3.3) and (3.4) reduce to

where

_2D" + _D' - 2_ 2

(_2 _ 1 -- _D') 3/2

_ e_/6 52 = -i5 (D + w) (6.4)
_ 1 - 1/6

_e_i_/3 53 (_2D" + _D' - 2_ 2)= + e_'/6_4 (6.5)
(_2 _ 1 - _D') 1/3 (_2 _ 1 - _D') 11/6

p3 4
= (6.6)6 7r

21013 pl/3 _"'_ g-1/2_2 ---- 3.878 7r2 _ Ca 1/6 (6.7)

1.3375Ca2/3

_3 = 22/3p8/3 (6.8)

7r2 V/-_'_1/2 Ca7/6 1___ (6.9)
_4 = 1.3375 _ _ pll/3

Note the differing definition of _ from previous work (Tanveer, 1987b). This corresponds to

multiplicative adjustment of the parameter G by _ as would be necessary for the Mclean-

Saffman theory to be valid even for Ca << G3 (assuming zero contact angle between the
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advancinginterface and the gap plates) asnoted earlier. The two equations(6.4) and (6.5)

can be convenientlyreplacedby a singleequation by defining a new dependent variable

G(() = (2_l__D, (6.10)

Then eliminating w between (6.4) and (6.5), we get

G' 3 G '2 e_/6 G1/6G' = i_-_ [_2-1-G] - i_3 e -_13G7/6G" ÷ _ 2 G _2 3 _ _5

ei. / 6 G,
--i_ /54 (6.11)

G1/3

One needs to look for solutions to (6.11) for different possibilities of the parameters _2, $3,

_4 and _ such that they match with the outer solution in sectors I, II and III of Fig. 3.

Depending on the relative size of these parameters, there is need for a set of nested inner

regions as in section 5, In this paper, we do not address the possibility of solutions for

different ranges of parameter. We only concentrate on the specific case Ca << _7/3 and

= O(1) . It is clear that in this case _2 , $3 and _4 are each much smaller than unity

so that the thin film effect totally drops out. In that case, in order to relate to earlier work

(Tanveer, 1987b), it is convenient to go back to the original equation (6.4) and (6.5) which

is now reduced to one equation

_2D" + _D'-2_ 2 _ -i_ D (6.12)

(,_2 _ i -,_D') 3/2

which is the same nonlinear equation as (Tanveer(1987b)) (equation 127 of that paper

when _1 = _ and a -- 1 , i.e. symmetry is assumed) as for the MS theory. From

previous work, one needs to find solutions of (6.12) so that

-2i
D _ (6.13)

for argument _ in the interval (-Tr,0) in order to match with the regular perturbation

series in G • For symmetric fingers, it is enough to require that the asymptotic behavior
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(6.12) hold for large _ with Arg _ in the interval [-_r/2, 0) with the requirement

that the solution be completely real on the negative imaginary _ axis for sufficiently

large _. This condition determined _ when it was order unity. For large _ asymptotic

analysis is possible and the details are given in the previous work (Tanveer, 1987b) which

is equivalent to earlier analysis of the MS equations by Combescot et al 7.

When 6 = O(1) and Ca = O(_713), the _2 factor is order unity, whereas each

of _3 and _4 is negligible compared to unity. In that case, we can still reduce to one

equation

_2D" + _D'-2_ 2 _ e_/6 _2 = -i_ D (6.13)

(_2_ 1-_D') 3/2 (_2_ 1-_D') 1/6

and numerical computation of these solutions using the same procedure as detailed in the

earlier paper (Tanveer, 1987b) shows that for 62 = O(1) , as we increase _2 from 0 to

10, the corresponding 6 increases monotonically. This means that the finger is fatter then

for the MS boundary conditions when parameters are such that the variation of transverse

curvature is more important than the thin film leakage term. This is consistent with

direct numerical computation of Schwartz & DeGregoria (1987) where inclusion of just

the transverse variation of curvature term while neglecting flow into the thinfilm region

resulted in fingers with width more than ½ in the limit of small _ .

We leave the detailod analysis for othor ranges of Ca and _ for ), > ½ for the

future.

7. Analytic theory for arbitrary capillary number:

Eliminating g between (3.3) and (3.4) one finds

_4gCa _O,(c a _) _, + _ h'2_f' = _ h'l- 3 ]4_ (¢) _1 (Ca n:)
7r

4_ 1 1' 12 -- llmO(C an®) -
rc R _ (Can®) - h3(_) + _'2--_

_/12_Ca 1 (12-/1)+ zc2 R -(2--i ml(Can") + a

h4(_)

(7.1)

z

=

=

Z

,i L
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where n., _I , 11 and 12 are as in (2.18),(2.19),(2.20) and (2.21)respectively; hl ,

h2 , h3 and h4 are as defined in (3.5)-(3.8). Note that on taking the derivative of (2.18)

with respect to (

!

72z

2 i_/2
l_/21_ l_1/2Ii l_/21_] (7.2)+

and this involves the second derivative of f

For G = 0,

12o -- 11o

(f_} + h30(() - a 0 - m°(Can O) ('2--_ - 0 (7.3)

as can be obtained from (7.1) or through direct analytic continuation of (2.23) where

( 0 1 /2o--11o) (7.4)
h3_(() - :T m°(Ca n,, 2 -_2--'_

Z2o = 1--p2(2 -Jr- ( ((2_ 1)f_ (7.5)

1 (1 _ (2)fb(_) (7.6)llo = (2_ p2 +

Equation (7.3) has no exact solution. We can determine f0 for I(] -< 1 using the

convenient power series representation in (2.24). However, we are interested in the behavior

of f0 and the next order regular perturbation term fl for I(] > 1 to find possible

sources of nonuniformity of the expansion. If we define

f,(¢)= f_(;_1) (7.7)

then numerical calculation of the coefficients in (2.24) allows us to calculate f_ and its

derivative (which is related to f6'(1/() ) conveniently. Similarly the power series in (2.23)

allows us to calculate h3o • Equation (7.3) then becomes a nonlinear algebraic equation to

determine f6(() for ](] > 1, which can be determined numerically by Newton iteration.

Note that this kind of trick can be of wide applicability in other problems such as

Kelvin-Helmholtz and Rayleigh-Taylor problems where use of numerical calculations and
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conversion of nonlocal equations into local algebraic and differential equations can be

exploited to study the evolution of singularities in the unphysical plane using a numerical

procedure.

Assuming fk , f_ and

determining f_ for any given (

h3o as given, the nonlinear Mgebraic equation (7.3)

outside the unit circle, can be symbolically expressed as

E(f6, () = 0 (7.8)

where E is a function of two independent variables. From implicit function theorem,

(7.8) determines f6(() such that E(f_}((), () = O.

From equation (7.1), one can easily see that the next order perturbation term fl as

expressed in (2.25) satisfies an equation that can be written symbolically as

EI_ (f_((), () f_(() = R1 + n2 f_' (7.9)

The expressions for T_I and 7_2 can be obtained from (7.3) by a straightforward though

lengthy algebra. Note that each of R1 and R2 involve f_(() b, ddes f_: f_ ,

f{((-1) and h3o Each of the latter four functions are considered known as they are
, =

readily determined by using the power series representations for f0 and fl as I(-11 < 1.

It is clear now that there is a singularity of f_ at ( = (0 where

EI_ (f6((o), (0) = 0

It is not difficult to see that at ( = (0, where El, " (f_((), () =

f(_' is also singular. If we define

A = f_ ((o)

A1 = 7"_2(f6((0), (0)

A2 = E¢ (f_((0), (0)

1

A3 - 2 EI_'I; (f_((0), ¢0)

(7.1o)

0, the second derivative

(7.11)

(7.12)

(7.13)

(7.14)

_=

i

i

tt =

=

=
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Then it is not difficult to seethat in the neighborhoodof _ -- _0

f6 ~ A - _ (¢ _ _0)1/2 (7.15)

Near ¢ = (0, which is a point of nonuniformity of the outer perturbation expansion,

it is appropriate to introduce inner variables

- _0 = ul _ (7.16)

f' = f6(_0) + u2 F'(_) (7.17)

where

and

Then for _ =

A2/3 _1/3

- (7.18)

A /3A /3 (7.19)
u2 = A2/3

0(1) , equation (7.1) to the leading order in _ reduces

-F '2 + _ = F" (7.20)

which is exactly the same equation as in section 5c for _2

derivative term F I''

solution to (7.20) is

does not appear at the leading order.

= O(1). Note that the highest

However the appropriate

F' - Ai'(_) (7.21)
Ai(_)

which is singular at the zeroes of Ai(_) and there exists an inner neighborhood around

each of the zeroes that where the third derivative term will be important.

Note in order that the behavior of F' be given by the specific solution (7.21) to

(7.20), the structure of the Stokes lines should be qualitatively the same as that found in

case (5c). This is expected to be true when Ca is less than 0.2 or so, i.e. within the

experimental range; however this needs to be verified numerically.
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The solution (7.21) is matched to the outer solution

f' ,_ f_ -t- _1/2 f_ 4- ..C1 e¢-_''W+ + w,+ (7.22)

for large _ with corresponding C on the imaginary axis and by following the procedure

in section 5c, it is not difficult to see that the condition of C1 being real is equivalent to

-_-l/2Im [Wo(_z)- Wo(Co) + _I/2(WI(CI)- Wo(Co))] - _'/2 + Argu2

1

-- -_Arg U 1 = n 7r (7.23)

is any point on the imaginary C axis just beyond C = i , and n is somewhere C_

integer.

Equation (7.23) is the selection rule. In order to get concrete results one needs m 0 ,

m 1 , n 0 and al for complex arguments since the analysis in section (5c) suggests that

C0 Will not be on the imaginary C axis, where n, is real, but somewhat off the axis.

From calculation, we find

EI_ (fo(C), C) -- C (1 -FQ3o) (7.24)

where

o i (12o+ llo)
Q3o = - m°(Ca n, (C)) - Ca (12_ -/1°) m O' (Ca n o ) (7.25)

4 1312 l 1/2
2° 1°

Thus, the singularity point is where Q3o = -1. For small Ca, noting the behavior of the

i
Reinelt functions, this can only happen close to where l_01 is large' i.e. near C = _-, the

zero of the derivative of the conformal map corresponding to the Saffman-Taylor solution.

The effect of finite Ca would perhaps be to move C0 even further from the imaginary

axis. However, there is an important issue that we are unable to answer at this point. If

C0 moves way off the imaginary C axis, the determination of finger width selection involves

knowledge of the analytic functions m 0 ,.., etc for complex arguments whose imaginary

part can be large. Numerically, one only finds approximate solutions for m ° ,.. for real
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values of the arguments. There could two analytic functions that are quite close to each

other on the real axis but differ significantly as we move off the real axis. If the problem is

well posed for small 6 , the deviations of the two functions just mentioned in the complex

plane should not matter. However, if (0 has a significantly large real part, it will matter.

Does this mean that (0 cannot move too far from the imaginary axis? Or does it mean

that the problem is ill posed for even non zero 6 << 1 for Ca = O(1) in the sense

that insignificant changes in the form of the functions m ° , m 1 , _0 and _1 on parts of

the real physical domain cause large changes in the selection. One is left to wonder if this

has anything to do with the evolution problem in the time dependent case where fractal

like structures (Maxworthy, 1987) have been observed in experiments at sufficiently large

Ca.

8. Summary of theoretical results and comparison with experimental data:

In this paper, we have found concrete results only in the limit where both 6 and

b
Ca are small, i.e. e2 << Ca <:< 1,where e is the gap to width ratio _ .

For )_ > ½ , we have found that the finger solutions of the MS theory where

6213A ,,_ _ + constant persist for Ca << _7/3 (<: 1 provided we make a

multiplicative adjustment of the previously calculated constant (Tanveer, 1987b, Dorsey

& Martin, 1987) by a factor of (_;)2/3. The possibility of other solutions with ), > ½ for

other ranges in the parameter space has not been investigated.

), < ½,for 6 << Ca << 1 ,wepredict a discrete set of finger solutions forFor

which

where

and for n >> 1,

A2(1 - A) 61/2- (8.1)
Ca

kl = 3.061 (8.27

k2-- 4.878 (8.3)

k,_ ,,_ 2.06 (n + 0.279) (8.3)
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Unfortunately, for most of the experiments to date, strict quantitative test for the

theoretical result (8.1) is not possible because most of the experimental data shows that

e is not small enough to make Ca and _ small at the same time (note _ -- e2 7r2/(12Ca)).

However, for the Tabeling-Zocchi-Libchaber experiment, the data shows general qualitative

agreement with (8.1) with n = 1 , i.e. the first branch, as shown in table 1 for some of the

smallest values of _ available. The theoretically predicted A in table I was obtained by

numerically solving the nonlinear equation (8.1) using standard Newton iteration. For the

range of the Tabeling et al experiment, we do not have any data for which the right hand

side of (8.1) is small compared to unity. Note that for small but fixed values of _ "as e is

decreased, both the theory and experiment suggest that 2, approaches 1/2. From (8.1),

we get 1-2)_ proportional to 62/_ 3/2 for _ << e <_<: _3/4 << 1.

Table 2 shows that there is very little agreement with the Kopf-Sill & Homsy exper-

iment where very skinny fingers were observed. It appears that in their experiment, the

SPHR conditions will be invalid in some small neighborhood near the tip, because the

product of the gap width b and the tip curvature (as calculated from the Saffman-Taylor

theoretical formula) is order unity. It is clear that in the Reinelt(1987a) derivation of the

interfacial boundary conditions, one assumes that the product of lateral curvature and

:u-

the gap width is small everywhere. However, this product at points away from the tip

is small for their experimentally observed finger and so the SPHR conditions hold except

right near the tip. We suggest that this in some sense is equivalent to a tip perturbation

on the regular Sail'man-Taylor finger and that might explain the similarity of the observed

features with that of Couder et al (1986) where a small bubble near the tip of the finger

is found to dramatically affect the selection mechanism. However, we are not sure how

to explain the observation of Kopf-Sill & Homsy that the skinny fingers are only found

for extremely clean systems. The theory presented here assumes the SPHR conditions to

hold everywhere on the interface and is therefore unable to account for the experiment.

Note that in our theoretical prediction, when _1/2 << Ca << 1 , the width A is

Z
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small. However, the product of tip curvature and the gap width, which is proportional to

£-2 e for small _ (using Saffman- Taylor formula), is proportional to Ca 3/2 and is far

smaller than unity as required for the validity of the SPHR conditions everywhere on the

finger boundary.

We conclude this section by discussing a finding of some theoretical importance. If we

go back to the analysis of section 5c, we notice that it is necessary to carry out matching

in a sequence of nested inner region,: _3 = O(1), _1 = O(1) and then _2 = O(1).

Note that the leading order equations in each of the inner regions contain parameters. If

at the outset, we had linearized the equations about F = 0 , tlmse set of nested regions

would not exist. Indeed, it i_ the nonlinearity of Flo that generated a nonuniformity

in FI_ , which accounted for the inner region where _2 = O(1) . The matching of the

behavior of this region to the next outer region where _1 = O(1) is what determined

the selection rule (8.1). A linearized equation would have failed to predict even the correct

scaling. It may be pointed out that the linearized analysis as of Shraiman (1986) has

been extensively used in selection problems both for the Saffman-Taylor problem as well

as in dene!ritic crystal growth. For the Saffman-Taylor problem with the MS boundary

conditions, the results are quite close to what one finds from a fully nonlinear analysis

(Combescot et al (1986), Tanveer (1987b), Dorsey & Martin (1987)), the only difference

being a small error in values of scaling constants. The reason that the linearized analysis

works for the MS boundary conditions is that in the inner region, where the nonlinear

analysis is relevant, there is only one parameter _ in the nonlinear equation that

has to be determined by matching to the outer solution. If one replaced this nonlinear

equation by a linear one, there will still be the same one parameter in the problem though

the actual numerical value of that parameter will not be correct. However, this parameter

contains all the scaling information. This is obviously not true in our problem with the

thin film and the nonlinear analysis is absolutely essential to get the correct scaling laws

as well as numerical constants.
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We havepresentedan analytic theory for the selectionof Saffman-Taylorfinger in the

presenceof the thin film that is neglectedin the previous theory based on the Mclean-

Saffmanboundary conditions. Precisescaling laws are calculated. There is prediction of

very skinny fingers. Unfortunately, direct quantitative verification from existing experi-

ments is not possible becauseBretherton's results are only valid for rather small Ca ,

and therefore a very small gap width to cell width ratio, far smaller than the existing

experiments, is necessary in order that G be small enough for the validity of our scaling

laws. However, there is qualitative agreement with one set of experiments. The completion

of details for arbitrary Ca provides some exciting possibilities that will be left for the

future. The importance of nonlinear analysis has been pointed out. The linear stabil-

ity of the steady states for boundary conditions incorporating thin film effects is also an

important problem that is left for the future.
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c Ca

1/112.5 0.0395

1/65 o.118
1/112.5 0.0263

1/65 0.0789

I/B
6000

6000

4000

4000

g 3.061
3.14

1.05

Expt. _ Theor. )_

0.48 0.481

0.47 0.447

0.247 x 10 -2 5.77 0.49 0.489

0.247 x 10 -2 1.93 0.48 0.470

Table 1. Comparison with Tabeling et al (1987) experiment for a few values of e and

Ca for which G was small. Note that B = G/Tr 2 , and is the same B introduced by
Tabeling et al. Also, note that values of experimental )_ quoted here are eyeball readings
from Fig. 8 of the Tableing et al (1987) paper.

e Ca g

0.38 x 10 -2

0.38 x 10 -2

0.38 x 10-2

0.38 x 10 -_

0.25

0.054

0.0128

0.0036

0.95 x 10 -_

0.33 x 10 -2

3.061 £Z2.
Ca

0.O89

0.85

7.35

48.44

Expt. )_ Theor.

0.15 0.24

0.20

0.25

0.31

0.44

0.49

0.50

Table 2. Comparison with Kopf-Sill & Homsy (1987) experiment.
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