INDEPENDENT ORBITER ASSESSMENT

Ξ.3

i i

<u>.</u>....

ASSESSMENT OF THE ELEVON ACTUATOR SUBSYSTEM

05 FEBRUARY 1988

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY HOUSTON DIVISION

SPACE TRANSPORTATION SYSTEM ENGINEERING AND OPERATIONS SUPPORT

WORKING PAPER NO. 1.0-WP-VA88003-05

INDEPENDENT ORBITER ASSESSMENT ASSESSMENT OF THE ELEVON ACTUATOR SUBSYSTEM FMEA/CIL

05 FEBRUARY 1988

This Working Paper is Submitted to NASA under Task Order No. VA88003, Contract NAS 9-17650

PREPARED BY: R.E. Wilson

1

R.E. Wilson Senior Analyst Independent Orbiter Assessment

Unvin APPROVED BY: A/J. Marinø

Section Manager-FMEA/CIL Independent Orbiter Assessment

APPROVED BY G.W.

G.W. Knóri Technical Manager Independent Orbiter Assessment

APPROVED BY: LI. McPhers Project Manager STSEOS

.

,

CONTENTS

ن ا المرا المرا

-

-

E. . .

Page

-

1.0	EXEC	UT:	IVE SUMMARY		1
2.0	INTR	ODI	UCTION		3
	2.1 2.2 2.3 2.4	Pu So Au Gi	urpose cope nalysis Approach round Rules and Assumptions		3 3 3 4
3.0	SUBS	YS	TEM DESCRIPTION		5
	3.1 3.2 3.3	De In H:	esign and Function nterfaces and Locations ierarchy		5 7 7
4.0	ASSE	SSI	MENT RESULTS		12
	4.1 4.2 4.3 4.4	- 1 - 2 - 2 - 1	Primary Actuator Switch Valve Assembly Servovalve Assembly Failure Comparison		16 16 16 16
5.0	REFE	REI	NCES		
APPE	NDIX	A	ACRONYMS		A-1
APPE	NDIX	в	DEFINITIONS, GROUND RULES, AND ASS	UMPTIONS	B-1
	B.1 B.2 B.3	De P: St	efinitions roject Level Ground Rules and Assum ubsystem Specific Ground Rules and	ptions Assumptions	B-2 B-4 B-6
APPE	NDIX	С	ASSESSMENT WORKSHEETS		C-1
APPE	NDIX	D	CRITICAL ITEMS		D-1
APPE	NDIX	E	ANALYSIS WORKSHEETS		E-1
APPE	NDIX	F	NASA FMEA TO IOA WORKSHEET CROSS REFERENCE/RECOMMENDATIONS		F-1

i

List of Figures

Page

Figure	1	-	ELEVON FMEA/CIL ASSESSMENT	2
Figure	2	-	ELEVON SUBSYSTEM OVERVIEW	8
Figure	3	-	TYPICAL ELEVON ACTUATION SYSTEM	9
Figure	4	-	SWITCHING VALVE	10
Figure	5	-	ELEVON ACTUATOR SCHEMATIC	11

List of Tables

Page

Table	I	-	SUMMARY O	F IC	AC	FMEA ASSESSMENT	12
Table	II	-	SUMMARY O	OF IC	AC	CIL ASSESSMENT	13
Table	III	-	SUMMARY O	OF IC	AC	RECOMMENDED FAILURE	
			CRITICALI	TIES	5		14
Table	IV	-	SUMMARY O	OF IC)A	RECOMMENDED CRITICAL ITEMS	15
Table	V	-	IOA WORKS	HEET	C N	UMBERS	15

Independent Orbiter Assessment Analysis of the Elevon Subsystem FMEA/CIL

1.0 EXECUTIVE SUMMARY

The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the STS Orbiter and GFE Projects Office to perform the hardware analysis using the instructions and ground rules defined in <u>NSTS 22206, Instructions</u> for Preparation of FMEA and CIL, 10 October 1986.

The IOA effort first completed an analysis of the Elevon Subsystem hardware, generating draft failure modes, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Elevon hardware.

The IOA product for the Elevon analysis consisted of twenty-five failure mode "worksheets" that resulted in seventeen potential critical items being identified. Comparison was made to the NASA FMEA/CIL, (as of 7 December 87) which consisted of (Note 1) twenty-three FMEAs and thirteen CIL items. The comparison determined if there were any results which had been found by the IOA but were not in the NASA baseline. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement. Based on discussions with the NASA subsystem manager, no additional non-CIL FMEAs are anticipated for the post 51-L update. Figure 1 presents a comparison of the proposed Post 51-L NASA baseline, with the IOA recommended baseline, and any issues.

Note 1. The comparison and correlation of NASA FMEA <u>Non-CIL</u> <u>items</u> is based on the Pre 51-L baseline since all post 51-L FMEAs have not been received as the date of this report.

The initial issues which were resolved arose due to NASA combining failures which had the same effect in one FMEA whereas IOA wrote a separate analysis for each failure. Minor issues such as fail or pass of screens did not effect the number of CIL items agreed to.

FINAL NASA CIL ITEMS BASELINE AS OF 7 DECEMBER 1987 AND NASA NON-CIL FMEAS – PRE 51-L BASELINE **

2.0 INTRODUCTION

2.1 Purpose

The 51-L Challenger accident prompted the NASA to readdress safety policies, concepts, and rationale being used in the National Space Transportation System (NSTS). The NSTS Office has undertaken the task of reevaluating the FMEA/CIL for the Space Shuttle design. The MDAC is providing an independent assessment of the Orbiter FMEA/CIL reevaluation results for completeness and technical accuracy.

2.2 Scope

The scope of the independent FMEA/CIL assessment activity encompasses those Shuttle Orbiter subsystems and GFE hardware identified in the Space Shuttle Independent FMEA/CIL Assessment Contractor Statement of Work. Each subsystem analysis addresses hardware, functions, internal and external interfaces, and operational requirements for all mission phases.

2.3 Analysis Approach

The independent analysis approach is a top-down analysis utilizing as-built drawings to breakdown the respective subsystem into components and low-level hardware items. Each hardware item is evaluated for failure mode, effects, and criticality. These data are documented in the respective subsystem analysis report, and are used to assess the NASA and Prime Contractor FMEA/CIL reevaluation results. The IOA analysis approach is summarized in the following Steps 1.0 through 3.0. Step 4.0 summarizes the assessment of the NASA and Prime Contractor FMEA/CILs that is performed and documented at a later date.

Step 1.0 Subsystem Familiarization

- 1.1 Define subsystem functions
- 1.2 Define subsystem components
- 1.3 Define subsystem specific ground rules and assumptions

Step 2.0 Define subsystem analysis diagram

- 2.1 Define subsystem
- 2.2 Define major assemblies
- 2.3 Develop detailed subsystem representations

Step 3.0 Failure events definition

- 3.1 Construct matrix of failure modes
- 3.2 Document IOA analysis results

Step 4.0 Compare IOA analysis data to NASA FMEA/CIL

- 4.1 Resolve differences
- 4.2 Review in-house
- 4.3 Document assessment issues
- 4.4 Forward findings to Project Manager

2.4 Ground Rules and Assumptions

The ground rules and assumptions used in the IOA are defined in Appendix B.

4

_

3.0 SUBSYSTEM DESCRIPTION

4.5040

The following sections describe the elevon actuator system hardware. Each of the four elevon actuator systems (Figure 2) comprise the following components: a flow cutoff valve, switching valve, EH servoactuator, secondary pressure transducer, bypass valve, power valve, primary actuator, primary actuator delta pressure transducer, and primary actuator position transducer.

NUMBER OF AN OTHER OF AN

3.1 Design and Function

The elevon actuators are located at the trailing edge of the wing surface. The proper function of the elevons is essential during the dynamic flight phases of ascent and entry. During flight the Orbiter is controlled, in part, by four aerosurfaces called elevons. An elevon is a control surfact which performs the same functions as an elevator and an aileron on a conventional airplane. In the ascent phase of flight, the elevons are used for relieving high wing loads. For entry, the elevons are used to pitch and roll the vehicle.

Each elevon actuator is driven by one primary actuator. Control of the actuator is provided by four EH servovalves. These servovalves are used to create a secondary delta pressure which controls the flow of hydraulic fluid to one power valve. This power valve, when actuated, diverts fluid to the primary actuator (Figure 3).

The flow cutoff valve (or low-pressure bypass valve) is used to circulate hydraulic fluid during certain thermally cold periods. The flow cutoff valve should be opened during circulation pump operations only. The flow cutoff valve must be closed during highpressure operations or degraded elevon performance will result.

The switching valve diverts pressure from one of the Orbiter's three hydraulic systems to supply adequate fluid and pressure to the primary and secondary elevon hydraulic system. The switching valve (Figure 4) contains two pistons, a primary and a secondary. If the pressure in the primary Orbiter hydraulic sytem drops below 1200 to 1500 psi, the switching valve primary piston will translate and allow the secondary hydraulic system to provide the required fluid and pressure to the downstream actuators. If the second hydraulic system is unable to provide pressure above 1200 to 1500 psi, the second switching valve piston will translate allowing the third hydraulic system to provide pressure to the actuator and servovalves. Linear Variable Differential Transformers (LVDTs) attached to the switching valve pistons indicate to the crew which hydraulic system is powering the elevon. The many small passages, orifices, and restrictions in the secondary side of the servovalve assembly are highly sensitive to contaminants which enter the hydraulic sytem. A 15 micron filter conditions the hydraulic fluid which supplies the secondary side of the actuation system.

The elevon bypass valve is used to isolate an erroneous servovalve output from influencing the power valve movement. If secondary delta pressure exceeds 2200 psi for 120 milliseconds, the bypass valve diverts fluid away from the power spool to the return, preventing the erroneous or failed channel from creating a potential force-flight or incorrectly influencing power spool and elevon motion.

The secondary delta pressure transducers are used to measure the instantaneous pressure differential between the hydraulic source (nominally 3000 psi) and the servovalve reduced pressure. The transducer comprises a dual-spring balanced piston and a LVDT which transmits a transducer piston position in the form of a voltage to the Aerosurface Servo Amplifier (ASA). The ASA can use this voltage to determine the delta pressure across the corresponding servovalve. This information is used to bias equalization of four servovalve channels and activate their corresponding bypass valves when a channel cutoff is required.

The power valve combines four servovalve induced secondary delta pressures into a translation representing the commanded elevon movement. As the power valve moves, it allows a primary pressure to translate the primary actuator and its corresponding elevon. When one of the four secondary pressures are bypassed or erroneous, the remaining three pressures will overdrive the power valve.

The primary actuator is responsible for the ultimate motion of the elevon. It is controlled by a secondary pressure power valve which diverts primary hydraulic fluid and pressure to the actuator (Figure 5).

The primary delta pressure transducer is used to measure the instantaneous pressure differential across the primary actuator. The transducer comprises a dual-spring balanced piston and a LVDT which transmits a transducer piston position in the form of a voltage to the ASA. The ASA uses this voltage to determine the delta pressure across the primary actuator.

The position feedback transducer feeds the instantaneous position of the elevon to the ASA and General Purpose Computers (GPCs). The transducer consists of a LVDT calibrated to feedback a position voltage to the ASA. This information is used by the ASA for servovalve biasing and to the GPCs for Flight Control System (FCS) and caution and warning inputs. The current elevon position is displayed to the crew on the surface position indicators on Panel F7.

= :

3.2 Interfaces and Locations

The elevon system hardware is located at the trailing edge of the Orbiter's wings. The elevon system interfaces with the Orbiter's three hydraulic systems, each corresponding to one Auxiliary Power Unit (APU). The elevon system hardware interfaces with the ASAs which in turn interface with the FCS portion of the GPCs for system control, fault detection, actuation and feedback.

3.3 Hierarchy

<u>19-1</u>

100

 Figure 2 illustrates the hierarchy of the Elevon hardware and the corresponding subcomponents. Figures 3 through 5 comprise the detailed system representations.

A track that I

_

-

÷

Figure 2 - ELEVON SUBSYSTEM OVERVIEW

.

E. 3

813

in a Na sa

2: - :

52C

P_P primary pressure R_P primary return

P_{SI} standby one press R_{SI} standby one return

P₅₂ standby two press R₅₂ standby two return

₩²¹-1

4.0 ASSESSMENT RESULTS

The IOA analysis of the elevon actuator hardware initially generated twenty-five failure modes worksheets and identified seventeen Potential Critical Items (PCIs) before starting the assessment process. No additional failure mode worksheets were generated during the comparison. The analysis results were compared to the proposed NASA Post 51-L baseline of (Note 1) twenty-three FMEAs and thirteen CIL items. Upon completion of the assessment all of the IOA and NASA failure modes were in agreement.

Note 1. Only Post 51-L NASA CIL items have been received; all Post 51-L NASA FMEAs were not received as of this report date. Non-CIL items comparison was based on review of NASA Pre 51-L baseline and the IOA analysis.

Appendix C presents the detailed assessment worksheets for each failure mode identified and assessed. Appendix D highlights the NASA critical items and corresponding IOA worksheet ID. Appendix E contains IOA analysis worksheets supplementing previous analysis results reported in STS Engineering and Operations Support (STSEOS) Working Paper 1.0-SP-VA86001-25, Analysis of the ELevon, 3 December 1986. No supplemental analysis worksheets were generated for the Elevon assessment. Appendix F provides a cross-reference between the NASA FMEA and corresponding IOA worksheets. IOA recommendations are also summarized.

-

=

=

A summary of the quantity of NASA FMEAs assessed, versus the recommended IOA baseline, and any issues identified is presented in Table I.

TABLE I Summary of IOA FMEA Assessment							
Component	NASA	IOA	Issues				
o Primary Actuator o Check Valve o Primary Delta P X-DCER o Primary Feedback X-DCER	6 2 2 1	6 2 2 1	0 0 0 0				
o Switch Valve Assembly o Switch Valve o Flow Control Valve o Filter	2 2 1	2 2 1	0 0 0				
o Servovalve Assembly o E-H Servovalve o Bypass Valve o Sec. Delta P X-DCER o Power Valve	3 2 1 1	3 2 1 1	0 0 0 0				
TOTAL	23	23	0				

A summary of the quantity of NASA CIL items assessed, versus the recommended IOA baseline, and any issues identified is presented in Table II.

TABLE II Summary of IOA CIL Assessment							
Component	NASA	IOA	ISSUES				
o Primary Actuator o Check Valve o Primary Delta P X-DCER o Primary Feedback X-DCER	2 2 1 1	2 2 1 1	0 0 0 0				
o Switch Valve Assembly o Switch Valve o Flow Control Valve o Filter	2 1	2 1	0 0				
o Servovalve Assembly o E-H Servovalve o Bypass Valve o Sec. Delta P X-DCER o Power Valve	2 1 1	2 1 1	0 0 0				
TOTAL	13	13	0				

Ξ. 3

and the second se

P

.

. . .

Table III presents a summary of the IOA recommended failure criticalities for the Post 51-L FMEA baseline. Further discussion of each of these subdivisions and the applicable failure modes is provided in subsequent paragraphs.

TABLE III Summary of IOA Recommended Failure Criticalities									
Criticality:	1/1	2/1R	2/2	3/1R	3/2R	3/3	TOTAL		
o Primary Actuato o Check Valve o Primary Delta P X-DCER o Primary Feed-	r 2 1	1		2	l	3	6 2 2		
back X-DCER		1							
o Flow Cntrl VI o Filter	v 1					2	2		
o Servovalve Assy o E-H Servovalv o Bypass Valve	e	2		2		1	3 2		
o Sec. Derta P X-DCER o Power Valve	1	1					1 1		
TOTAL	7	5		4	1	6	23		

14

Of the failure modes analyzed, 17 failures were determined to be critical items. <u>A summary</u> of the IOA recommended critical items is presented in Table IV.

-

1 1 2

	TABLE IV Summary of IOA Recommended Failure Criticalities								
	Criticality:	1/1	2/1R	2/2	3/1R	3/2R	3/3	TOTAL	
0	Primary Actuator o Check Valve o Primary Delta P X-DCER o Primary Feed- back X-DCER	2 1	1			1		3 2 1	
0	Switch Vlv Assy o Switch Valve o Flow Cntrl Vlv o Filter	1 1	1					2	
0	Servovalve Assy o E-H Servovalve o Bypass Valve o Sec. Delta P X-DCER		2					2	
	o Power Valve	1	*					1	
	TOTAL	7	5	•		1		13	

The scheme of assigning IOA assessment (Appendix C) and analysis (Appendix E) worksheet numbers is shown in Table V.

TABLE V IOA Worksheet Number					
Component	IOA ID Number				
Primary actuator	Elevon-106, 107, 117, 118, 119, 120, 121, 122, 123, 124, 125				
Switch Valve Assembly	Elevon-101, 102, 103, 104, 105, 108				
Servovalve Assembly	Elevon-109, 110, 111, 112, 113, 114, 115, 116				

4.1 Primary Actuator

Failures which were related to the Elevon actuator as an entity were analyzed. Critical failures were the loss of hydraulic fluid due to gross and slow leaks. There failures were caused by component rupture, manifold leaks, cylinder and actuator body fractures and seal leaks. Other critical failures were associated with mechanical failures of the ram/piston assembly. The loss of the four primary feedback transducers due to mechanical failure of the gauged linkage also resulted in a critical failure.

4.2 Switch Valve Assembly

Components of the assembly were individually analyzed. The most critical failures were associated with contaminated hydraulic fluid which restricted fluid flow, clogged filters and jammed valves which resulted in failure to switch hydraulic sources and to prevent fluid flow through a check valve to the main drive piston.

4.3 Servovalve Assembly

The worst critical failures were caused by 1) hydraulic fluid contaminated which caused the main power alve to jam open or closed, and 2) rupture of the power valve housing due to fatigue which caused loss of all hydraulic fluid with associated loss of actuator control. Loss of command signal input, jammed valve and fractured flapper valve caused loss of a servovalve; however the three remaining servovalves overdrive the failed servovalve providing nominal control.

4.4 Failure Comparison

The reason for the IOA showing more CIL items than NASA was due to the fact that IOA wrote failure sheets for each item whereas NASA combined failures. Review of the NASA CIL items showed that all of IOA failures had been analyzed. Since the combined failures all resulted in the same effect it was concluded that there were no issues with the IOA failures. Minor differences such as pass or fail of screens were readily resolved. Frequent discussions with the subsystem manager resulted in a better understanding of the system and component operation. As a result of these discussions, several IOA criticalities were downgraded.

5.0 REFERENCES

2-1

.

Reference documentation available from NASA and Rockwell was used in the analysis. The documentation used included the following:

Instructions for Preparation of NSTS 22206: 1. FMEA and CIL October 10, 1986 The FCS/Effectors Trainig Manual 2. FCS/EFF 2102: February 1982 MOD Drawings - applicable pages 3. JSC11174: Rockwell Drawings 4. VS70-580996: 5. STS82-0039A: Applicable CIL Sections Space Shuttle Technical Conference 6. NASA CP-2342: Part 2, pp. 861-871, June 28-30, 1983 7. Requirements/Definition Document SD72-SH-0102-9: Aero Flight Control Mechanisms Rockwell International, Volume 2-9, October 28, 1975 8. SD72-SH-0102-6: Requirements/Definition Document Hydraulic Subsystem Rockwell International, SDM Baseline,

January 3, 1977

. · · · · .

APPENDIX A ACRONYMS

APU	- Auxillary Power Unit
ASA	- Aerosurface Servo Amplifier
ASSY	- Assembly
CTL	- Critical Items List
EH	- Electro-Hydraulic
FCS	- Flight Control System
FM	- Failure Mode
FMEA	- Failure Modes and Effects Analysis
F	- Functional
GFE	- Government Furnished Equipment
GPC	- General Purpose Computer
HW	- Hardware
IOA	- Independent Orbiter Assessment
LVDT	- Linear Variable Differential Transformer
MDAC	- McDonnell Douglas Astronautics Company
NA	- Not Applicable
NASA	- National Aeronautics and Space Adminstration
NSTS	- National Space Transportation System
PCI	- Potential Critical Item
psi	- Pounds Per Square Inch
psid	- Pounds Per Square Inch Differential
RI	- Rockwell International
VLV	- Valve
xducer	- Transducer

-

-

-

.

A-1

.

.

.

-

_

APPENDIX B

DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

- B.2 Project Level Ground Rules and AssumptionsB.3 Subsystem-Specific Ground Rules and Assumptions

. . . .

n oli al anno chan a' chuir a' chan An 1947 - Shiri An **Bhada Pa**do M<u>1951</u> (m. 1976) - Bhada An 1947 - Franc

APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.1 Definitions

Definitions contained in <u>NSTS 22206, Instructions For Preparation</u> of <u>FMEA/CIL</u>, 10 October 1986, were used with the following amplifications and additions.

INTACT ABORT DEFINITIONS:

<u>RTLS</u> - begins at transition to OPS 6 and ends at transition to OPS 9, post-flight

<u>TAL</u> - begins at declaration of the abort and ends at transition to OPS 9, post-flight

 \underline{AOA} - begins at declaration of the abort and ends at transition to OPS 9, post-flight

<u>ATO</u> - begins at declaration of the abort and ends at transition to OPS 9, post-flight

<u>CREDIBLE (CAUSE)</u> - an event that can be predicted or expected in anticipated operational environmental conditions. Excludes an event where multiple failures must first occur to result in environmental extremes

<u>CONTINGENCY CREW PROCEDURES</u> - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

EARLY MISSION TERMINATION - termination of onorbit phase prior to planned end of mission

<u>EFFECTS/RATIONALE</u> - description of the case which generated the highest criticality

<u>HIGHEST CRITICALITY</u> - the highest functional criticality determined in the phase-by-phase analysis

<u>MAJOR MODE (MM)</u> - major sub-mode of software operational sequence (OPS)

<u>MC</u> - Memory Configuration of Primary Avionics Software System (PASS)

<u>MISSION</u> - assigned performance of a specific Orbiter flight with payload/objective accomplishments including orbit phasing and altitude (excludes secondary payloads such as GAS cans, middeck P/L, etc.) <u>MULTIPLE ORDER FAILURE</u> - describes the failure due to a single cause or event of all units which perform a necessary (critical) function

<u>OFF-NOMINAL CREW PROCEDURES</u> - procedures that are utilized beyond the standard malfunction procedures, pocket checklists, and cue cards

<u>OPS</u> - software operational sequence

<u>PRIMARY MISSION OBJECTIVES</u> - worst case primary mission objectives are equal to mission objectives

PHASE DEFINITIONS:

-

<u>PRELAUNCH PHASE</u> - begins at launch count-down Orbiter power-up and ends at moding to OPS Major Mode 102 (liftoff)

<u>LIFTOFF MISSION PHASE</u> - begins at SRB ignition (MM 102) and ends at transition out of OPS 1 (Synonymous with ASCENT)

<u>ONORBIT PHASE</u> - begins at transition to OPS 2 or OPS 8 and ends at transition out of OPS 2 or OPS 8

<u>DEORBIT PHASE</u> - begins at transition to OPS Major Mode 301 and ends at first main landing gear touchdown

LANDING/SAFING PHASE - begins at first main gear touchdown and ends with the completion of post-landing safing operations

APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.2 IOA Project Level Ground Rules and Assumptions

The philosophy embodied in <u>NSTS 22206, Instructions for</u> <u>Preparation of FMEA/CIL, 10 October 1986</u>, was employed with the following amplifications and additions.

1. The operational flight software is an accurate implementation of the Flight System Software Requirements (FSSRs).

RATIONALE: Software verification is out-of-scope of this task.

2. After liftoff, any parameter which is monitored by system management (SM) or which drives any part of the Caution and Warning System (C&W) will support passage of Redundancy Screen B for its corresponding hardware item.

> RATIONALE: Analysis of on-board parameter availability and/or the actual monitoring by the crew is beyond the scope of this task.

3. Any data employed with flight software is assumed to be functional for the specific vehicle and specific mission being flown.

RATIONALE: Mission data verification is out-of-scope of this task.

4. All hardware (including firmware) is manufactured and assembled to the design specifications/drawings.

RATIONALE: Acceptance and verification testing is designed to detect and identify problems before the item is approved for use.

5. All Flight Data File crew procedures will be assumed performed as written, and will not include human error in their performance.

RATIONALE: Failures caused by human operational error are out-of-scope of this task.

_

- 6. All hardware analyses will, as a minimum, be performed at the level of analysis existent within NASA/Prime Contractor Orbiter FMEA/CILs, and will be permitted to go to greater hardware detail levels but not lesser.
 - RATIONALE: Comparison of IOA analysis results with other analyses requires that both analyses be performed to a comparable level of detail.
- 7. Verification that a telemetry parameter is actually monitored during AOS by ground-based personnel is not required.

RATIONALE: Analysis of mission-dependent telemetry availability and/or the actual monitoring of applicable data by ground-based personnel is beyond the scope of this task.

8. The determination of criticalities per phase is based on the worst case effect of a failure for the phase being analyzed. The failure can occur in the phase being analyzed or in any previous phase, whichever produces the worst case effects for the phase of interest.

RATIONALE: Assigning phase criticalities ensures a thorough and complete analysis.

9. Analysis of wire harnesses, cables, and electrical connectors to determine if FMEAs are warranted will not be performed nor FMEAs assessed.

> RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

10. Analysis of welds or brazed joints that cannot be inspected will not be performed nor FMEAs assessed.

RATIONALE: Analysis was substantially complete prior to NSTS 22206 ground rule redirection.

11. Emergency system or hardware will include burst discs and will exclude the EMU Secondary Oxygen Pack (SOP), pressure relief valves and the landing gear pyrotechnics.

> RATIONALE: Clarify definition of emergency systems to ensure consistency throughout IOA project.

APPENDIX B DEFINITIONS, GROUND RULES, AND ASSUMPTIONS

B.3 Elevon-Specific Ground Rules and Assumptions

The IOA analysis was performed to the component or assembly level of the Elevon subsystem. The analysis considered the worst case effects of the hardware or functional failure on the subsystem, mission, and crew and vehicle safety.

_

APPENDIX C DETAILED ASSESSMENT

This section contains the IOA assessment worksheets generated during the Assessment of the Elevon Actuator Subsystem. The information on these worksheets facilitates the comparison of the NASA FMEA/CIL (Pre and Post 51-L) to the IOA detailed analysis worksheets included in Appendix E. Each of these worksheets identifies the NASA FMEA being assessed, corresponding MDAC Analysis Worksheet ID (Appendix E), hardware item, criticality, redundancy screens, and recommendations. For each failure mode, the highest assessed hardware and functional criticality is compared and discrepancies noted as "N" in the compare row under the column where the discrepancy occurred.

LEGEND FOR IOA ASSESSMENT WORKSHEETS

Hardware Criticalities:

- 1 = Loss of life or vehicle
- 2 = Loss of mission or next failure of any redundant item
 - (like or unlike) could cause loss of life/vehicle
- 3 = All others

Functional Criticalities:

1R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of life or vehicle

2R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of mission

Redundancy Screens A, B and C:

- P = Passed Screen
- F = Failed Screen
- NA = Not Applicable

NASA Data :

E.

Baseline = NASA FMEA/CIL New = Baseline with Proposed Post 51-L Changes

CIL Item :

X = Included in CIL

Compare Row : N = Non compare for that column (deviation)

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #: SUBSYSTEM: MDAC ID: ITEM:	12/20/83 ELEVON-3 02-6-C03 ELEVON 101 FLOW CU3	7 101 1-C11 10FF VA	LVE	NASA DATA: BASELINE [X] NEW []			
LEAD ANALYST:	R. WILSO	N					
ASSESSMENT:							
CRITICAL FLIGH HDW/FU	ITY T NC	REDUNDANCY SCREENS A B C			CIL ITEM		
NASA [3 /3 IOA [3 /3] [NA] NA]	[NA] [NA]	[NA] [NA]	[]*		
COMPARE [/] []	[]	[]	[]		
RECOMMENDATIONS:	(If d	ifferen	t from NA	SA)			
·[/] []	[]	[] (A	[] .DD/DELETE)		
* CIL RETENTION REMARKS:	RATIONAL	E: (If	applicabl	e) ADEQUATE INADEQUATE	[]		

CONCUR WITH NASA ANALYSIS. NO ISSUE.

REPORT DATE 02/03/88 C-2

1

•

_

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-102 02-6-C01-C12	NASA D. BASEL	ATA: INE [X] NEW []				
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 102 FLOW CUTOFF VALVI	E	ng sa sa sa Sa sa sa sa sa				
LEAD ANALYST:	R. WILSON		and the second				
ASSESSMENT:							
CRITICAL	ITY REDUNDANO	CY SCREENS	CIL ITEM				
HDW/FU	NC A	B C					
NASA [3 /3 IOA [3 /3] [NA] [] [NA] [NA] [NA] NA] [NA]	[] * []				
COMPARE [/] [] [<u>]</u> []]	[]				
RECOMMENDATIONS: (If different from NASA)							
[/] [] [] []	[] (ADD/DELETE)				
* CIL RETENTION	RATIONALE: (If ap)	plicable) ADEQUA INADEQUA	TE [] TE []				
CONCUR WITH NASA	ANALYSIS. NO IS	SUE.	·····				

ASSESSMENT DATE ASSESSMENT ID: NASA FMEA #:	: 12/20/8 ELEVON- 02-6-C0	7 103 1-SW-C06		NASA DATA: BASELINE [] NEW [X]				
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 103 SWITCHI	NG VALVE						
LEAD ANALYST:	R. WILS	R. WILSON						
ASSESSMENT:								
CRITICA	LITY	REDUNDAN	CY SCREE	NS	CIL			
HDW/F	UNC	A	В	Ċ	+ + - - - - - - - - - -			
NASA [2/1 IOA [2/1	R] [R] [P][P][P] P]	[P] [P]	[X]* [X]			
COMPARE [/] [j []	[]	[]			
RECOMMENDATIONS: (If different from NASA)								
· [/] [) []	[](AI	[] DD/DELETE)			
* CIL RETENTION	RATIONAL	E: (If ap)	plicable)				
			:	ADEQUATE INADEQUATE	[X] []			
REMARKS: CONCUR WITH NASA ANALYSIS. THIS IOA FMEA WAS WRITTEN SPECIFICALLY FOR THE SWITCHING VALVE. NOTE: IOA FMEA NO. 125 COVERS THE SAME NASA FMEA BUT FOR THE SERVO ACTUATOR. NO ISSUE.								

REPORT DATE 02/03/88 C-4

-

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-104 02-6-C01-SW-C02	NASA DA' BASELII N	TA: NE [] EW [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 104 SWITCHING VALVE	1	
LEAD ANALYST:	R. WILSON		·- ·
ASSESSMENT:			
CRITICAL FLIGH	ITY REDUNDA T	NCY SCREENS	CIL ITEM
HDW/FU	NC A	B C	
NASA [2/1R IOA [2/1R] [P]] [P]	[F] [P] [P] [P]	[X] * [X]
COMPARE [/] []	[И] [И]	[]
RECOMMENDATIONS:	(If different	from NASA)	•
[/] []	[][.]	[] (ADD/DELETE)
* CIL RETENTION	RATIONALE: (If a	pplicable) ADEQUAT INADEQUAT	E [X] E []
REMARKS: CONCUR WITH NASA	ANALYSIS. NO I	SSUE.	e e

Bas an Basai

-

÷

C-5

۰.,

ASSESSMENT DATE:12/20/87NASA DATA:ASSESSMENT ID:ELEVON-105BASELINE []NASA FMEA #:02-6-C01-A01NEW [X]SUBSYSTEM:ELEVONMDAC ID:105ITEM:SWITCHING VALVELEAD ANALYST:R. WILSON

ASSESSMENT:

	CRIJ	FICAL FLIGH	ITY T	REDUNDANCY SCREENS						CIL ITEM				
	н	W/FU	NC		A		В		С					
NASA IOA	[] []	L /1 L /1]]	[[NA] NA]	[[NA] NA]	[[NA] NA]	[[x x]]	*	
COMPARE	[1]	נ]	۵]	ľ]	٢	-]		

RECOMMENDATIONS: (If different from NASA)

[1]	[]	[-]	[]	[]
-	-	-	-	-	-				(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X] INADEQUATE []

REMARKS:

CONCUR WITH NASA ANALYSIS. THIS IOA FMEA WAS WRITTEN FOR COMPONENT RUPTURES DOWNSTREAM OF THE SWITCHING VALVE. NOTE IOA FMEA NO. 115 COVERS THE SAME NASA FMEA BUT FOR THE POWER VALVE. NO ISSUE.

REPORT DATE 02/03/88

٠

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-106 02-6-C01-CV-C08	NASA DATA BASELINE NEW	.: ; [] ; [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 106 CHECK VALVE		
LEAD ANALYST:	R. WILSON		
ASSESSMENT:			
CRITICAL	ITY REDUNDANCY S T	CREENS	CIL ITEM
HDW/FU	NC A B	С	
NASA [1 /1 IOA [1 /1] [NA] [NA]] [NA] [NA]	[NA] [NA]	[X] * [X]
COMPARE [/] [] []	[]	[]]
RECOMMENDATIONS:	(If different from	NASA)	•
[/	<u>י</u> ניז ניז	[] (<u>(</u>)	[] \DD/DELETE)
* CIL RETENTION	RATIONALE: (If applic	able) ADEQUATE INADEQUATE	[X] []
CONCUR WITH NASA	ANALYSIS. NO ISSUE.		

-

REPORT DATE 02/03/88

..... Ē Ξ ____ **e**____ -- --

ه

۲

E.

Ī

.

-

.

.

.

-

- ---

-

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-10 02-6-C01-0	7 CV-C09]	NASA DATA: BASELINE NEW	[] [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 107 CHECK VAL	VE			
LEAD ANALYST:	R. WILSON				
ASSESSMENT:					
CRITICAL	ITY R	EDUNDANCY	SCREENS		CIL
HDW/FU	NC A	В	. (с	1154
NASA [2 /1R IOA [2 /1R] [F]] [P] [F] [F] []	P] P]	[X] * [X]
COMPARE [/] [N] [] []	[]
RECOMMENDATIONS:	(If dif	ferent fr	om NASA)	• • •	
[/] [] [][.] (AI	[] DD/DELETE)
* CIL RETENTION	RATIONALE:	(If appl	icable) IN	ADEQUATE ADEQUATE	[X] []
REMARKS: CONCUR WITH NASA IN A LOSS OF LIF	ANALYSIS. E/VEHICLE.	WOULD R NO ISSU	EQUIRE T E.	WO FAILURE	S TO RESULT

REPORT DATE 02/03/88 C-8

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-108 02-6-C01-FE-B08	NASA DATA: BASELINE [] NEW [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 108 FILTER - 15 MICRON	
LEAD ANALYST:	R. WILSON	
ASSESSMENT:		
CRITICAL	ITY REDUNDANCY SCREENS	CIL ITEM
HDW/FU	NC A B	C
NASA [1 /1 IOA [1 /1] [NA] [NA] [] [NA] [NA] [NA] [X]* NA] [X]
COMPARE [/] [] [] [] []
RECOMMENDATIONS:	(If different from NASA)	
E /] [] [] [] [] (ADD/DELETE)
* CIL RETENTION	RATIONALE: (If applicable) IN	ADEQUATE [X] IADEQUATE []
CONCUR WITH NASA	ANALYSIS. NO ISSUE.	

E.C.

-

-

-----2.

- -

. .

NASA DATA: ASSESSMENT DATE: 12/20/87 BASELINE [] NEW [X] ASSESSMENT ID: ELEVON-109 02-6-C01-SV-B01 NASA FMEA #: ELEVON SUBSYSTEM: MDAC ID: 109 SERVO VALVE ITEM: LEAD ANALYST: R. WILSON ASSESSMENT: CIL REDUNDANCY SCREENS CRITICALITY ITEM FLIGHT С В HDW/FUNC Α [P] NASA [2 /1R] IOA [2 /1R] [P] [P] [F] [X] * Ţ Ţ [X] [P] COMPARE [/] [] [N] [] [] **RECOMMENDATIONS:** (If different from NASA) [] [(ADD/DELETE) * CIL RETENTION RATIONALE: (If applicable) ADEQUATE [X] INADEQUATE [] **REMARKS:** CONCUR WITH NASA ANALYSIS. NO ISSUE.

REPORT DATE 02/03/88

and the second second

ASSESSMENT DATE: 12/20/87 NASA DATA: ASSESSMENT ID: ELEVON-110 BASELINE [X] NASA FMEA #: NEW [02-6-C01-A03 1 SUBSYSTEM: ELEVON MDAC ID: 110 ITEM: SERVO VALVE R. WILSON LEAD ANALYST: ASSESSMENT: REDUNDANCY SCREENS CRITICALITY CIL FLIGHT ITEM HDW/FUNC Α В С [NA] [NA] [NA] [NA] [NA] [NA] NASA [3/3] [NA] IOA [3/3] COMPARE [/] [] [] [1 **RECOMMENDATIONS:** (If different from NASA) 1 Γ] (ADD/DELETE) * CIL RETENTION RATIONALE: (If applicable) ADEQUATE [INADEQUATE [1

REMARKS:

CONCUR WITH NASA ANALYSIS. THIS IOA FMEA COVERS THE ELEVON SERVO VALVE. IOA FMEA NO. 120 COVERS THE SAME FAILURE MODE (INTERNAL LEAKAGE) BUT FOR THE PRIMARY ACTUATOR. IOA ANALYSIS BROKE THE ELEVON HARDWARE TO A LOWER LEVEL THAN THE NASA ANALYSIS.

REPORT DATE 02/03/88

C-11

=

=

≣

3

_

-

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-111 02-6-C01-SV-B02	NASA DATA BASELINE NEW	: [] [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 111 SERVO VALVE RESTI	RICTOR	<u> </u>
LEAD ANALYST:	R. WILSON	···· ·· ,	and the second
ASSESSMENT:			
CRITICAL	ITY REDUNDANC	CY SCREENS	CIL
HDW/FU	NC A	ВС	LIEM
NASA [2 /1R IOA [2 /1R] [P] [] [P] [F] [P] F] [P]	[X] * [X]
COMPARE [/	J [] [] []	[]
RECOMMENDATIONS:	(If different i	from NASA)	
[/] [] [] [] . (A)	[] DD/DELETE)
* CIL RETENTION N	RATIONALE: (If app	plicable) ADEQUATE INADEQUATE	[X] []
REMARKS: SERVO VALVE RESTI VALVE. THREE REM CONCUR WITH NASA	RICTOR PLUGS AND (MAINING SERVO VALV	CAUSES AN IMBALANCE VES OPERATE THE POW	IN THE SERVO ER SPOOL.

•

REPORT DATE 02/03/88 C-12

-

	ASSESS ASSESS NASA F	ATE: D:	12/20/87 ELEVON-112 02-6-C01-B03							NASA DATA: BASELINE [] NEW [X]														
- 72346	SUBSYS MDAC I ITEM:	TEM D:	:			ELE 112 BYE	EVON 2 PASE	1 5 7	7A]	LVE	8													
	LEAD A	NAL	YS	ST	:	R.	WII	s	ON															
	ASSESS	MEN	T:	;																				
		C	RJ	(T)	ICAL	TTY			RI	EDU	INDA	NC	CY	s	CREE	EN S	5				C)	IL FEN	я	
			F	ID	V/FUI	NC			A				в				С				-	-	1	
	NAS IO	A A	[[3 2	/1R /1R]]		[[P P]]		[[P P]]] [P P]			[[X X]]	*
	COMPAR	E	[N	!]		[]		[]		[]			[]	
	RECOMM	END	A		ONS:	((If	d	lf	fer	rent	: 1	fro	m	NAS	A))							
	=. - - - - - -		[.		1.]		[]		[]		[]		(A] DD,	/DI] Elf	ETE)
	* CIL	RET	'EI	IT:	ION 1	RATI	CON Z	Tī	5:	(1	fa	pp)]j	Lca	able	e) Il	IA IAV	DEQ DEQ	UA' UA'	re re	[[х]]	
	CONCUR	S: WI THE	TH	I B	NASA YPAS:	ANZ S VZ	LVS LVI		S. ANI		10 10 10 10	(SS THE	SUI ER	SI	TA ERVC)-7 /KI	ES VAI	3 LVE	FA]	LU	RE	5;	SI	ERVO
	a	-			2.1 9 .9	nia es cra		z	. .	e - 5.	- 1			s · 1	=				± ·					

REPORT DATE 02/03/88

_

Ξ 3

ASSESSMEN ASSESSMEN NASA FMEN	NT NT A #	DA ID :	TE:	12 EI 02	/20/ EVON -6-0	/87 [—] 20:	7 113 1-E	8 803					NASA BASE	DATA: ELINE NEW	: [[x]]	
SUBSYSTEN MDAC ID: ITEM:	1:			EI 11 BY	EVON 3 PASS	г ; т	VAI	VE I	FII	TE	R-100	M	ICRON					
LEAD ANAL	LYS	т:		R.	WII	S	ОN											
ASSESSMEN	T:																	
(CRI	TI FL	CALI	נדצ ר	•		RI	DUNI	DAN	ICY	SCRE	EN	S		CI IT	L EM	[
	H	DW	/FUI	1C			Α			В			С					
NASA IOA	[[3 2	/1R /1R]]		[[P P]]	((P F]]	ׂ []	P] P]		[[х]]	*
COMPARE	[N	/]		[]	(N]	[]		[N]	
RECOMMENI	DAT	IC	NS:		(If	d	iff	erer	nt	fr	om NA	SA)					
· ·	[/]		[]	(]	נ]	(AI] /ac	DE] :LE	TE)
* CIL RE	ren	TI	ON I	RAI	IONA	ΓI	Ē:	(If	aŗ	pl	icabl	e) I	ADEQU NADEQU	JATE JATE	[]]	
REMARKS:	ਜੰਹ	тт	STT.	WC	ם.דוזפ	PI	REI	TENT	ጥዦ	. च	BYPAS	s '	VALVE	FROM	BY	PA	SS	ING

G AN A PLUGGED FILTER WOULD PREVENT THE BYPASS VALVE FROM BYPASSING AN ERRONEOUS CHANNEL. THE REMAINING THREE CHANNELS WOULD OVERDRIVE THE BAD CHANNEL. THIS ASSESSMENT IS COVERED BY NASA FMEA/CIL 02-6-C01-B03 (INCLUDES OTHER FAILURES MODES). SAME EFFECT AS MDAC ID 112. NO ISSUE.

REPORT DATE 02/03/88 C-14

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-114 02-6-C01-PP-A06	NASA DATA: BASELINE [] NEW [X]
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 114 SECONDARY DELTA PRESSURE	TRANSDUCER
LEAD ANALYST:	R. WILSON	
ASSESSMENT:		
CRITICAL FLIGH	T REDUNDANCY SCREEN	S CIL ITEM
HDW/FU	NC A B	С
NASA [2 /1R IOA [2 /1R	E] [P] [F] [E] [P] [P] [P] [X]* P] [X]
COMPARE [/	ן נאן נאן נ] []
RECOMMENDATIONS:	(If different from NASA	.)
[/] [] [] [] [] [] (ADD/DELETE)
* CIL RETENTION	RATIONALE: (If applicable)	ADEQUATE [X] NADEQUATE []
REMARKS: CONCUR WITH NASA	ANALYSIS. NO ISSUE.	

REPORT DATE 02/03/88 C-15

ļ.

- - -

.

ASSESSM ASSESSM NASA FM	ENT ENT EA	D2 I1 #:	ATE: D:	12/20 ELEVO 02-6-	/8 N-: C0:	7 115 1-A01					NASA DA BASELI N	TA: NE EW	[[x]]	
SUBSYST MDAC ID ITEM:	EM : :			ELEVO 115 POWER	N VZ	ALVE					4					
LEAD AN	ALY	ST		R. WI	LSC	N				-			±		te t	
ASSESSM	ENT	:														
	CR	ITI FI	ICAL:	ITY r		REDUND	AN	СХ	SCREE	ENS	5			IL IEM	ſ	
]	HD	N/FUI	NC		A		В			С				-	
NASA IOA	ן נ	1 1	/1 /1]	ן נ	NA] NA]] [NA NA	.] .]	[[NA] NA]		[[X X]	*
COMPARE	נ		/]	[]	[]	[1		[]	
RECOMME	NDA	TIC	ONS:	(If	d:	ifferen	it :	fro	om NAS	SA))					
•	[/]	[]	[]	[]	(AE	[D/	'DE] :LE'	TE)
* CIL R	ETE)	NTI	ION 1	RATION	ALI	E: (If	apj	pli	cable	≥) II	ADEQUAT VADEQUAT	E	[[x]]	

. .:

.

REMARKS: CONCUR WITH NASA ANALYSIS. THIS IOA FMEA WAS WRITTEN FOR THE RUPTURE OF THE POWER VALVE. NOTE - IOA FMEA NO. 105 COVERS THE SAME NASA FMEA FOR OTHER COMPONENTS DOWNSTREAM OF THE SWITCHING VALVE. NO ISSUE. AGREE TO INCORPORATE UNDER ONE FMEA.

REPORT DATE 02/03/88 C-16

ASSESSME ASSESSME NASA FME	ENT I ENT J EA #:	DATE: D:	12/2 ELEV 02-6	0/87 ON-11 -C01-	6 PV-E	305			NASA BASE	DATA: LINE NEW	((X]	
SUBSYSTE MDAC ID: ITEM:	E M :		ELEV 116 POWE	'ON CR VAL	VE								
LEAD ANA	LYSI	::	R. W	ILSON									
ASSESSME	ent :												
	CRIT HI	TICAI TLIGH DW/FU	LITY IT JNC	R	EDUN	IDANC	Y SCR B	EENS	c		CIL ITE	M	
NASA IOA	[]	/1 /1]]	[N [N	A] A]	[] []	NA] NA]	[[NA] NA]		[X [X	;] * ;]	r
COMPARE	C	/]	[]	[]	Γ]		[]	114267
RECOMMEN	IDAT]	ons:	: (1	f dif	fere	ent f	rom N	ASA)	1				
	C	/]	[]	[]	. []	(AD	[D/D] ELEI	CE)
* CIL RE	ETENI	NOI	RATIC	NALE:	(If	app:	licab	le)	ADEQU	ATE	[X]	

REPORT DATE 02/03/88 C-17

-6-C01-C06	NEW [xj
EVON 7 IMARY ACTUATOR		
	-6-C01-C06 Evon Mary Actuator	-6-C01-C06 NEW [EVON 7 IMARY ACTUATOR

LEAD ANALYST: R. WILSON

ASSESSMENT:

CRITICALITY FLIGHT					REDUNDANCY SCREENS								 CIL ITEM					
HDW/FUNC			A		В		С											
NÁSA IOA	[3 [1	/2R /1]	[[P NA]	[[F NA]	[[P NA]	[[X X]]	*		
COMPARE	[N	/N]	[N]	[N]	[N]	[]			

RECOMMENDATIONS: (If different from NASA)

[1]	Ţ]	[]	[]	[]
•	•	-	-	-	-				(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X] INADEQUATE []

REMARKS:

.

CONCUR WITH NASA ANALYSIS. NO ISSUE. BUILT IN BARRIER SEAL PREVENTS RAPID LOSS OF HYDRAULIC FLUID. CAN STILL MAINTAIN ACTUATOR CONTROL.

REPORT DATE 02/03/88 C-18

NASA DATA: ASSESSMENT DATE: 12/20/87 ASSESSMENT ID: ELEVON-118 BASELINE [1 NEW [X] NASA FMEA #: 02-6-C01-PP-A07 SUBSYSTEM: ELEVON MDAC ID: 118 ITEM: LVDT LEAD ANALYST: R. WILSON ASSESSMENT: REDUNDANCY SCREENS CIL CRITICALITY ITEM FLIGHT С в HDW/FUNC Α [NA] [NA] [NA] [NA] [NA] [X] * NASA [1/1] [X] [NA] IOA [1/1]COMPARE [/] [] [] [] [] RECOMMENDATIONS: (If different from NASA) ı Ε] Γ (ADD/DELETE) * CIL RETENTION RATIONALE: (If applicable) ADEQUATE [X] INADEQUATE [] **REMARKS:**

CONCUR WITH NASA ANALYSIS. NO ISSUE.

REPORT DATE 02/03/88

-=----=

C-19

ASSESSME ASSESSME NASA FME	NT I NT I A #:	DATE: D:	12/20/ ELEVON 02-6-0	9 A02		NASA DATA: BASELINE [] NEW [X]							
SUBSYSTE MDAC ID: ITEM:	M:		ELEVON 119 PRIMAN	I RY A	CTUAI	TOR							
LEAD ANA	lysi	::	R. WII	SON									
ASSESSME	NT:												
	CRII F	ICAL	ITY F	R	EDUNI	DANCY	SCR	EENS		CIL ITEM			
	HE	W/FU	NC	A	A B				С				
NASA IOA	[] []	/1 /1]	[N. [N.	A] A]	1] 1]	VA] VA]	[[NA] NA]		[X [X] *]	
COMPARE	[/]	[]	[]	[]		[]	
RECOMMEN	DATI	ons:	(If	dif	ferer	nt fi	com N	ASA)					
		/]	[]	[ן	[]	(AI	[DD/DI] ELETE)	
* CIL RE	TENI	NOI	RATION	ALE:	(If	app]	licab	le) IN	ADEQUA IADEQUA	TE TE	[X []]	
REMARKS: CONCUR W	ITH	NASA	ANALYS	sis.	NO	ISSU	JE.						

REPORT DATE 02/03/88 C-20

1 ==

. -

.

ui__

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-12 02-6-C01-	20 -A03	NASA DATA: BASELINE [X] NEW []								
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 120 PRIMARY A	ELEVON 120 PRIMARY ACTUATOR									
LEAD ANALYST:	R. WILSON	R. WILSON									
ASSESSMENT:											
CRITICAL FLIGH	ITY I T	REDUNDAN	CY SCREEN	S	CIL ITEM						
HDW/FU	NC A	A	в	C							
NASA [3 /3 IOA [3 /3] [1] [1	NA] [NA] [NA] [NA] [NA] NA]	[] []	*					
COMPARE [/] [] [] []	[]						
RECOMMENDATIONS:	(If di	fferent	from NASA	.)							
. [/] [] [] [] (A	[] DD/DEI	LETE)					
* CIL RETENTION	RATIONALE	: (If ap	plicable) I	ADEQUATE NADEQUATE	[]						
CONCLED WITH MACA	ANATVOTO	mute	TAL EMEN	COVEDS THE	FT FVC	NKT .					

CONCUR WITH NASA ANALYSIS. THIS IOA FMEA COVERS THE ELEVON PRIMARY ACTUATOR. IOA FMEA NO. 110 COVERS THE SAME FAILURE MODE (INTERNAL LEAKAGE) BUT FOR THE SERVO VALVE. IOA ANALYSIS BROKE THE ELEVON HARDWARE TO A LOWER LEVEL THAN THE NASA ANALYSIS.

REPORT DATE 02/03/88

j.

C-21

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-1 02-6-C01	21 -A04	NASA DATA: BASELINE [X] NEW []										
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 121 PRIMARY	DELTA	PRESSURE 1	TRANSDUCER									
LEAD ANALYST:	R. WILSO												
ASSESSMENT:													
CRITICAL FLIGH HDW/FU	ITY T NC	REDUND	ANCY SCREI B	ENS C	CIL ITEM	ſ							
NASA [3 /1R IOA [3 /1R] [] [P] P]	[P] [P]	[P] [P]	[[] *]							
COMPARE [/] [1	[]	[]	[]							
RECOMMENDATIONS:	(If di	fferen	t from NAS	SA)									
[/] []	[]	[] (A	[DD/DE] :LETE)							
* CIL RETENTION	RATIONALE	2: (If	applicable	≥) ADEQUATE INADEQUATE	[]							
REMARKS: CONCUR WITH NASA ANALYSIS. REQUIRES TWO OF FOUR TRANSDUCER OUTPUTS FOR FAULT DETECTION DURING NULL FLIGHT PERIODS. NO ISSUE.													

REPORT DATE 02/03/88 C-22

ASSESSMENT DATE: ASSESSMENT ID: NASA FMEA #:	12/20/87 ELEVON-1 02-6-C01	.22 B07		NASA DATA: BASELINE [X] NEW []						
SUBSYSTEM: MDAC ID: ITEM:	ELEVON 122 PRIMARY	ACTUATO	PRESSURE TR	ANSDUCER						
LEAD ANALYST:	R. WILSO	N								
ASSESSMENT:										
CRITICAL FLIGH	ITY T	REDUNDA	NCY SCRE	ENS	CIL ITEM					
HDW/FU	NC	A	В	C						
NASA [3 /1R IOA [3 /1R] [] [P] P]	[P] [P]	[P] [P]	[] * []					
COMPARE [/] []	[]	[]	[]					
RECOMMENDATIONS:	(If di	fferent	from NA	SA)						
, , [, /] []	[]	[]]	[] ADD/DELETE)					
* CIL RETENTION	RATIONALE	S: (If a	pplicabl	e) ADEQUATE INADEQUATE	[]					
CONCUR WITH NASA OUTPUTS FOR FAUL	ANALYSIS T DETECTI	. REQU	IRES TWO	OF FOUR TR FLIGHT PERI	ANSDUCER ODS. NO					

REPORT DATE 02/03/88 C-23

ISSUE.

.

ASSESSMEI ASSESSMEI NASA FMEI	NT DA NT IA A #:	ATE: D:	12/20, ELEVO 02-6-0	/87 N-1 C01	23 -A08			: []	K]]				
SUBSYSTER MDAC ID: ITEM:	M:		ELEVOI 123 HEATE	N R									
LEAD ANA	LYST	:	R. WI	LSO	N								
ASSESSME	NT:												
(CRIT	ICAL	ITY F		REDUN	DANCY	C SCR	REENS		CIL ITEM			
	HD	W/FUI	NC	,	A	I	3	(C				
NASA IOA	[3 [3	/3 /3]]	[[NA] NA]	[] []	NA] NA]	[] []	NA] NA]		[[] *]	
COMPARE	[/]	[]	ľ]	[]		[]	
RECOMMENI	DATI	ons:	(If	di	ffere	nt fi	com N	IASA)					
	[/]	[]	[]	[]	(A] DD/I] DELET	E)
* CIL RE	rent:	ION	RATION	ALE	: (If	app]	licab	ole) INZ	ADEQU ADEQU	ATE ATE	[[]]	
CONCUR W	ITH 1	NASA	ANALY	SIS	. NO	ISSU	JE.						

REPORT DATE 02/03/88 C-24

= : - E

ASSESSMENT DATE: 12/20/87 NASA DATA: BASELINE [X] ASSESSMENT ID: ELEVON-124 NEW [] NASA FMEA #: 02-6-C01-A09 SUBSYSTEM: ELEVON MDAC ID: 124 ITEM: HEATER 5.8 S. S. S. S. 이 사람 같이 있는 것 같아. 이 가지 않는 것 LEAD ANALYST: R. WILSON ASSESSMENT: CRITICALITY REDUNDANCY SCREENS CIL ITEM FLIGHT С HDW/FUNC Α В [P] [P] [P] NASA [3/1R][NA] [NA] IOA [3 /3] [NA] 1 [N] [N] [N] ſ COMPARE [/N]] , . **RECOMMENDATIONS:** (If different from NASA) Г · 1] (ADD/DELETE) * CIL RETENTION RATIONALE: (If applicable) ADEQUATE I 1 INADEQUATE [] **REMARKS:** CONCUR WITH NASA ANALYSIS. EXERCISING ACTUATORS OR CHANGING TO A THERMALLY-WARM ATTITUDE MAY NOT BE FEASIBLE.

REPORT DATE 02/03/88

E-4

C-25

ASSESSMENT DATE: 12/20/87 NASA DATA: ASSESSMENT ID: ELEVON-125 BASELINE [] NASA FMEA #: 02-6-C01-SW-C06 NEW [X] SUBSYSTEM: ELEVON MDAC ID: 125 ITEM: SERVO ACTUATOR

LEAD ANALYST: R. WILSON

ASSESSMENT:

CRITICALITY FLIGHT					REDUNDANCY SCREENS								C: I'	CIL ITEM						
	HDW/FUNC						Α		В		С									
NASA IOA	[[2 2	/1R /1R]]	[[P P]]	[[P F]]	[[P P]]	[[X X]]	*			
COMPARE	[/]	ľ]	[N]	[]	[]				

RECOMMENDATIONS: (If different from NASA)

-		-	_	-	-	-	_	
Г	1	ſ	1	ſ	1	r	1	[]
L	•		-	•	-	•		
								(ADD/DELETE)

* CIL RETENTION RATIONALE: (If applicable)

ADEQUATE [X] INADEQUATE []

- ---

REMARKS:

CONCUR WITH NASA ANALYSIS. NO ISSUE. THIS IOA FMEA WAS WRITTEN FOR THE SERVO ACTUATOR. NOTE: IOA FMEA NO. 103 COVERS THE SAME NASA FMEA BUT FOR THE SWITCHING VALVE.

REPORT DATE 02/03/88

APPENDIX D CRITICAL ITEMS

1

ā.

1111 1111

2010 2010

NASA FMEA	MDAC ID	ITEM	FAILURE MODE
02-6-C01-SW-C06	103 125	Switch valve	Leakage, gross external
02-6-C01-SW-C02	104	Switch valve	Fail to transfer
02-6-C01-A01	105 115	Servo actuator	External leakage/ component rupture downstream of switch valve
02-6-C01-CV-C08	106	Check valve	Fail closed
02-6-C01-CV-C09	107	Check valve	Fail open
02-6-C01-FE-B08	108	Filter	Clogged
02-6-C01-SV-B01	109	Servo valve	Fails at null
02-6-C01-SV-B02	111	Servo valve	Fail hardover, on channel
02-6-C01-PP-A06	114	Secondary Delta P	Loss of output
02-6-C01-PV-B05	116	Power valve	Jammed
02-6-C01-C06	117	Servo actuator	Leaks external- complete elastomeric seal failure
02-6-C01-PP-A07	118	Transducer- Piston position	Loss of output of all four transducers
02-6-C01-A02	119	Servo actuator	Fracture - tailstock, rod end etc.

D-1

.

.

•

.

test som af 12

APPENDIX E DETAILED ANALYSIS

This appendix contains the IOA analysis worksheets supplementing previous results reported in STSEOS Working Paper 1.0-SP-VA86001-07, Analysis of the Elevon Subsystem, (21 November 1986). Prior results were obtained independently and documented before starting the FMEA/CIL assessment activity. Supplemental analysis was performed to address failure modes not previously considered by the IOA. Each sheet identifies the hardware item being analyzed, parent assembly and function performed. For each failure mode possible causes are identified, and hardware and functional criticality for each mission phase are determined as described in the <u>NSTS 22206</u>, <u>Instructions for Preparation of FMEA</u> and CIL, 10 October 1986. Failure mode effects are described at the bottom of each sheet and worst case criticality is identified at the top. There were no supplemental analysis worksheets prepared for the Elevon actuator subsystem.

LEGEND FOR IOA ANALYSIS WORKSHEETS

Hardware Criticalities:

- 1 = Loss of life or vehicle
- 2 = Loss of mission or next failure of any redundant item
 (like or unlike) could cause loss of life/vehicle
- 3 = All others

Functional Criticalities:

- 1R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of life or vehicle.
- 2R = Redundant hardware items (like or unlike) all of which, if failed, could cause loss of mission.

Redundancy Screen A:

- 1 = Is Checked Out PreFlight
- 2 = Is Capable of Check Out PreFlight
- 3 = Not Capable of Check Out PreFlight
- NA = Not Applicable

Redundancy Screens B and C:

- P = Passed Screen
- F = Failed Screen
- NA = Not Applicable

.....

APPENDIX F

NASA FMEA TO, IOA WORKSHEET CROSS REFERENCE/RECOMMENDATION

This section provides a cross reference between the NASA FMEA and corresponding IOA analysis worksheet(s) included in Appendix E. The Appendix F identifies: NASA FMEA Number, IOA Assessment Number, NASA criticality and redundancy screen data, and IOA recommendations.

Appendix F Legend

<u>Code Definition</u>

2.1

All initial IOA criticality and redundancy screen differences were agreed to with the NASA subsystem manager. In addition, the combining of like failures under one FMEA were agreed to. APPENDIX F

•

NASA FMEA TO IOA WORKSHEET CROSS REFERENCE / RECOMMENDATIONS

	ISSUE		-
MENDATIONS *	OTHER (SEE LEGEND CODE)		-
IOA RECOM	SCREENS A B C		
-	CRIT HW/F	~~~~~	•
NASA	SCREENS A B C	NA N	•
	CRIT HW/F		
IDENTIFIERS	IOA ASSESSMENT NO.	ELEVON-115 ELEVON-115 ELEVON-119 ELEVON-120 ELEVON-121 ELEVON-123 ELEVON-123 ELEVON-123 ELEVON-112 ELEVON-112 ELEVON-112 ELEVON-1117 ELEVON-112 ELEVON-100 ELEVON-118 ELEVON-118 ELEVON-118 ELEVON-118 ELEVON-1118 ELEVON-1118 ELEVON-1109 ELEVON-1103 ELEVON-1103 ELEVON-1103 ELEVON-1103	
	NASA FMEA NUMBER	02-6-C01-A01 02-6-C01-A02 02-6-C01-A02 02-6-C01-A03 02-6-C01-A08 02-6-C01-A08 02-6-C01-A09 02-6-C01-B07 02-6-C01-B07 02-6-C01-C12 02-6-C01-C12 02-6-C01-CV-C08 02-6-C01-CV-C08 02-6-C01-CV-C08 02-6-C01-CV-C08 02-6-C01-FE-B08 02-6-C01-FE-B08 02-6-C01-FE-B08 02-6-C01-FE-B08 02-6-C01-SW-C06 02-6-C01-SW-C06	

.

F-2

j

- -

۲

-