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ABSTRACT

This paper describes the basic navigation solution for position and

velocity based on range and delta range (Doppler) measurements from NAVSTAJ_

Global Positioning System satellites.

The application of discrete filtering.techniques is examined to

reduce the white noise distortions on the sequential range measurements. A

second order (position and velocity states) Kalman filter is implemented to

obtain smoothed estimates of range by filtering the dynamics of the signal
from each satellite separately.

Test results using a simulated GPS receiver show a steady-state noise

reduction, the input noise variance divided by the output noise variance,

of a factor of four.

Recommendations for further noise reduction based on higher order

Kalman filters or additional delta range measurements are included.
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I. INTRODUCTION TO GPS NAVSTAR

The Global Positioning System (GPS) NAVSTAR is a satellite based

navigation system. The system provides the user with highly precise 3D
position and velocity Information and time worldwide on a continuous_ all-

weather basis. The system consists of a Space Segment, a Control Segment

and a User Segment.

When fully operational in 1990, the Space Segment will consist of 18
satellites in six 12 hour orbits of 3 satellites. Each satellite will con-

tinuously broadcast a message containing precise information relative to

its own position (ephemeris) and clock accuracy and less precise infor-

mation relative to the entire constellation position (almanac).

The Control Segment consists of monitor stations and a master control

station. The monitor stations transmit satellite tracking data to the

master control station, which determines the satellites' orbital parameters
and communicates them to the satellites for retransmission to the users.

The User Segment consists of the equipment necessary to derive posi-
tion, velocity and time from the information received from the satellites.

Four satellites are normally required for navigation purposes, and

the four offering the best geometry can be selected manually or automati-

cally by receivers using ephemeris information transmitted by the satel-

lites. Ranges to the four satellites are determined by scaling the signal

transmit time by the speed of light. The transmitted message contains

ephemeris parameters that enable the user to calculate the position of each

satellite at the time of transmission of the signal.

Operation of the system requires pre'clse synchronization of space

vehicle (SV) clocks with 6PS time, which is accomplished by the use of an

atomic frequency standard in each space vehicle and the use of correction

parameters that are provided by the Control Segment. The requirement for

users to be equipped with precision clocks is eliminated by the use of

range measurements from four satellites. If users maintained precision

clocks synchronized with GPS time, navigation could be accomplished with

only three satellites. In that case, the user could be thought of as being

at the intersection of three spheres, with centers located at the satel-

lites. The fourth satellite permits an estimate of the user's clock error.

In this case, the user position contains four unknowns consisting of posi-

tion in three dimensions and the error, or fixed bias, in the user's impre-

cise clock, which can be solved by simultaneous solution of the four

equations.

The range measurements from satellite to user are corrupted by

several distortions. Basically, these distortions can be divided into two

groups; random and bias distortions. The random distortions can be reduced

by use of filtering techniques (see Chapters 4, 6 and 7). It is not

possible to make a distinction between the actual range and the bias

errors. Therefore, bias distortions can not be reduced by use of filtering
techniques.
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However, there is a way to obtain a very accurate estimate of the

bias distortions, by implementing the so-called differential GPS (DGPS)
approach.

The DGPS approach uses a receiver/transmitter at a known, fixed loca-

tion. This receiver compares its GPS derived position to its actual sur-

veyed location, and transmits the errors to suitably equipped users to

allow them to improve their own solutions. Various DGPS concepts can be
implemented [1].

In this paper the accent is on the following concept:

- a receiver is placed in a known location and the errors R(err)
(bias errors) from user to satellite are measured:

R(err) = (measured range) - (true range)

The correction term, R(err), is then transmitted to the user

receiver.

-2-



If. GPS SIGNAL STRUCTURE

The GPS signal consists of two components, Link 1 (L1) at a center

frequency of 1575.42 MHz and Llnk 2 (L2) at a center frequency of 1227.6

MHz. Each of these two signals LI and L2, is modulated by either or both a
10.23 MHz clock rate precision P signal and/or by a 1.O23 MHz coarse/

acquisition C/A signal. Each of these two binary signals is formed by a
P-code or a C/A code which is modulo-2 added to 50 bps data D, to form P

D and C/A @ D. The P @ D and C/A @ D signals are modulo-2 added to L1 and
L2 in phase quadrature.

The P-code is a pseudo-random sequence with a period of 1 week. The

C/A code is a unique Sold code with.a period of I msec. The user has the

capability to duplicate both P and C/A codes and the transmission time is

determined by measuring the offset that has to be applied to the locally
generated code to synchronize it with the code received from the satellite.

Since the P-code has a wider bandwidth, it will be more difficult to

acquire than the C/A code, but it will provide greater accuracy and addi-
tional anti-jam protection.

In this report, we are only concerned with the C/A code, as the P-

code will only be available for authorized users. However, the C/A code,

in combination with differential 6PS, will provide an accuracy on the same
order of magnitude as the P-code.

-3-



III. DEFINITIONS (PSEUDO) R_GE AND DELTA (PSEUDO) RANGE

The principle of GPS navigation is based on the delay between the

time the navigation code is transmitted by the satellite and the time the

code is received by the user. This time delay can be considered as a range

from satellite to user in a vacuum, denote_ as the true range:

R = c * ( Tr - Tt ) meters

where c = GPS value for speed of light (2°99792458 * 10"'8 m/s)
Tr= GPS receive time

Tt= GPS transmit time

However, there are additional time delays, including:

- the user clock bias TBu with respect to true 6PS time;

- atmospheric delay TDa, as the signal is not transmitted in a

vacuum;

--receiver delay TDr between the antenna phase center and the

code-correlation point in the receiver;

- the transmit c]ock bias TBs with respect to true GPS time

The range measured by the user is called pseudorange and is defined as:

PR = R + c * ( TDa + TDr + TBu - TBs ) meters

The change in true range over a specified time interval is called delta

range:

DR = R(t + dt) - R(t)

where dt= the time interval between the two range measurements

Delta range divided by the specified time interval is the mean rela-

tive velocity between the user and satellite for that time interval.

The delta pseudorange is defined as the change in pseudorange over a
specified time interval:

DPR = PR(t + dt) - PR(t)

= DR - c * ( DTBs - DTBu)

where DTBs = the satellite clock bias change over the time interval dt

DTBu = the user clock bias change over the time interval dt

Delta range is usually obtained by counting the number of carrier

cycles that occur over a finite interval in the receiver phase lock loop.

The total phase change (Doppler count) accumulated over the measurement

interval is equivalent to the integral of the Doppler phase rate

(frequency) due to relative motion between the user and the satellite
during the measurement interval°

-4-



t2r r 1
DopplercountAN = I [ fg- fr(t) J dt

tl

(3.1)

where t 2 = tI + At

At = Doppiercount interval

fg = precise ground station
frequency

fr (t) = received frequency

The mean velocity during the measurement interval is given by:

AN*_

At
(3.2)

where X = carrier wavelength

and the delta pseudorange is given by:

DPR = AN * (3.3)
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IV. GPS ERRORS

The GPS navigation accuracy is a function of the product of two com-
ponents:

- Measurement Errors

- Geometric Dilution of Precision GDOP

A. Measurement Errors

Error contributions have been attributed to the various system

segment contributors; the Space segment, the Propagation Link and the User

segment. The user equivalent range error (UERE) and the user equivalent

delta range error (UEDRE) are measures to describe these contributions to

pseudorange and delta pseudorange measurements.

B. Geometric DiJution of Precision GDOP

GDOP is the degradation of accuracy that results when the geometry of
the satellites is not optimal:

GDOP = / OxZ + Oy2 + Oz2 + ot 2 / op

where Ox_, oy z, Oz2 are the variances of user position
ot2 is the variance of user time

op is the pseudorange standard deviation

GDOP can be partitioned into separate position and time variances:

GDOP 2 = PDOP2 + TDOP 2

where PDOP = / Ox2 + oy z + Oz2 / o9

= Position Dilution of Precision

TDOP = ot/o p

= Time Dilution of Precision

In a navigation system PDOP is used for the determination of the

position accuracy, knowing time is generally not necessary. PDOP is deter-

mined by the satellite constellation, user's geographical location, mask
angle, and time of the day [2]. A typical value of PDOP is 3.4 with a

probability of 0.9 where the elevation mask is 5 degrees for a 24-satellite
constellation.
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C. Position Error

The rms position error (x,y,z)

/O'p =A (7xz + Oyz + OZ2

is related to the rms radial range error oR by

ap = PDOP * oR

where ap

aR
PDOP

= 1 a position error in three dimensions

= square root of sum of squares of UERE contributions

= position dilution of precision in three dimensions

D. Velocity Error

The rms velocity error (x,y,z)

o v _ /Ovx2 + avy2 + _vz z

is related to the rms radial delta range error aDR by

av = PDOP *.aDR

where ov = 1 a velocity error in three dimensions

aDR = square root of sum of squares of UEDRE contributions

E. Influence of UERE and UEDRE on Range and Delta Range

The influence of the UERE and UEDRE on the range and delta range

(Doppler) can be divided accordingly to the summary given in table I [3-6].

Using a differential GPS approach, it follows from table 1 that the

expected errors in range (position) and delta range (velocity) due to ran-

dom noise are respectively 14 meters and 1.3 centimeters.
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Table 1. Influence of the UERE and UEDRE on the Range and
Delta Range (Doppler) for the C/A Code.

ERROR CONTRIBUTORS

satellite ephemeris

satellite group and
clock relativistic

frequency shifts

satellite clock noise

receiver noise and

resolution

receiver noise

receiver resolution

Ionospheric and

tropospheric delays

propagation gradient

multipath error

RHS RANGE

ERROR

IN H

1.5

1.0

< 10 **

0.0005

< 25

10

RHS DELTA

RANGE

ERROR IN H

0.003

0.008

0.01

STATISTICS

bias

bias

white noise

white noise

markov

white noise

bias

markov

white noise

COHNENTS

uncorrelated

between SV's

uncorrelated

between SV's

cesium clock

reference [5]

reference [5]

and [4]

reference [5]

** This error consists mainly of the thermal tracking jitter error, which

decreases when C/No increases. In case an accurate measure of C/No in the

receiver and the bandwidths is available, a prediction of this error in
real time can be obtained [5]
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V. THE NAVIGATION SOLUTION

A. Introduction

This Chapter gives an overview of the basic methods to derive user

position, velocity, clock bias and clock bias rate from pseudorange and

delta pseudorange (Doppler) measurements. Some of these algorithms were

implemented in the computer language FORTRAN IV and tested on a IBH

System/370 in combination with a GPS simulation program.

In order to simulate the GPS using an 18-satellite constellation, two

computer programs were used [7]:

- the NAVSTR program which provides satellite position, satellite

velocity, pseudorange and delta pseudorange. The program has the

option to introduce several distortions into the pseudorange data.

- the USRPOS program which simulates a helicopter flight pattern con-

taining several maneuvers and provides user position and velocity.

The simulations used in this paper are all based on a flight duration

of 270 seconds. The time interval between fixes is 0.3 second. During

the first 138 seconds the USRPOS program simulates an unaccelerated

straight level flight. During the next 31 seconds a turn and a -2

knots/hour acceleration is simulated. The last part is again a straight
level flight.

All the programs are written in. double precision (precision of

approximately 16.8 digits [8]), instead of single precision (precision of

7.2 digits) because of the large range and delta range values with respect

to the desired computation precision. For instance, a delta range value of

9000 nmi requires at the very least a computation accuracy of 8 decimals to

obtain I meter computation precision.

B. Position

The 6PS navigation position fix and time bias can be obtained from

the following basic equations (in Earth Centered Earth Fixed (ECEF)
coordinates):

(rl - b) z = (u x - Sxl)2 + (Uy - Syl)2 + (u z - Szl) 2

(r2 - b) 2 = (ux - Sx2) 2 + (uy - Sy2)2 + (uz - Sz2) 2

(r3 - b) 2 = (u x - Sx3) 2 + (Uy - Sy3)2 + (u z - Sz3) z

(5.1)

(r4 - b) z = (ux - Sx4) z + (Uy - Sy3)2 + (uz - Sz4) z

-9-



where (ux. Uy, uz) is the user position; b .is the user clock bias with

respect to GPS time; r i is the true range distance between the user and ith

satellite; (Sxj, Syi, Szi ) is the position of the ]th satellite.

The user state (u x, uy, u z, b) can be determined by solving eq. 5.1
directly, given the measured pseudoranges R • (r I r 2 r 3 r4)T and the three

satellite position components (Sxi, Sy i, Szi ), i = 1, 2, 3, 4. This
approach is computationally unwieldy, especially because the calculations

are usually executed in a coordinate system not very close to the problem.
A good alternative approach is to ltnearize (5.1) about an estimate of the

user state and solve successively for position corrections based on new
measurements.

The basic navigation equations can be linearized by employing incre-

mental relationships as described by Jorgensen [9]. The resulting

linearized navigation equations are given by:

Unx - Sxi Uny - Sy i Unz - Szi
Ax + by + Az + Ab = Ar i (5.2)

rnj - b n rni - b n rnj - bn

where Unx, Uny, Unz, b n are nominal (a priori best estimate) values of
u x, Uy, u z, b; bx, Ay, Az, Ab are the corrections to these nominal values;
rni are the nominal pseudorange measurements from the lth satellite

(i=1,2,3,4); br i Is the difference between the actual and nominal measure-
ments.

Thelinearlzed equations can be expressed in matrix notation as follows:

H.AU = bR or AU = H-''AR

where bU = (bx by Az Ab) T

bR = (br I br 2 Ar 3 Ar 4) T

H = (b 1 h 2 h 3 h4) T

(5.3)

[ Unx - Sxi Uny - SYi Unz - Szi 1 ]hi = l rni - bn rni - bn rni - bn
(5.4)

The known quantities &r i are actually incremental pseudorange

measurements. They are the differences between the actual measured

pseudoranges and the measurements that had been predicted by the user's

computer based on the knowledge of satellite position and the user's most

current state. The quantities to be computed, Ax, Ay, Az and Ab are

corrections that the user will make to his current state.

-lO-



C. Position Algorithm

The methodology for calculating the user state based on the linearized

equations (5.3) proceeds as follows [10]:

1) Guess initial user state Un = (Unx, Uny, Unz , bn)

2) Obtain r i and Sxl, Sy i, Szi for i = 1,2,3,4

3) Compute rni = (Unx -Sxi) 2 + (Uny _ Syi)2 + (Unz -Szi) _ + bn

4) Compute Ar i = ri - rni for i = 1,2,3,4

5) Compute H from (5.4)

6) Compute G = H-1

7) Compute AU = G * AR

8) Update state estimate Un = Un + AU

9) if IAU I> c, a specified tolerance, go to step 3) for another

iteration, else go to step 2) for the next position + clock bias
fix

The program has a build-in limit for the maximum number of iterations
per fix.

Figure 1 shows the results for the 3-dimensional position error where

E = 0.001, and no pseudorange distortions were introduced. The number of

iterations per fix to reach the desired accuracy during this simulation was
one or two.

Figure 2 shows the magnitude of the 3-dimensional position error when

multlpath error was introduced. White noise statistics are assumed for the

multipath error having a zero mean and a variance of 10 meters.

D. Velocity

The user velocity can be derived from the range information

(position) or from the carrier Doppler frequency. The Doppler velocity is

expected to have a much greater accuracy (approximately 1.3 centimeters)

than the velocity derived from range information. However, to obtain the

Doppler velocity, additional hardware is required.

-11-
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1. Velocity Derived from Carrier Doppler Frequency

Based on the velocity equation 3.2 we can derive a similar algorithm

as was given for the position fix. The user state consists of the user

velocity (Vx, Vy, Vz) and the clock bias rate b. The velocity measured on

the line-of-sight from satellite to user is called r. In the simulation,

the satellite velocity is provided by the NAVSTR program-. In an actual

receiver, the satellite velocity can be easily derived from satellite posi-

tion within the desired accuracy [11].

The algorithm for the user velocity computation, based on a similar

linearization about the user state as used for the position fix, proceeds
as follows:

I) Guess initial user state Un = (Vnx, Vny , Vnz , bn)

2) Obtain ri, SVxi , SVyi, SVzi for i = 1,2,3,4

3) Compute rni = (rangeflag * Y/(SVxi_Vnx)2+(SVyi_Vny)2+(SVzi_Vnz)2 )+

+ bn

where rangeflag is the sign of the change in range

4) Compute Ar i = ri - rni for i = 1,2,3,4

5) Compute H = (hI h2 h3 h4) T

where
[ Vnx - SVxi Vny - svy i Vnz - SVzi

h i =
t

ri - bn rl - bn ri - in

4

6) Compute G = H-_

7) Compute AU = G * AR

where AR = (Ar I Ar 2 Ar 3 Ar4) T

AU = (Av x AVy Av z Ab) T

-14-



8) Update state estimate Un = Un + AU

9) If [AU [ > c, a specified tolerance, go to step 3) for another

iteration, else go to step 2) for the next velocity + clock bias
rate fix.

The performance of the velocity Doppler algorithm is similar to the perfor-

mance of the position algorithm as expected (see figure I).

. Velocity derived from range information

The basic method to derive the velocity from range information is to

fit a nth order function through n+l position measurements based on range
information.

2.1. First-order Estimation

The estimated velocity over the time interval between two successive

position fixes equals:

= x(T + nT) - x(nT)

T

The first, order estimation provides a reasonable estimate of the user

velocity, however the velocity estimates are not available at the same time

as the position fixes.

2.2. Second-order Estimation

In fact, this method supposes a constant acceleration for the

(vehicle + satellite) dynamics by fitting a second-order function

(parabola) through three successive position fixes. The parabola provides

an estimation of the position at some intermediate time, t, within the
measurements:

y(t) = aI + a2t + a3 t2 te [nT, nT + 2T]

Given the three measurements:

Yl (nT) = aI + a2 nT + a3 (nT) 2

Y2 (nT + T) = a I + a2 (nT + T) + a3 (nT + T) 2

Y3 (nT + 2T) = aI + a2 (nT + 2T) + a3 (nT + 2T) 2

-15-



it can be easily be shown that

a I =

Yl (2 + 3n + n z) ÷ Y2 (-4n - 2n 2) + Y3 (n + n 2)

a 2 =

Yl (-3 - 2n) + Y2 (4 + 4n) + Y3 (-2n -1)

2T

a 3 =

Yl - 2Y2 + Y3

2T 2

The velocity estimate at some intermediate time te [nT, nT + 2T] is given

by

v(t) = a2t + 2a3t

Using a second-order approximation, acceptable velocity estimations

are obtained as long as the range data are not corrupted by distortions.

When introducing distortions, the velocity errors will be in the same order

of magnitude or larger than the position errors for a time interval between

fixes smaller than 1 second.

-16-



VI. GPS SIGNAL FILTERING

ORIO_NAL PA,_ IS

OF POOR QUALFr¥

DGPS is capable of removing the bias component in the range data.

The random distortion however will still degrade the range data. For

example see figure 3 for a multlpath distortion of the range data.

There exist two extreme methods [12] for filtering the signals from

the satellites and forming the navigation solution for position, velocity,

perhaps acceleration, and clock parameters. The most powerful method is to

input the raw observables of pseudorange and delta pseudorange from all

satellites observed into a total solution filter which solves simulta-

neously for all the navigation parameters. The filter is typically a

Kalman filter, or some modification thereof.

The second extreme method is to filter the dynamics of the signal

from each satellite separately, forming smoothed estimates of pseudorange,

velocity, and perhaps acceleration, and then form a memoryless flash solu-

tion for the navigation parameters, without further smoothing. This method

is not as powerful as a general Kalman filter, but often has distinct

implementation advantages without significant loss in performance. Many

navigation receivers use a combined method, in which the individual signals

are tracked and smoothed in phase locked loops, and the loop outputs are

further smoothed in the navigation filter. This combined method has the

advantage over the first method that the filter update rate does not have

to be as high because the raw data are smoothed.

In this paper we will only consider discrete filtering techniques, as

the range data are a discrete measurement sequence. The best way to imple-

ment discrete filters is by using a digital computer. Some important con-

siderations in using this approach are:

- computer time: for instance the time required for matrix operations

in a Kalman filter grows as the cube of the state dimension [13];

also a higher calculation precision requires more computer time.

- computer storage: for instance the storage required for the Kalman

covarlance matrix grows as the square of the state dimension [13].

For the purpose of establishing feasibility and a performance bound,

it is sufficient to consider the second filter type: separate tracking

filters for each satellite, followed by a flash navigation solution as pre-

sented in Chapter 5.

It is also sufficient to consider the tracking filter only, since the

maximum navigation filter position error due to dynamics is equal to the

maximum position error in one tracking filter, and since the error in posi-

tion solution due to random noise is equal to the pseudorange error

multiplied by the PDOP which does not depend on filter type [12].

A. One Channel Filtering

Various techniques are available for the separation of the range

signal from the random distortions [14] and [15]. In this paper we will

-17-



Figure 3. Pseudorange Distortion; MultJpath.
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mainly consider a particular branch of filters, the so-called least-squares

filters. Simply stated, the least-squares filter problem is this: given

the spectral characteristics of an additive combination of signal and

noise, what linear operation on this input combination will yield the best

separation from the nolse, where best means minimum mean-square error [14].

Besides the least-squares filtering one other type of filter will be men-

tioned, the second-order filter as presented by Hurd [12].

1. Second-order Filter

W. J. Hurd [12] describes a second order filter with both poles at

the same location, using only range and not delta range as the input. This

filter is characterized by one parameter, and when the update rate is suf-

flciently high this parameter is effectively a time constant T. This is

valid when the time constant between updates is small compared to T. The

response of the filter to random noise is to reduce the rms error by a fac-

tor of 1.12 times the square root of (T divided by the time between

inputs).

In case of an update time of 0.3 second and a time constant of 2

seconds, the raw range errors are reduced by a factor of 2.6. However, the

position error due to acceleration is equal to acceleration, (a), times T

squared. A time constant of 2 seconds will result in a range error due to
acceleration of 4a meters.

2. Wiener Filter

Reference [14] gives a very good description of the Wiener filtering

technique. The main disadvantages using a discrete Wiener filter are:

- the filter is non-recursive, so there is a 'growing memory' problem

caused by the need to store all of the past measurement data. This

is very unwieldy in on-llne applications.

- the filter is difficult to extend to more complicated multiple-

input multiple-output problems.

3. Kalman Filter

The main features of the discrete Kalman filter formulation and solu-

tion of the filtering problem are [14]:

- vector modeling of the random processes under consideration;

- recursive processing of the noisy measurement (input) data

Beside these features, the Kalman filter approach allows many exten-

sions and variations for specific implementations.

B. One Channel Kalman Filtering

The discrete Kalman filter is for the range filtering problem in this

paper superior to both the Wiener and the second order filter. The Wiener
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filter is having the 'growing memory' problem and both the second-order

filter and the Wiener filter are difficult to extend to a filter having
range and delta range as input data.

The approach in which the very accurate delta range derived from

Doppler measurements is also fed into the filter is expected to reduce the

remaining random noise error in the position compared to the filter with

range measurements only.
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VII. DEVELOPMENT AND IMPLEMENTATION OF A DISCRETE KALHAN FILTER

A. Description of the Discrete Kalman Filter

The derivation of the discrete Kalman filter is very well documented

[14 - 16], therefore in this paper we will only present the final filter

equations and the necessary definitions.

If the true state of a Markov process and a measurement are defined.

by the equations:

Xk + i ='bkXk + Wk (7.1)

Zk = HkXk +_Vk (7.2)

where X_k is the state vector at time tk

¢k is the state transition matrix, representing the known

system dynamics

Z_k is the measurement vector (filter input) at time t k

Hk is the measurement matrix, representing the relationship

between the measurement Z_k and the state vector X_k in

the absence of noise

W_k is the plant noise with covarlance matrix Q

V_k is the measurement noise with covarlance matrix R

E [ W_k _i T ] = O for all k and i

then the best estimate X_k of the system state vector and its covariance

matrix Pk can be updated by the equations:

k+l (-) = _k X-k(+)

Pk+l (-) = _k Pk (+) _kT + Qk (7.3)

Pk (+) = (I - KkHk) Pk (-)
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Xk (÷) = X_k(-) + Kk (Z_k - Hk .x k (-))
.4)

Kk = pk (-) HkT ( HkPk(-)Hk T + Rk )-'

where X_k(-), Pk (-) and Xk(+), Pk (+) are respectively estimates of Xk and

Pk just before and just after time t k.

Kk is the Kalman gain (blending factor)

Figure 4 shows the shows the sequence of the computational steps pic-
torially and figure 5 shows a block diagram of the system model, the
measurement and the discrete Kalman filter.

B. Kalman Filter Implementation Considerations

When the discrete Kalman filter equations (7.1 - 7.3) are applied to

practical problems, several difficulties quickly become obvious:

- the optimal filter must model all error sources in the system
under consideration;

- it is assumed in the filter equations that exact descriptions

of the system dynamics, error statistics, and the measurement

process are known.

As an unlimited computer capability is not usually available most of

the implemented Kalman filters are sub-optimal; less than the optimal
number of states are included in the system and/or measurement model and no

exact description of the error statistics is available. The performance of

a sub-optimal Kalman filter is not yet based on a unified body of theory
and practice. Fortunately there are many examples of discrete Kalman

filter implementations available [14 - 16] from which concepts for a suc-
cessful implementation can be derived.

Some of these concepts are:

- derive a system model representing the real system as close

as possible;

- use at least double precision in the computation of the filter

equations (especially in off-line implementations) to prevent

the filter to diverge due to calculation errors (for a description

of the performance degradation in digitally implemented Kalman
filters [17]);

- implement 'reasonableness checks' in the filter, e.g. remove

unlikely input data, when a matrix is expected to be symnetric,
force it to be symmetric during or after each operation on that
matrix;

- find an acceptable evaluation of the plant covariance matrix Q.

In most implementations it is not a trivial task to derive the Q
matrix from its definition:
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Qk = E [ _ W._kT ]

tk+l tk+l
f f

1 1
tk tk

¢ (tk+I,U)G(u)E[w(u)wT(v)] *

(7.4)

*6T(v)¢T(tk+l,V) dudv}

where E [w(u)wT(v)] is a matrix of Dirac delta functions that,

presumably, is known from the continuous model.

G represents the influence of the noise vector w on the
measurements.

C. System Nodeling

In the area of pulse Doppler surveillance radars several discrete

Kalman filters were implemented [18]. The signal model of the pulse

Doppler radar is very similar to the GPS signal model, therefore, most of

the techniques derived for the pulse Doppler radar can be used for the GPS

one-channel filtering.

Some of the system models as presented by Fitzgerald [18] are:

- three state exponentially correlated acceleration (ECA) model;

- two state exponentially correlated velocity (ECV) model;

- two or three state Integrated white noise or 'random walk'

acceleration (RWA) model.

In order to obtain a performance bound and a basis for a feasibility

study, a two state RWA model is implemented. The RWA tracking problem is

described by.the state-space model:

X_.k+1 = _ + W_k (7.5)

where X_k= ( r

r

w_k

r )T is the state-vector at time t k

is the range from satellite to user

is the relative velocity on the line-of-sight between
satellite and user

is a stationary white noise process representing the random

acceleration noise at time t k
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@k is the state-transitlon matrix at time tk

D. Measurement Modeling

Two types of filter input data are available: range and delta range.

In a DBPS approach, the range data are degraded by. random noise with an rms

value of approximately 14 meters (see Chapter 4) and the delta range

derived from Doppler is accurate up to 1.3 centimeters. In order to com-

pare the accuracy of the velocity derived from range with Doppler velocity
and because of defining a basis for a feasibility study, the filter is fed

with range data only. However, the filter design makes allowance for an

extension to both range and delta range measurements.

The measurement equation based on range data only becomes:

z k = HkX_k + v k

where Zk

Hk

Vk

(a scalar) is the range measurement at time tk

is the measurement matrix at time tk

(a scalar) is a stationary white noise process representing

the random measurement noise at time tk

The measurement matrix Hk is independent of the time. In the absence

of measurement noise, the measurement z k equals the range r, therefore the
H matrix becomes ( I 0 ).

E. Computation of the State Transition Matrix

The dynamical system as described by equation (7.1) has fixed parame-
ters; i.e., the continuous state transition matrix F is a constant. In

this case, the state transition matrix _ may be written as an exponential
series:

@k = eFT = I + FT + (FT)2 +
2! ....

where T = tk+ 1 - t k

In the continuous case:

rrl r0 1 rr]
I Io01 + noise

therefore
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01 O0 OO 01

F. Computation of the Error Covarlance _atrix Q

The Q matrix is defined by equation (7.4):

Q = E [_T]

where W_k = [wI w2] T

T
f

w I : ] u.a(u)du
J

0

T
t

w 2 = ] a(u)du
J

0

a(u) is the random white noise acceleration

T T

Qll = I u.v. E {a(u)a(v)}dudv

0 0

E{a(u)a(v)} = Oa2 T 6(u - v)

where Oa2 is the variance of the acceleration and 6(u-v) is the Dirac
delta function

(u-v) = 1 if u = v(u-v) = 0 if u # v

it follows that
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Qli =
1

v 2 aa2 T dv = _ aa2 T 4

also

Q12 =

T

f

J
0

T

f

J
0

u.E {a(u)a(v)}dudv

T

I
0

1

V.¢aZ.Tdv = 20a2 T 3

and

Q22 =

T

f

J
0

T

f

J
0

E{a(u)a(v)}dudv

Oa= • T dv = Oa2 T 2

G. The Measurement Covariance Matrix R

As the measurement vector Z_k is a scalar, the covariance matrix R is

also a scalar, given by the variance axZ of the measurement noise.

H. Expected Filter Performance

I. Sampling Rate Versus rms Acceleration

In order to keep the accuracy between observations below the measure-

ment (sensor) error, the following equation should be satisfied, from [19]:
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a a T z _ 0.24 a x

where ax is the measurement accuracy and

o a is the rms acceleration

The maxlmum error will occur just before a measurement.

model, the time-constant T is set to 0.3 second, therefore

In the

/ °x >0.6

_/ oa

For instance, if the measurement accuracy ax = 1 foot, then the accuracy
between observations will be less than 1 foot if the rms acceleration is

below 2.78 ft/s*s.

2. Velocity Accuracy

However, no direct velocity measurements are made; velocity can be

derived from position by subtracting two successive position measurements

divided by the time interval between them.

The corresponding accuracy in velocity is given by [19]:

av = b/ Pv /, (_ 1+2r + 1)Oa2T2

where r =
40 x

OaTZ

For example, if ox = 1 foot; aa = 2.78 ft/s*s; T = 0.3 s, then it follows

from the above equation that the rms velocity error av = 1.57 ft/s.

I. Filter Summary

The discrete Kalman filter for one channel range data tracking pro-

ceeds as given by the diagram in figure 4, where:

[ estimated initial range ]

estimated initial velocity

-29-



pk(-) =
[ Pl (-) P2 (-) ] P](-)' p2 (-), p3(-) are initial guesses having

approximately the same order of magnitudeJP2 (-) p3(-) as the measurement noise variance.

H -- (1 o)

[ T4/3 TS/2 ]

Q=aa'[ l . --T3/2 T2

rl T ]

R = aX2

J. Simulation Results

The measurement noise is generated by the NAVSTAR simulation program.
The simulation was used in the mode where mu]tipath error is added to the
range data.

Figure 3 shows the raw range data produced by the NAVSTAR simulation.

The variance of the white noise equals 10 meter [7].

Figures 6, 7 and 8 show the filter response for different values of

the noise variances ax2 and aa2, as summarized in table 2.

The calculated parameters for optimal filter response are given by
the first row of table 2.

Table 2. Single Channel Discrete Kalman Filter Performance

FIGURE 6

FIGURE 7

FIGURE 8

IO

10

Steady State Noise

Reduction

OlN2/aOUT 2

4

3

Maximum Position

Error
in m

0.2

2.5 3
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VIII. CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

The discrete Kalman filter for tracking GPS signals separately is a

very flexible method for an adequate solving of the random noise problem.

Although a very simple filter (range measurements only) was used in

this paper, the (steady state) noise variance was reduced with a factor 4
(table 2).

In case the highly accurate delta range (Doppler) measurements are

available to the tracking filter, the resulting improvement in position

estimation can be an order of magnitude or more [20]. The filter is also

relatively easy to extend to a three state filter capable of handling the
Markov noise produced by the receiver (see table l) as well. Another

possibility is to add additional states for allowing more complex vehicle
dynamics [18, 21, 22].

The results shown in figures 6, 7 and 8 are also representative for

the final three dimensional position error; see Chapter 6, also compare

figure 2 (magnitude of the 3D position error due to multipath) with figure
3 (single channel multipath error).

The separate channel tracking approach as presented in this paper
compared to the simultaneous (sub)optimal Kalman filter may have a distinct

implementation advantage in case the GPS receiver has less than four

tracking channels. The problem of 'asynchronized filter feeding' can be

solved by separate channel filtering, fitting a nth order function through
the filter output data (e.g. a second-order function as described in

Chapter 5.D.2.2 and finally executing a position flash computation

(Chapter 5.C) or even using a simultaneous filter using synchronized data
derived from the fitting function.
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