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Summary

Incompressible two dimensional calculations are reported for the impulsively started

lid driven cavity with aspect ratio two. The algorithm is based on the time dependent

streamfunction equation, with a Crank-Nicolson differencing scheme for the diffusion terms,

and with an Adams-Bashforth scheme for the convection terms. A multigrid method is

used to solve the linear implicit equations at each time step. Periodic asymptotic solutions

have been found for Re = 10000 and for Re = 5000. The Re = 5000 results are validated

by grid refinement calculations. The solutions are shown to be precisely periodic, and care

is taken to demonstrate that asymptotic states have been reached. A discussion is included

about the indicators that are used to show that an asymptotic state has been reached, and

to show that the asymptotic state is indeed periodic.

*Work funded under Space Act Agreement C99066G.



1: Introduction

Cavity flows have been a subject of study for some time. These flows have been

widely used as test cases for validating incompressible fluid dynamics algorithms. The

preponderance of such studies have addressed the steady flow problem, such as Ghia et.

al. [4] and Schrieber and Keller [17], and the potentially rich unsteady cavity dynamics

have only recently begun to be addressed. Greatly increased computational capabilities

make possible the study of unsteady flows and initiates a new chapter in numerical analysis,

determining the qualitative properties of the solutions of time dependent partial differential

equations from their simulation. Examples of this type include a study of transition to

turbulence in a two dimensional cascade flow by Fortin et. al. [3], and a study of the

transition to chaos for a Boussinesq fluid in a vertical cavity by Paolucci and Chenoweth

[16]. Recent work on the numerical analysis of large time and asymptotic solutions of

partial differential equations includes the study of the convergence of attractors for finite

dimensional approximate systems to the attractor of the original system by Hale et. al.

[11], the study of the large time behavior of Galerkin approximations to Navier-Stokes

equations by Constantin et. al. [2], and the study of finite element approximations of the

nonstationary Navier-Stokes equations by Heywood and Rannacher [12]-[14], and especially

for behavior as t --_ oo in [14]. A theoretical treatment of the dynamical systems approach

to the Navier-Stokes equations can be seen in Constantin and Foias [1], and in Temam

[19]. Both the qualitative nature of asymptotic states, and the way in which they develop

are new and exciting areas of research in partial differential equations. The driven cavity

problem gives a computationaIIy reasonable model fluid problem in which to investigate

the qualitative features of the solution space of a physically reasonable infinite dimensional

dissipative dynamical system. In contrast with other unsteady problems that are currently

being investigated, the driven cavity is a self contained system with realistic nonperiodic

boundary conditions, with steady nonperiodic forcing, and without artifical throughflow

boundary conditions.

The vortex dynamics for unsteady Navier-Stokes flow in the driven cavity for various

aspect ratios and Reynolds numbers with an impulsively started steady lid were studied in

Custafson and Hal i [8]and [9],and in Goodrichand Soh [7].Apersistant final oscillation



in the aspect ratio two driven cavity with a 40 x 80 grid was shown in [0] at Re = 10000

and t _ 300, and the conjecture was raised that a qualitative transition had occurred to

an unsteady asymptotic flow. The present paper continues that study by addressing the

question of whether an unsteady asymptotic solution exists in the driven cavity with aspect

ratio two. In section 2 we discuss some indicators for monitoring the development of a flow,

for identifying an asymptotic flow state, and for presenting the qualitative nature of that

state. In section 3 we present and discuss the algorithm that is used for the computations

reported in this paper. In section 4 we discuss a periodic solution at Re = 10000 on a coarse

48 x 96 mesh, comparing with and extending the results in [9]. In section 5 we present

and discuss the main results of this paper, two periodic solutions at Re = 5000 on 48 x 96

and 96 x 102 grids, with periods of approximately 2.477 and 2.309, respectively. The two

asymptotic states computed at Re = 5000 have qualitatively similar dynamics. All three

of the computed asymptotic states reported in this paper are periodic with very precise

repetition of the asymptotic cycles. Based upon these computations we conclude that a

Hopf bifurcation does occur in the aspect ratio two driven cavity for a critical Reynolds

number Rec <_ 5000. In section 6 we discuss a number of continuing and remaining issues.



flow

1]

2: Measures of Qualitative Flow Features

Flow visualization is a fundamental problem for computational fluid dynamicists as

well as for experimentalists. This is especially true for the resolution of small scale flow

details. A primary issue for the simulation of flow evolution to an asymptotic state is to

identify measures that will give reasonable assurance that an asymptotic state has in fact

been attained. This issue is somewhat obscured when investigating flows that converge

to a steady state. We will list and briefly discuss the measures that we have used for the

qualtitative representation of flow simulations.

2.1: Field Representations

.The first series of measures and indicators represent the standard two dimensional

field data. The representations that we have found useful are:

Streamfunction Contour Plots - These are useful for defining the large scale flow

features. When overlayed with normalized velocity vectors, they give a good balance

between large and small scale resolution.

2] Streamfunction Surface Plots - These plots are good for presenting large scale flow

features. Like all surface plots they give an immediate and vivid impression of scaling

throughout the flow field, but depending upon the view of the surface, prominant flow

features can mask smaller scale structures.

3] Velocity Vector Plot - These plots are standard and are almost indispensible for ac-

tually visualizing the flow. Normalized velocity vectors are better for revealing the

smaller scale structures.

4] Kinetic Energy Contour Plot - These show the momentum scale for the entire flow.

5] Kinetic Energy Surface Plot - These are extremely useful for showing the momentum

scale for the flow and its various features. This is an excellant complement to either

a normalized velocity vector plot or a streamfunction contour plot overlayed with

normalized velocity vectors.

6] Vorticity Contour Plot - These are extremely useful for following vortex dynamics,

particularly for vortex pairing and splitting as in [10 I. Vorticity can be concentrated,

so vorticity plots often reveal less than streamfunction contours about overall flow



dynamics. Vorticity data is very useful for highlighting the resolution failures of an

algorithm.

7] Vorticity Surface Plot - Since vorticity contours tend to be concentrated, a surface

plot can give a better global view of the vorticity for a flow. Large regions of constant

vorticity contrast well with local singularities and steep gradients.

8] Pressure Gradient Vector Plot - These clearly reveal principle vortex centers and their

relative significance as field sources compared to secondary vortices.

The algorithm that we use for the results reported in this paper does not require a pressure

solution, so we will not present any pressure data. The pressure gradient has been used to

good effect by Gustafson and Halasi in [8]. All of the field representations that do not use

pressure data were produced for this study, but for the sake of brevity the flow field will

be represented just by streamfunction contour plots with and without normalized velocity

vector overlays, and by surface plots of streamfunction, kinetic energy, and vorticity.

2.2: Indicators of Dynamics

The second series of measures and indicators are for tracking convergence to an asymp-

totic state, and for understanding the qualitative nature of that state. These various

measures and indicators are scalars that are either global indicators or point data values.

Global indicators can be obtained by using various mathematical norms on the flow data,

or on the flow change data. Any of the scalar valued data can be obtained at each time

step, and there are a variety of ways to display the information content of such scalar time

series data. A simple graph of data plotted against time gives a quick and familiar view

of the time changes in scalar data, although this type of presentation can mask important

details. A spectral density or power spectrum is a well known device from signal processing

which identifies the flow frequencies and their relative strengths. A phase diagram can be

presented for scalar data either for one variable with the value at time tn plotted against

the value lagged by k time iterations at tn_ k, or for two separate variables at the same time

step plotted against each other. Spectral densities and phase diagrams are widely used

to investigate and present the qualitative features of nonlinear dynamical systems. Both

of these methods are particularly useful for classifying unsteady flows as either periodic



or aperiodic, for identifying critical parameter values for transition between qualitatively

different flows, and for identifying chaotic or turbulent flows. The indicators that we have

found useful are:

9] The Relative L, Norm of the Streamfunction Change Per Time Step - This is a global

measure, and is calculated as

]C,,+I¢C-+'- ¢:.il
I_"+11

This measure is similar to standard convergence indicators, and is easy to compute,

but it is an integrated measure and tends to mask relatively small scale flow features.

We did not look at the combined relative change in streamfunction and vorticity, which

could be an interesting and more sensitive measure than just the streamfunction or

vorticity data considered separately.

10] The Maximum and Minimum Streamfunction Value - These measures provide useful

information about the location of the two main vortices in the cavity, and about the

dynamics of the asymptotic solution at the center of each of these vortices. In addition

to the global extremes of the streamfunction, it would be interesting to also record

other local extremes in order to identify and track vortex centers, and to give their

relative intensities.

11] The Relative LI Norm of the Vector Field Change Per Time Step - This is also a

global convergence measure, and is calculated as

_'_=,,+(lu_ +' - u_,. I + Ivy,+1 - v,",s.I)
n+l n+ll+ Iv,,; I)

We used this measure along with the relative L_ norm of the streamfunction change

data, and found that they behaved very similarly to each other. A choice between

these two measures can be easily made on the basis of which variable set is being used.

12] The Total Kinetic Energy = Calculated for the entire grid minus the boundaries at

each time step as

I AzAy_-':_ u "+lll_ 2-- i,32
i,j
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This measure was more sensitive than the streamfunction change data and was a

very useful complement to that data. The time dependent dynamics of a flow are

formulated in terms of momentum balance equations, so that such a global momentum

measure would seem to be very appropriate data for the assessment of the evolution

of a flow. In fact, our experience (see section 5) has indicated that very significant

evolution can still occur even though the streamfunction or velocity time step change

data becomes as small as O(10-7) or O(10-s), with the total kinetic energy remaining

noticably sensitive to the continuing evolution of the flow. This experience suggests

that common practices for stopping calculations could produce misleading results

about the qualitative features of asymptotic flows.

The Maximum Acceleration - Determined for the entire interior grid as

Ilu,: ' - u
I,.1 ),max( At

The point where the maximum acceleration occurs can change with the time step,

possibly in a very discountinuous way. Consequently, this indicator can be sensitive

to the time scales and dynamics of both the local change per time step in the point

values of the velocity field, and the global convective transport processes within the

flow. There can be subtle and complex relationships between these processes. Note

that this indicator is not the maximum convective derivative, which would be easy to

obtain and could be interesting to try.

14] Streamfunction Value at a Point

15] Velocity Component at a Point

16] Kinetic Energy Value at a Point

17] Vorticity Value at a Point

For the calculations reported in this paper we found the relative L1 streamfunction change

norm and the total kinetic energy to be very good complements for indicating convergence

to an asymptotic state. The streamfunction change per time step data showed convergence

earlier, and the total kinetic energy showed final convergence to the asymptotic state. This

conclusion was augmented by point data time series for streamfunction, kinetic energy, and

7



vorticity. The sensitivity of the indicators increased from the streami'unction, to the veloc-

ity components defined as streamfunction derivatives, then to the kinetic energy defined

with squared velocity components, and finally to the vorticity defined as the Laplacian of

the stream.function.



3: An Algorithm For Time Dependent Incompressible Navier-Stokes Equations

This section briefly presents the implicit finite difference streamfunction algorithm

for the unsteady incompressible Navier-Stokes computations reported this paper. Further

specific algorithm details may be found in Goodrich [6] or Goodrich and Soh [7]. An explicit

MAC (marker and cell) primitive variable scheme was used in [8] and [9]. The time step

restriction for such an explicit scheme is prohibitive for truly long time studies. The

qualitative flow dynamics of both codes agree for the computations that are comparable.

3.1: Flow Equations

In a bounded open region fl, the general dimensionless Navier-Stokes equations for

incompressible flows are

0u

at

1

--+(u-V)u-ReeAu=-Vp+F, forxint2, andt>O,

V.u=O, forxini2, andt>O,

u(x,O)--a(x), forxinfl, att--O,

B[u(x,t)] = b(x,t), for x in an, and t > O,

where u is the velocity, p is the scaled pressure, Re is the Reynolds number, F is the

volume force per unit mass, On is the boundary of I'1, and B is the operator that defines

the boundary conditions. We will ignore the body force F. For the simulations of two

dimensional cavity flows that we will be reporting, the computational domain 12 is just a

rectangle as in Figure 1. The length mad velocity scales for these cavity flows are taken to

be the lid length and velocity, so that the lid velocity is always 1. The velocity field for

two dimensional flows may be written in terms of the streamfunction ¢ as

0¢ (x,t)= 0¢ forxinflandt>O, (la)
u(x,t) = and v a='

and the dimensionless equations for evolution of time dependent viscous incompressible

flows may be written as the streamfunction equation

_ 0¢ ^ 0¢ 0¢ A (9¢ (lb)aA¢ _1 -
at Re 0x 0y _yy _, forxinl2, andt>0.



In this formulation the data for the impulsively started driven cavity consistsof the initial

valu_

_b(x,0)=0, forxinfl, att=0, (lc)

and the standard boundary conditions (see Figure 1)

_(x,t) = O, for x in (91"1, and t > O, (ld)

a¢ = 1,

a¢ (x,t) = 0,

for x on the cavity lid, and t > O,

for x on the cavity walls, and t > O,

(le)

where _ is differentiation in the exterior normal direction at the boundary.

3.2: The Diseretization

The discrete approximation for the streaazffunction _b = {_b(x, t) : x Efl, t > 0}

will be taken to be i = {_." : m = 0,1,...} = {z_.j. : i = 0,1,...I,j = 0,1,...J, ra =

0,1,...} on the rectangular computational mesh. We will use a uniform grid on the

rectangular domain, and we will use centered spacial differencing for equation (lb), with

a Crank-Nicolson time differencing for the diffusion terms, and a second order Adams-

Bashforth time differencing for the convection terms. Let La be the conventional five point

centered difference approximation to the Laplacian, let Bi be the conventional thirteen

point centered difference approximation to the Biharmonic operator, and let 5_ and 6v be

the conventional centered difference operators

i,j- 16.(i-),,;= "?+''; - "?-''; and "?';+' ""
2Az ' 2Z_y

With this notation and differencing scheme, we may discretize equation (lb) as

---[6, (6v (_.")La(i"))-6_ (6_ (,")La(_."))]

')La(_."- ')) ] .

(2)

LaCi" +' ) - 2-_e Bi(i"+ 1)

3At= La(i" ) + BiCi*) 2

+ Ti\t[6"(6"(_'"-')La(_'"-x)) -6"( 6.(_'n-
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In order to incorporate the boundary condition (le), the standard finite difference ap-

proximations are used for modifying the discrete equation (2) at grid points next to the

boundary. Note that this algorithm is second order accurate in both time and space. The

Umvelocity components ( ,.i, v,._.) are directly recovered from the discrete streamfunction

solution as

1 1

_7.i = 2A_(z_.','+l - z,.%'-1), and, v?._. : 2Ax(Z_l.j - zT-z.j).

Notice that the velocity components are both defined at each grid point and not at different

locations on a staggered grid. In our formulation we use a grid centered central difference

expression for the mass conservation equation. The velocity solution is exactly discretely

divergence free with respect to this divergence operator.

3.3: A Solver

The operators in the implicit time stepping equation (2) do not change with time. In

fact, the discrete streamfunction solution i n+' from equation (2) depends upon the time

step only through the solutions at the previous two time steps. The problem that must be

solved at each time step may be written as

At_

La(_. _+_) 2-_e BiCi TM) = f(E",_n- _), (3)

where f is the discrete source term from the right hand side of (2).

discretization of
At

Aff-2R---_A2_b=f, forxinfl, att=t_+l,

an elliptic partial differential equation that combines the Laplace and Biharmonic opera-

tors. At each time step we use a multigrid method to solve these equations, as in Goodrich

[6]. The Biharmonic operator is factored as two Laplacians as in Linden [15], point Gauss-

Seidel relaxation is used for the smoothing operator, and linear restriction and prolongation

operators are used. A V-cycle iteration scheme is used, with 3 iterations per grid level

while coarsening, and none while refining. At each time step, 10 to 15 iteration cycles are

used to reduce the residuals in (3) to less than 5.0 x 10-12.

This problem is a

11



4: Numerical Results At Re = 10000

The first numerical results that suggest a periodic solution for the driven cavity with

aspect ratio two are in Gnstafson and Halasi [9]. These computations are at Re = 10000

for 0 < t < 360, using an explicit primitive variable EuIer-MAC scheme on a 40 x 80 grid

with At : _ The published results are a series of normalized velocity vector plots of
1000 "

the flow field that suggest an eventual periodic pattern of evolution and interaction in the

cavity vortex dynamics. The grid resolution that was used at this Reynolds number leaves

open the possibility that the computational mesh might be filtering out dynamical effects

with smaller spatial scales. The reliance upon just the normalized vector plots leaves open

the question of whether a periodic, a quasi-periodic, or an aperiodic flow was actually

observed. The relatively short time interval that was calculated and the small number

of flow periods that were observed does not ensure that the initial transients were fully

dissipated and that a true asymptotic solution was obtained.

An independent series of calculations was initiated to verify the results reported by

Gustafson and Halasi [9]. These computations are at Re : 10000 for 0 < t < 1800, using

the algorithm described in section 2 on a 48 × 96 grid with At : _-'z These computations

show that the asymptotic state on this grid is a periodic flow, although the asymptotic state

occurs only at a much later time than suggested by Gustafson and Halasi [9]. The results

of these computations are similar to the data for the stronger results that we have obtained

at Re = 5000, which are the focus of this paper, so for the sake of brevity the data at

Re = 10000 will be discussed but will not be shown. Several indicators were used to ensure

that an asymptotic state was actually reached. The first global indicator is the relative L_

norm of the streamfunction change per time step. This indicator suggests that a periodic

asymptotic state has been reached at t _ 300, as reported in Gustafson and Halasi [9].

The global maximum and minimum streamfunction values were tracked as the second and

third global indicators of approach to an asymptotic state. The observed data showed that

as the flow evolved, the maximum and minimum streamfunction values on the grid begin

to oscillate at the centers of the upper and lower vortices. The maximum streamfunction

value in the secondary lower vortex reaches its asymptotic oscillation at t _ 550, and

the minimum streamfunction value in the primary upper vortex reaches its asymptotic

12



oscillation at t _ 900. A fourth global indicator is the relative L, norm of the vector field

change per time step. This indicator suggested that a periodic asymptotic state had been

reached at t _ 500. The fifth global indicator is the total kinetic energy for the entire grid

minus the lid. This data reaches a periodic asymptotic state at t _ 1500. Besides this

global data, local flow data was gathered at selected fixed points in the grid. At points

with coordinates (i,j) -- (44,50) and (i,j) = (16, 46) the values of the streamfunction, the

x and y velocity components, and the vorticity were recorded, and the kinetic energy at

the point was calculated, at each time step for 1600 < t < 1800. The first point is near the

end of the wall jet that descends from the lid along the upper half of the downstream wall.

The second point is near the end of the bounded shear layer as it approaches the wall after

crossing the middle strip of the cavity. This data shows clean spectral signatures with one

fundamental frequency. The data at the end of the bounded shear layer shows energization

of harmonics of the one fundamental frequency as a result of convection through the shear

layer. Based upon all of these indicators the discrete dynamics on this grid do appear

to reach a periodic asymptotic state at t _ 1500, with a period between 223 and 224

time steps, or between 3.48 and 3.50 nondimensional time units. The periodic asymptotic

flow on this 48 x 96 grid at Re -_ 10000 is qualitatively the same as the vortex dynamics

observed in [9].

A natural question is whether or not the periodic flow for this discrete system is a

grid dependent phenomenon. This is a particularly relevant question for this simulation

since the best steady solutions for the square cavity at Re -- 10000 are on a 256 x 256

uniform grid, and the 48 x 96 uniform grid that we are using clearly does not give anywhere

near the same resolution. Another serious cause for concern is that the results reported by

Gustafson and Halasi [91 on a 40 x 80 grid suggested a period of approximately 4.5, while

our 48 x 96 grid calculation gives a period between approximately 3.48 and 3.50. To begin

checking for grid dependence we conducted a calculation at Re = 10000 for 0 _< t _< 500

using the algorithm in section 3 on a 96 x 192 grid with At = ! This calculation
128 "

shows a much more complex time evolution than the results for the same time interval

on the 48 x 96 grid, and it is possible that the 96 x 192 grid simulation is itself masking

even finer scale dynamics. This suggests that the coarser grid was filtering smaller scale

13



dynamic processes that could contribute to a more complex asymptotic state than a single

frequency periodic flow. We have in fact concluded that the Re = 10000 simulation on

a 48 × 96 grid is most likely inadequate for resolving all but the coarsest features of the

cavity flow, and the periodic discrete solution on the coarse grid at Re = 10000 cannot be

accepted as giving a reliable portrait of the actual asymptotic continuum flow dynamics.

Consequently, we discontinued the calculations at Re = 10000 and decided to initiate

discrete simulations at Re = 5000 where less grid resolution would be required to capture

the continuum dynamics.

14
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5: Numerical Results At Re = 5000

Two different simulations were computed to asymptotic periodic states at Re = 5000

for the impulsively started driven cavity with aspect ratio two. Both simulations use the

algorithm described in section 3. The first simulation uses a 48 x 96 grid with At = 1___64'

and the second simulation uses a 96 × 192 grid with At = _ The simulations at128 "

Re = 10000 and Re = 5000 are similar in the sense that they all demonstrate a very clean

and qualitatively similar periodic solution to the nonlinear discrete dynamical system that

is being used as an approximation to the fluid flow in the cavity. The conclusion of the

discussion in Section 4 about the Re = 10000 simulations is that a 48 × 96 grid is inadequate

for resolving all but the coarsest features of the cavity flow, so the calculated periodic

discrete solution on the coarse grid at Re = 10000 cannot be accepted as giving a reliable

portrait of the actual asymptotic continuum flow dynamics. The Re = 5000 simulations

are essentially different in this regard, and we may reasonably conclude that they are

likely to represent at least the qualitative dynamic features of the actual continuum flow

dynamics. The first supporting evidence is that the refined 96 × 192 grid has a resolution

close to the 128 × 128 grid used in Goodrich [6] with the same algorithm to produce a

steady square cavity solution in good agreement with the standard published Re = 5000

solutions. The second supporting evidence is that the grid refinement calculation produces

flow dynamics that are close to the coarse grid results. In particular, the period given by

the coarse grid simulation is 2.469 < T < 2.484, while the refined grid simulation gives

2.305 < T < 2.313.

5.1: Re = 5000 on a 48 x 96 Grid

The computation at Re = 5000 on the coarser 48 × 96 grid will be presented with only

a small amount of detail. The computation is for 0 < t < 4100, and the flow reaches a

periodic asymptotic state at t _ 1100 with a period between _ _ 2.469 and _ _ 2.484.

This flow is completely periodic with no apparent secular trend for 1100 < t < 4100, or

for approximately 1200 oscillation cycles.

The entire flow field at t = 4000 is shown in Figure 2 as a streamfunction contour

plot. The main features of the flow are the primary and secondary circulations in the

15



upper and lower cavity, the wall jet that descends from the lid along the upper half of the

downstream wall, and the wavey shear layer between these two main circulations. There

are tertiary corner vortices in the two lower corners that are separated from each other by

one sixth of the bottom wall where the secondary vortex in the lower cavity is attached

to the lower boundary. Surface plots of streamfunction, kinetic energy, and vorticity show

some lack of grid resolution especially in the boundaries near the end of the wall jet, and

in the upper left corner. The flow at this instant is generally representative of the flow at

any time during the entire cycle of the periodic asymptotic state. The vortex dynamics

for this periodic asymptotic solution are similar to the dynamics for the refined 96 x 192

grid. A key feature of the periodic vortex dynamics is the appearance of a pair of small

counterrotating tertiary vortices along the downstream wall slightly below the end of the

wall jet descending from the lid. The stronger and higher tertiary vortex periodically

appears below the wall jet and is convected as a wavy disturbance along the shear layer

between the primary and secondary vortices in the cavity. More detail will be presented

for the similar dynamics of the refined grid solution.

Figure 3a shows the spectral signature of the streamfunction at the point with coor-

dinates (i,j) = (44,50) or (z,V) _ (0.92, 1.04), and Figure 3b shows this data as a phase

portrait plot of (_k_._7_8, _k_.s) , both for 4000 < t < 4100. Similar spectral signatures and

phase portraits axe shown for the kinetic energy in Figures 3c-d, and for the vorticity in

Figures 3e-f. This point is near the end of the wall jet descending from the lid along the

downstream wall, and the data represents a sample with 6400 time points, with between

158 and 159 data points in each period, and for more than 40 periods. Figures 4a-f show

similar data recorded at a point near the end of the bounded shear layer across the mid-

dle of the cavity with coordinates (i,j) = (16,46) or (z,V) _. (0.33,0.96). The values of

streaznfunction, kinetic energy, and vorticity from these two points all have extremely clean

spectral signatures with one fundamental frequency. Harmonics are energized especially

for vorticity by the effect of the bounded shear layer. The narrowness of the plot lines

indicates the precise repetitiveness of this data for these 40 + periods. This point data

indicates a precisely periodic solution at Re = 5000 on the 48 x 96 grid.

16



5.2: Re = 5000 on a 96 x 192 Grid

The computation at Re = 5000 with the finer 96 x 192 grid is the main result and

will be presented in some detail. The computation was for 0 __ t < 4100, and the flow

296
reaches a periodic asymptotic state at t _ 3700 with a period between _ _ 2.305 and

2g.____6_ 2.313. This flow is completely periodic with no secular trend for 3700 < t < 4100,
128 --

or for more than 170 oscillation cycles.

A plot of the relative LI norm of the streamfunction change per time step is shown

for 5 < t < 100 in Figure 5a, for 100 < t < 4000 by intervals of 300 nondimensional time

units in Figures 5b-n, and for 4000 __ t < 4100 in Figure 5o. The total kinetic energy is

shown for 5 < t < 100 in Figure 6a, shown by intervals of 300 nondimensional time units

for 100 __ t < 4000 in Figures 6b-n, and for 4000 _ t __ 4100 in Figure 6o. Note that

the vertical scales in Figures 5 and 6 are all different, and that there are two time scales

in each figure. The data in Figures 5 and 6 shows a dramatic history. Up to t _ 700

the time history seems to be following a dissipating evolution. At t _ 700 the relative

L1 change per time step and the total kinetic energy both start to increase in absolute

level with oscillations that increase in amplitude. There is also a beating process with the

interplay of multiple frequencies. There is a peak in the global kinetic energy at t _ 1600,

and then the global kinetic energy decreases until t _ 2600, with continuing increases in

the amplitude of the kinetic energy oscillations. At t _ 2600 the streamfunction time

step change starts to decrease while the kinetic energy begins to increase again. Between

t = 2700 and t = 2800 both variables start to oscillate in what seems to be an erratic

manner until t _ 2950. After this the data steadies down and becomes very regular until

the streamfunction time step change data converges at t _ 3250, and the kinetic energy

data converges at t _ 3700. Contour and surface plots for streamfunction, kinetic energy,

and vorticity on the refined grid show no visually apparent changes for 500 < t < 2000.

Noticable pulsating changes begin to occur in this surface data only for 2000 <: t < 2500,

along with a noticable increase in the momentum in the lower half of the cavity. Note that

the relative Lt norm of the streamfunction change per time step is 0(5 × 10-_) for t _ 700.

This is below what might easily be taken as a small test value used to stop the calculation

with the result declared to be a steady asymptotic state. The actual asymptotic state has

17



extremely regular oscillations in the relative LI norm of the streamfunction change per

time step, with relative LI norm values that are O(3 x 10 -4) for t _ 3700.

The precisely periodic nature of the asymptotic flow is shown in Figure 7a by the

spectral density of the relative LI norm of the streamfunction change per time step, and

in Figure 7b by the spectral density of the total kinetic energy, both for 4000 < t __ 4100.

Both spectral signatures show a single fundamental frequency near 0.433 _, 2.-_7" Note that

the streamfunction change data has one harmonic. Both of these spectral signatures are for

global data, and reflect the global dynamics on the entire grid. The global maximum and

minimum streamfunction values were also recorded, and are shown together in Figure 7c

as a phase portrait plotting (_:_,,_:_n) for 4000 < t _< 4100. This plot is for data taken

at 12800 discrete time steps, with between 295 and 296 time steps per cycle, for more than

43 complete cycles. All of this data is plotted sequentially with time, so that the physical

plot lines have been drawn over 43 times. The narrowness of the lines substantiates the

precisely periodic nature of the asymptotic solution. The global minimum and maximum

always occured at the centers of the primary and secondary vortices in the upper and lower

halves of the cavity. The effect of the periodic asymptotic flow is still apparent even in

the centers of the two largest vortices. The entire streamfunction surface is vibrating with

extreme precision. Note that the two extremes are oscillating approximately one half of a

period out of phase with each other.

A qualitative portrait of the overall solution field at the single instant t = 4100

is given in Figures 8a-d. The streamfunction surface plot in Figure 8a shows a wavey

disturbance or swelling that is periodically convected by the bounded shear layer across

the middle of the cavity. This particular view shows the disturbance just before it is

absorbed and dissipated by the boundary layer flow at the end of the bounded shear layer.

The kinetic energy surface plot in Figure 8b shows a periodic wave in the momentum

ridge near the center foreground. The dramatic low point in the kinetic energy ridge

is in the bounded shear layer just above the front of the streamfunction swelling, with

local maxima and minima in the kinetic energy just upstream from this low point. There

seems to be a periodic pulse of momentum associated with the periodic streamfunction

disturbance. The vorticity surface is shown in Figure 8c. Note that the surface plots of
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streamfunction, kinetic energy, and vorticity all show smooth resolution of the flow solution

over the entire grid. The streamfunction contour plot in Figure 8d shows a recirculating

boundary layer at the bottom of the cavity. This feature appears in the evolution of the

flow before t : 500. Note that the streamline defining this feature is for _b = -0.001,

while the streamline closest to the center of the primary circulation is for _ : -0.090.

This recirculating boundary layer in the bottom of the cavity is imperceptible in the

surface plots of streamfunction, kinetic energy, and vorticity, but it may be highlighted

by a low enough streamfunction contour or a normalized velocity vector plot. There are

two local weak tertiary recirculations diagonally out of the corners, within the ends of

the figure eight shaped streamline for _b : -0.090, and above the recirculating boundary

layer along the lower wall. It appears that a single large third vortex is partially formed

in the bottom of the cavity, but that there is not quite enough room below the secondary

vortex to allow for the joining of the two weak tertiary vortices above the lower wall. The

refined grid calculation shows quartiary corner vortices, resolved with between one and four

grid points. The recirculating boundary layer along the lower wall is not present in the

coarse grid asymptotic flow, which has two tertiary vortices in the lower corners separated

by a short stretch of grid points where the secondary vortex attaches to the lower wall.

The asymptotic coarse grid solution has a smaller total amount of kinetic energy on the

interior grid than the asymptotic flow on the refined grid. These differences between the

two asymptotic flow solutions are probably caused by the better resolution of gradients

and momentum diffusion on the refined grid.

Figures 9a-k are a series of eleven plots at time intervals of 0.25 over slightly more than

one complete periodic cycle starting at t = 4100. These eleven plots are streamfunction

contours with normalized velocity vector overlays in a central band across the cavity,

and they show the essential vortex dynamics in detail for a typical cycle of the periodic

asymptotic flow. The first interesting feature of these dynamics is the wall jet that descends

from the lid along the upper half of the downstream wall, with the periodic appearance

and interaction of two small counter rotating tertiary vortices near the tip of this wall jet

below where it errupts into the flow field as a whole. Note that the secondary vortex in the

lower half of the cavity creates a relatively weak flow that rises along the lower half of the
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downstream wall. The triggering instability that generates the asymptotic periodic flow

is possibly the interaction of these two opposing flows. The relative strength of these two

small tertiary vortices is related to the relative strength of the two opposing flows along

the downstream wall. The second interesting feature of these dynamics is the evolution

of the flow as the stronger upper small tertiary vortex is convected by the bounded shear

layer across the middle of the cavity. The existence of local recirculation in the flow is

possible because there are local streamfunction extremes in the center of the small vortices

as they leave the wall, with saddle points in the streamfunction surface between the small

vortices and the lower secondary vortex. The upper small tertiary vortex is convected to

the streamfunction surface of the larger secondary vortex, the saddle point disappears,

and the smaller vortex loses its independent identity to become a swelling on the side of

the streamfuncti0n surface of the larger vortex. This local swelling on the streamfunction

surface is then convected across the bounded shear layer as a wavy disturbance in the

streamfunction contour lines until the wall at the end of the shear layer is reached, where

the local swelling is dissipated by the boundary layer. The bounded shear layer has an

effect on the spectral signature of the local flow variables, since the nonlinear convection

terms energize integer multiples of the basic frequency of the periodic shedding process at

the end of the wall jet. In its final effects, the upper small vortex disturbs the flow all the

way around the two large circulation patterns. Kinetic energy contours show this effect

near the upper lid, and a close inspection of kinetic energy and vorticity surface plots shows

an effect all along the upstream wall, and along both the lid and the lower wall. These

effects away from the central band in the cavity are slight. The final interesting feature

of these dynamics is the history of the lower small counterrotating tertiary vortex which

originates a little later and slightly below the upper small vortex. This local flow pattern

is convected away from the wall sooner than the upper small vortex, but it is weaker than

the upper small vortex, and as the upper small vortex emerges into the flow the lower small

vortex is pushed back toward the wall below its point of origin to be partially dissipated

by the boundary layer.

Figures 10a-i shows nine plots of data at the particular point with indexes (i, j) -

(88,120), or (x, y) _ (0.92, 1.25), and for 4000 < t < 4100. This point is near the end of

20



the wall jet that descends from the downstream end of the moving lid. The first three plots

in Figures 10a-c are for the spectral densities of the point values of the streamfunction,

the kinetic energy, and the vorticity. Figure 10d is a phase portrait of (¢,-s1,¢_), or

the streamfunction point values plotted with a lag of 31 time steps. Figures 10e and

10f are similar time lagged phase portraits for the point values of the kinetic energy and

the vorticity. Figures 10g-i are phase portraits of (¢i,s a _(u" _2 v". ,.;, +

where w is the vorticity, and (u_, s, _._.), respectively. Figures lla-i shows nine similar plots

at the particular point with indexes (i,j) = (32,106), or (x,y) _-, (0.33,1.10), and for

4000 < t _< 4100. This point is approximately one third of the distance from the end of

the bounded shear layer as it approaches the wall opposite the wall jet after crossing the

center of the cavity. The data in Figures 10 and 11 is for every time step with a sample

of 12800 time points for 4000 < t < 4100, with 295 iterations per cycle, and with slightly

more than 43 cycles during this time interval. All of this data is represented in each of

these plots. Notice the appearance of multiples of the fundamental harmonic in the data

from the point near the end of the bounded shear layer. The point data in these figures

shows the precisely periodic nature of the asymptotic flow with a fundamental frequency

of approximately 0.433 _
2.31 "

It was quite surprising to have to run the finer grid flow so long in order to obtain

an asymptotic periodic state, since the coarse grid simulation converged at t _ 1100.

The recirculating boundary layer along the lower wall is present only in the refined grid

asymptotic flow. The refined grid asymptotic solution has a larger total amount of kinetic

energy on the interior grid than the coarse grid asymptotic flow. These differences between

the two asymptotic flow solutions could be caused by a better resolution of gradients and

momentum diffusion on the refined grid, particularly in the boundary layers. The precise

long term repetition of the periodic asymptotic state, the general qualitative agreement

between the asymptotic dynamics of the coarse and fine grid solutions, and the general

qualitative agreement between the two coarse grid simulations at Re = 10000 with dif-

ferent algorithms, all lead us to believe that the computed solution is a genuine periodic

asymptotic state and not just a numerical artifact.
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6: Remarks and Discussion

We would like to include some general remarks about numerical results and method-

ology as they pertain to this general new problem of computationally determining the

qualitative nature of unsteady flows, especially for the long time behavior of unsteady

flows.

6.1: Methodology

There are two views toward determining the qualitative behavior of a fluid flow. The

first more predominant and easier view is to restrict attention to the branching diagram

of the stationary steady flow problem. This is the bifurcation theory approach. The

second view is to follow the unsteady flow to its final or asymptotic state. This is the

dynamical systems approach. A main goal of both approaches is to determine all stable

flow configurations. Both approaches may be said to be roughly equiwlent if attention is

restricted to stationary final states with ut = 0. When progressing to the determination

of qualitative flow behavior beyond the steady state the two approaches can yield different

conclusions.

In order to determine the transition to a periodic solution as the result of a Hopf

bifurcation, the bifurcation theory approach typically uses an extended set of steady equa-

tions by finding the eigenvalues of an associated Jacobian matrix, and then by finding

the bifurcation parameter value at which a complex conjugate pair of such eigenvalues

crosses the imaginary axis. Some arguments for the bifurcation theory steady equation

analysis are: (1) computational cost is lower than an unsteady analysis; (2) the critical

threshold parameter is predicted "exactly _, although after several mesh refinements; (3)

the variation of the threshold parameter with other parameters can be studied in a similar

way.

Some arguments for using the dynamical systems approach of following an evolving

flow to its asymptotic state are: (1) a time dependent computation "should _ follow the

"physics _, so stable branches can be explored with continuation procedures; (2) more

complicated asymptotic states that occur further along a bifurcation diagram than the

initial bifurcation points can be explored; (3) the dependence of the final state on initial
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and intermediate conditions can be readily tested; (4) all of the intervening dynamics will

be exhibited; (5) a complete picture of the final state is available within the limits of

truncation error. We note that the unsteady dynamical systems approach as presently

formulated does not readily pinpoint critical parameter threshold values for bifurcations.

6.2: Solutions

It is useful to draw some distinctions between various possible numerical flow solutions.

A numerical algorithm for a fluid flow calculation is a system of algebraic equations, and

this system of algebraic equations can have multiple solutions. Some of these solutions are

valid and some are spurious. To quote Schreiber and Keller [18]:

"... Furthermore, since the nonlinearity in the Navier-Stokes equations is quadratic,

the approximating algebraic equations are also quadratic (in any reasonable scheme).

In the two-dimensional case with uniform mesh h in a domain of diameter O(1) there

are essentially N a - 1 unknowns and coupled quadratic equations. Now a basic
-- h2

result in algebraic geometry assures us that this algebraic system has 2 s' solutions,

although some minor difficulties, i.e., "common intersection components," must be

eliminated or else there can be manifolds of solutions. If the flow problem of interest

has a unique solution, we must hope that one of these 2 N' solutions is a close approx-

imation to it and that all of the others is spurious. This cursory account suggests that

most of the numerical solutions are spurious!

Fortunately most of the "numerical" solutions are also complex, so real computa-

tions do not usually reveal them. Furthermore, solution procedures using continuation

from known physical states may avoid them. But this is not always the case as we show

in this note. Indeed even time marching schemes may lead to spurious steady states.

Our results have revealed that this is particularly so when upstream differencing has

been used in the driven cavity problem.

Unfortunately there is at present no good theory to determine when a solution of the

approximating problem is spurious and when it is "legitimate." Indeed this imposes

a severe burden on the computational fluid dynamicist to make additional tests on

his results which will add weight to his assertion of their legitimacy. These tests
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may affirm known physical or mathematical properties of the flow or else they may

assure known approximation properties of the numerical method (i.e., h_-truncation

expansion_ etc.)."

We have addressed this issue by checking that our code and unsteady simulation approach

accurately reproduce the known steady state solutions for the aspect ratio one driven cavity

at Re = 5000 [6], and by checking that our simulations reproduce the same qualitative

periodic flow dynamics at Re = 5000 on both coarse and refined grids.

In a study of the aspect ratio one driven cavity, Glowinski, Keller, and Rinehart

[5,p831] have said:

_A most interesting question is the possible occurence of multiple solutions as the

Reynolds number increases beyond some critical value .... Actually and to our knowl-

edge the computed solutions obtained in the range 0 _ Re __ 5000 by various authors

using different methods agree quite well; this observation suggests that multiple solu-

tions can only appear for greater values of Re."

The aspect ratio one driven cavity has corroborated solutions for 0 _ Re __ 10000 using

both steady and unsteady algorithms. These various solutions differ from each other in

terms of resolution and vortex details, but they are all steady solutions, and qualitatively

similar in terms of the large scale vortex structures.

An example of qualitative flow features that can distinguish solutions is given by

Stokes flow with reasonable symmetry assumptions in lower cavity corners. A sequence

of more than twenty corner vortices was resolved by Gustafson and Leben [10], where the

smallest intensities were O(10-s°). This type of detail in a steady flow solution points

out that numerical solutions can be distinguished by resolution which may not have any

dynamical significance. There is a dynamically significant difference between steady and

periodic asymptotic flow solutions.

There are several known and mutually agreeing steady numerical solutions of the as-

pect ratio two driven cavity for 0 __ Re __ 2000, plus the periodic solutions that we are

reporting in this paper for Re = 5000. One of the features distinguishing the coarse grid

and refined grid solutions that we have presented is the appearance in the refined mesh
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solution of a recirculating boundary layer all across the bottom of the cavity. This sug-

gests the possibility that a second grid dependent steady solution could appear before the

critical point for the Hopf bifurcation. The grid dependent appearance of the recirculating

boundary layer as a partially formed tertiary vortex in the bottom of the cavity does not

seem to have a significant effect upon the essential periodic asymptotic dynamics in this

Reynolds number range.

6.3: Parameters

Flows like the driven cavity can be thought of as three parameter bifurcation problems

with a principal flow parameter such as Reynolds number, a principal geometry parameter

such as aspect ratio, and a principal resolution or discretization parameter such as mesh

size. Even though there are at least these three parameters that affect the cavity flow, we

have concentrated here on the question of Hopf bifurcation with respect to the Reynolds

number parameter with aspect ratio fixed at two. We conjecture that a Hopf bifurcation

with respect to Reynolds number occurs in all lid driven cavities at all aspect ratios. If

there is not a Hopf bifurcation for all aspect ratios, then it would be interesting to know

the limits on aspect ratio for which there are Hopf bifurcations. If there are such limits,

then we expect that they occur for small aspect ratios and not for large. A more general

parametric investigation is underway.
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7: Conclusions

To summarize our numerical results for the aspect ratio two driven cavity:

1] On a coarse 48 x 96 grid at Re = 10000 all measures indicate that the solution attains

a periodic asymptotic state for t _ 1500, with period 3.48 < T _< 3.50.

2] On a coarse 48 x 96 grid at Re = 5000 all measures indicate that the solution attains

a periodic asymptotic state for t _ 1100, with period 2.469 _< T < 2.484. The

asymptotic state for this flow is characterised by primary and secondary vortices in

the upper and lower cavity, by periodic shedding of small tertiary counterrotating

vortices off the downstream wall, by a wavy disturbance across the mid cavity shear

layer, and by tertiary vortices in the bottom corners.

3] On a refined 96 x 192 grid at Re -- 5000 all measures indicate that the solution

attains a periodic asymptotic state for t _ 3700, with period 2.305 < T _< 2.313.

The asymptotic state for this flow is characterised by primary and secondary vortices

in the upper and lower cavity, by periodic shedding of small tertiary counterrotating

vortices off the downstream wall, by a wavy disturbance across the mid cavity shear

layer, by a partially formed third principle vortex at the bottom of the cavity, and by

quartiary vortices in the bottom corners.

Based upon these computations we conjecture that the Navier-Stokes equations for the

aspect ratio two driven cavity possess a Hopf bifurcation in the interval 2000 < Re < 5000,

since the transition has been computationally demonstrated.

Many interesting flow dynamics are shown by simulating the full time dependent flow

history from the initial no flow state to the final periodic state shows. Particular examples

are the development from early time of the periodic shedding of counterrotating vortex

couples from the downstream wall, and the two unexpected transient oscillatory regimes

before converging to a permanent periodic solution in the Re -- 5000 calculation with a

96 x 192 grid. Following the dynamical history of the flow helps in the interpretation of

the final asymptotic state.

The investigation of the qualitative properties of unsteady flows treated as infinite

dimensional dissipative dynamical systems is ushering in a new chapter of numerical anal-
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ysis. We have presented a number of qualitative measures and indicators that we have

found to be useful in this type of study. In particular, we stress the dangers of relying

totally upon any one of these measures.
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