

Solid Rocket Motors Morton Thiokol. Inc

RSRM-3 (360L003) FINAL REPORT
 BALLISTICS/MASS PROPERTIES

5 May 1989

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

Contract No. NAS8-30490
DR. No.
WBS.No.

MORTON Thiokol.Inc.

Aerospace Group

Space Operations

P.O. Box 707, Brigham City, Utah 84302-0707 (801) 863-3511

DOC NO.
REV

Space Booster: Proyr.an Morton Thiokul line

Morturi Thiokul inc
TITLE
RSRM-3 (360L003) FINAL REPORT BALLISTICS/MASS PROPERTIES
5 May 1989
Prepared by:

B. A. Laubacher

Ballistics/Mass Properties

M. C. Richards

Ballistics/Mass Properties

Morton Thiokol. Inc.

Space Division

P.Q. Box 524, Brigham City, Utah 84302-0524 (801) 863-3511

G. W. Di\%on, SKM propellant Program Manager

MORTON THIOKOL.InC.
Aerospace Group
Space Operations

TABLE OF CONTENTS

PAGE
1.0 INTRODUCTION 1
2.0 SUMMARY
3.0 DISCUSSION AND RESULTS 2
3.1 RSRM-3 Propellant Materials 2
3.2 RSRM-3 Propulsion Performance Analysis 3
3.3 RSRM-3 Delivered Performance 4
3.3.1 RSRM-3A/RSRM-3B Thrust and Pressure Comparison 4
$\begin{array}{ll}\text { 3.3.2 } & \text { RSRM-3 Predicted Impulse, Isp, Burn Rate, Event } \\ \text { Times, Separation, and PMBT Comparison }\end{array}$
3.3.3 RSRM-3 Pressure Distribution 7
3.3.4 RSRM-3 Pressure Oscillations 22
3.4 CEI Specification Performance Requirements 25
3.4.1 Performance Tolerances 25
3.4.2 RSRM Nominal Thrust-Time Performance 27
$\begin{array}{ll}\text { 3.4.3 } & \begin{array}{l}\text { Impulse at Standard Conditions vs. Requirements } \\ \text { Gates }\end{array}\end{array}$
3.4.4 Matched Pair Thrust Differential 29
3.4.5 Matched Pair Performance Requirements 29
3.4.6 Ignition Characteristics 30
3.5 Reconstructed Mass Properties 31

Morton Thiokol. Inc.
Aerospace Group
Space Operations

LIST OF TABLES

3.1 TP-H1148 Propellant Evaluation E63 Raw Material Evaluation Summary 3
3.2 RSRM Propulsion Performance 5
3.3 Historical Three Point Average Thrust and Pressure Rise Rate Data 6
3.4 Predicted Propellant Temperature Gradients in RSRM-3 7
3.5 RSRM-3A Motor Pressure Distribution Summary at $62^{\circ} \mathrm{F}$ 8
3.6 RSRM-3B Motor Pressure Distribution Summary at $62^{\circ} \mathrm{F}$ 15
3.7 RSRM-HPM Maximum Pressure Oscillation Amplitude Comparison 24
3.8 Comparison of RSRM-3A Variations at PMBT $=60^{\circ} \mathrm{F}$ About the Nominal to the CEI Spec. Requirements 26
3.9 Comparison of RSRM-3B Variations at $\mathrm{PMBT}=60^{\circ} \mathrm{F}$ About the Nominal to the CEI Spec. Requirements 27
3.10 RSRM-HPM Population Impulse Gates 28
3.11 RSRM-3 Thrust Imbalance Summary 29
3.12 Matched Pair Performance Limits 30
3.13 RSRM-3 Ignition Interval \& Pressure Rise Rate 31
3.14 RSRM-3A Sequential Mass Properties 32
3.15 RSRM-3B Sequential Mass Properties 33
3.16 RSRM-3A Sequential Mass Properties Predicted vs. Actual 34
3.17 RSRM-3B Sequential Mass Properties Predicted vs. Actual 35
3.18 RSRM-3A Predicted vs. Actual Weight Comparison 36
3.19 RSRM-3B Predicted vs. Actual Weight Comparison 37

MORTON THIOKOL. INC.
Aerospace Group
Space Operations
PAGE
1.1 RSRM Propellant Grain Design Configuration 38
$\begin{array}{ll}\text { 2.1 } & \text { RSRM-3A and 3B Reconstructed Vacuum Thrust-Time Trace } \\ \text { at Delivered Conditions }\end{array}$
2.2 RSRM-3B Igniter Pressure Trace at $80^{\circ} \mathrm{F}$ in STW3-3176 Limits 40
3.1 RSRM-3A Predicted vs. Reconstructed Vacuum Thrust 41
3.2 RSRM-3B Predicted vs. Reconstructed Vacuum Thrust 42
3.3 RSRM-3A Predicted vs. Measured Headend Pressure 43
3.4 RSRM-3B Predicted vs. Measured Headend Pressure 44
3.5 RSRM-3A vs. HPM-RSRM Nominal in 3\% Performance Limits 45
3.6 RSRM-3B vs. HPM-RSRM Nominal in 3\% Performance Limits 46
3.7 Raw Pressure Data Used for Pressure Rise Rate Calculation 47
3.8 RSRM-3 Pressure Rise Rates compared in CEI Spec. Limits 48
3.9 Comparison of Actual, Predicted and Target Burn Rates 49
3.10 RSRM Axial Station Location Summary 50
3.11 RSRM-3A Waterfall Pressure Plot 51
3.12 RSRM-3B Waterfall Pressure Plot 52
3.13 RSRM-3A Maximum Pressure Oscillation Amplitude (1-L mode) 53
3.14 RSRM-3A Maximum Pressure Oscillation Amplitude (2-L mode) 54
3.15 RSRM-3B Maximum Pressure Oscillation Amplitude (1-L mode) . 55
3.16 RSRM-3B Maximum Pressure Oscillation Amplitude (2-L mode) 56
3.17 RSRM/HPM Nominal Vacuum Thrust Trace in CEI Spec. Limits 57
3.18 RSRM-3 Ignition Thrust Imbalance 58
3.19 RSRM-3 Steady State Thrust Imbalance (Instantaneous) 59
3.20 RSRM-3 Steady State Thrust Imbalance (4 sec average) 60
3.21 RSRM-3 Tailoff Thrust Imbalance (Instantaneous) 61

REVISION \qquad

DOC NO. SEC$\quad T W R-17542-10$
PAGE

Aerospace Group

Space Operations

1.0 INTRODUCTION

This report contains the propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-3 motors which were assigned to the STS-29 launch. The Morton Thiokol manufacturing designation for the motors were $360 \mathrm{LOO3-A}, \mathrm{~B}$ which are referred in this report as RSRM-3A and RSRM-3B, respectively. The launch occurred on 13 March 1989 at the Eastern Test Range (ETR). The data contained herein was input to the STS-29 Flight Evaluation Report.

The SRM propellant, TP-H1148, is a composite type solid propellant, formulated of polybutadiene acrylic acid acryonitrile terpolymer binder (PBAN), epoxy curing agent, ammonium perchlorate oxidizer and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-3 is included in the discussion section of this report.

The propellant grain design consists of a forward segment with an eleven point star with a transition into a tapered circular perforated (CP) configuration, two center segments that result in a double tapered CP configuration and an aft segment with a triple taper CP configuration, and a cutout for the partially submerged nozzle (Figure 1.1).

The ballistic performance presented in this report was based on the OFI 12.5 sample per second pressure data for the steady state and tailoff portion of the pressure trace. The OFI data on the left motor was adjusted down by 0.2 percent to closer match the magnitude of the real time data. The ignition buildup and maximum headend pressure was assessed using the 320 samples per second DFI data. The DFI data magnitudes were below that of the OFI and real time data, therefore, the left and right motor DFI data was adjusted up by 0.4 and 0.6 percent respectively.

2.0 SUMMARY

The delivered propellant burn rates were close to predicted. The delivered burn rates were $0.367 \mathrm{in} / \mathrm{sec}$ at 625 psia and $60^{\circ} \mathrm{F}$ and 0.368 for the left and right motors respectively. This was $0.001 \mathrm{in} / \mathrm{sec}$ lower than predicted for the left motor and the same as predicted for the right
\qquad

Space Operations
motor. The average of the two motors was $0.0005 \mathrm{in} / \mathrm{sec}$ below the target rate of $0.368 \mathrm{in} / \mathrm{sec}$ at 625 psia and $60^{\circ} \mathrm{F}$. The performance of the two motors were very close to the same as can be seen in Figure 2.2.

The performance of the pair of motors were compared to the following CEI Specification CPW1-3600 paragraphs for compliance: 3.2.1 Performance, 3.2.1.1 General Performance, 3.2.1.1.1 Ignition Characteristics, 3.2.1.1.1.1 Ignition Interval, 3.2.1.1.1.2 Pressure Rise Rate, 3.2.1.1.2 Motor Characteristics, 3.2.1.1.2.1 Nominal Thrust Time Curve, 3.2.1.1.2.2 Performance Tolerance and Limits, 3.2.1.1.2.3 Thrust Differential, 3.2.1.1.2.4 Impulse Gates. The performance from each motor as well as matched pair performance values were well within the CEI Specification requirements. The nominal thrust time curve and impulse gate information has been included. The historical average was well within the variation limits developed from the HPM Block prediction population at a burn rate of $0.368 \mathrm{in} / \mathrm{sec}$ at 625 psia and $60^{\circ} \mathrm{F}$. The historical population values are the average performance data from QM-4, SRM-8A, SRM-8B, SRM-9A, SRM-10A, SRM-10B, SRM-11B through SRM-19B, SRM-24A, SRM-24B, ETM-1A, DM-8, DM-9, QM-6, QM-7, PVM-1, RSRM-1, RSRM-2, and RSRM-3. The motors used in the HPM Block prediction population were $0 M-4$, SRM-8A, 8B, 9A, $10 \mathrm{~A}, 10 \mathrm{~B}, 11 \mathrm{~B}, 13 \mathrm{~A}$, and 13B.

Post flight reconstructed Redesigned Solid Rocket Motor (RSRM) mass properties are within expected values for the lightweight (RSRML) configuration and meet the following CEI paragraphs:3.2.2.2, 3.2.2.2.1, 3.2.2.2.2, and 3.2.2.2.3.

3.0 DISCUSSION AND RESULTS

3.1 RSRM-3 PROPELLANT MATERIALS

Both of the third flight motors were cast with primarily one evaluation of propellant, E63. The left motor contained two mixes from evaluation E64V in the center aft segment and two in the aft segment. The right motor was cast all from evaluation E63. Table 3.1 shows the raw material lots and vendors for the evaluations used.

TABLE 3.1
RAW MATERIAL EVALUATION SUMMARY

TP-H1148 PROPELLANT EVALUATION E63

Ingredient		Stock-Lot
HB Polymer		$7227-0067$
	$7225-0075$	Vendor
ECA	ASRC	
Aluminum	$7228-0064$	Dow Chemical
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$7226-0021$	ALCAN
AP unground	$7229-0071$	Charles Pfister
AP ground	$7229-0071$	PEPCON
		PEPCON

TP-H1148 PROPELLANT EVALUATION E64 (VERIFICATION)

Ingredient	$\frac{\text { Stock-Lot }}{}$	Vendor
HB Polymer	$7227-0068$	$\frac{\text { ASRC }}{}$
ECA	$7225-0076$	Dow Chemical
Aluminum	$7228-0065$	ALCAN
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$7226-0021$	Charles Pfister
AP^{2} unground	$7229-0074$	Kerr McGee
AP ground	$7229-0074$	Kerr McGee

3.2 RSRM PROPULSION PERFORMANCE ANALYSIS

All times shown in this section, unless noted otherwise are referenced to the RSRM ignition command time at 1989:072:14:57:00:017 (EDT).

As previously mentioned the $0 F I(12.5 \mathrm{~s} / \mathrm{s})$ data was used for the steady state and tailoff performance assessment. It compared well with the real time data although the left motor OFI data needed to be adjusted up 0.2 percent. The high sample rate DFI data ($320 \mathrm{~s} / \mathrm{s}$) needed to be adjusted to match the magnitudes of the real time data. The DFI data for the left motor was adjusted up 0.4 percent and the right motor DFI data was adjusted up 0.6 percent. After the adjustments were made to the DFI data, it was used to assess the ignition characteristics and maximum headend pressure of each motor.

The ballistic performance was reconstructed using SCB04 steady state 1-D mass addition computer program, and SCA08 SRM modeling program. Both computer codes have been consistently used for predictions as well as
\qquad

Doc No.	TWR-17542-10	vol	
SEC		PAGE	
		3	

Morton thiokol. Inc.
Aerospace Group
Space Operations
reconstructions throughout the SRM program. Since thrust was not measured on the flight motors, average values of η_{r} 's and C_{m} 's, which are used for the pressure to thrust conversion, were taken from RSRM static test motors and applied to the measured headend pressure to determine the thrust values. The ignition characteristics of the motors were assessed using a 5-point running average smoothing method to reduce noise level in the raw pressure data.
3.3 RSRM DELIVERED PERFORMANCE
3.3.1 RSRM-3A/RSRM-3B Thrust and Pressure Comparison

The flight motor reconstructed thrust-time traces at the delivered temperature of $62^{\circ} \mathrm{F}$ are shown in figure 2.1. A comparison between the predicted thrust and reconstructed thrust for each motor can be seen in Figures 3.1, 3.2. Figure 2.2 shows the RSRM-3B igniter inside of the igniter lot acceptance specification.

The comparison of predicted and measured headend chamber pressure is shown in Figures 3.3, 3.4.

Figures 3.5 and 3.6 show how RSRM-3A and RSRM-3B compared with a nominal performance average for the RSRM at standard conditions of 0.368 burn rate and 60 degree F PMBT. From the figures, it is evident that the RSRM design will continue to influence the shape of the average thrust time trace near 50 seconds.
3.3.2 RSRM Predicted Impulse, ISP, Burn Rate, Event Times, Separation, and PMBT Comparison
The reconstructed RSRM propulsion performance is compared to the predicted performance in Table 3.2. The actual values are very close to the predicted data for both motors and well within specification limits.

Figure 3.7 shows the high sample rate data points used to evaluate the ignition characteristics. Figure 3.8 shows the DP/DT or pressure rise rate curve. The calculated pressure rise rate for RSRM-3A was 82.7 psia/10 ms while that of RSRM-3B was 89.9 psia/ 10 ms . Table 3.3 lists the ignition history of all SRMs that were instrumented for high sample rate pressure data.

A comparison of actual and predicted propellant burn rates to the target burn rate for the flight RSRMs at a PMBT of $60^{\circ} \mathrm{F}$ is shown in Figure 3.9. The predicted scale factor of 1.0175 for conversions from 5

| DOC | TWR-17542-10 | vol. |
| :--- | :--- | :---: | :---: |
| NEC | PAGE | |
| | | |

Morton Thiokol. Inc.
Aerospace Group
Space Operations
inch CP burn rates to actual motor burn rate were based on an average scale factor from the HPM-RSRM population. The actual scale factors for left and right motors respectively were 1.0130 and 1.0177 .

The predicted propellant mean bulk temperature (PMBT) for both motors was $62^{\circ} \mathrm{F}$. This was based on predicted 2-D temperature gradients expected in the RSRMs. Table 3.4 shows the predicted gradient.

MORTON THIOKOL. InC.
Aerospace Group
Space Operations
TABLE 3.3
HISTORICAL THREE POINT AVERAGE thrust and pressure rise rate data

MOTOR	$\begin{gathered} \text { OCCURRENCE } \\ \text { TIME } \\ \hline \end{gathered}$	PRESSURE RISE RATE	OCCURRENCE TIME	THRUST RISE RATE	IGNITION INTERVAL
STATIC		(PSI/10 ms)		(LBF/10 ms)	
DM-2	0.1480	85.30	0.1480	245380	0.2330
QM-1	0.1560	86.38	0.1560	246128	0.2362
QM-2	0.1640	93.58	0.1720	234950	0.2391
QM-3	0.1560	94.45	0.1520	245615	0.2287
QM-4	0.1505	91.96	0.2225	234438	0.2192
ETM-1A	0.1520	86.72	0.1560	230023	0.2279

FLIGHT MOTORS

SRM-1A	0.1530	87.58	0.2373
SRM-1B	0.1500	91.57	0.2358
SRM-2A	0.1530	90.74	0.2348
SRM-2B	0.1660	90.27	0.2345
SRM-3A	0.1500	91.05	0.2308
SRM-3B	0.1500	89.68	0.2271
SRM-5A	0.1530	95.10	0.2361
SRM-5B	0.1660	84.43	0.2380
SRM-6A	0.1530	92.72	0.2342
SRM-6B	0.1470	88.22	0.2329
SRM-7A	0.1500	99.90	0.2282
SRM-7B	0.1500	99.32	0.2276
SRM-8A	0.1530	106.29	0.2224
SRM-8B	0.1500	91.06	0.2196
SRM-9A	0.1530	92.31	0.2303
SRM-10A	0.1530	92.89	0.2373
SRM-10B	0.1500	84.56	0.2342
SRM-13B	0.1410	98.85	0.2115

NUMBER	24
AVERAGE	91.87
STANDARD DEVIATION	5.31

236,357	0.2307
11,977	0.0069
5.07	2.99

DM-8	0.1680	77.00	0.1670	234,001	0.2424
DM-9	0.1640	81.00	0.1720	275,525	0.2436
QM-6	0.1480	87.40	0.1520	211,476	0.2321
QM-7	0.1480	99.60	NA	NA	0.2230
PVM-1	0.1520	92.80	0.1520	294,664	0.2338
RSRM-1A	0.1501	99.00	NA	NA	0.2296
RSRM-1B	0.1596	80.50	NA	NA	0.2310
RSRM-2A	0.1584	87.30	NA	NA	0.2410
RSRM-2B	0.1521	100.2	NA	NA	0.2360
RSRM-3A	0.1560	82.70	NA	NA	0.2414
RSRM-3B	0.1529	89.90	NA Doc	NA	0.2408
REVISION -			No.	TVR-17542-10	vol
			sec	[VR-17542-10 Page	

MORTON THIOKOL. Inc.
Aerospace Group
Space Operations

TABLE 3.4
 PREDICTED PROPELLANT

 TEMPERATURE GRADIENTS IN RSRM-3

 TEMPERATURE GRADIENTS IN RSRM-3}

WEB DIST(1)	DEGREE LOCATIONS							
	0	45	90	135	180	225	270	315
2.63	66.7	57.5	56.3	56.5	56.5	56.8	66.5	71.5
7.88	64.1	59.0	57.9	58.0	58.0	58.5	63.9	67.5
14.19	65.1	60.5	59.2	59.2	59.2	60.1	64.9	68.1
21.56	65.7	61.8	60.5	60.4	60.5	61.5	65.6	68.2
28.94	66.2	62.8	61.4	61.2	61.4	62.5	66.0	68.3
36.31	66.4	63.3	61.9	61.7	61.9	63.0	66.2	68.2

(1) MEASURED FROM CASE WALL TOWARD CENTER OF SEGMENT (INCHES)

3.3.3 RSRM-3 Pressure Distribution

Tables 3.5 and 3.6 show RSRM-3 reconstructed pressure distribution during ignition and steady state at a Propellant Mean Bulk Temperature (PMBT) of 62 degrees F. Figure 3.10 shows the location points referenced in the pressure distribution tables. The pressure distribution was reconstructed theoretically, since, no internal pressures are measured other than headend pressure. The pressures were reconstructed using Caveny-Kuo ignition transient program, SCBO4 steady state 1-D mass addition, and SCA08 SRM modeling program.
\qquad

 -000000000000000.0000000000000000000000000000000

NOZZLE
STAGNATION
PRESSURE

 －

 NNNーNNNNNNNNMmmmmコトに

 míNj $\dot{\sim}$

 Mmmmm

TABLE 3.5 (CONTINUED)
RSRM-3A MOTOR PRESSURE DISTRIBUTION SUMMARY AT 60 DEGREES F

 MRNTNRNNRNNO

 NT


```
IME
000000000000000000000000000000000000000000000000
```


 !

 HEADEND PRESSURE

NOZZLE
STAGNATION
PRESSURE
185.6
169.4
153.9
140.0
128.0
117.2
106.2
94.4
82.7
72.5
64.3

HEADEND PRESSURE (489.9)	530.0	689.3	851.2	1012.1	1171.2	1332.1	1491.2	1511.0	1577.5	1697.5	1816.7
186.5	186.5	186.5	186.3	185.9	185.8	185.0	184.7	184.7	184.7	184.7	184.7
170.2	170.2	170.2	170.1	169.6	169.6	168.8	168.6	168.6	168.6	168.6	168.6
154.6	154.6	154.6	154.5	154.1	154.1	153.3	153.2	153.2	153.2	153.2	153.2
140.7	140.7	140.7	140.6	140.2	140.2	139.5	139.4	139.4	139.4	139.4	139.4
128.6	128.6	128.6	128.5	128. 2	128.2	127.5	127.4	127.4	127.4	127.4	127.4
117.8	117.8	117.8	117.7	117.3	117.3	116.6	116.7	116.7	116.7	116.7	116.7
106.7	106.7	106.7	106.6	106.3	106.3	105.7	105.7	105.7	105.7	105.7	105.7
94.8	94.8	94.8	94.7	94.5	94.5	93.9	94.0	94.0	94.0	94.0	94.0
83.1	83.1	83.1	83.0	82.8	82.8	82.3	82. 3	82. 3	82.3	82. 3	82. 3
72.8	72.8	72.8	72.7	72.5	72.5	72.1	72.1	72. 1	72.1	72.1	72.1
64.6	64.6	64.6	64.5	64.3	64.3	64.0	64.0	64.0	64.0	64.0	64.0

TVR-17542-10
Page 17

 - 0

 HEADEND HEADEND

 ラJNゥ

 NTONNN

 MJJNTNONNの

 NANMNANMSN

 かo

0 范 HEADEND

[^0]\[

$$
\begin{gathered}
\text { NOZZLE } \\
\text { STAGNATION } \\
\text { PRESSURE } \\
187.3 \\
171.9 \\
155.7 \\
139.9 \\
126.0 \\
114.2 \\
103.6 \\
93.5 \\
83.9 \\
75.3 \\
67.9
\end{gathered}
$$
\]

3.3.4 RSRM-3 Pressure Oscillations

Both boosters used on STS-29 were instrumented with a special channel for measuring chamber pressure oscillations. The measurement was accomplished by electrically A-C coupling the data acquired from the OPTs. This gage is identical to the POO1 gage used in static test, and in fact is very similar to the A-C coupled gage used on static test motors, P016. The P016 gage is also an A-C coupled mean pressure gage, is the same make as the OPTs, uses the same operating principles as the OPT, and externally appears identical to the OPTs. Though they are not exactly the same gage, they are extremely similar. Bit resolution and sample rate were adequate for measuring the low level 1-L and 2-L mode pressure oscillations anticipated in the combustion chambers of the boosters. The measurement system used on STS-29 should be comparable to that used during static testing.

Data acquired from the A-C coupled OPTs are displayed in a waterfall plot format in Figures 3.11 (left booster) and 3.12 (right booster). The first longitudinal (1-L) and second longitudinal (2-L) acoustic modes of the combustion cavity can be observed at about 15 and 30 Hz , respectively. Maximum oscillation amplitudes for the left motor were 0.31 psi 0-to-peak at 15.5 Hz and 86 seconds (1-L mode) and 0.44 psi at 28 Hz and 89 seconds (2-L mode). The right motor experienced a maximum 1-L mode amplitude of 0.38 psi 0 -to-peak at 15.5 Hz and 85 seconds. The maximum 2-L mode amplitude for the right motor was 0.54 psi 0-to-peak at 29.5 Hz and 83 seconds. Figures 3.13 through 3.16 describe running, instantaneous, peak-to-peak oscillations amplitudes in the 1-L and 2-L modes for the left and right motors, respectively, during the last half of operation. This type of analysis is more representative of instantaneous oscillations than are the time averaged oscillations presented in a waterfall plot. Figure 3.13 shows maximum peak-to-peak 1-L mode oscillations of 1.26 psi for the left motor. The corresponding number for the right motor is 1.24 psi.

Several observations about the two STS-29 solid rocket boosters can be made:

Both motors have strikingly similar acoustic signatures.
\qquad

Noc No.	TUR-17542-10	vot
$\overline{\text { SEC }}$	-	

Aerospace Group

Space Operations

The STS-29 waterfall plots are very similar to those from STS-27 and STS-26, though $2-L$ mode activity is somewhat less.

The general appearance of the STS 29 waterfall plots more closely resembles HPM behavior than recent $\bar{R} S R M$ static test behavior.

Oscillation amplitudes for RSRM flight motors continue to be significantly lower than for RSRM static test motors.

When using waterfall plots to compare oscillation amplitudes, it is important to remember that this format uses an averaging method of analysis. This presents no difficulty for steady state signals but has an attenuating effect on transient signals. Since most of the data obtained from a solid rocket motor are transient, any oscillation magnitudes referred to as maxima are, in fact, not true but averaged values over a given time slice. These numbers are, nonetheless, very useful for comparison. Table 3.7 shows such a comparison for the STS-29, STS-27, STS-26 motors and recent static test motors. DM-6 and DM-7 were Filament Wound Case (FWC) motors.

In conclusion, both STS-29 motors exhibited chamber pressure oscillations similar to previous RSRM flight motors and previous HPM designs. The high amplitude $1-\mathrm{L}$ mode oscillations experienced late in operation in the RSRM static test motors was not present in any of the 6 RSRM flight motors used to date.

OOC No.	TWR-17542-10	vol
SEC		PAGE

MORTON THIOKOL. Inc.
Aerospace Group
Space Operations
TABLE 3.7
Maximum Pressure Oscillation Amplitude Comparison

Motor	Source of Measurement	Mode	Time of Measurement	Frequency (Hz)	Max Pressure (psi 0-to-peak)
$\begin{aligned} & \text { STS-29 } \\ & \text { (left) } \end{aligned}$	Waterfall	1-L	86	15.5	$\frac{0.31}{}$
		2-L	89	28.0	0.44
STS-29 Waterfall (right) AC OPT		1-L	85	15.5	0.38
		2-L	83	29.5	0.54
TEM-02	Waterfall	1-L	78	16.0	0.40
		2-L	100	29.5	0.59

QM-8 Waterfall	1-L	104	14.5	1.11
	2-L	55	27.5	0.45
TEM-01 Waterfall	1-L	79	15.5	0.53
	2-L	95	29.5	1.07

STS-27 Waterfall 1-L 82 (left) AC OPT

2-L 82
15.5
0.37
29.5
0.60

STS-27 Waterfall
1-L 82 (right) AC OPT

2-L
83
STS-26 Waterfall 1-L 79 (left) AC OPT

2-L
95
15.5
0.57

	2-L	95
STS-26 Waterfall (right) AC 0PT	1-L	83
		94

29.5
0.72
16.0
0.70
29.5
0.87 (right) AC OPT

2-L
94
15.0
0.54
30.0
0.47

PVM-1 Waterfall
1-L
99
14.5
1.76

2-L
79
29.5
1.05
QM-7 Waterfall 1-L 93
14.5
1.40

2-L 79
29.5
0.95

QM-6 Waterfall
1-L 107
2-L 83
14.5
1.50
29.5
0.65
\qquad

MORTON THIOKOL.Inc.
Aerospace Group

Space Operations

Source Motor	of Measurement	Mode	Time of Measurement	Frequency (Hz)	Max Pressure (psi 0-to-peak)
DM-9	Waterfall	1-L	107	14.5	1.15
		2-L	96	30.0	0.88
DM-8	Waterfall	1-L	78	16.0	0.83
		2-L	97	29.5	0.85
ETM-1A	Waterfall	1-L	83	15.5	0.47
		2-L	100	29.5	0.55
DM-7	Waterfall	1-L	77	15.5	1.29
		2-L	93, 96	29.5	0.86
DM-6	Waterfall	1-L	76	15.5	0.51
		2-L	86	29	0.78
QM-4	Waterfall	1-L	93	14	0.41
		2-L	83	29	0.35

3.4 CEI SPECIFICATION PERFORMANCE REQUIREMENTS

3.4.1 Performance Tolerances

The parameter variations of the total population of RSRMs about a nominal value are constrained by the requirements defined in the CEI Specification paragraph 3.2.1.1.2.2, Table II. A comparison of the RSRM-3A and RSRM-3B calculated and reconstructed parameters at PMBT of $60^{\circ} \mathrm{F}$ with respect to the nominal values and the CEI Specification maximum 3 sigma requirements is shown on the following two tables.
\qquad

MORTON THIOKOL. INC
Aerospace Group
Space Operations

TABLE 3.8
COMPARISON OF RSRM-3A VARIATIONS
AT PMBT $=60^{\circ} \mathrm{F}$ ABOUT THE NOMINAL TO THE
CEI SPECIFICATION REQUIREMENTS
CEI
MAX 3 SIGMA NOMINAL RSRM-3A RSRM-3A
PARAMETER
(1)

WEB TIME	± 5.0	111.7	111.4	-0.27
ACTION TIME	± 6.5	123.4	124.1	0.57
WEB TIME AVG PRESSURE	± 5.3	660.8	659.8	-0.15
MAX PRESSURE	± 6.5	918.4	895.0	-2.55
MAX SEA LEVEL THRUST	± 6.2	3.06	3.04	-0.65
WEB TIME AVG VAC THRUST	± 5.3	2.59	2.58	-0.39
VAC DEL SPECIFIC IMPULSE	± 0.7	267.1	267.5	0.15
WEB TIME VAC TOTAL IMPULSE	± 1.0	288.9	287.8	-0.0
ACTION TIME TOTAL IMPULSE	± 1.0	296.3	295.4	-0.0

PRESSURE VALUES IN PSIA, THRUST VALUES IN MLBF, IMPULSE VALUES IN MLBF-SEC
(1) CEI PARAGRAPH 3.2.1.1.2.2, TABLE II
(2) QM-4 STATIC TEST AND SRM-8A AND B, SRM-9A, SRM-10A, SRM-10B, SRM-11A, SRM-13A AND SRM-13B FLIGHT AVERAGE AT STANDARD CONDITIONS.
(3) RSRM-3A AT PMBT $=60^{\circ} \mathrm{F}$
(4) DELTA $=(($ RSRM $-3 A-$ NOMINAL $) /$ NOMINAL $) * 100$
\qquad

Doc No.	TVR-17542-10	vol	
SEC			26

TABLE 3.9				
COMPARISON OF RSRM-3B VARIATIONS AT PMBT $=60^{\circ} \mathrm{F}$ ABOUT THE NOMINAL TO THE CEI SPECIFICATION REOUIREMENTS				
PARAMETER		nominal VALUE(2)	$\begin{aligned} & \text { RSRM-3B } \\ & \text { VALUE (3) } \end{aligned}$	$\begin{aligned} & \text { RSRM-3B } \\ & \text { DELTA\% (4) } \end{aligned}$
VEB TIME	± 5.0	111.7	111.4	-0.27
ACTION TIME	± 6.5	123.4	123.8	0.32
WEB TIME AVG PRESSURE	± 5.3	660.8	660.8	0.00
MaX PRESSURE	± 6.5	918.4	890.0	-3.09
MaX SEA LEVEL THRUST	± 6.2	3.06	3.05	-0.33
WEB TIME AVG VAC THRUST	± 5.3	2.59	2.59	0.00
VAC DEL SPECIFIC IMPULSE	± 0.7	267.1	267.8	0.26
WEB TIME VAC TOTAL IMPULSE	± 1.0	288.9	288.2	-0.24
ACTION TIME TOTAL IMPULSE	± 1.0	296.3	295.9	-0.13

(1) CEI PARAGRAPH 3.2.1.1.1, TABLE II
(2) OM-4 STATIC TEST AND SRM-8A AND B, SRM-9A, SRM-10A, SRM-10B, SRM-11A, SRM-13A AND SRM-13B FLIGHT AVERAGE AT STANDARD CONDITIONS.
(3) \quad RSRM-3B AT PMBT $=60 \mathrm{~F}$
(4) DELTA $=(($ RSRM $-3 B-$ NOMINAL $) /$ NOMINAL $) * 100$

3.4.2 RSRM Nominal Thrust-Time Performance

The nominal RSRM-HPM performance is defined as the average performance of the HPM and RSRM static test and flight motor series at standard conditions. The standard conditions consist of the propellant burn rate of $0.368 \mathrm{in} / \mathrm{sec}$ at 625 psia and a PMBT of $60^{\circ} \mathrm{F}$. The flight motor reconstructed thrust-time traces are normalized to standard conditions and averaged with past flight and static test data at standard conditions to form the RSRM-HPM population nominal thrust-time trace. This nominal RSRM-HPM performance will be continually updated during the
\qquad

DOC No.	TWR-17542-10	vol
SEC	PAGE	27

Morton Thiokol. Inc.
Aerospace Group
Space Operations
Shuttle program. It is the current estimate of the total population nominal. The nominal performance for the thrust time trace and impulse gate requirements is based on the performance of $0 M-4$, SRM-8A, SRM-8B, SRM-9A, SRM-10A, SRM-10B, SRM-11B through SRM-19B, SRM-24A, SRM-24B, ETM-1A, DM-8, DM-9, QM-6, QM-7, PVM-1, RSRM-1, RSRM-2, and RSRM-3. The delivered RSRM-HPM population nominal performance is compared to the CEI Specification paragraph 3.2.1.1.2.1, Table I requirements on Figure 3.17. 3.4.3 Impulse at Standard Conditions VS Requirement Gates

The vacuum impulse at standard conditions at each of the gates is compared to the CEI Specification paragraph 3.2.1.1.2.4 requirements on the following table. The population making up the standard nominal for the impulse requirements are the same as those in the nominal thrust time trace (Figure 3.17).

TABLE 3.10		
RSRM-HPM POPULATION IMPULSE GATES		
IMPULSE	REQUIREMENT (1)	STANDARD NOMINAL (2)
Impulse at 20 sec (10**6 LBF-SEC)	63.1 (MIN)	64.5
Impulse at 60 sec (10**6 LBF-SEC)	$\begin{array}{rl} 172.9 & 178.1(+3 \%) \\ & 171.2(-1 \%) \end{array}$	172.5
Impulse at ACTION TIME ($10 * * 6$ LBF-SEC)	293.8 (MIN)	296.3

(1) CEI PARAGRAPH 3.2.1.1.2.4
(2) NORMALIZED TO STANDARD CONDITIONS-BURN RATE OF 0.368 IN/SEC. POPULATION IS SAME AS USED TO COMPARE NOMINAL THRUST TRACE, Figure 3.17 .

Doc No.	TWR-17542	-10	vol
SEC		PAGE	
			28

MORTON THIOKOL.INC.
Aerospace Group
Space Operations

3.4.4 Matched Pair Thrust Differential

The maximum thrust imbalance assessment is shown on the following table. Figure 3.18 through Figure 3.21 shows the thrust differential during ignition, steady state, and tailoff. All the thrust differential values were near the nominal values experienced by previous flight SRMs and were well within the CEI Specification paragraph 3.2.1.1.2.3, Table III limits. The thrust values used for the assessment were reconstructed at the delivered conditions of each motor.

TABLE 3.11
RSRM-3 THRUST IMBALANCE SUMMARY
SPEC IMBALANCE TIME

	SPEC	IMBALANCE	TIME
IGNITION (0 SEC TO 1.0 SEC, LBF)	300 K	-88.8 K	0.094
STEADY STATE (1.0 SEC TO FIRST	85 K	-39.0 K	90.0
WEB TIME MINUS 4.5 SEC, LBF)			
TRANSITION (FIRST WEB TIME $85 \mathrm{~K}-268 \mathrm{~K}$	+30.8 K	111.0	
MINUS 4.5 SEC TO FIRST WEB TIME, LBF)	linear		
TAILOFF (FIRST WEB TIME TO LAST ACTION TIME, LBF)	710K	+46.1 K	112.0

```
IMBALANCE = LEFT SRM - RIGHT SRM
```


3.4.5 Matched Pair Performance Requirements

The CEI Specification requires that the performance of a matched pair of motors on a flight set have similar performance according to table 3.12. The RSRMs for STS-27 were well within the matched pair specification requirements.

Doc No.	TWR-17542-10	Vol	
SEC			
			29

MORTON THOKOL.INC
Aerospace Group
Space Operations

TABLE 3.12
MATCHED PAIR PERFORMANCE LIMITS

CEI SPECIFICATION DELIVERED
PARAMETER

VEB TIME

ACTION TIME
WEB TIME AVG PRESSURE
MAX PRESSURE
MAX SEA LEVEL THRUST
WEB TIME AVG VAC THRUST
VAC DEL SPECIFIC IMPULSE
WEB TIME VAC TOTAL IMPULSE
ACTION TIME TOTAL IMPULSE

MAX DIFFERENCE(\%)(1) \% DIFFERENCE(2)

PRESSURE VALUES IN PSIA, THRUST VALUES IN MLBF, ImpULSE VALUES IN MLBF-SEC
(1) CEI SPECIFICATION PARAGRAPH 3.2.1.1.2.2, TABLE II
(2) DIFFERENCE $=(($ RSRM $-3 B-$ RSRM 3 A $) /$ RSRM -3 AVERAGE $) * 100$ DATA AT PMBT OF 60 DEG F

3.4.6 Ignition Characteristics

The ignition characteristics of both motors are shown in Table 3.13 compared with the limits from CEI Specification paragraphs 3.2.1.1.1.1 and 3.2.1.1.1.2. All the values were well within the limits.

TABLE 3.13
RSRM-3 Ignition Characteristics

Parameter	CEI Requirement	RSRM-3A	RSRM-3B
Ignition Interval	$202-262 \mathrm{~ms}$	241 ms	241 ms
Pressure Rise Rate	$115.9 \mathrm{psi} / 10 \mathrm{~ms}$	82.7	89.9

\qquad

Doc No.	TWR-17542-10	vo	
SEC		PaGE	30

MORTON THIOKOL. Inc.

Aerospace Group

Space Operations

3.5 RECONSTRUCTED MASS PROPERTIES

The Morton Thiokol manufacturing designation, 360L003, along with STS-29 have been used, by Mass Properties, to identify the RSRMs used on this flight. The left and right hand RSRMs for the flight will be designated as A and B.

Tables 3.14 and 3.15 provide $S T S-29 A$ and STS-29B reconstructed sequential mass properties, respectively.

Table 3.16 and 3.17 compares RSRML predicted sequential weight and center of gravity (cg) data against post flight reconstructed data. A $1,518 \mathrm{lbm}$ slag weight was used for both prefire and postfire sequential predictions. Actual STS-29 mass properties may be obtained from Mass Properties History Log Space Shuttle 360L003-LH (TWR-17338), dated 25 October 1988, and 360L003-RH (TWR-17339), dated 25 0ctober 1988. Post flight reconstructed data reflects Ballistics mass flow data from the 320 sample per second measured pressure traces. Tables 3.18 and 3.19 present CEI requirements, predicted, and actual weight comparisons. The actual weights are in close agreement with predicted values. Mass Properties data for both RSRMs comply with CEI requirements.
\qquad
TABLE 3.14
SEQUENTIAL MASS PROPERTIES

EVENTS/TIMES	WEIGHT (LBS)	CENTER LONG.	OF GRAVITY LAT. VERT.		ITCH MOMENT OFINERTIA ${ }^{\text {ROLL }}$ YAW		
PRE-LAUNCH	1255040.6	1171.588	0.072	0.008	42391.866	878.095	42392.895
LIFT-OFF ${ }_{\text {TIME }}=0.00$	1254345.7	1171.724	0.072	0.008	42348.459	876.758	42349.488
TIME $=0.24$ INTERMEDIATE BURN	1016525.6	1207.942	0.089	0.010	30830.782	761.675	30831.809
TIME = 20.00							
INTERMEDIATE BURN	796537.3	1231.709	0.112	0.013	21792.256	627.629	21793.278
MAX "Q"ME $=40.00$	666485.7	1229.527	0.134	0.015	18079.433	550.529	18080.447
TIME $=54.00$ INTERMEDIATE BURN	611980.3	12R7.097	0.145	0.017	16688.611	515.470	16689.622
TIME $=660.00$ INTERMEDIATE BURN					12011.826	381.793	12012.826
INTERMEDIATE BURN	420936.3	1215.124	0.209	0.024	12011.826	381.793	12012.826
MAX "G"	356591.9	1213.719	0.247	0.029	10609.358	331.180	10610.352
TIME $=88.00$	251397.2	1225.183	0.348	0.041	8605.563	242.987	8606.549
WEB TURN ${ }_{\text {THE }}=100.00$	174250.5	1266.459	0.499	0.059	7272.103	173.124	7273.080
$\text { TIME }=111.44$							
end of action time $\text { TIME }=124.08$	144582.6	1313.361	0.600	0.071	6568.299	146.845	6569.271
SEPARAIION.	144008.7	1314.840	0.603	0.070	6542.600	146.436	6543.575
TIME $=125.83$ NOZZLE JETTISONED	141429.0	1305.149	0.604	0.070	6323.230	141.664	6324.185
TIME $=195.83$							
max reentry "q"	141211.1	1305.045	0.605	0.070	6311.820	141.471	6312.776
NOSE TIME P = ${ }_{\text {P PLOYMENT }}$	141158.8	1305.022	0.605	0.070	6309.031	141.425	6309.987
DROGUE CHE $=350.83$	141157.8	1305.022	0.605	0.070	6308.976	141.424	6309.931
$\text { TIME }=351.43$	11787.8	1305.022	0.605	0.070			
frustum release	141121.0	1305.006	0.605	0.070	6307.001	141.391	6307.957
TIIME $=372.53$	141118.7	1305.005	0.605	0.070	6306.880	141.389	6307.835
$\text { TMME }=373.83$							
MAIN CHUTE 1ST DISREEFING	141101.1	1304.998	0.605	0.070	6305.930	141.374	6306.885
MAIN CHUTE $=383.93$ DISREEFING	141090.8	1304.994	0.605	0.070	6305.376	141.365	6306.331
$\underset{\text { SPLASHDOWN }}{\text { TIME }}=389.83$	141046.6	1304.974	0.605	0.070	6302.947	141.326	6303.903
TIME $=415.83$							

TABLE 3.15
SEQUENTIAL MASS PROPERTIES
STS-29 RIGHT HAND

EVENTS/TIMES	(LBS)	$\begin{aligned} & \text { CENTER } \\ & \text { LONG. } \end{aligned}$	Of GRAVITY		MOMENT OFINERTIA		
PRE-LAUNCH TIME $=0.00$	1255967.6	1171.614	0.072	0.007	42439.683	877.956	42440.705
LIFT-OFF $=0.00$	1255262.7	1171.753	0.072	0.007	42395.714	876.621	42396.736
INTERMEDIATE BURN	1017869.0	1207.998	0.089	0.009	30903.479	761.890	30904.499
INTERMEDIATE $\begin{array}{r}\text { 20.00 } \\ \text { BURN }\end{array}$	797566.8	1231.878	0.113	0.011	21854.650	627.715	21855.664
$\text { Max "TIME }=40.00$	667488.4	1229.801	0.135	0.013	18140.952	550.484	18141.958
TIME $=54.00$							
INTERMEDIATE BURN	612997.9	1227.476	0.146	0.015	16756.976	515.980	16757.980
INTERMEDIATE BURN	421936.0	1215.855	0.211	0.021	12077.750	381.788	12078.742
$\text { MAX "G"ME }=80.00$	357146.9	1214.734	0.249	0.025	10665. 221	330.832	10666. 209
TIME $=87.00$ INTERMEDIATE BURN TIME $=100.00$	251180.6	1227.119	0.352	0.035	8644.564	241.953	8645.543
WEB BURN	174637.2	1267.562	0.503	0.051	7313.501	172.451	7314.471
END OF ACTION TIME	144862.4	1314.842	0.605	0.061	6591.180	146.265	6592.145
TIME SEPARATION	144235.5°	1316.690	0.608	0.061	6559.568	145.837	6560.535
TIME $=125.83$							
NOZZLE JETTISONED	141679.1	1306.972	0.609	0.061	6373.431	141.125	6374.385
	141461.2	1306.870	0.610	0.061	6362.032	140.932	6362.987
MAX TIME $=320.83$							
NOSE CAP DEPLOYNENT	141408.9	1306.848	0.610	0.061	6359.244	140.886	6360.199
TIME $=350.83$	141407.9	1306.847	0.610	0.061	6359.190	140.885	6360.143
TIME $=351.43$							
FRUSTUM RELEASE	141371.1	1306.832	0.610	0.060	6357.216	140.852	6358.171
TIHE $=372.53$ MAIN CHUTE LINE STRETCH	141368.9	1306.831	0.610	0.060	6357.095	140.850	6358.049
TIME $=373.83$							
MAIN CIIUTE 1ST DISREEFING	141351.2	1306.824	0.610	0.060	6356.145	140.835	6357.100
MAIN TIHUE $=383.93$ 2ND DISREEFING	141341.0	1306.820	0.610	0.060	6355.592	140.826	6356.547
TIME $=389.83$							
SPLASHDOWN	141296.7	1306.801	0.610	0.060	6353.165	140.787	6354.120

$$
\begin{aligned}
& \text { Event } \\
& \text { Pre-Ignition } \\
& \text { Liftoff } \\
& \text { Action Time } \\
& \text { Separation }{ }^{2} \\
& \text { Nozzle Jettison } \\
& \text { Nose Cap Deployment } \\
& \text { Drogue Chute Deployment } \\
& \text { Main Chute Line Stretch } \\
& \text { Main Chute 1st Disreefing } \\
& \text { Main Chute 2nd Disreefing } \\
& \text { Splash Down }
\end{aligned}
$$

TABLE 3.16
SEDUENITAL MASS PROPERTIES PREDICLED/ACIUAL COMPARISONS
STS-29 left Aand

Weight (b)				Longitudinal $\sigma_{\text {(}}(\mathrm{in})$			
Predicted ${ }^{1}$	Actual	Delta	\% Error	Predicted ${ }^{1}$	Actual	Delta	\% Error
1,255,041	1,255,041	0	0.00	1,171.588	1,171.588	0.000	0.00
1,254,412	1,254,346	-66	0.01	1,171.715	1,171.724	+0.009	0.00
144,707	144,583	-124	0.09	1,312.994	1,313.361	+0.367	0.03
143,974	144,009	+35	0.02	1,314.957	1,314.840	-0.117	0.01
141,420	141,429	$1+9$	0.01	1,305.146	1,305.149	+0.003	0.00
141,161	141,159	-2	0.00	1,305.022	1,305.022	0.000	0.00
141,146	141,158	+12	0.01	1,305.015	1,305.022	+0.007	0.00
141,119	141,119	0	0.00	1,305.004	1,305.005	+0.001	0.00
141,107	141,101	-6	0.00	1,304.999	1,304.998	-0.001	0.00
141,100	141,091	-9	0.01	1,304.996	1,304.994	-0.002	0.00
141,047	141,047	0	0.00	1,304.974	1,304.974	0.000	0.00

[^1] Event
Pre-Ignition
Liftoff
Action Time
Separation 2
Nozzle Jettison
Nose Cap Deployment
Drogue Chute Deployment
Main Chute Line Stretch
Main Chute 1st Disreefing
Main Chute 2nd Disreefing
Splash Down

RREDICTED/ACTUAL VEIGAT (lb) COMPARISONS
SIS-29 LEFT RAND

Iten	Minimum	Maximum	Predicted ${ }^{3}$	Actual	Delta	\% Error	Notes
Inerts							
Prefire, Controlled		150,076	148,968	148,968	0	0.00	1
Propellant	1,104,714		1,104,894	1,104,894	0	0.00	1
Usable			1,104,037	1,104,157	+120	0.01	2
To Liftoff			533	597	$+64$	10.72	
Liftoff to Action			1,103,504	1,103,560	+56	0.01	2
Unusable			857	737	-120	16.28	
Action to Separation			667	508	-159	31.30	
After Separation	-		190	229	+39	17.03	
Slag			1,518	1,518	0	0.00	2

Notes:

1. Requirenent per CPVI-3600A, Addendum G, Part I, (RSRM CEI Specification).
2. Slag included in usable propellant, liftoff to action.
3. Based on 25 October 1988, Mass Properties History Log Space Shuttle 3601003-1H (TWR-17338).

PREDCIED/ACTIAL WETGHT (lb) COMPARISANS
STS-29 RIGEII BAND

Iten	Miniman	Maxinum	Predicted ${ }^{3}$	Actual	Delta	\% Error	Notes
Inerts							
Prefire, Controlled		150,076	149,231	149,231	0	0.00	1
Propellent	1,104,714		1,105,565	1,105,565	0	0.00	1
Usable			1,104,707	1,104,804	+97	0.01	2
To Liftoff			534	607	+73	12.03	
Liftoff to Action			1,104,173	1,104,197	+24	0.00	2
Unusable			858	761	-97	12.75	
Action to Separation			668	561	-107	19.07	
After Separation	-	-	190	200	+10	5.00	
Slag			1,518	1,518	0	0.00	2

Notes:

1. Requirement per CPMI-3600A, Addendum G, Part I, (RSRM CEI Specification).
2. Slag included in usable propellant, liftoff to action.
3. Based on 25 October 1988, Mass Properties History Log Space Stuttle 360003-RH (TWR-17339).

revision \qquad

Figure 2.1 RSRM- 3A AND 3B RECONSTRUCTED VACUUM THRUST-TIME TRACE

TWR-17542-10
Page 39

TWR-17542-10

TWR-17542-10
1

TWR-17542-10

Figure 3.3 RSRM-3A PREDICTED VS. MEASURED HEADEND PRESSURE

TWR-17542-10

Figure 3.4 RSRM-3B PREDICTED VS. MEASURED HEADEND PRESSURE

TVR-17542-10

TVR-17542-10

TWR-17542-10
-

Figure 3.10 RSRM Axial Station Lncation Summary

TIME (SEC)
TEST - STS-29 LEFT 80 P

(d-d ISd) דצя

TIME (SEC)

tIME (SEC)

TEST —— STS-29 RHT 80 PT
ST•E $31 n 8 \mathrm{FA}$

TIME (SEC)

TWR-17542-10

ORIEINAL PAGE IS OF POOR QURLTY

Figure 3.19 RSRM-3 STEADY STATE THRUST IMBALANCE (INSTANTANEOUS)

[^0]: JW11

[^1]: Notes:

 1. Based on Mass Properties History Log Space Stuttle 3601003-LH, 25 October 1988 (TWR-17338).
 2. The separation longitudinal center of gravity of $1,314.840$ is 69% of the vehicle length.
