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AN EIGENVALUE ANALYSIS OF FINITE-DIFFERENCE
APPROXIMATIONS FOR HYPERBOLIC IBVPs!

ROBERT F. WARMING AND RICHARD M. BEAM
NASA AMES RESEARCH CENTER, MoFFETT FIELD, CA 94035, USA

SUMMARY

The eigenvalue spectrum associated with a linear finite-difference approximation
plays a crucial role in the stability analysis and in the actual computational perfor-
mance of the discrete approximation. We investigate the eigenvalue spectrum associ-
ated with the Lax-Wendroff scheme applied to a model hyperbolic equation. For an
initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal
mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and
quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an
identification of individual modes as either benign or unstable. The asymptotic analysis
establishes an intuitive as well as quantitative connection between the algebraic tests
in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L; stability on
a finite domain.

1. INTRODUCTION

A classical method for carrying out a stability analysis of a discrete hyperbolic IBVP
is the normal mode analysis of Gustafsson, Kreiss, and Sundstrom (GKS) [1]. The GKS
theory avoids the analytical intractability of the finite-domain normal mode analysis
by analyzing related quarter-plane problems. On the other hand, when one performs
numerical experiments to verify stability and/or accuracy predictions, the computations
are on a finite domain and one typically uses the discrete L, norm and not the GKS
norm used to prove stability. Thus in practice, we have the dichotomy of analyzing
quarter-plane problems with GKS norms and computing on finite domains with L,
norms.

The goal of this paper is twofold. First we present asymptotic limits for the normal
modes of the discrete (Lax-Wendroff) IBVP on a finite domain. These limits lead to a
delineation of the normal modes of the finite-domain problem into three classes. Next
we use the asymptotic estimates to make a direct algebraic connection between the
normal modes of the GKS quarter-plane analysis and the classes of normal modes of
the finite-domain problem. This leads to an interpretation of (unstable) GKS modes
which is readily understandable in terms of the Lax-Richtmyer stability in the L; norm.
In this paper we give only a brief outline of our analysis. A detailed exposition is given
in [2].

2. IBVP FOR A MODEL HYPERBOLIC EQUATION

We consider the scalar hyperbolic equation
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0<e<L, t>0 (2.1)




where u = u(z,t) and ¢ is a real constant. For a well-posed IBYP on a finite domain
one must specify initial data, u(z,0) = f(z), 0 < z < L, and an asnalytical boundary

conditjon at z = L,
u(L,t) =g(t) for ¢>0. (2.2)

3. A PROTOTYPE FINITE-DIFFERENCE APPROXIMATION

To obtain a dlfference approximation of the model equatlon (2.1) ameshis 1nt:oduced

t = nAt The spatlal doma.m 0 < T < Lis d1v1ded mto J equally spaced increments,
ie., J Am = L. As a prototype (explicit) finite-difference approximation for the model
gqqqn‘on (2.1), we consider the Lax-Wendroff scheme

n+1 —
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n, ¥ v oo
witt =i+ o(uy, — i) + - (ufyy - 2uf +uly) (3.1)
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where v = cAt/Az is defined to be the Courant number. In our analysis the an-

alytical boundary condition (2.2). for the difference approximation is assumed to be
homogeneous, i.e.,

u? = 0. (3.2)

If we apply the Lax-Wendroff scheme at the outflow boundary (j = 0), the com-
putational stencil protrudes one point to the left of the boundary. It is clear that an
additional numerical boundary scheme (NBS) is required to calculate w1 ie., the
solutlon on the outflow boundary at time level n + 1. As a prototype NBS we choose

the spatlally one-sided scheme:
ugtt = uf + v[—au + (1 + 2a)u} — (1 + a)ul] (3.3)
where « is a (real) parameter. If a = 0, then (3.3) is simply
ugt! = ug + v(u uy — ug). (3.4)

The Lax-Wendroff scheme (3.1) together with.the analytical boundary condition (3.2)
and the NBS (3.3) is called a discrete IBVP. For our purposes it is convenient to rewrite
the NBS (3.3) as an equivalent space extrapolation formula [2]:

h(E)u”; =0 where h(E)=(E -1)}[2aF — (1 —v)]. (3.5)
The shift operator E is defined by Eu; = u;4; and h(E) is a polynomial.in E.

4. LAX-RICHTMYER STABILITY, OF A DISCRETE IVP OR IBVP

For the stability analysis of a discrete initial value problem (IVP) or IBVP with
requisite homogeneous boundary conditions, it is appropriate to write the discrete
approximation in vector-matrix form:

= Cu". (4.1)



The Lax-Wendroff scheme (3.1) with the analytical boundary condition (3.2) and
NBS (3.3) can be written in vector-matrix form (4.1) where

Uy ] 'S voow T
ul p q T 0

u” = . , C= .o (4.2a,b)

Lu}nz 0 P 9T

uy_y L p ql

and

p=—-v(1-v)/2, ¢g=1-1v% r=v(1+v)/2 (4.3a)
s=1-v(l+a), v=v(l+2a), w=-va (4.3b)

Here the matrix size is J x J.

The determination of the eigensolutions of the first-order system (4.1) is sometimes
called the normal mode analysis. If C has a complete set of eigenvectors, then the
general solution of (4.1) can be written as

J-1
ut =Y azpd, (4.4)
€=0

where 2z, and ¢, denote the £th eigenvalue and eigenvector of the matrix C and the a;’s
are complex constants determined from a specified initial vector u®. Thus the eigenso-
lutions are the normal modes and it is obvious from (4.4) that they act independently.

A discrete IVP or IBVP represented by (4.1) is Lax-Richtmyer stable if there exists
a constant K > 1 such that for any initial condition u®

™| < K’ (4.5)

for all n > 0, 0 < nAt < T with T fixed and At/Az fixed. A necessary condition for
Lax-Richtmyer stability is that there exists a nonnegative constant w such that

v
J

for all n > 0, 0 < nAt < T with T fixed and At/Axz fixed. Here p(C) denotes the
spectral radius of C. Inequality (4.6) is referred to as the spectral radius condition.

5. EIGENVALUE SPECTRUM OF A DISCRETE IVP

p(C) <1+ (4.6)

A necessary condition for the stability of a discrete IBVP is the stability of the
corresponding pure IVP or Cauchy problem. In this section we review the eigenvalue
spectrum of the IVP for the Lax-Wendroff scheme. The solution of the discrete IVP is
assumed to be spatially periodic with period L = JAz, and hence

ul =uky g (5.1)
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Consequently, the Lax-Wendroff scheme can be written in vector-matrix form (4.1)
where Cis a J x J circulant matrix and the eigenvalues z, are given analytically by

z¢ =1 —2v%in%(0,/2) + ivsinb,, £=0,1,-..,J -1 (5.2)

where 0, = 2¢w/J and v = cAt/Az is the Courant number. The eigenvalue locus given
by (5.2) is an ellipse in the complex z-plane. (The eigenvalue locus is defined to be a
curve through the eigenvalues in the complex z-plane.) The eigenvalue loci for v = 0.5
and v = 1.1 are shown in Fig. 5.1.

Periodic

Periodic

Dirichlet

Dirichiet -

(a) z-plane (v = 0.5) (b) z-plane (v =1.1)
Fig. 5.1. Eigenvalue locus for periodic and Dirichlet boundary conditions.

The ellipse is contained within the unit circle for |v| < 1 (Fig. 5.1a) and if |v| =1,
the locus is the unit circle. If || > 1, the ellipse contains the unit circle (Fig. 5.1b).
Since a circulant matrix is normal, the spectral radius condition (4.6) is necessary and
sufficient for stability. Consequently, as is well-known, the Lax-Wendroff scheme is
stable for the IVP (i.e., Cauchy stable) in the L; norm for |v| < 1.

6. EIGENVALUE SPECTRUM OF A DISCRETE IBVP

Before we present asymptotic limits for the eigenvalues of the IBVP matrix (4.2b)
it is advantageous to examine the eigenvalue spectrum by computing the eigenvalues
numerically. As an example if we choose o = 0 in (3.3) we obtain the NBS (3.4). A
sketch of the eigenvalue locus is shown by the dashed curve in Fig. 6.1a for v = 0.5.

>
S

(a) z—plane (o =0) (b) z-plane (a = —1)
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Fig. 6.1. Dashed curve is eigenvalue locus of the matrix (4.2b) for v=0.5.
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If we increase the number of spatial increments J one finds that the eigenvalue locus
approaches the solid vertical line for increasing J.

As a second numerical example, we consider a = —1 in (3.3). This NBS leads to an
unstable discrete IBVP. The eigenvalue locus is shown in Fig. 6.1b. The eigenvalue lo-
cus is qualitatively similar to the locus shown in Fig. 6.1a except for a single eigenvalue
outside the unit circle shown by the solid symbol in the figure. To plotting accuracy
the eigenvalue indicated by the solid symbol appears fixed for increasing values of J.
The eigenvalue locus indicated by the dashed curve approaches the solid vertical line
for increasing values of J. If one does a GKS quarter-plane analysis, one finds that the
lone eigenvalue outside the unit circle is a GKS eigenvalue.

7. AN AUXILIARY DIRICHLET PROBLEM

The GKS stability analysis involves three auxiliary problems: the Cauchy problem
and the left- and right-quarter plane problems. In this section we consider a fourth
auxiliary problem which we call the Dirichlet problem on a finite domain. The impor-
tance of the Dirichlet problem accrues from the fact that, with the exception of isolated
eigenvalues detected by the GKS quarter-plane analysis, the eigenvalue spectrum of a
discrete IBVP is a perturbation of the eigenvalue spectrum of the auxiliary Dirichlet
problem.

The auxiliary Dirichlet problem is constructed by equating to zero any grid function
value u® which is required by the interior difference approximation but falls outside
the computational domain 0 < ¢ < L. Hence the auxiliary Dirichlet problem for the
Lax-Wendroff scheme can be written in the vector-matrix form (4.1) where the matrix
operator C is a J x J tridiagonal matrix with elements p,q,7. The eigenvalues of C
can be determined analytically:

ze = (1 —v?) +ivv/1 —v? cosby, £=1,2,---,J (7.1)

where 8, = ¢x/(J +1). If |v| < 1, the eigenvalues are complex and the eigenvalue locus
is a vertical line centered at the point (1 — v'2,0) in the complex 2-plane. If || =1 all
the eigenvalues degenerate to the single point z¢ = 0. For |[v| > 1 the eigenvalues are
real. The eigenvalue spectra of the pure IVP (periodic boundary conditions) and the
auxiliary Dirichlet problem are compared in Fig. 5.1. By some elementary calculations
[2] one finds the rather remarkable result that the eigenvalue locus of the auxiliary
Dirichlet problem is simply a straight line segment joining the foci of the ellipse which
is the eigenvalue locus of the IVP.

8. NORMAL MODE ANALYSIS

In this section the relevant formulas for the normal mode analysis of the finite-domain
problem and the quarter-plane problem are summarized. A detailed analysis is given
in [2].

8.1 Finite-Domain Normal-Mode Analysis — Summary. An eigensolution or
normal mode of the finite-domain IBVP is determined by looking for a solution of the
form

ui = z"¢; (8.1)
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which satisfies the Lax-Wendroff scheme (3.1) with the analytical boundary condition
(3.2) and the NBS (3.3) written as an extrapolation formula (3.5).
The eigenvalue z is given by

v 1 v? 1
1YLy v o1 2
z=ltgle—2)+5(k-2+-) (8.2)
and the components ¢; of the eigenvector ¢ are

$; = a[r’ — (=x?/¢)7(=( /)] (8.3)

where k = /(% and & is a root of the characteristic equation

h(V/CR) — (~#7)7+1h(~//R) = 0. (8.4)

The parameter ¢, which is positive for —1 < v < 1, is defined by

1 —vw
C:1+V. (8.5)

The coefficient a on the right-hand side of (8.3) is an arbitrary constant. The polynomial
h(v/{k) depends solely on the NBS (3.5), i.e., h(+/Ck) is the polynomial associated
with the NBS written as an extrapolation formula. If one could solve for the roots of
the characteristic equation (8.4), then the eigenvalues z and the eigenvectors ¢ would
follow directly from (8.2) and (8.3). The normal mode analysis on a finite domain
is, in general, analytically intractable because one cannot solve for the roots of the
characteristic equation (8.4).
For the auxiliary Dirichlet problem, the polynomial h(,/C) is unity and (8.4) reduces
to
(—R?)7H =1, (8.6)

One can solve (8.6) by using the roots of unity formula and the normal modes can be
found analytically.
8.2 Quarter-Plane Normal-Mode Analysis — Summary. For the right quarter-
plaiie problem one also looks for a solution of the form (8.1) which satisfies the Lax-
Wendroff scheme (3.1) and the NBS (3.5). The details of the GKS normal mode analysis
are given in [2, Appendix A]. The eigenvalue z is given by (8.2) and the components
@; of the eigenvector ¢ are

¢; = ar’ (8.7)

where k = /(% and & is a root of the quarter-plane characteristic equation

h(\/Ck) = 0. (8.8)
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Fig. 8.1. GKS-stability region for Lax-Wendroff (3.1) with NBS (3.3).

The (a,v) parameter space for which the discrete IBVP is GKS stable is shown by the
cross-hatched region of Fig. 8.1.

9. ASYMPTOTIC ROOTS OF CHARACTERISTIC EQUATION

There exists a small class of discrete IBVP’s which are sometimes called border-
line cases. Borderline cases are unstable according to the GKS theory but they may
be Lax-Richtmyer stable or unstable in the L, norm on a finite domain. Borderline
approximations can be characterized by the presence of a stationary mode for the finite-
domain problem. A stationary mode is defined to have the property that a & root of the
characteristic equation (8.4) is independent of J, i.e., & remains fixed in the complex
plane as J increases. It is important to note that the detection of a stationary mode
requires no asymptotic (large J) analysis because there is no J dependence.

Although there can be stationary modes which are independent of J, almost all roots
of the characteristic equation (8.4) depend upon J and we write & = &(J). One can
show that there is no loss in generality in assuming |#| < 1 and we write

k| = &(J) =1—¢ 0<eJ)<1 (9.1)

where

either ¢J)>6>0 or ¢J)—0 as J— oo. (9.2a,b)

In particular we are interested in the conditions under which the characteristic equa-
tion (8.4) reduces to the quarter-plane characteristic equation (8.8) in the limit J — oo.
Obviously this depends on the asymptotic behavior of |#(J)|’. There are only two pos-
sibilities, either

I: Jlim |&(J)]7 = constant > 0, or II: Jlim I&(J)]7 = 0. (9.3a,b)

In case II it is obvious that (8.4) reduces to (8.8) as J — oco. In case I one can show
that the roots of (8.4) asymptotically approach the roots of the auxiliary Dirichlet
problem (8.6) as J — oco. The details of the asymptotic estimates are in [2].



10. CLASSIFICATION OF NORMAL MODES

The normal modes of a discrete IBVP can be divided into three classes according to
theu’ asymptotlc behavxor as J — oo. We associate the following nomenclature with
the three classes:

I. Dirichlet-like modes
II. Quarter-plane-fike modes (10.1)

II]. Stationary modes.

The adjective like is used to imply that one can identify for finite J a particular mode
that becomes elther a Dirichlet mode or quarter-plane mode in the limit J — oo,

For a given drﬁerence approximation almost all the normal modes are in class I.
These modes have a generic eigenvalue spectrum which is easy to describe; to wit, for
a given Courant num,ber v and finite J the spectrum is simply a perturbation of the
Dmchlet speci;rulll A typical generic case is shown in Fig. 6.1a. The solid vertical
lme is the D;nchlet locus The dotted line shghtly to the left is the eigenvalue locus of
the claiss I modes of the difference approximation to the IBVP. One can show (2] that
the dotted elgenvalue locus approaches the Dirichlet locus at least as fast as O(1/J).
Hence as the mesh is reﬁned i.e., J — oo, the dotted locus collapses onto the Dirichlet
1ocus Hence the termmology Dmchlet hLe modes.

The class I modes are always benign in the sense that they do not introduce unstable
modes mto a difference approximation which is Cauchy stable. Only modes of class I
a,nd I I I can mtroduce ynstable modes into a dlﬂ'erence approximation which is Cauchy
stable If modes of class II and III exist, they are created by the NBS.

Tl}e modes in class I I are related to. the GKS, stability theory in the sense that they
become quarter-plane modes as J — o0, i.¢,, as the the mesh is refined. Finally, the
statlonary modes which constltute class II I are common to both the finite-domain
problem and the quarter plane problems

In t]us section we give a plctonal descnptlon of the roots of the characteristic equation
(8. 4) and, the correspondlng elgenvalue spectra associated with each of the three classes
(10 1) The K roots plotted in the examples were computed numerically from the
cha.ractenstlc equatlon (8.4) and the corresponding eigenvalues were computed using
(8.2),

The roots for the characteristic equation (8.6) of the auxiliary Dirichlet problem are

k)tted in Fig. 11.1a for J = 19, The carresponding eigenvalue locus is the vertical

lipe. sl;own in Fig. 11. 1b. In this ﬁgure and the figures to follow we plot the eigenvalue
locus ratlger than quxwd,ual elgenva.lues because of the small size of the figures.

11,1 Dirichlet-like modes, The roots of the characteristic equation (8.4) which

correspond tp modes in class I ha.ve a generic root locus in the complex &-plane which
is s1mp1y a perturbatlon (11131de the unit cjrcle) of the Dirichlet root locus which is on.

the un,q c1rcIe As an example we consider a stable case from the shaded region of Fig.
8.1 by, choosmg parameter values o = 0 and v = 0.5. The roots of (8.4) for J = 19 are
plotted in Fig. 11.2a.
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(a) R—plane (b) z-plane
Fig. 11.1. Roots of characteristic polynomial (8.6) and eigenvalue locus for v = 0.5.

a) k-plane (a =0) (b) z-plane (a = 0)

Dirichlet
l/

Fig. 11.2. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

The eigenvalue locus is indicated by the dashed curve of Fig. 11.2b. The solid vertical
line is the eigenvalue locus of the auxiliary Dirichlet problem. As J increases the root

locus approaches the unit circle and the eigenvalue locus moves toward the Dirichlet
locus at least as fast as O(1/J).

11.2 Quarter-plane-litke modes. The previous example had only class I modes,
i.e., Dirichlet-ltke modes, while the examples of this section have both class I and class
IT modes. Modes in class II are related to the GKS theory in the sense that they
become quarter-plane modes as J — oo. In addition, there are only a few modes in
this class and the maximum number is known exactly.

The following two examples are unstable discrete IBVP’s. Even though a discrete
IBVP is unstable, there is no dramatic change in the eigenvalue locus in the sense that
it remains a perturbation of the Dirichlet eigenvalue locus but with the addition of one
or two eigenvalues near or strictly outside the unit circle. These additional eigenvalues
correspond to GKS eigenvalues or generalized eigenvalues in the limit J — oo.

11.2a Unstable quarter-plane-like mode — GKS eigenvalue. For the first
example we choose a = —1 and v = 0.5 from the unshaded region of Fig. 8.1. The
roots of (8.4) are shown in Fig. 11.3a for J = 19.

From the figure it is apparent that there is a single isolated root indicated by the solid
symbol in the figure. The corresponding eigenvalue is indicated by the solid symbol in
Fig. 11.3b. This single eigenvalue remains strictly outside the unit circle as J — oo

9
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(a) k-plane (o= -1) (b) z—plane (a = —-1)
Fig. 11.3. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

and consequently the approximation is unstable (GKS eigenvalue).

11.2b Unstable quarter-plane-like mode — GKS generalized eigenvalue. One
should expect the discrete IBVP to be unstable for v < 0 for otherwise one would have
a stable approximation for an ill-posed IBVP. As an example we choose a = 0 and
v = —0.5 from the unshaded region of of Fig. 8.1. The roots of (8.4) are depicted in
Fig. 11.4a for J = 19.

(a) k-plane (a =0) (b) 2-plane (raV; 0)
Fig. 11.4. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = —0.5.

There are two (nearly coincident) isolated roots as shown by the solid symbol of the
figure. The corresponding eigenvalues are z ~ 1 in Fig. 11.4b. For finite J, one of these
eigenvalues is slightly inside the unit circle and the other is slightly outside. In this
example the origin of the instability is rather subtle. The instability is not due to a
violation of the spectral radius condition (4.6) but rather is due to the introduction of
a solution (proportional to the eigenvector) whose norm cannot be uniformly bounded
by the norm of the initial data as the mesh is refined, i.e., there is algebraic growth. In
the nomenclature of the GKS theory, there is a generalized eigenvalue.

11.3 Stationary mode. As a final example we consider a borderline case. For pa-
rameter values we pick @ = —0.75 and v = 0.5 which is a point on the left boundary
between stability and instability in Fig. 8.1. The roots of (8.4) are shown in Fig. 11.5a
for J = 19.
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(a) k—-plane (a = —0.75) (b) 2-plane (a = —0.75)

Fig. 11.5. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

There is one isolated root shown by the solid symbol of the figure. The corresponding
eigenvalue is z = 1. This eigenvalue of unity is independent of J. Since 2™ = 1, the
stability or instability of the difference approximation devolves to the behavior of the
corresponding eigenvector as the mesh is refined. This approximation happens to be
Lax-Richtmyer stable but GKS unstable. The details of this example are worked out
in [3].

12. CONCLUSIONS

We have investigated the eigenvalue spectrum for the Lax-Wendroff scheme applied
to a model hyperbolic IBVP. For the discrete IBVP on a finite domain, the normal
mode analysis is analytically intractable even for the simple prototype difference ap-
proximation. On the basis of an asymptotic normal mode analysis (large J ), we have
classified the normal modes of the finite-domain problem into three classes. The result-
ing classification leads to a simple description of the asymptotic eigenvalue distribution.
For a given Courant number, the spectrum is simply a perturbation of the spectrum
of the auxiliary Dirichlet problem plus whatever eigenvalues are present in the GKS
normal mode analysis for the related quarter-plane problems.

Almost all the modes are Dirichlet-like modes and are benign in the sense that they do
not introduce unstable modes into a difference approximation which is Cauchy stable.
Only quarter-plane- like modes and stationary modes can introduce unstable modes into
an approximation which is Cauchy stable. Consequently, if an instability exists it is

caused by the NBS and is detected in the GKS analysis.
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