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AN EIGENVALUE ANALYSIS OF FINITE-DIFFERENCE

APPROXIMATIONS FOR HYPERBOLIC IBVPs 1

ROBERT V. WARMING AND RICHARD M. BEAM

NASA AMES RESEARCH CENTER, MOFFETT FIELD, CA 94035, USA

SUMMARY

The eigenvalue spectrum associated with a linear finite-difference approximation

plays a crucial role in the stability analysis and in the actual computational perfor-

mance of the discrete approximation. We investigate the eigenvalue spectrum associ-

ated with the Lax-Wendroff scheme applied to a model hyperbolic equation. For an

initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal

mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and

quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an

identification of individual modes as either benign or unstable. The asymptotic analysis

establishes an intuitive as well as quantitative connection between the Mgebraic tests

in the theory of Gustafsson, Kreiss, and SundstrSm and Lax-Pdchtmyer L2 stability on

a finite domain.

1. INTRODUCTION

A classical method for carrying out a stability analysis of a discrete hyperbolic IBVP

is the normal mode analysis of Gustafsson, Kreiss, and SundstrSm (GKS) [1]. The GKS

theory avoids the analyticM intractability of the finite-domain normal mode analysis

by analyzing related quarter-plane problems. On the other hand, when one performs

numerical experiments to verify stability and/or accuracy predictions, the computations

are on a finite domain and one typically uses the discrete L2 norm and not the GKS

norm used to prove stability. Thus in practice, we have the dichotomy of analyzing

quarter-plane problems with GKS norms and computing on finite domains with L2

norms.

The goal of this paper is twofold. First we present asymptotic limits for the normM

modes of the discrete (Lax-Wendroff) IBVP on a finite domain. These limits lead to a

delineation of the normal modes of the finite-domain problem into three classes. Next

we use the asymptotic estimates to make a direct algebraic connection between the

normal modes of the GKS quarter-plane analysis and the classes of normM modes of

the finite-domain problem. This leads to an interpretation of (unstable) GKS modes

which is readily understandable in terms of the Lax-Richtmyer stability in the L2 norm.

In this paper we give only a brief outline of our analysis. A detailed exposition is given

in [2].
2. IBVP FOR A MODEL HYPERBOLIC EQUATION

We consider the scalar hyperbolic equation

Ou Ou

--_=c--_x , O<_x<_L, t>0 (2.1)
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wbgre u = u(z, f) and c is a real constant. For a well-posed !BVP on a fitfite domain

one mu_t specify initial data, u(z,O) = f(z), 0 < z < L, and an analytical boundary

con_tion at z L,

u(L,t) = g(t) for c > 0. (2.2)

3. A PRQ'_QTYPE FINITE-DIFFERENCE APPROXIMATION

To obtain a difference approximation of the model equation (2.1) a mesh is introduced

in (x,t) space with increments Az a.nd At and indexing defined by z = jAz and

_ = n_t. The spatia! dola!_ 0 < x < L is divided into d equally spaced increments,

i.e., J&z = L_ As a prototype (explicit) finite-difference approximation for the model

equation (2;!), We co_si_d_er the Lax-Wendr.off scheme

,t/,_t+ 1 n /Z n n //2= + - + - + (3.1)

where v. = cAt./Az is- defined to be the Cou rant n.umber. In our analysis the an-

alyti,ca! bpund_ry ¢o_.ditign (2.2)for the difference approximation is assumed to be

hmnogeneous, i.e.,

u_- = 0. (3.2)

If we apply the L ax-Wendroff sd!eme at the outflow boundary (j = 0), the com-

putatigng! stencil protrudes one point to the left of the boundary. It is clear that an.

additimaal numerical boundary scheme (NBS) is required to calculate u_ +1, i.e., the

solufim!, on the outflow boundary at time lev d n + 1. As a prototype NBS we choose

the. spatiM!y one-sided scheme:

u'_ +1 = u_ + v[-au_ + (1 + 2c_)u_ - (1 + a)u_] (3.3)

where ct is a (real)parameter. If ct = 0, tlmn (3.3)is simply

U_t+l n= u0 + - (3.4)

The I_.ax:W.endroff sell,me (3,!) together wRhothe analyticalboundary condition (3.2)

and the NBS (3.3) is called a discrete IBVP. For our purposes iris conveni.ent to rewrite

the NBS (3:3)as an equivalent space extrapolation formula [2]:

h.(E)un__ = 0 where h(E) = (E - 1)=[2aE- (1 - v)]. (3.5)

Tlm sMft operator. E is defined by Euj = uj+l and h(E) is a polynomial.in E.

4-I_AX-RICHTMYE, R STABILITy OF A_ DISCRETE IVP OR !BVP

For: the stability analysis of a dis cxete initial value problem (IVP) or IBVP with

requisite homogeneous boundary con_tigns, it is appropriate to write the_ discrete

appr_,xi!n_tion in vector-matrix form:

u TM = Cu '_. (4.1)
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The Lax-Wendroff scheme (3.1) with the analytical boundary condition (3.2) and

NBS (3.3) can be written in vector-matrix form (4.1) where

U ?'g

u_ '

U._--2

. u _l J

C

",9 V W

p q r O

O p q r

P q

(4.2a,b)

and

p= -u(1 - u)/2, (4.3a)

s = 1 - v(1 + a), (4.3b)

Here the matrix size is J x J.

The determination of the eigensolutions of the first-order system (4.1) is sometimes

called the normal mode analysis. If C has a complete set of eigenvectors, then the

general solution of (4.1) can be written as

q=l-v _, r=v(l+v)/2

v=v(l+2a), w=-va.

J-1

u'_ = E _tz'_dPt (4.4)
t=O

where zt and _t denote the gth eigenvalue and eigenvector of the matrix C and the at's

are complex constants deternfined from a specified initial vector u °. Thus the eigenso-

lutions are the normal modes and it is obvious from (4.4) that they act independently.

A discrete IVP or IBVP represented by (4.1) is Lax-Richtmyer stable if there exists

a constant K > 1 such that for any initial condition u °

Ilu"ll Kllu°ll (4.5)

for all n > 0, 0 < nAt < T with T fixed and At/Ax fixed. A necessary condition for

Lax-Richtmyer stability is that there exists a nonnegative constant w such that

w (4.6)p(C)<1+7

for all n >_ 0, 0 _< nAt < T with T fixed and At/Ax fixed. Here p(C) denotes the

spectral radius of C. Inequality (4.6) is referred to as the spectral radius condition.

5. EIGENVALUE SPECTRUM OF A DISCRETE IVP

A necessary condition for the stability of a discrete IBVP is the stability of the

corresponding pure IVP or Cauchy problem. In this section we review the eigenvalue

spectrum of the IVP for the Lax-Wendroff scheme. The solution of the discrete IVP is

assumed to be spatially periodic with period L = JAx, and hence

- - (5.1)Uj ---- Uj+j.



Consequently, the Lax-Wendroff scheme can be written in vector-matrix form (4.1)

where C is a J × J circulant matrix and the eigenvalues zt are given analytically by

zt = l - 2v2sin2(Ot/2) + ivsinOt, g=0,1,...,J-1 (5.2)

where 0t = 2gTr/J and v = cAt/Az is the Courant number. The eigenvalue locus given

by (5.2) is an ellipse in the complex z-plane. (The eigenvalue locus is defined to be a

curve through the eigenvalues in the complex z-plane.) The eigenvalue loci for v = 0.5

and v = 1.1 are shown in Fig. 5.1.

, _Periodic

-i_0 10

(a) z-plane (v = 0.5) (b) z-plane (v = 1.1)

Fig. 5.1. Eigenvalue locus for periodic and Dirichlet boundary conditions.

The ellipse is contained within the unit circle for Iv] < 1 (Fig. 5.1a) and if lvJ = 1,

the locus is the unit circle. If lvl > 1, the ellipse contains the unit circle (Fig. 5.1b).

Since a circulant matrix is normal, tile spectral radius condition (4.6) is necessary and

sufficient for stability. Consequently, as is well-known, the Lax-Wendroff scheme is

stable for the IVP (i.e., Cauchy stable) in the L2 norm for Ivl < 1.

6. EIGENVALUE SPECTRUM OF A DISCRETE IBVP

Before we present asymptotic limits for the eigenvalues of the IBVP matrix (4.2b)

it is advantageous to examine the elgenvalue spectrum by computing the eigenvalues

numerically. As an example if we choose ot = 0 in (3.3) we obtain the NBS (3.4). A

sketch of the eigenvalue locus is shown by the dashed curve in Fig. 6.1a for v = 0.5.

(a) z-plane (a = 0) (b) z-plane (a = -1)

Fig. 6.1. Dashed curve is eigenvalue locus of the matrix (4.2b) for v=0.5.



If we increase the number of spatial increments J one finds that the eigenvalue locus

approaches the solid vertical line for increasing J.

As a second numerical example, we consider (_ = -i in (3.3). This NBS leads to an

unstable discrete IBVP. The eigenvalue locus is shown in Fig. 6.1b. The eigenvalue lo-

cus is qualitatively similar to the locus shown in Fig. 6.1a except for a single eigenvalue

outside the unit circle shown by the solid symbol in the figure. To plotting accuracy

the eigenvalue indicated by tile solid symbol appears fixed for increasing values of J.

Tile eigenvalue locus indicated by the dashed curve approaches the solid vertical line

for increasing values of J. If one does a GKS quarter-plane analysis, one finds that tile

lone eigenvalue outside the unit circle is a GKS eigenvalue.

7. AN AUXILIARY DIRICHLET PROBLEM

The GKS stability analysis involves three auxiliary problems: the Cauchy problem

and the left- and right-quarter plane problems. In this section we consider a fourth

auxiliary problem which we call the Dirichlet problem on a finite domain. The impor-

tance of the Dirichlet problem accrues from the fact that, with the exception of isolated

eigenvalues detected by the GKS quarter-plane analysis, the eigenvalue spectrmn of a

discrete IBVP is a perturbation of the eigenvalue spectrum of the auxiliary Dirichlet

problem.

The auxiliary Dirichlet problem is constructed by equating to zero any grid function

value u_ which is required by the interior difference approximation but falls outside
the computational domain 0 < z < L. tlence the auxiliary Dirichlet problem for the

Lax-Wendroff scheme can be written in the vector-matrix form (4.1) where the matrix

operator C is a J × J tridiagonal matrix with elements p, q, r. The eigenvalues of C

can be determined analytically:

zt = (1 - r ,2) + ir'V_ - r '2 cos Or, _ = 1,2,... ,J (7.1)

where 0t = &r/(J + 1). If ]_1 < 1, the eigenvalues are complex and the eigenvalue locus

is a vertical line centered at the point (1 - r,2,0) in the complex z-plane. If Ivl= 1 all

the eigenvalues degenerate to the single point zt = 0. For ]tJ] > 1 the eigenvalues are

real. The eigenvalue spectra of the pure IVP (periodic boundary conditions) and the

auxiliary Dirichlet problem are compared in Fig. 5.1. By some elementary calculations

[2] one finds the rather remarkable result that the eigenvalue locus of the auxiliary

Dirichlet problem is simply a straight line segment joining the foci of the ellipse which

is the eigenvalue locus of the IVP.

8. NORMAL MODE ANALYSIS

In this section the relevant formulas for the normal mode analysis of the finite-domain

problem and the quarter-plane problem are summarized. A detailed analysis is given

in [21.

8.1 Finite-Domain Normal-Mode Analysis - Summary. An eigensolution or

normal mode of the finite-domain IBVP is determined by looking for a solution of the

form

u_ = znCj (8.1)
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which satisfiesthe Lax-Wendroff scheme(3.1) with the analytical boundary condition
(3.2) and the NBS (3.3) written as an extrapolation formula (3.5).

The eigenvalue z is given by

v 2 1
v 1)+ 2-4--)

z = 1 + _(t¢- _ --_--(t¢ - t¢
(8.2)

and the components ¢j of the eigenvector _b are

¢i = - (8.3)

where _ = v_k and k is a root of the characteristic equation

h(v/_k) - (_k2)J+l h(_v/_/ k ) = O. (8.4)

The parameter _, which is positive for -1 < v < 1, is defined by

1--V

- 1 + (8.5)

The coefficient a on the right-hand side of (8.3) is an arbitrary constant. The polynomial

h(v_k) depends solely on the NBS (3.5), i.e., h(v_k) is the polynomial associated

with the NBS written as an extrapolation fornmla. If one could solve for the roots of

the characteristic equation (8.4), then the eigenvalues z and the eigenvectors _b would

follow directly from (8.2) and (8.3). The normal mode analysis on a finite domain

is, in general, analytically intractable because one cannot solve for the roots of the

characteristic equation (8.4).

For the auxiliary Dirichlet problem, the polynomial h(v_k) is unity and (8.4) reduces
to

(_k2).r+l = 1. (8.6)

One can solve (8.6) by using the roots of unity formula and the normal modes can be

found analytically.

8.2 Quarter-Plane Normal-Mode Analysis - Summary. For the right quarter-

plane problem one also looks for a solution of the form (8.1) which satisfies the Lax-

Wendroff scheme (3.1) and the NBS (3.5). The details of the GKS normal mode analysis

are given in [2, Appendix A]. The eigenvalue z is given by (8.2) and the components

Cj of the eigenvector _b are

Cj = atcJ (8.7)

where t¢ = v/_k and k is a root of the quarter-plane characteristic equation

= 0. (s.s)

6
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Fig. 8.1. OKS-stability region for Lax-Wendroff (3.1) with NBS (3.3).

The (e_, u) parameter space for which the discrete IBVP is GKS stable is shown by the

cross-hatched region of Fig. 8.1.

9. ASYMPTOTIC ROOTS OF CHARACTERISTIC EQUATION

There exists a small class of discrete IBVP's which are sometimes called border-

line cases. Borderline cases are unstable according to the GKS theory but they may

be Lax-Richtmyer stable or unstable in the L2 norm on a finite domain. Borderline

approximations can be characterized by the presence of a stationary mode for the finite-

domain problem. A stationary mode is defined to have the property that a k root of the

characteristic equation (8.4) is independent of J, i.e., k remains fixed in the complex

plane as J increases. It is important to note that the detection of a stationary mode

requires no asymptotic (large J) analysis because there is no J dependence.

Although there can be stationary modes which are independent of J, almost all roots

of the characteristic equation (8.4) depend upon J and we write k = k(J). One can

show that there is no loss in generality in assuming Ik[ < 1 and we write

[k[=lk(J)l=l-e, O<e(J)<l (9.1)

where

either e(J) >_ 6 > O or e(J) _ O as J _ c¢. (9.2a,b)

In particular we are interested in the eonditlons under which the characteristic equa-

tion (8.4) reduces to the quarter-plane characteristic equation (8.8) in the limit J _ c¢.

Obviously this depends on the asymptotic behavior of Ik(J)l s. There are only two pos-

sibilities, either

I: lim I, (J)l s = constant > O, or II: lira 1, (3)1J = O.
J---*oo J---, _

In case II it is obvious that (8.4) reduces to (8.8) as J _ o¢. In case I one can show

that the roots of (8.4) asymptotically approach the roots of the auxiliary Dirichlet

problem (8.6) as J ---, oo. The details of the asymptotic estimates are in [2].
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10. CLASS1[FICAT][ON OF NORMAL MODES

T,he. normal modes of a discrete _BVP can be divided into three classes according to

tl_eir asymptotic behavior as J _ _. We associate the fo!lowing nomeaclature with

the }llree classes:

!. Di_ich!et-l_,ke modes

!!. Quarter-plaoe-li/_¢ modes (10.1)

[II. Statjpnary modes.

The 0.djective like is used to imply that one can identify for fiv,ite J a pa, rticu!ar modo

t_._at beco:_es either .a D irich!et !n0dc or quarter-plane mode in the limit J _ oo.

For a given difference appr0xim_ion almost, at! the _.o.rgl_l _odes are iu class I.

The.so. n_9des have a ten.eric eigenvaJue sp.ectru_ ,which is easy to describe; to wit, for

a giye_,_ 0o_r_nt a u_be_; U ._n_ fiIfi_t¢ J the spec_rm.u, is simply a p¢_turbafio_ of _he

D[rlchlet spectrm_l. A typical generic case _ sl_own irt Fig. 6.ta. Th.e solid vertic__

!i_e is the Djrichlet locus. Th_ dotted line _ightly to the _ef_ is the eige_vatue locus of

the ¢_s I modes of tl_e di'fferex_ce apprg_.,na, tig_ to the !BVP. O_e can show [2] that

the d?_,_ed eigenva!u e locus approaches the Diri¢_t locus at le.ast as fast _ O(1/J).

I-[ence _S the mesh is refined, i.e., J _ c¢, the dotted locus collapses onto the Difi, chlet

19c_. ' He,nee the t,err_inology Dirich!et-like modes.

Tt_e clisss I m9 .des are Mways benign in, the sense that they d9 not introduce unstable

modes iat, o a difference app_ogimation w_ch is Cauchy stable. Only modes 9f class II

and, H,I can introdqce unstaMq modes i_to a difference approximation w.high. is Cauchy

stable. If mod_s of class/[ a_d HI exist, they are ¢_eat, ed by the NBS.

Tl_,e modes,,,.._ i:n: class.....,H0, _¢; relate d to. tl_¢ G.KS, stability theory in the sense th._. they

become quarter-plane modes as J _ c¢, i,e,, as the the mesh is refined. Finally, the

stationary modes which cor_stitute clgss I[I a£q co!ninon t:o both the fini.'te-domain

problem and the quarter-plane problems.

11. SKETCHES OF ROOT AND EIG_NVALUE I_S_RIBUT!ONS

In t_is_ section we give a pictoriM description of the roots of the ch_rac_risfic equation

(8..4) and,the correspon_ng ei_.envalue spectra associ_,ted with each of the three classes

(10,1:)- "_'he t_'roots plottedin the examl l'es were corn uted "nU erjcall f o "'the_. _ :,. . ................... P ....... P. .,m_ . y r m

characteristic equation (8 4 aad tl!e correspondin ei envalues were corn uted usin;_.... _..... .) .......... g g p. ..... g
(8-.23..

T:l_e_roots for the. characteristic equation (8.6)of the auxiliary Dirich!et prob!,e_m_aLe

plptted in Fig. ll.la fo,r J = 19, Tt_e corresponding eigenv_ue locus is th_ vertical-

liae:,:__sl_own_,,,,,_in Fig. ll.lb.. In this_ figure and the figures,t0 foi!ow _e plot the eigenvalue

l?c,us rat_er_ tl_n,i_'idu_ eigenyalucs because of the small size of the figures.

11.1 l_iriehlet-like modes. The roots of the characteristic equation (8.4) which

correspond t_ modes in class I lmve a geqe_ric, root 1.o.c,us.in the complex k-plane wlfich

is simply a pyr_urbation (inside the refit cir,cle) of the Difichlet root loc_us which is on

the,,,.,u_ ,., c ir.qI¢..,=- As anyx_nple we considex, a .........stable case fron_ .....the steaded regioa of Fig.

8.1 by choosing parameter values a --: 0 .a,ndu = 0.5. The roots of (8.4) for J = 19 are

8



(a) k-plane (b) z-plane

Fig. 11.1. Roots of characteristic polynomial (8.6) and eigenvalue locus for v = 0.5.

(a) k-plane (a = 0)

1.0

(b) z-plane (a = O)

Fig. 11.2. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

Tile eigenvalue locus is indicated by the dashed curve of Fig. 11.2b. The solid vertical

line is the eigenvalue locus of the auxiliary Dirichlet problem. As J increases the root

locus approaches the unit circle and the eigenvalue locus moves toward the Dirichlet

locus at least as fast as O(1/J).

11.2 Quarter-plane-like modes. The previous example had only class I modes,

i.e., Dirichlet-like modes, while the examples of this section have both class I and class

II modes. Modes in class II are related to the GKS theory in the sense that they

become quarter-plane modes as J _ c¢. In addition, there are only a few modes in

this class and the maximum number is known exactly.

The following two examples are unstable discrete IBVP's. Even though a discrete

IBVP is unstable, there is no dramatic change in the eigenvalue locus in the sense that

it remains a perturbation of the Dirichlet eigenvalue locus but with the addition of one

or two eigenvalues near or strictly outside the unit circle. These additional eigenvalues

correspond to GKS eigenvalues or generalized eigenvalues in the limit J _ co.

ll.2a Unstable quarter-plane-like mode - GKS eigenvalue. For the first

example we choose a = -1 and t, = 0.5 from the unshaded region of Fig. 8.1. The

roots of (8.4) are shown in Fig. 11.3a for J = 19.

From the figure it is apparent that there is a single isolated root indicated by the solid

symbol in the figure. The corresponding eigenvalue is indicated by the solid symbol in

Fig. 11.3b. This single eigenvalue remains strictly outside the unit circle as J --* co

9



(a) &-plane (a = - 1) (b) z-plane (_ = -1)

Fig. 11.3. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

and consequently the approximation is unstable (GKS eigenvalue).

11.2b Unstable quarter-plane- like mode - GKS generalized eigenvalue. One

should expect the discrete IBVP to be unstable for v < 0 for otherwise one would have

a stable approximation for an ill-posed IBVP. As an example we choose a = 0 and

v = -0.5 from the unshaded region of of Fig. 8.1. The roots of (8.4) are depicted in
Fig. 11.4a for J = 19.

O

(a)  -plane = 0) (b) z-plane = 0)
Fig. 11.4. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = -0.5.

There are two (nearly coincident) isolated roots as shown by the solid symbol of the

figure. The corresponding eigenvalues are z _ 1 in Fig. 11.4b. For finite J, one of these

eigenvalues is slightly inside the unit circle and tile other is slightly outside. In this

example tile origin of the instability is rather subtle. Tile instability is not due to a

violation of tile spectral radius condition (4.6) but rather is due to the introduction of

a solution (proportional to the eigenvector) whose norm cannot be unifornfly bounded

by the norm of the initial data as the mesh is refined, i.e., there is algebraic growth. In

the nomenclature of tile GKS theory, there is a generalized eigenvalue.

11.3 Stationary mode. As a final example we consider a borderline case. For pa-

rameter values we pick _ = -0.75 and v = 0.5 wlfich is a point on the left boundary

between stability and instability in Fig. 8.1. The roots of (8.4) are shown in Fig. ll.5a
for J= 19.

10
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(a) g-plane (a = -0.75) (b) z-plane (c_ = -0.75)

Fig. 11.5. Roots of characteristic polynomial (8.4) and eigenvalue locus for v = 0.5.

There is one isolated root shown by tile solid symbol of the figure. The corresponding

eigenvalue is z = 1. This eigenvalue of unity is independent of J. Since z n = 1, the

stability or instability of the difference approximation devolves to the behavior of the

corresponding eigenvector as the mesh is refined. This approximation happens to be

Lax-Richtmyer stable but GKS unstable. The details of this example are worked out

in [3].
12. CONCLUSIONS

We have investigated the eigenvalue spectrum for the Lax-Wendroff scheme applied

to a model hyperbolic IBVP. For the discrete IBVP oll a finite domain, the normal

mode analysis is analytically intractable even for the simple prototype difference ap-

proximation. On the basis of an asymptotic normal mode analysis (large J), we have

classified the normal modes of the finite-domain problem into three classes. The result-

ing classification leads to a simple description of the asymptotic eigenvalue distribution.

For a given Courant number, the spectrum is simply a perturbation of the spectrum

of the auxiliary Dirichlet problem plus whatever eigenvalues are present in the GKS

normal mode analysis for the related quarter-plane problems.

Almost all the modes are Dirichlet-like modes and are benign in the sense that they do

not introduce unstable modes into a difference approximation which is Cauchy stable.

Only quarter-plane- like modes and stationary modes can introduce unstable modes into

an approximation which is Cauchy stable. Consequently, if an instability exists it is

caused by the NBS and is detected in the GKS analysis.
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