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FOREWORD

The Final Report contained in this document covers the activities
performed during Phase I of the NASA HOST Program, “Thermal Barrier
Coating Life Prediction Model Development", under Contract
NAS3-23944. The objective of this effort was to develop and verify
Thermal Barrier Coating Tife prediction technology for gas turbine
hot section components. The NASA program manager is Dr. Robert A.
Miller. The program was conducted in the Pratt & Whitney Materials
Engineering and Research Laboratory under the direction of Mr. H.
A. Hauser. The Pratt & Whitney Project Manager was Dr. Keith D.
Sheffler and the principal investigator was Jeanine DeMasi. Mr.

Thomas A. Cruse. Substantial Program contributions in the areas of
structural interpretation and test instrumentation were made by
Mr. Neal P. Andersson, Mr. Merritt Wight, and Mr. Russel]
Shenstone. Special thanks to Mr. Raymond Skurzeuski, Mr. Claude
Clavette, Mr. Donald Broadhurst, Mr. Frederick Wiese and Mr,
Arnold LaPete for their efforts in specimen preparation and
testing.
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1.0 SUMMARY

The goals of this program were to identify and understand TBC failure modes,
generate quantitative TBC life data, and develop and verify a TBC life
prediction model.

The coating studied in this program is a two layer thermal barrier system
incorporating a nominal 0.25mm (0.010 in) outer layer of seven weight percent
yttria partially stabilized zirconia plasma deposited over an inner layer of
highly oxidation resistant low pressure plasma sprayed NiCoCrAlY bond coating.
This coating, designated PWA264, currently is in flight service on a number of
stationary turbine components in Pratt & Whitney Commercial engines.

An initial review of experimental and flight service components indicated that
the predominant mode of TBC failure involves thermomechanical spallation of
the ceramic coating layer. This ceramic spallation involves the formation of a
dominant crack in the ceramic coating parallel to and closely adjacent to the
metal-ceramic interface.

Results from a laboratory test program designed to study the influence of
various "driving forces" such as temperature, thermal cycle frequency,
environment, coating thickness, etc. on ceramic coating spalling life suggest
that bond coat oxidation damage at the metal-ceramic interface contributes
significantly to thermomechanical cracking in the ceramic layer. Low cycle
rate furnace testing in air and in argon clearly shows a dramatic increase in
spalling 1ife in a non-oxidizing environment. Elevated temperature
pre-exposure of TBC specimens in air causes a proportionate reduction of
cyclic thermal spalling life, whereas pre-exposure in argon does not.

Interrupted cyclic thermal exposure (burner rig) testing shows that thermo-
mechanical ceramic spallation is a progressive damage mode. Subcritical
microcrack link-up is proposed as the mode of failure. Initial metallographic
observations shows major subcritical cracking initiating above the metal-
ceramic interface and not at the bond-coat asperities which are inherent in
the TBC system being studied. Since early experimental results showed that
bond coat oxidation is a significant factor in the cyclic spalling life of the
ceramic coating, it is assumed that this environmental driver magnifies the
mechanical driving force due to thermal loading in the burner rig.

Mechanical property tests show that the bulk as-plasma sprayed

7w/0 Y,0,-2r0, exhibits a highly non-linear stress-strain response in
uniaxial tension and compression. Also, it was shown that this material
exhibits a significant creep response. Low cycle fatigue characteristics
observed over a narrow stress range indicate that stress levels above a
critical stress threshold will result in rapid damage accumulation.

The 1ife prediction model focuses on the two major damage modes identified in
the Taboratory testing described above. The first of these modes involves a
mechanical driving force, resulting from cyclic strains and stresses caused by
thermally induced and externally imposed loads. The second damage mode, based
on the experimental results, is an environmental driving force which appears
to be related to "oxidation damage" due to the in-service growth of a
NiCoCrAlY oxide scale at the metal-ceramic interface.



Based on the apparently "mechanical® mode of ceramic failure, (near
interfacial cracking), and on the difficulty in finding metallographic
evidence of a direct physical link between the growing oxide scale and
incipient cracking in specimens exposed to a relatively small fraction of
expected 1ife, it was elected to employ an existing phenomenological fatique
model (Manson - Coffin) as the basis for the TBC life model. In traditional
form, this model relates cyclic inelastic strain range to number of cycles to
fatigue failure. The model incorporates the environmental effect by modifying
the mechanical driver in such a way as to reduce the apparent fatigue strength
of the ceramic layer. The use of inelastic strain range as a damage driver for
the ceramic coating layer is considered justified in view of the previously
mentioned nonlinearity observed in constitutive tests conducted on strain
tolerant ceramic material, including the observation of an open hysteresis
loop in preliminary tests with reversed loading.

The mathematical form of the model shown below expresses a relationship
between the number of cycles to spallation failure (N¢), cyclic inelastic
strain range @Q€,), and bond coat oxide accumulation.

(AE,/ AEH® = N,

where A€, = Total cyclic inelastic strain range
A€, = failure strain
N. = Number of cycles to failure
b = Constant
Asr = Aefo (]— 6/6c)c +A€\ (6/6c)d

where 5. is the critical oxide thickness which will cause ceramic failure in
a single thermal cycle. The static failure strain, AS,,, is the strain
required to fail the ceramic in the absence of bond coat oxidation.

The failure strain, A€, is a function of the inelastic strain and is
reduced by the strain due to the oxide thickness ratio, 8/8., where d. is
the critical oxide thickness which will cause ceramic failure in a single
thermal cycle. The static failure strain, AE,,, is the strain required to
fail the ceramic in the absence of bond coat oxidation.

For a mission comprised of N cycles, the damage accumulated by cyclic
inelastic strain and oxide growth will equal 1/N. The Miner's Rule assumption
is used in that failure of the TBC occurs when 21/N =1.0.

Using this model, results of twenty calibration tests conducted over a wide
range of oxidative and strain range intensities were correlated to establish
values of the constants b, c, d, A%, and Sc. With one exception, the
optimized constants correlated all of these results within a factor of +3 on
calculated vs observed life. Results of six additional verification tests
conducted at conditions which were substantially different from the twenty
calibration tests also were predicted within a factor of +3 on life by the
optimized equation.



2.0 INTRODUCTION

Ceramic coatings have been utilized in aircraft gas turbine engines for over
twenty years, primarily as an add-on technique to increase the durability of
already reliable coatings. More recently, thermal barrier coating has been

used to protect selected high pressure turbine components as well as combustors
and augmentors. For these early turbine applications, no specific design
methodology was needed and coating lives (ceramic spalling resistance) were
determined to be adequate based on experimental engine testing. Future
applications for thermal barrier coatings, which emphasize performance
improvement (as opposed to durability extension), will require more
sophisticated design tools and lifetime prediction methods.

The objective of this program is to establish a methodology to predict thermal
barrier coating 1ife in an environment simulative of that experienced by gas
turbine airfoils. Initial work was conducted to determine failure modes of
thermal barrier coatings in the aircraft engine environment. Analytical
studies then were coupled with appropriate physical and mechanical property
determinations to derive a coating 1ife prediction model for the dominant
failure mode.

The program to accomplish these objectives is divided into two phases. Phase I
(36 months) was directed towards identification and modeling of the
predominant failure mode, including verification. This report includes all
results from Phase I. Phase II (24 months) will adapt this model to a recently
developed Electron Beam-Physical Vapor Deposited (EB-PVD) coating which has
substantially improved performance compared with the plasma deposited coating
investigated in Phase I. Specific technical tasks conducted to accomplish the
Phase I program objectives are described below:

o0 Task I - The objective of this task was to identify the relative
importance of various TBC degradation and failure modes and to develop a
preliminary life prediction model for further development in Phase II.
Specific modes addressed included degradation resulting from static and
cyclic thermal exposure and hot corrosion.

o Task II - The objective of this task was to design, conduct and analyze
experiments to obtain data for major mode 1life prediction model
development. Design of the experiments was based on results of Task I.
Test parameters were varied to cover the range of parameters anticipated
in engine service of thermal barrier coated turbine components.

0 Task III - The validity of the model developed in Task II was assessed
through a series of six approved benchmark engine mission simulation tests.

Phase II will include the following four technical tasks:

0 Task V - The objective of this task is to design and conduct experiments
to determine physical and mechanical properties required for subsequent
analytical and life modeling. Ceramic property test specimens will be
fabricated by EB-PVD using the same parameters used to make the thermal
barrier coating layer. For physical property test samples, EB-PVD ceramic
thick specimens having a microstructure which most closely represents the
thin ceramic microstructure that will be manufactured. Mechanical property
tests will be conducted on the composite metal-ceramic system.

3



Task VI - The objective of this task is to evaluate the effects of bond
coat oxidation and develop an empirical oxidation model based on
quantification and characterization of the MCrAlY oxide scale developed
during thermal exposure. Burner rig, cyclic furnace and static furnace
tests will provide information concerning the effects and rate of
oxidation of the metallic bond coat on ceramic spallation life. These
tests will address the effects of thermal pre-exposure in oxidizing and
non-oxidizing environments, critical oxide thickness and growth rate as a
function of temperature, and provide information on progressive damage.
Oxide growth rates and thicknesses will be determined through metallo-
graphic examination and quantitative analyses will be conducted to further
characterize the oxide.

Task VII - The objective of this task is to develop a 1ife prediction
model for the EB-PVD ceramic coatings by adapting the life prediction
system developed for plasma sprayed coatings in Phase I of this program.
The approach involves generation and correlation of design data,
incorporation of a constitutive bond coat model and employment of a more
accurate bond coat oxide growth model. Property test data will be used to
enhance the analytical understanding of the thermal barrier coating
behavior.

Task VIII - The objective of this task is to fully challenge the life
prediction mode! developed for EB-PVD ceramic coatings. Experiments
designed to test the model's validity will expose specimens to a maximum
of 1000 hours at simulated engine conditions. The experiments will
emphasize strain, oxide and mixed modes so that the model will account for
singular and synergistic degradation modes. Life prediction analyses will
be conducted to evaluate the results of the experiments and the validity
of the model will be judged according to how closely the model predicts
TBC life for each engine simulation test. Recommendations for further
research or refinement required to arrive at a satisfactory engine life
prediction methodology for EB-PVD ceramic coatings shall be made, if
necessary.
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3.0 PHASE I - FAILURE MODES ANALYSES AND MODEL DEVELOPMENT

The objectives of this phase were to identify thermal barrier coating
degradation modes which lead to coating failure, determine the relative
importance of these degradation modes in aircraft engine applications, and

These objectives were accomplished in three tasks. The objective of the first
task was to identify and determine the relative importance of TBC failure
modes, including development and verification of a preliminary correlative
life prediction model for the predominant mode of failure. The objective of
the second task was to refine the model developed in Task I, including
generation of a substantial body of experimental failure data for mode]
calibration. Additional data was generated in the third task to verify the
optimized model developed in Task II.

The thermal barrier coating evaluated in Phase I is designated PWA 264. It
consists of an air plasma sprayed 7 w/o Y,0, - partially stabilized zro,
outer Tayer and a low pressure chamber sprayed metallic inner layer. The
ceramic layer is nominally 0.25 + 0.05mm €0.010 +0.002 inches) thick, and is
approximately 80% dense. The NiCoCrAlY layer is nominally fully dense and is
0.13 + 0.03mm (0.005 + 0.001 inches) thick with surface roughness: 158-

178 AA. The TBC coating system is shown in Figure 1. The substrate alloy used
in Phase I is equiaxed B1900+Hf, designated PWA 1455. Its composition as well
as the NiCoCrAlY bond coat composition are shown in Table I.

Pre-Test 200X

Figure 1 Thermal Barrier Coating System Microstructure
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TABLE I
NOMINAL COMPOSITION OF PROGRAM MATERIALS
(Weight Percent)

Ni Co Cr Al Mo Ta Hf Ti B C Y

PWA 1455 Remainder 10.0 8.0 6.0 6.0 4.25 1.15 1.0 0.015 0.1 -
PWA 1376 Remainder 22 18 12 - - - - - - 0.4

3.1 Task I - Failure Mechanism Determination

The objectives of this task were to identify thermal barrier coating
degradation modes which lead to coating failure, determine the relative
importance of these modes in aircraft engine applications, and develop and
verify a preliminary correlative life prediction model for the predominant
failure mode.

The approach to accomplish these objectives included an initial review of the
thermal barrier coating literature and of Pratt & Whitney engine experience
with thermal barrier coated turbine components to identify potential modes of
thermal barrier coating degradation and to determine which of these modes
appear to predominate in engine service (Task 1A). Results were used to
establish a laboratory simulative engine test program (Task IB). Results of
this test program were used to critically assess the relative importance of
various degradation modes as they relate to coating service life. Also
included in Task IB was a subtask to measure physical and mechanical
properties of coating system materials which were required for analytical
modeling and preliminary correlative life prediction system development which
was conducted in the first part of Task IC. This effort was followed by
additional laboratory testing to verify the preliminary model and to provide a
basis for model refinement in Task II.

3.1.1 Task IA- Experimental Design

The objectives of this subtask were to review the TBC literature and Pratt &
Whitney experience with thermal barrier coated turbine components, and based
on this review, to establish an experimental program to determine the relative
importance of various TBC degradation mechanisms as they relate to coating
service life.

Early work on thermal barrier coatings described numerous material and process
developments and identified several potential degradation and failure modes
(Refs. 1-14). These modes included thermomechanically induced structural
failure of the ceramic coating layer, oxidative degradation of the underlying
metallic bond coating, thermochemically (hot corrosion) induced ceramic
degradation, foreign object damage (FOD), and erosion.
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Examination of experimental and flight serviced engine components indicates
the first of these degradation modes to be the predominant cause of coating
failure, resulting in spallation of the ceramic coating layer due to formation
of a dominant crack in the ceramic parallel and adjacent to the metal-ceramic
interface (Figure 2). Laboratory test results reported in the literature
suggest that this thermomechanical spallation mode is accelerated by
time/temperature dependent interfacial oxidation of the metallic bond coat
(Refs. 15-16). The examination of engine exposed components indicates that hot
corrosion, FOD, and erosion do not represent life-Timiting modes of
degradation in engine service. Based on these observations, an experimental
program was designed to separately assess and quantify the relative
contributions of mechanical and oxidation degradation to TBC failure. While
hot corrosion was not identified as a major failure mode in commercial engine
service, experimental tests were included in the program to identify the
threshold contaminant level for corrosion damage, thus providing a basis for
prediction of flight environments where this degradation mode might be
important. Details of findings from the literature and engine component review
and of the experimental program designed to assess critical mode importance,
are provided in the following paragraphs.

a .
-
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Figure 2 Typical Thermal Barrier Coating Engine Failure Mode



In reviewing the available literature, laboratory data, and engine hardware,
there was general agreement that the major TBC failure mode is thermomechan-
ical ceramic coating spallation due to dominant crack propagation parallel to
but not coincident with the ceramic-metal interface. Crack driving forces are
presumed due to thermal expansion differences between the ceramic and metal
components of the system, with the coefficient of thermal expansion of the
ceramic being significantly lower than that of the underlying metallic system.
It is also hypothesized that the stresses resulting from thermal expansion
mismatch during thermal cycling are augmented by oxidation of the NiCoCrAlY
bond coat, which has an irregular roughened surface topology (Refs. 15, 16,
17, 18). Miller and Lowell (see Ref. 15) were the first to discuss the role of
the irregular bond coat/ceramic interface on oxidation related failure.

Despite the observation that the predominant thermal barrier coating failure
mode involves thermomechanical spalling, resulting from thermal cycle induced
stresses, some laboratory evidence exists which indicates a time and
environmental dependence of the mechanical failure mode. Early evidence of
time dependence was provided by McDonald & Hendricks (Ref. 19). They showed,
at least for some compositions, a substantial decrease in the number of
thermal-cycle caused ceramic spallation failures as cycle duration increased
from 7 minutes to 60 minutes. Similar results have been obtained at Pratt &
Whitney. Gedwill (Ref. 20) confirmed this effect with a more durable coating
of similar composition. Miller & Lowell (see Ref. 15) postulated time
dependent changes of "stress-free temperature,” resulting from time dependent
bond coat flow, as being responsible at least in part for interaction between
thermal exposure and thermal cycling effects, but also noted that exposure in
an oxidizing atmosphere was much more damaging than exposure on a non-oxidizing
environment. Early results from Pratt & Whitney also indicate a cyclic life
reduction for both oxidizing and non-oxidizing pre-exposure, with the
oxidizing atmosphere being much more deleterious. A preliminary thermal
barrier coating oxidation/thermal stress 1ife prediction model has been
proposed by Miller (see Ref. 18).

Andersson (Ref. 21) analyzed the stresses of typical thermal barrier coated
heat engine components and found that the stresses are tensile in directions
parallel to metal-ceramic interface for elevated temperature steady state
operating conditions and during the cool down portion of the cycle, and in
tangential compression during the heat-up portion of the cycle.

The stresses induced in coatings are hypothesized to be dependent not only on
material properties but also heat flux or degree of thermal loading. The
latter was addressed by Miller and Berndt (Ref. 22). They reported that "good"
Ir0,-8 w/o Y.0, coatings have remarkable tolerance to an extremely high

heat flux plasma torch test.

The geometry of the component and the coating thickness are also important
1ife variables. For thinner coatings (< 0.125 mm (0.005 in)), the stresses due
to temperature gradients in the coating have been shown to be less severe so
that increased service life can be expected (Ref. 23). Normal stresses are
introduced in the coating of a curved surface by the tangential compressive
stresses present resulting in ceramic spallation. In coated afrfoil
applications this is seen at the leading and trailing edges where the convex
radii of curvature are minimized. (It should be noted that even a flat surface
would have radial stresses due to surface roughness.)



Ceramic thermal stability is an important characteristic effecting coating
life. Thermal stability refers to the ability of the ceramic layer to endure
prolonged high temperature exposure without the occurrence of damaging
morphological, chemical, or phase changes. Ceramic sintering is a thermally
activated processes which can also limit cycle life. However, it has not been
observed in laboratory/engine testing. Phase studies have determined that the
presence of large amounts of monoclinic phase correlate to poor performing
coatings (Refs. 24,25,26 also Ref 8).

Room temperature x-ray diffraction studies of 7YS? coatings indicate a two
phase structure consisting primarily of the cubic and metastable tetragonal
phases together with 0 to 5% monoclinic. Because of the extremely rapid
cooling rates associated with deposition of the ceramic coating layer, the
tetragonal phase formed in the coating contains a relatively high percentage
of Y,0;, and is not readily transformed to monoclinic. With prolonged
exposure at elevated temperature in the cubic plus tetragonal phase field,
yttrium diffusion occurs and the high Y,0, tetragonal phase transforms to
cubic plus low Y,0, tetragonal, with the low Y,0, tetragonal phase

being readily transformed to monoclinic upon cooling (Refs. 24, 25, see also
Ref. 27).

Stecura (28) studied TBC systems and hypothesized that compositional changes
in various bond coats and substrates play a more important role in coating
durability than does the coefficient of thermal expansion of the substrate
material. It was hypothesized that yttrium, aluminum and chromium in the bond
coat critically affect the TBC life. Aluminum, chromium and yttrium oxides are
formed at the interface during thermal testing. Yttrium diffuses toward the
bond coat-ceramic interface, chromium diffuses towards the substrate and
molybdenum into the bond coat. These events are considered to have an adverse
effect on coating life. It has been shown that yttria in the bond coat moves
coating failure Tocation from the bond coat-substrate interface to just above
the ceramic-bond coat interface (see Ref. 16). It is hypothesized that the
location of major crack initiation, whether within the bond coat oxide layer
or in the ceramic, is dependent on the stress state at the roughened interface
which is at the very least changed by oxide growth.

Other degradation modes noted in several studies include secondary failure
modes i.e., hot corrosion, erosion, FOD. Results from several laboratories
(Refs. 29-34) have demonstrated an apparent susceptibility of thermal barrier
coatings to fail in hot corrosion environments. The responsible mechanism
appears to involve infiltration of the porous ceramic with liquid corrodent
deposited on the coating surface at intermediate exposure temperatures and
subsequent "mechanical™ spalling resulting from alternate freezing and thawing
of the infiltrated corrodent (see Refs. 34,32,30,14).

Some evidence has been reported which supports "thermochemical" ceramic
spallation in hot corrosion environments; i.e., the infiltrated (Na,S0.)
reacts with the ceramic at high SO, partial pressures (Refs. 35,36, also
Refs. 34,30), resulting in destabilization of Ir0,. This degradation is
attributed to acid leaching of yttrium from the ceramic.
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Thermal barrier coating degradation and failure modes and mechanisms observed
in prior Pratt & Whitney laboratory tests were found to be in general
agreement with analysis from the literature. The major mode of failure in
PWA264 is spallation of the ceramic layer resulting from in-plane cracking
adjacent to but not coincident with the metal-ceramic interface. Prior or
concurrent bond coat oxidation appears to play a major role in cyclic thermal
stress induced spallation cracking. The Task IB testing was designed to
identify the relative importance of these two degradation modes and to provide
the quantitative data required to develop a preliminary model to predict
spalling life under varying exposure conditions.

While the Task IA study included reviews of TBC literature and prior
laboratory experience, primary emphasis was placed on the evaluation of
failure mode as observed on ground based experimental engine and field service
exposed components. Engine exposed PWA 264 coated parts have been evaluated
from the commercial engines; JT9D-7R4G2, -7R4D -TR4D1, 7R4E1, 7R4H and PW2037,
and the military engines; F-100, ATEGG (F-100) and TF-30. Details of the
reviewed parts are documented in Table II. Where available, components
representing the unexposed coating in each of the engine exposed components
also have been examined to identify changes which occurred in coating
structure during engine test. Significant observations form this review of
engine exposed components are as follows:

a) Ceramic sintering was not observed in any case

b) Oxidation of the low pressure chamber sprayed PWA276 bond coat
contributed to coating failure to a lesser degree than as seen in the
lTaboratory

¢) Coating failure due to oxidation of substandard, air plasma sprayed

bond coat was a major life limiting factor found in PW2037 first vane
platforms

d) Geometry effects were considered to play a significant role in
coating degradation.

Examination of numerous engine tested components indicated that thermal
barrier failures are almost exclusively of the “thermomechanical" type shown
in Figure 2. In only one case has engine component thermal barrier coating
failure been attributable directly to bond coat oxidation alone. That
particular failure occurred on a vane airfoil which was operated under
unusually severe thermal conditions and was, for reasons of processing
convenience, coated with an air sprayed bond coat.
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3.1.2 Task IB. 1 Conduct Critical Experiments

The objective of this subtask was to conduct a series of critical experiments
and tests designed in Task IA to determine the relative importance of various
thermomechanical and thermochemical coating degradation modes. Failure life
data from these tests was also used to develop a preliminary life prediction
model in Task IC. The test program included clean fuel and salted burner rig
tests as well as static furnace testing of thermal barrier coated specimens to
establish the relative importance of thermal stress cycling versus thermal and
thermochemical degradation in determining thermal barrier coating life. The
overall Task I test plan is shown in Figure 3.

The specimen used for all static and cyclic exposure testing in this subtask
is illustrated in Figure 4. For cyclic burner rig testing, this specimen was
thermal barrier coated on all surfaces except for the butt end, where coating
was optional but not required. For static furnace exposure testing, the
application of a tapered coating to only the cylindrical portion of the bar
was employed to minimize the possibility of premature coating failure at the
edge of the ceramic layer.

Prior to use in this task, all raw materials were thoroughly characterized and
tested to ensure acceptability. Table III presents ceramic and metallic powder
analysis which include: chemistry, particle size distribution and X-ray
diffraction results.

Following raw material qualification, all burner rig standard erosion bars
used in Task I testing were LPCS with NiCoCrAlY metallic bond coat (AMI Lot
No. 6192). Low pressure chamber spray conditions and parameters are presented
in Table IV. Sample tip sections were taken from selected specimens from each
batch of bars for verification of thickness and microstructure.

The test bars were air plasma sprayed with Zr0,-7w/o Y,0,. Air plasma

spray deposition parameters are given in Table V. A statistical program
designed to randomize coating sequence, and hence any uncontrolled variability
of deposition parameters, was used to coat and select test bars.

To document uniformity of structure, a pre-test sample was obtained from every
specimen tested in this program. Selected samples (about 10%) were examined
metallographically using a statistically designed selection plan. The balance
of the samples remained available for metallographic examination if needed.

3.1.2.1 Furnace Exposure Tests

These tests were performed to determine the influence of static thermal
exposure on TBC degradation and failure. Specimens were furnace exposed at two
temperatures for various times in various combinations of oxidizing and
non-oxidizing environments as shown in Figure 5 and described below. Baseline
tests designated "A" were conducted at 1149°C (2100°F) in oxidizing and
non-oxidizing environments. These tests involved furnace exposure of two
thermal barrier coated specimens per test condition for times sufficient to
cause failure of the ceramic coating. Failure in this context is defined as
development of "delamination" cracking over a significant area. In order to
observe delamination damage, specimens were infrequently cycled to room
temperature. Cycle frequency/inspection intervals are presented in Table VI.
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. 10.947 (4.310) —
I 10.897 {4.290)
0.135 1.295(0.510)
0.110 1.245 (0.490)
_f 1 _ _ N
[
4 0508 (0.220) | N
0.343(0.135) = 0.660 (g-;‘ég)to-”& /‘\ 1,285 (0.510] 0.660 (0.260)
0-278 (0.110) 0.610 (0:240) 1.245 (0:490) R 0-6101(0.240)
-1 BLEND
4.280 (1.685) SMOOTHLY
< 4.229 (1.665)
ALL DIMENSIONS SHOWN IN CM (INCHES)
Figure 4  Burner Rig Coating Evaluation Specimen
TABLE III
METALLIC AND CERAMIC POWDER ANALYSES
Material Chemical Analysis Particle Size Analysis
Cumulative % Finer Microns
NiCoCrAlY 21.60 w/o Co 100 176
(Alloy Metals 17.50 w/o Cr 100 125
Lot #6192) 13.00 w/o Al 100 88
0.66 w/0 Y 100 62
Bal. - Ni 83 44
72.2 31
41.5 22
21.9 16
11.8 11
5.5 7.8
2.3 5.5
0.7 3.9
0.0 2.8
]77\é:/o Y203-2r0, 7.2 w/o Y503 100%
(Zircoa Lot #30656) 1.7 w/o HfO, 94.7% 125
0.1 w/o Ca0 86.1% 88
0.2 w/o Ti0, 63.7% 62
0.1 w/o Fep03 39.4% 44
0.3 w/o AT203 29.0% 31
Bal. -Zr0, 11.8% 22
5.3% 16
2.7% 11
1.3% 7.8
0.5% 5.5
0.5% 3.9
0% 2.8

X-RD Results

80-85 v/o fcc Zr0,
20-15 v/o monoclinic Zr0,
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Standard erosion bar specimens coated using an Electro

TABLE IV
LOW PRESSURE PLASMA SPRAY CONDITIONS

plasma High Energy Gun.

Gun Voltage (V)
Gun Current (A

Standoff

Workpiece Temperature

58
1500
38.1 c¢cm (15 im)

816 - 927°C (1500-1700°F)

Helium and Argon arc gases used

TABLE V

AIR PLASMA SPRAY

CONDITIONS

Standard erosion bar specimens coated using a Plasmadyne SG-100 Gun.
Gun Voltage (V) 42
Gun Current (A) 900
Standoff 7.62 cm (3 in)
Workpiece Temperature 260°C (500°F)
Helium and Argon arc gases used.
He = 32 SCFH (100 psig) 0.91 m’/hr
Ar = 106 SCFH (50 psig) 3.0 m?/hr
OXIDIZING ATMOSPHERE NON-OXIOIZING ATMOSPHERE
TEMPERATURE STATIC FRACTIONAL STATIC FRACTIONAL
°C (°F) FAILURE EXPOSURE FAILURE EXPOSURE
© ©
HIGH 'QJ "@J "—'I —J
1204 8
{2200)

Figure 5

16

1149
{2100}

INTERMEDIATE

3]

@

A c

© K

A2

TEST CONDITIONS SHOWN THUS:

Task 1 Furnace Exposure Test Plan to Evaluate Thermal Barrier

MINIMUM OF TWO (2) COUPONS PER 8LOCK

NOT TO BE EVALUATED

Coating Static Failure Life



TABLE VI
INSPECTION INTERVALS FOR TASK IB FURNACE TESTS

Test Code Condition Inspection Interval
Al.A 1149°C (2100°F)/Air 10 hrs.
Al.B 1149°C (2100°F) /Air 80 hrs.
A2 1149°C (2100°F)/Argon 80 hrs.
B 1204°C (2200°F)/Air 10 hrs.

ceramic. To determine the in
life in air, an additional f
at 1204°C (2200°F). To evalu
exposure test designated "C"
1149°C (2100°F).

This fractional exposure test involved metal]

fluence of temperature on static coating failure
urnace exposure test designated "B" was conducted
ate progressive damage accumulation, a fractiona
was conducted in the oxidizing environment at

successively removed at approximate decile fractions of the "static failure"
sponding "A" test. The primary goal of the

life as defined in the corre
examination was to find evid

3.1.2.1.1 Furnace Test Results -and Microstructural Evaluation

Furnace exposure test results are summarized in Table VII and Figure 6. Note
that independent of this program, data generated in-house for 1094°C (2000°F

has been included in Figure

did not occur during isothermal exposure:
cool-down, initiating at the tip area where there is a radius change. A
photograph of 3 typical failed coating is shown in Figure 7. Height gain
measurements were made at each inspection interval for every Specimen.
Although the tapered coating scheme prevented premature coating failure, the
design allowed for exposed substrate: thus, the weight gain data will only
xide accumulation. These weight gain data are

give a rough indication of o}
summarized in Appendix A.

Review of the failure time data in Table VII clearly shows the influence of

temperature, exposure enviro
life. The results show that
failure for an extended peri

decrease the total exposure
(2100°F) air tests with 10 h
barrier coating life was sho
content” by previous work co
Hendricks (Ref. 19).

od of time compared to air exposure. For furnace
exposure conducted in air, frequent thermal cycling did not significantly

time to failure,

our and 80 hour inspection intervals. Thermal
wn to be more dramatically dependent on "cyclic

nducted by Mil

ler (Ref. 37) and McDonald and

]

ographic examination of specimens

as shown by comparison of 1149°C

17



TABLE VII
SUMMARY OF AIR AND ARGON FURNACE EXPOSURE TEST RESULTS

Exposure

Specimen Code/ Time/(hrs) Metallographic

1.D. # Condition 4 of Cycles Results Observations

TPO7 A1.A/Air-1149°C 140/14 Failed Major crack just above

TPO8 (2100°F) (10 hr 160/16 jnterface within
inspection) ceramic oxide layer

TPO1 Al1.B/Air-1149°C 240/3 Failed Major crack just above

TPO2 (2100°F) (80 hr 160/2 interface within ceramic
inspection)

TPOS A2/Ar-1149°C 1040/13  No Failure Incipient cracking near

TPO6 (2100°F) (80 hr 1040/13 No Failure interface noted
inspection)

TPO3 B/Air-1204°F 40/4 Failed Major crack just above

TPO4 (2200°F) (10 hr 60/6 interface within ceramic
inspection)

TP16 C/Air-1149°C 90/1 No Failure (60%)No major cracking;
(2100°F) some incipient cracking
Fractional near the ceramic oxide

interface

TP19 C/Air-1149°C 135/1 No Failure (90%)No major cracking;
(2100°F) some incipient cracking
Fractional near the ceramic oxide

interface

TP20 C/Air-1149°C 150/1 No Failure Incipient failure
(2100°F) observed at suspected
Fractional bond coat defect; Major

cracking extending from
"biister" through
aligned Kirkendall voids

TP21 C/Air-1149°C (2100°F) 165/1 Failed Major cracking/
Fractional delamination

TP22 C/Air-1149°C (2100°F) 180/1 Failed Major cracking/
Fractional delamination

TP23 ¢/Air-1149°C (2100°F) 120/12 Failed Incipent cracking
(10hr inspection) at the tip

TP24 C/Air-1149°C (2100°F) 150/15 Failed Major cracking with some

(10hr inspection)

delamination at tip

18



Figure 6

Figure 7

A\ AR EXPOSURE 10 HOUR CYCLE)
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Test Data Showing Thermal Exposure Atmosphere Effects on Coating
Durability
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Photomicrograph of Typical Furnace Tested Failed Coating
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The high temperature (1204°C (2200°F) in air) furnace exposure results show a
significant decrease in TBC life. This life decrease is attributed to a
combination of more rapid oxidation at the high temperature and larger thermal
strain excursion on cooling to ambient from the higher temperature. The Argon
environment significantly reduced the weight gain (oxidation) rate as compared
to an air environment so that exposure time and cycle life increased
dramatically without causing ceramic spallation.

To aid in interpretation of static furnace exposure results, metallographic
and x-ray diffraction analyses were conducted on pre- and post-exposure
specimens. X-ray diffraction results are summarized in Figure 8. In the air
exposed specimens, the v/o of monoclinic Zr0, increases with increasing
exposure time. In individual comparisons between these tested specimens and
the pre-test specimen, there is an apparent decrease in the tetragonal phase
which accompanies the increase in the monoclinic phase and a slight increase
in the FCC phase, suggesting that existing metastable tetragonal phase is
undergoing transformation. In looking at the two specimens tested at 1149°C
(2100°F) (different cycle lengths; 80 hrs. and 10 hrs.), one failing at 160
hours and the other at 240 hours, there appears to be not only an increase in
the v/o monoclinic phase with time but an associated decrease in the v/o FCC
phase and no change in the v/o tetragonal phase with increasing time.

These observations are consistent with those presented by Miller (Ref. 24),
suggesting that homogenization resulting from heat treatment may have resulted
in an increase in both the low Y0, transformable tetragonal and the high

Y,0, cubic phase. Upon cooling, the transformable tetragonal then would
transform to the monoclinic phase, while the cubic phase is retained.

X-ray diffraction analysis of the Argon exposed specimen revealed 100% FCC
Ir0,. This result is consistent with other studies which suggested that the
equilibrium phase distribution may be sensitive to oxygen partial pressure
(Ref. 38).

Thermal exposure effects including oxidation, beta (NiAl) depletion, bond coat
substrate interdiffusion, and ceramic structure were metallographically
studied. Electron Microprobe analyses were conducted to study time dependent
chemical changes occurring in the substrate-bondcoat-ceramic system. Table
VIII presents a summary of the metallographic evaluation of selected post-test
furnace exposed specimens which are shown in Figures 9 through 15. Thermal
barrier coating failure was observed to be associated with increased time at
temperature which resulted in increased beta depletion, average oxide
thickness, interdiffusion zone width and average void size. An increase in
Kirkendall void population is seen with the high exposure temperature.
Specific examples of these various changes are discussed in the following
paragraphs.
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V/O PHASE PRESENT

FCC

100(-
90 -
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Figure 8 X-Ray Diffraction Results of Furnace Exposed Test Specimens
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Figure 9 Light Photomicrograph of Post-Test Microstructure. Failed After.
Furnace Exposure in Air at 1149°C (2100°F) with 80 Hour Inspection
Intervals (240 hrs/3 cycles)

200X

Figure 10 Light Photomicrograph of Post-Test Microstructure. Furnace Exposure

in Argon at 1149°C (2100°F) with 80 Hour Inspection Intervals (1040
hrs/13 Cycles)
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ht Photomicrograph of Post-Test Microstructure. Failed Furnace

Figure 11 Lig _ '
After Exposure in Air at 1149°C (2100°F) with 10 Hour Inspection

Intervals (160 hrs/16 cycles)
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Figure 12 Light Photomicrograph of Post-Test Microstructure. Failed After
Furnace Exposure in Air at 1204°C (2200°F) with 10 Hour Inspection

Intervals (60 hrs/6 cycles)
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Figure 13 Light Photomicrograph of Post-Test Micros

tructure After f
Exposure in Air (90 hrs/1149°C (2100°F)/] urnace

cycle 60%)
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Figure 14 Light Photomicrograph of Post-Test Microstructure After Fractional
Furnace Exposure in Air (135 hrs/1149°C (2100°F)/] cycle 90%)
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Figures 16a through 16¢ show the back scatter image photomicrographs of the
post-test microstructure for the specimen furnace tested in Argon for 1040
hours at 1149°C (2100°F). Although thermal exposure in Argon did not result in
TBC failure, the microstructure reveals major crack formation at
near-interface locations. Some bond coat oxidation was observed indicating
that the chamber oxygen partial pressure may not have been low enough to
prevent alumina formation. In addition, it is implied, from the color of the
coating, that the ceramic outer layer became oxygen deficient. It is possible
that the loss of oxygen in the 7457 coating was in part due to alumina
formation at the interface. Upon examination of the Back Scatter Image (BSI)
photomicrographs, dark and light regions appear at the interface. Bond coat
oxide is observed to be the darker, discontinuous region. The light areas in
the oxide, are believed to be unoxidized bond-coat evident by the polishing
marks which are visable in Figure 16c. Figures 16d through 16h show the energy
dispersion spectragraphs for the various elements present, corresponding to
the locations marked 1-5 on Figure 16b. Figures 17a through 173 show the X-ray
maps for various elements present. It becomes clear from these maps that the
dark interface phase is predominantly A1,0,. Cobalt, Ni, and Cr are the

major bond-coat elements and show a strong x-ray image, while Molybdenum, Hf,
Ti and Ta are substrate elements which have clearly diffused into the bond
coat. Some Ti and Hf enrichment is occurring at the bond coat-ceramic
interface and many Hf enriched phases are also visible.

Figures 18a through 18c show back scatter images for the post-test micro-
structure for the specimen furnace tested in air for 240 hours at 1149°C
(2100°F). The figures show a thick, well defined, continuous, dual oxide
layer. The dual layer oxide consists of a light oxide region and a dark oxide
region. The light oxide seems almost porous and shows a network of extensions
reaching into the ceramic. The darker phase however is very dense but with
some secondary phases or "islands". A previous analysis showed that they seem
to be either Hf-rich oxides or spinel-type oxide particles. Figures 18d
through 18k, show the energy dispersion spectrographs for the various elements
present corresponding to the locationg marked 1-8 on Figure 18c. Figures 19a
through 193 show the X-ray maps for the various elements present. The maps
show clearly that the "dark" portion of the oxide is Al,0,. Kirkendall

voids are present at the substrate-bond coat interface. The x-ray map for Al
shows a strong image of Al picked up in the void area. This is assumed to be
an artifact resulting from entrapment of Al1,0, polishing media. The

“light" portion of the oxide appears to consist of spinel i.e., Ni or Co
chromates. Hafnium, Ti and Ta appear to have diffused into the bond coat but
do not appear to have greatly enriched any particular area at the bond
coat-ceramic interface.

As shown previously, Figures 13 and 14 represent the "fractional" exposure
test specimen microstructures after exposure for 60% and 90% of the total
exposure time. These specimens were not cycled periodically for inspection as
were those discussed previously. Presumably as a consequence, they show less
microcracking than the cycled specimens. Figure 15 shows the post-test
specimen microstructure in cross-section through a blister which developed
during the high temperature exposure for 100% of the total life time, 150
hours. It is highly probable that this blister was caused by an initial bond
coat defect.

Two additional specimens were tested at 1149°C (2100°F) in air for 165 hours
and 180 hours with one thermal cycle achieved upon removal from the furnace.
These additional tests were conducted in order to verify the single cycle
ceramic spalling life in terms of hours exposed in the furnace. Both of these
specimens exhibited ceramic spallation after a single thermal cycle.
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Figure 16 (b-c) Back Scatter Images of Post-Test Microstructure. Furnace

Exposure in Argon at 1149°C (2100°F) for 1040 Hours (80 hour
cycles - 13 cycles)
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Figure 16 (d thru h) Energy
Dispersion Spectrographs for
Elements Present at Various
Locations Corresponding to Figure
16b. Argon Exposed 1149°C (2100°F)
for 1040 Hours 80 hour cycles - 13
cyclies)
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Mo X-ray Map (g) 800X

(h) 800X

Hf X-ray Map
Figure 17 (continued)
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Figure 18 (b-¢) Back Scatter Image of Post-Test Microstructure.

Exposure in Air at 1149°C (2100°F) for 240 Hours
cycles - 3 cycles)
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Figure 18 (h-k)

Energy Dispersion Spectrographs for Elements Present at
Various Locations Corresponding to Figure 18b. Air Exposed at
1149°C (2100°F) for 240 Hours (80 hour cycles - 3 cycles)
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Figure 19 (a-J)
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Figure 19 (continued)
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Figure 19 (continued)
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As noted in Table VII, cracking occurred at the tip location for the 80% (120
hrs) specimen and major cracking and delamination was observed for the 100%
(150 hrs) specimen. The metallographic results of the fractional exposure
furnace test specimens showed near interface cracking was occurring at
exposure times which are relatively short as compared with the total exposure
lTifetime of the coating. These "incipient" cracks appear to be a direct
physical result of oxidation of the bond coat asperities. The subcritical
cracks seen are short, fine and directly linked to bond coat asperities.
However, no "dominant" major subcritical cracking is observed, nor is the
gradual growth of singularly large cracks, which may result in spallation,

seen.

3.1.2.2 Cyclic Thermal Exposure Tests

A partial factorial test Program shown in Figure 20 was conducted to determine
the influence of temperature, cycle rate, coating thickness and static
pre-exposure on coating cyclic thermal failure life and to provide preliminary
information concerning interactions between static and cyclic thermal failure

modes.
MAXIMUM TRANSIENT SHORT CYCLE LONG CYCLE
CYCLE HEATING
TEMPERATURE RATE CYCLE TO FRACTIONAL CYCLE TO FRACTIONAL
°C (°F) FAILURE EXPOSURE FAILURE EXPOSURE
O Q] QJ Q]
FAST D, G F
1149
(2100} O l l ™ ' D l
SLow E
O] 3] Q] O]
FAST D,
1094
(2000) © l @ l @’ @ l
SLOW
CERAMIC

NUMBER OF COATING
TEST BARS THICKNESS

0.25mm (0.010 in) AS-SPRAYED CERAMIC ("BASELINE" COATING})

0.13mm (0.005 in) AS-SPRAYED CERAMIC

0.38mm (0015 in} AS-SPRAYED CERAMIC

0.25mm (0.101 in) AIR PRE-EXPOSED CERAMIC 40 HR AT 1149°C (2100°F) FOR 1149°C (2100°F TESTING
0.25mm (0.010 in) ARGON PRE-EXPOSED CERAMIC 100 HR AT 1094°C (2000°F) FOR 1094°C (2000°F) TESTING

VLSRN NI N

CONDITION G:

FRACTION EXPOSURE TEST, DESCRIBED IN TEXT

Figure 20 Task I Clean Fuel Cyclic Burner Rig Test Program
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The test method used to measure cyclic coating life involved uncooled cyclic
burner rig testing as described in Appendix B. The Jet A fueled burner
employed in this test simulates the clean fuel combustor environment in which
most hot section components operate. The primary method of temperature control
in this test involved optical measurement of specimen surface temperature. To
ensure consistent test conditions, a thermocoupled specimen was employed at
all times during testing to monitor/calibrate the test temperature. To provide
specimen temperature distributions required for subsequent preliminary Tife
prediction modeling (Task IC), instrumented specimens were tested, to
characterize specimen temperature distributions; see Figure 21.

UNCOATED SPECIMEN
SURFACE

2000¢ gu=

COATED SPECIMEN
INTERFACE

o
2 1000° fu

COATED SPECIMEN
INTERFACE

/

UNCUATED SPECIMEN
SURFACE

o ] \ ] ] i A i
o] 1 2 3 4 5 6 7
TIME, MIN

Figure 21 Typical Burner Rig Cycle Thermocouple Data

Baseline cyclic life of the TBC was determined as a function of maximum
substrate temperature by exposure of eight baseline coated burner rig test
specimens to the test condition identified as "p1" and five baseline coated
specimens to test condition "D2" in Figure 20. Cycle duration in these tests
was 6 minutes, with 4 minutes of flame immersion (1 - 1.5 minutes to
temperature and 2.5 - 3 minutes at temperature) and 2 minutes forced air
cooling. Each specimen was cycled to failure, with failure being defined as
spallation of the TBC over approximately 50% of the specimen hot zone which
amounts approximately to a 1.27cm x 1.27cm (0.5 in x 0.5 in) size patch. A
photograph of a typical failed burner rig test specimen is shown in Figure 22.
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~1.5X
Figure 22 Photomicrograph of Typical Burner Rig Failed Specimen

To provide information on the influence of transient heating rate on thermal
barrier coating spalling life, six specimens were tested to failure at a
transient heating rate which was approximately three minutes instead of one
minute. Results of these tests, identified as "E" (3 minute heat-up + 1 minute
maximum temperature + 2 minutes cool down) in Figure 20, were used in Task IC
and subsequent life prediction modeling analyses.

Two approaches were employed to evaluate interaction(s) between thermal
exposure and cyclic degradation modes. The first of these involved cyclic
exposure as defined above with a longer cycle duration (identified as "long
cycle” in Figure 20). The long cycle employed was 60 minutes, involving 57
minutes flame immersion (approximately 1 - 1.5 minutes to temperature and 55.5
- 56 minutes at temperature) and 3 minutes forced air cooling. Four "baseline"
thermal barrier coated specimens were cycled to failure at the condition
identified as "F" in Figure 20.

A second approach to evaluate interactions between cycling and thermal
exposure involved cyclic testing of furnace pre-exposed specimens at the same
cyclic conditions as the baseline specimens. The test plan involved
pre-exposure of test specimens in air and in argon to approximately one-half
of the estimated total hot times (hot time - total cycle time-transient
heat-up + transient cool down time), which were anticipated for failure of the
baseline coating in the corresponding test. Pre-exposure durations were
selected on the basis of prior experience. The actual pre-exposure "life
fraction" was calculated from baseline test results after testing was
completed. Four pre-exposed specimens, two each exposed in oxidizing and
non-oxidizing environments, were tested at each of the test conditions
identified in Figure 20.
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To determine the influence of ceramic thickness on coating 1ife, two specimens
coated with a nominal 0.13 mm (0.005 in) thick ceramic and two specimens
coated with a nominal 0.38 mm €0.015 in) thick ceramic were included in each
of the four burner rig tests identified as 9, 11, 13, and 17 in Figure 20.

To provide information concerning the nature and rate of accumulation of
coating damage, a fractional exposure test, identified as "G" was conducted.
In this test, two groups of specimens were exposed to approximate decile
fractions of the cyclic failure life and examined metallographically to
identify possible progressive damage mode(s) which cause ceramic spalling
failure. In the first group, specimens were cycled to each of the
approximately 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% fractions of the
estimated cyclic failure life defined in the "D1" test. A single specimen was
included in this first group which was tested until failure and then life
fractions of the other specimens in this group were adjusted accordingly. The
second group of specimens were cycled to life fractions of exposure times
which were chosen to focus on giving better resolution to the actual failure
time.

3.1.2.2.1 Cyclic Thermal Exposure Test Results

A comparative summary of the Task IB burner rig test results is presented in
Table IX. Detailed results for each test are listed in Table X.

TABLE IX
COMPARATIVE SUMMARY OF TASK I8 BURNER RIG TEST RESULTS
TOTAL HOURS TO FAILURE/CYCLES TO FAILURE/
ESTIMATED HOURS OF HOT TIME TO FAILURE™

STANDARD
TEST CODE/ "BASELINE" THIN ARGON PRE -EXPOSED THICK AIR PRE-EXPOSED
CONDITION AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE
D1/2100°F I.D., Short 186/1860/77 238/2380/99 215/2150/130 132/1320/55 50/500/61
Cycle - Fast Heat Up Rate
D2/2000°F 1.D., Short 471/4710/235 525/5250/263 694/6940/447 470/4700/235 205/2050/203
Cycle - Fast Heat Up
£/2100°F 1.D., Short 135/1350/22 162/1620/27 142/1420/64 121/1210/20 29/290/45
Cycle - Slow Heat Up
F/2100°F 1.D., Long 72/72/67 119/119/110 98/98/162 59/59/55 16/16/55

Cycle - Fast Heat Up

*Estimated hours of hot time
to failure include Lime for
Air and Argon thermal exposure
prior to burner rig testing.
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TABLE X
BURNER RIG TEST RESULTS

TEST CODE/ "BASELINE" AIR ARGON THICK THIN
TEST CONDITION STANDARD PRE-EXPQSED PRE-EXPQSED CERAMIC CERAMIC
01/2100°F, Short Cycle 182 50} AVG = 50 75 104} AVG = 132 243 AVG = 238
- Fast Heat Up Rate 172 50 67 160 232
213 279
175 AVG = 186 279
172 279 AVG = 215
193 279
182 221
198 199
199
271
02/2000°F, Short Cycle 386 1940 AVG = 205 679VAVG = 694 515} AVG = 470 557 AVG = 525
- Fast Heat Up Rate 443 215 708 425 492
435 L AVG = 47N
557
536
E1/2100°F, Short Cycle 156 39} AVG = 29 142 AVG = 142 121 AVG = 121 162 AVG = 162
Fast Heat Up Rate 129 18 142 121 162
142 AVG = 135§
142
2
121
F1/2100°F, Long Cycle 70 ’ 16 AVG = 16 93 AVG = 98 54 AVG = 59 116 AVG = 119
Fast Heat Up Rate 60 AVG = 72 16 102 64 122
59
98

Review of these data clearly indicates exposure temperature to have a strong
influence on spallation life. Comparison of baseline coating lives at 1094°C
(2000°F) and 1149°C (2100°F) (D2 versus D1 results in Table IX) indicates
approximately 60 percent reduction in life for a 55°C (100°F) increase in
exposure temperature. This temperature effect is shown graphically in Figure
23, where estimated total hot time to failure is plotted versus exposure
temperature for the D1 and D2 baseline tests together with results from other
tests conducted on internal programs. Also included for comparison in Figure
23 are results of the quasi-static failure tests shown previously in Figure 6.
This comparison clearly shows the influence of thermal cycling on spallation
life. The reason for the apparent curvature of the cyclic data in Figure 23,
as opposed to the apparently linear behavior of the static data, is not
presently understood.
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Figure 23 Test Data Showing Coating Life Dependent on Temperature,"Cyclic
Content"

The effect of cycle frequency on spallation life is shown by comparison of the
D1 and F test results in Table IX. When compared on the basis of cycles to
fajlure, a dramatic life reduction is seen; however, when compared on the
basis of estimated time at maximum exposure temperature, cyclic frequency is
seen to have relatively little influence on 1ife in the frequency range and at
the temperature studied, as seen in Figure 23. This latter observation must be
interpreted with some caution, as the 1149°C (2100°F) temperature where the
frequency effect was studied is, by coincidence, the temperature of closest
approach of the cyclic and quasi-static life data. It is possible that, had
the effect of frequency been measured at a lower or higher temperature, a more
significant influence on life might have been seen.

As described previously, Test E was conducted to assess the influence of
transient heating rate on spallation life. It was expected that the slower
transient and reduced time at temperature would increase 1ife; however, as
seen in Table IX, spallation 1ife appears to have been slightly reduced by
this change of test parameters. This result is not fully understood at the
present time; however, evaluation of this data set by the subsequently
discussed preliminary prediction system indicates that the difference of life
between the baseline and reduced transient results could be accounted for by a
temperature error of less than 5.6°C (10°F), which is within the inherent
accuracy of the thermocouple based instrumentation system used to establish
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temperature for these two tests. Based on this observation, it seems
reasonable to conclude at this point that the reduction of transient heating
rate appears to have no significant influence on life within the range of
scatter inherent in the burner rig test.

In an effort to assess the influence of thermal exposure on spallation life
and to separate thermal from environmental effects, coated specimens which
were thermally pre-exposed in both oxidizing and non-oxidizing environments
were included in several of the burner rig tests discussed above. As
illustrated in Figures 24 and 25, results of these tests indicate that
isothermal pre-exposure in air caused a significant reduction of subsequent
cyclic spalling life, while pre-exposure in a non-oxidizing environment did
not reduce life. It is interesting to note in Figure 24 that the total time at
temperature for spallation of the air pre-exposed specimens is roughly
comparable to hot time to failure for cyclically tested baseline specimens.
This observation, coupled with the absence of a life debit for non-oxidizing
pre-exposure, strongly suggests that oxidization is a primary thermal barrier
coating degradation mechanism.
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Figure 24 Test Data Showing Air Pre-Exposure Degrades Cyclic Life
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3.1.2.2.2 Microstructural Evaluation for Cyclic Thermal Exposure Tests

In an effort to better understand the phenomenological observations discussed
above, failed burner rig specimens were examined metallographically. All

burner rig specimens exhibited "typical™ near interface ceramic spallation,
with a thin layer of ceramic remaining adherent to the bond coat after failure.

Figures 27 through 30 show representative baseline pre-test and post-test
microstructures for all four burner rig test conditions. In comparing the
baseline laboratory post test microstructures with engine exposed failures,
"oxidation damage" (oxide thickness) appeared to be somewhat greater for the
laboratory test specimens. This is attributed to the relatively high interface
temperatures employed in the accelerated laboratory spallation life testing.
Oxide thickness was on the order of 7.6 microns (0.0003 in) for all of the
tests except for the long cycle 1149°C (2100°F) test in which oxide thickness
was estimated to be twice as thick. The microstructures also show Kirkendall
void alignment at the original bond coat- substrate interface suggesting
bond-coat/substrate compositional changes. Kirkendall voids have not generally
been observed to a great extent in revenue engine service hardware.

In the laboratory test conducted to study environmental effects, results
suggested that oxidation damage contributed significantly to thermomechanical
cracking in the ceramic layer. Figures 31 through 34 show the pre-test (post
furnace exposure) and post burner rig test microstructures of representative
air pre-exposed specimens for each test condition. Figures 35 through 38 show
the pre-test (post-furnace exposure) and post burner rig test microstructures
for representative argon pre-exposed specimens. Evaluation of the specimen
microstructures pre-exposed in air and in argon, prior to burner rig testing,
showed that the former has a well defined thick oxide layer at the metal
ceramic interface which the latter does not. The air pre-exposes specimen
oxide layer is on the order of 7.6 microns (0.0003 in) thick prior to
laboratory testing. The air pre-exposed microstructures also show a beta
(NiAl1) depleted zone in the bond coat about 38.1 microns (0.0015 in) wide
directly below the oxide layer, suggesting that the composition of the oxide
may be predominantly A1,0, or alumina spinel. This near-interface beta
depletion is clearly absent in those specimens which were argon heat treated.
Coarsening of the beta phase was observed for both types of pre-exposure.

The air and argon pre-exposed microstructures, exhibited an interdiffusion
zone at the area adjacent to and below the bond coat-substrate interface,
marked by Kirkendall void alignment. This suggests that the bond coat and
substrate composition has changed. It is possible that the slight increase in
coating life found with the argon pre-exposed specimens is due to these
compositional changes which may result in changes in the bond coat strength
properties. For the air pre-exposed specimens, any benefits obtained due to
these compositional changes would be overridden by the thick oxide developed
at the interface.
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Figure 27a Light Photomicrograph of Baseline Pre-Test Microstructure (D1 Test)
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Figure 27b Light Photomicrograph of Baseline Post-Test Microstructure (DI
Test) After 175 hrs at 1149°C (2100°F)/Short Cycle/Fast Heat-Up Rate
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Figure 28a Light Photomicrograph of Baseline Pre-Test Microstructure (D2 Test)

Etched - AG 21 200X

Figure 28b Light Photomicrograph of Baseline Post-Test Microstructure (D2
Test) After 435 hrs at 1094°C (2000°F)/Short Cycle/Fast Heat-Up Rate
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Figure 29a Light Photomicrograph of Baseline Pre-Test Condition (E Test)
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Figure 29b Light Photomicrograph of Baseline Post-Test Microstruture (E Test)
After 142 hrs at 1149°C (2100°F)/Short Cycle/Slow Heat-Up Rate
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Figure 30a Light Photomicrograph of Baseline Pre-Test Microstructure (F Test)

Etched - AG 21 200X

Figure 30b Light Photomicrograph of Baseline Post-Test Microstruture (F Test)
After 70 hrs at 1149°C (2100°F)/Long Cycle/Fast Heat- -Up Rate

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH 57



= .
alee®% O, QeveLoniave man L°
Etched - AG 21 200X

Figure 3la Light Photomicrograph of Pre-Burner Rig Microstructure (DI Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)/40hrs)
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Figure 31b Light Photomicrograph of Post-Burner Rig Microstructure (D1 Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)/40 hrs) After 50 hrs
at 2100°F/Short Cycle/Fast Heat-Up Rate
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Figure 32a Light Photomicrograph of Pre-Burner Rig Microstructure 56 (D2 Test)
for Air Pre-Exposed Specimen (1149°C (2000°F)/100hrs)
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Figure 32b Light Photomicrograph of Post-Burner Rig Microstructure (D2 Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)/100 hrs) After 215
hrs at 1094°C (2000°F)/Short Cycle/Fast Heat-Up Rate
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Figure 33a Light Photomicrograph of Pre-Burner Rig Microstructure (E2 Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)>/40 hrs)
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Figure 33b Light Photomicrograph of Post-Burner Rig Microstructure (E2 Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)/40 hrs) After 39 hrs

at 1094°C (2000°F)/Short Cycle/Slow Heat-Up Rate
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Figure 34a Light Photomicrograph of Pre-Burner Rig Microstructure (F1 Test)
for Air Pre-Exposed Specimen (1149°C (2100°F)/40 hrs)
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Figure 34b Light Photomicrograph of Post-Burner Rig Microstructure (F1 Test)

for Air Pre-Exposed Specimen (1149°C (2100°F)/40 hrs) After 16 hrs
at 2100°F/Long Cycle/Fast Heat-Rate
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Figure 35a Light Photomicrograph of Pre-Burner Rig Microstructure (D1 Test)
for Argon Pre-Exposed Specimen (1149°C (2100°F)/40 hrs)
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Figure 35b Light Photomicrograph of Post-Burner Rig Microstructure (D1 Test)
for Argon Pre-Exposed Specimens After 67 hrs at 1149°C
(2100°F)/Short Cycle/Fast Heat-Up Rate
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Figure 36a Light Photomicrograph for Pre-Burner Rig Microstructure (D2 Test)
for Argon Pre-Exposed Specimen (1094°C (2000°F)/100 hrs)
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Figure 36b Light Photomicrograph of Post Burner Rig Microstructure (D2 Test)
for Argon Pre-Exposed Specimen (1094°C (2000°F)>/100 hrs) After 708
hrs at 1094°C (2000°F)/Short Cycle/Fast Heat-Up Rate
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Figure 37a Light Photomicrograph for Pre-Burner Rig Microstructure (E Test)
for Argon Pre-Exposed Specimen (1194°C (2100°F)/40 hrs)
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Figure 37b Light Photomicrograph of Post Burner Rig Microstructure (E Test)
for Argon Pre-Exposed Specimen (1194°C (2100°F)/40 hrs) After Short

Cycle/Slow Heat-Up Rate
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Figure 38a Light Photomicrograph for Pre-Burner Rig Microstructure (F Test)
for Argon Pre-Exposed Specimen (1194°C (2100°F)/40 hrs)
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Figure 38b Light Photomicrograph of Post Burner Rig Microstructure (F Test)

for Argon Pre-Exposed S
Cycle/Fast Heat-Up Rate

pecimen (1194°C (2100°F)/40 hrs) After Long
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Figures 39 through 42 show the pre-test and post-test microstructures for
representative thin ceramic coated specimens. The post-test microstructures
all show wide beta (NiAl) depleted zones and substrate interdiffusion layers
as compared with baseline coating microstructures. This is attributed to the
greater exposure time experienced by these specimens. Bond coat oxide
thickness ranged from 5.1 microns (0.0002 in) to 15.2 microns ¢0.0006 in) for
the D1 (1149°C (2100°F), short cycle, fast heat-up) and F (1149°C (2100°F),
long cycle, fast heat-up) test specimens, respectively. Figures 43 through 46
show the pre-test and post-test microstructures for representative thick
ceramic coated specimens. The microstructures shown in these figures show
distinct differences in bond coat oxide growth and beta depletion as well as
the degree of beta phase coarsening. The D2 (1094°C (2000°F)/short cycle/fast
heat-up) test specimen microstructure shows a larger degree of beta phase
coarsening as compared with the other specimen microstructures. The F (1149°C
(2100°F)/1ong cycle/fast heat-up) test specimen microstructure shows the
greatest oxide scale thickness as seen earlier. The bond coat microstructure
from the specimen in the E test (1149°C (2100°F)/short cycle/slow heat-up)
shows excessive porosity, believed to be due to poor bond coat deposition. No
differences in the ceramic microstructures are observed in either the pre-test
or post-test condition as compared with the other microstructures which have
been discussed in preceding paragraphs.

x-ray diffraction analyses for all representative post-test specimens are
presented in Table XI. It is believed that no significant amount of monoclinic
7r0, was formed. Although, it should be noted that for most cases 1 v/o
monoclinic phase was present adjacent to the spall and absent away from the

spalled location.

In summary, the comparative post-test specimen evaluation has shown that
increased exposure time results in: 1) increased MCrAlY oxide scale thickness,
2) increased beta depletion and/or coarsening, 3) some increase in Kirkendall
void population and size occurring at the original bond coat-substrate
interface, 4) no significant phase changes in the ceramic, and 5) no gross
microstructural changes in the ceramic. Also, it is clear from the post-test
microstructures studied that more bond coat oxidation has occurred for the
long cycle (F) test than for the more rapid cycle tests, even though total
"hot" 1ife was similar.
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Figure 39a Light Photomicrograph of Pre-Test Microstructure (D1 Test) for a
Thin Ceramic Specimen
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Figure 39b Light Photgmicrograph of Post-Test Microstructure (D) Test) for a
Thin Ceramic Specimen After 243 hrs at 1194°C (2100°F)/Short

Cycle/Fast Heat-Up Rate
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Figure 40a Light Photomicrograph of Pre-Test Microstructure (D2 Test) for a
Thin Ceramic Specimen
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Figure 40b Light Photomicrograph of Post-Test Microstructure (D2 Test) for a
Thin Ceramic Specimen After 492 hrs at 1094°C (2000°F)/Short

Cycle/Fast Heat-Up Rate
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Etched - AG 21 200X

Figure 4la Light Photomicrograph of Pre-Test Microstructure (E Test) for a
Thin Ceramic Specimen
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Figure 41b Light Photomicrograph of Post Burner Rig Test Microstructure (E
Test) for a Thin Ceramic Specimen After 162 hrs at 1149°C
(2100°F)/Short Cycle/Slow Heat-Up Rate
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Figure 42a Light Photomicrograph of Pre-Test Microstructure (F Test) for a
Thin Ceramic Specimen
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Figure 42b Light Photomicrograph of Post Burner Rig Test Microstructure
(F Test) for Thin Ceramic Specimen After 116 hrs at 1149°C

(2100°F)/Long Cycle/Fast Heat-Up Rate
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Figure 43a Light Photomicrograph of Post Burner Rig Test Microstructure
(D1 Test) for a Thick Ceramic Specimen

o wep %4 o0 e-@e ..

*e oW o

Etched - AG 21 200x

Figure 43b Light Photomicrograph of Post Burner Rig Test Microstructure (D)
Test) for a Thick Ceramic Specimen After 160 hrs at 1149°C
(2100°F)/Short Cycle/Fast Heat-Up Rate
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a Light Photomicrograph of Pre-Test Microstructure (D2 68 Test) for a
Thick Ceramic Specimen

Figure 44
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Figure 44b Light Photomicrograph of Post Burner Rig Test Microstructure (D2
Test) for a Thick Ceramic Specimen After 454 hrs at 1149°C

72 (2100°F)/Short Cycle/Fast Heat-Up Rate
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Figure 453 Light Photomicrograph of
Thick Ceramic Specimen
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Figure 45b Light Photomicrograph of Post Burner Rig Test Microstructure

(E Test)
(2100°F)

for a Thick Ceramic Specimen After 121 hrs at 1149°C
/Short Cycle/Slow Heat-Up Rate

Pre-Test Microstructure (E Test) for a
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Figure 46a Light Photomicrograph of Pre-Test Micro
Thick Ceramic Specimen
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Figure 46b Light Photomicrograph of Post Burner Rig Test Microstructure
(F Test) for Thick Ceramic Specimen After 54 hrs at 1149°C

(2100°F)/Long Cycle/Fast Heat-Up Rate
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TABLE XI
X-RAY DIFFRACTION ANALYSIS OF SOME REPRESENTATIVE POST-TEST SPECIMENS

Specimen/ v/o FCC v/0 Tetragonal v/0 Monoclinic Failure Time
Location 2r0; 2r0; 2r0; (hours)

R

1149°C (2100°F) Short Cycle,
D)

F H - T
Baseline 60-55 40-45 Not detected N/A
Pre-test (ap = 5.122 x (apg = 5.1172 x

107 %¢cm) 107 8cm (5.11724)

(5.122A) Co= 5.1646 x

1078%cm (5.16464)

Baseline: 60-65 35-30 5

adjacent to spall (ap = 5.13263 175
x 107 8%cm
(5.132634))

180° from spall 55-60 45-40 1
(ap = 5.3575 x

107%cm (5.35754))
60-65 35-30 5

Air pre-exposed:

adjacent to spall (5.13907 x 10 8¢m)
(5.13907A)
180° from spall 55-60 45-40 Not detected 50
(5.13910 x 10-3cm)
(5.139104)
Thick: 60-65 40-35 Not detected
adjacent to spall (ap = 5.13762 x
107%cm (5.137624))
104
adjacent to spall 60-65 40-35 --
{other side) (80 = 5.14152 x

1078em (5.141254))

1149°C (2100°F) Short Cycle,
Fast Heat-Up Test (D2)

Air pre-exposed: 65-70 35-30 1 194
adjacent to spall

Argon pre-exposed: 60-65 35-30 1 (Possibly mono-

adjacent to spall clinic 2ro, or 679
hexagonal Y,0,)

T 50-70 45-40 Not detected 443

hick ceramic:
adjacent to spall

Thin ceramic: 50-55 50-45 Not detected 557
adjacent to spall



TABLE XI (continued)
X-RAY DIFFRACTION ANALYSIS OF SOME REPRESENTATIVE POST-TEST SPECIMENS

Specimen/ v/o FCC v/0 Tetragonal v/0 Monoclinic Failure Time
Location 2r02 2r02 2r02 (hours)

1149°C (2100°F) Short Cycle,

Slow Heat-Up Test (E)
Baseline: Away from Spall 60-65 40-35 Not detected 142
Spalled Area 60-65 40-35 1

Air Pre-Exposed:
Away from Spall Area 60-65 40-35 1 18

Spalled Area 60-65 40-35 1

Argon Pre-Exposed:

Away from Spall Area 60-65 40-35 Not detected 142
Spalied Area 65-70 35-30 1
-
Thick: Away from Spall 55-60 45-40 Not detected 121
Spalied Area 60-65 40-35 1
Thin: Away from Spall 55-60 45-40 Not detected 121
Spalled Area 60-65 40-35 Not detected

1149°C (2100°F) Short Cycle,

Fast Heat-Up Test (F)
Baseline: Away from Spall 55-60 45-40 Not detected 98
Spalled Area 65-70 35-30 1

Air Pre-Exposed:
Away from Spall Area 55-60 45-40 Not detected 18

Spalled Area 60-65 40-35 i

Argon Pre-Exposed:

Away from Spall Area 55-60 45-40 Not detected 102
Spalled Area 60-65 40-35 1

Thick: Away from Spall 55-60 45-40 Not detected 64
Spalled Area 65-70 35-30 1

Thin: Away from Spall 55-60 45-40 Not detected 122

Spalled Area 60-65 40-35 1




3.1.2.2.3 Fractional Exgosure_ﬁgrner_gig Test Results

microstructural damage resulting from cyclic thermal burner rig exposure for
various fractions of spalling life. The approach involved burner rig exposure
of test bars for various fractions of 1ijfe ds measured in the D1 (17149°C
(2100°F)/short cycle/fast heat-up) test. There were two series of tests
conducted. The first set provided a broad survey of damage throughout Tife,
with the specimens being exposed for approximate decile fractions of the
average D1 test 1ife (180 hours). The second set focused more closely on high
life fractions, with the specimens being exposed at life fractions in the
range of 58% - 100%.

Both series of tests were conducted at the D1 test (1140°C, short cycle, fast
heat-up) conditions. At least one specimen was tested to failure in each group
to assure the validity of the estimated life. Specific exposure times are
listed in Table XII, together with estimates of life fractions represented by
each exposure. In the first group, the control specimen failed very close to
the D1 test average. In the second group, life fraction estimates were less
exact; two specimens exceeded the D1 baseline average and the control specimen
failed at 130% of the average, suggesting test conditions may have shifted
slightly. As calculated by the preliminary life prediction model discussed in
succeeding sections, the 307 shift in life for Group II specimens would
correspond to a temperature shift of 10°. Table XII shows two Group II
calculated life fractions. The first is based on the nominal 180 hour life at
1149°C (2100°F) and the second is based on the observed failure 1ife of the
reference bar in the Group II test.

Subcritical cracking as early as 20-30 percent of the burner rig test life
(Figure 47). Examination of crack morphology at successively increasing life
fractions suggests that ceramic spallation may resylt from progressive link-up
of adjacent subcritical cracks, as opposed to subcritical growth of a single
dominant crack. Quantitative measurement of average crack length shows a
progressive increase with increasing exposure. “Young" specimens, (¢30%)
contain cracks on the order of 0.05-0.08 mm (0.002-0.003 in.); longer
exposure times yield average crack sizes of 0.16-0.26 mm (0.006-0.010 in.),
The number of cracks also appears to increase with exposure time. "Qlg"
specimens, (>60%) show large isolated cracks on the order of 0.33 mm (0.0125
in.), together with shorter 0.05-0.08 mm (0.002-0.003 in.) cracks. The
"oldest" unfailed specimen, (90% exposure) evaluated showed one major crack
0.97 mm (38 mils) long and some 0.15-0.18 mm (0.006-0.007 in.) cracks.

accumulation, substantial effort was devoted to investigation of the
relationship between incipient cracking and the growing oxide scale. Most of
the observed ceramic cracking occurred parallel to and about 0.03-0.05 mm
(0.001-0.002 in.) above the Zirconia-oxide scale interface with no obvious
linkage between cracks and oxide. While scanning electron microscope studies,
discussed below, dig show a few isolated cases of scale initiated cracking,
these examples were sufficiently difficult to find as to lead to the
conclusion that this js not the major mode of Crack initiation in the ceramic

’7



layer. It is interesting to note that examples of scale initiated cracking
were easier to find in older specimens, occurring in the same structure
together with larger numbers of well-developed longer cracks which appeared to
be isolated from the interface. The observation could suggest that the thicker
oxide scale developed at larger exposure times can initiate cracks, but that
this is not the Weritical" damage mode in the sense that those cracks which
propagate to fFailure are initiated early in 1ife and appear to be isolated
from the interface.

TABLE XII
FRACTIONAL EXPOSURE TEST (Condition G) RESULTS
(1149°C (2100°F)/Short Cycle/Fast Heat-Up Rate)

Specimen Total

Identification Test percent Life

Number Hours (TTH) (TTH/180 X 100) 1(TTH/235 X 100)
GROUP I

214 15 8%

215 30 17%

216 45 25%

217 60 33%

218 75 42%

219 90 50%

220 105 58%

221 120 67%

227 135 75%

223 150 83%

224 165 92%

225 180 100% Failed

GROUP 11

290 136 76% 58%
292 143 80% 61%
296 145 81% 62%
297 151 84% 64%
298 171 95% 73%
299 174 97% 74%
300 177 98% 75%
301 180 100% 77%
303 215 120% 91%
302 235 130% 100% - Failed
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Scanning electron micrographs of typical crack structures are shown in Figures
48 through 51. Shown in Figure 48 15 the structure found in a specimen exposed
for 90 hours (50% 1ife), in which subcritical cracks are noted in the vicinity
of (but not clearly initiated at) the bond coat peaks. Figure 50 is the same
specimen as seen in Figure 49 but shows a different area; fine layered
cracking in the bond coat oxide is noted at higher magnifications. "Older”
specimens with more oxide accumulation frequently showed this type of layered
type cracking within the oxide, pbut these cracks were, in general, not
associated with the major subcritical cracks seen in Figure 47. Figure 49
shows the BSI for the specimen exposed for 105 hours, and two large cracks are
observed to extend from either edge of a particular bond coat asperity. Figure
51 shows the BSI for the specimen exposed for 135 hours. This figure also
shows a subcritical crack extending from the edge of a bond coat peak with
cracking observed in the bond coat oxide.

Another interesting structural feature observed in "older" specimens was an
apparent increase in the amount of near-interface porosity, usually associated
with major cracks. Critical examination of this porosity indicates that it is
an artifact, resulting from pull-out in polishing rather than being an
inherent feature of the structure. This apparent increased sensitivity of the
ceramic to pull-out suggests that the ceramic may be somewhat nweakened" in
the vicinity of the interface. It appears that the suggested near-interface
weakening may correspond physically to a progressive increase of localized
near-interface microcrack density. Additional metallographic studies are

required to further investigate this phenomenon.

3.1.2.3 Cyclic Hot Corrosion Tests

This subtask was designed to determine the relative importance of hot
corrosion as a thermal barrier coating failure mechanism and provided test
data from which a preliminary life prediction model might be developed. Nine
specimens were exposed to a high corrodent level and six specimens Were
exposed to a low corrodent level. Twenty additional specimens were then
exposed to various cyclic life fractions.

The test method involved ducted burner rig testing as described in Appendix C.
To maximize the potential for hot corrosion damage, these tests were conducted
with a surface temperature of 899°C (1650°F). A partial factorial test program
is shown in Figure 52. Testing to spallation failure was conducted at a "high"
corrodent level (35 ppm synthetic sea salt, condition "Hn in Figure 52) and at
a lower corrodent level (10 ppm synthetic sea salt identified as “J" in Figure
52). To provide jnformation concerning the nature and rate of accumulation of
hot corrosion damage, 4 fractional exposure test, identified as “K" in Figure
52 also, was conducted. In this test, specimens exposed to decile fractions of
the high corrodent level hot corrosion life were examined metallographically
to identify and characterize progressive damage mode(s) which cause thermal
barrier coating hot corrosion failure. Two specimens were cycled to each of
the approximate 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 907 fractions of
the average cyclic failure life defined in the "H" test. Two additional
specimens were cycled to 100% of the "H" test life: however, after 1000 hrs of
exposure no failures occurred.
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Figure 48 Back Scatter Image of Thermal Barrier Coating After 90 Hours of
Burner Rig Test Time 1149°C (2100°F)/Short Cycle/Fast Heat-Up Rate
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Back Scatter Image of Thermal Barrier Coating After 105 Hours of

Burner Rig Test Time at 1149°C (2100°F)/Short Cycle/Fast Heat-Up
Rate
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Figure 52 Task I Hot Corrosion Test Program

3.1.2.3.1 High Corrodggjﬁggygl‘Test_B§§*11‘

Results of the high corrodent level test (899°C (1650°F), 35 ppm artificial
sea salt, 1.3%S0,, 1 hour cycle (57 minutes in the flame + 3 minutes FAC))
dre summarized in Table XIII. These results contain significant scatter with
five specimens failing between six and seven hundred hours, and two specimens
surviving to 1000 hours, when testing was terminated with no failure.

A photograph of a typical high corrodent leve] failure is shown in Figure 53.
Failures occurred well above the ceramic-metallic interface with large amounts
of ceramic remaining adherent. Small visually observable cracks grew in length
as testing continued until discrete patches of ceramic spalled around the bar,
favoring leading edge locations.

Figures 54 and 55(a and b> show the pre-test and post-test microstructures of
specimens tested 693 and 1000 hours, respectively. The ceramic spallation mode
seen in these structures clearly is different from that observed in clean fuel]
burner rig test failures, exhibiting multi-level in-plane, ceramic cracking
and flaking, as opposed to the predominant near-interface cracking seen in
clean fuel failure.

Figures 56(a-c), and 57¢a-d) show post-test surface structure and transverse
microstructure for a test specimen exposed for 450 hours in the high corrodent
level test (Condition H). The EMP results, as seen in the x-ray maps, clearly
show the infiltration of sodium and sulfur in the pores and microcracks.

Further post corrosion test specimen evaluations have confirmed infiltration
of sodium and sulfur in localized areas of porosity and microcracking through-
out the thickness of the ceramic coating. Increased exposure time shows
increased infiltrant concentration in these areas. Magnesium, contained in
synthetic sea salt as MgCl, (see Table XIV), was generally not detected in

the zirconia layer but was found concentrated at the oxide layer between the
ceramic/bond coat interface. As shown in Figures 58(a-g), x-ray maps for Al
and Mg may suggest the predominance of the formation of MgA1,04 spinel.

Table XV shows x-ray diffraction analysis for representative post test high
corrodent level test specimens (condition H). It js noted that "higher" time
specimens show a significant increase in v/o monoclinic and also up to 10 v/o
of other phases; i.e., fcc Ni0, the orthorhombic NiCrO4 or Ca,Si0.. This
increase in monoclinic phase (destabilization of Zr0;) is believed to
influence coating spalling 1ife.
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TABLE XIII
CYCLIC HOT CORROSION TEST RESULTS (Condition H) HIGH CORRODENT LEVEL
(1650°F/Long Cycle/35ppm Artificial Sea Salt/1.3% S03)

Failure Time (Hrs)

693
693
638 Avg = 618
615
450

1000 No Failure
1000 Observed
1000

Figure 53 Cyclic Hot Corrosion Test Specimen Showing Multi-Level Flaking of
the Ceramic
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Figure 54a Pre-Test Hot Corrosion Test Specimen; 35 ppm Artificial Sea Salt/
899°C (1650°F)/1 Hour Cycle

Figure 54b Post-Test Hot Corrosion Test Specimen Showing In-Plane Ceramic

Cracking in Central and Upper Portions of Ceramic Layer After 693
hrs at 35 ppm Artificial Sea Salt/899°C (1650°F)/1 Hour Cycle
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Figure 55a Pre-Test Hot Corrosion Test Specimen; 35 ppm Artificial Sea
Salt/899°C (1650°F)/1 Hour Cycle
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Figure 55b Post-Test Hot Corrosion Test Specimen After 1000 hrs at 35 ppm
Artificial Sea Salt/899°C ¢1650°F)/1 Hour Cycle
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a) BEI 300X

1000X

b) BEI Detailed Image Of Outer Surface Of
Coating

Figure 57 Cyclic Hot Corrosion Test Specimen After 450 Hrs at 899°C (1650°F).
High 35 ppm Corrodent Level in Area Near Failure.
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c) Na X-Ray Map 1000x

d) Sulfur X-Ray Map

1000%

Figure 57 (Continued)
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TABLE XIV
ARTIFICIAL SEA SALT COMPOSITION

NaCl 58.4%
MgClo 26.4
NaoS0g 9.7
CaClp 2.7
KC1 1.6
NaHCO3 .4
KBr .23
H3B03 .07
SrCly .09
Na F .007

TABLE XV
X-RAY DIFFRACTION ANALYSIS FOR SOME REPRESENTATIVE CYCLIC
HOT CORROSION POST-TEST SPECIMENS
(High Corrodent Level)

Specimen/ v/o fcc  v/o Tetragonal v/o Monoclinic Failure
Location Zr0p Zr07 Ir07 Other Time (hrs)
(HST #086) 60-65 35-40 5 1 v/o
Spalled Area Unidentified 450
(HST #088) 50 25-35 15-10 10 v/o fcc and 615
Spalled /or Mg0 1 v/o
Area orthorhombic

NiCr0g
(HST #0971) 45-50 45-50 10 1 v/o fcc NiG, 693
Spalled Mg0 and/or
Area CanSilg

3.1.2.3.2 Low Corrodent Lgxgl_lgg;ﬁBgsults

The low corrodent level test (Condition J> 10 ppm artificial sea salt, 1.3%
S0,, was terminated after completing 1000 hrs of test time, with none of the
six specimens tested exhibiting any evidence of coating degradation. The
specimens did show, however. a dark brown surface appearance. Figure 59 shows
a photomicrograph of one of these specimens after over 1000 hours of exposure.
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Figure 59 Light Photomacrograph of Test Specimen After 1000 hrs at 899°C
(1650°F)/ Long Cycle/10 ppm Synthetic Sea Salt/1.3% SO, -
Condition J

Electron microprobe analysis conducted on the cross-sectional microstructure
of an unfailed low corrodent level specimen indicated less corrodent
infiltration than found in high corrodent level specimens. As seen in Figures
60a through 60d, lTow levels of Na and S were detected in areas of porosity and
microcracking. Magnesium was detected not only within pores and cracks, but
also at the ceramic-bond coat interface. It appears that this element is in
the form of an oxide and at the interface forms spinel; MgA1,04, as shown

in Figures 6la through 61d.

Table XVI presents X-ray diffraction data for two representative low corrodent
level samples. The phase distribution as shown is not consistent for these two
specimens exposed for the same length of time. It was observed that for at
least one specimen, a high v/o monoclinic Ir0, (20-25 v/0) was detected.

3.1.2.3.3 Fractional Exposure Hot Corrosion Test Results

The fractional exposure corrosion test K (35ppm artificial sea salt, 899°C
(1650°F), long cycle) was terminated with over 1000 hours of test time
accumulated. Two of the twenty specimens planned for this test were to be
reference specimens taken to failure to confirm the previously determined
average test life from the H test: 35ppm artificial sea salt, long cycle,
899°C (1650°F). The other 18 specimens were to be tested to decile fractions
of this life. However, these two specimens did not fail after over 1000 hours
of testing and, in accordance with the Statement of Work, this test was
terminated. Thus, there is an uncertainty as to the actual life fractions of
the eighteen specimens evaluated.
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TABLE XVI
X-RAY DIFFRACTION ANALYSES OF SOME REPRESENTATIVE POST-TEST SPECIMENS,
CYCLIC HOT CORROSION TEST {Low Corrodent Level)

Specimen/ v/o v/o v/o v/o

Exposure FcC Tetragonal Monoclinic

Time Zr07 1r02 2r02 Other

HST 113/ 42-45 32-35 5 10-7 fcc NiCrp04 and/or NiFep04

1000 hrs spinel), 5 fcc Ni0 and and/or Mg0, 3-1
hexagonal NiS,2-1 bcc Y20 ,1 tetra-
gonal TiOp, and possibly ? hexagonal
- A1203

HST 131/ 30-35 25-20 25-20 § fcc NiFep0gq and/or NiFez04 (spinel),

1000 hrs 5 hexagonal NiS, 10-15 fcc
(Fe,Ni)S2

Post-test metallographic analysis was conducted for one of the specimens

exposed to each fraction of the coating 1ife. Figures 62a through 621 show the

typical post-test microstructures for specimens exposed to the estimated

10%-90% of TBC life. These specimens were polished using standard procedures
except that an oil-based polishing slurry replaced water to prevent leaching
of infiltrated corrodent. This metallographic analysis was conducted to look

for subcritical crack development. Fractionally exposed specimen metallography

showed some accumulated damage after 515 — 585 test hours:; large in-plane
cracks with several minor extensions were noted above the “typical" failure
location. Note that the large crack in Figure 621 has several smaller

extensions.

Also, this crack is far from the interface in comparison with the

typical clean fuel burner rig test failure mode. Figure 62h shows what may be
considered the start of microcrack "1ink-up" at the center of the ceramic.
Also, note the patch of ceramic which has flaked off at the outer surface.
Most of the remaining photomicrographs show some segmentation cracking which
is thought to have developed during exposure.

The results of the X-ray diffraction analysis for the fractionally exposed
specimens are included in Table xVII. It is apparent from the data that
increased exposure times show increased v/o monoclinic Zr0:.
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Figure 62a Post-Test Fractional (10% Life) Hot Corrosion Specimen
Microstructure, 65 hrs/899°C (1650°F>/35 ppm Na,SO0.,

200X

Figure 62b Post-Test Fractional (20% Life) Hot Corrosion Specimen
Microstructure, 130 hrs/899°C (1650°F)/35 ppm Na,S0.
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Figure 62c Post-Test Fractional (30% Life) Hot Corrosion Specimen
Microstructure, 185 hrs/899°C (1650°F) /35 ppm Na:S04

200X

Figure 62d Post-Test Fractional (40% Life) Hot Corrosion Specimen
Microstructure, 250 hrs/899°C (1650°F)/35 ppm Na.S0a4
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Figure 62e Post-Test Fractional (50% Life) Hot Corrosion Specimen
Microstructure, 315 hrs/899°C (1650°F)/35 ppm Na,SO,

200X

Figure 62f Post-Test Fractional (60% Life) Hot Corrosion Specimen
Microstructure, 380 hrs/899°C (1650°F)/35 ppm Na,S0,
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Figure 62g Post-Test Fractional (70% Life) Hot Corrosion Specimen
Microstructure, 445 hrs/899°C (1650°F)>/35 ppm Na2S04

200X

onal (80% Life) Hot Corrosion Specimen

Figure 62h Post-Test Fracti
510 hrs/899°C (1650°F)/35 ppm Na,S04

Microstructure,
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Figure 62i Post-Test Fractional (90% Life) Hot Corrosion Specimen
Microstructure, 575 hrs/899°C (1650°F)/35 ppm Na,S0.

The analysis of the fractionally exposed specimens (10% - 90%) removed from
the test showed a minimum of 5 v/o monoclinic Zr0, for smaller fractions of
exposure and up to 9 v/o monoclinic ZrQ, for higher fractions of exposure.
This result is consistent with earlier suggestions of thermochemical
interaction of the corrodent with the ceramic (Ref. 30, 34, 35, 36), i.e.,
selective "leaching" of Y,0, by the corrodent.

In summary, the results of the contaminated fuel burner rig test conducted
showed that 7YSZ is extremely spall resistant in hot corrosion environments.
When TBC failure did occur (only in high corrodent level testing), the TBC
failure mode consisted of multilevel flaking of the ceramic. This mode is
unique to cyclic hot corrosion testing and has not been seen in clean fuel
burner rig tests, in furnace tests, or more importantly in any of the engine
exposed hardware examined to date. X-ray diffraction analysis has shown higher
levels of monoclinic zro0, forming upon cool down: however, ceramic

spallation was unobserved. Thus, a predominant failure mechanism may more
likely involve mismatch between infiltrate and ceramic as reported in earlier
studies (Ref. 14, 30, 32, 34) than selective leaching of Y,0, causing
destabilization (Ref. 35, 36). Although the latter is occurring, there seems
to be no correlation to actual failure life. However, failure life of the
ceramic is most probably governed by the interaction of these two mechanisms,
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3.1.3 Task IB.2 Determine Physical/Mechanical Properties

The purpose of this subtask was to measure values of physical and mechanical
properties required for subsequent analytical and 1ife modeling. Measured
physical properties include thermal conductivity, specific heat, and thermal
expansion of bulk porous zirconia and dense NiCoCrAlY specimens fabricated to
simulate structures found in the respective TBC coating layers. Mechanical
tests were conducted only on bulk porous zirconia and included fracture
toughness, uniaxial tension and compression, tensile and compressive creep,
and “"derived" tensile fatigue in the range of ambient to 1204°C (2200°F). All
needed base alloy properties and mechanical properties of the metallic coating
were available from prior internally funded programs and were not remeasured
in this program. A1l physical property testing was conducted by Dynatech
Corporation, Cambridge, Mass. MWith the exception of an ambient temperature
four point bend test conducted early in the program to gain needed preliminary
insight into basic ceramic constitutive behavior, all mechanical property
tests were conducted at Southwest Research Institute, San Antonio, Texas.

Bulk ceramic and metallic property test specimens were fabricated by plasma
deposition using the same parameters as used to make the respective TBC
coating layer. Coating thickness of up to 1.27cm (0.5") were accumulated on
mild steel panels and then the test specimens were machined off and ground to
required dimensions. Shown in Figure 63 is a bulk ceramic specimen
microstructure which can clearly be seen to quite closely simulate the
microstructure of the 0.25mm (0.010 in.) ceramic coating.

Figure 63 Bulk Ceramic Microstructure Used for Physical/Mechanical Property
Tests
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3.1.3.1

Physical Property Tests

Procedures used by Dynatech to me

asure physical properties are summarized in

Appendix D. Specific numbers of physical tests conducted and the corresponding

temperature ranges inves
these tests are presented in Ta

TABLE XVIII

COATING PROPERTY TESTS

Ceramic
(Bulk Specimen)

tigated are summarized in Table XVIII. Results of
bles XIX through XXIV.

Bond Coat
(Bulk Specimen)

o Thermal
Conductivity

o Thermal Expansion

o Specific Heat

3 Tests: 538°C (1000°F),
871°C (1600°F), 1149°C
(2100°F)

2 Tests: 538°C (1000°F),
1149°C (2100°F)

3 Tests: 538°C (1000°F),
871°C (1600°F), 1149°C
(2100°F)

3 Tests: 538°C (1000°F),
871°C (1600°F), 1149°C
(2100°F)

2 Tests: 538°C (1000°F),
1149°C (2100°F)

3 Tests: 538°C (1000°F),
871°C (1600°F), 1149°C
(2100°F)

TABLE XIX

THERMAL CONDUCTIVITY OF 7 w/o Y203 -Zr02

Temperature Thermal Conductivity
(°C/°F) TW/TK) TBtu in/hr Tt2°F)
538/1000 0.645 4.47
871/1600 0.675 4,68*
1100/2012 0.660 4.58

*The accuracy of these measurements ranges from +8-10% and, therefore, the
apparent peak at 817°C (1600°F) is not considered to be significant. This

judgment is based in part on previous

work done at Dynatech for Pratt &

Whitney, which showed no thermal conductivity peaks at intermediate

temperatures.

TABLE XX

SPECIFIC HEAT OF 7 w/o Y,0; -2r0:

Specific Heat

Temperature cal/g°C

(°C/°F) (J/g °O) (Btu/1b °PF)
538/1000 0.582 0.139
871/1600 0.593 0.142
1149/2100 0.603 0.144
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TABLE XXI
THERMAL EXPANSION OF 7 w/o Y503 -2r0,

Coefficient of*

Temperature Thermal Expansion Therma] Expansion
‘(‘ETFF)—— T T % T04 x0TIy
25/77 0 -
100/212 7.26 9.68
200/392 17.53 10.02
300/572 27.00 9.82
400/752 36.39 9.70
500/932 45.77 9.64
600/1112 56.25 9.78
700/1292 66.72 9.88
800/1472 77.64 10.02
900/1652 89.15 10.19
1000/1832 100. 82 10.34
1100/2012 110.64 10.29
1175/2147 116.12 10.10

*Average-from ambient temperature to temperature indicated

TABLE XXII
THE THERMAL CONDUCTIVITY OF NiCoCrATY

Sample thickness = 9.47mm (.373 inch)

Temperature Thermal Conductivity
‘73%73F7“" (W/mKT ™ TBEu in/Rr Tt2oF)
538/1000 20.5 142

871/1600 24.3 168

1100/2012 34.2 237

TABLE XXIII
THE SPECIFIC HEAT OF NiCoCrAlY

Temperature Specific Heat
(°C/°F) (J/G°C) (Btu/1b °F)
538/1000 0.628 . 150
871/1600 0.674 .161
1149/2100 0.712 .170
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TABLE XXIV
THERMAL EXPANSION OF NiCoCrAlY

Coefficient of
Thermal Expansion

Temperature Thermal Expansion [1/°C1/11/°F]
(°C/°F) TE x 10° x10°¢
25/71 0

100/212 2.56 12.75 / 6.9
200/392 22.17 12.67 / 7.03
300/572 36.83 13.39 / 7.40
400/752 52.38 13.97 / 7.76
500/932 67.53 14.22 / 71.90
600/1112 85.15 14.81 / 8.23
700/1292 104.62 15.5 / 8.60
800/1472 126.27 16.29 / 9.05
900/1652 148.15 16.93 / 9.41
1000/1832 168.72 17.30 / 9.60
1100/2012 191.13 17.78 / 9.87
1175/2150 202.02 17.96 / 9.97

3.1.3.2 Preliminary Mechanical Testin

As mentioned previously, 3 preliminary room temperature four point bend test
was conducted at the United Technologies Research Center to gain early insight
into the constitutive behavior of the strain tolerant ceramic. The geometry of
the test specimen is illustrated in Figure 64. A plot of outer fiber tensile
stress (calculated from applied load using classical elastic bending
relationships) vs. outer fiber tensile strain (measured by bonded strain gage)
is shown in Figure 65a. The stress-strain relationship differs dramatically
from the completely elastic ambient temperature behavior typically observed
for fully dense structural ceramic materials. The strain tolerant ceramic
deformation appears to be nonlinear even at very low stress levels, with no
clearly definable linear elastic segment of the ctress-strain curve. Unloading
of another partially loaded specimen showed substantial permanent offset with
no observable microcracking on the tensile side, indicating that the curvature
seen in Figure 65a represents truly inelastic behavior.

Despite the occurrence of significant inelastic deformation, the ultimate
strength and fracture strain of the strain tolerant ceramic are quite low,
47.6 MPa (6.9 ksi) and 0.26% respectively. The material also is highly
compliant with an initial stiffness of 4.0x10 MPa (5.8x10° psi). Measurements
from multiply oriented strain gages indicate a relatively smatl Poisson's
ratio of 0.091. An interesting fractograph from the tensile side of a broken
specimen shows 3 highly columnar structure with "splats" of the plasma
deposited ceramic (Figure 65b).
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Figure 65a Room Temperature Four Point Bend Test Results for Bulk Plasma
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Figure 65b Fracture Surface of Four Point Bend Test Specimen

3.1.3.3 Southwest Research Institute Mechanical Test Program

The mechanical test program conducted by Southwest is summarized in Figure 66.
Test methods and results are described in the following paragraphs. All tests
were conducted with the primary loading axis in the plane of the splat
structure.

Uniaxial compression tests were conducted on right circular cylinders (Figure
67) loaded along the cylinder axis between flat and parallel alumina anvils
having self locking tapered ends mounted in water cooled adapters (Figure 68).
A 227 Kg (500 pound) capacity load cell was used to provide good resolution
(0.02 Kg ¢.05 1b)) at the relatively small loads involved in this testing.
Loading of the specimens was performed under displacement control of the
actuator shaft at a constant displacement rate approximating a strain rate of
1x10°2 cm/cm/sec (1 X 10°% in/in/sec). Displacement was measured to an
accuracy of 12.7 microns (0.0005 inches) on the actuator shaft near the
loading fixture attachment point. A machine compliance calibration was
obtained at each test temperature by measuring the load-deflection
characteristics of the compression apparatus without the test specimen. All
data was corrected by subtracting the appropriate calibration values from the
recorded displacement. Alignment of the system was confirmed by plastically
deforming aluminum rodlets and measuring the resulting height variation around
the circumference; this variation was less than 0.005 mm (0.0002 inches).
Compression specimens were heated inductively with a cylindrical graphite
susceptor. To prevent rapid deterioration of the susceptor, a water cooled
copper Jjacket with a viewing port was placed over the specimen and flooded
with Argon gas (Figure 69). Test temperature was determined from the averaged
output of two thermocouples located adjacent to the opposing loading plattens.
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Number of Tests Planned (Conducted)

Test Temperature

1000°F
538°C

1600°F
871°C

1800°F
982°C

2000°F
1093°C

2200°F

Test Type

Stress-Strain Response Test
Tension

Compression

1(3)

1(2)

1(2)

1204°C

1(2)

0(1)

1(1)

1(2)

Creep/Stress Rupture Test
Tension

Compression

1(1)

1(2)

(1)

1(3)

1(4)

Fatigue (Wafer) Test

3(5)

3(5)

Fracture Toughness

Test

2(2)

2(2)

Figure 66 Mechanical Property Test Plan for Bulk Ceramic

.312CM -
(.123IN)
635 CM
™ (250IN)

e —

Figure 67 Compression Specimen
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Figure 69 Test Rig
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superalloy shield and loaded by superalloy shear pins (Figure 71). Specimen
strain was inferred from actuator displacement using machine compliance
corrections generated from a strain gaged tensile specimen loaded to failure
at room temperature. A static pre-loading apparatus was used to seat the grip
section without application of significant preload to the gage section of the
specimen.

) A11 Dimensions Shown in cm {inches)

(| 1 1]
064
318 [ 455) (.25R) (TYP)
.315 .124
2.41+.007 27
949 :
L"‘x.OO:& (.500)
1.78
-—(%252)~—>| .64 |~ (0.70)
' {.25)  20NE ‘G’
6.99 -
(2.75)

Figure 70 Tensile Specimen Geometry

Fracture toughness was measured by single edge notching the tensile specimen
to a depth of about 0.5 mm (0.020 in.) using a 0.24 mm ¢0.009 in.) diameter
diamond coated wire. While plane strain conditions were not fully satisfied in
this test, it is felt to provide a reasonable indication of the general
toughness capability of the material.

Derived tensile fatigue testing was conducted in the previously described
compression test apparatus by compressive edge loading of the wafer geometry
specimen illustrated in Figure 72. Based on the analysis of Shaw, Braiden, and
DeSalvo, (Ref. 39: on Figure 73), this loading produced a biaxial stress state
with a low level of tensile loading in the plane of the disk perpendicular to
the compression axis (Figure 73). For materials such as ceramics where the
tensile strength is substantially less than the compressive strength, tensile
failure will occur in the center of the disk at loads below the compressive
strength of the material. By cyclically loading this specimen, tension-tension
fatigue testing was conducted on the ceramic, using a small positive R ratio
(0.1) to maintain the specimen firmly between the anvils at all times.
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3.1.3.3.1 SHWRI Test Results

specimen mentioned earlier. As with the previously discussed bend test, the
strain tolerant ceramic exhibits non-linear deformation behavior throughout
the loading history. Because of this non-linear behavior, it ig difficult to
define an "elastic modulus"; "injitial Stiffness" values, noted in Table XXVI,

of the precautions taken in testing to minimize seating and machine compliance
effects. For example, the slight upward curvature seen in the initial portion
of most of the elevated temperature curves is assumed to be an artifact and
has been ignored in measurement of initial slopes.



TABLE XXV
UNIAXIAL COMPRESSION PROPERTY TEST DATA

Ultimate Strain
Specimen Test Compressive Strain at Initial Stiffness
Identification Temperature Strength Ultimate Fracture
Number °c  (°F) MPa (Ksi) &Y Y GPa (PSI x 10%)
-2-CP-27-1 871 (1600) 303 (44.0) 11.31 (1.64)
1191 (2175 198 (28.7) 2.46 21.72  (3.15)
_2_CcP-27-11 538 (1000) 376 (54.6) 2.61 2.61 13.51 (1.96)
-2-CP-27-3 871 (1600) 274 (39.7) 1.90 1.90 12.41 (1.80
_2_CP-27-2 1204 (2200) 218 (31.6> 3.54 4.38 13.44  (1.95)
_9_CP-27-4 1202 (2196) 273 (39.6) 4.32 5.14 10.34 (1.50)
TABLE XXVI
UNIAXIAL TENSION PROPERTY TEST DATA
Initial Ultimate
Specimen Test Stiffness, Tensile Apparent‘
Identification Temperature 3 Strength Failure
Number °c  (°F) Gpa PSI x 10%) MPa  (Ksi) Strain, %
EC-1 24 (15 19.99 (2.90 1.350 (3.08) 0.1967
EC-2 538 (1000) 21.24 (3.08) 1.089 (2.65) 0.158
gEC-10 538 (1000) Data Unavailable (2.60) Data Unavailable
CcpP-24 538 (1000) 43.51 (6.3 0.386 (2.58) 0.056
CcP-13 871 (1600) 43.51 (6.3 0.531 (2.58) 0.077
cp-14 871 (1600) 12.41 (1.80) 1.950 (2.68) 0.283
cp-21 1094 (2000) 21.24 (3.08) 1.481 (3.08) 0.215
cpP-23 1094 (2000) 25.72 (3.73) 1.295 (3.18) 0.188
EC-4 1204 (2200) 27.65 (4.01) 2.039 (2.45 0.296
EC-5 1204 (2200) 27.65 (4.01) 1.826 (2.32) 0.265

Except as noted, measured from crosshead displacement at failure,
compensated for machine stiffness

Measured from strain gage

Tangent slope at zero load
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TABLE XXIX
FATIGUE PROPERTY TEST DATA

Specimen Test Test Max imum Number
Identification Mode Temperature Applied $tress of
Number Mode °C (F°) MPA (ksi) R Cycles
-2-CP-26-2 Fatigue 538 (1000} 17.2 (2.5) 0.1 20,000 No Failure
-2-CP-26-2* “Tensile" 538 (1000) 23.4 (3.4) - 1/4
-2-CP-26-5 fFatigue 538 (1000) 17.9 (2.6) 0.1 307
-2-CP-26-3 Fatigue 538 (1000) 18.6 (2.7) 0.1 410
-2-CP-26-4 Fatigue 538 (1000) 18.6 (2.7) 0.1 195
-2-CP-25-2 Fatigue 871 (1600) 14.6 (2.12) 0.1 60,000
18.4 (2.67) 0.1 10,000 Same
20.2 (2.93) 0.1 10,452 Specimen
21.7 (3.15) 0.1 11,000 No Failure
22.7 (3.3) 0.1 10,050
2 -CP-25-5 Fatigue 871 (1600) 18.2 (2.64) 0.1 407
-2-CP-26-1 Fatigue 871 (1600) 18.2 (2.64) 0.1 158
2-CP-25-1 "Tensile"® 871 (1600) 22.0 (3.2) - 1/4
2 CP-25-3 "Tensile" 871 (1600) 22.7 (3.3) --- 1/4
~Specimen uploaded to failure
TABLE XXX
FRACTURE MECHANICS PROPERTY TEST DATA
Specimen Test Failure
Identification Temperature Stress
Number °C  (°F)  MP4 (ksi) acm (in)'  bcm (in)? Ko MPavm (ksi Vin)®
CP-22 538 (1000) 12.13 (1.76) 0.0444 0.315 0.634 3.98
(0.0175) (0.124) (0.578)
CpP-9 538 (1000) 10.27 (1.49) 0.0462 0.310 0.499 3.13
(0.0182) (0.122) (0.454)
CP-15 871 (1600) 13.09 (1.90) 0.0465 0.315 0.636 3.99
(0.0183) {0.124) (0.579)
CP-18 871 (1600) 10.40 (1.51) 0.0538 0.315 0.567 3.56
(0.0212) (0.124) (0.517)
Notes:
1. Crack (notch) depth
2. Total specimen depth
3. Apparent (not valid) critical stress intensity factor
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Figure 74 Representative Strain Tolerant Ceramic Tensile Stress Strain Curves
at Various Temperatures. Room temperature strain data measured by
strain gauge; temperature curves obtained from corrected cross head
displacement.

Examination of the elevated temperature tensile curves included in Appendix E
indicates that while there is substantial variability of initial and overall
stiffness, The basic non-linear shape of the stress-strain curve is similar at
all temperatures up to 1094°C (2000°F). Both the shape similarity and the
stiffness variability are illustrated by comparison of the room temperature
and the two 871°C (1600°F) curves reproduced in Figure 74. At 1204°C (2200°F)

by the high temperature Curve reproduced in Figure 74.

Both ultimate tensile strength and tensile failure strains are relatively low
at all temperatures. As shown in Figure 75, strength appears to exhibit a
slight decreasing trend between room temperature and 538°C (1000°F), rising
again to about room temperature levels at 1094°C (2000°F), and again
decreasing at 1204°C (2200°F). The reason for this apparent increase at 1094°C
(2000°F) is not presently understood and may reflect data scatter, although
reproducibility at each temperature appears to be quite good. It is possible
that this strength peak is related to subtle phase changes (very slight
monoclinic to tetragonal transformation) in this temperature range, but such
interpretation must be viewed as highly speculative at the present time.

Because of substantial data scatter, it is difficult to identify any trend for
temperature dependence of tensile failure strain. It should be noted that al]

concentration is calculated to be on the order of 1.15, suggesting that some

caution should be exercised in interpretation of the strength and "ductility"
data discussed above.
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Figure 75 In-plane Temperature Elevated Tensile Properties of Strain Tolerant
Ceramic

Compressive stress—strain behavior, summarized in Figure 76 and Table XXV,
differs significantly from tensile behavior; compressive strengths are much
higher than tensile strengths, and there appear to be distinct linear and
non—linear segments to the stress-strain curves. Because corrected crosshead
displacement was used to measure strain, with attendant seating effects at low
loads, this latter observation is made with some reservation. This reservation
not withstanding, the 538°C (1000°F) and 871°C (1600°F) compressive stress
strain curves clearly are shaped differently than corresponding tensile
stress—strain curves. At 1204°C (2200°F), compressive deformation begins to
resemble tensile deformation, departing from linearity at relatively low
stress levels. Within accuracy limits imposed by use of corrected crosshead
displacement, initial stiffness appears to be essentially independent of
temperature in the range studied.

The compressive failure mode was observed to be of the classical shear type
(Figure 77). Compressive stresses and strains at failure are plotted in Figure
78 . Because compressive tests were not conducted at 1094°C (2000°F), the
occurrence of a strength peak, such as that seen at this temperature in
tensile loading, could not be verified.
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corrected crosshead displacement.

Figure 77 Typical Compressive Failure Mode
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3.1.3.3.1.2 Creep Behavior

The creep test results are listed in Tables XXVII and XXVIII for compression
and tension, respectively. A1l strain-time curves for these tests are
presented in Appendix E. As shown in Table XXVII, uniaxial compression-creep
tests were conducted for two stress levels at 982°C (1800°F) and 1204°C
(2200°F), on a total of seven specimens.

Compression-creep tests showed a strong creep response at 982°C (1800°F) and
1204°C (2200°F) for low and high stress levels. At 982°C (1800°F) a larger
amount of compressive straining occurred in the higher stress Jevel test.

Compression-creep tests conducted at 1204°C (2200°F) showed a significant
increase in creep response as compared with the 982°C (1800°F) test results.
In both the low stress and high stress level tests at 1204°C (2200°F), the
initial creep rates are very high, but in the lower stress level tests, the
creep rates diminish significantly with time. However, the high stress level
tests at 1204°C (2200°F) reach very large compressive strain values very
quickly.
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Uniaxial tension-creep tests were conducted for high stress levels (a80% uts)
at 538°C (1000°F), 982°C (1800°F) and 1204°C (2200°F) on a total of four
specimens.

No tension-creep response was seen at 538°C (1000°F) after testing for over
two hours. However, test data at 982°C (1800°F) and 1204°C (2200°F) revealed a
significant tensile-creep response.

Minimum creep rates were estimated graphically for a significant portion of
the compression-creep and tensile-creep data. The minimum compression creep
rate values were much higher than those calculated for tension and were seen
to be strongly dependent on stress level and temperature. At 982°C (1800°F),
minimum creep rates for compression at the lower stress level were on the
order of 2.5 X 10”*hr~' and at higher stress levels were greater than
107%hr~'. Tensile minimum Creep rate values averaged =7 X 10 Shr-'

at 982°C (1800°F).

At 1204°C (2200°F), minimum creep rate values for compression approached

2 X 107%hr™" at low stress levels. At higher stress levels, it appears as
though only primary creep occurred and creep rates were =~§ X 107 "hr ™!

for compression and 1x107*hr~' for tension. Minimum creep rates are

plotted verses stress in Figure 79; Figure 80 shows the Creep rate-temperature
dependence.
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Figure 79 Stress Versus Creep Rate
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3.1.3.3.1.3 Fatigue Behavior

Fatigue test results are listed in Table XXIX and plotted in S_N form in Figure
81. As shown in the table, five specimens were cycled directly to failure:
three at 538°C (1000°F) and two at 871°C (1600°F). Three additional specimens
were failed in monotonic loading to compare tensile strength as measured in

the wafer test with previous uniaxial results and to provide a "one quarter
cycle" data point. One of these specimens was exposed to 20,000 cycles at an
intermediate stress prior to uploading to failure at 538°C (1000°F).

Comparison of the "quarter cycle" strength values with those plotted in Figure
75 indicates reasonably good agreement between the two test methods, despite
the highly biaxial stress state in the wafer specimen. This observation adds a
significant level of confidence to the fatigue test results plotted in Figure
81.
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together)

The data plotted in Figure 81 show an apparently real fatigue response in the
strain tolerant cerami , but with a stress dependence substantially different
from that observed in metals. Whereas metallic materials typically exhibit
sltopes ranging from ~-1.5§ with reversed plasticity to ~-8 in the fully
elastic range, the data in Figure 81 appears to have a slope on the order of
-50. Specific degradation and failure mechanisms responsible for this very
stress sensitive fatigue behavior are not presently understood.

A very surprising result was obtained on a specimen which was incrementally
uploaded at 871°C (1600°F). As seen in Table XXIX, this specimen (0-2-CP-25-2)
was uploaded five times, with 10,000 run-out cycles being applied after the
fifth upload to the quarter cycle failure stress. This apparent "coaxing"
behavior is not understood.

3.1.3.3.1.4 Fracture Toughness

Results of four fracture toughness tests at 538°C (1000°F) and 871°C (1600°F)
aré presented in Table XXX. While plane strain conditions were not fully
satisfied in these tests, the values presented are believed to provide some
indication of the inherent toughness of the strain tolerant ceramic and would
probably serve as upper Timit values. Inspection of the data indicates that
the toughness is on the order of 0.55 MPa (0.50 ksiv/n) in the temperature
range investigated. It should be noted that this toughness was measured with
the plane and direction of propagation of the crack perpendicular to the
ceramic splat structure; it is expected that toughness in the plane of the
splat structure, where predominant failure cracks are located in the cyclic
thermal exposure specimen, would be lower than the value measured in these
tests.
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3.1.4 Task IC - Predominant Mode Determinations

Based on the information generated in Tasks 1A and 1B, the relative importance
of the thermomechanical and thermochemical failure modes were determined. An
empirically based correlative 1ife prediction model was developed to independ-
ently predict life for the predominant failure modes. Three predominant
failure mode verification tests were conducted to determine the applicability
and limits of the preliminary 1ife prediction model .

3.1.4.1 Task IC. 1 Develop Prel iminary Life Prediction System

The objective of this subtask was to develop a preliminary therma!l barrier
coating 1ife prediction system based on coating life test results generated in
Task IB. These results identified two important modes of coating degradation.
The first of these is mechanical and is assumed to involve an accumulation of
fatiqgue damage resulting from thermally induced cyclic strains. The second
degradation mode involves prolonged thermal exposure and appears, Of the basis
of phenomenological evidence, to involve oxidative degradation of the metal
coating system component. The approach Hescribed below to accomplish the
objective of this cubtask was developed at Southwest Research Institute under
the direction of br T. A. Cruse.

Following the approach of Miller (Ref. 18), an existing fatique life
correlation model was selected as the basis for the thermal barrier coating
1ife model. The specific analytical form used is based on a Manson-Coffin type
relationship, where the number of inelastic strain cycles to failure (N¢) s
linearly related to applied inelastic ctrain range (AE€,) raised to a power
(b):

N = A (AE))®

where A is a constant of proportionality. The exponent, (b), typically has a
value on the order of -1.5 for metallic materials. The use of inelastic strain
range as a mechanical damage driver in the ceramic coating layer 1is justified
on the basis of substantial inelasticity observed in the previously discussed
mechanical test program.

To facilitate incorporation of an environmental damage driver in the Manson-
Coffin relationship, the proportionality constant is expressed in the form:

1
A =

(AE,)"®

with A€, (the inelastic strain range which causes failure in a single
cycle) being made dependent on accumulated oxide thickness:

A€, - A€, (1 - 8/6) € +AE, (816 °

The constant A€, is failure strain in the absence of oxidation, 6. is a
constant representing the "critical™ oxide thickness which would cause ceramic
spallation failure in a single thermal cycle, and ¢ and d are empirically
determined constants. For the preliminary analysis, these two constants were
set equal to unity. (In one run of the subsequently discussed correlation
program, the coefficients ¢ and d were allowed to vary,; the "optimized" values
of these coefficients did not deviate significantly from the initially
assigned value of unity.)
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To establish values of the constants b,A€, . ang 8¢, the spallation 1ife
data generated in Task IB were correlated with the preliminary model. To
accomplish this, it was necessary to establish analytical relationships

strain range) and physically measurable test parameters such as time(t),
temperature (T), and cycles (N). For the preliminary analysis, oxide scale
thickness was calculated from the classical exponential temperature and
parabolic time relationship:

8= c (Kpt)'~2
where Kp is the parabolic rate constant:

-AH/RT

Kp = A e

Best estimate values of the constants A, ¢, and AH based on prior Pratt &
Whitney and literature data were used for this initial analysis:

A = 0.06760 gm®/cm*-sec
€ = 0.5358 cm*/gm
AH = 66,430 cal/mole

As discussed in a later section, actual oxide accumulation data obtained on
the PWA 264 system at the NASA Lewis Research Center were used for the Task II
improvement on this preliminary model.

The most difficult and complex value to obtain for this analysis is inelastic
strain range for each of the tests conducted in Task IB. To calculate this
value, relatively coarse finite element thermal and stress-strain analyses of
the TBC coated test bar configuration were conducted. The finite element
break-up for this analysis is shown in Figure 82.

Ni-based " Ceramic
I-Dase supera oy NICOC(AIY
o % {
| . . . — e
i ‘ ‘ 1
.051 |.051
0.102 102 102 102 102 __|(.020)(.020)
—(.040)™T(.040) T (.040) (.040) (.040) j
.025(.010)
ALL DIMENSIONS IN CENTIMETERS (INCHES) 013(,008)
025 (0.010) {

Figure 82 Axisymmetric Finite Element Model Breakup of Substrate, Bond Coat,
and Thermal Barrier Coating
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To approximate the non-linear tensile and compressive stress-strain behavior
discussed previously, the ceramic material was modeled as being ideally
inelastic, as illustrated in Figure 83. This material model assumes elastic
pbehavior up to the yield point, followed by inelastic deformation with zero
strain hardening. Because this model was formulated prior to testing which
showed a large difference in tensile and compressive strength, both tensile
and compressive yield strengths were assumed equal to 37.9 MPa (5.5 ksi) and
independent of temperature. Results of the SWRI tension and compression tests,
which show a significant dependence of yield stress on stress state, were
incorporated to refine the model in Task II (as discussed in Section 3.2).

* YIELD

STRENGTH
STRESS | o o oo oo com o

STRAIN ——3—

Figure 83 Ideally Inelastic Behavioral Model Initially Used to Represent
Ceramic Stress-Strain Behavior

Using the assumption of ideal inelasticity, results of the thermal and
stress-strain analyses predict a ceramic hysteresis loop as jllustrated in
Figure 84. Initially the ceramic is assumed to be in slight compression as 3
result of the fabrication process (point 1 in Figure 84). During the initial
portion of the thermal cycle the ceramic heats more rapidly than the
underlying metallic layer; since it is constrained from expanding by the much
stiffer metallic substrate, the ceramic deforms compressively, elastically at
first and then inelastically as thermally imposed strain exceeds the assumed
compressive yield point (Point 2 on Figure 84). As the underlying metal begins
to heat and the substrate temperature begins to “catch-up" with the ceramic
temperature, differential expansion reverses the ceramic deformation and
forces it toward tension, elastically until the tensile yield point is reached
(point 3 to point 4), then inelastically until the entire system equilibrates
at the maximum exposure temperature (point 4 to point 5). Upon initial cool
down, as the ceramic cools (and shrinks) more rapidly than the underlying
metal, additional tensile going inelastic styrain is accumulated in the ceramic
(point 5 to point 6 in Figure 84). As the metal starts to cool and the
transient through—ceramic-thickness gradient decreases, differential
contraction forces the ceramic into compression, elastically at first (point 6
to point 7>, and then inelastically until the entire system approaches
equilibrium at the minimum exposure temperature (point 8), thus completing the
thermal cycle. It should be noted in Figure 84 that at completion of the
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initial thermal cycle the ideally inelastic hysteresis loop does not close.
While multiple cycles were not modeled analytically for this preliminary
analysis, it is assumed that multiple cycling would result in the development
of a stable hysteresis Toop shifted laterally along the strain axis from that
illustrated in Figure 84.

Stress  pqat due to

. . ‘ .
Elaitlzzaaxc7!r58)|0n therme_ll expansion Aec due to
Vie ys'5I N 1 mismatch ~— initial cooling flux
- Yield 4 5 6
55Ksi M _ -— e e
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initial heating flux Elastic + inelastic
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Figure 84 Conceptual Model of Thermally Driven Ceramic Stress-Strain Cycle

Under Initial Elastic/Perfect Plas

The total inelastic strain range for the

tic Model

hysteresis loop illustrated in Figure

84 may be analytically expressed as follows:

A€, - A(aAT) + A€,

where A€, is the inelastic strain resul
AE. is that resulting from the cooling
that, depending on the severity of the transients, the total

+ A€ - 2(g, s /D)

ting from the heating transient and
transient. It is important to note
inelastic strain

range can be larger than the nominal A(a AT) driving force.

To establish values of the constan

model, Tife data from the Task IB

ts b, A€¢,, and 6. in the preliminary
cyclic burner rig tests were correlated with

values of A€, and § calculated for each set of test conditions. The
approach to computation involved computerized linear summation of fractional

mechanical and oxidative damage accumulated in successive "blocks"
Results of this correlation are shown in Fi
together with best fit values of the three constants.

at specific conditions.

correlation coefficient, 0.9, the

considered quite good for this initi

of exposure
gure 85
Based on a computed

tal data must be

It is reassuring to note that

fit of the experimen

al model.

the best-fit critical oxide thickness and oxide-free failure strain constants

have physically reasonable values

, on the order of 0.01 mm (0.0003 in.) and 1%

strain, respectively. It is of interest to note that the slope of the

correlation (b) is extremely high

mentioned previously. This observat
discussed isothermal fatigue slope,

50 (Figure 81).

when compared to typical metal values
ion is consistent with the previously
which was estimated to be on the order of
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Figure 85 Preliminary Life Model Correlation

3.1.4.2 Task IC.2 Verification Tests

The objective of this subtask was to experimentally verify the preliminary
life prediction model described in the previous section. The approach to
verification testing involved cyclic burner rig testing as conducted in Task
I8, modified as described below to more closely simulate engine operation
conditions. Three tests were conducted at three sets of exposure conditions
which were different from one another and from the conditions used to
establish the correlation in Task IB.

The test method used for life model verification involved clean fuel, cyclic
burner rig testing with a single, internally cooled hollow specimen. This
specimen permitted exposure of the ceramic with a steady state
through-thickness gradient to more closely simulate engine exposure of the
coating, and also allowed more precise instrumentation and control of the
thermal environment. As shown in Figure 86, the hollow verification test
specimen is twice the diameter of the previously utilized specimen and rotates
about its own axis to assure circumferential temperature uniformity. These
substantial changes from the Task IB experimental condition assured that the
preliminary model was effectively challenged by the verification testing.
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Figure 86 Single Rotating, Internally-Cooled Tube Test Specimen Geometry

Specific test conditions and results of the verification tests are presented
in Table XXXI: comparisons between observed and predicted cyclic life are made
graphically in Figure 87. It is clear from this plot that the model predicts
the uncooled test result more accurately than the two cooled test results.
Prediction of the uncooled test indicates that the radial stress mode]
accurately accounts for changes associated with the change in specimen radius
from 0.35 mm to 12.7 mm. Also, the relatively accurate prediction for the
uncooled verification test indicates that for tests emphasizing cyclic strain
damage, the fatigue based mode] is a good functional form for life prediction.

1) the model is inadequate to account for the complex stress distribution
which would result from the through-thickness AT, and 2) the inaccuracy of

readings taken in Task I. Both of the above mentioned sources of error were
addressed in Task II. Consistent with the purpose of this Task, the mode] was
upgraded and much better instrumentation was used for Task II testing.

It is of interest to examine damage predictions versus number of cycles for
the three verification tests. Figure 88 indicates that for the verification
test conditions, the model predicts very little mechanical damage early in

life, with damage accumulating rapidly for the last few hundred cycles. This

should be noted that on Figure 88, the inflections in the two uncooled
verification test curves have no physical meaning but are merely a result of
how temperature data blocks were sequenced and inputted. A plot of the
predicted oxide thickness ratio versus number of cycles, shown in Figure 89,
indicates that the uncooled test is accumulating oxide damage at a greater

rate than the two cooled tests, presumably because of the higher interface
temperature.
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Failure modes were examined for comparison with those observed on the smaller,
solid bar specimens and on engine parts. All three specimens exhibited
typical, near interface spallation. The crack morphology was, in general,
similar except in one case, described below where more fine cracks are seen.
Specific metallographic observations are described in the succeeding
paragraphs, and the post-test microstructures are presented in Figures 90
through 92.

Figures 90a and 90b show the post-test specimen and microstructure after
105.87 test hours/524 cycles. This specimen was tested in the burner rig ysing
a 12-minute cycle with internal cooling. The specimen exhibited ceramic
spallation completely around the bar in the hot zone. The specimen micro-
structure shown in Figure 90b is of the upper portion of the hot zone on the
test bar, including an area where the ceramic had not been spalled. Two types
of near interface cracks are observed in the area where the ceramic remains
adherent. There are some very large cracks which do not appear to be directly
associated with the bond coat oxide but which do appear to follow the general
bond coat topology. The other type of crack is directly associated with the
bond coat oxide. These are finer, smaller cracks which are either extending
from the oxidized bond coat asperity or are within the bond coat oxide layer
itself. These cracks do not appear to directly result in ceramic spallation
because they are still present in the area where spalling has occurred.

Another interesting observation in Figure 90b is that there is a very large
crack 0.0762-0.1016 mm (0.003-0.004 in.) down from the ceramic surface. This
crack may well be consequential damage i.e., a crack started by the large chip
spalling off.

Figures 91a and 91b show the post-test specimen for the second verification
test and its microstructure. This specimen had accumulated 88.37 hours of test
time/884 cycles. The burner rig cycle was 6 minutes, and the specimen was
internally cooled. The microstructure of the specimen shows less "subcritical”
cracking than the 12-minute cycle, internally cooled test specimen. White it
survived less time at the peak temperature than the latter specimen, it did
accumulate a greater number of cycles. The microstructure shows some oxidized
islands of NiCoCrAlY at the interface that are not apparent in the other
internally cooled specimen, but these areas do not appear to be associated
with any major cracks.

Figures 92a and 92b show the post-test specimen and microstructure of the
uncooled test specimen after 138 test hours/686 cycles. A 12-minute burner rig
cycle was used. This specimen spalled in two areas in the hot zone of the bar
approximately 90° apart. In the area where ceramic is still adherent, the
microstructure shows a large number of subcritical cracks such that if exposed
for a longer period of time, ceramic spalling may have occurred 360° around
the bar. These cracks appear to follow the bond coat topology. In the spalled
area the bond coat topology does not seem to be as complex as in the area
where the ceramic is still adherent. Perhaps localized changes in the bond
coat geometry caused the ceramic to spall in that particular area first.
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3.2 Task IT - MajO[VMQQg#LLfg_E[ggigﬁion Model

The objective of this task was refinement of the preliminary 1ife prediction
model developed in Task I. The approach involved refinement of both the
analytical and the experimental approaches utilized to develop the preliminary
model. Analytical enhancements involved better modeling of the ceramic
constitutive and time dependent mechanical behavior, as well as refinement of
the finite element calculation of temperature and stress-strain distribution.
Improvements to the experimental approach involved improved simulation of
engine exposure conditions and expansion of the parameter envelope to cover a
broader range of mechanical and oxidation forcing functions. The improved test
method involved well-characterized testing of the single internally cooled
specimen used for Task IC verification testing.

3.2.1 Task IIA - Experimental Design

The objective of Task IIA was to design experiments to obtain data for the
major mode life prediction model. Selection of the test program parameters was
based on results obtained in Task I testing. The test parameters were varied
as appropriate for the failure mode(s) being modeled to cover the range of
parameters anticipated in thermal barrier coated turbine components.

The Task II, twenty-test matrix is shown in Table XXXII. These tests were
designed to cover the widest possiblie range of damage. The damage range
includes that induced by bond coat oxide growth as well as by mechanical
strain. The critical oxide thickness and cycle strain ratio, as calculated by
the model, are shown in Table XXXII for each test. Using the planned test
parameters as input into the model, 1ife predictions (cycles/hours) were also
made for each test as designated. Shown in Figure 93 are the relative
mechanical and oxidation damage fractions calculated for each of these twenty
tests. Tests 1 through 6 minimize mechanical damage and emphasize oxidation
damage by reducing the cycle temperature range. Tests 7 through 12 emphasize
mechanical damage while minimizing oxide growth by minimizing exposure to the
maximum cycle temperature. Tests 13 through 18 are mixed mode tests designed
to improve capability of the model to handle interactive effects. Tests 19 and
20 duplicate test 7 and 8 conditions using a smaller specimen diameter,

21.34 mm (0.84 in.) versus 26 4 mm (1.0 in.)) to assess the effect of
component geometry on life.

The experiments were designed to minimize the temperature gradient along the
length of the tube by enclosing the test specimen in a metal box. The
enclosure has a port on one side for the burner and another port on the
opposite side for the gas to exit. This enclosure has the effect of
“flattening" the burner gas temperature profile and reducing radiant heat 1oss$
of the specimen to the syrrounding room.

To obtain accurate thermal histories for each test, all Task II specimens were
instrumented with a single axially routed thermocouple located 3.18mm (.125")

below the bond coat substrate interface. Thermocouple output was continuously

monitored via radio telemetry using a computerized data acquisition system.

Prior to conducting the Task II test program, a moOre elaborately instrumented
specimen was fabricated and tested to characterize the variation of
temperature with time at various locations in the specimen. This information
was used together with thermal conductivities obtained in Task I to calculate
the external and internal heat transfer coefficients and to measure the
transient temperature response of the specimen. This information also
permitted characterization of the axial temperature gradient.

140



TABLE XXXII
TASK II PLANNED TEST MATRIX

Interface Temp

Max Min Cycle Purpose of Test
Test Emphasis °C °F °C °F Time (Min) is to Establish
1 Oxide 1107 2025 427 800 6
2 6
3 12
4 12 Critical Oxide Thickness
5 24
6 \ 24
7 Strain 1121 2050 21 70 6
8 1121 2050
9 1149 2100 Static Failure Strain
10 1149 2100
11 1177 2150
12 1177 2150 \
13 Mixed 1079 1975 57 135 6
14 Mode 6
15 12
16 12 Rate of Oxide Growth
17 1107 2025 6
18 1107 2025 12
19 10.67mm 1121 2050 21 70 6
(0.42") I Direct Effect of
Radius ’ )
20 10.67mm 1121 2050 21 70 6 Radial Stress
(0.42")
Radius
gagﬁ;ss MIXED MODE STRAIN EMPHASIS
- TESTS  TESTS TESTS 7-
TESE T=8 33176 17213 TESTS 19320
] |
3 | | 5] i
65 9-10
TESTS
B A =12
10 A4
0]
w
)
8168
c
o
A
o~
o
a
] O
o
8.0 0.1 e.2 9.3 0.4 9.5 0.6 0.7 e.8 8.9 1.8@
6: = .000327 (Crittcal Oxide Thickness)
An:1 / ac fo A:fo = 01222 (Static Faflure Strain)
Figure 93 Task II Predictions: Oxide Thickness Ratio at Failure Versus

Strain Ratio
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As shown in Figure 94, the instrumented specimen had nine axially routed metal
sheathed thermocouples: four on the inner diameter (I.D.), and five on the
substrate outer diameter (0.D.), just below the substrate-bond coat interface.
To assure accurate metal temperature measurement on the I.D., the specimen was
split axially and the I.D. thermocouples were buried just below the metal
surface. After I.D. thermocouple installation, the specimen was electron beam
re—welded. O0.D. thermocouples were similarly buried and oversprayed with bond
coat and ceramic.

CUTTING LINE Figure 83

l—— TYPICAL LOCATIONS

Pr— Sy *R = REFERENCE
— THERMOCOUPLE

—D

—— =}

Figure 94 2.54 cm (One-Inch) Diameter Instrumented Specimen Design

The measured axial temperature gradient in the hot zone of the specimen is
very small{ ¢5.5°C (<10°F)). This is due to the test conditions which flatten
the gas temperature profile. Also, this reduces the uncertainty in monitoring
the test conditions due to the location of the reference thermocouple present
in all test specimens.

Results of instrumented testing indicate an external gas heat transfer
coefficient in the range of 80 to 90 BTU/ft’*-hr°F. This value was

established by putting the instrumented specimen into the burner gas path
without internal cooling. A finite element, transient heat transfer analysis
was then conducted to select the external gas heat transfer coefficient that
produced the best match between calculated and observed transient metal
temperature response. The match produced, using this procedure, is shown in
Figure 95. Shown in Figure 96 is a comparison of the measured temperature
gradient through the metal wall during heat-up with the predicted values from
the finite element analysis. Also seen in this figure is the maximum
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A TMETAL (EXTERNAL-INTERNAL) °F
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Figure 95 Transient External Meta] Temperature
of the TBC Coated Specimen
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Figure 96 Transient Meta] Temperature Response During Initial Heat-up
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Figure 97 Transient TBC Temperature Response During Initial Heat-up

During steady-state conditions using internal cooling air, the temperature
gradient through the metal wall of the specimen was measured at 33°C (60°F).
This corresponds to an estimated internal cooling heat transfer coefficient of
25 to 28 BTU/ft2-hr°F. This is much smaller than the 78°C (140°F)

temperature gradient assumed in the previous 1ife prediction for Task IC.2.

3.2.2 Task IIB - Eggeriments/Ana]ysis and Model Development

The objective of Task IIB was to conduct experiments designed in Task I1IA to
obtain data for major mode life prediction model development. The Task II
experiments presented in Table XXXII established a data base for correlating a
major mode life prediction model. The modeling effort was based on refinement
of Task I preliminary analysis. Refinements focused on thermal strain and
oxidation effects as well as other time-at-temperature dependent effects such
as creep. The stress analysis was upgraded by including all mechanical
property test results, including inelastic behavior, in the finite element
analysis for the ceramic.
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3.2.2.1 Cyclic Thermal Exposure Test Results and Microstructural Analysis

Results of the twenty Task IIA tests are presented in Table XXXIII. Because of
the variability of the burner rig optical temperature measurement and control
system, most of the Task II experiments did not run precisely at the planned
temperatures. The average maximum and minimum cycle temperature recorded from
the thermocouple installed in each specimen is shown in Table XXIII. These
actual temperatures were used in the subsequently described life modeling
analysis.

Figures 98-117 show the post-test microstructures for each specimen. The
photomicrographs shown were taken in an effort to focus on bond coat oxide
development. Bond coat oxide thicknesses, representing averages of 18
measurements made in groups of three at 6 intervals around the circumference
of each specimen, are presented in Table XXXIII. Figures 98 through 103 and
103 through 108 show the post-test, hot zone, cross-sectional microstructures
for the oxide emphasis and the strain emphasis tests respectively. Although
the failure mode for all oxide and strain emphasis conditions was the same,
there are clearly some very distinct features found relative to the two groups
in the microstructures. The oxide emphasis group shows much greater bond coat
oxide development as compared with the strain emphasis test; oxide thickness
for the oxide emphasis group tests was on the order of 0.00635mm (0.00025"),
whereas the oxide thickness for the strain emphasis group tests was less than
0.00254mm (0.0001"). Correspondingly significant differences between the two
groups are seen in the bond coat microstructure in terms of Beta phase (NiAl)
depletion. In addition, in-plane ceramic cracking appears to be more closely
related to bond coat oxide growth in the oxide emphasis group tests than in
the strain emphasis group tests.

Figures 110 through 117 show the post-test, hot zone, cross-sectional
microstructures for the mixed mode group and small radius group tests
respectively. The mixed mode group test microstructures (Figures 110-115) show
bond coat oxide development to be on the order of 0.00508mm (0.0002"). In this
respect they are more closely related to the oxide emphasis group micro-
structures. The small radius group tests (Figures 116, 117) show oxide
thickness similar to that for the strain emphasis tests; this result is not
unexpected since the test conditions were designed to emphasize strain. The
small radius group tests exhibited test lives on the order of the
corresponding one-inch diameter, strain emphasis tests (numbers 7 and 8)
1121°C Tmax (2050°F Tmax), even though the radial stress was increased by ~15%
as a result of the radius change. This result suggests that radial stress is
not a first order driver on ceramic spalling life.
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3.2.2.2 Advanced Life Prediction Model Development

Constitutive Property Model Analysis

In the advanced life prediction model developed under this task, the
prediction of the ceramic inelastic strain range (A€,) (eq. 4, section
3.1.4.1) has been improved. Analytical enhancements involved more accurate
modeling of the TBC's ceramic outer layer constitutive and time dependent
behavior including: non-linear stress—strain characteristics, asymmetric
tensile and compressive response, and time dependent inelastic deformation.
This was accomplished by using a time dependent one-dimensional constitutive
model developed by Walker (Ref. 40). The Walker mode] considers all non-linear
behavior as time dependent inelasticity such that no distinction between
plastic and creep deformation is made. The governing equation for inelastic
strain is given by:

n
g_%
€ inelastic = (/ ) QP
K

where n is a constant, Q is the back stress, and K is the instantaneous drag
stress. The back stress term is a quantity which physically corresponds to the
asymptotic stress state under relaxation conditions. Qualitatively, the
evolutionary expression for back stress is a sum of opposing hardening and
thermal and dynamic recovery components which can be characterized as:

3=f(g, € T,t) —f(g,fg T,t) (2)
in, ~in, in,

Hardening Recovery

The one-dimensional form of the Walker model was used to regress tensile,
compression and creep data to obtain the equation constants. Some
modifications to the constitutive relationships were required to match the
TBC's mechanical behavior. These modifications are noted below:

ét =ée +éln (3)
. g - Q\n
€. =< ) (4)
k
Q= (n s npE,, 48, 2T 6 - @fi-n.€, (G - — 3N §6) (
1 2 in in 89 1 in nz —8—6- 9 5)
C = (n3 + ng exp (-ns R)) R + neg Q"' (6)
R=1¢%,,| (7
K=k, - K, ATAN (o./n,) (8)
Ue = E(Et‘ -Eing —Aeini XAt|¢1/At1) (9)
i+
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Q|+1 =Q| +d9 (]O)

Eirh,,] Ein\ + dS.,.. (]‘)

€t,,, =€t, v+ dey, (12)

g, =E (€ - € ) (13
tiaa iny.s

total mechanical strain
elastic strain
inelastic strain

stress

back stress

drag stress

Elastic Modules

time

[ LTI O I A

Ny, Nz, Na, Na, Ns, Ne, N7, Ky, K,,Q, m, n, E depend on temperature.

The drag stress (K) was modified to reflect the asymmetry between tension and
compression. The value of "K" alternates between (K, + K; * T/2) in
compression and (K, - K m/2) in tension as shown in Figure 117A. An
estimated value of stress (o) is used to determine what value of K is used
during a specific time increment.

A

4 (K1 + K2 *7/2)

DRAG STRESS

(K1 - K2 *m/2)

P
TENSION STRESS

COMPRESSION

!

Figure 117A Drag Stress (K) in Thermal Barrier Coating Walker Model
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The constitutive model for the TBC appears to reasonably reflect the most
important features of the mechanical behavior of the insulating ceramic layer,
i.e., asymmetric tensile and compressive stress/strain response, non-linear
stress-strain response in tension and compression, and creep behavior. The
coefficients to the constitutive model were selected to reflect the most
important characteristics of the material at each temperature. These
coefficients were regressed using a computer code developed by D. Nissely
under the NASA (HOST) Contract; "Life Prediction and Constitutive Models for
Hot Section Anisotropic Materials Program, NAS3-23939."

At high temperatures the TBC is in tension because the metal it is adhered to
has a higher thermal expansion; therefore, at high temperatures the tensile
behavior was matched. At lower temperatures the compressive uniaxial and creep
data was matched. Figures 118 through 123 show the Walker model predictions
for ceramic mechanical behavior in tension, compression, and creep. These
plots show that the modified Walker model is simulating the uniaxial data
relatively well. While the secondary creep rate is also simulated relatively
well, the actual level of creep tends to be overpredicted.

4 28

= -
24 -
2} /

20 F

STRESS KSI
~
I
STRESS MPA
a
1

6 02 o4 06 08 10 12 14 18 . 20
STRAN 10

@ DATA
(O wALKER

Figure 118 Comparison of Uniaxial Tensile Data (Room Temperature) and Modified
Walker Model Predictions
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Figure 120 Comparison of Uniaxial Tensile Data and Compressive Data 538°C
(1000°F) and Modified Walker Model Predictions
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Figure 123 Comparison of Uniaxial Tensile-Creep Data 982°C (1800°F) and
Modified Walker Model Prediction

To obtain thermal displacements for thermal stress—-strain analysis, heat
transfer analyses were completed for all the Task II experiments. An average
cycle temperature was established for each test based on the average of the
monitored thermocouple minimum and maximum cycle temperatures. An elastic
finite element stress analyses then was made for each test using the thermal
boundary condition computed from the heat transfer analysis. The mechanical
strain of the specimen metal 0.D. surface is the applied boundary condition to
the TBC constitutive model. The TBC stress is then calculated based on the TBC
constitutive relationships. The maximum width of the resulting stress/strain
hysteresis loop is AE,, which is used to correlate the 1ife prediction model.

A typical hysteresis loop calculated for a "strain emphasis" type burner rig
cycle is shown in Figure 124. It should be noted that the predicted hysteresis
loop includes extended tensile ductility i.e., it allows for inelastic
straining past the bulk material property tensile failure strain (=0.3%). The
physical hypothesis put forth for this phenomenon is that a thin coating
having excellent adherence to the underlying substrate is able to accommodate
greater inelastic straining than a bulk specimen which fails from the first
crack. This is manifested in the microstructure as segmentation type,
micro/macro, cracks.

In the mature, thermally driven ceramic stress-strain cycle, the ceramic is in
compression at point 1. When the ceramic layer begins to heat up initially,
and the metal substrate is still cold, the TBC is driven further into
compression non-linearly (points 1-2). As the metal substrate also begins to
heat up the ceramic layer is driven into tension linearly, initially, and then
non-linearly when the ceramic layer is in an actual tensile state. When the
TBC reaches the steady state maximum cycle temperature, point 3, a certain
amount of linear stress relaxation occurs, the amount of which depends on how
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long the TBC remains at the maximum temperature (points 3-4). When the ceramic
is initially cooled, while the metal substrate is still hot, additional
non-linear tensile straining occurs due to the initial external cooling flux,
(points 4-5). Upon cool down, when the metal subsystem begins to cool, the
ceramic layer is driven back into compression, initially linearly. At higher
stress levels in compression the unloading becomes nonlinear. At still lower
temperatures some stress relaxation or stress recovery is dictated by the
model as the ceramic returns to point 1.

STRESS (3) _ STEADY STATE HEATING

|

INITIATE
EXTERNAL
COOLING

STRAIN ——=

INITIATE
HEATING

@

Figure 124 One-dimensional Walker Model Prediction of Stress-Strain Cycle for
Burner Rig Experiment At Cracking Location Just Above Interface In
Ceramic

The model predicts a very open loop with a quite large reversed plastic strain
range to drive ceramic fatigue damage. Predictions for all of the experimental
burner rig cycles were made with this model for correlation of the improved
life prediction system.

Figures 125 through 127 show the predicted stress-strain hysteresis loops for
representative oxide emphasis, strain emphasis and mixed mode group tests
respectively. Figures 126 and 127 show that, for the strain emphasis and mixed
mode tests, the hysteresis loop "ratchets" to a stable cycle after a
relatively small number of cycles. The oxide emphasis, stress-strain
hysteresis loop requires a larger number of cycles before it becomes stable.
This is because this type of test allows the specimen to cool only to 427°C
(800°F) instead of 38°C (100°F); thus, very little cooling time is
accumulated, resulting in less stress-relaxation per cycle. In comparison the
strain-emphasis type test requires much more cooling, so that the specimen
returns almost to ambient temperature, thus resulting in greater stress-
relaxation and the loop stabilizes after 4-5 cycles.
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Figure 127 Predicted Stress-Strain Hysteresis Loop for Mixed Mode Test #16

Oxidation Model Development

To improve the bond coat oxide growth rate model developed in Task I of this
phase, oxidation experiments were conducted using the program's Substrate-TBC
System, at the NASA Lewis Research Center. Dr. Robert Miller used his data to
develop a more accurate oxidation fit for the improved life prediction system.
Oxidation data from furnace experiments was obtained at two temperatures:
1100°C (2012°F) and 1200°C (2192°F). From this experimental data a new oxide
growth rate expression was developed based on the average of the two tests.
The oxide thickness expression is shown below:

w 0.2952
— =]2.057 x 10'% e~ ¢-32771/T> t] (14)
A
where: W = weight to change in mg
A = area in cm®
t = time in hours
T = temperature °K

An oxide thickness expression may be obtained using the weight gain data if it
is assumed that only Al1,0, growth occurs:

W
— - 0p AX (15)
A A]203 AIZOJ
where ® = average weight fraction of oxygen in Al1,0; scale
P A1,0, = density of A1,0, scale
AX A1,0, = thickness of Al,0, scale
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The oxide thickness expression obtained based on the NASA furnace data is:

AXpy o, = 5-35 x 107[2.057 x 10"% ec-=271 1 Dy ]2 EEE (16

Using this oxide growth rate expression, bond coat oxide thickness at failure
was predicted for each of the Task II single-specimen tests. As shown in
Figure 128, the predicted oxide thickness is ~2X greater than measured.

NOTE: NUMBERS IN SYMBOLS REFER TO TASK I TESTS (TABLE XXXI)

4~

3 ® G @
§oy @ © ©

- @
b @)

OXIDE THICKNESS CALCULATED/MEASURED

0 2 1 2 1 1 ) L1 2 O | 1 2
1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470
INTERFACE TEMPERATURE, °K
L ] L L [ i ] 1 1 1 | I |
2420 2440 2460 2480 2500 2520 2540 2560 2580 2600 2620 2640

INTERFACE TEMPERATURE, °R

Figure 128 Calculated vs Measured Oxidation Thickness for Burner Rig Specimens

To improve the correspondence between calculated and measured oxide thickness
values, the measured thickness values were empirically curve-fit using the
Miller value for activation energy and allowing the exponent and
pre-exponential constants to vary.

While the current oxide thickness correlation better represents the measured
data, appreciable scatter is still evident. The type of cycle affects the
prediction of oxide thickness as depicted in Figure 129. This discrepancy will
be addressed in Phase II, Task VI; Empirical Oxidation Model. Results of this
correlation are shown in Figure 129. The resulting oxide thickness expression
used in the subsequent life correlation is:

6= 1.20 x 107 (5.714 x 10"' g '°%8387FTt)2 * an
R=1.987, 6= (CM)

T=(CK

t = (SEC).
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A OXIDE EMPHASIS

5=1.20X10-%4(5.714 X 1011 ¢~ 104856/RTy) 0.5

4 A STRAINEMPHASIS R = 1.987,6 = (CM)
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3 p—
OXIDE THICKNESS
CALCULATED A A A
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Figure 129 Oxide Thickness Ratio Used in Life Correlation

Advanced Model Correlation

Task II modeling employed the functional form developed in Task I which is
reproduced below:

N = (Ag, /Ag,)°® (18)
AE; =€, (1-6/6¢c) + A€ (6/6¢C) 19)
A€, = total inelastic strain of the ceramic determined by the maximum

width of the stress-strain hysteresis loop (see Figure 129A).

& = A(Ce "AM/RT tyn (20)

Where:

Number of Cycles to Failure
failure strain range
inelastic strain range
static failure strain = 0.004
oxide thickness

critical oxide thickness
Temperature

time

activation energy

gas constant

= constant

L T | I TR |
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Figure 129A Predicted Stress Strain Hysteresis Loop Using Walker Model
(section 3.2.2.2)

Results of the twenty Task II tests were fit to this equation using the values
for A, C, AH, and n discussed in the last section (Figure 129). The strain
range exponent (b) was derived by recorrelating the Task I data with the
preliminary 1ife model (section 3.1.4.1) with the oxide thickness equation
based on the NASA data (equation 1b, section 3.2.2.2). Best fit values of the
critical oxide thickness (8c) and static failure strain (AEf_) are shown in
Figure 130 together with the correlation achieved with these constants.
Specific values of predicted life are listed in Table XXXIII. A computer code
was developed under this NASA contract to make these life predictions. The
computer code along with a Users Manual is shown in Appendix E. With the
exception of test 16, which was a maverick in all correlation attempts, the
model provides predictions which are within +3x of observed 1ife for the
remaining test specimens.

While no specific goal was established regarding accuracy of prediction
capability for this program, it generally is accepted that, to be useful as a
design tool, a turbine design life prediction system should predict life
within a factor of +2 for life critical components. Because the subject
coating (PWA 264) currently is being used for life extension rather than as an
integral element of component structural design, the factor of +3 is judged
adequate for purposes of Phase I of this program. A primary goal of Phase II
will be to improve this capability to +2 on life for "life critical” applica-
tion of an improved TBC. This will be a challenging goal; prediction with +2X
generally is considered a "good fit" for a single failure mode (such as
fatigue or creep). In situations such as TBC failure, where two separate but
interactive degradation modes are involved, +2 fit will indeed be a challenge.
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To assess sources of inaccuracy in the Task II prediction system, the data
were re-correlated using metallographically measured rather than calculated
oxide thickness values. Results of this correlation, shown in Figure 131,
indicate only a modest improvement in prediction accuracy, from +3X to +2.6X
on life. This observation suggests that the primary source of error in the
prediction system is in the mechanical rather than the environmental part of
the interactive model.

Another approach employed to seek sources of error was to look at the degree
of correlation of life with each of the primary degradation drivers. Figure
132 shows a correlation of cyclic life with plastic strain range and in Figure
133 is shown a correlation of estimated time at maximum temperature with
maximum cycle temperature. Examination of these two figures shows cyclic life
to correlate with strain range much better than temporal life correlates with
temperature (+4.3X scatter for A€, vs +70X scatter for temperature),
suggesting that mechanical fatigue may be the predominant driver with
environmental degradation playing a secondary role. This observation is
consistent with the fatique driver being the primary source of scatter in the
interactive model predictions.
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3.3 Task IIT - Model Verification

The objective of this task was to experimentally challenge and verify the life
prediction model developed in Task II. The approach involved Task II type
cyclic burner rig testing using parameters that were different from those
employed in Task II as well as testing in a higher heat flux quartz lamp rig.
The basis of verification involved comparison between experimental results and
predictions of the Task II model.

3.3.1 Task IIIA - Experimental Design

The objective of Task IIIA was to design a set of four experiments that would
test the validity of the model developed in Task I and refined in Task II.
Test parameters were selected as appropriate to simulate the failure mode of
interest.

The basic test matrix designed for Task III involved four verification
experiments (Table XXXIV). This plan included: (1) a baseline strain emphasis
type test (2) an oxide emphasis test and (3) and (4) two mixed strain emphasis
cycle tests in which two different strain cycles were imposed in an alternate
sequence to determine if the linear damage accumulation form of the model is
appropriate.
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TABLE XXXIV
PLANNED CONDITIONS FOR TASK III EXPERIMENTS
MODEL VERIFICATION TESTS

Maximum Cycle Minimum Cycle

Temperature Temperature Ti Ti ALiT] TglT 1
Test Emphasis Interface Interface Tmax Tmax Imin Imin __Comments
1 Baseline - 1149°C 2100°F 38°C 100°F 1.5 min 0 4.5 min 6.0 min No Internal Cooling
Strain
Emphasis

2 Oxide Emphasis 1149°C 2100°F 427°C 800°F 1.5 min 6 min 0.5 min 8.0 min Internal Cooling Required

3 Mixed Strain
Cycle
Type I Cycle 1093°C 2000°F 38°C 100°F 1.5 min O min 4.5 min 6.0 min Type I 1500 cycles
Type II Cycle 1149°C 2100°F 38°C 100°F 1.5 min 0 min 4.5 min 6.0 min Type II - To Failure

4 Mixed Strain
Cycle
Type 1II Cycle 1149°C  2100°F 38°C 100°F 1.5 min 0 min 4.5 min 6.0 min Type II Same Number of
Cycles as in test #3
Type I Cycle 1093°C 2000°F 38°C 100°F 1.5 min 0 min 4.5 min 6.0 min Type I - To Failure

Two additional tests were conducted to nominally reproduce the conditions of
Tests 1 and 2 but with flat specimen geometry and quartz lamp heating. The key
differences between these tests and the burner rig tests were the specimen
radius of curvature and heat flux. Heat flux sensors employed to calibrate the
quartz lamp heaters indicated a capability of 360 KBTU/hr-ft*® at 90% power;
this is on the order of 3 1/2 times the capability of the burner rigs employed
in this program (but still only about 1/3 typical maximum heat flux in the
engine). To improve thermal coupling between the quartz heaters and the
specimen and to avoid edge failures, black nickel oxide paint was applied to
the central area of the flat panel specimen.

3.3.2 Task IIIB - Verification Test Results/Analysis/Recommendations

Results of the six verification tests are included in Table XXXV and are
plotted vs. the Task II model predictions in Figure 134. These results may be
considered to verify the Task Il model will experimental lives being within +
3X of predicted values.

In contrast with the Task II data, where no systematic life deviations were
observed, the model appears to be systematically under-predicting the fatigue
driven failures and over-predicting environmentally driven failures for the
Task III results. Currently, there is no clear evidence as to whether this
apparent systematic deviation is real or is the result of random chance.
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TABLE XXXV
TASK III MODEL VERIFICATION - EXPERIMENTAL AND PROJECTED RESULTS

Average T/C Average T/C

Maximum Cycle Minimum Cycle Hours To Cycles To 10tal pedicted Cycles
Test Emphasis Temperatur Temperatur Failure Failure Cycles _to Failure
1 Baseline 1127°C 2060°F 23°C 73°F 167.7 1513 663
Strain
2 Oxide 1138°C 2081°F 481°C 897°F 52.8 431 1296
3 Mixed:
Type 1 1077°C 1970°F 28°C 83°F 140.4 1310 1975 1380
Type 1I 1154°C 2110°F 27°C 80°F 67.4 665
4 Mixed:
Type I 1137°C 2078°F 29°C 85°F 64.2 602 869 286
Type II 1102°C 2015°F 28°C 83°F 29.7 267
5 Baseline 1149°C 2100°F «<38°C <100°F 57 570 223
Strain

(Quartz Lamp Heater)

6 Ox1ide 1136°C 2077°F 217°C 963°F 91.6 1000 2900
(Quartz Lamp Heater)
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Figure 134 Task II Verification Test Results Predicted Using the Advanced
Model Correlation (section 3.2.2.2)
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Of particular significance in the Task III results is the ability of the model
to predict results of the quartz lamp tests with accuracy comparable to
predictions for the burner rig tests upon which data the model is based. Two
significant differences of the quartz lamp tests are the specimen geometry
(flat vs cylindrical for burner rig) and the heat flux. The significance of
the geometrical difference is its affect on the difference in radial stress
state in the ceramic layer. Whereas the cylindrical geometry is expected to
develop a small radial stress component resulting from differences in
expansion between concentric circular cylinders, the flat specimen, ideally,
should be free of this stress component. Apparently, this difference has
little influence on the ceramic spallation life. The difference of heat flux
results in two differences in thermal conditions between the quartz lamp and
burner rig specimens. First, transient heating rates are substantially
different, with the quartz lamp heating rate being about three times faster
than that achieved in the burner rig. Second, the thermal gradient through the
ceramic thickness is about four times larger =139°C =250°F) in the quartz
lamp specimen. The ability of the model to predict the higher heat flux test
with accuracy equal to that achieved in the burner rig is highly encouraging
since the quartz lamp test is a much better simulation of engine conditions
than the burner rig.

As mentioned previously, Tests 3 and 4 were conducted to determine if sequence
of damage accumulation influenced life and the predictive capability of the
model. In Test 3, the specimen accumulated damage at a low rate (low strain
range) for approximately 1400 cycles and then was "uploaded" to a higher
strain range by increasing peak temperature from 1093°C (2000°F) to 1149°C
(2100°F). Specimen 4, on the other hand, accumulated damage at a high strain
then range initially and then was "downloaded" from 1149°C (2100°F) to 1093°C
(2000°F) peak temperature and cycled to failure, which occurred shortly after
downloading. While the two specimens did not run at exactly the same nominally
corresponding temperatures because of non-optimum temperature control, the
comparison of results shown in Figure 135 is nonetheless interesting. First,
consistent with the earlier observation that the model consistently
under-predicted the strain emphasis tests in this task, both tests ran longer
than predicted. More importantly, however, an apparent sequence effect was
observed, with the uploaded specimen having a substantially longer life than
the downloaded specimen, despite the difference of actual test temperatures.
This result indicates that further modeling refinement would be desirable to
account for sequence-of-damage effects.

3.3.2.1 Task IIIB - Microstructural Evaluation

Figures 136-140 present selective photo macro/micrographs from
post-verification test specimens. Figure 136 shows the baseline strain
emphasis test microstructure. It is apparent that after ~1500 cycles only a
small amount of the bond coat, Beta (NiAl) phase, has been exhausted to create
a very thin <0.00254mm (0.00010") continuous Al,0, layer. One unusual
observation is that spalling had occurred in two separate locations.

Figure 137 shows the oxide emphasis test which after <500 cycles exhibits
nearly complete exhaustion of the Beta phase in the bond coat near the spalled
location. A very thick bond coat surface oxide layer has been formed, and fine
in-plane cracks are observed within the A1,0; layer itself.
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Figures 138 and 139 show the mixed strain cycle microstructures. As expected,
the specimen with greater accumulation of test hours to failure exhibits
thicker bond coat scale and a higher degree of Beta phase coarsening.

Figure 140 shows the strain emphasis test specimen microstructure after
exposure for=570 cycles in the quartz Tamp heater. Sections were made through
the ceramic blister. The microstructure exhibits some segmentation
cracking.0In the oxide emphasis quartz lamp heater test, ceramic blister
formation was also observed in the hot zone location. This blister, which
formed early in life, eventually initiated ceramic spallation of 40% of the
hot zone location. However, the failure mode is similar to burner rig specimen
failure in that ceramic spalling occurs just above the metal-ceramic interface
such that a thin layer of remnant ceramic is still adherent to the bond coat
when the bulk of ceramic has spalled away.
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Figure 135 Temperature vs. Cycles to Failure for Task III Mixed Strain
Emphasis Tests
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(a) ~ 0.9X

200X

(b

Figure 136 HT-46 Strain Emphasis Burner Rig Verification Test #1
(a) Photomacrograph of Failed Specimen
(b) Post-Test Microstructure
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4.0 CONCLUSIONS

This final report covers the work accomplished in Phase I of the program. This
phase was directed towards identification and modeling of predominant TBC
failure modes. It consisted of three technical tasks, the conclusions of which
are discussed below.

The objective of Task I was to identify predominant TBC failure modes and
develop a preliminary life prediction model. A series of critical experiments
were designed and conducted to accomplish this task. Results of these
experiments are listed below.

Task I Conclusions:

0

NiCrAlY oxidation is a significant life driver. Low cycle rate furnace
testing in air and argon showed a dramatic increase in spalling life for
exposure in a nonoxidizing environment. Elevated temperature
pre-exposure of the TBC in air caused a proportionate reduction in
post-exposure cyclic thermal spalling life, whereas TBC pre-exposure in
argon did not.

TBC spallation results from progressive damage. Interrupted burner rig
tests showed that the predominant ceramic failure mode, near interface
ceramic spallation, results from subcritical microcrack 1ink up to form
a dominant near-interface, in-plane crack. Bond coat oxidation was not
conclusively shown to initiate these subcritical cracks.

Ceramic thickness affects coating longevity. Thin coatings (0.127mm
(0.005")) showed an increase in spalling 1ife while thick (0.138mm
(0.015")) coatings showed a decrease as compared to baseline thickness
of 0.254mm (0.010").

Cyclic Hot Corrosion was found to be a secondary failure mode. The TBC
was shown to be highly resistant to thermochemical degradation in
contaminated fuel burner rig experiments.

Mechanical Properties of the bulk ceramic were shown to be highly
uncharacteristic of classical ceramic materials. The plasma sprayed
ceramic exhibits a nonlinear ambient and elevated temperature
stress-strain response in uniaxial tension and compression, a strong
creep response and extremely stress sensitive fatigue behavior.

A preliminary 1ife model was developed. This model focused on two life
driving parameters: thermomechanical and oxidation. Environmental
damage was analytically accounted for in the model by influencing the
intensity of the mechanical driving force.

Verification tests showed that the an environmentally modified

Manson-Coffin type fatigue mode! was a good functional form for life
prediction of the TBC.
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The objective of Task II was to build an advanced TBC life prediction model.

Experiments designed, conducted, and analyzed covered a wide range of damage

parameter intensities in order to provide a data base for correlation of the

1ife prediction model developed in Task I. The advanced model was established
through improved bond oxidation and bulk ceramic behavior modeling.

Task

II Conclusions:

0

Twenty critical experiments were designed by using the Task I
preliminary 1ife prediction model to predict range of damage and hence
dictate testing parameters.

Twenty single specimen design data tests were conducted and successfully
used to identify the life prediction model constants, §c and AE.,..

The Kevin Walker Constitutive Model was successfully adapted and used to
predict stress-strain hysteresis loops for the bulk ceramic outer layer
in the 1ife prediction mode.

Oxidation test data obtained from the NASA program manager was used to
create an improved bond coat oxide growth rate equation.

The advanced life prediction model correlated all the Task II data which
represented an extremely wide damage parameter space. This data was
correlated within a factor of +3X.

The objective of Task III was to design and conduct verification experiments
which challenged the advanced, synergetic life prediction model developed.

0
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Six experiments were designed and conducted to verify the validity of
the 1ife prediction model. The experimental data was predicted within a
factor of +3X. Two of these six experiments were conducted at heat flux
levels substantially closer to engine conditions than those used to
generate the model.
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APPENDIX A

SUMMARY OF WEIGHT GAIN DATA FOR FURNACE EXPOSED SPECIMENS
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APPENDIX B
CYCLIC BURNER RIG TEST DETAILS

The uncooled burner rig test employed in Task I involves cyclic flame heating
and forced air cooling of coated cylindrical test specimens. A set of 12
specimens are installed on a spindle per test set at one time. These bars are
rotated in the exhaust gases of a jet fuel burner rig to provide a uniform
temperature for all specimens. The exhaust gases are the combustion products
of Jet A fuel and air, with a velocity of Mach 0.3. Specimen temperature is
controlled using an optical pyrometer and automatic feedback controller.

During rig operation the fuel pressure is regulated automatically to maintain
the desired temperature. To provide cyclic cooling, the burner is automati-
cally moved away from the specimens for the cool-down portion of the cycle,
during which a compressed air blast is applied to the specimens. The test rig
is shown in Figure B-1. Testing is interrupted approximately every 20 hours to
allow for visual examination of the specimens. Failure is considered to have
occurred when spallation occurs over approximately 50 percent of the "test"
zone of the bar. The "test" zone includes an area which is approximately 2.5
cm (1 inch) long at the center of the exposed portion of the bar, having a
uniform temperature during testing. This failure criterion recognizes that
some ceramic loss may occur without severe degradation of the protective
nature of the ceramic. It should be noted that, once initiated, spallation
failure propagates relatively rapidly so that, the stated coating life is not
highly sensitive to end point definitions.

In order to further maintain of reliable test temperatures with good
repeatability, one of the twelve 12.7mm (0.5") diameter test bars was replaced
with a coated specimen with two internal passages for the routing of
thermocouple sensors. One passage was an axial hole 4.318mm (0.170") diameter
through the entire length of the specimen. The other hole also penetrated the
bar parallel to the axis but was located 50% of the distance between the
circumference of the aforementioned 4.138mm (0.170") hole and the outside
diameter of the specimen. This passage extended approximately 31.75mm (1.25")
down from the tip of the bar and was of 1.016mm (0.040") diameter to accept a
0.8128mm (0.032") thermocouple sensor. The specimen geometry is shown in
Figure B-2. This specimen is installed in the test cluster with the sensor
located in the trailing edge or inside diameter wall of the bar. Thermocouple
leads are routed down the specimen drive unit through a slip-ring and finally
to a recording device.

By correlating optical pyrometer values with thermocouple readings, optical
controller set points are established daily with the thermocouple, thus,
avoiding drift of the test specimen temperature resulting from gradual ceramic
emissivity changes.

An alternate specimen was also designed and has seen limited application.
Essentially, this specimen is utilized similar to the previously described
type, except there is no 4.138mm (0.170") 1.D. center hole, and there are
three, rather than one, thermocouple holes, each terminating within different
longitudinal points in the specimen/cluster hot zone.
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APPENDIX C
CORROSION BURNER RIG TEST DETAILS

A cyclic hot corrosion test was utilized in Task I to aid in defining the
capability of the coating system under simulated field service conditions.
Specific test conditions were selected to model a mixed oxidation-hot corrosion
type of exposure encountered in relatively high temperature aircraft turbine
exposure with "clean" fuels and moderate atmospheric contaminants.

Intensive study of hot corrosion phenomena at Pratt & Whitney has shown that
the primary contaminants responsible for hot corrosion attack in aircraft
turbine engines operating on clean fuels are sea salt from near ground level
air (ingested during take-off) and sulfur trioxides from the combustion gases.
A comprehensive analysis of hot corrosion mechanisms has shown conclusively
that acidification of contaminant salt deposits by sulfur trioxide is critical-
ly related to turbine hot corrosion and that meaningful laboratory hot
corrosion testing requires that the activity of SO, be maintained at Tevels
characteristic of turbine operation. Accordingly, the hot corrosion test rig
used in Task I provides for control of both salt contaminant loading and for
control of combustion gas composition by effectively limiting excess dilution
air.

The test rig used in the hot corrosion exposure evaluation was specifically
designed for evaluation of turbine materials in contaminated environmental
conditions. The rig is similar to *+hat previously described in Appendix A for
oxidation test evaluation in that it maintains full automatic control of test
temperature and cooling cycles and features a special rotating specimen
mounting fixture with internal specimen cooling air. This fixture provides for
simultaneous testing of twelve air-cooled specimens. There is also provision
for metered injection of contaminants to allow accurate simulation of aircraft
turbine environments. Temperature control of the hot corrosien test rig is
conducted in the same manner as previously discussed for oxidation test rigs.

The major modification in the hot corrosion test rig is that the cooled
specimen cluster is operated inside a burner exhaust gas duct as shown
schematically in Figure C-1. This duct exhaust allows specific restriction of
ambient air dilution and consequently provides for optimum control of the
level of exhaust gas sulfur and air contaminants.

The hot corrosion test conditions used in Task I simulate typical hot
corrosion conditions encountered in near ground aircraft engine operation.
Selection of the 899°C (1650°F) ceramic surface temperature was based on
conditions that exist where major salt loading from atmosphere contamination
occurs. The test cycle was the same as that used for cyclic oxidation testing,
i.e., 57 minutes in the flame and 3 minutes for air cooling.
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APPENDIX D
EXPERIMENTAL PROCEDURES USED TO MEASURE PHYSICAL PROPERTIES

Thermal Conductivity - A comparative method was used to determine thermal
conductivity. The sample was instrumented with thermocouples and placed
between two instrumented reference standards of identical geometry to the
sample. The composite stack was fitted between an upper heater and lower
heater, and the complete system was placed on a liquid cooled heat sink. A
load was applied to the top of the system and a thermal quard which could be
heated or cooled was placed around the system.

A temperature gradient was established in the stack; radial heat loss was
minimized by establishing a similar gradient in the guard tube. The system
reached equilibrium after which successive readings of temperatures at various
points were averaged and evaluated. From this data, heat flux was determined
and specimen thermal conductivity was calculated. The results are shown in
Tables XIX and XXII of the main body of this report for the bulk ceramic and
metallic specimens, respectively.

Specific Heat - The specific heat was determined using a high temperature
calibrated copper drop calorimeter. The sample was attached to a 3mm platinum
support wire and suspended vertically at the center of a three-zone controlled
temperature furnace with the sample resting upon the receiver below it.
Thermocouples were attached such that junctions touched the sample near the
top and bottom.

The sample was allowed to attain a selected equilibrium temperature for a
period of time on the order of 1-2 hours then regular readings of the thermo-
couple were taken. At a given time, the radiation shields moved to allow the
sample to fall and come to rest in the receiver. When the sample came to rest,
these shields returned to the original position to reduce any radiation heat
transfer from the furnace to the receiver or convective and radiant heat
transfer from the receiver to the outside. The temperature of the copper
receiver was taken regularly. Following a drop, the receiver system was
allowed to come to equilibrium on the order of two hours. The specific heat
was calculated at selected temperature by differentiation and substitution and
is shown in Tables XX and XXIII of the main body of this report for the bulk
ceramic and metallic specimens, respectively.

Thermal Expansion - The room temperature length of each specimen was measured
before the test. The specimen was then placed in an electronic automatic
recording dilatometer and a thermocouple placed in contact with the center of
the sample. An environmental chamber which controlled the temperature at
constant rates surrounded the system. The dilatometer was allowed to run with
length and the temperature recorded continuously and autographically. The
results tested are given in Tables XXI and XXIV of the main body of this
report for the bulk ceramic and metallic specimens, respectively.
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APPENDIX E

STRESS-STRAIN AND CREEP CURVES FOR ALL MECHANICAL PROPERTY
TESTS CONDUCTED AT SOUTHWEST RESEARCH INSTITUTE

SAMPLE NUMBER CP27001A
TEST TEMPERATURE: 871°C {1600 °F)
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Figure E-1 Compression Stress-Strain (538°C (1000°F))
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SAMPLE NUMBER CP27001A
TEST TEMPERATURE: 871°C (1600 °F)
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Figure E-2 Compression Stress-Strain (871°C (1600°F))
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SAMPLE NUMBER EC1
TEST TEMPERATURE: 24°C (75°F)
STRAIN RATE: 001/SEC
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SAMPLE NUMBER CP27006TM
TEST TEMPERATURE: 982°C (1800°F)
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Figure E-18  Compression Creep Stress-Strain (982°C (1800°F))
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SAMPLE NUMBER CP27008
TEST TEMPERATURE: 1204°C (2200 °F)
STRAIN RATE: CREEP/SEC
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STRAIN RATE: CREEP/SEC

1 M i v ¥ M T v

.......

:.
3 A 1 " 1 " i A L A 1 A
V.00 1.00 2.00 3.00 4.00 5.00
COMPRESSIVE STRAIN (%)
Figure E-25 Compression Creep (1204°C (2200°F))




COMPRESSIVE STRAIN (%)

SAMPLE NUMBER CP27009TM
TEST TEMPERATURE: 1204°C (2200 °F)
STRAIN RATE: CREEP/SEC

7-00 1 I T ! T I T l T I T , T
I 'NO FAILURE
6.00 |- . .. L L N .
5‘00.__ ...... '. , . . P ..... . N —f
: ‘ B
. ]
. _ , .
4.00},..., - . - . . e me —
. . b .
' \ . :
I ' o
3.
. .
a2
i -1
3000 . R .
' :
i | | /
g%‘%:' .
®~.g5
200f- W e"
. B0
-~
100 _
a2
:
(]
0.00 . ! . ] ; ] A ] . | . ! .
0.00 1000 2000 3000 4000 5000 6000 7000

TIME (SECONDS)

Figure E-26  Compression Creep Strain-Time (1204°C (2200°F))

229



55.0

50.0

40.0

w
o
(=]

30.0

COMPRESSIVE STRESS (KS)
>
o

N
o
(=]

15.0

10.0

5.0

0.0

230

T

' v
COMPRESSIVE STRESS (MPA)

v

L

375

350

325

300

278

250

N
N
wm

N
Q
(]

-
~
wn

150

128

100

75

50

25

SAMPLE NUMBER CP27010
TEST TEMPERATURE: 1204°C (2200 °F)
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SAMPLE NUMBER CP12A
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1.0 INTRODUCTION

TBCLIF is a computer code written by the Southwest Research Institute
(SwRI) for Pratt & Whitney Engiﬁeering (PWED). The code analytically predicts
the life (in terms of thermal cycles) of components coated with PWED's
metallic bond-ceramic thermal barrier coating system, known as PWA 264.

TBCLIF was written in partial fulfiliment of Task ICl of PWED's contract
NAS3-23944 with NASA. The program and its documentation were written in
accordance with PWED's guidelines for externally generated software. It is
written entirely in FORTRAN IV and has been executed on an IBM 4340 series
computer using the CMS operating system.

The thermal barrier coating TBC 1ife prediction model used in TBCLIF was
developed during the summer of 1985. The model is preliminary, additions and
improvements may be added later. The life prediction model considers T8C
failure to be a function of two Processes: oxide growth at the bond coat and
cyclic plastic strain damage. Life of TBC systems is predicted by
calculating, on a Cycle-by-cycle basis, the cummulative "damage" accrued by
the TBC system. (One defines “damage" in this context as the percentage of
Tife used during the cycle.) Such damage is accumulated using Miner's Rule,

i.e. if the damage in one cycle is
d = I/Ni (1)
then the cummulative damage is

D=z, /N, (2)

241



At any point in the thermo-mechanical load history of the TBC system, the
value of Ny is a non-linear function of the current oxide thickness and the
cyclic plastic strain.

In this guide, the details of TBC life prediction are described from the
technical/theoretical, programmer's and user's perspectives. A principal
objective of this report, however, is to describe TBCLIF's organization and
use. Hence, emphasis has been placed on sections dealing with these topics.
For further details regarding theoretical/technical aspects of TBC failure,
consult references [1-6].

2.0 LIFE PREDICTION METHODOLOGY IN TBCLIF

Failure of the thermal barrier coating is currently believed to be the
result of the two independent processes: bond oxidation and plastic work. The
bond coat oxidation process results in a net gain in material at the bond-
ceramic interface. The oxide forces the bond coat radially outwards and
creates asperities (stress concentrations) along the ceramic-bond interface.
Growth of oxide clearly affects the lives of TBC experimental specimens (71
TBC systems in environments conducive to high oxide growth rates are
significantly shorter than those in inert environments. Exactly how oxide
reduces the 1ife of the barrier coatings is not totally clear. Plastic work,
on the other hand, is believed to cause micro-crack formation and growth,
reducing the strength capacity of the ceramic coating. The life prediction
algorithm developed by SwRI states that the coating life is proportional to
the thickness of the oxide at the bond coating and the cyclic plastic

strain. The model follows the form of the Coffin-Manson equation

N = (Aep/Aef)-b (3)
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In (3), beg is the failure strain of the TBC and Aep is the plastic
strain per cycle. The magnitude of the failure strain, Aef, is

influenced by the amount of oxide present, and the magnitude of the
cyclic plastic strain. Cyclic plastic strain, Aep, is given by the

total of all cyclic plastic strain effects

A€, =4€ 5,57 +AE, +AE, (4)

where A€, ¢ is the total plastic thermal mismatch strain for a mature
cycle, and &€, and A€, are additional plastic strains, perhaps due to

heating and cooling which are not included inA€,,0r.

The failure strain in (3), beg, is represented as a combination of the

single cycle (static) failure strain, and the applied plastic strain

beg = Aefo(l - t/tc)c + Aep(t/tc)d (5)

Substituting (5) into (3) results in the life algorithm used in TBCLIF
N = [(ae, /ae )(1-t/t )C+ E(t/t )9 (6)
fo’ " p (o c

The first term in the square brackets can be considered the cyclic damage
term, while the second can be considered the damage done by oxidation of the
bond coat. Because bond coat oxidation occurs during thermal cycling, the
value of t in (6) changes with time. Miner's Rule must be used in conjunction

with (6) to assess the life of the TBC system.
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The magnitudes of the single cycle failure strain, Begos and the
exponents b, c, d and E in (6) are TBC system dependent. They are empirically
derived by fitting the life model to experimental data. A difference
minimization technique is typically used to establish model variables that
have the least sum of squared differences between predicted and experimental
lives. Variables fec., b, ¢, and d are hereinafter referred to as the model
parameters.

The current thickness of the bond coat oxide layer, t, in (6) is computed
using the PWED oxide growth model for uniform exposure time t(secs.).

XPON

t = A(Kpr) (7)

where Kp is the parabolic rate constant, and is given by a function containing

the activation energy, aH , gas constant R, and ceramic temperature, T.
Kp = B exp(-aH/RT) (8)

Bond coat oxidation thickness is updated after the completion of every thermal
cycle in TBCLIF.

In experimental work performed at PWED, many TBC specimens were pre-
exposed to an oxygen environment with a high, but constant temperature. Such
experiments induced an oxidation layer on the bond coat before thermal cycling
began. Lives of such specimens were uniformly lower than those of nonpre-
exposed specimens undergoing identical thermal cycles. In TBCLIF such pre-
exposure must be accounted for to accurately predict the lives of such
specimens. Because the exposure temperature is constant, the oxide thickness
at the end of the exposure period is calculable directly from equations (7)
and (8).
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To obtain a predicted life for the thermal barrier coating system, the
cyclic plastic strain, single cycle failure strain and the critical thickness
for the ceramic coating must be known, as well as the oxidation
Characteristics (coefficients of equations 7 and 8) of the bond coat. The
amount of damage to the TBC system is computed at the end of every thermal
cycle in TBCLIF. When the cumulative damage equals or exceeds 1.0, failure is
presumed to occur and the total number of completed thermal Cycles at that
point is taken as the predicted life.

3.0 THE PROGRAMMER'S GUIDE TO TBCLIF

Figures F-1 and F-2 indicate the structure and logic of execution of
TBCLIF. As can be seen from the charts, TBCLIF is highly modularized, "top
down" code, with all major computations performed in subroutine programs, the
main program consisting primarily of subroutine calls. A1l real variables and
arrays in TBCLIF are double precision, i.e. eight bytes long on IBM
mainframes.

Execution in TBCLIF proceeds in three phases: reading of input data and
preliminary calculations, calculations of oxide thickness and TBC damage, and
finally, results presentation. Subroutines INPUT, PREXPO, BLKDAT, INCREM and
PLSTRN, constitute the first program phase; GROWTH, DAMAGE and CHECK make up
the calculational phase; and the PRINT and MESAG subroutines present results
and error messages. Execution flow during the input phase is illustrated in
Figure F-1; the logic of computing oxide growth, damage, and TBC failure are
somewhat more complex so these subroutines have been illustrated separately
in Figure F-2.

INPUT and BLKDAT read the problem constants and thermal cycle
characteristics, respectively, from the local file attached to logical unit

NIN. These two subroutines also echo the input data on the file attached to
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togical unit NOUT. Note that INPUT is called only once during program
execution, while BLKDAT is called once for each block of thermal cycles.
Thermal Cycles within a block are presumed to be identified. Table F-I Tists
the variables and constants passed to and from these subroutines via the
subroutine argument 1ist and common blocks.

PREXPO, INCREM, and PLSTRN subroutines compute the bond coating oxide
thickness at the end of the pre-exposure period, constants controlling the
printing of intermediate results, and the total cyclic plastic strain. Table
F-I lists the variable and constants passed to and from these subroutines via
common blocks or the subroutine argument list.

The calculation subroutines, GROWTH, DAMAGE and CHECK, are called within
a program loop that repeats until TBC failure is predicted, or the total
number of cycles associated with the current block has been applied (See
Figure F-2. This loop is, in turn, nested inside another program loop
beginning with the call to BLKDAT (See Figure F-1). Program control passes to
the "BLKDAT" loop when multiple blocks of cycles are to be applied; if failure
of the TBC has not occurred during the current set of cycles, another set of
cycle characteristics is read from the input file and the additional damage
calculated.

GROWTH integrates the oxide thickness growth model with respect to pre-
exposure time and returns the current thickness at the end of each thermal
cycle. This information is then passed to subroutine DAMAGE, along with the
cyclic plastic strain. DAMAGE computes the additional damage done by the new
thermal cycle. CHECK sums this additional damage to the cumulative damage
value and compares the new total to 1.0. Table F-I summarizes variables and

common blocks associated with these routines.
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Figure F-3 illustrates the integration process used in GROWTH. The user
supplies the thermal cycle time/temperature history. GROWTH then computes
the parabolic rate constant, K., for a temperature at the beginning of a
time interval. Using this Ks, the oxide thickness at the beginning and the
end of the time interval ig found from the expression for oxide growth (7).
In this equation, 7 is an effective time, t*. t* is equal to the time
required to generate the accummulated oxide thickness with the parabolic
rate constant, K, computed at the beginning of the time interval. The
difference in oxide thickness at the beginning and end of the time interval
is found and added to the previous oxide thickness. This process is repeated
for all time intervals in the thermal cycle, thus detemining the oxide

thickness during the cycle.

DAMAGE uses the current valye of oxide thickness, model parameters and
the cyclic plastic strain to compute a life, N;, (see equations (1) and (2) )
for these conditions. Since one cycle has elapsed, the TBC damage accrued
during the cycle is l/Ni . CHECK sums this value to the cumulative damage from
previous cycles (Zil/Ni) and compares the result with 1.0. If the total
damage equals or exceeds 1.0 execution halts and appropriate error messages
are printed in the output file.

The PRINT subroutine presents the current value of TBC damage, oxide
thickness, critical thickness ratio, and the number of elapsed cycles (both
total and within the current block of cycles) in tabular format. Table F-I
indicates the variables, constants and common blocks associated with this

routine.
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4.0 THE USER'S GUIDE TO TBCLIF

Using TBCLIF is straightforward. Because TBCLIF is designed to run in
the batch execution mode, two files must be created by the TBCLIF user: a job
control file and the data input file. No other action is required of the user
to run TBCLIF.

The job control file must make the data input file available for reading
by TBCLIF, call TBCLIF for execution, and save the output in permanent storage
if required. An example job control file for CMS operating systems is
provided in Appendix A. Note that the input file is attached to logical unit
five, and output/results file to unit six. These logical unit numbers are
specified within the main program of TBCLIF and can be changed, if necessary.

The input data file consists of two portions: the first nine records of
data contain analysis type and pre-exposure data; the remaining cards contain
thermal cycle data for each of the blocks of cycles to be applied to the T8C
system. Six cards are required to describe each block of thermal cycles. The
last card in the data file must be a *END card. Table F-2 is reproduced from
the TBCLIF listing and describes in detail the structure of the input data
file.

Output from TBCLIFE consists of four parts: 1) an echo of the analysis
and pre-exposure characteristics, 2) a statement of the life equation
parameters, 3) an echo of the temperature-time histories of the applied
thermal cycles, and 4) a table of the final and intermediate results. Figures
F-4 through F-6 illustrate typical program output.

Appendix A provides the user with a program listing, job control file,
input and output from a typical TBCLIF run. The analysis and pre-exposure

conditions for the example are given in Figure F-4.
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from Figure Fr-

print intermediate results as
specified by INCREM

cumulative damage

compute oxide thickness for
1 thermal cycle

GROWTH

using oxide thickness and cyclic
plastic strain, calculate damage
for thermal cycle

< 1.0; not all thermal
cycles of block applied

Figure F-2 Execution Flow During Calculational Phase
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Table F-I

Variables and Arrays Used in Subroutines

VARIABLE OR USED IN SUBROUTINE PASSED
ARRAY VIA
A Input, Prexpo. Growth Cnst
B Input, Damage Inpt
o Input, Damage Inpt
c2 Input, Prexpo, Growth Cnst
CMMENT Blkdat Internal
CURCYC Print Internal
CYCBLK(I) Input,Print xArg. list
CYTIME(I) Blkdat, Growth Tmiv
D Input, Damage Inpt
DADT Blkdat, Plstrn Arg. list
DAMCYC Check Arg. list
DAMISN Check, Print Arg. list
DELEPC Blkdat, Plstrn Arg. list
DELEPF Input, Damage Inpt
DELEPH Blkdat, Plstrn Arg.list
DELEPP Plstrn, Damage, Print Arg. list
DELGRW Growth Internal
DELH Input, Prexpo, Growth Cnst
FLAG Blkdat Arg. list
HEADNG Input xInternal
ICODE Mesage Arg. list
ICYCLE Growth, Print Arg. list
IDUM Blkdat, Growth Internal
INCR Increm Arg. list
KP Prexpo, Growth Internal
N Damage Internal
NBLK Print Arg. list
NBLOCK Blkdat Arg. list
NCYC Increm Arg. list
NIN Input, Blkdat, Check, Print, Mesage Ioun
NOUT Input, Blkdat, Check, Print, Mesage Ioun
NT Growth Internal
NTIME Blkdat Tmiv
NUM Increm, Mesage Arg. list
NUMBLK Input Arg. list
R Input, Prexpo, Growth Cnst
REMAIN Increm Arg. list
STOP Check Arg. list
TEMP Prexpo, Growth Internal
THK1 Growth Internal
THK2 Growth Internal
THKCRT Input, Damage, Print Arg. list
THKFUR Prexpo Arg. list
THKNES Growth, Damage, Print Arg. list
TIMFUR Input, Prexpo Furn
TMAX Growth Internal
TMNEW1 Growth Internal
TMNEW2 Growth Internal
TMPFUR Input, Prexpo Furn
TMPINF(I) Blkdat, Growth Temp
XPON Input, Prexpo Growth Cnst

«Note: "Arg.
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and “Internal” refer to subroutine argument
list and internally generated variables, respectively.
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Table F-2

Characteristics of Input Data

LEVEL 2.1.1 (SEPT 1986)

IF 00 ISN *

'H'lnnnnnnnnnnnnnnnnonnonnnnnnnnnnnnnnnnnnnnnn

INPUT DATA: TEM00160
TEMOO170
THERE ARE TWO PORTIONS OF INPUT DATA. THE FIRST PORTION TEHOQIB0
CONTAINS THE GENERAL INFORMATION FOR THE PROGRAM. THE SECOND TEMOOL190
PORTION HAS SETS OF REPETITIVE DATA ARRANGED IN DATA BLOCKS. TEHC0200
EACH BLOCK DATA SET BEGINS MITH A COMMENT CARD, ¥BLOCKN, AN TEMO0210
*END CARD IS USED TO TERMINATE THE EXECUTION OF THE PROGRAM TEHO00220
AND DESIGNATES THE END OF THE INPUT DATA. DATA INPUT IS IN TEHC0230
FREE FORMAY, SEPARATE MULTIPLE ENTRIES IN A RECORD WITH COMMAS TEHOO0240
OR BLANKS. TEMO0Z50
TEMO0260
PORTION I. TEMO0270
TEH00280
CARD # ITEMS ODATA TYPE REMARKS TEMO0290
---------------------------- - TEMO0300
1 HEADNG CHARACTER GENERAL PROBLEM DESCRIPTION CATEH00310
STRING ( UP TO 80 CHARACTERS ) TEMOO320
TEMO00330
2 NUMBLK INTEGER%4 TOTAL NUMBER OF BLOCKS TEM00340
( UP TO 7000 ) TEH00350
TEMO0360
3 CYCBLK(I) INTEGER®4 NUMBER OF THERMAL CYCLES IN EATEM00370
(I=1,NUMBLK) { COULD BE MORE THAN ONE CARD TEM00350
TEMGO390
4 A, DELH, R, REAL®8 ARHENIUS EQUATION COEFFICIENTSTEM00400
¢ DELH > 0.0 } TEMCO410
TEMOO4G20
5 €2, XPON REAL®S OXIDE GROWTH EQUATION COEFFICITEMO00430
TEMO0440
6 THKCRT REAL®S CAITICAL OXIDE THICKMESS TEHOQ450
TEMO00460
7 TIMFUR REAL*8 PRE-EXPOSURE TIME IN THE FURNATEM00470
(SEC) TEMO0480
TEH00490
8 THPFUR REAL»8 PRE-EXPOSURE FURNACE TEMPERATUTEMO00500

VS FORTRAN DATE: JuL 29, 1987 TIME: 12:42:39
TN CETY T, [ kI Geevunnnn. 5.0, 6. ... 7% 8
(DEGREES RANKINE) TEH0O5!0
TEMOO520
9 DELEPF,B,C,D,E REAL»8 FIVE CONSTANTS OF LIFE EQUATIOTEM00530
TEH00540
PORTION II. TEHO0550
TEHO0560
10 ‘¥BLOCKN' CHARACTER COHMENT CARD TEMD0570
STRING { N IS THE BLOCK NUMBER. ) TEM0O0580
TEH00590
11 DELEPC,DELEPH REAL¥8 HEATING AND COOLING CYCLIC PLATEM0O0600
STRAIN COMPONENTS FOR CURRENT TEM00610
TEM00620
12 DADT REAL*8 PLASTIC STRAIN DUE TO THERMAL TEM00630
MISMATCH OCCURRING DURING ONE TEM00640
TEMOO065D
13 NTIME INTEGER*4 TOTAL NUMBER OF TIME STEPS INTTEMC0660D
THE THERMAL CYCLE TEM00670
IS DIVIDED TEHC 0680
{ UP TO 50; FOR INTEGRATION OFTEMQO690
GROWTH EQUATION ) TEM00700
TEMOO710
TENOO720
TEN00730
TERO0740
14 CYTIHE(L) REAL%Y VECTOR OF TIME POINTS INTO WHITEMO0750
(L=],NTIME} THERMAL CYCLE OF BLOCK IS DIVITEM00760
{ SECONDS: IN ORDER OF INCREASTEM00770
TIME, TIME = 0 AT THE BEGINMNINTEH00780
THE THERMAL CYCLE "HOT TIMg" ITEMOO7S0
TEM0O0800O
15 THPINF{L) REAL®S VECTOR OF "HOT TIME" TEMPERATUTEM00810
(L=1,NTIHE} INTERFACE BETWEEN BOMD AND CERTEM00820
{ DEGREES RANKINE; TEMPERATURETEMO00830
THOSE ASSOCIATED WITH TIMES INTEMO0840
CYTINE ) TEH00850
TEH00860
16 '#END* LAST CARD OF INPUT DECK TEM00870
TEMO0880
NOTE: TEMOGBS0
CARDS 10, 11, 12, 13, 14 AND 15 COULD BE MORE THAN ONE CARDTEMO00500
REPEAT CARDS 7 TO 15 NUMBLK TIMES. TEM00910
TEH00520
TEM00930

NAME :

MAIN

PAGE:

2
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APPENDIX G

TBCLIF LISTING AND EXAMPLE PROBLEM



SAMPLE TEST CASE OUTPUT
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TBCLIF

EXAMPLE PROBLEM
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