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Abstrac

This paper describes the design and testing of an
Extended Kalman Filter (EKF) for ground attitude
determination, misalignment estimation and sensor
calibration of the Earth Radiation Budget Satellite
(ERBS). Attitude is represented by the quaternion of
rotation and the attitude estimation error is defined
as an additive error. Quaternion normalization is used
for increasing the convergence rate and for minimizing
the need for filter tuning. The paper presents the
development of the filter dynamic model, the gyro error
model and the measurement models of the Sun sensors,
the IR horizon scanner and the magnetometers which are
used to generate vector measurements. The filter is
applied to real data transmitted by ERBS sensors.
Results are presented and analyzed and the EKF
advantages as well as sensitivities are discussed. On
the whole the filter meets the expected synergism,
accuracy and robustness.

I. INTRODUCTION

An important part of spacecraft ground support fis
attitude determination, sensor alignment, and sensor
calibration. In the past, at Goddard Space Flight
Center (GSFC) in the Flight Dynamics Division (FOD)
each task was performed separately, usually using @
relatively small state . The use of more sophisticated
algorithms has been suggested in the 1iterature, but
they have not yet been tested with real spacecraft data
for ground processing in Flight Dynamics.

The purpose of this study was to design and test an
Extended Kalman Filter (EKF). The filter was designed
for the Earth Radiation Budget Satellite (ERBS). ERBS
is equipped with the following sensors which are used
for attitude determination: 2 redundant Inertial
Reference Units (IRUs) each containing 3 single-axis
gyroscopes, 2 digital fine Sun sensors (FSSs), 2 infra-
red (IR) horizon scanners, and 1 three-axis
magnetometer. The state estimated by the filter
consists of the attitude parameters (quaternion),
sensor misalignments for the Sun sensor, magnetometer
and gyros, biases for the Sun sensor, horizon scanner,
magnetometer, and gyros, and scale factor corrections

and gyros. The

for the Sun sensor, magnetometer,
spacecraft data

filter was tested using real
transmitted to Earth by ERBS.

Kalman filters have not been used for ground
attitude processing in the FDD at GSFC. The current
ground support software implements single frame and
batch estimators and, as mentioned before, much of the
calibration effort is performed separately from the
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attitude determination. The EKF designed for ERBS
allows for all of the calibration to be performed along
with the attitude determination.

The use of the extended Kalman filter (EKF) for
spacecraft attitude determination has been dealt with
quite extensively in the past. Kau et al. [1] as well
as Farrell 2], for example, used an ad-hoc solution to
the problem of estimating the Euler angles directly
from vector measurements. A more general approach to
this problem was presented in [3]. The problem of
estimating the direction cosine matrix directly from
vector measurements was discussed in [4]. The filter
which was required there was a linear one with some
adaptation. A general analytic exposition of the use of
the EKF for spacecraft attitude determination was given
by tefferts, Markley and Shuster [5]. Reference {6]
dealt with the problem of estimating the attitude
quaternion from vector measurements, Basically, the
estimated quantity was the difference between the best
known value of the quaternion and its true value. This
difference was defined as a four component additive
quantity. Because of this definition the estimate of
the quaternion s not necessarily normal unless it
converges to the correct quaternion. It was found that
normalization of the estimated quaternion during the
filtering process speeds up convergence and eliminates
the need for filter tuning. In other references, e.g.
(5], [7) and for on board attitude determination
software which is used in LANDSAT 4 and is planned to
be used in the GRO and EP spacecraft a i i
quaternion difference is used. Since it is assumed that
this difference quaternion is small and as for small
rotations the scalar part of the quaternion is close to
1, those algorithms are estimating only three attitude
- error components. Obviously, estimation of an
additive quaternion error of four parameters plus the
induced normality constraint 1is equivalent to
estimating three parameters. Because of our good
experience with the additive quaternion error approach
[6] we chose to implement this approach in the present
EKF algorithm.

In the next section we introduce the algorithms
developed for the ERBS EKF.

I1. THE EXTENDED KALMAN FILTER ALGORITHM

The EKF algorithm is based on the following assumed
models: System model:

X = £A(t),t) + u(t) (2.1)
Measyrement Model:
2y = by (X(ty)) + ¥y (2.2)

where:

X(t) = state vector.
w(t)= zero mean white process.
¥y= zero mean white sequence.

The EKF algorithm is as follows [8]. The measurement
update of the state estimate and of the estimation
error covariance are performed as follows:
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State Estimation Update:

Be(+) = Be(-) + Kelzy - by(Be(-11
where the Gain Matrix is evaluated as follows:
K = Prl-DH TR (-)) TH (Ri (- 0)P e - )R TR (-)) + RyJ”!
k = Pl=DH () ) TR (B (- NP (O T (£ (=)) + Ry)

e (2.8)

(2.3)

Error Covariance Update:
Pel+) = (1 - KHIP T - KT + KRy T (2.5)

The propagation of the state estimate and the error
covariance are accomplished using:

State Estimation Propagation:
2ty = £di), ) (2.6)

Error Covariance Propagation:
B(t) = FR(t).1IP(L) + PIFT(RIL), L) + Q(t)  (2.7)

where
F(X(t),t) it (2.8a)
' (L) | K(t)=Ret) '
(L))
H(X(-)) = =orennev (2.8b)
W) | K(t)=Ret)

Ry = covariance matrix of white sequence.
Q" = spectral density matrix of w(t).

The EKF rather than the linear KF algorithm must be
used because the measurement vectors obtained from the
sensors are non-l1inear functions of the state vector.
The state vector was selected to be:

' 4 quaternion components
ig 3 gyro scale factor errors
Qg 6 gyro misalignment angles
hg 3 gyro biases
9 3 FSS misalignment angles

X - Cs 2 FSS scale factor errors (2.9)
b 2 FSS biases
dy 2 IR horizon scanner biases
Sm 3 magnetometer scale factors
8n 6 magnetometer misalignments
byl 3 magnetometer biases

Following the tradition of the NASA Goddard’s Flight
Dynamics Division we used vector measurements to update
the EKF. (It should be noted that this is not a must
but rather a choice). The effective which
are used to update the filter are defined as follows

¥ * Marlr peas - A(Q)Y

(2.10}

where:

Y = effective measurements.
Ma1 = transformation matrix from the nominal (non-
misaligned) sensor to body coordinates.
wT',meas = unit vector as measured by the sensor in the

R sensor misaligned coordinates.

Alq) =
body coordinates as a function of the
estimated quaternion.

¥ - the measured unit vector as known in the

inertial coordinates.

While the traditional EKF algorithm updates the state

estimate according to (2.3), we use y (as computed in

(2.10)) to update the state estimate as follows

Re(+) = ) + Ky

To reconcile this apparent deviation from the ordinary
EKF algarithm, define d;k as follows

(2.11)

dzy = i - bRyt (2.12)

then (2.3), the state update equation in the ordinary
EKF algorithm, reads

Xk(+) - gk(') + Kidzy
Next define x(ty) as
K(ty) = Rlo) + x(ty)
expand (2.2) in a Taylor series expansion about X¥(;)
k

and omit terms of second and higher order of x(
This yields

(2.13)

(2.14)

k" hk(gk(')) + Hex(ty) + ¥y (2.15)

where H, 1is as defined in (2.8b). When Zy from (2.15)
is substituted into (2.12) we obtain

dzic = Hix(ty) + ¥y (2.16)
that is, dz, is linearly related tp x(t,). An
inspection of (2.13) reveals that the EKF estimates
X(tg), which according to (2.16) is linearly related to
the measurement d;k, and then adds the
estimate, x(t ), to (-}, the best estimate of
A(ty). As will %e seen in the ensuing, also our use of
¥, ds defined in (2.10), in the state update equation,
(2.11), amounts to estimating x(t,), which is, 1inearly
related to y , and adding the eg%1mate to X (-). In
fact, to show the latter we only have to show that
x(ty) is linearly related to y. This will {indeed be
shown in Section 1V,

IIT. THE DYNAMICS MODEL

The states which vary in time are the attitude
parameters and bias states which are modeled as Markov
rather than as bijas states. (The reason for this
modeling will be discussed later). The scale factors
and misalignments are assumed to be constant in time.

The attitude matrix is given in terms of the
quaternion, q, as follows

I [
:QE'Q%'Qs*Qi 2(qyap+azag)  2(q)93-9»q4)|

A= }Z(Q142'Q3Q4) -afrad-afeaf  2apazragal)|  (3.1)
=2(01Q3*QzQ4) 2{q293-9194)

-Qf-Q§+q§+q§§

transformation matrix from the inertial to the



The quaternion changes "in time according to (8, pp.
511, 512]

q=0q (3.2)
where:

l—o Wy Wy w;{

j-w ] w, Wi
Q- él z Y (3.3)

: Wy oWy 0 wzl

| -wy Wy W 0_|
and where wy , , are the components of the spacecraft
angular ve1oé¥fy vector resolved in the spacecraft
coordinates. The true quaternion of the spacecraft
propagates in time according to (3.2). We cannot

compute q precisely since we do not know precisely the
initial quaternion nor do we know W precisely as it is
a measured vector and the measurement contains errors.
The measured angular velocity can be written as

=+ adu (3.4)

where

# = gyro reading.
W = true angular velocity.
dw = vector of gyro errors.

Since the true quaternion propagates according to (3.2)
we propagate the estimated quaternion in a similar
manner; that is, we propagate it according to

A A

a= Q (3.5)

where § has the form of (3.3) but its elements are the
elements of the measured angular rate . Now a matrix
dQ can be defined as follows

9-0-4d (3.6)
Substitution of (3.6) into (3.2) results in
4~ dg - d0q (3.7)
When (3.5) is subtﬁacted from (3.7) we obtain
a-a-0ta-9 - da (3.8)

As discussed in the introduction, we define an additive
quaternion error as follows

dg=g-4 (3.9)
Then (3.8) can be written as

dg = Qdg - dQg (3.10)

A matrix, B, can be defined as follows

}—'Q4 q3 QZ-I
B-) | G (3.11)

‘} qQ; -9 -q4 !

l_a e a3l

and used in (3.10). However, since g itself is not
known, we use its estimate, g to compute (3.11). When
this is done, we can write (3.10) as follows

i . l
| dd = Qdq + Baw I (3.12)
|

where B is computed as in (3.11) using ﬁ rather than g.
Equation (3.12) is the dynamics equation of the

additive quaternion error.

Equation (3.12) cannot be used as a dynamics model
in an EKF since the vector of gyro errors, dw, is not a
white noise vector. It could be modeled though as a
Tinear system excited by a white noise. Consequently
this linear model can be augmented with the dynamics
model of (3.12). The augmented model is linear and is
driven by a white noise vector hence the model can
Jegitimately used by the EKF [8]. To accomplish that we
use the following standard gyro error model.

Ogxy Ogxz|l¥x

J8wy] 1Sgx Plwe |1 « | 1bgxl
1] s IR TR
g S | o i |4
ldwy] [0 O Sgllwy | 197 Ozy O 1l¥z | Ibgyl
[ o 1 P T
i
+ %“g]y} (3.13)
ln ]zl
i
where
55 = [Sgx Sgy Sgz) (3.14a)
1
8g = [9xy+ Ogxz» Ogyx» Ogyz> Ogzxs Ogzyl  (3.140)
b = [bgxs bgy: bgz) (3.14c)
ngI = [ng1x+ Ngly "glz] (3.14d)

and T denotes the transpose, %SH and b, are as
explained in (2.9) and %ﬁ} is a wnite“noise Vgctor. We
can write (3.13) as folloks

| _I } o y %z 6 0 0010 5I lﬁgl;g
*
}dwygzio Wy 000 ww,080 01 Oi X + Ingly{
{dw,| [0 0 w, 0 0 0 0 w, Wy 0 0 1§ I"glz|
[ _l [ 1
(3.15)
where
T - (8], 9f, bl (3.16)
Define the following matrices
W, 0 07} |Twy W, 0 0 0 0|
| ] | [
U= }0 Wy 0| We |0 0 ww, 0 0|
| | |
16 0w, | 0 0 0 0 wy wyl
I_ _l I _l
(3.17a) (3.17b)
then (3.15) can be written as
*
dw = [UIW|I]x + g (3.18)

The vectors

§g and Qg contained in g* are constants,
therefore
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Sg=0 (3.19a) gg = 0 (3.19b)

The gyro bias vector, , may actually be time-varying
50 they are more adequately modeled as Markov states as
follows [8].

AV e M

d

at {bgyg - i 0 -l/tg 0 Ilbgy{ + {nQZy{ (3.20)
bgzl | 0 0 -1/tglibg,l  Ingpgl
9% 9% 1%

where tg is the time constant of the Markov states and

12" = [Ngaxs Ng2ys Mgz (3.21)

is the white noise vector which drives the Markov
states. Define the matrix Tgas follows

lfl/tg 0 0 i
|
Tg - { 0 -l/tg 0 { {3.22)
| 0 0 -1ty
I 2l
then (3.20) can be written as
By = Tgbg + Bgp (3.23)

The other bias states in the fine Sun sensor, IR d

horizon scanner, and magnetometer which are 1isted at
in (2.9) and will be mentioned in the development
of the sensor error models, are also modeled as
Markov states as follows. Define the following
matrices
1-1/t (1 ITI/th 0 7
L | Ty = |
.0 -1/tg | -0 -1/t |
(3.24a) oo (3.24b)
Ifl/tm 0 0 _I
]
Th = : o -l/t, © } (3.24c)
(] 0 -1/t
I_ _
then
bs = Tshs + D‘S (3.253)
Bh = Thby + By (3.25b)
B = Tubp + D (3.25¢)
where
bl = [ba, bg]  Bf = [dp, 4] BT = (b, b, b
H A+ VB h r %p hm mx* “my* “mz
(3.26)

These vectors denote "biases” as defined in (2.9). The
scale factor and misalignment states of the sensors
which also are a part of the state vector listed in
(2.9), are assumed constant. That is

9 =0 Lo=0 §5=0 g -0 (3.27)

where
T . 16,,, 0., 0 T e Ch. C
95 [ sx* Ygyr sz] .Cs [ A B]
T
Sm= [Spyo smy' Smz]

T
O = [gmxy' Omxz: Omyx Omyz> Cmzx szy](3 28)

The seven sensor states (of the Sum sensor, IR horizon
scanner and magnetometer) which are listed in (3.26)
and in (3.28), are augmented with the quaternion error
and gyro states to form the attitude augmented state
vector, x. This vector is that shown in (2.9) when g is
replaced by dg. The differential equation which governs
the propagation of x is obtained by combining the
linear differential equations of the components of the
attitude augmented state vector. Accordingly the
augmentation of (3.11), (3.18), (3.19), (3.23), (3.25)
and (3.27) yields

o (BEEA L P
s NNIE
W Wl
ke K S50
8 8
:é% ] ool .i;l X '.::!
b Ts b g
i 1l i i
'$$ ... .54 cees
[ 0
'ﬁé . ié '§6 .ﬁé.
. {3.29a)
which is of the form
k= FQ)x+n (3.29b)

The spectral density of the elements of the white noise
driving Markov states in x is related to the individual
states they drive according to the well known relation
{8] Q = 2/74S o where Q; is the spectral density of
the white nofsé driving state 1, T; is the time
constant of this Markov state and Si.o is the inftial

standard deviation of the state. The matrix F(X) is the
one defined in (2.8a).

The estimation problem dealt with in this paper fis
characterized by a linear dynamics equation. The system
dynamics is determined by (3.5), (3.19), (3.23), (3.25)
and (3.27). It is easy to see that when these equations
are augmented into one equation we obtain an equation
of the form

I=f(t)X+n (3.30)
where X is given by (2.9) and f(t) is the following



matrix

e S R R R R R A R (3.31)

. ié

The white noise vector n is of no consequence when
dealing with the role of (3.30) in the estimation

process since according to (2.6) the propagation of 2

requires only the evaluation of f(t).

IV. THE MEASUREMENT MODEL

As mentioned in Section II the gffective
which are used to update the filter are
defined as follows

! A I
I ¥ = MaTHy meas - A(Q)Y] { (4.1)
where:
y = effective measurements.
Ma7 = transformation matrix from the nominal (non-
misaligned) sensor to body coordinates.
W1+ meas = unit vector as measured by the sensor in the

N sensor misaligned coordinates.

A(g) = transformation matrix from the inertial to
the body coordinates as a function of the
estimated quaternion.

¥r = the measured unit vector as known in the

inertial coordinates.

In the ideal (nominal) situation the sensor is well
aligned and, in addition, introduces no measurement
errors. Also, g, the estimate of g is perfect and is,
tg:si equal to g itself. Therefore, using (4.1), we
obtain

Y = MaTHDs meas - AW = Maplp - A(QY[ = 0 (4.2)

Any deviation from the nominal will be reflected in y.
If the deviations are small, then y will be related
linearly to them., It is our purpose in this section to
derive the linear relations between the effective
measurement y and those deviations which are actually
the error states in x (whose time behavior was given in
(3.25 and 3.27)).

Let us denote the two terms on the right-hand side
of (4.1) as follows

Ho = MATHT) meas (4.32) Yp - A(a)ll {4.3b)

Consider first Wn. The jdeal sensor measures in its
misaligned coordinates the vector Wy». Since the sensor
is not ideal, it adds to the measured vector the error
term dHT., hence

T meas = Wpv + ¥y (4.4)
Substitution of (4.4) into (4.3a) yields
Wa = Ma(Wyr + dWys) (4.5)
Now
Mroa = Mrothia (4.6)
For small misalignment angles
Mpp=1+8 (4.7)
where
}_0 8, -e}{
6 - =‘°z 0 exi (4.8)
[_8y -8y 0_|
From (4.6)
Mar = MaroMpoy (4.9)
Substitution of (4.7) into (4.9) yields
Mgt = Mape (1 + ©) (4.10)

when (4.10) {s substituted into (4.5) and the term
containing products of errors is dropped, the following
is obtained

!A - MAT’!T' + MAT'QHT' + MAT’d!T' (4.11)
Next we address ¥, defined in (4.3b). Using the

definition of dq in (3.9) we van write
A(@) = Alg - dg) (4.12)

Using Taylor series expansion A(ﬁ) can be approximated
to within first order terms as follows

A 4 3A I
A - alg) - 2 g )
=1 ?94 |g
substitution of (4.13) into (4.3b) yields
Laag)!
¥a = AlQ)¥p -2, -5---1 ¥ dq (4.14)
A )Y E%% 5q, |41 4o

Note that the derivatives have to be evaluated at g

which is unknown. Therefore, as usual, we use ﬁ
instead. This {s based on the assumption that dg is

small enough such that ﬁ is close enough to g. Define

A
6@ - 28 (4.15)
949
then using (3.1) we obtain
—A A A - -— -
} 9 9 @ { !'Az a -9 ‘
Gy - } G -4 4 { Gp = } a4 }
I3 -q4 -aj_l [_qg a3 -qg_|
(4.16a) (4.16b)
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A A - A
f-q3 a4 qp | lag a3 -9p |
IA A Al IA A AI
63 = |-94 -a3 g | Gy=1l-a3 ag 7q; |
'A A AI !A A Al
ey a2 a3_i I_ap -9 qg_l
(4.16¢) (4.16e)
Further define
by = 644 (4.17)
Then (4.14) can be written as
Yo = Alg)¥p - [hy I hy | hy | hyd {HQII (4.18)
1dgy|
%)
[dag]
I_ I
Finally, define
Ho={hy I byl h3(hyl (4.19)
then (4.18) can be written as
Yp = Ala)¥] - Hedg (4.20)

Now recall the definition of W, and Vi as shown in
(4.3). From these definitions it is obvious that we may
substitute (4.11) and (4.20) into (4.1). When this is
done and in view of (4.2}, we obtain

Y- qug + Mapr Oy + May diys (4.21)
Note from (4.8) that
e = -[gx] (4.22)
therefore (4.21) can be written as
Y- qug - Mayr [ex]¥p» + Mayprdiys (4.23)

The matrix May» is not known to us; however, we do
know May. It Is easy to see that using the latter
rather'ﬁLan the former does not affect the accuracy to
any meaningful degree. For identical reasoning we use
N1» meas rather than Wy.. When these changes are made
and’"%he order of the cross product is changed in
(4.23), we obtain

| |
! Y= qug + MAT[!T’,MEESX]Q + MATdHT’ { (4.24)

While (4.1) indicates how to generate the effective
measurement y which updates the estimate, (4.24)
indicates the linear relationship between y, the
attitude errors, the misalignment errors of the sensor
whose measurements are being used and ddy., the total
error generated by the sensor. The derivation of (4.24)
is the first stage in finding the measurement matrix,
H, (defined in (2.8b)) for each of the sensors used
onboard ERBS. In order to conclude the development
which will yield those H matrices, we have to express
dWrsin terms of the error states of each sensor which
constitute a part of X shown in (2.9). This is done
next. .

Eine Sun Sensor (F§S) Measurement Model

The Sun sensor measures the tangents of the two
angles of the vector from the spacecraft to the sun.

These two angles are A and B. Using the measured
quantities (tanA), and {tanB),, the unit vector

measured by the sensor is computed as follows
|(tanA);;

¥r neas = [1 + (tanA)] + (tang)2)-1/2 {(tane)mi (4.25)
N

Let uy, = (tanA), and Vm = (tanB), then (4.25) becomes

Un

g |
| |

W1 meas = (1+ um2 + sz)-l/z { Ym , (4.26)
|_1 |

Perturbation of (4.26) yields the following vector of
errors for the measured sun vector.

“du|
|

diys = (1 + u? 4 v, 2)"1/2 [
!
|

v

d
0

— 2 —
| upSdu + umvmdv!

-0+ u? v )Y fuvidu v 2y | (4.27)
I
|- updu + vpdv |
Let
Q =(1 + ud 4+ vy 172
Vip s Q- el Wy - -0y
3 3.2 (4.28)
W21 = -Qupvy Waz = Q- Qvq
W31 = -Quy V32 = -0y,
Then (4.27) can be written as
"Wy Wy i TduT - -
! I | du |
d!Tn = I wzl sz H_dv_l - Ns | ' (4.29)
] | _dv_|
| W31 ¥3p_|
The measured quantities (tanA)p and (tanB), can be
written as
(tanA), = tanA + CatanA + by + ny (4.30a)
(tanB)y, = tanB + CgtanB + bg + ng {4.30b)

where

CprCpg = scale factor errors
bA,bB = biases modeled as Markov states in (3.25a)
na.ng = white noise

{;o? (4.30) and the definition of Uy and vy, we realize
a

du = CatanA + by + n
dv = CgtanB + bé + ng

{4.31a)
{4.31b)

When (4.31) is substituted into (4.29) the following is
obtained



| CptanA™ | b | [Tnp |
dWyr = Wl + Wl | + Wl | (4.32)
I_CBtanB_ I—bB—l I_I'IB_|
which can be written as
|” {"tana 0 7] | T
dWys = |W| | W I |
| 71_0 tanB_j | _|I Cg :
| ba |
| I
|_bg_I
| "na"
+ W] | (4.33)
l_n&J

b 10100 | gy 1
Y- e ATLET® measX
%10 0] |
|"tanA 0 || |0 ...... 0|
My | [ MaWe | 0 ooonn. 01 x
ATS) 0 tangj] NS ol 0|
ol
+ HATH | I (4.34)
_ng_|

Equation (4.34) gives the measurement matrix, H, for
the FSS which is used in computing the gain matrix and
updating the covariance matrix. Since tanA and tanB are
not available to us, we use, respectively, (tanR), and
(tanB), instead. Since the measured and the ™ rue
quanti?ies are close, this change practically
introduces no error.

IR Horizon Scanner Measurement Model

The horizon scanner measures the roll and pitch of
the spacecraft with respect to the geodetic coordinate
system (GDS), i.e. it measures the direction of the
nadir vector. The horizon scanner misalignment errors
are assumed to be small with respect to roll and pitch
errors, to be additive to roll and pitch and
indistinguishable from them. The unit vector in the
direction of the nadir in the GDS is given as

2lps = 10, 0, 1) (4.35)
In body coordinates this vector is given as
[“cos(r)sin{p)]
Zbody - i sin{r) i (4.36)
| _cos(r)cos{p)_|

where r is the roll angle and p is the pitch angle.

As mentioned, this is the measured vector; that is
|-cos(r)sin(p)”|
| I
!T',meas - : sin(r) | (4.37)
[

_cos{r)cos(p)_lpeas

which is equal to the true vector plus error. The error
vector is obtained by perturbing (4.36). The
perturbation yields

"sin(r)sin(p)dr'- cos{r)cos(p)dp |
ddyr = cos(r)dr i (4.38)
-sin(r)cos(p)dr - cos(r)sin{p)dp_ I
Let
~ sin(r)sin{p) -cos(r) cos{(p) |
W = cos(r) 0 { (4.39)
_-sin(r)cos(p) -cos{r)sin(p) I
then (4.38) can be written as
dNyr = Wy { dr*{ (4.40)
oo’
We characterize the horizon scanner errors as bias
(modeled as Markov process in (3.25b)) plus white
noise; that is,
dr' « d, + ny, (4.412)
dp* = dp + mpy (4.41b)

where d,. and d, are the roll and pitch biases and np,
and n, are thg roll and pitch white measurement noise
compongnts When (4.41) are substituted into (4.40),
the following is obtained
d!T'.meas = Hhhh + thh (442)
where %P is as defined in (3.26) and n; = [n r, "b
Since po4y IS already in body coordinates, Een
in (4.1°%0d in (4.24) is the identity matrix. Since
the horizon scanner was assumed not to have
misalignment error the term containing misalignment
angles in (4.24) is not needed. The model for the
horizon scanner 1s given in (4.43) below. Again y is
computed using (4.1
| [|0.... 0] [0...07
1-IHq|0 L0 Wy [0...0x
i_710....0] 1o...0|

Equatfon (4.43) yields the H matrix to be used with IR
horizon scanner measurements. Similarly to the
evaluation of the Sun sensor H matrix, we use the
measured roll and pitch to evaluate W, in (4.43).

+ Hhﬂh (4.43)

Magnetometer Measurement Model

The three magnetometers mounted orthogonally to one
another measure the Earth’s magnetic field components
along each of their axes. This arrangement of sensors
is identical to the three gyro arrangement which
measure the spacecraft’'s angular rate. The magnetometer
error sources are also identical to the gyro error
sources which are: scale factor errors, misalignments,
bias (modeled as Markov process) and white measurement
noise. Therefore the magnetometer errors can be
represented by the same model as for the gyros.
Therefore, in analogy to (3.13), we write the following
expression for the errors introduced by the
magnetometers
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mxy °mxz Ex

[dBy| ISmy O 0 T|IB, | | By | [Opyl
i e I
i et
|dBy) 10 0 Spy 1B, | [8ppy 9mzy 0 187 | Ibpgl
[ N B T
v
+ |nmy} (4.44)
Nz |
mfl

where B, By and B, are the magnetometer measurements and

Sh = [Smx+ Smy+ Szl (4.45a)
9; - [gmxy' Omxz» gmyx' Omyz+ Omzx> °mzy] (4.45b)
by = [bpys buys bz (4.45¢)
oy = [y Mmys Nmz) (4.45d)

v 9y and are the vectors of magnetometer scale
factors, misalignments and biases, and n, is the white
measurement noise vector. The magnetometer output
vector Bp.,c can be written as

BT meas = By + dB (4.46)
where 8¢ is the true magnetic field vector in the
assumed magnetometer coordinates (note the difference

between these sensors and the FSS and IR horizon
scanner). We can write (4.44) as follows
#HB;I IBX 00 By B,0 0 00 10 '0# Iﬁm;=
}day}-:o ByO 0 0 B,B,0 0 0 I og xt+ #nmy}
|9B;] 0 0 B, 0 0 0 0 BB, O O 1 [z |
(. _ - _t
(4.47)
where
T = 1sh, of, bl (4.48)
Define the matrix B’ as follows
|§x 00 By B,6 00010 5}
B'= }0 By 0 00 BB, 00 01 0} (4.49)
o 0 B,00 0 0 B By 0 0 1
- o
We may write then (4.47) as
d8 = B'x* + pp (4.50)

Note that dB s not identical to dwp» the way the
Tatter is defined in (4.4) since df contains the
magnetometer misalignment errors whereas dyr» does not.
For this reason dB cannot be substituted For dir» in
(4.24). We have, then, to use the basic definition of y
as applied to the magnetometer readings in order to
formulate the linear relationship between y and the
magnetometer errors which constitute x*. For
magnetometer measurements we formulate our effective
measurement, y, as follows

! |
= X = MatBr meas - AlQ)Y) { {4.51)

Substitute (4.46) into (4.51) and in view of {4.3b)
also substitute (4.20) into (4.51). This results in

¥ = MayBr + MardB - Al@)¥) + Hoda (4.59)
Note that the first and third terms on the right-hand

side of (4.59) cancel one another. Then when (4.50) is
substituted into (4.59) we obtain the desired result

¥ = Hgdg + MayB'x® + Magng (4.60)
or more explicitly
Y- }—H f 0 g | Ma78’ e Marng,  (4.61)
%o 0 | o

Equation (4.61) yields the H matrix to be used with the
magnetometer measurement updates. As for the previous
sensors, we use the measured magnetometer data to
evaluate B’. Finally, note again that the effective
magnetometer measurements which have to be processed by
the EKF are computed using (4.51) and not (4.1).

Measurement Error

The main component in the magnetometer noise vector,
D., 1s the quantization error. Its nature and
Eﬁaracterization is explained as follows. The output of
the magnetometers is received in the telemetry stream
as

N - N

yr vz
with N in counts. The ith component of N (i=x,y,z) is
obtained from the actual measured components as [9]

Ny = INT(Bi,meas/Ki)

where INT means “the integer part of". Obviously, a
certain part of the measured value is lost due to the
INT operation: that is

INT(B{ meas/Ki) + ny = Bi meas’Ki

The nature of the INT operation is such that n. can
vary between 0 to 1. Moreover, the distribution of the
chopped off value is uniform over the range 0 to 1. It
is then easy to show that

(4.62)

(4.63)

(4.64)

E(ny} = 0.5 (4.65a) Var{n;} = 1/12 {4.65b)
Substituting (4.63) into (4.64) yields
Ni = Bj meas/Ki - (4.66)

It 1is easy to see why in order to calculate the
magnetometer readings on the ground the following
computation is performed

Bi,comp = Ki[Ny + 0.5] (4.67)
Substituting (4.66) into (4.67) yields
By,comp = Ki[By meas/Ky - ny + 0.5] (4.68)

Define the measurement nofse of magnetometer { as
nm'1 - K1(°.5 - ni) (4.69)
then, in view of (4.65),

E(ng,i) = 0 (4.708)  var(ng ;) = Ki/12 (4.70b)

where E denotes the expected value and Var denotes the
variance. From (4.48) and (4.69)



Bi,comp = Bi,meas * Mm,i (4.71)
and in vector form
Beomp = Bmeas * I (4.72)

From (4.46), (4.47), (4.61) and (4.72) it is obvious
that the noise vector to be use in (4.61) is the vector
Ry 3S defined tn (4.69) whose expected value and
variance are defined in (4.70)

V. QUATERNION NORMALIZATION

The quaternion which represents attitude is a normal
one. It was found [6] that forcing normalization on the
estimated quaternion is advantageous since it speeds up
convergence and eliminates the need for filter tuning.
It was found in the present work too that normalization
has these benefits. As shown in [6], normalization of
the quaternion is equivalent to removing a portion of
the estimate. This part that is removed must be
accounted for in the next stage of the filtration. The
handling of the normalization in this work 1is not
jdentical to the one in [6] since here the covariance
and state are propagated by solving their respective
differential equations and not by using the state
transition matrix as is the case in [6]. There the part
of the estimate which is removed by normalization is
propagated using the state transition matrix and is
considered at the next measurement update of the state
estimate. Here though the normalization is done in
between measurements. After the state estimate update
by the horizon scanner measurement, the quaternion is
normalized as follows

Adr A A

qrpl+) = grri+)/1a1p{+)! (5.1)
where the subscript IR  denotes the fact that the
quaternion estimate being dealt with is at the time
point where the IR horizon scanner measurement are
considered, (+) denotes the a-posteriori estimate and
the superscript * denotes the resultant normal
quaternion. It can be shown [6] that the normalization

removes the following part from aIR(+)

day = arp(+)afp(+)darg (5.2)

where daIR = Kipyir Is the estimate of dg which is
computed using the kalman gain and the effective
measurement of the scanner. Now when the FSS
measurements are processed next, the estimate of the

quaternion is updated as follows
(5.3a)
(5.3b)

A A
dgrss(+) = day + Kessl¥pss - Hpssdan]
pss(+) = QIR(+) + dapgs(+)

is the quaternion estimate after fits

A
where Qrec(+)
FS% If no normalization is

update by the FSS measurements.
performed, ﬁ;R(+) - ﬁIR(+), dﬁ = 0 and (5.3) change

accordingly. In any event, the quaternion, aFSS(*)' is
used as the a priori estimate of g for the magnetometer
update, if avatlable, or else is propagated to the next
time point.

VI. COMPENSATION

When propagating the state estimate and the
covariance, we use the measured angular velocity. We
know, however, that the propagated values are not
accurate since the gyro outputs contain errors. As we
estimate those errors, we can do better if we correct
the gyro outputs for estimated errors. This operation
is known as calibration.

We also want to compensate the measurements obtained
from the FSS, the IR horizon scanner, and the
magnetometers which are all orientation measuring
devices whose outputs are used to update the filter.
The reason we want to compensate these sensors’ outputs
is different in nature than the reason for compensating
the gyro outputs. Rewrite (4.1) and (2.11)

Y = Ma¥r meas - AlQ)Yg (6.1)

Re(+) = B () + Ky (6.2)
The term Ky, is nothing but the estimate of x defined
in (2.14) as

Xt = R(-) + x(ty)

That is, in {2.11) we estimate the difference between
the true value of X and its latest estimate, and add
the estimate of the difference to the latest estimate
of X to form its updated estimate. Now let us consider
an error term in one of the sensor measurements, say a

(6.3)

bias. This bias is a part of Wy poqg and thus, as
indicated in (6.1), bears its’signature on y.
Consequently, if certain observability conditions are

met, it 1s estimated and added to the state estimate as
indicated in (6.3). If no compensation takes place, the
next time the measurements of this sensor will be
processed the bias will again be estimated and added to
the previous estimate of this bias, thus creating a too
targe and hence wrong estimate. The correct way, then,
to handle this case is to eliminate the estimate of the
‘bias from Wy» o 5 This way only residual bias which
has not been ’es%wmated yet will be present in y as
shown in (6.1). Only the estimate of this residual
will, then, be added to the existing estimate of the

bias, which is a part of 2, yielding a correction to
the previous estimate. This logic holds for the other

error states too. The way we carried out the
compensation is outlined in the ensuing.
Gyro Compensation
From (3.4)
W= W - dw (6.4a)
therefore o
w=# - dw (6.4b)
Rewrite (3.18)
dw = [UIw|11{‘§;{ + Dg) (6.5)
K
Bl

Since U and W are functions of w, and since the noise
vector is of 2ero mean, a good estimate of dw is
obtained from (6.5) as

di = [U(W) IW(W) 1]

—A—

(6.6)

This estimate can then be used in (6.4b) to yield an
estimate of w which is then used in the propagation
algorithm instead of the raw gyro outputs.

FSS Compensation

Consider
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¥ = MATEYY meas - A(a)yl
and recall (4.3)

(6.7)

(6.8a) Yp = A(Q)Y]  (6.8b)

Wy = MATHT',meas

As explained earlier, y is a linear function of x which
is the difference between 2 and X. We want x to go
to zero when X approaches X. Indeed, when X approaches

X, a approaches g and ¥, computed in (6.8b) really
yields the components of %he unit vector in the Sun's
direction when resolved in body coordinates. However,

even when 2 s equal to X, Wy poas will not be equal
to Wy and therefore Wy computed in (6.8a) will not be
equal to Yp and thus 'y will not be zero. (This fact
shouldn’t be confused with the fact that y goes to zero
when the errors themselves go to zero). Only when

Ws goes to Wr as 2 goes to X, will y go to zero
al !Tegﬁould. To agﬁieve this use (4.4) to note that
¥r = Mrp (81 meas - d¥1°) (6.9)

As shown in (4.7}, for small FSS misalignment angles

HT'T =1 +0 (6.]0)
Transposing (6.10) we obtain
Mppr =1 -0 (6.11)
which when substituted into (6.9) yields
Wy = (1 - 0)(H neas - d¥y) (6.12)
Therefore a reasonable estimate of Wy is
A = (1 - 8) ¥y peas - o) (6.13)

Replacine Wy meas n (6.7) by 8y yields the desired
result ’

A
g = Map(l - 8) (W peas - dpe) - ALY (6.14)
where, in view of (4.32), dQT, is computed as follows
| Ca(tant)y | .
iy = W], | + Wl
|_Cg(tanB)y, | [ b

Note that initially when our estimate of x is zero,
(6.14) is reduced to (6.1).

IR Horizon Scanner Compensation

The arguments made in outlining the FSS compensation
are also valid for the horizon scanner only that here
dWt» is different and there are no sensor misalignments
(tgey are considered to be a part of the bias errors).
Following (4.42), we compute for the horizon scanner

i = by (6.16a)

§-0

A I (6.15)
B!

and
(6.16b)

and substitute them into (6.14). The result is then the
compensated effective measurement of the IR horizon
sensor.

Magnetometer Compensation

As shown in (4.51) which is rewritten below, y is
computed differently for the magnetometer measurements;
namely

¥ = MATBr meas - A(Q)Y (6.17)
where
Bt meas = By + dB (6.18a)
and
8 = 8'x" + ny (6.18b)
PALIES (L LI A (6.18c)

Following the rationale behind the FSS and IR horizon
scanner and in view of (6.18), we compensate the
magnetometer readings as follows. Compute

T - (8, &, 6 (6.19a)

df - B%* (6.19b)

where B’ is computed according to (4.49) using the

uncompensated outputs of the magnetometers. Next
compute the compensated magnetometer measurements

éT = B meas - df (6.19c)

which are used to compute the effective measurement as
follows

¥ = MarBr - AGQ)Y, (6.19d)

VII. THE COMPLETE ERBS EKF ALGORITHM

The models developed in the previous section were
implemented into a program written in Fortran. The
data used in the program is actual spacecraft data
transmitted to Earth by ERBS.

MEASUREMENT UPDATES

The program is set up to compute an update initially
and then propagate. The updates are performed for each
sensor individually, the horizon scanner update is
performed first, followed by the sun sensor, and the
magnetometer., [f any sensor data are not available the
program bypasses that sensor and goes on to the next.
In between each sensor update, the updated state and
covariance are set to the a-priori values going into
the next sensor update. If no sensor data are
available, the a-posteriori state and covariance are
set equal to the a-priori and are propagated to the
next time point.

Below is a summary of the algorithm and how it is
applied to each update and to the propagation.

IR Update

Compute H:
H - :.H } g : 8 5 W | g ) g_{ (1.1)
%G00 ™ jolllo
Compute !T',meas:
|~cos(r)sin(p)|
!T’,meas - 5 sin(r) i (7.2)
!

_cos(r)cos{p)_lpeas



Compensate !T',meas’

QT = U1’ meas - Qh ﬁh (7.3)

Compute residual and uncertainty of residual:
¥ = B - MDY 4y (7.4)
(ugpdy = (CHPC-HT & Ry 1) 41/2 (7.5)

where the subscript ir denotes quantities pertinent to
the horizon scanner, Y jr is the spacecraft-to-earth
unit vector cbtained frdm the ephemeris and j denotes
the jth element on the main diagonal of the residual
covariance matrix.

State and Covariance Update

Compute K:
Ky = Pl T TP (T + R ! (7.6)
Update X: -
Re(+) = () + Ky (7.7)
Update P:

Pr(#) = (1-KH)P-) (KT + KR T (7.8)
Sun Sensor Update

Compute H:
i~ 10..0] | ["tanA O ||
H = i_”q l g :: g I "AT[HT’,measx] = "AT"sH_ 0 tanB_I{
[0 cennen 0"
| Mk (8 g
Compute ﬁT’,meas:
| (tanA);I
MT> meas = (1 + (tanA)? + (tanB)y?)~1/2 l (tanB)m}
I
(7.10)
Compensate HT‘.neas‘
fr = (1= O)CHp peas - Y[ Cattantly | - ¥sIBa )
|_Eg(tanB), | |_bg |
S (71)

Compute residual and uncertainty of residual:
(7.13)
(7.14)

Y- ﬂ‘[ - A(a)!]‘fss
(ugssdy = ([HP(-HT + Regg1) /2

where the subscript fss denotes quantities pertinent to
the fine Sun sensor, Y {s the spacecraft-to-Sun
unit vector obtained from a Solar-Lunar-Planetary file
and j denotes the jth element on the main diagonal of
the residual covariance matrix. The state and
covariance are then updated as in (7.6) through (7.8).

Magnetometer Update

Compute H:
[T 10 ceevenennns. 0 -
He | H, | 0 .0vviinnnne. 0| MayB” | (7.15)
8o o T
Compute BT',meas’
7B, |
BT ,meas = | By | (7.18)
[_Bz_1
Compensate BT',meas:
[ So |
A,I A
ﬁT ® BT’,meas - B { & I (7.17)
| _by,_|
Compute residual and uncertainty of residual:
¥ = Br - M@V, nag (7.18)
T 1/2
(Unag)j = ([HP(-JHT 4 Rpa o1 / (7.19)

where the subscript mag denotes quantities pertinent to
the magnetometers, Y ag is_a unit vector in the
direction of the magné{ﬂg field obtained from a 1980
International Geomagnetic Reference Field model
available in a Fortran subroutine and j denotes the jth
element on the main diagonal of the residual covariance
matrix. The state and covariance are then updated as in
(7.6) through (7.8).

STATE AND COVARIANCE PROPAGATION

After all the sensor updates are performed, the
state and covariance are propagated using a fourth
order Runge-Kutta routine. The state and covariance
are propagated ahead using the gyro data at the time of
the update and the gyro data one second (nominally)

ahead. Before propagating, though, the gyro data is
compensated as follows.
N
K- - W] & | (7.20)
| _bg_|
State Propagation
2ty - £&et),t) (7.21)
Covariance Propagation
P(t) = FLR(EL,LIP(E) + PIOFT(R(L),t) + Q1) (7.22)

VIII. RESULTS

. Reference Solution

The reference we used for compariscn was the
attitude solution obtained from the batch estimator
used on the ground for operational attitude
determination for ERBS. Table 8.1 shows the attitude
solutions in the GDS and uncertainties for three
different conditions (cases). Case 1 used sensor
standard deviations of: FSS = 0.002 deg, IR = 0.2 deg,
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MAG = 0.5 (unit vector). An orbit's worth of data was
used to compute the solution. Case 2 used the same
amount of data as the first but the sensor standard
deviations were: FSS = 0.1 deg, IR = 0.5 deg, MAG = 0.5
(unit vector). Case 3 had the same sensor standard
deviations as the second but only 30 seconds of data

were used. Qbviously, the reference is not
unique the real solution is.
Table 8.1 Fina) Attitude Solutijons
and Uncertainties [(deq.)
Case | Case 2 Case 3
Attitude Unc. |Attitude Unc,|Attitude Unc.
|
[Yaw | -0.294 0.0135] -0.262 0.004| -0.731 0.012
ROV 0.400 0.0118| 0.421 0.005] 0.316 0.070
{Pitch| 0.650 0.173 | 0.420 0.004| 0.384 0.007
!
Eilter Solution

Since ERBS is not {nertially fixed, it {s not very
enlightening to see the varjation in the quaternion.
Therefore, in order to compare the filter solution to
the batch solution, the estimated quaternion was
converted to roll, pitch, and yaw in the GDS. We used
the filter first to estimate attitude only. Figure 1
shows the yaw solution in the GDS and is a typical
example of the behavior when estimating attitude only.

YAW vs TIME
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Figure 1:
No Calibration States

The filter was then run with the fyll state starting
at an a-priori attitude of zero degrees yaw, roll, and
pitch. Figures 2 and 3 show the behavior of the yaw
and pitch. Roll 1is similar to pitch. Figure 4 shows
the estimation of the I component of the gyro bias and
Figure 5 shows an example of the residual behavior.
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Table 8.2

gives the final attitude solutions and

the various calibration states {(after 60 sec of data)

for 2 different sets of initial conditions (which
actually differ only in the FSS and IR bias
uncertainty).
Table 8.2: Attitude and Calibration States
for Varying ]Initial Conditions
t I
Case 1 | Case 2 |
!
Yaw -0.512 -0.676
Rol1 0.354 0.406 |
Pitch 0.339 0.253 |
S A
Yalue Unc. Value Ung.
6YRQ
SF 0.194€-4 0.01 0.360E-5 0.0l
-0.598t-4 0.00998 3.898E-5 0.00998
-0.786E-4 0.01 -4.384E-5 0.0l
0 (deg) 0.62E-4 0.057 3.2E-4 0.057
0.34E-4 0.057 0.50E-4 0.057
0.028£-4 0.057 0.013E-4 0.057
0.15E-4 0.057 0.046E-4 0.057
-0.070E-4 0.057 0.052E-4  0.057
-14,6E-4 0.057 -10.2¢-4 0.057
Bias -0.0211 1.995 -0.0984 1.995
(Deg/hr}| 0.0094 1.995 -0.0096 1.995
0.438] 1.995 0.3037 1.995
|
0 0.0648 0.050 0.0017 0.056 |
(Deg) 0.0466 0.054 0.0114 0.056 |
0.0896 0.057 0.0140 0.057
SF -0.0235 0.00607 -0.00557 0.009
-0.0177 0.00830 0.00044 0.00954
Bias 0.1732 0.086 0.077 0.181
(Deg) 0.0812 0.058 -0.0468 0.0709
IR |
Bias 0.2115 0.032 0.0340 0.0472
(Deg) -0.2377 0.033 -0.0840 0.046
............................................... |
MAG |
Bias -0.499 0.699 -0.597 0.698
(mg) -1.479 0.816 -1.237 0.816
0.289 0.911 0.223 0.911
{other magnetometer states are negligible)
!
nitial Uncertainties:
Gyro

SF = 3*0.01
98 = 6*0.057 deg
bias = 2.0*3 deg/hr
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FSS

0 = 3*0.057 deg,
SF = 2%0.01
Bias = 2*0.1 in case 1,
2*0.316 in case 2

IR

Bias = 2*0.1 in case 1,
2*0.316 in case 2

MAG

Bias = 3*1 mGauss

IX. CONCLUSIONS

The ERBS EKF shows gooed, quick convergence
properties when estimating only attitude. The filter
is robust in that it can overcome initial attitude

errors of up to 30 degrees (it may even go higher but
30 degrees was the limit of our testing). When the
remaining calibration states are added, and the sensor
measurements are compensated for their calibration
states the filter is not very robust. Starting the
filter with a large initial attitude error would be
outside of the linear region and the filter is not
expected to give good behavior in those conditions.

The attitude solutions estimated by the filter show
some oscillation. Since the results presented are from
real spacecraft data the filter would be expected to
follow more closely the oscillations in the data
whereas a batch solution would have these oscillations
averaged out.

We found, when estimating the entire state, that the
results were dependent on the initial uncertainties due
to a lack of observability. The batch solution which
was used as our basis of comparison also was dependent
on initial conditions. It could not be used as a true
reference.

The ability of the filter to quickly converge to an
attitude solution from a 1large initial error
demonstrates the feasibility of using an EKF for ground
attitude processing in FOD, particularly in a real-time
situation. Since all the states cannot be estimated
simultaneously due to a lack of observability, more
investigation into the a-priori uncertainties is
necessary in order to achieve a desired accuracy in the
final calibration states.

X. FUTURE WORK

In this work, the batch solution served only as a
basis for comparison. It cannot be treated as a true
reference. Simulated data will be used in the future,
which will provide a true reference. From there
further studies of the different calibration states and
the ability of the filter to estimate them can be
determined. At the time of this writing, the runs
using simulated data were still being debugged.

A further enhancement of the filter state will need
to be made to include more than one sensor of a single
type. Currently the filter only estimates calibration
parameters for the sensors with coverage; no switching
is done when the coverage changes over to another
sensor of the same type.
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As mentioned previously, the ability to overcome
large initial attitude errors makes the filter
attractive for real-time operations. A real-time EKF
will be developed which estimates attitude and possibly

gyro calibration states only.
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