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This.paper describes the design and testing of an

Extended Kalman Filter (EKF) for ground attitude
determination, mtsaltgnment estimation and sensor
calibration of the Earth Radiation Budget Satellite

{ERBS). Attitude is represented by the quaternion of
rotation and the attitude estimation error is defined

as an additive error. Quaternton normalization is used

for increasing the convergence rate and for minimizing
the need for filter tuning. The paper presents the
development of the filter dynamic model, the gyro error

model and the measurement models of the Sun sensors,

the IR horizon scanner and the magnetometers which are
used to generate vector measurements. The filter Is
applied to real data transmitted by ERBS sensors.
Results are presented and analyzed and the EKF
advantages as well as sensitivities are discussed. On
the whole the ftlter meets the expected synergism,

accuracy and robustness.

I. INTRODUCTION

An important part of spacecraft ground support Is

attitude determination, sensor alignment, and sensor

calibration. In the past, at Goddard Space Flight

Center (GSFC) in the Flight Dynamics Division (FDD)

each task was performed separately, usually using a

relatively small state . The use of more sophisticated

algorithms has been suggested in the literature, but

they have not yet been tested with real spacecraft data

for ground processing in Flight Dynamics.

The purpose of this study was to design and test an

Extended Kalman Filter (EKF). The filter was designed

for the Earth Radiation Budget Satellite (ERBS). ERBS
is equipped with the following sensors which are used

for attitude determination: 2 redundant Inertial

Reference Units (IRUs) each containing 3 single-axis

gyroscopes, 2 digital fine Sun sensors (FSSs), 2 infra-

red (IR) horizon scanners, and I three-axis

magnetometer. The state estimated by the filter

consists of the attitude parameters (quaternlon),

sensor misalignments for the Sun sensor, magnetometer

and gyros, biases For the Sun sensor, horizon scanner,

magnetometer, and gyros, and scale factor corrections

for the Sun sensor, magnetometer, and gyros. The

filter was tested using real spacecraft data

transmitted to Earth by ERBS.

Kalman filters have not been used for ground

attitude processing in the FDB at GSFC. The current

ground support software implements single frame and

batch estimators and, as mentioned before, much of the

calibration effort Is performed separately from the
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attitude determination. The EKF designed for ERBS

allows for all of the calibration to be performed along
with the attitude determination.

The use of the extended Kalman filter (EKF) for

spacecraft attitude determination has been dealt with

quite extensively in the past. Kau et al. [1] as well

as Farrell [2], for example, used an ad-hoc solution to

the problem of estimating the Euler angles directly

from vector measurements. A more general approach to

this problem was presented In [3]. The problem of

estimating the direction cosine matrix directly from

vector measurements was discussed in [4]. The filter

which was required there was a linear one with some

adaptation. A general analytic exposition of the use of

the EKF for spacecraft attitude determination was given

by Lefferts, Markley and Shuster [5]. Reference [6]

dealt wlth the problem of estimating the attitude

quaternion from vector measurements. Basically, the

estimated quantity was the difference between the best

known value of the quaternlon and its true value. Thls

difference was defined as a four component additlve

quantity. Because of this definition the estimate of

the quaternion is not necessarily "normal unless it

converges to the correct quaternion. It was found that

normalization of the estimated quaternion during the

filtering process speeds up convergence and eliminates

the need for filter tuning. In other references, e.g.

[5], [7] and for on board attitude determination

software which is used in LANDSAT 4 and is planned to

be used in the GRO and EP spacecraft a multiolicative

quaternlon difference is used. Since it is assumed that

this difference quaternion is small and as for small

rotations the scalar part of the quaternion is close to

I, those algorithms are estimating only three attitude

- error components. Obviously, estimation of an

additive quaternion error of four parameters plus the

induced normality constraint is equivalent to

estimating three parameters. Because of our good

experience with the additive quaternion error approach

[6] we chose to implement this approach in the present

EKF algorithm.

In the next section we introduce the algorithms

developed for the ERBS EKF.

II. THE EXTENDED_LMAN FILTER

The EKF algorithm is based on the following assumed

models: System model:

- f(_(tJ,t) + _(t) (2.I)

Measurement Mode):

ak " hk(_(tk)) + _k (2.2)
where:

_(t) - state vector.

_(t)- zero mean white process.

_k" zero mean white sequence.

The EKF algorithm is as follows [8]. The measurement

update of the state estimate and of the estimation

error covariance are performed as follows:
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State EstimatIQn Uodate:

_k (+) " _k(') + Kk[Zk " bk(_k('))] (2.31

where the Gain Matrix ts evaluated as follows:

Kk - Pk(-)HkT(_k(-)l[Hk(_k(-J)pk(-lHkT(_k(-))+ Rk]'l

... (2.4)

Error Covartance UQdate:

Pk(+) - [I - KkHk]ek(-)[I - KkHk] T + KkRkKkT (2.5)

The propagation of the state estimate and the error

covarlance are accompllshed uslng:

State Estimation Prooaoat|gn:

_(t) - _(_(t),t) (2.6)

Error Covartance Prooaoation:

P(t) - F(_(t),t)P(t) + P(t)FT(_(t),t) + Q(t) (2.7)

where
_£(_(t),t) I

F(_(t),t) ........... I (2.8a)
IX(t) l X(t)-_(t)

k

IHIX(')) = "'_iti" X(t)-_(t)

- covmrlance matrix of white sequence.
- spectral density matrix of w(t).

(2.8b)

The EKF rather than the 11near KF algorithm must be
used because the measurqmmnt vectors obtained from the
sensors arm non-llnear functions of the state vector.
The state vector was selected to be:

I-Q-I 4

3
h 6
N 3
is 3

_ " _s z (z.9)

ls 2

lh 2

6

I__J

Following the tradition of the NASA Goddard's Flight
Dynamics Division we used vector m_asuremonts to update
the EKF. (It should be noted that thls is not a must
but rather a choice). The _ measurements which
are used to update the filter are defined as follows

- MAT_T,,moas - A(_)_I (2.101

quaternlon components

gyro scale factor errors

gyro misallgnmont angles

gyro biases

FSS mlsalignment angles

FSS scale factor errors

FSS biases

IR horizon scanner biases

magnetometer scale factors

magnetometer mlsallgnments

magnetometer biases

where:

- effective measurements.

MAT - transformation matrix from the nominal (non-
misallgned) sensor to body coordinates.

WT,,moms = unit vector as measured by the sensor in the
sensor mlsaltgned coordinates.

A(9) - transformatlon matrix from the inertial to the
body coordinates as a function of the
estimated quaternton.

_I " the measured unit vector as known In the
inertial coordinates.

While the traditional EKF algorithm updates the state
esttmate according to (2.3), we use _ (as computed tn
(2.]0)) to update the state estimate as follows

_k(+) " _k(') + KkZk (2.111

To reconcile this apparent deviation from the ordinary
EKF algorithm, define dzk as follows

dZk " Zk - bk(_k(-)) (2.121

then (2.3), the state update equation in the ordinary
EKF algorithm, reads

_k (+) " _k(') + Kkdlk (2.13)

Next define _(tk) as

_(tk) = _k(') + _(tk) (2.14)

expand (2.2) tn Taylor series expansion about _k(')
and omit terms oaf second and higher order of _(_k)"
This ylelds

Zk = bk(_k(')) + Hk_(t k) + _k (2.15)

where Hk is as defined in (2.8b). When Zk from (2.15)
i$ subsfttuted Into (2.12) we obtain

dZk " Hk_(tk) + _k (2.16)

that Is, d_k is llnearlv related to 1(tk). An
inspection of (2.13) reveals that the EKF estimates
_(tk), which according to (2 16) Is llnearl related to_ . y

the effective measurement d_k, and then adds the
estimate, _(tk), to I_(-), the best estimate of
)(tk). As willie seen In,he ensuing, also our use of
_, as defined in (2.10), in the state update equation,

(Z.ll), amounts to estimating _(tk), which Is,llnearly
related to _ , and adding the estlmate to Xk(-). In
fact, to show the latter we only have to show that

_(tk) IIsn linearly related to _. Thls wlll Indeed beshown Section IV.

[]]. THEOYN_ICSMODEL

The states which vary in time are the attitude
parameters and bias states which are modeled as Markov
rather than as bias states. (The reason for this
modeling w111 be discussed later). The scale factors
and mlsallgnments are assumed to be constant in time.

The attitude matrix is given in terms of the
quaternlon, q, as follows

!;I-q_'q_+q; 2(qlqz+q3q4) 2(qlq3mq2q4JJ
I

A - )2{qlq2-q3q4) -q_+q_-q_+q( Z(q2q3+qlq4)l (3.1)
(

_)
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The quaternion changes in time according to [8, pp.
51], 512]

where:

- Qq (3.2)

i-o Wz -Wy Wxll

Q._]j-wz o wx Wy)

2) Wy -wx O Wz]

I-w x -Wy -wz O_l

(3.3)

and where Wx _ z are the components of the spacecraft
angular velod((y vector resolved in the spacecraft
coordinates. The true quaternlon of the spacecraft
propagates in time according to (3.2). We cannot
compute q precisely since we do not know precisely the
initial quaternion nor do we know E precisely as it is
a measured vector and the measurement contains errors.
The measured angular velocity can be written as

- E + dE (3.4)

where

- gyro reading.
- true angular velocity.

d_ - vector of gyro errors.

Since the true quaternlon propagates according to (3.23
we propagate the estimated quaternion in a similar
manner; that is, we propagate it according to

^

. Q_ (3.6)

where _ has the form of (3.3) but its elements are the
elements of the measured angular rate _. Now a matrix
dQ can be defined as follows

Q - Q - dQ (3.6)

Substitution of (3.6) into (3.2) results in

- _q - dOo (3.7)

When (3.5) is subtracted from (3.7) we obtain

- _ - Q(Q - Q) - dJ_q (3.8)

As discussed in the introduction, we define an additive
quaternlon error as follows

^

dQ-Q- _ (3.9)

Then (3.8) can be written as

d_ - Qdg - dQo (3.]0)

A matrix, B, can be defined as follows

l--q4 q3 q2-1
I I

II.3 ",4 qlI (3.111
B - _ J q2 -ql "q4 J

I I
J- ql q2 q3-J

and used in (3.10). HoweverA since g itself is not
known, we use Its estimate, g to compute (3.1]). When
this is done, we can write (3.103 as follows

I I (3.12)I d_ - _do + _dw I

I I

where _ is computed as in (3.11) using _ rather than o.
Equation (3.12) is the dynamics equation of the

additive quaternion error.

Equation (3.123 cannot be used as a dynamics model
in an EKF since the vector of gyro errors, dw, is not a
white noise vector. It could be modeled though as a
linear system excited by a white noise. Consequently
this linear model can be augmented with the dynamics
model of (3.123. The augmented model is linear and is
driven by a white noise vector hence the model can
legitimately used by the EKF [8]. To accomplish that we
use the following standard gyro error model.

ll_wXll Sgxo o I WxIIOl II Ogxy %x_ll_x-l"II I [_gx

IIdWv('I°'llSgyo (,wy +l%yx o %yzl Wy llI+IbgY(l

/dwz) I0 0 Sgz_ ]Wz I ll)gzx Ogzy 0 J/w z / lbnzlI_ _I I_ I_ _I _ _II_ _I I_°_I

where

Inglx)l
+ (%]yl (3.13)
I° I
}naIzl
I_° _I

_- [Sgx, Sgy, Sgz] (3.14a)

_ " [Ogxy, Ogxz, Ogyx, Ogyz, Ogzx, ggzy] (3.14b)

_- [bgx, bgy, bgz] (3.14c)

_gT " [ng]x, ngly, nglz] (3.14d)

and T denotes the transpose, _(_ _ _ye b are as
explained in (2.9) and )_siS a it n v-_ctor.We
can write (3.13) as fol

_wx )wx 0 0 Wy wz 0 0 0 0 I 0 0 Jnolx)

ldw.l=lol Wy 0 0 0 wx wz 0 0 0 i Ol _x*+ )ngiyI_ l
I _II I i I

ldw?lI00 wz 0 0 O O wx Wy 0 0 II lnalzl
r__I I_ _I I__ I

... (3.16)

where

I J,9J, (3.,61
Define the following matrices

;x 0 0-I -WyWz0 0 0 0-II I
U- I0 Wy 0 I W- I 0 0 wx wz 0 0 l

I I I i

#0 o wz I o o 0 0 wx WylI_ _ I_ _I

... (3.17a) ... (3.17b)

then (3.153 can be written as

dE - [UlWll]_*+ %Z (3.ZB)
t

The vectors _g and _ contained in _ are constants,
therefore
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- 0 (3.19a) 9.g 0 (3.19b)

The gyro bias vector, J_, may actually be time-varying
so they are more adequa_ly modeled as Harkov states as
follows [8].

5g_ _]/tg o o -1lS_l !ffg2_Id il _ I
_ bgy( - ) 0 -I/tg 0 +' ))bgy) ng2y

bgz ( 0 0 -I/tg)(bgz ng2z_ _ )_ _(L _J _ _

[3.zo)

where tg is the time constant of the Markov states and

l!g2 T ° [ng?x , ng2y , ngZz ] (3.2])

is the white noise vector which drives the Markov

states. Oeflne the matrix Tgas follows

where

_ " [%x, %y, °sz] _{ - [CA, CB]

- [Smx, Smy, Smz]

" [gmxy, gmxz, gmyx, Omyz, Omzx' 0mz(](3.28)

The seven sensor states (of the Sun sensor, IR horizon
scanner and magnetometer) which are listed in {3.26)
and in (3.28), are augmented with the quaternion error
and gyro states to form the attitude augmented state
vector, _. This vector is that shown in (2.g) when g is
replaced by dg. The differential equation which governs
the propagation of _ is obtained by combining the
linear differential equations of the components of the
attitude augmented state vector. Accordingly the
augmentation of (3.11), {3.18), (3.19), (3.23), (3.25)
and (3.27) yields

)T1/tg 0 0 -I
( i

Tg - I 0 -I/tg 0 )
( I
i o o -i/tg)
I_ _(

then (3.20) can be written as

(3.zz)

_g - Tg_g + !]g2 (3.23)

The other bias states in the fine Sun sensor, IR

horizon scanner, and magnetometer which are listed
in (Z.g) and will be mentioned in the development
of the sensor error models, are also modeled as
Markov states as follows. Define the following
matrices

)Tl/ts 0 -) )Tt/th 0 -[
Ts - J I Th " I )

I_ 0 -1/ts_l I_ 0 -l/th_[

... (3.t4a) ,,. (3.24b)

IT1/tm 0 0 -i
$ l

Tm " I 0 -l/t m 0 ) (3.24c)
I I
I 0 0 -Z/tml
I_ _1

then

where

_ - [bA, bB]

6S - TS_s + BS (3.25a)

_h " Th_h + _h (3.25b)

b-m" Tm-bm+ Qm (3.?Sc)

_ - [dr, dp] J_ - [bmx, bmy, bmz]

... (3.26)

These vectors denote "biases" as defined in (2.9). The
scale factor and misalignment states of the sensors
which also are a part of the state vector listed in
(2.9), are assumed Constant. That is

 s'O 6s"o L.'o (327)

]-- --I

Ida I
I...I

,°,

,°,

°°*

I gs(
d I...I
dt I CSl m

I...I
I bsl
I...I
( dhl
I...I

I...I

I__l

I-_1 ,,_l ^_1 ^1
i QI BUI BWI BI
I..I...I...I..I..
I ( I I I
I..1...I...I..I..
I [ I ( I
I..I...I ..l..l..

I I.I H,I
I [ I

I..I...I. .I..1..
I [ I

I.,1...I..#..l..
I I I

]..I...I..I.-I..
[ I I

I..I...]..1..1..
I I I

I..I...I..I..I..
I [ I

I..I...I..l..I..
[ I I

I_

I I I
I I I

.,I-.I..I..
I ( I

..I..I.,I..
I I I

..I..I..I..
[ [ I

..)..I..I..
t I I

..(..I..(..

..I..1..I..
ITs I

• .I .... I.-

• °l ......

I [ I
..I..1..1..

I I I
..I..#..1..

( I [

I
I

°l''

I
°1''

I

I

I

• ,°

.1..I
I I

.I..I
I (

.I..I
I I

.I..I
[ I

.I..I

I I^
d_( )B_]

• ..I I .... I

I ....

• .,( I..,

....

oh'
.... i

....... i

... (3.2ga)

which is of the form

- F(_)_ + _ (3.2gb)

The spectral density of the elements of the white noise
driving Markov states in _ is related to the individual
states they drive according to the well known relation
[8] QI--2/TiS). o where QI is the spectral density of
the w_Ite nols_ driving state I, T= is the time

constant of this Markov state and Sl,o'iS the initial

standard deviation of the state. The matrix F{)) is the
one defined in (2.8a).

The estimation problem dealt with in this paper is
characterized by a linear dynamics equation. The system
dynamics is determined by (3.5), (3.19), (3.23), {3.25)
and (3.27). It is easy to see that when these equations
are augmented into one equation we obtain an equation
of the form

- f(t)_ + n (3.30}

where _ is given by (2.g) and f(t) is the following
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matrix

fCt) -

-QI
,.I.o

°.I,,

-,I.,

°,l°.

,,I,°

,,I°,

i
°.]°°

I
.,I..

I
°°I,°

I

[
.... I..I.

I
.... I..I.

I
.... I..I.

I
..... i

$
... .... I°

i
°°. .... Io

I
•..I° ..I.

I
•..I• ..I

I
•..I• ..I.

I

III
(..l..f..l..
III
I..I..I..I..

II
..I..I..I..
II

• ..I..I..I..
il

..I..I.oi..
II

..l..l.°l..

T II,
ITh

• ..I....I..
II$
.l..l..l°.I.,
III

• ..l..l.-l..l..i..
IIII

-I

I
..I

I
..I

(3.31)

The white noise vector _ is of no consequence when
dealing with the role of (3.30) in the estimation

process since according to (2.6) the propagation of

requires only the evaluation of f(t).

IV. THE MF.ASUREMENTMODEL

As mentioned in Section II the effectlyQ
measurements which are used to update the filter are
defined as follows

I I
# y-MAT_WT,,meas-A(_)VI f (4.1)
I I

where:

MAT -

WT' ,meas "
^

A(o)-

VI -

effective measurements.
transformation matrix from the nominal (non-

mtsaltgned) sensor to body coordinates.
unit vector as measured by the sensor in the
sensor mtsaltgned coordinates.
transformation matrix from the inertial to
the body coordinates as a function of the
estimated quaternion.
the measured unit vector as known in the
inertial coordinates.

In the ideal (nominal) situation the sensor is well
aligned and, _n addition, introduces no measurement
errors. Also, g, the estimate of g is perfect and is,
thus, equal to 9 itself. Therefore, using (4.1), we
obtain

" MAT_T,,meas - A(g)_I - MAT,_T, - A(g)_I - 0 (4.2)

Any deviation from the nominal will be reflected in _.
If the deviations are small, then _ will be related
linearly to them. It is our purpose in this section to
derive the linear relations between the effective
measurement Z and those deviations which are actually
the error states in _ (whose time behavior was given in
(3.25 and 3.27)).

Let us denote the two terms on the right-hand side
of (4.1) as follows

_A " MAT_T',meas (4.3a) .V.A = A(g)]I (4.3b)

Consider first _A" The ideal sensor measures in its
misaligned coordinates the vector WT,. Since the sensor
is not ideal, it adds to the measured vector the error

term dWl,, hence

_T',meas " _T' + d_T' (4.4)

Substitution of (4.4) into (4.3a) yields

_A " MAT(_T' + d_T') (4.5)

Now

MT,A - MT,TMTA (4.6)

For small misalignment angles

MT,T - I + O {4.7)

where

From (4.6)

)-0 ez -eyL

0 " II-ez 0 ex

)_ey -ex 0_)

(4.8)

MAT - MAT,MT,T (4.9)

Substitution of (4.7) into (4.9) yields

MAT - MAT,(I + g) {4.10)

When (4.]0) is substituted into (4.5) and the term
containing products of errors is dropped, the following
is obtained

_A " MAT'_T' + MAT'Q_T' + MAT'd_T' (4.11)

Next we address VA defined in (4.3b). Using the
definition of dg in (3.g) we van write

A(_) - A(Q - dg) (4.12)

A

Using Taylor series expansion A(g) can be approximated
to within first order terms as follows

- - # dq i (4.13)
I_'Ilql I_

substitution of (4.13) into (4.3b) yields

_A " A(g)]l "i_l"f6i'lg I dqt (4.14)

Note that the derivatives have to be evaluated at g

which is unknown. Therefore, as usual, we use
instead. This is based on the assumption that d_ is

small enough such that g is close enough to _. Define

(4.15)

^ --

-q2 q] "q4
^ ^ I

G2 " ql q2 q3
I^ ^ I
I_q4 a3 -q2_l

... (4.16b)

_A(o)l

then using (3.I) we obtain

lql G2 q) l
I^ I

fl" qz -Gz
1^ ^ t
I_q3 -_14 -ql_l

... (4.I6a)
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--A A A -- --A A --

.4 q,' '.4
• " G4" -3 q4 ql {

G3 4 "_13 qz{ {
A ^ ^ A

{-ql q2 q3-{ l-q2 "ql q4-{

... (4.16c) ... (4.16e)

Further define

bi - Gi_[ (4.17)

Then (4.14) can be written as

YA = A{_)_I - [ bl I b 2 { b 3 { b 4 ] laqll (4.18)
I I
{dqzl
I I

dq3

Idq41
I_ _1

Finally, define

Hq = [ hi I b 2 I b3 { b4 ] (4.19)

then (4.18) can be written as

_A " A(Q)_I - HqdQ (4.20)

Now recall the definition of _A and _I as shown in
{4.3). From these definitions it]s obvious that we may
substitute (4.11) and (4.20) into (4.1). When this is
done and in view of {4.2), we obtain

- HqdQ + MAT,OWT, + MAT,dWT, (4.21)

Note from (4.87 that

0 - o[_x] (4.22)

therefore (4.21) can be written as

- HqdQ - MAT,[_x]_T, + MAT,dWT, (4.23)

tM Is not known to us; however, we doTheknowmatrIXMAT.I AT_easy to see that using the latter

rather'than the former does not affect the accuracy to
any meaningful degree. For identical reasoning we use

_j rather than WT,. When these changes are made'mtehaeSorder of the cross product is changed in
(4.23), we obtain

I I
l _ - HqdQ + MAT[WT,,measX]_ + MATdWT, I (4.24)
I I

While (4.1) indicates how to generate the effective
measurement _ which updates the estimate, (4.24)
indicates the linear relationship between _, the
attitude errors, the misalignment errors of the sensor

whose measurements are being used and dWT,, the total
error generated by the sensor. The derivation of (4.24)
Is the first stage in finding the measurement matrix,
H, (defined in (2.8b)) for each of the sensors used
onboard ERBS. In order to conclude the development
which will yield those H matrices, we have to express

dW ,in terms of the error states of each sensor which
co_stltute a part of _ shown in _¢ _1. . This is done
next.

Fine Sun Sensor (FSS) Measuremen_ Mode]

The Sun sensor measures the tangents of the two
angles of the vector from the spacecraft to the sun.

These two angles are A and B. Using the measured
quantities (tanATm and (tanBTm_ the unit vector
measured by the sensor is computed as follows

_T',meas

ITtanA)_l

[I + (tanA)_ (tanB)_].i/2 { I" + {tanB)mI (4.25)
-I

{_ I _l

Let um - (tanA)m and vm - (tanB)m then (4.25) becomes

I um I
I I

_T',meas - (i + Um2 + Vm2)'I/2 I vm l (4.26)
l I
l ] (

Perturbation of (4.26) yields the following vector of
errors for the measured sun vector.

l-dGl

dWT,- (1 + urn2+ Vm2)'1/2 { dv{

l {
{_o_{

-Um2du + UmVmdV{

- (l + Um2 + Vm2)-3/2 UmVmdU + Vm2dv (4.277
I

l_ UmdU + VmdV _{

Let

Q -(1 + u_ + v_7-i/2

WII - Q - Q3u_ W12 - -Q3UmVm

W21 - -Q3UmVm W22 - Q - Q3v_

w31 - -Q3um W32 - -Q3vm

Then (4.27) can be written as

w12-1l-du-I
Wll II l l-du-I

I_W31W32_I

(4.287

(4.297

where

CA,CB
bA,bB
nA,nB - white noise

From (4.30) and the definition of um and vm we realize
that

du - CAtanA + bA + nA (4.31a)
dv CBtanB + bB + nB (4.31b)

When (4.3]) is substituted into (4.297 the following is
obtained

The measured quantities (tanATm and (tanB)m can be
written as

(tanA)m - tanA + CAtanA + bA + nA (4.30a)

(tanB)m - tanB + CBtanB + bB + nB (4.30b7

- scale factor errors

- biases modeled as Markov states in (3.25a)
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I-CAtanA-I I bA I 1 nAI
d_T, " Wsl ) + Wsl I + Wsl I

I_CBtanB_l I_bB_l I_nB_l

which can be written as

l I tanA 0 I I
d_T, - Wsl II

l_ 0 tanB_l I

I CA
Ws I

_1 CB

bA

_%_1

InA I
+ Wsl I

I_nB_l

(4.32)

(4.33)

This is then substituted into {4.24)

l- jo ....Ol I
Y- I Hq I 0 .... 0 I MAT[-T,,measX] I

I_ )o ...Ol I

resulting in

I-tanA 0 -IN I 0 ...... 0-1

MATWs IN MATWs I o ...... o I_ o tanB_ll I 0 ...... 0_1

I-nA- I
+ MATWsl , (4.34)

l_nB_l

Equation (4.34) gives the measurement matrix, H, for
the FSS which is used in computing the gain matrix and
updating the covarlance matrix. Since tanA and tanB are
not available to us, we use, respectively, (tanA)m and
(tanB)m instead. Since the measured and the -true
quanti_ies are close, this change practically
introduces no error.

IR Horizon Scanner Measurement Model

The horizon scanner measures the roll and pitch of
the spacecraft with respect to the geodetic coordinate
system (GDS), i.e. it measures the direction of the
nadir vector. The horizon scanner misalignment errors
are assumed to be small with respect to roll and pitch
errors, to be additive to roll and pitch and
indistinguishable from them. The unit vector in the
direction of the nadir in the GDS is given as

Z_DS - [0, O, 1] (4.35)

In body coordinates this vector is given as

lTcos(r)sin(p)-I
I I

Zbody = I sln(r) I (4.36)
I I
l_cos(r)cos(p)_]

where r is the roll angle and p is the pitch angle.
As mentioned, this is the measured vector; that Is

I:cos(r)stn(P)-I
I I

_T',meas " ( sin{r) I (4.37)
I l
I_cos(r)cos(p)_imeas

which is equal to the true vector plus error. The error
vector is obtained by perturbing (4.36). The
perturbation yields

Let

l-sin(r)sln(p)dr-cos(r)cos(p)dp-I
I I

dHT, " I cos(r)dr I (4.38)
I I
Icsin(r)cos(p)dr - cos(r)stn(p)dp_l

I- sin(r)stn(p) -cos(r) cos(p)-I
I I

Wh " I cos(r) 0 l
I l
l_-sln(r)cos(p) -cos(r)sln(p) _)

then (4.38) can be written as

(4.39)

I dr*) (4.40)dWT, " Wh I
I ol
I dp_l

We characterize the horizon scanner errors as bias

(modeled as Markov process in (3.25b)) plus white
noise; that is,

dr* - dr + nhr (4.41a)

dp* - dp + nhp (4.41b)

where d and d ire the roll and pitch biases and nhr
and nnnrmre th_ roll and pitch white measurement noise
compofi§nts.When (4.41) are substituted into (4.40),
the following is obtained

dWT, meas m Whbh + Whnh {4.42)

where J2h is as defined in (3.26) and nhT - [nhr, nbp].
Since ][bndv is already in body coordinates, MAT glven
in (4.1)--_nd in (4.1!4)is the identity matrix. Since
the horizon scanner was assumed not to have
mlsalignment error the term containing misalignment
angles in (4.24) is not needed. The model for the
horizon scanner is given in (4.43) below. Again _6 is
computed using (4.1).

I- Io ....o i Io... o-I

X" I]!_Hq ! O0.... 0 I0 I Wh I 0 ... O_lI 0 ... 0 I_x + ghn h (4.43)

Equation (4.43) yields the H matrix to be used with IR
horizon scanner measurements. Similarly to the
evaluation of the Sun sensor H matrix, we use the

measured roll and pitch to evaluate Wh in (4.43).

Maanetoemter Measureemnt Model

The three magnetometers mounted orthogonally to one
another measure the Earth's magnetic field components
along each of their axes. This arrangement of sensors
is identical to the three gyro arrangement which
measure the spacecraft's angular rate. The magnetometer
error sources are also identical to the gyro error
sources which are: scale factor errors, mlsalignments,
bias (medeled as Markov process) and white measurement
noise. Therefore the magnetometer errors can be
represented by the same model as for the gyros.
Therefore, in analogy to (3.13), we write the following
expression for the errors introduced by the
magnetometers
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I_Bxl _mx 0I I
IdBvl-IO
I "11
IdBz# I0
I__l I_

O-ll_x-ll I IlO Omxygmxzll_x-II I i!_mx

o Sm IIB,I lgm,xgmzyOJIBzJIbm,I__1 _ _11__1 I__

lnmxl
I I

+ Inmvl (4.44)
I "1
Inmzl
I_ I

where Bx, By and BZ are the magnetometer measurements and

-_1 " [Smx, Smy, Smz] (4.4Sa)

" [gmxy, gmxz, Omyx, gmyz, gmzx, gmzy] (4.45b)

-_ " [bmx, bmy, bmz] (4.45c)

9__- [nmx, nmy, nmz] (4.45d)

f}_a'_m and ]_m are the vectors of magnetometer scale

ctors, misal'ignmentsand biases, and _m is the white
measurement noise vector. The magnetometer output
vector _meas can be written as

BT,meas - BT + dB (4.46)

where BT is the true magnetic field vector in the
assumed magnetometer coordinates (note the difference
between these sensors and the FSS and IR horizon
scanner). We can write (4.44) as follows

IBBx TBx 0 0 By Bz 0 0 0 0 1 0 -0) I_mxJI I I I
IdBvl-IO By 0 0 0 8x Bz 0 0 0 ] OI x + + Inmvl
I _1( l ) "1
IdBTI IO 0 Bz 0 0 0 0 Bx By 0 0 ]1 Jnmzl
I_ ;I I_ _) I_ _1

where

x+,.
Define the matrix 8' as follows

... (4.47)

(4.48)

I1;xO 0 ByBzO 0 0 0 1 0 _1
I I

B'-(0 By 0 0 0 Bx Bz 0 0 0 10J (4.49)
I I
IO 0 BzO 0 0 0 BxByO 0 11
I_ _1

We may write then (4.47) as

d_ - B'_+ + I!m (4.50)

Note that dR is not identical to d_T, the way the
litter is defined in (4.4) since d_ contains the
magnetometer misalignment errors whereas d_T, does not.
For this reason dR cannot be substituted for d_T, in
(4.Z4). We have, then, to use the basic definition of
as applied to the magnetometer readings in order to

formulate the linear relationship between Z and+ themagnetometer errors which constitute . For
magnetometer measurements we formulate our effective
measurement, _, as follows

I I
I z - MATBT,meas - A(_)_I J (4.51)
I I

Substitute (4.46) into (4.51) and in view of (4.3b)
also substitute (4.20) into (4.51). This results in

v - MATBT + MATdB - A(_)VI + Hqdg (4.59)

Note that the first and third terms on the right-hand
side of (4.59) cancel one another. Then when (4.50) is
substituted into (4.59) we obtain the desired result

.y- Hqdg + MATB'_x++ MAT_% (4.60)

or more explicitly

I )o ............o) I

._- _Hq I 0 ............ 0 [ MATB' + MAT_ (4.61)Io ol _

Equation (4.61) yields the H matrix to be used with the

magnetometer measurement updates. As for the previous
sensors, we use the measured magnetometer data to
evaluate B'. Finally, note again that the effective
magnetometer measurements whlch have to be processed by
the EKF are computed using (4.51) and not (4.1).

Measurement Error

The main component in the magnetometer noise vector,
c_, is the quantization error. Its nature and

aracterization is explained as follows. The output of
the magnetometers is received in the telemetry stream
as

NT . [Nx, Ny, Nz] (4.62)

with _ in counts. The ith component of N (i-x,y,z) is
obtained from the actual measured components as [9]

Ni - INT(Bi,meas/Ki) (4.63)

where INT means "the integer part of". Obviously, a
certain part of the measured value is lost due to the
INT operation: that is

INT(Bi,meas/Ki) + ni = Bi,meas/Ki (4.64)

The nature of the INT operation is such that
vary between 0 to I. Moreover, the distribution _ thecan

chopped off value is uniform over the range 0 to I. It
is then easy to show that

E{ni) - 0.5 {4.65a) Var(ni} - 1/12 (4.65b)

Substituting (4.63) into (4.64) yields

Ni " Bi,meas/Ki - ni (4.66)

It is easy to see why in order to calculate the
magnetometer readings on the ground the following
computation is performed

Bi,comp - Ki[Ni + 0.5] (4.67)

Substituting (4.66) into (4.67) yields
Bi,comp - Ki[Bi,meas/Ki - ni + 0.5] (4.68)

Define the measurement noise of magnetometer ] as

nm,i - Ki(0.5 - ni) (4.69)

then, in view of (4.65),

E(nm,i} - 0 (4.70a) Var{nm,i) - K_/12 (4.70b)

where E denotes the expected value and Var denotes the
variance. From (4.48) and (4.69)
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Bi,com p . Bi,meas +nm, i (4.71)

and in vector form

Bcom p = B.meas + _ (4.72)

From (4.46), (4.47), (4.61) and (4.72) it is obvious
that the noise vector to be use in (4.61) is the vector

_m as defined in (4.69) whose expected value and
variance are defined in (4.70)

V. OUATERNION NORMALI_ATION

The quaternion which represents attitude is a normal

one. It was found [6] that forcing normalization on the

estimated quaternion is advantageous since it speeds up

convergence and eliminates the need for filter tuning.

It was found in the present work too that normalization

has these benefits. As shown in [6], normalization of

the quaternion is equivalent to removing a portion of
the estimate. This part that is removed must be

accounted for in the next stage of the filtration. The

handling of the normalization in this work is not
identical to the one in [6] since here the covariance

and state are propagated by solving their respective

differential equations and not by using the state

transition matrix as is the case in [6]. There the part

of the estimate which is removed by normalization is

propagated using the state transition matrix and is

considered at the next measurement update of the state

estimate. Here though the normalization is done in

between measurements. After the state estimate update

by the horizon scanner measurement, the quaternion is
normalized as follows

_R(+) , _IR(+)/I_IR(+)I (5.])

where the subscript IR denotes the fact that the

quaternion estimate being dealt with is at the time

point where the IR horizon scanner measurement are

considered, (+) denotes the a-posteriori estimate and

the superscript * denotes the resultant normal

quaternion. It can be shown [6] that the normalization

^

removes the following part From _IR(+)

dgN . _IR(+)_IR(+)d_IR (5.2)

where d_iR - KIR_IR is the estimate of dg which is
computed using _He kalman gain and the effective

measurement of the scanner. Now when the FSS

measurements are processed next, the estimate of the

quaternion is updated as follows

^ ^

d_FSS(+) = d_N + KFSS[_FSS - HFsSdgN] (5.3a)

_FSS(+ ) ^* ^= QIR(+) + d_FsS(+) (5.3b)

^

where _(+) is the quaternion estimate after its

update _y_he FSS measurements. If no normalization is

performed, _IR(+) = _IR(+), d_ - 0 and (5.3) change

accordingly. In any event, the quaternion, _FSS(+),.Is

used as the a priori estimate of g for the magnetometer

update, if available, or else is propagated to the next

time point.

VI. CO_qPENSATION

When propagating the state estimate and the
covariance, we use the measured angular velocity. We

know, however, that the propagated values are not

accurate since the gyro outputs contain errors. As we

estimate those errors, we can do better if we correct

the gyro outputs for estimated errors. This operation
is known as calibration.

We also want to compensate the measurements obtained

from the FSS, the IR horizon scanner, and the

magnetometers which are all orientation measuring

devices whose outputs are used to update the filter.

The reason we want to compensate these sensors' outputs

is different in nature than the reason for compensating

the gyro outputs. Rewrite (4.1) and (2.11)

^

- MATWT,,mea s - A(_)V I (6.1)

_k (+) " _k(') + Kk_k (6.2)

The term Kk_ k is nothing but the estimate of x defined

in (2.14) as

X(tk) = _(-) + x(tk) (6.3)

That is, in (2.11) we estimate the difference between

the true value of X and its latest estimate, and add

the estimate of the difference to the latest estimate

of _ to form its updated estimate. Now let us consider

an error term in one of the sensor measurements, say a

bias. This bias is a part of _T',meas and thus, as
indicated in (6.1), bears it_ slgnature on _.

Consequently, if certain observability conditions are

met, it is estimated and added to the state estimate as

indicated in (6.3). If no compensation takes place, the
next time the measurements of this sensor will be

processed the bias will again be estimated and added to

the previous estimate of this bias, thus creating a too

large and hence wrong estimate. The correct way, then,

to handle this case is to eliminate the estimate of the

bias from WT, m.... This way only residual bias which
has not be_n'e_t_mated yet will be present in _ as

shown in (6.1). Only the estimate of this residual

will, then, be added to the existing estimate of the

bias, which is a part of _, yielding a correction to

the previous estimate. This logic holds for the other

error states too. The way we carried out the

compensation is outlined in the ensuing.

Gvro Compensation

From (3.4)

therefore

Rewrite (3.18)

w = W - d_ (6.4a)

^ ^

w = _ - d_ (6.4b)

dw- [UlWII]IISg +ngI (6.S)

I

Since U and W are functions of w, and since the noise

vector is of zero mean, a good estimate of dw is

obtained from (6.5) as

d_ = [U(_)IW(__)II]I-_I (6.6)

I^I
I_I
l/l

This estimate can then be used in (6.4b) to yield an

estimate of w which is then used in the propagation

algorithm instead of the raw gyro outputs.

Condensation

Consider
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^

" MAT_T',meas A(_)_I (6.7)

and recall (4.3)

_A " MAT_T',meas (6.8a) _A " A(g)_I (6.8b)

As explained earlier, _ is a linear function of _ which

Is the difference between _ and _. We want _ to go

to zero when _ approaches _. Indeed, when _ approaches

_, g approaches g and VA computed in (6.8b) really
' _ U'ylelds the components of _he unit vector in the S n s

direction when resolved in body coordinates. However,

even when R Is equal to _, WT, m_as will not be equal

to WT and therefore _A compuZed _n (6.8a) will not be

equiT to _A and thus _ will not be zero. (This fact
shouldn't be confused wlth the fact that _ goes to zero

when the errors themselves go to zero). Only when

_T' _a_ goes to _T as _ goes to X, will _ go to zero
as _'('_sfiould.To achieve this use (4.4) to note that

_T " MTT'(_T',meas " d_T') (6.g)

As shown in (4.7), for small FSS misalignment angles

MT, T - I + O (6.10)

Transposing (6.10) we obtain

MTT, - I - O (6.1])

which when substituted into (6.9) yields

_T " (I - O)(_T,,mea s - d_T,) (6.12)

Therefore a reasonable estimate of _T is

_T " (I - O)(HT',meas " d_T') (6.13)

Replacin_ HT,meas in (6.7) by _T yields the desired
result

" MAT(I " O)(_T',meas - d_T') " A(_)_I (6.14)

where, in view of (4.32), d_T, is computed as follows

l-CA(tanA)m-i I-_A-I

d_T, - Wsl ^ I + Wsl I (6.1S)
l_CB(tanB)m_l I__B_I

Note that initially when our estimate of _ ts zero,

(6.]4) is reduced to (6.1).

IR _ Scanner Comoensatlon

The arguments made tn outlining the FSS compensation
are also valid for the horizon scanner only that here

d_T, is different and there are no sensor mtsalignments
(they are considered to be a part of the bias errors).
Following (4,42), we compute for the horizon scanner

d_T'" Qh_h (6.16a)

and
- 0 (6.16b)

and substitute them into (6.]4). The result is then the

compensated effective measurement of the IR horizon

sensor.

Maqnetoflw_ter _ompensation

As shown in (4.51) which is rewritten below, _ is

computed differently for the magnetometer measurements;

namely

^

- MATBT,mea s - A(Q)V I (6.17)

where

and
BT,meas " _T + dB (6.18a)

dB - B'x + + _ (6.18b)

Following the rationale behind the FSS and IR horizon

scanner and in view of (6.18), we compensate the

magnetometer readings as follows. Compute

dB " B'_ + (6.19b)

where B' is computed according to (4.49) using the

uncompensated outputs of the magnetometers. Next
compute the compensated magnetometer measurements

_T " _T,meas " d_ (6.19c)

which are used to compute the effective measurement as
follows

" MATBT - A(_)_I (6.19d)

VIl. THE_OMPLETE ERBS EKF_

The models developed in the previous section were

implemented into a program written in Fortran. The

data used in the program is actual spacecraft data

transmitted to Earth by ERBS.

MEASUREMENT UPDATES

The program is set up to compute an update initially

and then propagate. The updates are performed for each

sensor individually, the horizon scanner update is

performed first, followed by the sun sensor, and the

magnetometer. If any sensor data are not available the

program bypasses that sensor and goes on to the next.
In between each sensor update, the updated state and

covarlance are set to the a-priori values going into

the next sensor update. If no sensor data are

available, the a-posteriori state and covariance are

set equal to the a-priori and are propagated to the

next time point.

Below Is a summary of the algorithm and how it is

applied to each update and to the propagation.

IRd_

Compute H:

I IO .... ol lo..

H - _Hq J 0 .... 0 I Wh i 0 ..IO .... Ol Io..

Compute W.WT, ,meas :

Ol
O l (7._)
0_1

-WT',meas

ITcos(r)sin(p)-I
I I

" I sin(r) i
I I
l_cos(r)cos(p)_Imeas

(7.2)
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Compensate _T',meas:

_T " HT',meas - _h _h (7.3)

Compute residual and uncertainty of residual:

" _T - A(q)_I,tr (7.4)

{Uir)j - ([HP(-)HT + Rir])jI/2 (7.5)

where the subscript Ir denotes quantities pertinent to

the horizon scanner, _I, Ir is the spacecraft-to-earth
unit vector obtained Trom the ephemeris and J denotes
the jth element on the main diagonal of the residual
covarlance matrix.

State and Covarlance Update

Compute K:

Update _:

Kk . pk(.)HkT[HkPk(.)Hk T + Rk] "] (7.6)

_k(+) " _k(') + KkYk (7.7)

Update P:

pk(+ } . ([_KkHk)Pk(-)(I-KkHk)T + KkRkKkT (7.8}

_ Se.sor Uodate

Compute H:

I- I o .. o I I (-tanA o -II

I IO ...... o-I
I MATWs I 0 ...... 0 I (7.9)
I 10 ...... 0_1

Compute WT, ,meas :

l-(tanA)m

_T',meas " (I + (tanA)mZ + (tznB)m2)"1/2 ) (tanB)m

I_ I _I

... {7.10)

Compensate _T',meas:

_T m ([ - _)( _T',meas -Ws-CA(tanA)m-I" WsI-_A-II )
l__B(tanB)m_l 16__I

... (7.11)

Compute residual and uncertainty of residual:

" _T " A(g)_l,fss (7.13)

{Ufss) j . ([Hp(-)H T + Rfss])jl/2 (7.14)

where the subscript fss denotes quantities pertinent to
the fine Sun sensor, [I fss is the spacecraft-to-Sun
unit vector obtained frol a Solar-Lunar-Planetary file

and J denotes the jth element on the main diagonal of
the residual covarlance matrix. The state and
covarlance are then updated as in (7.6) through (7.8}.

Maanetometer Update

Compute H:

I- I0 ............Ol

H- _Hq iol0 ............ 0I0l

Compute BT,,meas:

IBxl
BT,,meas " I By I

l_Bz_l

Compensate BT,,meas:

MATB' i
_I

(7.15)

(7.16)

1-_m-I
^ I^ I

• - 8'1 _ I (7.]7)_T BT',meas
i i

Compute residual and uncertainty of residual:

J(" _T " A(_)Vl,mag (7.18)

{Umag}j - {[HP(-)HT + Rmag])jI/2 (7.19)

where the subscript mag denotes quantities pertinent to
the magnetometers, Vv ._, is a unit vector in the
direction of the magne'(')_field obtained from 1980a
International Geomagnetic Reference Field model
available In a Fortran subroutine and j denotes the jth
element on the main diagonal of the residual covariance
matrix. The state and covarlance are then updated as in
{7,6) through {7.8).

STATE AND COVARIANCE PROPAGATION

After all the sensor updates are performed, the
state and covariance are propagated using a Fourth
order Runge-Kutta routine. The state and covariance
are propagated ahead using the gyro data at the time of
the update and the gyro data one second (nominally)
ahead. Before propagating, though, the gyro data is
compensated as follows.

^ (^_t
w -__- [UIWlI]1% I (7.20)

I^°I
I _m

State ProDaqation

_(t} - f(_(t),t}

Covarlance Propaqation

(7.21)

P(t) - F(_(t},t)P(t) + P(t)FT(_(t},t) + Q(t) (7.22)

VIII. RESULTS

Reference Solution

The reference we used for comparison was the
attitude solution obtained from the batch estimator

used on the ground for operational attitude
determination for ERBS. Table B.l shows the attitude
solutions in the GDS and uncertainties for three
different conditions (cases). Case I used sensor
standard deviations of: FSS - 0.002 deg, IR - O.Z deg,
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MAG - 0.5 (unit vector). An orblt's worth of data was
used to compute the solution. Case 2 used the same
amount of data as the first but the sensor standard
deviations were: FSS = O.I deg, IR - 0.5 deg, FlAG= 0.5
(unit vector). Case 3 had the same sensor standard
deviations as the second but only 30 seconds of data
were used. Obviously, the _ solution is not
unioue_ the real solution is.

8.1 Ftnal Attttude Solutions
and Uncertainties [deq.)

I
IYaw
lRoll
IPitchl
# I

I I I
Case ] I Case 2 I Case 3 J

............... I .............. I .............. I
iAttttude Unc. IAttttude Unc.lAttttude Unc.I

1I
-0.294 0.0135 -0.262 0.0041 -0.731 0.0121

0.400 0.0118 0.42] 0.005) 0.316 O.070J
0.650 0.173 0.420 O.O04J 0.384 0.007l

) I

Filter Solution

Since ERBS is not Inertlally fixed, it is not very
enlightening to see the variation tn the quaternion.
Therefore, in order to compare the ftlter solution to
the batch solution, the estimated quaternton was
converted to roll, pitch, and yaw in the GDS. We used
the filter first to estimate attitude only. Figure l
shows the yaw solutton tn the GDS and is atyptcal
example of the behavior when estimating attitude only.
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The filter was then run with the full state starting
at an m-priori attitude of zero degrees yaw, roll, and
pitch. Figures 2 and 3 show the behavior of the yaw
and pitch. Roll Is similar to pitch, Figure 4 shows
the estimation of the Z component of the gyro bias and
Figure S shows an example of the residual behavior.
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Table 8.2 gives the final attitude solutions and

the various calibration states (after 60 sec of data)

for 2 different sets of initial conditions (which

actually differ only in the FSS and IR bias

uncertainty).

Table 8.2: Attitude and Calibration States

for Varylnq Initial Conditions

Case I Case 2

..................................................... i

IYaw -0.512 -0.675

troll 0.354 0.405

iPitch 0.339 0.253

.............. , ............................... ,..,.

Value Unc. Value Unc.

GYRO

SF 0.194E-4 0.01

-0.598E-4 0.00998

-0.786E-4 0.01

I0 (deg) 0.62E-4 0.057
0.34E-4 0.057

0.028E-4 0.057

0.15E-4 0.057

-0.070E-4 0.057

-14.6E-4 0.057

Bias -0.0211 1.995

(Deg/hr)l 0.0094 1.995

l 0.438] 1.995

........ i ....................

FSS

I0

I(Deg)
I
ISF
I
Ietas
l(Oeg)

0.0648 0.050

0.0466 0.054

0.0896 0.057

-0.0235 0.00607

-0.0177 0.00830

0.1732 0.086

0.0812 0.058

I ........ I ....................

I I
118 I
I I
Ietas I 0.2115 0.032
I (Oeg) I -0.2377 0.033
I ........ t ....................

I
IMAG
r
IBias -0.499 0.699

I(mg) -].479 0.8]6
t 0.289 0.911

I
I
I

0.360E-5 0.01

3.898E-5 0.00998

-4.384E-S 0.01

3.2E-4 0.057

0.50E-4 0.057

O.OI3E-4 0.057

0.046E-4 0.057

0.052E-4 0.057

-]0.2E-4 0.057

-0.0984 ].995

-0.0096 1.995

0.3037 1.995

0.0017 0.056

0.0114 0.056

0.0140 0.057

-0.00557 O.OOg

0.00044 0.00954

0.077 0.151

-0.0468 0.0709

0.0340 0.0472
-0.0840 0.046

-0.597 0.698

-1.237 0.816

0.223 O.gll

(other magnetometer states are negligible)l

I

Initial Unqertainties:

Gyro

SF - 3"0.01

O - 6*0.057 deg

bias - 2.0*3 deg/hr
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FSS
--o

g - 3"0.0S7 deg,
SF - 2"0.01

Bias - 2"0.1 in case 1,

2"0.316 in case 2

IR

Bias - 2"0.1 in case I,

2"0.316 in case 2

MAG

Bias - 3"i mGauss

IX. CONCLUSIONS

The ERBS EKF shows good, quick convergence

properties when estimating only attitude. The filter

is robust in that it can overcome initial attitude

errors of up to 30 degrees (it may even go higher but

30 degrees was the limit of our testing). When the

remaining calibratlon states are added, and the sensor

measurements are compensated for their calibration

states the filter is not very robust. Starting the

filter with a large initial attitude error would be

outside of the linear region and the filter is not

expected to give good behavior in those conditions.

The attitude solutions estimated by the filter show
some oscillation. Since the results presented are From

real spacecraft data the filter would be expected to

follow more closely the oscillations in the data
whereas a batch solution would have these oscillations

averaged out.

We found, when estimating the entire state, that the

results were dependent on the initial uncertainties due

to a lack of observability. The batch solution which

was used as our basis of comparison also was dependent
on inltial conditions. It could not be used as a true

reference.

The ability of the filter to quickly converge to an

attitude solution from a large initial error

demonstrates the feasibility of using an EKF for ground

attitude processing in FDD, particularly in a real-time

situation. Since all the states cannot be estimated

simultaneously due to a lack of observabillty, more

investigation into the a-priori uncertainties is

necessary in order to achieve a desired accuracy in the
flnal calibration states.

X. FUTUR[ WORK

In this work, the batch solution served only as a

basis for comparison. It cannot be treated as a true

reference. Simulated data will be used in the future,

which will provide a true reference. From there

further studies of the different calibration states and

the ability of the filter to estimate them can be

determined. At the time of this writing, the runs

using simulated data were still being debugged.

A further enhancement of the filter state will need

to be made to include more than one sensor of a single

type. Currently the Filter only estimates calibration

parameters for the sensors with coverage; no switching

is done when the coverage changes over to another

sensor of the same type.

As mentioned previously, the ability to overcome

large initial attitude errors makes the filter

attractive for real-time operations. A real-time EKF

will be developed which estimates attitude and possibly

gyro calibration states only.
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