
QUEST/Ada

QUERY UTILITY ENVIRONMENT FOR SOFTWARE TESTING OF ADA

The Development of a

Program Analysis Environment
for Ada

Contract Number NASA-NCC8-14

Phase 1 Report ////,, ' ,.

,"'", c. /c.2

W-f.,
I

Department of Computer Science and Engineering
Auburn University, Alabama 36849-5347

Contact: David B. Brown, Ph.D., P.E.
Professor and Interim Head

(205) 844-4330
dbrown@AUDUCVAX.bitnet

June 1,1989

TABLE OF CONTENTS

Acknowledgements

ExecutiveSummary1
1. Introduction ...

2. Literature Review ...1•"""'"'""'"'"'""'"'"'"'"'""'"'"" 1
2 1 Introduction ...• "'"'"'"'"'"'"'"'"'""'"'"'"'"'"'""" 2
2 2 SoftwareTesting ..• "'""'"'"'"'""'"'"'"'"'"'"'"""'""" 2

2 2 1 Functional Testing ..• • "'"'"'"'"'"'"'"'"'"'"'"'""" 3
2.2.2 StructuralTesting...
2.2.3 NeedFor Both Functionaland

StructuralTesting ...4"'""'""'"'"'"'"'"'"'"'"'"' " 4
2.2.4 Other Test Strategies..

2.2.4.1 Mutation Testing ...4
2.2.4.2Domain Testing..
2 24 3 SymbolicEvaluation..

" " " 0

2.3 Automation ..
2 3 1 The Need For An Oracle ... 6

21312 Automated Testing Tools .. o
2.3.2.1 Structural Testing Tools ... 6

2.3.2.2 Functional Testing Tools ..

2.4 Reliability Models and Test Adequacy Criteria ...
2.5 Test Data Generation ...
2.6 The Path/Predicate Solution Problems .. 8

2.7 Conclusion ...

10
3. Definition of System Structure

4. Definition of High-Level Interfaces ... 13
4.1 Parser/Scanner Interfaces ... _
4.2 Test Data Generator Interfaces ... _
4 3 Test Execution Module Interfaces .. _

414 Test Coverage Analysis Interfaces ... xo
4.5 Report Generator Interfaces .. 17

5. Scope of the Prototype ... 18

6. Parser/Scanner Design ... 19•""'"'"'"'"'"'"'"'"'""""''" 19
6.1 General Parser/Scanner Requirements. 19
6.2 Parser/Scanner Overview ..
6 3 Limitations of the Parser/Scanner Prototype ... 20

6"4 Example Module Instrumentation -... 41
615 Parser/Scanner Implementation Details ... ""
6.6 Future Parser/Scanner Research Efforts .. 30

Test Data Generator Design ... 32
7. 7.1 Initial Case Generation ... 34

7.2 Coverage Analysis and Goodness Evaluation .. 34
7.3 New Test Case Generation ..

7.4 Test Data GenerationExamples...38
7.5 SystemInterface Mechanism...40

8. TestCoverageAnalyzer ...42

9. Recommendationsfor Future Research...43

10.References...44

APPENDIX A - QUEST/Ada IORL System Specifications

APPENDIX B - Paper: A Rule-Based Software Test Data Generator

APPENDIX C - Paper: QUEST/Ada: An Automated Tool for Ada Software Testing

APPENDIX D - Paper: Expert System Assisted Test Data Generation for Software
Branch Coverage

APPENDIX E - Design of the User Interface
E.1 System Definition Menu
E.2 Module Selection Menu

E.3 Automatic Testing Menu
E.4 QUEST Regression Test Menu
E.5 QUEST Variable Definition Menu

E.6 Testing Result Reports Menu
E.7 QUEST Utilities Menu

E.8 Detailed Plan for Project

APPENDIX F - Proposal for Phase II

ACKNOWLEDGEMENTS

Portions of this report were contributed by each of the members of the project team.

The following is an alphabetizedlisting of project team members.

FACULTY INVESTIGATORS

Dr. David B. Brown, Principal Investigator
Dr. Homer W. Carlisle
Dr. Kai-Hsiung Chang
Dr. JamesH. Cross

GRADUATE RESEARCH ASSISTANTS

William H. Deason

Kevin D. Haga
John R. Huggins
William R. A. Keleher, Technical Manager
Benjamin B. Starke
Orville R. Weyrich
Michael P. Woods

UNDERGRADUATE TECHNICAL ASSISTANTS

Todd E. Blevins
J. Edward Swan
David Wheeler

Ada is a trademark of the United States Government, Ada Joint Program Office.

EXECUTIVE SUMMARY

THE DEVELOPMENT OF A PROGRAM ANALYSIS ENVIRONMENT FOR ADA

After several preliminary meetings with the sponsor, the scope of this project was
defined to include the design and development of a prototype system for testing Ada soft-
ware modules at the unit level. This would bepatterned after a previous prototype for
FORTRAN developed at Auburn University. The new system was called Query Utility
Environment for Software Testing of Ada (QUEST/Ada).

QUEST/Ada differs significantly from its predecessor in the following regard: (1)
the parser/scanner mechanism is obtained from a formal parser/scanner generator such
as YACC, LALR 3.0, or BISON, (2) the test data generator is rule-based as opposed to
traditional techniques of path generation and predicate solution, and (3) a large number of
test cases are assumed to be supportable. This third difference assumes the presence of
redundant code generated either automatically from the specification (sometimes called

simulation) or by manual coding. With automatic comparison capabilities there is no longer
a need for selecting only a relatively few test cases for verification. QUEST/Ada is being

designed under the premise that a large number of test cases will be generated from the rule
base. A subset of these, which provide the necessary path and domain coverage characteris-
tics, may be selected for verification.

The literature review can be summarized by a quotation from Fisher which stated
that currently "there are no CASE tools to assist in the unit test and integration phase"
[FIS88]. However, the literature abounds with papers on the theory of software testing, and
much work is continuing in this area. The literature review was organized according to: (1)

software testing approaches and strategies, (2) automation of the various aspects of soft-
ware testing, (3) reliability models and test adequacy criteria, (4) test data generation
approaches, and (5) a discussion of rule-based versus traditional test data generation ap-
proaches.

The design of QUEST/Ada began with a definition of the overall system structure.
This was performed in IORL, which tended to clarify component dependencies for the
project team. This led to a more formal description of these dependencies, which was
obtained by the definition of the high level interfaces between the components. The project
team was then subdivided into three groups to resolve the preliminary design of the major
three components of QUEST/Ada, namely: (1) the parser/scanner, (2) the test data genera-
tor, and (3)the test coverage analyzer.

The Phase I report is organized as a working document from which the system
documentation will evolve. The introductory section provides some history and a guide to
the sections of the report. A fairly comprehensive literature review follows which is targeted

• toward issues of Ada testing. The definition of the system structure and the hig.h level inter-
faces are then presented. A brief description of the scope of the prototype _s given next.
This is followed by a chapter on the design of each of the three major components. Finally,
the plan for the remainder of the project is given. The appendices include the QUEST/Ada
IORL System Specifications to this point in time, a paper presenting statistical evidence of

the validity of the rule-based testing paradigm, and two other papers derived from the
current research on QUEST/Ada. In addition, a preliminary users manual for the current
QUEST user interface is provided. The final appendix includes the proposal and workplan
for Phase II.

1. INTRODUCTION

This project was initiated on June 1, 1988. Because funding of the original proposal was

reduced, the Principal Investigator and the NASA representatives spent the major portion
of the first month defining the scope of the project. A meeting was held on July 1, 1988 at
Auburn to present and verify this redefinition. Generally the project was subdivided with a

minor pilot effort being devoted toward an analysis of metrics for the evaluation of existing
software packages. Dr. Cherri Pancake and a graduate student were assigned to this
component of the project, and the results of their efforts are presented in a separate report.

The meeting on July 1, 1988 resolved that the major emphasis of the project would be in
the direction of the design and prototyping of an environment to facilitate the testing of Ada
code. This would be modeled after an available prototype environment for FORTRAN
code testing, called QUEST. However, several new approaches were required in order to
enable Ada code to be tested. Among these were: (1) the use of a formal grammar to
generate the parser to be used in the prototype, (2) the use of rule-based techniques for
generating test cases, and (3) the ultimate development of testing approaches to handle
concurrency. The first two of these were considered in the current project.

A second meeting was held on October 6, 1988 in Huntsville in which the progress over
the first three months of the project was reported. This included results of: (1) the literature
review (2) a definition of overall system structure, (3) a definition of high level interfaces, (4)
a definition of the Ada subset to be processed by the prototype, (5) a preliminary analysis of
scanner/parser requirements, and (6) a detailed plan for the second quarter.

This report continues by presenting the results of the literature review which clearly
reveals a gap in the area of automatic test data generation for Ada unit-level testing. This is
followed by the definition of the QUEST/Ada system structure, which shows a high-level
view of the components of the system. A definition of the high level interfaces is then
presented which tends to further crystallize the component design. In Section 5 the Ada
scope of the prototype under development is defined. This is followed by the definition of
parser/scanner design, which contains an example module instrumented by an early proto-
type. Section 7 presents the rule-based test data generator design, and Section 8 presents

the test coverage analyzer design, after which the plan for the next phase of the project is
given. Finally, the high level IORL description of QUEST/Ada, the preliminary QUEST
users' manual, three related papers, and the proposal for Phase II are given in the Appen-
dices.

2. LITERATURE REVIEW

2.1 INTRODUCTION

With the increased production of complex software systems for embedded systems appli-
cations, it becomes apparent that without some form of organized and efficient approach to
the design, development and testing phases of the software lifecycle, software reliability for
these systems will fall short of the goals set by their developers. A variety of approaches to
software testing exist [ADR82, GOO75, HOW80, HOW76, HOW82a, WHI80]. However,
these methodologies generally require considerable manual effort, i.e., the tester must hand
compute paths, predicates, test cases, etc. Manual implementation of these methodologies
is not only inefficient in terms of resources expended (man-hours), but it is also subject to
inconsistencies brought about by human errors. Manual methods can generate only a

limited number of test casesbefore the amount of time expended becomesunacceptably
large. All of theseproblems maybe reducedby the use of automated software test tools.
However, automatedtestdatagenerationitself is not well understood[MIL 84,PAN 78].

Ramamoorthy defines automated test tools ".. asprograms that check the presenceof
certain software attributes which canbe program syntaxcorrectness,proper program con-
trol structures, proper module interface, testing completeness,etc." [RAM75]. This is the
goal of the QUEST/Ada testing tool: to reduce the resources that must be expended by
automatingportions of the testingphasepreviouslyrequiring manual intervention. Current-
ly "there areno CASE tools to assistin the unit test and integration phase"[FIS88].

4

2.2 SOFTWARE TESTING

Software testing as a software engineering discipline is coming of age in the 80's. As E. F.
Miller pointed out [MIL84], "there is growing agreement on the role of testing as a software
quality assurance discipline, as well as on the terminology, technology, and phenomenology
of, and expectation about testing." He also noted that the first formal conference on soft-
ware testing took place at the University of North Carolina in June of 1972. Since that time,
testing research has continued on several fronts, including the automation of portions of the
testing process.

In the testing stage of the software life cycle, the main thrust of research has been aimed
at developing more formal methods of software and system testing [BEI83]. By definition,
"testing...is the process of executing a program (or a part of a program) with the intention or

_oal of finding errors" [SHO83]. A test case is a formally produced collection ofprepared
inputs, predicted outputs, and observed results of one execution of a program [BEI83]. In
standard IEEE terminology, a software fault is an incorrect program component; an error is
an incorrect output resulting from a fault. In order to detect occurrences of errors indicat-
ing faults, some external source of information about the program under test must be

present.

Program testing methods can be classified as dynamic and static analysis techniques
[RAM75]. Dynamic analysis of a program involves executing the program with test cases
and analyzing the output for correctness, while static analysis includes such techniques as

program graph analysis and symbolic evaluation [ADR82].

A dynamic test strategy is a method of choosing test data from the functional domain of a
program. It is based on criteria that may reflect the functional description of a program, the
program's internal structure, or a combination of both [ADR82]. These criteria speci.fy the
method of test case generation to be used for a dynamic test strategy. The two dynamic test
strategies generally recognized are functional testing and structural testing. These will be
detailed in the next subsections.

2.2.1 FUNCTIONAL TESTING

Functional testing involves identifying and then testing all functions of a program (from
the lowest to highest levels) with varying combinations of input values to check for correct-
ness of output [BEI84, HOW86]. Correctness of output is determined by comparing the
actual output to the expected output computed from the functional specifications of the

2

program. The internal structure of the program is not analyzed, thus functional testing is
often called "black box" testing.

The specifications are used to define the domain of each variable or its set of possible
values. Since the program has input and output variables, selection of test data must be
based on the input and output domains in such a way that test cases force (or try to force)
outputs which lie in all intervals of each output variable's domain. Howden explains the
importance of testing endpoint conditions as well as any special mathematical conditions
(such as division by zero) that may be encountered in the software [HOW80]. In his ap-
proach to functional program testing, Howden also discusses exercising such program
elements as array dimensions and subprogram arguments.

Functional program testing has been used as the basis for several combinations of test
strategies with reportedly good results [FOS80, HOW80, HOW86, RED83]. These test

strategies consist of the test data selection rules of functional testing as well as the test
coverage measures found in structural testing techniques.

Random testing is another form of ''black box" testing, since the internal structure of the
program is not considered when developing test cases. While this method is generally
viewed as the worst type of program testing, it does provide "... very high segment and
branch coverage" [DUR84]. When combined with extreme and special value testing, it can
be an effective method while providing a direction for the generation of further test cases
[VOU86].

2.2.2 STRUCTURAL TESTING

Structural testing uses the internal control structure of a program to guide in the selection
of test data [BEI84], and it is sometimes known as metric-based test data generation.
Coverage metrics are concerned with the number of a program's structural units exercised
by test data. Test strategies based on coverage metrics examine the number of statements,
branches, or paths in the program exercised by test data. This information can be used to
evaluate test results as well as generate test data [ADR82]. Howden and others have dis-
cussed path and branch testing strategies [G0075, HOW76, HOW78a], while other strate-
gies such as the use of data flow analysis for obtaining structural information have been
proposed and studied [LAS83]. Symbolic evaluation, while considered to be either static or
dynamic analysis, is similar to structural testing. This will be discussed in a later section.

A program's control can easily be represented as a directed graph [BEI84, RAM66,
SHO83] from which program paths may be identified. It can be shown that for many pro-
grams (especially programs with loops) the number of possible paths is virtually infinite
[BEI84, HOW78a, WOO80], thus leading to the problem of determining which paths to

• choose for testing. Criteria for selecting test paths have been discussed [BEI84, HOW78a,
RAM76, SHO83] and include statement, decision, condition, decision- condition, and multi-

ple condition coverage. "Coverage" is said to be achieved if a set of paths executed during
program testing meets a given criteria [BEI84]. The problem of finding a minimal set of
paths to achieve a particular coverage is discussed by So [VIC84] and by Ntafos [NTA79].
Beizer states that the idea behind path testing is to find a good set of paths providing cover-

age, prove that they are correct and then assume that the remaining untested paths are
probably correct [BEI84].

3

Oncea setof pathsproviding coveragehasbeenselected,the next step involvesgenerat-
ing testdata that will causeeachof the selectedpathsto be executed. Methods for generat-
ing testdata from pathsare discussedin [ADR82, HOW76, HOW75, HUA75, RAM76] and
others, and center around the idea of solvingpath predicates (discussedlater) or at least
determiningpath data constraintsto beusedfor generatingtest casedata.

2.2.3 NEED FOR BOTH FUNCTIONAL AND STRUCTURAL TESTING

The effectiveness ofpath testing has been questioned [G0075, NTA84], and studies have
shown that the class of errors found by this type of testing is not sufficient for complete

testing [G0075, HOW76]. As discussed in [NTA84], "... the main shortcoming of structural
testing is that tests are generated using possible incorrect code, and thus, certain types of

errors, especially errors in the specifications, are hard to detect."

Indeed, Rubey notes that "... there is no single reason for unreliable software", and then
he states that "... no single validation tool or technique is likely to detect all types of errors"

[RUB75]. He also points out that even though a program fulfills its specifications, it could
have specification errors which would render the program unreliable. Glass draws similar
conclusions when discussing testing methods [GLA81]. Therefore, since no one testing

approach is going to solve all testing problems, functional and structural testing techniques
should be considered complementary methods [HOW80].

2.2.4 OTHER TEST STRATEGIES

2.2.4.1 MUTATION TESTING

Mutation testing is considered to be a new error-based testing method [ADR82, VIC84]
that is capable of determining the number and kinds of errors that a test data set is capable
of uncovering [DEM78]. Mutation testing is based upon two assumptions: 1) the program
being tested is nearly correct, and 2) test sets that uncover single errors will also be effective
in uncovering multiple errors [ADR82]. The later assumption is known as the coupling
effect hypothesis and is described by DeMillo in [DEM78]. He states that "...complex errors
are coupled to simple errors" and the effect can be observed in real test/debug situations.
Therefore, when testing, attempts should be made to systematically uncover simple errors
that may (or may not) eventually lead to complex errors.

Mutation testing involves creating a number of program mutations, with each of the
mutations containing different simple errors. For each set of test data there are only two
possible outcomes after execution: 1) a mutation gives different results than the original
program, or 2) the results are the same. If different results are obtained from the mutation,
then the test data were capable of discovering the seeded error in the mutation. Otherwise,

one of the following two conditions is true: 1) the test data were not adequate for uncover-
ing the error, or 2) the mutation is equivalent to the original program. Assuming that the
second condition is not true, it would be necessary to find more sensitive test data to discov-
er the seeded error. When test data fail to find the seeded error, the programmer should
also examine the code to determine the reason. If all errors are discovered by the test data

and an adequate number (as defined prior to analysis) and variety of mutations was used,
then it can be assumed that the test data set was adequate [DEM78].

4

Howden hasproposed a "weaker" mutation testing techniquethat is more effective than
branch coverage,but lesscostlyand lesseffective than mutation testing [HOW82b]. In his
technique,Howden considersfive elementaryprogram componentsto be usedin the muta-
tion process: 1) variable references,2) variable assignments,3) arithmetic expressions,4)
relational expressions,and 5) Booleanexpressions.One of the main differencesand advan-
tagesof this technique is that weak mutation testing does not require a separate program
execution for each mutation, thus reducingtesting time. Weak mutation testing doeshave
the disadvantageof not beingable to "... guaranteethe exposureof all errors in the classof
errors associatedwith the mutation transformations."

2.2.4.2 DOMAIN TESTING

Domain testing is a strategy designed to detect errors in the control flow of a program
(called domain errors), and it is considered to be fairly new and experimental [VIC84,

WHI80, WHI86]. The strategy generates test data to examine the input space domain of a
program, which is defined as a set of input data satisfying a path condition. In describing the
strategy, White and Cohen state: "the control flow statements in a computer program parti-
tion the input space into a set of mutually exclusive domains, each of which corresponds to a

particular program path" [WHI80]. The strategy is based on the geometric analysis of a
domain boundary. A boundary represents the range of input values that will drive the

predicate for a given path. Each boundary consists of border segments, which are deter-
mined by the conditions of a path predicate. By generating test points on or near the

domain borders (since these test points are most sensitive to domain errors), it is possible to
detect whether a domain error has occurred [TAI80, WHI80]. An analysis of input space
subdomains is discussed in [WEY80] as an extension of the theories of testing proposed by

Goodenough and Gerhart in [GOO75]. Domain errors are further defined in the Software
Errors section below.

2.2.4.3 SYMBOLIC EVALUATION

Symbolic evaluation is generally considered to be a static analysis technique for testing
software [ADR82, VIC84] and involves building and solving (if possible) path predicates to
generate test data. Unsolvable predicates indicate infeasible paths in the software which
usually raises an error condition [CLA76]. The test data may be used to actually execute the
software; thus, symbolic evaluation is an effective way of generating test data for structural
testing techniques [GOO75]. This idea is the basis for generating test data in the QUEST
automated software testing system and others [BRO86a, CLA76, HOW78b].

Each decision node along a given path will add a term to the path predicate. Further, any
of the variables within these terms that are modified by assignment statements must be

" incorporated into the path predicate such that it can be stated in terms of the input varia-
bles. Backward substitution has an advantage over forward substitution in that no space is

required for storing the intermediate symbolic values of variables [RAM76]. The process of
traversing the path and building the path predicate according to each statement along the
path is called "dragging" the path predicate along the path [HUA75]. There is a partial
predicate associated with each control statement along the path called a branch predicate.
As each branch predicate is added to the pathpredicate, a new constraint is placed on the
values that the input variables may have [CLA76]. Each new constraint should be checked
for consistency with the path predicate as it is being built. If an inconsistency is found, the
path can be labeled as infeasible [CLA76]. Forward substitution has the advantage of allow-

ing "...early detection of infeasible paths with contradicting input constraints" [RAM76].
Otherwise,the predicate, which must be satisfiedby the input data to drive a given path, is
statedpurely in termsof the input variables.

2.3 AUTOMATION

There are many facets of the testing process which are ripe for automation. As expressed
above, the purpose of automation is to enable more and better test cases to be executed in
order to provide more reliable code within the testing resource constraints. Classical tools
include test harness and instrumentation. More recent literature suggests the need for

automating test case generation, regression testing, and even the oracle. These are dis-
cussed in the following subsections.

2.3.1 THE NEED FOR AN ORACLE

An oracle is defined to be an external source of information used to detect occurrences of

errors. Oracles may be detailed requirement and desiK_n specifications, examples, or simply
human knowledge of how a program should behave. Theoretically, an oracle is capable of
determining whether or not a program has executed correctly on a given test case [HOW86].

Practically speaking, the manual effort needed to verify test results makes this the most
labor-intensive part of the testing process [BRO87].

Some type of oracle must be employed, either by test personnel or by an automated
testing system, to determine whether outputs are correct. Two types of oracles that could be
integrated into an automated testing environment are design specification simulators and
redundant coding. A paradigm for integrating such an automated oracle into the testing

process was given by Brown [BRO87].

2.3.2 AUTOMATED TESTING TOOLS

2.3.2.1 STRUCTURAL TESTING TOOLS

A path predicate states a set of conditions that must be satisfied in order for a path to be
traversed. As each branch is added to the path predicate, a new constraint is placed on the

values that the input variables may have [CLA76]. Thus the predicate, which must be satis-
fied by the input data to drive a given path, is stated purely in terms of the input variables.

A predicate may be simplified and then translated into a series of inequalities for solu-
tion, thus generating test cases. Linear inequalities can easily be solved if variable data typ.es
are limited to integer and real, while non-linear cases are much more difficult and reqmre
other less formal methods which use the generated constraints [CLA76, HOW75, RAM76].

Other problems affecting the solution of linear predicates include: 1) array subscript
variables which are dependent upon input data, 2) loop structures, 3) suoprogram inter-
faces, and 4) global variables [CLA76, HOW75, RAM76]. Another approach to testing
closely related to predicate solution is that of symbolic evaluation. Several automated

systems for performing symbolic evaluation exist [CLA76, HOW78b].

6

2.3.2.2 FUNCTIONAL TESTING TOOLS

The goal of functional testing is to design and execute a set of test cases that exercise the
entire functionality of the software [OST86]. Numerous methods have been described for
selecting specification-based test data [MYE79, WEY80, HOW81, OST79]. Also, tools
have been developed to assist in the generation and maintenance of specification-based test
cases [OST86, SOL85, CER81, CHO86, BOU85]. However, these tools require considera-
ble user interaction, and they do not fully automate the process of test data generation.

Tools have been developed for static analysis, dynamic testing, and the facilitation of
regression testing [I'SA86]. The extension of these tools to include concurrency constructs
is in its infancy IGOR86]. Concurrency has been studied in terms of structural testing
[TAY86], as well as static analysis with symbolic execution [YOU86]. The use of symbolic
execution has been extended to a tasking subset of Ada [DIL86], to explore "safety proper-
ties", such as mutual exclusion and freedom from deadlock.

2.4 RELIABILITY MODELS AND TEST ADEQUACY CRITERIA

Attempts have been made to quantify the reliability of software entities being tested.
Statistical models for various testing approaches have been derived and applied [DUR80,
ROS85A, DUR81, ROS85B]. As in all applications of statistical modeling, assumptions and
approximations must be made. Although such models are not generally accepted as perfect
indicators of software reliability, coverage metrics will continue to be used as indicators of
software reliability until this area has advanced far beyond its present state.

Since the purpose of testing is to determine whether a particular piece of software con-
tains faults, an ideal test set would succeed only if the software contains no faults [GOO75].

Unfortunately, it is not generally possible to derive Such a test set for a program, or to know
that a test set is ideal. We must use some test adequacy criterion to determine how close our
test set is to ideal and when to stop testing. Such a criterion is called program-based if it is
independent of the specification of the program, and so is based purely on the code. State-
ment coverage and branch coverage are two program-based test adequacy criteria
[WEY86].

Instrumentation of programs aids in evaluating the degree to which an adequacy criteria
have been met. Instrumentation is the insertion of additional statements into the program
which, when the program is executed, will compute some dynamic attributes c_f the prc_granl
[HUA78]. For instance, a simple instrumentation scheme would insert counters to record
the number of times each statement is executed. Instrumentation to compute certain pro-

gram-based adequacy metrics allows the testers to evaluate their progress.

The adequacy measures produced by instrumentation may be classified as control-flow
coverage measures, data-flow coverage measures [FRA88], and most recently data coverage
measures [SNE86]. One data-flow coverage measure is definition-reference chain (dr-chain)
coverage, which is concerned with the definition and referencing of program variables
[HOW87, WlL85, RAP85]. Statement and branch coverages are examples of control-flow
coverage measures. Recent work has been performed in developing adequacy criteria
derived from data flow testing criteria [FRA86], and in comparing the various criteria

[CLA86]. Some experimental comparisons suggest that the various approaches should be
considered as complementary rather than competing [GIR86].

7

2.5 TEST DATA GENERATION

A software testing problem that is very closely related to test set evaluation is that of
test data generation. Qmte often, the difference between the two blurs because test data
generation schemes generally attempt to generate data that will satisfy some specific test
data adequacy criterion. Test data generation has been defined as consisting "of specifying
and providing the test input data and of calculating the test output data" [VOG85].

Generating test inputs for a program may not appear to be a difficult problem since it

may be done by a random number generator [DUR81]. However, although random testing
alone has been shown to be an inadequate method for exposing errors, when combined with
extremal and special value (ESV) testing, it can be an effective method and can provide a
direction for the generation of future test cases [VOU88]. On the other hand, algorithms for

generating test data to satisfy particular adequacy criteria have generally had very bad time
and space complexities and produced small amounts of test data. In fact, it is not possible
(i.e., there exists no algorithm) to generate test data which causes the execution of any arbi-
trary program path [MIL84].

DeMillo, Lipton, and Sayward [DEM78] attempted to develop a practical test data
generation methodology somewhere between random data generation and full program
predicate solution. Noting that programmers produce code that is very close to being cor-
rect, they observed a program property which they named the coupling effect. Basically, the
coupling effect is the ability of test cases, designed to detect simple errors, to surface more
subtle errors as well. Howden, on the other hand, developed a set of functional testing rules
[HOW87]. Although both of these research efforts were directed at helping programmers
test their code, they are also directly applicable to automatic test data generation. They are
not algorithms, but instead are useful rules of thumb. Such rules are typically referred to as
heuristics, which embody certain bits of "expert knowledge." Thus, a knowledge-based or
expert system approach is very appropriate in attacking the problem of generating test data
for software programs. This approach is made possible not only by the maturing body of
knowledge about software testing, but also by developments in the field of rule-based sys-
tems, a branch of artificial intelligence.

2.6 THE PATH/PREDICATE SOLUTION PROBLEM

As stated earlier, test data generation algorithms are usually designed to generate test
data sets which satisfy some particular test adequacy criterion. Since algorithms such as
these are provably nonexistent for a general program, the domains of the algorithms are
some subset of all possible programs. One such subset is the set of all programs with only
linear path predicates. The applicability of each technique is, of course, limited by its re-
stricted domain. This limitation is the first problem with conventional test data generation

" algorithms. The second problem with such algorithms is that they usually have very bad time

' and space complexities. For example, the path-predicate generation/solution approach for
statement coverage must: (1) choose, from the (possibly infinite) set of possible paths
through the program, a subset of these paths which will provide statement coverage, (2)
construct a path predicate for each chosen path, and then (3) solve the associated path
predicate for each path in terms of the inputs to the program. The predicate solution prob-
lem alone is very complex, and no algorithm exists for solving general nonlinear predicates
[MIL84]. However, there are some good methods which willfind solutions to many predi-
cates.

8

One implementation of the path predicate methodology is the QUEST testing tool
[BRO86, WEY88]. QUEST is applicable to a subsetof FORTRAN 77 and providespath
predicate generation options which attempt to generate test data to satisfy the statement
coverage,decision coverage,condition coverage,or decision/condition coveragetest ade-
quacycriteria. Of course,there is no guaranteethat the predicatesolution algorithm will be
able to solve a given predicate; it must halt after a predefined number of unsuccessful
attempts to find a solution. Even with the ability to solve predicates, each solution yields
input data for only one testexecution. This is the third problem with traditional test genera-
tion methods- theyproducea relativelysmall numberof test cases.

2.7 CONCLUSION

While QUEST/Fortran aided the testing process by automating some structural testing
techniques, its use of symbolic evaluation leads to a number of problems: 1) limitations on
the program structure which could be handled, 2) poor space-time efficiency of solving a
predicate for each program path, 3) the limited number of test cases that could be generat-
ed in a given amount of time, 4) the limitations of the algorithms used to solve the path

predicates, which sometimes meant that obvious path predicates were labeled as unsolvable
and 5) the generation of trivial test cases.

QUEST/Ada addresses the problems encountered with path predicates by generat-

ing test cases using a rule base as opposed to symbolic evaluation. While the traditional
instrumentation techniques will be used to evaluate coverage, unlike QUEST/FORTRAN,
QUEST/Ada uses a formal parser/scanner to enable the instrumentation capabilities to be
easily generalized. Further, the information obtained from this instrumentation upon execu-
tion will be fed back to the test data generator to successively improve the quality of the test
cases. These innovations make QUEST/Ada a unique approach to software testing.

9

3. DEFINITION OF SYSTEM STRUCTURE

The overall structure of the QUEST/Ada system was designed using the TAGS
Input/Output Requirements Language (IORL). While the entire set of IORL specifica-
tions is given in Appendix A, some of these diagrams will be used in this section for illustra-
tion. Figure 1 shows the highest level of data flow, with the user interacting with the test
environment, called QUEST (Query Utility Environment for Software Testing). As primary
data flows, the user supplies source code and receives coverage analysis reports. Test cases
are initially input by the user, who may continue to augment them throughout the test
process. The user also interacts with QUEST to provide parameters to determine the

extent and duration of testing. Requests for regression testing also proceed over interface
QUEST ADA-12. QUEST provides the means by which an execution of the module under
test will produce output values for verification. Thus, actual module execution results also

proceed over interface QUEST_ADA-21.

Figure 2 goes into more details of the QUEST system. The module being tested is input
as Ada source code to the scanner/parser, which provides output to the test data generator

TDG), the test execution module (TEM), and the report generator (RGEN). The inter-
ces between the various subsystems are listed in Table 1 and described in the following

section.

Table I. Description of High Level Interfaces

INTERFACE

QUEST_ADA-12

QUEST_ADA-21

DESCRIPTION

Source Code

Test Data Generator Control Parameters

Initial/Updated User Test Data
Regression Test Signal

Coverage Analysis Reports

Source Code Listing
Test Case Execution Results

I0

10
,IJ

IO
r7

,p

U
W I.'- _
t. U
IJ L C
•_ IB 0)
IB I_ --'

10
L "O 4."

n 4-, 0

IB _ "U
"13 0 0. C

0 L._ 0
U w, _ --,

C_ W
0 10 t_

U tJ --'
L 'P L
3 Lg -" 01
0t7 C U

U'J !-- H t_

IN
.'-4

I
Q:
Q
(E

I
I--
tn
iii
::)
0

0
El
C
Om
LC

C_
W •

O_
mmm
c W
w k_

NOO_

OI
>

I
+1

.,.a

r

i.
0

9-
01

0
n U

tO M
C-O
0_:
Q.

I) 0
I-

OI
C r"
0 ""J

E tll*'
IiI L ii
tn i) ii

,-_:::) n ,.

,'-4

i'M
I

(E
n
E:

I
l-
tn
111
::)
o

0 ILl
. n
II

r_ (_C
C 0

• -.._ 4_' "lid

_1 te 3
31--.

__J I)
IB x
£ eLU

(3:"0
0 I)

etJ I_
01 I0
• eL)
L U
49 L _"

0 0 I_
L) tn I--

--LLI

UJ

Figure 1 - Top Level IORL Description
II

rq

I
E:
o

u

LO
,'-4

I
C]:
O

c
o

...,P

E
L
0

q- I@
C *'

H
O

C
0 _" UI

•--' IJ1 +_
_' ILl

C - @J
@ L_Y

@J_13 C
L E 0
O- :] "-'
@Z _-'

E 3
I; U

U _1 @
-J IB X
--UW

O
n 4-, +,
E m W
:_U I;

L0 I-- I--

..

N ('r} _t-
,_Nm

I I I
E: CE CZ:
OOO

<1

,,--I

I

0

C
o

.p

E
L
0

4-
E

H

C
O

..J

4.1

I@
.p

E

L

U
n,"

U
..J

o
n
E

If}

II1
IJ

Ill
@

r_

r
0

..J

3
U
@J
X

W
L0
H la
_1 .-.4 In
:3 ('4 ID
L0 I U
ILl' d:
rY n 4-,

(32
I IV

a. m,_

m
!

c£
o

@J
"o

o
U

IJ
U
L
2J
0

LO

-O
tg
.p

E

E
3
L
4.=

C
H

q
(13

I
a:
O

r¢
C)

_--E:
i'_" i'_
OLU

Z O-Z
Iii WILl
L9 rv' L.,I

I
(E
0

WL0
1..gH
(ELf}
rY>-

F- I11 1
tn :> CE

(:E LUOZ
U I-- LJ d:

?

Z
O
H
I--- I._

I-- U ::)
U1LUn

T- WXO
W F-WT"

_l I---

?
o

0_0_
I--O
(EI--

nK
_--LU
LOZ

L.g WI,I
0 I--1_9

NI--

,,-4

!

0

n_'W
IIIZ
U_Z
_'(]:

T- (EL}
U'} 0.1.13

I

El
............. _ E:

I
I--
If)
Iii
:::)
O

L
0
Q_
@

r¢

@

@
L

>
O

U

q

(M

I

@
@
r¢

@

@
31

I@
C
CE

@
01
i@
L
@
>
0
tJ

I=

L
@

r
@
@
@
I@

U

@1

I--

E
L
0

i@
c
Ol

tO

@I

I--

C
0

U)

@
i
O)
@

n/

('4

I
_F (3:

O
E:

I
.............. I-- Z

I

I

0 @
. (U

I L
I-- 3
L0 0
I,I tO
::)oq

E
0

...b

@
E

•--4 L
(_i 0

I 9-
E: r
0 "'_

E:
I I]

!-- u 01
In--' @
LLI E I.
:::) IB I_
or>

3) 0
1:3 U

Ox

I

7
I

°° °°

LUUJ
L.Db-

0
m
Ul

..

U
W
U')

(]:
On
°° °°

UW
0:3
OtO

tO
H

o.

L/3
tO
CE
J
U

=,=,

OIL
--LU

T'E_
I,I
I--" °°

inn
>-(3:
u_'-

Figure 2 - Detailed IORL Description

12

4. DEFINITION OF HIGH LEVEL INTERFACES

4.1 PARSER/SCANNER INTERFACES

The parser/scanner produces data structures which describe the program under test to
the test data generator and the report generator. This includes information concerning the
input variables and parameters, condition and decision structure, and segment or block
structure. The parser also augments the source code with a driver module for use by the
test execution module. These interfaces are detailed in Table 2.

Table 2. PARSER/SCANNER MODULE INTERFACES

INPUT: QUEST_ADA-12, ADA SOURCE CODE
FROM: USER

OUTPUTS: QA-13, INSTRUMENTED SOURCE CODE
TO: TEST EXECUTION MODULE

i. INSTRUMENTED DECISIONS

2. MODULE DRIVER

QA-12,
TO:

SYMBOLIC REPRESENTATION INFORMATION

TEST DATA GENERATOR

i. PARAMETER LIST

2. TYPE DECLARATIONS

3. DECISION/CONDITION DEFINITIONS
a. DECISION NUMBER

b. CONSTRUCT TYPE

c. DECISION STRUCTURE

QA-15, SYMBOLIC REPRESENTATION INFORMATION
TO: REPORT GENERATOR

I. DECISION/CONDITION LIST
a. DECISION NUMBER

b. CONSTRUCT TYPE

c. NUMBER OF CONDITIONS

13

4.2 TEST DATA GENERATOR INTERFACES

The Test Data Generator (TDG) interfaces are given in Table 3. The TDG obtains input
from the parser/scanner in the form of a parse tree which describes the relevant structures
within the source code. It translates this information into assertions which are used to

determine the firing of the rule base.

The TDG interacts with the test execution module via test cases and test results. The

results of each test case are analyzed by the Test Coverage Analyzer so that it can make
decisions for the creation of additional test cases. This is performed by automatically analyz-

ing the "quality" of the results generated at a given point in the testing process, where quality
is determined by coverage metrics and variable value domain characteristics. The QA-
23/QA-34/QA-42 loop is reiterated automatically until a given coverage is attained or until a
user-defined check point is reached in terms of number of test cases generated. At this

point the user will either stop the process or supply additional parametric information (via
QUEST_ADA-12) to generate additional test data. User-defined test data may also be

supplied at any of these check points.

Table 3. TEST DATA GENERATOR INTERFACES

INPUTS: QUEST_ADA_I2, TEST CASES: NORMAL AND REGRESSION
FROM: USER

QA-12, SYMBOLIC REPRESENTATION INFORMATION
FROM: PARSER/SCANNER MODULE

QA-42, TEST EXECUTION RESULTS
FROM: TEST COVERAGE ANALYSIS

OUTPUTS: QA-23,
TO:

TEST CASES

TEST EXECUTION MODULE

i. TEST CASE NUMBER

2. TEST DATA

QUEST_ADA-21, DYNAMIC COVERAGE
TO: USER

INFORMATION

14

4.3 TEST EXECUTION MODULE INTERFACES

The Test Execution Module (TEM) interfaces are shown in Table 4. TEM receives
the instrumented source code sufficiently harnessed by a driver to enable it to be executed.
Thus, its task is merely to execute the instrumented source code using as input the test data

generated by the TDG component.

The TEM generates two outputs. The simplest of these is information for the Test
Coverage Analysis (TCA). Each test case executed will produce an output via the instru-
mentation (i.e., a side effect) which will indicate the decision/condition satisfied by that test
case. This information will be processed by the TCA in order to serve appropriate informa-
tion to the Test Data Generator and the Report Generator.

The second output is a library of both the intermediate coverage information described
above and the output results of each test case. This information will be stored for retrieval
by the Regression Testing function and the Report Generator. The specific format of the
coverage library will evolve as the reporting requirements evolve.

Table 4. TEST EXECUTION MODULE INTERFACES

INPUTS: QA-13, INSTRUMENTED SOURCE CODE

FROM: PARSER/SCANNER MODULE

QA-23, TEST CASES
FROM: TEST DATA GENERATOR

OUTPUTS: QA-34, TEST EXECUTION RESULTS
TO: TEST COVERAGE ANALYZER

i. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF VALUES OF DECISION

4. LIST OF CONDITION RESULTS

QA-35, OUTPUT RESULTS
TO: REPORT GENERATOR

QUEST_ADA-21, TEST CASE EXECUTION
TO : USER

VARIABLES

RESULTS

15

4.4 TEST COVERAGE ANALYSIS INTERFACES

Table 5 presents the Test Coverage Analyzer (TCA) interfaces. Essentially TCA

takes the output generated via the probes inserted by the instrumentation and translates this
information into the input required for efficient and straightforward report and test data

generation. Note that this is accumulated in two formats, one for the analysis of an individ-
ual test case, and the other for the cumulative results of all tests performed. As mentioned

above, a primary use of the former information is to provide feedback to the TDG to
automatically generate improved test cases.

Table 5. TEST COVERAGE ANALYZER INTERFACES

INPUT:

OUTPUTS:

QA-34, TEST EXECUTION COVERAGE RESULTS
FROM: TEST EXECUTION MODULE

QA-42, INTERIM COVERAGE ANALYSIS RESULTS
TO: TEST DATA GENERATOR

I. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF VALUES OF DECISION VARIABLES

4. LIST OF CONDITION RESULTS

QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
TO: REPORT GENERATOR

I. INDIVIDUAL TEST COVERAGE DATA

a. TEST CASE NUMBER
b. DECISION NUMBER

c. CONDITION NUMBER

d. TRUE COUNT

e. FALSE COUNT
2. CUMULATIVE TEST COVERAGE DATA

a. DECISION NUMBER

b. CONDITION NUMBER

c. ACCUMULATIVE TRUE COUNT
d. ACCUMULATIVE FALSE COUNT

16

4.5 REPORT GENERATOR INTERFACES

The symbolic representation information generated by the parser/scanner module is used
in conjunction with the coverage measurements calculated by the coverage analysis module

to produce detailed coverage analysis reports by the report __enerator. The user analyzes
these reports to determine if there is a need for more tests. lhese interfaces are shown in
Table 6.

Table 6. Report Generator Interfaces

INPUTS: QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
FROM: TEST COVERAGE ANALYZER

QA-35, OUTPUT RESULTS
FROM: TEST EXECUTION MODULE

QA-15, SYMBOLIC REPRESENTATION INFORMATION

FROM: PARSER/SCANNER MODULE

OUTPUTS: QUEST_ADA-21, TEST COVERAGE REPORTS
TO: USER

I. REPORT TYPES

a. INDIVIDUAL TEST COVERAGE

b. ACCUMULATIVE TEST COVERAGE

2. COVERAGE TYPES

a. DECISION/CONDITION COVERAGE
b. MULTIPLE CONDITION COVERAGE

c. NO-HIT REPORT

17

5. SCOPE OF THE PROTOTYPE

The formidable task of constructing a working prototype of an automated testing envi-
ronment during a one-year period required a clear definition of the scope of the project.
Since the goal of the prototype was to demonstrate the feasibility of automatically generat-
ing test data for a variety of Ada modules, these limitations will be based on the data types
allowed as input to the modules being tested.

The initial prototype generates test cases for multitasking Ada programs. Standard
coverage metrics will be calculated for these programs. However, they will not necessarily
be an effective indication of program correctness, due to the unpredictable nature of ren-
dezvous sequences. Consideration has been given during the prototype design and devel-
opment to establish approaches for handling concurrency. However, the actual prototyping

of these approaches has been deferred until Phase 2.

The prototype produced in phase one of the QUEST/Ada project represents a complete
basic automatic rule-based testing environment. In addition to the rule base, the prototype
includes the ability to collect relevant testing information from an Ada module and a testing
coverage analyzer. The development of this complete environment provides the capability
for evolving a sophisticated set of testing heuristics by using statistical methods to evaluate

large numbers of test cases across a wide cross section of programs. Even the most facile
large-scale quantitative evaluation techniques are enormously complicated to perform by
hand, and more complicated procedures are virtually impossible to do manually in any
reasonable amount of time. Using the QUEST/Ada prototype, however, the speed at which

large-scale evaluations can be performed is limited only by the speed of the associated
hardware.

Notably absent from the prototype is the ability to automatically "instrument" the Ada
code to be tested (see the Parser/Scanner section for an explanation of instrumentation).
This capability would allow code to be placed automatically, into the testing environment.
While this ability would be important to a production version of QUEST, it has become

clear from the prototype that such an automatic instrumentation tool would be even more
complicated than a full Ada parser. Consequently, while the tasks involved in producing the
automatic instrumentation tool are quite straightforward, the development would nonethe-
less require several times the manpower available to this project. Thus, while the prototype
proved the feasibility of this approach, subsequent tests of the remaining components of the
QUEST system will rely upon manually-generated instrumentation.

The main effort in developing the prototype parser concentrated on extracting informa-
tion critical to the automatic testing process, such as variable types, bounds and names.
These are essential to the automatic generation of test cases and the coverage evaluation.
Hand instrumentation, which was found to be a fairly simple task, was used to prepare code

for the testing environment.

Finally, it is notable that the subset of Ada covered by the initial prototype is small. As

the emphasis of the first phase of the QUEST project lay in establishing the validity of the
rule-based automatic testing paradigm and providing an environment for the efficient quan-
titative evaluation of testing heuristics and techniques, the development effort was directed

toward a fully functional small subset prototype rather than a skeleton prototype of a more
robust subset. This approach additionally allows for a more intelligent expansion to a wider
set of test heuristics, since the tools for evaluating the quality of new heuristics are now

complete. The broadening of the Ada subset is one of the primary tasks of Phase two.

18

6. PARSER/SCANNER DESIGN

6.1 GENERAL PARSER SCANNER REQUIREMENTS

The parser/scanner module is responsible for building the data structures required by the
rest of the QUEST system and creating a listing of the source code for use by the tester.
Information contained in these data structures must identify the control constructs, global
variables referenced (i.e., altered) within the module, and parameters input to the module.

As mentioned above, the roles of instrumenting the Ada source code and surrounding the
module under test with an execution driver or test harness is to be performed manually.

Instrumentation of the Ada source code is required for determining test coverage and for
providing feedback data required by the AI test data generator. Each decision and condi-
tion in the program must be instrumented so that all of the standard coverage metrics may
be calculated by the report generator. The feedback data are used as an indication of test
case quality for directing the generation of new test data. While this function is not a part of
the prototype, its integration into the Ada compiler in a production test system is straight-
forward.

The data structures built by the prototype parser provide information concerning the
structure of the module under test. This includes information about the number and types

of input variables and parameters, the statements and segments executed as a result of
decision outcomes, and the structure of decisions and conditions. These data structures are

used by the test data generator and the report generator modules.

A listing of the source code is provided to the tester as an aid in analyzing the output of
the report generator. As an option to the user, this listing shows the embedded instrumenta-
tion code. Unique identification numbers are assigned to each decision, condition, and code
segment in the original code listing.

Two parser/scanner generator packages, LALR 3.0 and BISON, were evaluated for
use in producing an attributed grammar to provide the parser/scanner functions. These
were selected because of their advertised capabilities to handle the large number of produc-
tions required by the Ada grammar. While LALR 3.0 appeared to function on some small
examples, there was no evidence that it could handle the complete Ada grammar. On the
other hand, BISON has shown great promise as illustrated by the example presented below.

6.2 PARSER/SCANNER OVERVIEW

The parser scanner first determines, by a syntax-directed parse of the Ada source code,
the appropriate information for the expert system's test case generator. It builds a symbol
table containing this information and then writes information from the symbol table into the
knowledge base of the expert system. Currently the instrumented code is surrounded by a
manually-generated Ada source driver so that the unit under test can be compiled by the
host Ada compiler. Machine independence is achieved by having the test module be a high
level unit and not dependent on any particular compiler or its symbol table representation.

In order to maintain flexibility and allow the prototype's parser/scanner to be

extended to other forms of testing, the parser scanner unit is generated by a parser genera-
tor tool and a LALR description of Ada. As with the expert system, where rules may be

19

insertedor deleted without major modification of the systemitself, the actionsof the parser
generatormaybemodified or extendedto reach agoalof afull Ada testingsystem.

6.3 LIMITATIONS OF THE PARSER/SCANNER PROTOTYPE

Because the primary goal of the first phase of the project was a working prototype of

the testing environment, only a subset of the Ada language was handled by the system. This
required decisions as to which capabilities should be included in the prototype and which
could be safely omitted. Nevertheless a complete LALR description of Ada is used to avoid
theoretical limitations.

Certain tradeoffs were made in the decision to use a high level test module in order

to avoid host or compiler dependencies. The most significant sacrifice is that all interfaces
between the unit under test and the prototype are a part of the program when it is executed.
Limitations, such as the size constraint of the users' systems become limitations of the proto-

type. More seriously, errors in the user's module remain as errors of the test module.

Errors in instrumentation or the harness/driver for the module could result in false

error detection for the module under test. The remedy for this, which is strongly advised in

any event, is to run the uninstrumented module in parallel with its corresponding instru-
mented code to assure that no such errors have been introduced.

Although it avoids compiler dependencies, the decision to use a high-level parser
generator tool to generate symbol table information adds an overhead to the resulting
system. As presently implemented, each program unit which is to be visible to the proto-
type must be included with the unit. Extending the prototype to include Ada packages will
require a more sophisticated data structure for the symbol table. If extensions are made to
include separate compilations, or packages with code not visible to the module under test,
some form of library management interaction with the host system and possible sharing of
it's compiler symbol table information might be required. However, this is not seen to be as
much of a problem with unit-level testing as it will be when QUEST is used for integration

testing.

The required instrumentation routines have been written to support the condition

branch coverage tested by the expert systems. The expressions handled by the prototype
are relational operations of arithmetic expressions, and Boolean operators are not allowed.
The reason for this restriction is that meaningful heuristics have been found in previous

work for path expression coverage of conditions determined by the arithmetic and relational

operators. Restricting use to these heuristics would enable more meaningful testing of the

prototype.

Control flow determined by values of access types is not handled by the prototype.
Consideration of these types, and heuristics for testing code containing conditions deter-
mined by the values of these types, is of interest in future development, since many pro-
grammers have considerable difficulty when dealing with these types. Similarly, informa-
tion-altering control flow that is determined by external sources, such as I/O or tasking entry,
have been excluded from the initial prototype. Future work with the prototype will heuristi-

cally address these issues.

In summary, the major work done on prototyping the parser/scanner was to develop
the code to" (1) generate the symbol table to hold type and subtype information required for

20

meaningful test casegeneration, (2) generate the routines to write this information as
neededby the expert system,and (3) generatethe Ada routines called by the instrumented
Ada code for input and output of the values of the instrumented boolean conditions. So far,
heuristic rules utilizing routines of the prototype have been used with integer based types,
subtypes, and user- defined types based on this type. The parser/scanner symbol table
routines are written to gather the information required to support other numeric and
enumeration types as well as those user-defined types based on these types.

6.4 EXAMPLE MODULE INSTRUMENTATION

Listing 1 provides an example of uninstrumented code that has been tested by the
system. The data structure used to implement the symbol table is a linked list of linked lists,
as pictured in Figure 3. Listing 2 shows a sample from the LALR description of Ada used

by the prototype's parser scanner, and the semantic actions used to generate the symbol
table. Listing 3 shows the instrumented code and the surrounding module for the previous

uninstrumented Ada code example. Finally, Listing 4 presents a fact asserted by the parser
scanner into the knowledge base of the expert system.

21

Un-instrumented Ada Code

procedure test(i: in out integer;

j: in out integer;

k: in out integer) is

begin

while i > j loop

i := i - I;

k := (k + 314) mod 25;

if i > k then

while i > k loop

k := k + I;

if k >= 27

null;

else

null;

end if;

end loop;

then

else

if i < k-3 then

if i-lO < j then

null;

else

null;

end if;

else

while i >= k-3 loop

i := i - i;

end loop;

end if;

end if;

end loop;

if i = j then

null;

else

null;

end if;

end test;

Listing 1 - Uninstrumented Code

22

Symbol Table

r

/--I_ Module Name

/ --[Level

/ F Parameters

/ -_1]Returns

I --[j Local Types

/-lJ Local Variables

II Next

I: ,_-_ F -F-

[
I

j_l Porto 1

[
I

J'_ Type 1
I

__[

"""_ Vorl

Figure 3 - Parser-Scanner Date Sturcture

23

Ada Grammar with Semantic Actions

subprg_body : subprg_spec IS

($<node>l->level = level++;)

.decl_part.
BEGIN

seq_of_stmts

.EXCEPTION excptn_handler..excptn handler...

END designator '-'-- • o t

(
level--;

$<node>l->last_line = lines;

if (!strcmp($<node>l->name, module_under_test))
YYACCEPT;

subprg spec : PROCEDURE_ identifier

{
$<node>$ = make_mod();

$<node>$->name = $<str>2;

$<node>$->first line = lines;

)
• fml_part.

(
$<node>$->parms = $<parm_l>4;

$<node>$->returns = NULL;

)

fml_part : '(' prm_spec .._.prm_spec.. ')'

($<parm_l>$ = link_parms($<parm_l>2,$<parm_l>3);)

prmspec idents '-' mode ty_mk . ASN_expr.

($<parm i>$ = make parms($<id I>I,

$<val>3,

lookup_type($<str>4)) ;)

idents : identifier ...ident..

{ $<2d_i>$ = make_id($<str>l,$<id_l>2);)

Listing 2 - Sample LALR Description

24

Instrumented Ada Code

with text_io, instrumentation; use text_io, instrumentation;

procedure driver is

BeginTest:
TestNum:

indata,
outdata:

i,j,k:

boolean;

integer;

file_type;

integer;

package instl is new instrumentation.integer_inst(integer);

use instl;

package int_io is new text_io.integer_io(integer);

use int io;

procedure test(i: in out integer;

j: in out integer;

k: in out integer) is

begin

BeginTest := FALSE;

while relop(TestNum, l,0,i,GT,j) loop

i := i - i;

k := (k + 314) mod 25;

if relop(TestNum,2,0,i,GT,k) then

while relop(TestNum, 3,0,i,GT,k) loop

k := k + i;

if relop(TestNum,4,0,k,GE,27)

null;

else

null;

end if;

end loop;

else

if relop(TestNum, 5,0,i,LT,k-3) then

if relop(TestNum, 6,0,i-10,LT,j)

null;

else

null;

end if;

else

while relop(TestNum,7,0,i,GE,k-3)

i := i - I;

end loop;

end if;

end if;

end loop;

then --d4

--d5

then --d6

loop --d7

if relop(TestNum, 8,0,i,EQ,j) then

null;

else

null;

end if;

end test;

Listing 3 - Instrumented Code

25

--d8

begin
open (indata, in_file, "test.data") ;
create (intermediate, out_file, "intermediate. results") ;
create (outdata, out_file, "output. data") ;

while not End OF file(indata) loop
BeginTest := TRUE;
get(indata,TestNum);
get(indata,i);
get(indata,j);
get(indata,k);

-- get test data

test(i,j,k) ; -- run 1 iteration

put (outdata, TestNum) ;
put (outdata, i) ;
put (outdata, j) ;
put (outdata, k) ;
new line (outdata) ;

end loop ;

-- put OUT parameters

close(indata);
close(intermediate);
close(outdata);

end driver;

Listing 3 - Instrumented Code (Continued)

Rules Asserted into Clips Fact Base

(deffacts parser_scanner_assertions ""

(names i j k)

(types int int int)

(low_bounds 1 2 3)

(high bounds I00 50 25)

)

Listing 4 - CLIPS Assertion Rule Example

26

6.5 PARSER/SCANNER IMPLEMENTATION DETAILS

The Parser/Scanner Module, as currently implemented, operates in two passes. The
first pass, called SYS SCAN, creates a doubly linked list of module names to be returned to
the user interface. T-he only semantic actions required in this pass are those for creating a
node, filling in the module name, and appending the node to the linked list. The second
pass, SYS_PARSE, is considerably more complex. During this pass a symbol table consist-
ing of multiply linked lists is created which contains all the information necessary for test
data generation and report generation. In the production version of QUEST, this module
would also be responsible for automatic instrumentation. Thus, ultimately consideration

should be given to integrating this portion of QUEST into the Ada compiler.

Upon completion of SYS_PARSE, a subroutine, ASSERT_FACTS(), traverses the
symbol table gathering and writing information to a fact base used by the Test Data Genera-
tor. Information required by the Report Generator is currently stored in global variables.
The majority of the semantic actions in SYS__PARSE create and link various node types into
the symbol table. Many of these routines are quite similar in function -- the main difference
being the type of node upon which they operate. These routines will be described individu-
ally below.

The full symbol table is maintained during SYS_PARSE. This is somewhat different
from the usual method of maintaining a stack of (partial) symbol tables, one for each
module. The reason for maintaining the full symbol table in memory is to allow information
to be passed to the other parts of QUEST at the end of the parse. It would also serve in the
future to facilitate the instrumentation parse by saving the scoping and variable usage
information.

Scoping information is currently maintained as an integer 'level' associated with each
module. The lowest level corresponds to the outermost module. Listing 5 gives an example
which demonstrates the level concept. A module has access to it's surrounding module (the
previous module in the list with a level one less than it's level). The surrounding module has
access to it's surrounding module, etc. This method of scoping can be further extended to
include Ada packages.

Listing 5. Example to Illustrate QUEST Parser Levels

LEVE L MODULE

1

2

procedure outermost;

procedure innerl;

{innerl body}
end innerl;

procedure inner2;
procedure innermost;

{innermost body}
end innermost;

{inner2 body}
end inner2;

end outermost;

27

Listing 6 presents the types which are declared for use as semantic values during
SYS PARSE.

Listing 6. Types Declared During SYS_PARSE

int

integer values

val;

char

character strings -

types, variables,...

*str;

identifiers for modules,

struct rng_decl *range;

rng_decl - subtype range declaration.

struct str list *id i;

id 1 - linked list of identifiers. Used for

temporary storage of <idents>

struct var list *parm_l;

parm_l - linked list of a module's formal

parameters, also includes type info, IN OUT

info, etc.

struct var list *var i;

var 1 - linked list of a module's local

variables

struct type_list *type_l;

type_l - linked list of a module's local types

struct module list *node;

module list --linked list of modules containing

scope information (level), formal parameters,

local types and variables, etc.

(a)

(2)

(3)

The following modules are called during SYSPARSE:

make_mod 0 - creates a module list node and appends it to the module list:
static struct module_list *-make_mod 0

link types() - concatenates two type lists:
- static struct type_list *link_types(head,tail)

struct type_list *head,*tail;

make_type o - creates a type list nodes and links it to the front of the list:

28

(4)

(5)

(6)

(7)

(s)

(9)

(10)

(11)

static struct type_list *make_type 0

link_parms 0 - concatenates two var lists:
static struct var list *link_pa/-ms(head,tail)
struct var list *head,*tail;

make_parms 0 - converts an id list to a var list. It is used for declarations such as:
idl, id2, id3: type, and it creates a var list node for each identifer:

static struct var list *make_pa_ms(id_l,mode, type)
struct str_list *id_l;
int mode;

struct type_list *type;

make_id 0 - creates an id node and link to front of list:
static struct str list *make_id(str, id_l)

char *sff;

struct str_list *id_l;

link_id 0 - concatenates two id lists:
static struct str list *link id(head,tail)

struct sff list *head,*tail;

assert_facts 0 - traverses the symbol table and writes information to the CLIPS fact
base:

static assert_facts 0

lookup_predefined 0 - looks up a predefined Ada type static struct type_list *look-
up_predefined(str):
char *str;

lookup_local 0 - looks up a user defined type in a module's symbol table:
static struct type_list *lookup_local(str,module)

char *str; struct module list *module;

lookup type() - looks up a type in the symbol table; it calls lookup_local 0 for each
"visiblerr module until the type is found or the symbol table is completely searched; if

not found it calls lookup_predefinedO:
static struct type_list *lookup_type(str)

char *str;

29

6.6 FUTURE PARSER/SCANNER RESEARCH EFFORTS

There are four major areas in which the PSM should be extended in the near future.
These are: (1) Extending the allowed data types, (2) Extending the scoping information to
include packages, (3) Enhancing the amount and type of information passed to the Test
Data Generator, and (4) Implementing the automatic instrumentation pass. The first two
areas are rather straight-forward and will not be discussed. However, area 3 is where the
greatest improvement in the performance of QUEST could be realized.

Currently the information passed to the Test Data Generator (TDG) consists of a list
of the parameters of the module under test, their type, and their range of possible values.
This information should be extended as much as possible. In particular, data flow analysis
could yield much information that is useful to the TDG. For example, it may be determined
that one side of a particular condition can be evaluated statically, or that a variable is not

modified during a particular segment of code. This is the type of information that would be
most useful to the TDG.

Although implementing the automatic instrumentation pass will be a straight-for-
ward (albeit, extremely labor-intensive) procedure, some explanation is in order. Instru-
mentation of the various flow-control constructs will entail building a syntax tree for the

condition expression and then reconstructing the original expression with function calls to
the instrumentation package inserted at the appropriate places. As explained above, hand
instrumentation will be performed in order to prevent the development of the automatic
instrumentation from delaying the development of the remaider of QUEST.

The harnessing of the module in order to drive the module-under-test (MUT) is also
considered to be part of the instrumentation. Two methods have been considered for this.
The first method consists of "cutting out" the MUT from the original main program and
surrounding it with a driver. This method is simple and should probably be considered for
the near-term. However, certain modules cause difficulties when tested by this method.

As an example, consider the program given in Listing 7. If the MUT is procedure

b0b0'" then procedures b 0 and a 0 must both be present in the driver module in order to testHowever, b() modifies a global variable with the same name as the parameter to
procedure a 0. Therefore, one of the variables must be renamed to avoid naming conflicts
in the driver module.

Listing 7.
x,y: integer;

procedure a()
begin

modify x; --
end a;

procedure b(x:integer) ;

begin

call a()

modify x; --
end b;

begin
call

end main;
b (y) ;

Example Program

global variable x

parameter x

30

A second method for constructing the driver keeps the program structure intact. A
Boolean variable, Test, is defined in the outermost module. Each lower level module tests
this variable and if it is true, reads in local data referenced by the MUT, as shown in Listing
8. If this variable is false, it executes it's code normally. This method eliminates the need for

renaming any variables and allows mutually recursive modules to be easily tested. However,
the method is considerably more complex and it is presently uncertain whether it is truly

necessary to drive the MUT by this method.

Listing 8. Modified

procedure driver;
Test: boolean;

procedure main;
x,y: integer;

procedure a()
begin

modify x; --
end a;

procedure b(x:in out

begin
Test := false;

call a();

modify x; --

end b;

begin

if (Test) then
read(x,y);

end if;

call b(y);
end main;

begin
Test = true;

call main;

end driver;

Example Program

global variable x

integer);

parameter x

31

7.0 TEST DATA GENERATOR (TDG) DESIGN

The general goal of the Test Data Generator is to provide a prototype for intelligent test
data generation. By combining the previous software coverage analysis techniques and the
artificial intelligence knowledge-based approach, more efficient test data generation can be

achieved. When more test cases are needed to cover a specific branch, heuristics are used
to simplify the problem of finding the condition boundaries from which new test cases can
be defined. This approach has been found to obtain levels of coverage that are difficult and
inefficient to obtain under random test case generation. As the prototype develops, it will
be tested against its prior performance to assure that the rules added are leading to greater
efficiency.

The method applied by TDG has the objective to achieve a maximal branch coverage of
a software package. The analysis of actual coverage follows the Path Prefix Strategy of
Prather and Myers [PRA87]. In the Path Prefix Strategy, a software package is represented
by a simplified flow chart. Each condition in the flow chart contains two branches, true and
false. The goal of a set of test cases is to maximize the number of covered branches. The
coverage of these conditions and branches is recorded in a branch-coverage table. In this
table each condition contains two entries, one for the truth branch and one for the false

branch. When a branch of a condition is covered (or reached), the branch's entry in the
table is marked with an "X". In addition to the marking process, the test cases that cover this
branch are also recorded.

When new test cases are to be generated, the branch-coverage table is examined to
select a condition that is not yet fully covered, i.e., only one branch is covered. After a
condition is selected, an associated test case of this condition is retrieved. Since some earlier
case started from the package entry point and reached the condition under consideration, it
is already "close" to cover the branch that is not yet covered. The Path Prefix Strategy uses
an "inverse" approach to generate a new test case. However, as stated in [PRA87], the
inverse problem is still not totally understood.

Our approach to intelligent test data generation includes the following tasks: (1) initial
case generation, (2) coverage analysis and "goodness" evaluation, and (3) new case genera-
tion. Figure 4 shows the relationships between these major concepts. In this system, a test

case is represented as (case number, value-l, value-2, value-3, ..., value-n). "Number" indi-
cates the generation sequence of this case. Value-l, vatue-2, ..., value-n are the values of
each input variable of the package. The design and development of the TDG component
prototype proceeded with the following simplifying assumption: a condition contains con-
stants, arithmetic and logic operators, and input variables only. Internal variables, i.e.,
defined within the tested package, would not appear in a condition. This provided a more

explicit relation between the input variables and the condition branches. The system is
being developed using CLIPS [CLI87], an expert system development tool which provides
various interfaces to communicate with external functions written in other programming
languages, e.g., C, Pascal, Fortran.

32

Initial Case Generation

.J

Coverage Analysis

and

Goodness Evaluation

1'

New Case Generation

yes

J Stop

Figure 4 - Flow of Test Data Generator

33

7.1 INITIAL CASE GENERATION

Initial test cases are needed to start the process. In the event the user provides test cases
with the target software package, this initial case generation step can be skipped. However,

if test cases are not provided, the initial test cases can be generated based on the syntax
information of each input variable, including type, lower limit, and upper limit. (Note: this
will be the approach used here in order to provide a common baseline to which improve-
ments in the TDG can be compared.) Four cases are generated: (1) each variable is as-
signed to its mid-range, (2) each variable is assigned to its lowest value, and (3) each varia-

ble is assigned to its highest possible value. For each variable, the mid-range, bottom, and
top are defined as:

mid-range =

bottom =

top =

(upper-limit - lower-limit) / 2

lower-limit + (upper-limit - lower-limit) * 0.05

upper-limit - (upper-limit - lower-limit) * 0.05

These three cases are numbered cases 1, 2, and 3 respectively. This heuristic rule is
shown in the following:

Rule-Initial-Cases

(If no cases exist

Then (assert
(case 1 mid-range-1 mid-range-2 mid-range-n))

(assert
(case bottom-1 bottom-2 bottom-n))

(assert
(case 3 top-1 top-2 top-n))

(assert
(basket 1 2 3))

(assert

(nextcase 4)))

If more cases are needed, this rule can be modified to incorporate any desired combina-
tions. In this rule, a basket is asserted to notify that a set of cases has been generated and is
ready for coverage analysis. The statement of "nextcase" indicates that the case number of
next new case will be 4.

7.2 COVERAGE ANALYSIS AND GOODNESS EVALUATION

As indicated above, the objective of the test case generation is to cover as many branches
as possible. When a new set of cases is generated, it is analyzed to determine what branches
these cases have covered. This process is called coverage analysis and is performed by an
instrumented simulator of the target software package. After the coverage analysis, it will
be possible to determine what branches have not yet been covered and still need further
cases.

34

The instrumented simulator of a target package functions just like the target package
except it containsextra code to record the branch coverageof each condition and to calcu-
late how "close"a test casehasbeen to the condition boundary. For example,an IF state-
ment:

IF (3*x+y) > = 21THEN do-1ELSE do-2

will be instrumentedas

IF analyze((3*x+y) > = 21)THEN do-1 ELSE do-2

Here, "analyze" is a function defined in the simulator to perform coverage analysis and other
evaluation tasks. The coverage analysis is basically a table filling process which records the
covered branches. Assume that a test case (x=5, y=2) is analyzed. Since the value of the
evaluated left-hand-side (LHS), i.e., 17, is smaller than the right-hand-side (RHS), i.e., 21,
the FALSE or the ELSE branch will be executed. This means the ELSE branch would be

covered.

In addition to providing coverage analysis, the simulator also calculates how close the
LHS is from the RHS, based on the given test case. Here "closeness" is defined as

ABS(LHS - RHS) / MAX (ABS(LHS), ABS(RHS))

This measure tells the closeness of the test case to the condition boundary [DEA88]. When

this measurement is small, it is generally true that this test case can be modified slightly to
cover the other branch of the condition. In the previous example, with test case (x=5, y=2),
LHS is 17 and RHS is 21. The closeness value is therefore (21 - 17) / 21 = 19%. Assume
there is a second test case (x=6, y=2). Its closeness value is (21 - 20) / 21 = 4.8%. The
second case will be considered "better" than the first case according to the criteria intro-

duced above. This is because a smaller change on the second case may be enough to lead to

the condition boundary or even beyond the boundary and cover the other branch.

The importance of the slight modification to the test case is based on the fact that the
original case starts from the entry point and reaches the condition under consideration.
Between these two points, this case is also used by other conditions. In order to reach the
condition under consideration again and cover the other branch, the modified new case
must pass through the same set of conditions and yield the same branching results. For this
reason, the closeness of a test case (under a particular condition) can also be considered as

its "goodness".

In the current version of system, the analyzer is written in C language. It is called as
an external function from CLIPS.

In the TDG prototype, each condition contains two pieces of information. The first re-
lates to the coverage of its branches. The second is the "best" test case that has reached this
condition so far. If both branches of a condition have already been covered, this condition
will not be considered for further test case generation. However, if only one branch is
covered, more test cases will be generated, based on the best case. This heuristic is ex-
pressed in the following CLIPS rules, which have been modified slightly (from CLIPS) for

easier understanding:

35

Rule-No-More-Case

If (check?cond)
(cond ?condtrue true $?x)

then (assert(check (+ ?cond1))))

;checkcondition ?cond
;both brancheshavebeen
;covered.Best case,$?x, is
;ignored.
;checknext condition.

Rule-More-Cases

(If _check?cond)
(,not
(cond ?condtrue true ?x))

then (assert
(generate-more?cond?x)))

;checkcondition ?cond
;not both conditions are
;covered. There
;besttest case,?x.

is also a

;passthe condition and the
;best case to the test case

;generator.

7.3 NEW TEST CASE GENERATION

The objective of this portion of case generation is to cover the branches that are not
covered previously. As mentioned earlier, a request of this kind provides the condition to
be considered and its best test case. The generation of more test cases should follow the
general philosophy of modifying the best case by a small amount. With this guideline in
mind, the test data generator (TDG) will produce several sets of new cases with various
constraints.

Consider the best test case, case-i, of condition cond-i. Case-i is a list of numerical values:

_V1, V2, ..., V-, ..., V). The j-th value in the list corresponds to the j-th input variable.
ince it may h_ppen t_at only part of the input variables would appear in a condition, the

TDG needs to know which variables appear in the condition. The values of these variables
have the direct impact of the branching decision and should be the candidates for modifica-
tion. Let us assume VL = (Va, Vb, ...) contains these variables. The following heuristics
have been used to generate new test cases:

1. Keep all variable values unchanged except one variable which is in VL. This would
simplify the condition under consideration. For example, in the previous best case,
(x=6, y=2), if we keep x unchanged, the condition can be simplified in the following

steps:

a. 3 * x + y >= 21 ; x=6

b. 18 + y >= 21

c. y >= 3

The last expression gives the condition boundary. Three more new cases can be generated,
i.e., (x=6, y=3+e), (x=6, y=3), (x=6, y=3-e). Here, e is defined as a small positive number,

36

e.g.,e = (upper-limit of y - lower-limit of y) / 100. The same method is then applied to
every variable in VL. If there are m variables in VL, then 3 * m cases will be generated.
The simplification process is performed in C- subroutines. This is because CLIPS does not
provide symbolic evaluation functions.

2. Keep all variable values unchanged except two variables which are in VL. One of the
variables is instantiated to its mid-range value. With this instantiation, only one variable
is left in the condition. The simplification process previously mentioned can then be

applied. Assume we are considering a condition:

4*x*y+3*x =< 9*y

The best test case we have so far for this case is (x=2, y=15, z= 10.6). Since only x and y
appear in this condition, only their values need to be considered. Also assume the ranges
for x and y are [-10.5, 20.5] and [-5.5, 30.5], respectively. Three new test cases can be gener-

ated in the following steps:

a. Assign y = mid-range ofy = [30.5-(-5.5)]/2 = 18

b. Replace every appearance of y in the condition with 18.

3*x*18+3*x =< 9"18

57"x =< 162

x =< 2.842

c. Generate 3 cases (x= 2.842 + e, y= 18, z= 10.5), (x=2.842, y= 18,

z= 10.5), (x= 2.842-e, y= 18, z= 10.5).

The system then instantiates x to its mid-range

the process.

and repeats

These two heuristics will generate many new cases. Additional branch coverage normally
can be achieved. However, it may happen that new cases never reach the target condition
due to the modification of previous cases. If this happens, the best test case of the target
condition would not have been changed. Since the generation of new test cases is based on
the best case, the same set of test cases will be generated over and over again and they will
never out perform the original best case. The TDG needs a mechanism to prevent this. We
define a "bag" to be associated with each condition. This bag records all best cases that the
system has used to generated cases for the condition. As more cases are generated and
analyzed, the best case of each condition will evolve. This is the reason that there may be
more than one best case in a bag. When the best test case of a condition is found to have
been used before, an unnecessary loop may exist. This indicates that previous heuristics did
not yield good cases. If this happens, the following third and the fourth heuristics will be

applied:

3. If there is only one variable in VL, then modify all variable values except the one in VL
by 10% of their ranges and then apply the simplification process described in the first

37

heuristic to find the condition. In a condition with only one variable, the only way of
covering both branches is to modify this variable's value according to simplification
process of the first heuristic. This is required no matter how a test case reaches this
condition. If the modification causes the change of the coverage path (i.e., the condi-
tion under consideration can no longer be reached), other variable values must be
modified to compensate for the change. However, the task of figuring out how a
modified variable value would impact the branchings of other conditions and how
other variables' values should be modified to compensate for this impact is still a
future study topic. Currently, all other variables' values are changed by 10 percent of
their correspondent ranges to compensate for this impact. After the modification to
all variables except the one in which the condition is made, the simplification step in
heuristic 1 is applied to determine its values.

4. If there is more than one variable in VL, heuristic 2 will be applied, except all other

variables will be modified by 10 percent of their ranges.

7.4 TEST DATA GENERATION EXAMPLES

In this section, a simulation of the test data generation process is presented to illustrate
the functions of the system. Assume the flow chart of a target software package is given in
Figure 5. There are three input variables to the package, i.e., x, y, and z. They are all real
numbers and have ranges, [30, 200], [-220, 20], and [-100, 312] respectively. The expressions
of the conditions are:

Cond-l: z+20 < 3*x

Cond-2: 3*x*y =< 4*y

Cond-3: z > y + 100

When this information is presented to the TDG, three initial test cases will be generated
based on the first heuristic. They are the mid-range case, (case 1, 115, -100, 106), the bot-
tom-range case, (case 2, 38.5, -208, -79.4), and the top-range case, (case 3, 191.5, 8, 291.4).
These cases are then fed to the coverage analyzer. The conditions and branches that each
case reaches are:

Case-l: (cond-1 True), (cond-2 True)

Case-2:(cond-1 True), (cond-2 True)

Case-3:(cond-1 True), (cond-2 False)

It can be seen that all cases went through the truth branch of cond-1, two cases went
through the truth branch of cond-2, and one case went through the false branch of cond-2.

The coverage table at this point is shown in Figure 6. Based on the goodness of a case asso-
ciated with a condition defined earlier, the best test cases for cond-1 is case-3 and the best
test case for cond-2 is case-2. This information is sent back to the TDG. The TDG will start

by checking cond-1. Since only one branch of cond-1 is covered, more cases should be
generated for cond-1. The first and the second heuristics are applied and case-3 is used as
the best case. This will generate six new cases. The case generation sequence is:

38

Figure 5 - Example Target Software Package Flowchart

Condition

1

2

3

Branch

T F

X

X X

Figure 6 - Partial Coverage Table

39

(case 4,191.5, 8, 554.5)

(case 4, 103.8, 8, 291.4)

(case 5, 102.1, 8, 291.4)

(case 6, 105.5, 8, 291.4)

(case 7, 115, 8, 425)

(case 7, 42, 8, 106)

(case 8, 40.3, 8, 106)

(case 9, 43.7, 8, 106)

;keep x unchanged, modify z only,
;z is out of range, illegal case.

;keep z unchanged, modify x only

;keep z unchanged, modify x only

;keep z unchanged, modify x only

;keep x at mid-range, modify z only
;z is out of range, illegal case

;keep z at mid-range, modify x only

;keep z at mid-range, modify x only

;keep z at mid-range, modify x only

The process then checks cond-2. Since both branches of cond-2 are covered, no more
cases are needed. When cond-3 is checked, it is found that it has never been reached (or
covered) before. No cases will be generated for cond-3 at this point. The process then
passes the newly generated six cases to the coverage analyzer. The analysis result will be:

case-4:

case-5:

case-6:

case-7:

case-8:

case-9:

(cond-1 False), (cond-3 True)

(cond-1 False), (cond-3 True)

(cond-1 True), (cond-2 False)

(cond-1 False), (cond-3 False)

(cond-1 False), (cond-3 False)

(cond-1 True), (cond-2 False)

At this point, all conditions are fully covered. The test data generator will stop. In all, 9
cases were generated.

7.5 SYSTEM INTERFACE MECHANISM

The technical description given above tends to obscure the interactions of the Test
Data Generator (TDG) with the rest of the system. This section is intended to clarify the
mechanisms by which this is accomplished.

The TDG will only respond to feedback information from the Test Execution
Module (TEM) and the Test Coverage Analysis (TCA) component. However, it should be
clear that these two modules cannot function without some original test cases being sup-
plied. It is expected that user-supplied test cases will be part of any good Ada software

40

design. The QUEST design accommodatestheseby allowing them to be input first, i.e.,
prior to automaticallygeneratingadditional test cases.

After apacket of testdata isgenerated,a round of executionsof this datawill follow.
Updated TEM and TCA information will then be returned to TDG in order to prepare for
the next round of test datageneration. After each round the test casesadded to the file will
be marked accordingto the round in which theywere generated.

For purposesof efficient verification and regressiontesting it might be beneficial to
indicate a priority on the tests. It is expected that TDG will generate hundreds or even
thousandsof testsfor a givenmodule. Dependingupon the automatedcomparisoncapabil-
ity, it may not be possibleto verify everyone of theseagainstan independentexecution of
the design. This being the case,the following priority schemeissuggested:

0 - userdefined test cases(highest);

u first test cases to add to control coverage; these

along with the 0-priority cases will form a minimal
test set;

2_ subsequent n test cases which do not add to control
coverage but provide additional data coverage,
where n is a value dependent upon the program
characteristics;

3 - this is the lowest priority, and it would be assigned
to any test case not falling in the three given above.

41

8.0 TEST COVERAGE ANALYZER

When the user selects option 1 (Begin Testing)from the Automatic Testing Menu,
the Test Coverage Analyzer (TCA) is invoked. The TCA receives data about the module to
test and the maximum number of test packets that the TDG should generate.

For each test packet, the TCA invokes the Test Data Generator. The instrumented
Ada module is then executed using the newly generated data. The intermediate data creat-

ed during the execution is first accumulated for the printed reports, and then it is examined
by the TCA.

The TCA creates a coverage list containing an entry for each decision encountered

so far, and it keeps up with whether the decision has been covered for TRUE and for
FALSE. After all of the new intermediate results have been placed into the coverage list,
the TCA makes assertions to the TDG.

These assertions allow the TDG to select input to cover all currently .uncovered
decisions in the Ada module. The TCA informs the TDG of each decision m the Ada

module that has not been completely covered in testing, and it keeps up with the percentage
of decisions that have been completely covered.

TDG

/\

New Test Data

Assertions

> l [Test Data File

Used I

Test

Data

\/ \/

Data

to
Execute

TCA < MUT

Old

Results

/\

\

New

Results

/

I I Intermediate Results File

Figure 7. Test Coverage Analyzer

42

9.0 RECOMMENDATIONS FOR FUTURE RESEARCH

The completion of Phase I of this project resulted in a working prototype which
proved the concept of expert-system assisted test case generation to increase software reli-

ability. A formal grammar specification of Ada and a parser-generator were used to build
an Ada source code instrumenter. Rule-based techniques provided by the expert system
tool, CLIPS, were used as a basis for the expert system. Given this prototype it is now possi-
ble to evaluate various rule base approaches such that an improved set of rules can be
developed and validated.

Appendix F presents the proposal for Phase II of this project. It will extend the test-
ing tool developments presented above as well as incorporating the development of reverse-
engineering tools. In the area of test-tool innovation, the following goals have been estab-
lished for Phase II: (1) to continue to develop and improve the current user interface to
support the other goals of the research effort, (2) to empirically evaluate a succession of
alternative rule bases for the test case generator such that the expert system achieves cover-
age in a more efficient manner, and (3) to extend the concepts of the current test environ-
ment to address the issues of Ada concurrency. These compose Task 1 of Phase 2, and they
are discussed in detail in Appendix F.

Task 2 of Phase 2 involves the development of reverse engineering tools, basically in
the form of graphical representations. The goals of this task are: (1) to study, formulate and
evaluate graphical representations for Ada software, (2) to develop a prototype reverse
engineering tool that includes support for generation of both algorithmic and hierarchical
diagrams, and (3) to investigate the generation of additional graphical representations to
provide task, package, and data flow views of Ada software. The details and scheduled
activities for this task are also given in Appendix F.

43

10. REFERENCES

[ADR82]

*[AHO851

[BEI83]

[BEI84]

[BOE751

I OU851

[BRO86a]

[BROS6b]

[BRO87]

[CER81]

[CHO86]

[CLA761

Adrion, W. Richards, et al., "Validation, Verification, and Testing of Com-

puter Software", ACM Computing Surveys Vol. 14, June 1982.

Aho, A. V., Sethi, R. and Ullman, J.D., Compilers, Principles, Techniques,

and Tools, Reading, Massachusetts: Addison-Wesley Publishing Company,
1986.

Beizer, B., Software Testing Techniques, New York: Van Nostrand Reinhold

Company, 1983.

Beizer, B., Software System Testing and Quality Assurance, New York: Van
Nostrand Reinhold Company, 1984.

Boehm, B. W., et al., "Some Experience with Automated Aids to the Design
of Large-Scale Reliable Software", IEEE Trans. on Software Engineering,
Vol. SE-1, March, 1975.

Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M. C., "Application of
Prolog to Test Sets Generation from Algebraic Specifications", TAPSOFT
Joint Conference on Theory and Practice of Software Development, March
1985.

Brown, D. B., Haga, Kevin D., and Weyrich, Orville, Jr., "QUEST - Query
Utility Environment for Software Testing", International Test and Evaluation
Association 1986 Symposium Proceedings, pp. 38-43.

Brown, D. B., "Test Case Generator for TIR Programs", Contract Number
DAAH01-84-D-A030 Final Report, September 30, 1986.

Brown, D. B., "Advanced Simulation Support", Contract Number DAAHOI-
84-A030/0006 Final Report, June 17, 1987.

Ceriani, M., Cicu, A., and Maiocchi, M., "A Methodology for Accurate

Software Test Specification and Auditing", in Computer Program Testing,
1981.

Choquet, N., "Test Data Generation Using a Prolog with Constraints", in
Proc. Workshop on Software Testing, IEEE Computer Society Press, July
1986.

Clarke, Lori A., "A System to Generate Test Data and Symbolically Execute
Programs", IEEE Transactions on Software Engineering, Vol. SE-2, pp. 215-
222, September 1976.

*Reference not discussed in Section 2.

44

[CLA861 Clarke, L. A., Podgurski,A., Richardson,D. J. and Zeil, S. J., "An Investiga-
tion of Data Flow Path Selection Criteria", Proc. Workshop on Software

Testing, IEEE Computer Society Press, July 1986.

[CLI87] CLIPS Reference Manual, Version 4.1, Artificial Intelligence Section, John-

son Space Center, NASA, September 1987.

[DEA88] Deason, William H., Rule-Based Software Test Data Generation, MS Thesis,

Department of Computer Science and Engineering, Auburn University,
December, 1988.

[DIL88] Dillion, L. K., "Symbolic Execution-Based Verification of Ada Tasking Pro-

grams", 3rd International IEEE Conference on Ada Applications and Envi-
ronments, May, 1988.

[DEM78] DeMillo, R. A., Lipton, R. J., and Sayward, F. G., "Hints on Test Data Selec-

tion: Help for the Practicing Programmer", IEEE Computer, Vol. 11, No. 4,
April 1978.

[DEU821 Dentsch, M. S., Software Verification and Validation, Englewood Cliffs, N J,
Prentice-Hall Inc., 1982.

[DUR80] Duran, J. W. and Wiorkowski, J. J., "Quantifying Software Validity by Sam-

pling", IEEE Transactions on Reliability, Vol. R-29, No. 2, June 1980.

[DUR81] Duran, J. W. and Ntafos, S., "A Report on Random Testing.", in Proceedings
of the 5th International Conference on Software Engineering, March 9-12,
1981.

[DUR84] Duran, J. W. and Ntafos, S., "An Evaluation of Random Testing", IEEE
Transactions on Software Engineering, Vol. SE-10, pp. 438-444, July 1984.

*[FAI851 Fairley, R. E., Software Engineering Concepts, McGraw-Hill, New York,
1985.

[FIS88] Fisher, A. S., CASE - Using Software Development Tools, John Wiley & Sons,

Inc., New York, 1988.

[FOS80] Foster, K. A., "Error Sensitive Test Case Analysis (ESTCA)", IEEE Transac-
tions on Software Engineering, Vol. SE-6, pp. 258-264, May 1980.

[FRA86] Frankl, P. G., and Weyuker, E. J., "Data Flow Testing in the Presence of
Unexecutable Paths", in Proc. Workshop on Software Testing, IEEE Com-

puter Society Press, July 1986.

[FRA88] Frankl, P. G., and Weyuker, E. J., "An Applicable Family of Data Flow Test-
ing Criteria", IEEE Trans on Software Engineering, Vol. 14, No. 10, October
1988.

[GIR86] Girgis, M. R., and Woodward, M. R., "An Experimental Comparison of the
Error Exposing Ability of Program Testing Criteria", in Proc. Workshop on
Software Testing, IEEE Computer Society Press, July 1986.

45

[GLA811

[GOO75]

IGOR86]

[HOW75]

[HOW761

[HOW78a]

[HOW78b]

[HOW80]

[HOW81]

[HOW82a]

[HOW82b]

[HOW86]

[HOW87]

[HUA751

[HUA78]

[LAS83]

Glass, Robert L., "Persistent Software Errors", IEEE Transactions on Soft-
ware Engineering, Vol. SE-7, pp. 162-168, March 1981.

Goodenough, J. B. and Gerhart, S. L., "Foward a Theory of Test Data Selec-
tion", IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, June
1975.

Gordon, A. J., and Finkel, R. A., "TAP: A Tool to Find Timing Errors in
Distributed Programs", in Proc. Workshop on Software Testing, IEEE

Computer Society Press, July 1986.

Howden, W. E., "Methodology for the Generation of Program Test
Data",IEEE Transactions on Software Engineering, Vol. C-24, May 1975.

Howden, W. E.,"Reliability of the Path Analysis Testing Strategy", IEEE
Transactions on Software Engineering, Vol. SE-2, September 1976.

Howden, W. E., "Theoretical and Empirical Studies of Program Testing",
IEEE Transactions on Software Engineering, Vol. SE-4, July 1978.

Howden, W. E., "DISSECT - A Symbolic Evaluation and Program Testing

System", IEEE Transactions on Software Engineering, Vol. SE-4, January
1978.

Howden, W. E., "Functional Program Testing", IEEE Transactions on

Software Engineering, Vol. SE-6, March 1980.

Howden, W. E., "Errors, Design Properties, and Functional Program Testing",

in Computer Program Testing, 1981.

Howden, W. E., "Life-Cycle Software Validation", IEEE Computer, Vol. 15,

No. 2, February 1982.

Howden, W. E., "Weak Mutation Testing and Completeness of Test Sets",
IEEE Transactions on Software Engineering, Vol. SE-8, July 1982.

Howden, W. E., "A Functional Approach to Program Testing and Analysis",
IEEE Transactions on Software Engineering, Vol. SE-12, October 1986.

Howden, W. E., Functional Program Testing and Analysis, McGraw-Hill,

New York, 1987.

Huang, J. C., "An Approach to Program Testing", ACM Computing Surveys,

Vol. 7, September 1975.

Huang, J. C., "Program Instrumentation and Software Testing", IEEE Com-
puter, Vol. 11, No. 4, April 1978.

Laski, J. W., and Korel, B., "A Data Flow Oriented Program Testing

Strategy", IEEE Transactions on Software Engineering, Vol. SE-9, May 1983.

46

[MEY79]

[MIL841

[NTA79]

[NTA84]

*[NTA88]

[OST791

[OST86]

[PAN781

[PRA87]

[RAM66]

[RAM75]

[RAM76]

[RAP85]

[RED83]

[ROS85A]

Myers, G. J., The Art of Software Testing, New York: John-Wiley & Sons,
1979.

Miller, E. F., "Software Testing Technology: An Overview", in Handbook of
Software Engineering, New York: Van Nostrand Reinhold Company, 1984.

Ntafos, S. C. and Hakimi, S. L., "On Path Coverage Problems in Digraphs
and Applications to Program Testing", IEEE Transactions on Software
Engineering, Vol. SE-5, September 1979.

Ntafos, S. C., "On Required Element Testing", IEEE Transactions on Soft-
ware Engineering, Vol. SE-10, November 1984.

Ntafos, S. C.,"A Comparison of Some Structural Testing Strategies", IEEE
Transactions on Software Engineering, Vol. 14, June 1988.

Ostrand, T. J. and Weyuker, E. J., "Error-Based Testing", in Proc. 1979 Conf.
Inf. Sciences and Systems, 1979.

Ostrand, T. J., Sigal, R., and Weyuker, E. J.,"Design for a Tool to Manage
Specification-Based Testing", in Proc. Workshop on Software Testing, IEEE
Computer Society Press, 1986.

Panzl, D. J.,"Automatic Software Test Drivers", IEEE Computer, Vol. 11, No.

4, April 1978.

Prather, R. E. and Myers, J. P., Jr., "The Path Prefix Software Testing Strate-
gy", IEEE Transactions on Software Engineering, Vol. SE-13, No. 7, July
1987.

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity Considerations",
Journal of the ACM, Vol. 13, April 1966.

Ramamoorthy, C. V. and Ho, S. F., 'Testing Large Software with Automated
Software Evaluation Systems", IEEE Transactions on Software Engineering,
Vol. SE-1, March 1975.

Ramamoorthy, C. V. et al., "On the Automated Generation of Program Test
Data", IEEE Transactions on Software Engineering, Vol. SE-2, December
1976.

Rapps, S. and Weyuker, E. J., "Selecting Software Test Data Using Data Flow
Information", IEEE Transactions on Software Engineering, Vol. SE-11, No. 4,

April 1985.

Redwine, S. T., Jr., "An Engineering Approach to Software Test Data
Design", IEEE Transactions on Software Engineering, Vol. SE-9, March
1983.

Ross, S. M., "Statistical Estimation of Software Reliability", IEEE Transac-
tions on Software Engineering, Vol. SE-1, No. 5, May 1985.

47

[ROS85B]

[RUB75]

[SHO831

[SNE86]

[SOL85]

[TAI80]

[TAY86]

[TSA861

[VIC841

[VOG80]

[VOG85]

[vou88]

[WEY80]

[WEY86]

[WEY88a]

Ross, S. M., "Software Reliability: The Stopping Rule Problem", IEEE
Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985.

Rubey, R. J., et al., "Quantitative Aspects of Software Validation", IEEE
Transactions on Software Engineering, Vol. SE-1, June 1975.

Shooman, M. L., Software Engineering, New York: McGraw- Hill Book

Company, 1983.

Sneed, H. M., "Data Coverage Measurement in Program Testing", in Proc.
Workshop on Software Testing, IEEE Computer Society Press, July 1986.

Solis, D. M., "AutoParts - A Tool to Aid in Equivalence Partition Testing", in
Proc. Softfairll: Second Conf. Software Development Tools, Techniques, and
Alternatives, 1985.

Tai, K. C., "Program Testing Complexity and Test Criteria," IEEE Trans on
Software Engineering, Vol. SE-6, pp 531-538, November 1980.

Taylor, R. N., and Kelly, C. D., "Structural Testing of Concurrent Programs",
in Proc. Workshop on Software Testing, IEEE Computer Society Press, July
1986.

Tsalalikhin, L., "Function of One Unit Test Facility", in Proc. Workshop on
Software Testing, IEEE Computer Society Press, July 1986.

Vick, C. R., and Ramamoorthy, C. V., Handbook of Software Engineering,
New York: Van Nostrand Reinhold Company Inc., 1984.

Voges, Vdo, et al, "SADAT-An Automated Testing Tool," IEEE Trans. on
Software Engineering, Vol. SE-6, May 1980.

Voges, U. and Taylor, J. R., "Systematic Testing", in Verification and Valida-
tion of Real-Time Software, Ed. by W. J. Quirk, New York: Springer-Verlag,
1985.

Vouk, Mladen A., McAllister, David F., and Tai, K. C., "An Experimental
Evaluation of the Effectiveness of Random Testing of Fault-Tolerant Soft-
ware", in Workshop on Software Testing Proceedings, IEEE Computer Press,
1986.

Weyuker, E. J. and Ostrand, T. J., 'Theories of Testing and the Application of
Revealing Subdomains", IEEE Transactions on Software Engineering, Vol.

SE-6, May 1980.

Weyuker, E. J., "Axiomatizing Software Test Data Adequacy", IEEE Transac-
tions on Software Engineering, Vol. SE-12, No. 12, December 1986.

Weyrich, O. R., Jr., Brown, D. B., and Miller, J. A., "The Use of Simulation
and Prototypes in Software Testing", in Tools for the Simulation Profession -
Proceedings of the 1988 Conferences, Orlando, Florida, Society for Computer
Simulation.

48

[WEY88b]

[WHI80]

[wnI86]

[WIL85]

[w0o8o]

[vou86]

Weyrich, O. R., Jr., Cepeda, S. L., and Brown, D. B., "Glass Box Testing
Without Explicit Path Predicate Formation", 26th Ann. Conf. Southeast
Regional ACM, April 20-22, 1988, Mobile, Alabama.

White, Lee J. and Cohen, E. I., "A Domain Strategy for Computer Program
Testing", IEEE Transactions on Software Engineering, Vol. SE-6, May 1980.

White, L. J., and Perera, I. A., "An Alternative Measure for Error Analysis of

the Domain Testing Strategy", in Proc. Workshop on Software Testing, IEEE
Computer Society Press, July 1986.

Wilson, C. and Osterweil, L. J., "Omega - A Data Flow Analysis Tool for the C
Programming Language", IEEE Transactions on Software Engineering, Vol.
SE-11, No. 9, September 1985.

Woodward, M. R., et al., "Experience with Path Analysis and Testing of
Programs", IEEE Transactions on Software Engineering, Vol. SE-6, May
1980.

Young, M., and Taylor, R. N., "Combining Static Concurrency Analysis with
Symbolic Execution" in Proc. Workshop on Software Testing, IEEE Comput-
er Society Press, July 1986.

49

APPENDIX A

QUEST/ADA IORL SYSTEM SPECIFICATION

This appendix contains the IORL specifications for the

QUEST/Ada system. A brief explanation related to the interpreta-

tion of IORL is in order (for details, obtain the IORL Reference

Manual, Teledyne Brown Engineering, Inc., 1984). IORL specifica-

tions are arranged into sections. The section types used for the

QUEST/Ada system include:

SBD - Schematic Block Diagram,

IORTD - Input Output Relationships and Timing Diagram, and

PPD - Predefined Process Diagram.

The SBDs are purely structural diagrams showing the capacity for

data flow. The links on these diagrams are called interfaces,

which show how data may flow between the various blocks, which

are properly called components. Components have the capacity to

operate concurrently.

Each component has a procedure by which it turns its input

interface data into data to be transmitted over the output inter-

face. The IORTD is the highest level of control flow for a

component. IORTD-x is the sole high-level procedural diagram for

component x in the SBD. It usually abstracts the many detailed

innerworkings of a component into a few input, process, and

output_symbols. These symbols, on the IORTD, are connected by

control flow indicators which show transfer of control, not

dataflow (as in the SBD).

The double-edged rectangle within the IORTD (or PPD) section
indicates the abstraction of more detailed control flow contained

in the appropriately numbered PPD section. Since PPDs may them-

selves contain reference to other PPDs, IORL supports stepwise

refinement and top-down design. More importantly, every effort

has been made to organize and group sequences of events within

PPDs such that a complete thought unit is on one page. There-

fore, the IORL specification should be read sequentially without

a great deal of referral between pages. Each page contains one

thought unit which should be mastered before proceeding to the

next page.

The first two diagrams are the SBDs which were included and

discussed in Section 3. They are repeated here for completeness.

Note that the "DOC" field of the identification fields (bottom of

diagram) shows the first of these to be QUEST-ADA, the same as

the system name for the highest level SBD. The second has

DOC:QA, which indicates that component QA on the previous SBD is

being analyzed into its respective components. In this SBD the

A1

being analyzed into its respective components. In this SBD the
dotted interfaces are external, in this case linking to the user.

Each component in the SBD for DOC:QA is analyzed by an

IORTD. The IORTD numbers correspond to the component number.

Thus, DOC:QA; IORTD-I is a control flow analysis of the

Parser/Scanner. We have chosen to place the PPD sections behind

the respective calling IORTD/PPD sections. Thus, since IORTD-I
references PPDs i0100 and 10200, they follow immediately. PPD-

10200 references PPD-10220 so it is next. PPDs referenced but

not elaborated are either still in design or else they are con-

sidered to be of low enough specification to be programmed.

Ultimately all of the lowest level PPDs will have direct refer-

ences to their respective source code files.

Note that IORTD-2 of DOC:QA (the Test Data Generator) fol-

lows the sections for IORTD-I. Its PPDs are numbered in the

20000 series, and the single one elaborated follows. Similarly,

the Test Execution Module (IORTD-3) and the Test Coverage Analy-

sis (IORTD-4) follow. As additional details of the design

evolve, they will be added in their corresponding positions to

maintain a logical presentation of the system.

A2

D

g

L
U L C

g W -_

L_

_O_C
OLeO W

U_ -_
C_ 0

UO_

L _L
.
OQCO

P'O
C_
0
¢: I
C
0 0
L C

.,.i .J

C 111
ILl lJ

I--
U)

+." I)
• _ L

10 I0
.,-' :3 -0

OI--
:D U') U')
L W
I) L_)

(I::300
(',,I C3 (_ c+. ,,-*

IB
>
W

I

°=a

C

L
0

m

1"I 0
°_

C"O
O(Z:

ffi 0
L

O]
r C
0 "_

LLI I. •
Ln _ ffi

•.._=3 __ +*

('xl
I

(I:
0
<Z:

I
l--
O')
W

(21

•P :3

n_
il

C O

_..-* 0
--. _.J I0

_" e IJ.l
0:"13

0
ffi I..) •

_ _ [..3
L 0
I) I..4.,
• :3 UI
O 0 •

L.J Lr_ I--

[3',

I

3

I
r,,,

• -.I ..-4

°o °.

WLIJ
I..91--
(I: CI:
0-0

0
O0
U')

.°

(_}
IJJ
U')

qC
0
(I:

I
I--
U')
W

Or7
°o °°

ULLI
O_
OU)

U')
I---I

i..rl

J
U

_llj -
-'LLI

r-
LU

*°

Inn
>.._
Lns-

A3

W
Z
Z

U

n¢
tlJ
l.n
n¢

t/1 o..
,.-411,

l.O
l--
If)
111
I--

I
I--

I--
IS)

k.JJ _

Z
r_
::3
I-,..
I..1..I
n,,' I

I

i
¢'v'!
w..i

I.M

I---
(£
C3

l---
l.r)

(.9111
1:31--

(_I I.--

I..I.I
Z
O
r",

P

i U'I
H
U3

i >..i
! __1

C£
Z

U.I

n¢
ILl

ILl
._J

E3
O

I.-- lr-"
U3
t.IJ Z
I-- O

H
. _ I'--

::O
U
I.t.I
X
ILl

I--"

"_- LIJ
I,LI I""

I'r'l I-...

n,"
O
I--

nt"
1.11
Z
W

_' 1.3 "

I---

O
Z0..
I,I1.1.1
L.._n,,'

i..r) n,"

Lrl

r_
0

W
rv

W
LQ
(E

LU

0
LJ

:D
n
F--

0

H
¢,¢
W
I--
H
rY
U

Z
I.-.I
I--
If')
LI.I
I.--

_.J

Z
O
I-4
I--
H
C3
1:3

I.--

0.
Z
H (J3

<1 "'

f'4
I

, . _ _
/

I..- I_, I
mo, i

1.9

H

O
..J
1.1_

_J
O
r,,,
I--
Z
O
I.J

.._1
W

I.l..I
...J

I--

W
"1-

i..-4
1-

I

o4

¢v

H
LL

]

O3

I

0
O

I
80

t.i.,I I.t,I
I..9 I--'-

nl:3

("4
I

1:3

n,,
O
H

I.I

(E
r_

I

L_
W

on

.. °°

ULU
O_
OLD

Ul

U")
(_
J
U

OU_
.-ILl

LU
I._ .°

Lr)__

A4

('q
.-4

I
<3:
O

L.)

U')
,,...4

I
<3:
O

C
O

.p

E
L
O

t._ I0

I-4 1O
O

C
O 4-' I_

P El

U __tV
UI U
11..13 r
LEO
CL _ ..a
UZ +"

Cv" j
IP U

U _q U
-_ I0 X
--ULLI
O

_13+.,+,
E VI Lq
_IP IP

U1 I-- I--

o, ., H

,-_Nm
I I I

OC_O

,-4

I

0

C
0

E
L
O

C
I-4

C
O

,la

I0
4,o

C

IU
L

IU
n,,

U

0
.Q

ffl

#1
tJ

IJ
n¢

C
0

tJ

J
u
U
x

LU
U_

_J .-,4 Ill
:_ P4 I0
U'J I _J
ILl Q:
IZ C:) _"

I--- I IP

I------_o

Fn
!

-13
0

U
L
3
0

U_

4-1

r.

E

L

r" 0")
t-t

0

Z
W
I..9

0:
U

LIJ

1.5
D

N}--

Ul
.--In

r_
0
I--

I.-- O:
r_r_
OLLI
_Z
WW

LLI I.O
i--
_LO
n_>..

I-- LLI _.1
Ul :> Q:
LLIOZ
I--- L.I (!:

"To

Z
0
I--t
I--LIJ

I-- L.) =_
U') IJ.l r7
WXO
I--- LLI _-

0

i--
LO

I--

?

('4
I

n

I
I.-
m
L_
2_
0

0
p-
Q:
rv
LLI
Z
W
1.9

_rv
n_tu
WZ
U) Z

0. Ul

I

0

#I

w

In

W

r

01

L

>
0
LJ

IE
..,J

l_

r
I-4

Ul

L

o
CL
_B
CV

(D
O)
IB
L
II
>
o

(.J

Ip
C

l_U')

¢D Ill
t_) lJ

I--

Ul C
I_ O

P4 I--.-'

C_ E L

I O
I-- ZO_

.,. ,i W C_I
, :) I

0

f_ "13
,--4 O

I I...I
Q:
0 I

............... _ U
I /,.

IT) 0
UJ U'_

o<1

t-
O

10
E
L

0
4-
C

I 1O
I-- u GI
U') .-_ m
LLI E L
_) I0 I
Or'>

:_ O
O O

0,,
_3
I

3

I

°° ._

_JW

O
O
U_

d
W
if)

OO
.o °.

tJIJJ
O_
OU')

U)
I-4

U'_
(2=
..J
U

_LL
--ILl

_O
LIJ
I"" '°

>-0::
U'I _'-

A5

E C
C g 0
IO _ .-.J
o II1 ._

u G
t_ .-..- "0
L I0 -"'
g) .._ U1
Q.O c"

0
U

_ -" -_ L

,-.4 -_ "(3
_ Co,- C

C
0
Z:

I
Z O_

W,,
-r'"
I--
0
Z

|

I

I

i

i

_,.lJ

%-
o I1

C
Ig"O
U 0
U1 E

Q I0
I073
LCZ:
Ig
O. u

...t

-or+.

U

®-p_ 4-,

0
tO
L
I0
O.

C
o

i-
ra
E
:J
L

(13 tO

•-4 I_1

0_
03

I

:J
.--j

I
Lr3

,,---I

°. ..

LULU
LOt--
O:O:
nQ

I
O
I--
n,'
O
H

o°

f..J
LLJ
Ln

0:
CIr7

.° o°

UIII
O_
OU3

H

°0

I,.1"1
I..I'1
CI:
._1
U

(_111
--LU

_r'- _-'_
UJ

o.

u3n

U') "_'-

A6

-O
0 E
U @

G: tn

3_

L
0

C_ L.
C 0

I

n

:1--_1
U_I_

@.
I1_ "J

.-- ..C
D

"13 r
O 0
i= ...i

@ @
r'_

• _ II)

E L
l_ L L
C_I II @

@ C

@

..D
@

III
IJ

0

.H

III

@

D 0
,--_ Q3 E

E C
C @ 0
@ _-_

@ D_

L @"_

0.0 C
0
U

--C L

,-_H 0 D

O3
!
C
D

"3
I

(_

U.I LLI
1_91--
a:a:
a.r_

_.4

I
0
0-
11_

.,

U
LU
U'I

°, o°

UL_
O_
OLO

U'I
(Z:
....I
U

====
0 I.,I.
.-ILl
Z:O
W

°°

Inn
>-G:

A7

I0
"0

0 t::
U ID

I0 51

3_
I0 I0
L +"

0
4J 4J

Z3
Q..L
r" 0

I.-I _1-

T

fflU'l
WLI

]
Ul

_"o u

•-4 m ._

I QI
C_
o.Z]

•'J I0

111+'
,.,.p

U C
0J 0

"0 ..a

4J

i_"O --_

J 0
,.4m U

r-
IO
U I0
11173

%rr
U
III U
L "'J

IOc4-

U
=10 III

ID Q..
Ui •

_ m m _

III

t. r" n
0 I0 I0
4j 4 ,j

IU m ID L
.--" L _ {_ 0
..D Ill .D 0 4"
I0 C I) -.._ lid
•_ ILl ._ .t.' L

O) "=' g

0 m o c •
..l]+a n 0 01

E m E o

_ C L
0 0

31; 31110}
0=4_ O,.-'_ L

_ U

04' 0"1:1+'

.--_l.f
I L
(]:(I I

O_
O3

I

-3
I

Ln

oo °_

WLLI
LOI--

O.O

C4

I
0
O_
O.

oo

U
W
U')

(I:
or'_

oo o_

L.)t.U

nt.n
Lr}
I-4

J
U

ii
-.ILl

LtJ
l--

)-- (3_
ins'-

A8

I.
U

O

"13
c II1
10 ID

Ip 3

J o
"13 G

O
E"O

ID
•I _

ID_
E I)
J L

_, I- L

.-'.11..-t --*

W

0
U

0

II 3
+.'73
C 0
II G
E
:J C
L. 0
,kJ .-,_

Ul 4-"
C 3

I-t U
El

4., X
:3 •
Q.

3 0
C) C_-

ID
tO
L.
fO
Q.

C
0

..J

i.
m
G

(I") W
C

..41-I

O_
m
I
C

I

°J o.

LIJ I.U
(.91.-

no

n')

I
0
n
0-

°.

tJ
LLI
U_

Q:
Or7

°. °°

ULU
O_
OU')

U_
I-I

°.

U_
U_

_1
IJ

OIL
--LU

I'C_
ILl
_-. .°

Inn
)-- ¢Z:
U')1-

A9

E
0

.,,.j

L
0

L I1

II U

Q.

10"_
•.-t L 3

C U

._l--
CZ
I :Z)
E 0

IT) IU-_
N L I
m c,u

•,-_ c o

IDI
• L I

"01
ml
O l
o i
L I
Q.I

Cf
0 I

• d I

B I
I . ,..,D i

u I
IDI

"0i

mi
4 a I

aDI
it,J L f
!1_1 IJ I

_ U

I--

A

U
I

(.J
i11
O
og
L..

Ip
4,1

C
ID
E
3
L
• ' OP
L0 L
C 3

• "_ "0

•d- W
(_1 31 U
(1") Q. O

•"_U Q-

>
.J

L
"12

C
°..D

10

ID

m l
LI') LN®i
m r

"13
Ip
4_
£
m
E +'

m
L II

m
C C

.,d .,._

I
+" • m

I_l L -'- Ill
('_ ID :J C
(11 UI'O L
_ C O II
,'_H E J::

0',
{3O
I
C
3

---)
I

• -4 ,-4

,_ o,

LUll
I.'11--
(i:(3:

(_
I11

I
{3

O-

d
h:

O¢7

ULU
0_)
OUl

Ul
I--4

Ul
a:
._J
U

OU.
.-LIJ
Z:C)
UJ
i-" °°

>-(3:
U11r"

AIO

0
0

I
I-
X
LLI
Z

C
0

.la

E
L
O_

D
C-O
"_ 0

E

0
L r-

+,
U
3
L 0
+'..0
If) IO

ml

U
L t_

W
O. L

_ L

."5 _

II U
+'"U
ID C

t_"U
U I

,,._ U "0

(MO G

I)

"O

,HI

Ul
C

4-' 0

E 4"
L

_g 0 L

0") __ C

(x_ O_ L5

W

Z
h-I
h-
I
0
L_ _J ..J

L

-0 "'_

L
C U

C
--0 "'_

I
L O.

0

D

C

n
0 U

123

!
I--m
I.rl_
WU

lU
C_
IB
L C
I_ o
> -,_

0 _G:
U I_U

GI--
.P L
D 0 E
O_el.- 0
C C L

H --" 4--

T IJ

/

r-

_ c
w o
_ ..,a

-p

0 u

×

II

U I_
C 4-,

lU _-"

G t_

_ _ 0 _
.-_-

_ L CO

.-----

I)
U

_LLI
C_I--
,p

D 0
O +'

,-4

J

Ox
O0

I
C

I

,,-,I ,--I

o, °o

UJW
LSI--
(I: (I:
no

N
I

i--
rw
o
i-4

d

(E
O_

o, o.

tJW
O_
OU_

U_
I-4

U

OIL
-'ILl
_"C3
W

o°

trio.
>-(I:

All

0
ILl
-r" U..

_ I---I • '
Z
I-I
LL
tx_

I---

I--I-
i--4 >,
>< I.I.

)

"13
El
C

mO:
._LJ

..1_ I--.-
0

-13 III
W C Ul

4." ill I0
U .13
m'_'-

C._LU U

C_ O. 0
CL C 0

1 0:2 c-- +.'

ID

I0 "'-"

._c+.
IO

"13 I0

_"0
El
41_ 4a

in
ID I

. ..,J,

L. 0

C"4_
I L

G:C2

m
"13

4_

W
• C

--_ +' 0
...a

E +'
I. IO

_ 0 L

m L C

W
L
0 W Z

C H
0 h-

E •-_ Z
L 4" 0
0 .-_ U
c_."0
L C
m 0
0- U

F
1211
Zl
OI
LJIU.

Ot

h-

0

I
F--

Z

f
/

O3
I
C

""9
I

• --4 ."4

I.U LLI
I__ I.-
0:0:
nO

(.r)

I
0
0..
(1.

d
ffl

O:
or_

., .,

UUJ
0::)
r'Itn

o_
i--4

tO

.J
L_

(3U.
--ILl

',r t"_
LI.I

o°

u')n
>..- O:
U') "r-

AI2

IJ

4-

C
tU 0
_J .-.,
I--I .P In
LL 3 m

I 0 'P
Z W
0 X I.
_-tW W
I-" "U
:::)In(:;
U W J
W +"
X I0 I
LLI 6_

I (- 3
Z U"a
LU\ 0

_lO C
I IJ I.

_U. O. 0
mwo_-

4_

U

4a

r

Q , L+, 0
0 Q 4-' I (+"

r7 _ • I m
_-- C G I. I I)

4"_ q o • I L
L U L E I
o .P _ II I 'P

+. _ _- I) 0) I ill
3 L L _ I L9
_lO _ ILl :::) Ill I/1
+. > -" C 0. +" i, I_1
30 _ I) rid _l "

O u
-z OI H-0 q

7°1 I -

"13"0
O: 0

U
II
+' ID _,

_ U t.
(N IJ :_
_ X 0
0 LU t

LL

0_
03
I
c
3

?

11..121

%4

E
OO

.o ..

ULU

rTLn
U'}
H

U_
G:
1
U

(311
.-ILl

Iii
I"-- °"

Lrjn
>-O:
tnT"

AI3

4,,

UI IJ

4.1 ...J

LL
"0

IJ r
4" O
:J .._

I--- U _'
U') IJ 3
LU x U
f--- m I_

I x
_--- _' LU
r_ m
IiI ID 0
U'} --- _P
Z
H In ID

LL "D 10
LU G: "D

t.
• O

L t.

> 0 C
0 .-J I
U 4-' O_

10
+a E
:j / L
_0 0

3 r Im
(:3,-' _.

tn
i--
_i

Lr)
LIJ
rv

LU
I--
G:
I--.I

1:3
LLI

_.,rv
31,1
0.1--
CZ

HH

I--I _,

1.111

..,J

_ L
ID 0

IB I0
/

C I)
0 C

"'-_ IP

.,J

"TD I0

0 I0
UO

C +'
0 ill

_1 "'J

LI') U I.
_11) 0

I)
(_t.9
mr7

II
> 0
0 _'
U

C
0

I_ "'_

C _-'
re

3 L
0

3 C
0 "'_

C

I)

U

,I."

Ul
I)
,p

•-4 In

_-nn

0_
O3
l
C
3

--)
I

,,--4 _1

WLU
t3E--
G:E
no

I
O
t--

O
I-I

LU
Ul

(_:
or',

ULU
O::)
E3U')

U_
I-4

U'I

J
U

(3LL
--ILl

_'r7
LU
I'_ ""

>-(E
U_r-

AI4

-0
L
0
U
0
L

bO +"
_ L.

I >
r-i C
n 0
nu

t-*

L U
0 m

0
• L

C +_ 0
"-J U

_4- L

U r

mL_
L
U

0 m
UO

LU
F-

D
LLJ
T"

LU

Z m

.=m

E4-
0
LU_
4-_-

_J

mW
.ont

4.J

4.. U
P Ill I)

G n
,P LO

.pr-_
+' LI'--

ILl
_ U) 0

IB

C,,I P "0 _
LD JO c" I0
_-- m u

I u _1 4-, iu
O-- ul @ I_
O- Ill19 _I I0
O. (-) U *' .0

..m

(4-

I0
u
L
:)
0
111

t.J

Q_
(._1
I--

I
n
III

I
_P

°° °.

WLU
1-91"--

I
0

°.

U

O_
O0
o. ..

UOJ

OU)
Ul

O_
_J
L)

Oil,.
--LU

r- r"
UJ
_- .°

u_n

tns"

A15

7

I

..J

J
U 0

U

L L

111

111
U
L

el
_m

I0
L
W
C
U

r

K'_
\J

L
0

0_

I
C

I
N

o° o_

UJIJJ
1.91--
_3:a:
D.o

I
Q
I--

0
H

_o

U

l.n

O0

L.)W

OU')
Ln
H

0'I

_J
I_)

C_Ij.
•. LI.I

1.11
°°

Lr) _'-

AI6

APPENDIX B

A RULE-BASED SOFTWARE TEST DATA GENERATOR

The paper given in this appendix was produced in part by

support provided by this project contract. This paper has been

submitted for consideration for publication in IEEE Transactions

on Knowledge and Data Engineering.

A Rule-Based Software Test Data Generator

by

William H. Deason

David B. Brown, Member, IEEE

Kai-Hsiung Chang, Member, IEEE

James H. Cross II, Member, IEEE

Address response to:

Dr. David B. Brown
Professor and Interim Head

Department of Computer Science and Engineering
107 Dunstan Hall

Auburn University, Alabama 36849-5347

(205) 844-4330

Submitted: November 15, 1988

Revised: August 15, 1989

ABSTRACT

Software reliability isof major concern in science and industry. Currently, software testing is

the only practical means of assuring reliable software. To avoid the expensive manual tasks

involved, software testing must be further automated to enable larger numbers of tests to be

performed. A key component in an automatic software testing environment is the test data

generator.

Rule-based software test data generation is proposed as an alternative to either

path/predicate analysis or random data generation. A prototype rule-based test data generator for

Ada programs was constructed and compared with a random test data generator. Four Ada

procedures were used in the comparison. Approximately 2,000 rule-based test cases and 100,000

randomly-generated test cases were automatically generated and executed. The success of Ithe two

methods was compared using standard coverage metrics. Simple statistical tests were performed,

which show that even the primitive rule-based test data generation prototype is significantly better

than random data generation.

I. INTRODUCTION

Software reliability* is one of the primary concerns of the computer science community and

of scientific, commercial, and military organizations as well. Software testing is the only feasible

means of assuring acceptable reliability for large software systems. However, test case

development, execution, and evaluation are typically very time-consuming and labor-intensive

tasks. In general, the tester must be satisfied with examining the results of a finite number of test

cases and concluding that either (1) the reliability of the software is acceptable or (2) the software

* Italicized terms are defined in Appendix A.

containsfaults which produce intolerable errors. In the former case, the software is installed for

use, usually by being integrated into an overall system (with accompanying integration testing). In

the latter case, additional resources must be applied for debugging and regression testing of the

software. The alternative is either to use unacceptable software or to abandon the product

development. Neither option is very inviting.

Fortunately, there is hope for improving this situation since much of the software testing

process may be automated. Test execution may be accomplished by test drivers which are

constructed by a software testing system. Test execution results may be automatically compared to

outputs of a design-specification simulator or a redundant implementation of the software

component. Test set adequacy may be monitored as a termination condition for the testing

process. While these capabilities are not simple to achieve, they are relatively well understood.

However, automated test data generation is not well understood [12, 15].

The approach typically taken has been to attempt to generate the least number of tests that

will guarantee a certain level of test adequacy. This approach is applicable when test results must

be manually validated against design specifications. However, it is insufficient for ensuring reliable

mission-critical software. Orders of magnitude more tests are required, which are only feasible

given the use of simulation or redundant coding for output verification. In this new scenario of very

large test sets, test data generation techniques are needed which are able to generate large

amounts of effective test data. One simple approach is to use a random number generator to

generate the data. This is generally considered to be ineffective in that it rarely provides the

necessary coverage of the program. This paper proposes a new rule-based approach to test data

generation and then demonstrates that it can easily produce a large amount of test data which

provides a much greater degree of coverage than randomly selected data. This new approach

provides an extensible framework which utilizes newly developed heuristic rules as well as existing

ones that have been used manually in traditional testing environments.

2

II. BACKGROUND

A. General

Software testing, as referenced in this paper, is strictly dynamic testing, which is the

execution of programs with specific input data and the production and assessment of outputs [23].

This type of software validation takes place in the programming and maintenance phases of the

software life cycle. It is recognized that verification and validation techniques must be employed

also during the requirements definition and design specification phases, as the cost of eliminating

bugs is higher the later they are uncovered in the software life cycle [6, 8]. A test case is a formally

produced collection of prepared inputs, predicted outputs, and observed results of one execution of

a program [1].

Oracles are external sources of information used to detect occurrences of errors. Oracles

may be detailed requirement and design specifications, examples, or simply human knowledge of

how a program should behave. An oracle is capable of determining whether or not a program has

executed correctly on a given test case [9]. An oracle is required for dynamic testing of software

function, and must be employed, either by testing personnel or by an automated testing system, to

determine whether outputs are correct. Two automated forms of oracles, cited above, are design

specification simulators and redundant manual code implementations.

A test adequacy criterion is needed to determine when to stop testing. Such a criterion is

called program-based if it is based on the program code rather than an independent design

specification of the program. Statement coverage and branch coverage are two program-based test

adequacy criteria [23]. Instrumentation of programs aids in evaluating how well adequacy criteria

have been met. Instrumentation is the insertion of additional statements into the program which,

when the program is executed, will compute some dynamic attributes of the program [11]. For

example, a simple instrumentation scheme could insert counters to record the number of times

each statement is executed.

3

B. Test Data Generation

Test data generation has been defined as specifying and providing the test input data and

calculating the test output data [20]. Generating test inputs for a program may not appear to be a

difficult problem since it may be done by a random number generator [5]. However, random test

data should not be expected to satisfy test adequacy criteria as well as selectively chosen test data.

On the other hand, algorithms for generating test data to satisfy particular adequacy criteria have

generally had very poor time and space complexities, thus producing small amounts of test data. In

fact, it is not possible (that is, there exists no algorithm) to generate test data which causes the

execution of an arbitrary program path [12]. This is the predicate solution problem, which reduces

to the halting problem. For example, the path-predicate generation/solution approach for

statement coverage must: (1) choose, from the (possibly infinite) set of possible paths through the

program, a subset of these paths which will provide statement coverage, (2) construct a path

predicate for each chosen path, and then (3) solve the associated path predicate for each path in

terms of the inputs to the program.

Although the predicate solution problem is extremely complex, and no algorithm exists for

solving general nonlinear predicates [12], there are some methods which will find solutions to many

predicates. One implementation of the path predicate methodology is Query Utility Environment

for Software Testing (QUEST) [2, 21, 22]. QUEST is applicable to a subset of FORTRAN 77 and

provides options to attempt to generate test data to satisfy statement coverage, decision coverage,

condition coverage, or decision�condition coverage. Of course, there is no guarantee that the

predicate solution algorithm will be able to solve a given predicate; it must halt after a predefined

number of unsuccessful attempts to find a solution and resort to some alternative such as random

test case generator. Even for those predicates, which can be solved, each solution yields input data

for only one test execution. This is a third problem with traditional test generation methods: they

produce a relatively small number of (possibly trivial) test cases. The problem, then, is to propose

and evaluate an alternative to either manual or predicate-solution test case generation methods.

DeMillo, Lipton, and Sayward [3] attempted to develop a practical test data generation

methodology somewherebetween random data generation and full program predicate solution.

Noting that programmersproduce code that is close to being correct, they observed the coupling

effect properly which is the ability of test cases, designed to detect simple errors, to surface more

subtle errors as well. Howden, on the other hand, developed a set of functional testing rules [10].

Although both of these research efforts were directed at helping programmers test their code

manually, they are also directly applicable to automatic test data generation. Instead of algorithms

they are useful rules of thumb, often called heuristics, which embody certain bits of "expert

knowledge." Thus, a knowledge-based or expert system approach is appropriate for attacking the

problem of generating test data for software programs. Such an approach is made possible not

only by the maturing body of knowledge about software testing, but also by developments in the

field of rule-based systems, a branch of artificial intelligence. Both the coupling effect and

Howden's functional testing rules are important to the rule-based approach presented in this

paper.

III. THE RULE-BASED APPROACH

Since the manual rules of thumb or heuristic methods can be put in a rule base, the first step

to full automation is the development and evaluation of such a rule base. The next step is the

development of a parser/scanner mechanism to generate the information from the code itself to

drive the rule base for automatic test case generation. The proposed paradigm not only draws

information from the code itself, it also uses the results of prior tests as input for the generation of

additional test cases. In this section, a brief overview of the rule-based approach is presented,

followed by a detailed discussion of rule development criteria and a description of the ten rules that

were developed and used in the prototype.

A. The Rule-Based Model

Figure 1 shows a data flow diagram of our rule-based test data generation system. In this

model, test data generation rules (Rule Base file) and symbol information specific to the subject

module under test (Symbol Table file) are used by the Rule Interpreter to generate test cases for

the subject module. A Driver Program is used to control the execution of the subject module,

which has been instrumented to collect coverage information with respect to the generated test

cases. The execution results (Prolog-Readable Results file), consisting of the test cases and

coverage statistics, are then used by the Rule Interpreter to generate additional test cases. This

cycle continues until the amount coverage requested by the tester is achieved or until the requested

number of test cases has been generated and executed. At this point, the Human-Readable results

file is examined to determine the coverage achieved. The coverage metrics computed are condition

coverage, decision coverage, and multiple-condition coverage. The items in Figure 1 will be addressed

in more detail during the discussion of the prototype.

B. Rule Development Criteria

Before developing a rule base for test data generation, a test adequacy criterion must be

established to provide the goal for rule development. Several different criteria were evaluated,

including statement coverage, condition coverage, decision coverage, and multiple-condition coverage,

and a selection was made based upon the strength of the adequacy criterion. The strength of a

criterion generally reflects the number of tests required to satisfy that criterion. Assuming that the

outputs of all test cases are checked for functional correctness, the satisfaction of stronger criteria

also provides more evidence of the correctness of the program under test. For these reasons,

colutition coverage, decision coverage, and multiple-condition coverage were selected as criteria for

the prototype. Thus, the rules which were developed attempted to define a process by which the

test cases generated would satisfy these criteria.

6

JPROLOG-READABLERESULTSJ

J RULE BASE

I SYMBOL TABLE

RULE CASE FILE MODULE
,PRETER DRIVER EADEABLE RESULTS I "

Figure 1. Rule Based TCG Paradigm

A test data generation rule, which is represented as a Prolog clause, consists of two parts:

the IF part (or preconditions), and the THEN part (or actions) of the rule. The IF parts of the

rules are typically their physical requirements, reflecting the fact that a rule could possibly be

applied. The THEN parts of the rules consist of action statements which create test cases for

future execution. Examples of rules written in Prolog are given in the next section.

Before the rules can be defined, the relative value or merit of individual test cases must be

understood. The rule-based test data generator is designed to function in an iterative manner.

One iteration consists of: 1) generating new test cases based on previously executed test cases, 2)

executing the new test cases, and 3) updating the cumulative execution results. This execution

information consists of the two "best" test cases executed to that point for each condition. Only

these two test cases (i.e., one for the true and one for the false outcome) are used as a basis for the

next iteration of test data generation rules. If the number of test eases saved from iteration to

iteration was not limited, the search process would be an exhaustive breadth-first search, the

number of test cases generated per iteration would be very large, and the entire process would be

rendered ineffective. The iterative procedure used the concept of test ease "goodness", which

requires more precise definition. A test case T1 will be considered better than another test case

T2, with respect to the condition C1, if: (1) C1 is a relational expression of the form

LHS < relop > RHS

where <relop> is any relational operator, LHS is the left hand, and RHS is the right hand side of

the relation; and (2) the percent difference between the values taken on by LHS and RHS during a

given test ease, T1, is less than the percent difference between the values of LHS and RHS during

test a succeeding test case, T2. The percent difference between LHS and RHS is defined as:

ABS(LHS - RHS) / MAX(LHS, RHS)

The terms LHS and RHS in the percent difference formula represent the values that LHS and

RHS take on during a particular test case execution. The entire test data generation process may

be viewed as an attempt (guided by rules) to minimize the percent difference between the values of

LHS and RHS of each condition in the module under test. This definition of test case "goodness"

holdsbecauseit is generally true that test cases closer to condition boundaries are superior in that

they provide more information about the correctness of the conditions. Also, in a case where one

of the two outcomes of a condition has not been executed at all, test cases closer to the boundaries

are usually more likely to lead to a test case which crosses the boundary and covers the opposite

outcome.

The rationale for rule development given above is proposed merely to provide a starting

point for rule development. Recognize that the objective here was not to develop the ultimate rule

base. Rather it was to test the concept of rule-based test case generation in order to validate the

design paradigm which will be described below. With these preliminary definitions in mind, we can

now proceed to describe the set of rules used in the evaluation.

C. Rules

This section describes a trial set of rules developed to generate test data. A narrative is

given for each rule describing its rationale and explaining implementational details as necessary.

As discussed earlier, most of these rules are based on the ideas developed by DeMillo, Lipton, and

Sayward [3] and Howden [9], who are considered to be the experts in heuristically generated

software test data.

In the following discussion, a test case is considered to be a list of values, (vl, v2, , vn).

Each value corresponds to an input variable of the procedure to be tested. Since a condition may

not involve all input variables, the best test case for each condition will generally differ from the

others. Suppose a condition, COND, involves only the ith variable. Its best test case (vl, v2, .. ,vi,..,

vn) would force the execution of COND while providing the smallest percent difference. If a

further improvement is required with respect to COND, only the value of the ith variable will be

modified.

The rule basecontains 10rules. Each rule is capable of generatingmultiple test cases. In

each iteration, the rules are scannedone by one. Whenevera rule is applicable (or its IF-part is

satisfied), its test casegeneration action is taken. Most of the time, one iteration will "fire" more

than one rule, thusgeneratingmultiple test casesfor a condition.

Rule O:

IF: None (always applicable)

THEN: Generate tests with random values for each of the inputparameters.

Rule 0 provides the starting values for test data generation. When the automatic test data

generator is used to test code, these starting points should not be random; rather, they should be

provided by the designer or the tester of the program. In fact, an entire suite of predesigned test

cases could be substituted for this rule in order to initiate testing. However, the existence of such

human-provided test cases will not be assumed. Since this would unfairly bias our evaluation, which

compares the rule-based test cases against random test cases. Rule 0 generates three test cases,

with values in the range -1 ... + 1, -100 ... + 100, and -1000 ... + 1000. A slight variant of this rule

could take advantage of subtype ranges by picking R for a particular subtype based on the actual

range of the subtype. Unlike the rest of the rules, this rule does not require any previously

executed test cases. A simplified Prolog version of this rule is shown below.

rule(l) :- in_parms(INPARMS),

random_tests(INPARMS,l),

random tests(INPARMS,100),

random_tests(INPARMS,1000).

;number of parameters

;first case, range -I to

;second case

;third case

random tests(ARGC,MAX):- ;random number generator

one_random_test(ARGC,MAX,NEWARGS,l),
;one new case in NEWARGS

save a test(NEWARGS). ;save a test case

1

9

Rule h

IF: The program contains a condition which contains an input variable and a constant, and the
best test so far for a (True or False) outcome of the condition gave a percent difference

greater than 5%.

THEN:Generate a test case from the previous best test case by putting the value of the constant in

the position of the input variable contained in the condition.

According to the criterion given in

conditional expressions of the form

X < relop > K

the previous section, Rule 1 is designed to test

where X is an input parameter, K is a constant, and <relop> is any relational operator. This rule

comes directly from the handling of arithmetic relations in Howden [9]. However, the reason this

rule is applied to more complex expressions is that it may provide good tests because of the

coupling effect. It may also provide a good approximation which may be refined to achieve better

testing of these expressions. A simplified Prolog version of this rule is shown below.

rule(1) :- rulel_applies(C,V,P,K,OLDTC),

newtest (OLDTC, P, K, ARGS) ,

save a test(ARGS).

ruleI_appIies(C,V,P,K,OLDTC):-

testfor(OLDTC,C,VAL,OLDCOV),

OLDCOV > 5,

condition (C) ,

variable (C, V) ,

in_parm (V, P) ,

constant (C, K) .

;precondition checking

;replace the value of

;variable P in OLDTC by

;K, result is ARGS

;save a test case

;preconditions for rulel

;there is a case, OLDTC,

;for condition C. VAL is

;not used here.

;percent difference > 5%
;C is a condition

;C's variable list is V

;variable P is in V

;K is a constant in C.

Rule 2:

IF: The program contains a condition which contains an input variable and two constants, and the
best test so far for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

10

THEN: Generate three test cases from the previous best test case by putting the sum, then the
differences, of the constants in the position of the input variable contained in the condition.

Rule 2 is designed to test expressions of the form:

X + K1 <relop> K2

or

X- K1 <relop> K2

where K1 and K2 are constants. Solving each of these equations for X yields the expressions K2-K1

and KI+K2. Therefore, KI+K2, K1-K2, and K2-K1 are values used by rule 2.

Rule 3:

IF: The program contains a condition which contains an input variable and a constant, and the
previous best test for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

THEN: Generate two test cases from the previous best test case by putting a value slightly greater
than the constant, then slightly less than the constant, in the position of the input parameter
contained in the condition.

Rule 3 is designed to cover conditional expressions of the form

X < relop > K

where X is an input parameter and K is a constant. While rule 1 generates an "on" point for these

types of conditions, rule 3 generates two "off" points, that is, slightly off the subdomain boundary

formed by the conditional expression. As with rule 1, rule 3 comes directly from the handling of

arithmetic relations [9].

Rule 4:

IF: The program contains a condition which contains an input variable and two constants, and the
best test so far for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

THEN: Generate three test cases from the previous best test case by putting the product of the
constants, then the ratio of the constants, in the position of the input variable contained in the
condition.

11

Rule 4 is designedto coverexpressionsof the form:

X * K1 <relop> K2

or a similar form. It usesKI*K2, K1/K2, and K2/K1 in order to cover theseexpressions.

Rule 5:

IF: The program contains a condition which contains an input variable and three constants, and the
best test so _ar for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

THEN: Generate test cases from the previous best test case by putting the sum of two of the
constants divided by the third, then the difference of two of the constants divided by the third, in

the position of the input parameter contained in the condition.

Rule 5 is designed to test conditions of the form

KI*X+ K2>K3

or similar forms. All possible combinations of K1, K2, and K3 are used so that the following values

are computed:

KI+ K2)/K3

K2 /K3

K1)/K2

K1 -K3 I/K2K3 K1 /K2

K2 + K3)/K1

K2-K3//K1K3 K2 /K1

Rule 6:

IF: An outcome of a condition has not been executed, there is at least one previously executed test

case, and the procedure contains at least one constant.

THEN: Generate a test case from the previously executed test case by replacing an input variable
with the constant.

Rule 6 was designed to use program constants to search for test cases to cover condition

outcomes which have not yet been covered at all. However, Rule 6 proved to be inefficient and so

was removed from the active rule base during the prototype evaluation phase of the project.

12

Rule 7:

IF: There is a test casewhich producesanoutcome of a condition.

THEN: Generatetest casesby incrementinganddecrementingthe valuesof the previousbest test
case.

Rule 7 is the first of the purely search-orientedrules. It varies,by a small amount, the input

variable values in the best test case for an outcome of a condition. It is primarily intended to

improve the coverage of a condition outcome, although it may in some cases cause the opposite

outcome to be executed. The latter is desirable when the opposite outcome has not been covered

by any previously executed test case. This general approach was used quite successfully by Prather

[16].

Rule 8:

IF: There is a test case for an outcome of a condition.

THEN: Generate test cases by doubling and halving the values of the previous best test case.

Rule 8, like Rule 7, is a purely search-oriented rule. Rather than changing the values by a

small amount, as Rule 7 did, Rule 8 varies the values by doubling and halving them. While Rule 8

certainly provides much less precision than Rule 7, it allows much faster movement through the

search space.

Rule 9:

IF: There is a test case for an outcome of a condition.

THEN: Generate test cases by replacing a value in the test case with a random number.

Rule 9 is a partially random search rule in that it randomly changes one of the inputs in the

test case while holding the other inputs constant. This rule may cover conditions of the program

when the other rules fail.

13

IV. PROTOTYPE IMPLEMENTATION

After developing a speculative set of test data generation rules, it was necessary to

implement a prototype test data generator employing these rules in order to evaluate the ability of

a rule-based test data generator to produce good test cases. The prototype, which was

implemented in Prolog, is designed to generate test cases and analyze coverage for a subset of

Ada.* For the purposes of the prototype, each test case was simply a set of input values (i.e.,

expected results were not required to demonstrate coverage). In this section, the prototype

support for the subset of VAX Ada is described, followed by a discussion of the rule interpretation,

test execution, and coverage evaluation portions of the prototype.

A. Prototype Support For Ada Subset

The scope of the prototype implementation was limited in two major ways. First, only

subprogram input parameters were considered as inputs to the subprogram under test. That is, no

files were generated to test programs which process files. Second, the type of inputs allowed was

limited to the VAX Ada types INTEGER and FLOAT, defined in the package STANDARD. The

INTEGER type was chosen to represent all discrete types, such as enumerated types, in that these

types map to a subset of the integers. The FLOAT type is representative of real number types.

Thus, the application of rule-based test data generation to these two data types will demonstrate its

applicability to most numeric types, and will provide some evidence of its applicability to more

complex types. While these limitations must be relaxed when this approach is actually applied in

practice, they are no hindrance to demonstrating the potential value of rule-based test case

generation.

The semantic information required by the expert test data generator is not nearly as detailed

as that required by a compiler. It could easily be output as a by-product of the compilation of Ada

code. The description of a program to the rule-based test data generator must contain: 1) the

* Ada is a trademark of the United States Government, Ada Joint Programs office.

14

namesand typesof input parameters,2) the conditions of the program, and 3) the variablesand

constantscontained in theseconditions. Since the test data generator expert systemprototype is

implemented in Prolog, the information must be provided in the form of Prolog facts. In the

present prototype, the SYMBOL TABLE for eachsubjectmodule under test washand-coded. In

future versionsof the prototype, a specializedparser/scannerwill be used to generatetheseProlog

factsdirectly from Ada sourcecode.

B. Rule Interpreter

The Rule Interpreter, which controls the entire testing process, was written in Prolog to

expedite the implementation of the prototype. As seen in Figure 1, the Rule Interpreter reads in

the information about a subject module from the Symbol Table file, uses the Rule Base to generate

test data, and then calls a Driver Program to execute the subject module using these test cases. In

particular, once the Prolog interpreter is activated, it queries the user for the name of the subject

module to be tested, the number of iterations, and the maximum number of test cases to be

generated during a single iteration. The next step causes all applicable rules (Prolog clauses) in the

Rule Base to fire using the subject module Symbol Table information (Prolog facts) and, if

available, previous execution results. The test cases generated by the rules are placed in the Test

Case File, and control is passed to the Driver Program, which executes the subject module and

records the input values and coverage matrix for of each test case in the Execution Results File.

When control returns to the Rule Interpreter, the success of each test case is evaluated based on

the execution results. The last action is to succeed (stop) if the desired iterations have been

performed; otherwise the Rule Interpreter continues the testing process by recursively calling itself.

C. Module Drivers and Instrumentation

Each iteration of the Prolog rule interpreter may generate many test cases. These test cases

are stored in the Test Case File. For this reason, each procedure being tested must have a Module

15

Driver, that is, a program which readsthe test file, executesthe procedure,and recordsthe results

in the two results files. This processis repeated oncefor every test casein the test casefile. The

Module Driver, which is written in Ada, consistsof two parts: 1) the procedure being testedand 2)

the instrumentation procedures,which measurecoverage. The driver algorithm (in pseudocode)is

asfollows:

repeat for all testsin test casefile
initialize coveragematrix
executeprocedure under testwith test case
output input valuesand coverageresults

The instrumentation procedures are all named CONDITION, which is allowed by Ada

overloading. This fact makesthe instrumentation easier than it otherwise might be. Two different

forms of the CONDITION procedure are used. The simplest is used to instrument conditions

which do not contain a relational operator, suchas Boolean function calls. For instance,suppose

there is a function which returns the type BOOLEAN (true or false) and whose value simply

indicateswhether or not its one integer argument is a prime number. A statement suchas this

might appear:

if IS_PRIME(I) then...

This statement would be instrumentedas follows, assumingthat this is the third condition in the

program:

if CONDITION(3,IS_PRIME(I)) then...

The action of this form of CONDITION issimply to note in the coveragematrix whether condition

number three executedtrue or false (the value returned by IS_PRIME). Then, CONDITION

returns the sameBOOLEAN value that IS PRIME returned to it, sothat the program continuesto
m

execute as it would have without the instrumentation.

16

The secondform of the CONDITION procedure is slightly more complicated. It is used to

instrument conditions of the form

<expression> <relop> <expression>

such as X>2, X*Y<Z, and X**2+Y**2=Z**2. This form of the CONDITION procedure takes

four arguments: 1) the number of the condition, 2) the expression to the left of the relational

operator, 3) an enumerated-type value indicating the relational operator, and 4) the expression to

the right of the relational operator. The three previous example expressions would be

instrumented as follows, assuming that they are the first three conditions in the procedure under

test:

CONDITION(1,X, GT,2)
CONDITION(2,X*Y, LT, Z)

CONDITION(3,X**24-Y**2,EQ,Z**2).

In summary, module drivers and instrumentation were required in order to evaluate the

prototype rule-based test data generator. Their function was the same as that required for

traditional testing methods: to facilitate test case execution and to evaluate coverage, respectively.

A specialized parser/scanner is being constructed for the purpose of generating the

instrumentation/driving mechanism as well as the Prolog facts (Symbol Table File) that describe

the subject module under test. These functions are candidates for future inclusion in commercial

Ada compilers.

V. EVALUATION OF PROTOTYPE

After developing the prototype test data generator, it was necessary to design a formal

procedure for evaluating the prototype. The test data produced by the prototype was compared,

using the test adequacy criteria described earlier, with randomly generated test data. Four Ada

procedures (TRIANGLE, ITRIANGLE, CURVE, LINEAR) were used to evaluate the test data

generator. Although the procedures are small, each contains fairly complex conditional

17

expressions on its branch statements, and relatively complicated combinations of branch

statements. Most of the path predicates for each of these procedures would be complex and quite

difficult for automatic solution using predicate solution techniques. Each procedure is briefly

described below.

The Ada procedure TRIANGLE accepts three inputs, each of the Ada type FLOAT. It

returns a value of type INTEGER indicating which of several types of triangle is formed by taking

the first two arguments as the two legs of a triangle, and the third argument as the hypotenuse.

The Ada procedure ITRIANGLE accepts three inputs, each of the Ada type INTEGER.

Otherwise, it performs the same function as TRIANGLE, which receives inputs of type FLOAT.

ITRIANGLE returns a value of type INTEGER indicating which of several types of triangle is

formed by taking the first two arguments as the two legs of a triangle, and the third argument as the

hypotenuse.

The Ada procedure CURVE accepts four inputs, each of the Ada type FLOAT. These four

inputs represent the X and Y coordinates of two points in two-dimensional space. CURVE

returns a value of type INTEGER indicating which of several types of curve best fits these two

points. For example, the test case (1,1,2,2)would represent the points (1,1) and (2,2), and CURVE

would return a value indicating that these points roughly fit an upwardly-sloping diagonal line.

The Ada procedure LINEAR accepts three inputs, one of the Ada type FLOAT and two of

the Ada type INTEGER. The procedure is called LINEAR because it is composed of all linear

conditional expressions. It performs no useful function.

Table 1 each of the procedures in terms of number of inputs, conditions, decisions, paths,

and calls to subprocedures. For example, procedure TRIANGLE requires 3 input values and

contains 13 conditions, 10 decisions (based on the 13 conditions), and 28 paths defined by the 10

decisions. In addition, TRIANGLE makes a call to one procedure. These item provide a basis for

test adequacy criteria.

18

Table 2 presentsa comparison of the coverageachievedfor each procedure by the two

methods of test data generation: the prototype test data generator ("Rules") and a random test

data generator ("Random"). Each row of the table representsa single test suite for the indicated

procedure and method of test generation. For example, the first row indicates that for procedure

TRIANGLE, the prototype was used to generate 45 test cases which, when executed, covered 20 of

26* possible condition outcomes, 14 of 20 possible decision outcomes, and 18 of 26 possible

multiple condition outcomes. Complete coverage is achieved whenever all possible outcomes (true

and false) are invoked. However, this can never be guaranteed for an arbitrary program since it

may contain infeasible paths.

In all, five test suites of 45, 155, 308, 429, and 504 test cases respectively were generated by

each method. Of the 15 different combinations of five test suites and 3 standard coverage metrics

for TRIANGLE, the prototype-generated test data obtained better coverage than the random test

data nine times, and the random test data obtained better coverage five times. In the remaining

case the coverage was the same. A chi-squared test was performed in order to test the statistical

significance Of the number of times the rule-based data outperformed the random data. The chi-

squared value did not indicate a significant difference. However, if the first test suite (of only 45

tests) is neglected, then the rule-based data performs better nine of the twelve times and the

random data performs better twice. The chi-squared value for this subset showed a significant

difference with 95% confidence.

* The 26 possible condition outcomes for TRIANGLE are
on values TRUE and FALSE.

19

a result of its 13 conditions taking

Table 1. ProceduresUsedin Prototype Evaluation

TRIANGLE ITRIANGLE CURVE LINEAR

Inputs 3 3 4 3
Conditions 13 12 16 11
Decisions 10 9 13 8

Paths 28 28 9 9

Subprocedures 1 0 4 0

PROCEDURE
Method Used

Table 2. Comparison of Rule-based with Random Data
for the Four Ada Programs

Test Condition Decision
Cases Outcomes Outcomes

Covered Covered

Multiple-Condition
Uutcomes
Covered

TRIANGLE
Rules

Random

(of26) (of20) (of26)
45 20 14 18

155 21 15 19
308 25 19 23
429 25 19 23
504 25 19 23

45 22 15 20
155 22 15 21
308 22 15 21
429 22 15 21
504 22 15 21

ITRANGLE
Rules

Random

(of24) (of18) (of24)
49 21 15 18

139 23 17 21
270 24 18 22
392 24 18 22
461 24 18 22
520 24 18 22

49 21 11 19
139 21 14 19
270 21 14 19
392 21 14 19
461 21 14 19
520 21 14 19

20

Table 2 Comparisonof Rule-basedwith Random Data
for the Four Ada Programs(continued)

PROCEDURE
Method Used

Test Condition Decision
Cases Outcomes Outcomes

Covered Covered

Multiple-Condition
tgutcomes
Covered

CURVE
Rules

Random

(of 32) (of 26) (of 32)
42 24 18 21
94 28 22 25

174 28 22 25
188 28 22 25
312 28 23 27

42 15 12 12
94 15 12 12

174 15 12 12
188 15 12 12
312 15 12 12

LINEAR
Rules

Random

(of22) (of16) (of22)
73 13 8 11

210 18 12 17
321 18 12 17
389 18 12 17
428 18 12 17

73 13 9 11
210 13 9 11
321 13 9 11
389 13 9 11
428 13 9 11

In an attempt to further discover differences in performance characteristics between rule-

based and random data, more random tests were run on TRIANGLE to determine the number of

random tests necessary to obtain the coverage obtained by the rule-based data. The random data

covered 23 conditions after 640 tests, but attained no further coverage, even though 40,000 tests

were run. This left the random data coverage still two conditions short of the coverage provided by

the rule-based data.

21

A comparisonof the coverageof ITRIANGLE achievedbythe prototype testgeneratorand

a random test data generator for ITRIANGLE is shown next in Table 2. Of the 18 different

combinationsof six test suitesand 3 coveragemetrics,the prototype-generatedtest data obtained

better coverage than the random test data 16 times, and the random test data obtained better

coverageone time. In the remaining casethe coveragewas the same. This is obviouslya highly

significantdifference (alpha < 0.005). As with the TRIANGLE procedure, additional random tests

were performed. The random test data covered one more condition at test ease 2216, and another

at 7170, for a total of 23 conditions covered. This is still one condition short of the 24 condition

outcomes covered by the rule-based data. A total of 20,000 random tests were performed for the

procedure ITRIANGLE.

An interesting feature of the test data generation for the procedure CURVE is that the

randomly generated data never improved over the initial random data. Even more importantly, the

rule-generated test data obtained better values for all coverage metrics and for all test set sizes than

the randomly-generated test data. Even at only 42 tests, condition coverage for the rule-based data

was 60% better than the random, decision coverage was 50% better than random, and multiple-

condition coverage was 75% better. When additional random tests were run for CURVE, three

more condition outcomes were covered with 730 test cases, then two more with 1662 test cases,

then one more with 1682 test cases. No more were covered up to 20,000 test cases. Cumulatively,

21 conditions were covered, which is seven short of the 28 conditions covered by the rule-based

data.

Finally, a comparison of the coverage of LINEAR showed that in only one of the 15

standard coverage cases did the randomly generated data perform better than the rule-generated

data. Only two cases was their performance the same. Chi-squared tests again showed a very

significant difference (alpha < 0.005).

22

Additional random tests for LINEAR resulted in one condition outcome being added to the

coverage for each of test case numbers 596, 1098, 1304, and 1778. The total conditions covered up

to 20,000 test cases was 17, which is still one short of the 18 covered by the rule-based data.

DISCUSSION

While the primary objective of this work was to test the concept of rule-based test data

generation, it also surfaced considerable knowledge on ways in which the rules can be further

improved. For example, rules can be generated to simplify the expressions appearing in the

conditions. Consider a condition, COND, having the format of: <expl> <rel> <exp2>. By using

the following simplification rules, the condition boundary of COND can be identified easier, and

less test data needs to be generated to obtain the equivalent coverage:

Rule A

If
then

Rule B
If
then

<expl > does not contain variables
exchange positions of <expl> and <exp2>

< expl > contains constants
move all possible constants to <exp2>

These rules would simplify <expl> such that it contains at least one variable and no

constants. For example, given a condition

3 =< 5"X+4

<expl>: 3
<exp2>: 5 * X + 4
<rel> : =<

By applying Rule A, it becomes

5"X+4 >= 3

By applying Rule B, it becomes

X >= -0.2

23

From this, three test casescanbegeneratedfor X. They are X = -0.2 + e, X = -0.2, and X

= -0.2 - e, where e is a relatively small number. Comparing with Rule 5 mentioned earlier, the

original 9 test cases are reduced to 3 test cases with this simplification.

The following forms of expression are subject to Rules A and B:

1

2.
3.
4.
5.
6.
7.
8.

constant.

single variable.
single variable + (-) constant.
single variable *(/) constant.
two variables (+,-).
two variables (*,/).
two variables + (-) constant.
two variables * (/) constant.

Example

<exp> = 10

<exp> = X
<exp> = x + (
<exp> = x * 0

<exp> =x+/!<exp> x
<exp> x
<exp> = (x+(-

or (x+(-I

t y +(-) 5
)y)/5,
y)*5

Although there are 64 combinations between <expl> and <exp2>, after simple

simplification steps the combinations can be generalized into the following 10 cases.

<expl> <exp2>

1. X C1
2. X Y
3. X Y+C1

4. X Y * C1 (or Y / C1)
5. X CI*X+ C2"Y+C3
6. X CI*X*Y+C2
7. CI* X + C2" Y C3 * X + C4" Y + C5
8. CI* X + C2*Y C3" X* Y + C4
9. X*Y C1
10. X CI* Y/X + C2

As a further example, consider the sixth relationship given above. Since the goal of test data

generation is to assure the generated test data will have small percent difference and cover both

sides of the condition boundary, the place where a particular test case locates on the boundary is

not critical. Thus we can determine Y as follows:

If there is a best test case for this condition

then assign Y = the value of Y in the best test case
else assign Y = (upper-bound - lower-bound) of Y/2

24 _i- _,_.

The test casevalueof X canthen bedetermined bythe following simplification steps.

<expl> <exp2>

X CI*Y*X+C2

Since the value of Y is now known, the relationship becomes

<expl> <exp2>

X C3*X+ C2

By recursively applying Rule A and Rule B, we obtain the following:

<expl> <exp2>

X C3*X+ C2

(1-C3) * X C2

X C4

From this relationship, the test case data is defined as: '

1. X=C4+e Y
2. X = C4 Y

3. X = C4-e Y

By using this type of simplification heuristics, more efficient test cases can be generated, i.e.,

fewer cases which cover more branches. It is expected that experience in exercising the rule base

will lead to the generation of many other rules which will be subjected to comparative evaluation as

the system is developed.

VI. CONCLUSIONS

The primary objective of this paper was to propose a rule-based software test data

generator and to demonstrate its feasibility. This new approach to test data generation provides an

25

extensible framework which utilizes new heuristic rules as well as those which have been used

manually in traditional testing environments. Such a test data generator would be used in

conjunction with a software testingenvironment.The most important phasesof the project were:

1) the development of a simple trial rule base,2) the implementation of the prototype test data

generator,and 3) the evaluationof the prototype. Ten testdata generation rules were developed

during the initial phase.During the secondphase,these rules, alongwith a rule interpreter, were

implemented in Prolog. Four Ada modules were selected and instrumented as test modules, and

drivers were implemented for these modules. During the evaluation phase, approximately 2,000

rule-generated tests and 102,000 randomly-generated tests were executed in all. These two sets of

data were compared using simple statistical tests. These tests clearly show that the rule-base-

generated data is significantly better than the randomly-generated data. In fact, the sarhe coverage

could not be attained by random test-case generation even when very large numbers of randomly-

generated test cases were tried. This result demonstrates that rule-based test data generation is

feasible, and shows great promise in assisting test engineers, especially when the rule base is

developed further.

While the above results were impressive, they are not presented to demonstrate the

immediate applicability of this rule base or even this paradigm. The rule base needs considerable

development and may eventually evolve into a system of hundreds of rules. Similarly, the

parser/scanner and test case execution interfaces with the test data generator require considerable

development before the paradigm can be fully implemented. However, these can now proceed

recognizing the potential that exists as demonstrated by the experiments documented above.

26

REFERENCES

.

2.

o

.

o

.

7.

.

.

12.

17.

18.

B. Beizer, Software Testing Techniques, New York: Van Nostrand Reinhold Company, 1983.

D. B. Brown, 'Test Case Generator for TIR Programs," Contract Number DAAH01-84-D-
A030, Final Report, September 30, 1986.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test Data Selection: Help for the
Practicing Programmer," IEEE Computer, Vol. 11, No. 4, April 1978.

J. W. Duran and J. J. Wiorkowski, "Quantifying Software Validity by Sampling," IEEE Trans.

Reliability, Vol. R-29, No. 2, June 1980.

J. W. Duran and S. Ntafos, "A Report on Random Testing," in Proc. of 5th International

Conference on Software Engineering, Mar 9-12, 1981.

R. E. Fairley, Software Engineering Concepts, McGraw-Hill, New York, 1985.

J. B. Go.den,ugh and S. L. Gerhart, 'Toward a Theory of Test Data Selection," IEEE
Trans. Software Engineering, Vol. SE-1, No. 2, June 1975.

W. E. Howden, "Life-Cycle Software Validation," IEEE Computer, Vol. 15, No. 2, February
1982.

W. E. Howden, "A Functional Approach to Program Testing and Analysis," IEEE Trans.

Software Engineering, Vol. SE-12, No. 10, October 1986.

W. E. Howden, Functional Program Testing and Analysis, McGraw-Hill, New York, 1987.

J. C. Huang, "Program Instrumentation and Software Testing," IEEE Computer, Vol. 11, No.
4, April 1978.

E. F. Miller, "Software Testing Technology: An Overview," in Handbook of Software
Engineering, New York: Van Nostrand Reinhold Company, 1984.

G. J. Myers, The Art of Software Testing, Wiley, New York, 1979.

S. C. Ntafos, "A Comparison of Some Structural Testing Strategies," IEEE Trans. Software
Engineering, Vol. 14, No. 6, June 1988.

D. J. Panzl, "Automatic Software Test Drivers," IEEE Computer, Vol. 11, No. 4, April 1978.

R. E. Prather and P. Myers, Jr., 'q'he Path Prefix Software Testing Strategy," IEEE Trans.
Software Engineering, Vol. SE-13, No. 7, July 1987.

S. Rapps and E. J. Weyuker, "Selecting Software Test Data Using Data Flow Information,"
IEEE Trans. Software Engineering, Vol. SE-11, No. 4, April 1985.

S. M. Ross, "Statistical Estimation of Software Reliability," 1EEE Trans. Software

Engineering, Vol. SE-1, No. 5, May 1985.

27

19.

20.

21.

22.

23.

S. M. Ross, "Software Reliability: The Stopping Rule Problem," IEEE Trans. Software
Engineering, Vol. SE-11, No. 12, Dec. 1985.

U. Voges and J. R. Taylor, "Systematic Testing," in Verification and Validation of Real-Time
Software, Ed. by W. J. Quirk, New York: Springer-Verlag, 1985.

O. R. Weyrich, Jr., D. B. Brown, and J. A. Miller, 'q'he Use of Simulation and Prototypes in
Software Testing," in Tools for the Simulation Profession - Proceedings of the 1988
Conferences, Orlando, Florida, Society for Computer Simulation.

O. R. Weyrich, Jr., S. L. Cepeda, and D. B. Brown, "Glass Box Testing Without Explicit Path
Predicate Formation," Proceedings of the 26th Ann. Conf. Southeast Regional A CM, Apr 20-
22, 1988, Mobile, Alabama.

E. J. Weyuker, "Axiomatizing Software Test Data Adequacy," IEEE Trans. Software

Engineering, Vol. SE-12, No. 12, Dec. 1986.

28

APPENDIX A

DEFINITIONS OF TERMS

Definitions for the following termshavebeenadaptedfrom severalsources[4,7, 13,14,17,18, 19].

branch coverage - Achieved when test cases are sufficient to ensure that each branch or decision in
a program is executed both true and false at least once (usually includes statement coverage).

condition coverage - Achieved when test cases are sufficient to ensure that each condition in a
decision takes on the value of true and false at least once during execution.

debugging - The act of searching for and removing a fault from a program.

decision coverage - See branch coverage.

decision-condition coverage - Achieved when test cases are sufficient to ensure that each condition
in a decision and the decision itself take on the values of true and false at least once during

execution.

error - An incorrect output resulting from a fault.

fault - An incorrect program component, while an error is an incorrect output resulting from a
fault.

b_stntmentation - The insertion of code at a strategic point in a program for the purpose of

reporting (1) when and if execution reaches that point and (2) the values of key variables and/or
expressions.

linearpath predicate - A path predicate which contains only linear terms.

multiple colutition coverage - Achieved when test cases are sufficient to ensure that all possible
combinations of conditions outcomes in each decision, and all points of entry, are invoked at least
once

oracle - An external source of information capable of determining whether or not a program has

executed correctly for a given test case.

path coverage - Achieved when test cases are sufficient to ensure that each path in a program is
traversed at least once during execution. This is ususally considered an intractable problem since

the number of paths in a program may grow exponentially as a result of loops.

path predicate -The conjuction of all conditions along a given path such that if the predicate is
satisfied (i.e., a set of values for the variables is found that yields a value of true for the predicate)
then that set of values causes the path to be traversed during execution.

regression testing - Previously executed test cases executed again subsequent to program
modification to ensure that new faults were not introduced during the modification process.

software reliability Usually characterized as mean time between failures in a particular

environment over a specified period of time.

29

statement coverage - Achieved when test cases are sufficient to ensure that each statement in a

program is exercised at least once during execution.

test adequacy criteria - A quantifiable measure of the degree to which a program has been tested,
e.g., (in increasing order) statement coverage, branch or decision coverage, condition coverage,
decision-condition coverage, multiple condition coverage, path coverage.

test case - A set of input values, expected output values, and observed results for one execution of a

program.

test data generation - The generation of input values for test cases.

test suite - A set of test cases, usually designed to meet one or more specific test adequacy criteria
such as decision coverage.

30

FOOTNOTES

W. H. Deason is with Intergraph, One Madison Industrial Park, Huntsville, Alabama 35807.

D. B. Brown, K. H. Chang and James H. Cross II are with the Department of Computer Science
and Engineering, 107 Dunstan Hall, Auburn University, Alabama 36849.

This work was supported, in part, by a contract with NASA, Marshall Space Flight Center,
Huntsville, Alabama.

31

INDEX TERMS

Software testing, test data generation, rule-based systems, Ada testing, unit level testing, test

coverage,

32

FIGURE CAPTIONS

Figure 1. Rule Based Test Case Generator Paradigm

33

APPENDIX C

QUEST/ADA: AN AUTOMATED TOOL FOR ADA SOFTWARE TESTING

The paper given in this appendix was produced in part by

support provided by this project contract. This paper was pub-

lished in the Proceedings of the 27 th Annual Southeastern Region-

al Conference of the ACM.

OF POOR QUAL|TY

QUEST/Ada: An Automated Tool for

Ada Software Testing

William R. Keleher

David B. Brown, Ph.D.,P.E.

Auburn University

Abstract

The increasing use of mission-critical embedded software

systems has made apparent the need for an effective and effi-

cient approach to software testing. At present a variety of

approaches to software testing exist, but existing test meth-

odologies require a great deal of effort to produce any

results. Thus, these methodologies are impractical for use

on large software systems where tile complexity of the pro-

grams would require a tremendous expenditure of man-hours.

In addition to the cost problem, the conceptual complexity

of a large software system would make such manual testing

methods prone to human error.

This paper will result on the preliminary design of the

Query Utility Environment for Software Testing of Ada

(QUEST/Ada), an automated tool for testing of Ada software.

Quest/Ada uses an expert system in conjunction with a feed-

back loop from automatic test execution to produce test data

sufficient to provide complete or near-complete decision/

condition coverage for a user-selected Ada SOftW:LrC module.

The paper will detail tile preliminary, design of the threc ma-

jor components of QUEST/Ada: The parser/scanner used to

instrument Ada code, the rule-based system for test genera-

tion, and the user interface.

Introduction to QUEST

QUEST/Ada is an automated software testing tool de-

signed to automatically generate test data for complete or

near-complete coverage of Ada progran_s. The test data gen-

Pen'nissionto copywithoutfee all of partof this material is grantedprovided
that _e copiesare no[made o¢distributedfordirectcommeraal advantage,
the ACM copyrightnoticeand the title of the publicalionand its date appear,
and notice is given that copying is by permissionof the Assoaation for
Computing Machinery. To copy otherwise, _" tO republish, requires a fee
and/or speaficpermission.
© 1989 ACM 0-89791-303-5/89/0400-0016 $1.50

eration will be performed by a feedback loop consisting of

an instrumented Ada module, a test data coverage analysis

module, and an expert system which generates new test cases

based on the test coverage data provided by the analysis

module. Supporting this feedback loop is the parser/scanner

which generates the instrumented Ada code from the raw

source code, and a report generator which provides user re-

ports on the effectiveness of the test data. Figure 1 provides

an overview of the QUEST system.

The preliminary design of QUEST is being performed by

generating a functional prototype of the entire testing tool.

The majority of the prototype is being written in C, because

of the ease of coding system interfaces and the availability

of excellent parser/scanner tools which produce C code. In

addition to C, the CLIPS expert system language is being

used to develop the test data generator. CLIPS was selected

because of its availability, ease of use, speed, and because

the source code is available and is itself written in C. The

QUEST prototype is being generated on a VAX 11/780 com-

puter.

@_
=.--- ._.-_,

Ft_'axe 1: _uaml Ov_rvl_

27 ;hAnnual Southeast Region ACM Conference

16

The Parser/Scanner

The parser/scanner module is the first functional step in

testing a module with QUEST. It is responsible for instru-

menting the Ada source code. building a symbol table for the

module, and surrounding the instrumented source with a

"driver" program which will receive test data from the test

data generator and provide execution results to the user inter-

face's report generator. The parser is being developed using

the BISON parser generator, which produces a parser written

inC.

The primary task of the test data generator is to instru-

, ment the source code to provide the data that is required for

determining test coverage and providing feedback data for the

test data generator. In the prototype, this instrumentation

consists-of replacing each boolean condition in the module

with a function call to the function "relop". This function

mimics the boolean condition that it is replacing by examin-

ing the operands and operators of the condition and provid-

ing the boolean value of the condition as the value returned

by the function. More importantly, the "relop" function

also writes intermediate test coverage information to a file

that is examined by the test coverage analyzer. The interme-

diate test coverage information provided by the function in-

eludes the decision and condition number that the function is

replacing, the number of the test case that the instrumented

program is currently executing, the boolean value of the con-

dition with its current input data. and the values of the left

and right hand sides of the condition.

Art example instrumentation for a simple =nodule is described

in Figure 2. In this case, the module being instrumented is a

procedure, although a module may be a program, procedure.

function, block, or a combination of any of the above.

In addition to the insmamentation of the source, the par-

set/scanner must also generate a symbol table containing in-

formation about all of the input variables to a module. Input

variables are defined as any variables that are passed to the

module as parameters, or any variables that are global to the

module, in the case that the module is part of a larger soft-

ware system. For example, in the simple procedure instru-

mented above, all of the variables are input variables be-

cause all of the variables are passed to the module being

tested as parameters to the procedure. However, if a variable

"X" was defined within the procedure test and used internal to

the procedure, it would not be considered an input variable.

The information that must be stored about each input varia-

ble includes its name. type, bounds (in the case of subrange

types), initial value, and scoping information about the

depth at which the variable is defined, in the case that it oc-

curs in more than one procedure in the module under test.

The information in the symbol table is used by the test data

generator to ensure that the data being generated for a varia-

ble is of the right type and does not exceed the bounds of a

subrang¢ type. The information in the symbol table is also

used by the user interface to determine the names of the var-

iables (as all data internal to QUEST are stored in files that

are indexed by position, not name), and to provide the for-

mats in which the data is printed by the report generator. In

addition, the parser/scanner uses the symbol table informa-

tion to generate the driver program for the module under test.

In most cases, a QUEST module will be a subprogram of

some sort. In order to execute the subprogram and provide it

with the test data generated by the expert system, the parser/

t **_t*.

al tla,at*. 1! a

t_t ¢1. I.l_!,

lint ¢l_lt_ll_i¢ i. T eltlIII t

pi_¢ _It 11

I_A l_st _ti. =11

t tN I_¢_I_ I

¢[ell ¢ Ii_l_g • I m

c_ie iI_ e¢I_ll_iit e I i

27 m Annual Southeast Region ACM Conference

17

OF PC)OR QU_L!TY

t

scanner must generate a driver program that reads the test

data from a file and calls the subprogram with the input test

data provided _¢ parameters to the subprogram. As indicated,

in Figure 3. development of the driver program relies on the

information in the symbol table to provide the number.

names, and types of input variables to the modulo under tesL

The Test Data Generator

The test data generator is responsible for generating sets

of test data. called "test cases." which attempt to provide

complete or near-complete decision/condition coverage of

the module under test. Docision/condition coverage is

achieved when each boolean condition (i.e."x<5"), and each

boolean decision (i.e."x<5 or x>25") has been executed both

true and false at least once. The test data generator consists

of two main parts: the expert system (written in CLIPS) and

the test coverage analyzer (written in C).

The expert system dcvclops test data bascd upon a set of

heuristics and two major lists: the decision/condition cover-

age list and the best test case list. The decision/condition

coverage list contains facts of the form "(decision ntunber.

condition number, coverage value)," The decision and condi-

tion number are references to the instrumented Ada code de-

scribed above, and the coverage value is either 0. 1. 2, or 3.

representing decisions and conditions that have not been

covered, been covered only tame. been covered only false, and

been covered completely, respectively. The expert system

operates by focusing on the first decision that has been cov-

ered with ordy one truth value, and finding the best test case

• that has executed that decision so far. The best test cases are

kept in the best test case list. which contains facts of the

form "(decision number, condition number, goodness value,

input variable value #1. input variable value #2)." The

decision and condition numbers correspond to the decision

and condition numbers in the decision/condition coverage

list. The goodness value is a value for comparison of test

cases executing a given decision or condition that is generat-

ed by the test coverage analyzer, and the input variable val-

ues represent the actual test case. Once the first partially

covered decision has been located and its best test case has

been found, the expert system generates new test cases by

modifying the elements of the best test case slightly. For

example, numerical data might be modified by a percentage

of the range of values it could take. such as 2%. and by a

small fixed amount, such as .01.

This technique is developed from a technique described by

Prather and Myers [PRA87]. The reasoning is that if a par-

titular condition. Cn, is reached, the preceeding conditions,

C1 through Cn-1, along the path have also been satisfied.

In order to drive the target condition to its' other truth value,

all of the preeeeding conditions must once again be satis-

fied. In other words, the inputs are close to the intended

goal and a slight modifleadon of the input data is all that is

required. Note that by driving the other branch of a deci-

sion, other paths and decisions are uncovered which art then

treated by the next iteration of the test data generator. The

expert system/slight modification technique has been dem-

onstrated to provide coverage that is significandy superior

to random test data generation [DEA88].

The test coverage analyzer provides information to the

expert system by reading the intermediate results from the

execution of previous test cases provided by the function

calls in the insmmaented Ada code. The test coverage ana-

lyzer maintains a list of the decisions and conditions cov-

ered by an execution of a test case and their coverage value.

It also maintains a list of the best test case for each condi-

tion based on the "goodness value" of that test case for that

condition. The goodness value is generated according to the

following formula:

Selection of test cases based on this formula ensures that the

test case selected will be the test case whose right hand side

most closely matches its left hand side. The reasoning be-

hind this is that minor modifications to the test case will be

most likely to drive the condition with another truth value if

the left and right hand sides of the case are very close to

each other. After all of the intermediate results have been

analyzed, the test coverage analyzer asserts decision/

condition coverage facts and best test case facts into the ex-

pert system's fact base. Note that the top two or three test

cases for each decision and condition are asserted into the

fact base. This prevents the expert system from getting

stuck in a loop if the best test case for a condition after the

execution of a new set of test data turns out to be the same

best test case as before the execution (thus causing the ex-

pert system to generate the same data as before, ensuring

that the best test case remains the same forever...). In the

event that this should happen, the best test case is thrown

out, and the next best test case is used to generate a new set

of test cases.

27 thAnnual Southeast Region ACM Conference

18

The User Interface

The modules described above are the two primary func-

tional units in QUEST. The user interface enables these two

modules to be used in an integrated user-friendly environ-

merit. The user interface consists of two major parts, the

menu screens and the report generator. The menu screens al-

low the user to perform all of the function required to test a

program, and the report generator provides the user with the

results of the testing process.

In addition to the main menu, the user interface menu

system provides 7 major menus: the system definition menu,

the module selection menu, the automatic testing menu, the

regression testing menu, the variable definition menu, the

testing result report menu, and the utilities menu.

The first three menus each perform one step in defining and

testing a module in QUEST. The first step is for the user to

define a functionally complete set of Ada source code files

using the system definition menu. All source code necessary

for the execution of the module to be tested (i.e. the source

code for any modules called by that module, the package

specifications etc...) must be included by the user at this

time. The user interface concatenates all of the files selected

into one large f'de, which is passed to the parser/scanner.

The parser/scanner develops the symbol table and a list of

the testable modules in file source code. The user then se-

lects one of the modules from the list produced by the parser/

scanner, and passes the name of that module back to the par-

set/scanner. The parser/scannerthen instruments that mod-

ule and develops a driverprogram for iL The module is now

ready for testing. The user goes to the automatic testing

menu. selectsthe maximum number of testcases to run, and

presses a function key to start the automatic test generatlcad

execution process. The expert system is called to generate

initialtest data, then the module driver program is called

upon to execute the testcases generated. Finally, the test

coverage analyzer is called to compute the coverage and best

testdata.which it then assertsinto the fact base of the ex-

pert system, thereby causing the entire process to begin

again.

The last four menus all provide access to Special capabil-

ities of QUEST. The regression tesing screen allows the user

to perform regression testing by executing test cases which

have already been generated and executed once. This facility

provides for quick testing of minor non-conditional state-

ment changes by re-executing the minimal test set, and pro-

vides for mutation testing of the test set itself. The variable

definition screen allows users to set any or all of the values

of input variables to fixed values, thus providing the capa-

bility for users to run their own hand-generated test cases au-

tomatically. This facility provides the ability to test the

module against the requirements specification without any

human error entering the test case execution. The test report

menu allows the users the ability to view or print the output

of the report generator and finally, ;the utilities menu per-

forms the same function performed by utilites menus

throughout the free world, which is to say any function that

does not fit under one of the above headings. Figure 4 pro-

vides on overview of the user interface and the system.

The report generator analyzes test cases, intermediate re-

suits and output results of the execution of automatic test

cases. The report generator also stores the all of the test

cases so that the regression tesing feature may be performed.

The report generator has its own test coverage analyzer, be-

cause the input requirements to the report generator are fun-

da.mentally different than the input requrements of the expert

system - the expert system requires mathematical analysis of

teporary data. the report generator requires record analysis of

permanent data.

Conclusion

In conclusion, it should be noticed that great pains have

27 m Annual Southeast Region ACM Conference

19
ORIGINAL F"AC,_: ;,3
OF POOR QUALITY

been taken to make the prototype easy to extend, both to

other languages and other coverage criteria and testing met-

tics. No language-dependent information is found in any

part of QUEST other than the parser/scanner, other than the

assumption of the basic data types supported by every pro-

cedural language. All that would be necessary to extend

QUEST to another procedural languagc would be to include

another parser/scanner module. This is not a monumental

task, as BISON grammars arc available in public domain for

many popular procedural languages. There is certainly noth-

ing unique m Ada about replacing boolean conditions with

function calls, and no language-dependent issues are found

anywhere in the user interface - not even in the utilities

menu. It is entirely possible for a person with litde or no

knowledege of Ada to test Ada programs, or programs in any

other language, using QUEST. Extending QUEST to other

types of coverage criteria and corresponding test metrics

would only require placing additional function calls in the

appropriate places.

References

[BRO88] Brown, David B. ctal, "The Development of a

Program Analysis Environment for Ada," Contract Report,

NASA Contract: NASA-NCCS-14, Auburn University

[DEA88] Deason, William H., A Rule-Based Software Test

Data Generator, Masters Thesis, Auburn Univcrsity.

[PRA87] Prathcr. R. E. and Myers, P. Jr.. "The Path Pre-

fix Software Testing Strategy". IEEE Transactions on Soft-

ware Engineering, Vol. SE-13, No. 7, July 1987.

27 thAnnual Southeast Region ACM Conference

2O

APPENDIX D

EXPERT-SYSTEM ASSISTED TEST DATA GENERATION FOR

SOFTWARE BRANCH COVERAGE

The paper given in this appendix was produced in part by

support provided by this project contract. This paper has been

submitted for publication in Data and Knowledqe Engineering.

EXPERT SYSTEM ASSISTED TEST DATA GENERATION
FOR soFrWARE BRANCH COVERAGE

James H. Cross II, Kai-Hsiung Chang,
W. Homer Carlisle and David B. Brown

Department of Computer Science and Engineering
Auburn University, AL 36849

ABSTRACT

With the increased production of complex software systems, verification and

validation (V & V) has evolved into a set of activities that span the entire software life cycle.

Among these various activities, software testing plays a major role in V & V. Conventional

software testing methods generally require considerable manual effort which can generate

only a limited number of test cases before the amount of time expended becomes

unacceptably large. In this paper, we present a new approach to generating test cases based

on artificial intelligence methods. By analyzing the branch coverage of previous test cases,

an expert system is able to generate new test cases which provide additional coverage.

Heuristic rules are used to modify previous test cases in order to achieve the desired branch

coverage. This approach to software testing has the potential for greatly reducing the

overall costs associated with branch coverage testing.

Key Words:

Artificial Intelligence, Expert Systems, Knowledge-based Systems, Software Engineering,
Software Testing, Test Data generation.

EXPERT SYSTEM ASSISTED TEST DATA GENERATION
FOR SOFTWARE BRANCH COVERAGE*

James H. Cross If, Kai-Hsiung Chang,
W. Homer Carlisle and David B. Brown

Department of Computer Science and Engineering
Auburn University, AL 36849

INTRODUCTION

With the increased production of complex software systems, verification and

validation (V & V) has evolved into a set of activities that span the entire software life cycle.

V & V attempts to ensure that a software system has been designed to meet user

requirements and has been implemented according to the design. Testing continues to play

a major role in V & V beginning with the development of test plans and test procedures

during requirements analysis and design and continuing through the execution of test cases

on the implemented system. A variety of approaches to software testing exist [ADR82,

GOO75, HOW80, HOW76, HOW82a, WHIS0]. However, these methodologies generally

require considerable manual effort, i.e., the tester must hand compute paths, predicates, test

cases, etc. Manual implementation of these methodologies is not only inefficient in terms of

resources expended (man-hours), but it is also subject to inconsistencies brought about by

human errors. Manual methods can generate only a limited number of test cases before the

amount of time expended becomes unacceptably large. All of these problems may be

reduced by the use of automated software test tools. However, automated test data

generation itself is not well understood [MIL 84, PAN 78]. In this paper, we present a new

approach to generating test cases based on artificial intelligence methods.

Manuscript received

* Support for the development of the methodology described in this paper was funded, in part, by George C.
Marshall Space Flight Center, NASA/MSFC, AL 35812 (NASA-NCC8-14).

BACKGROUND

The main thrust of software testing research has been aimed at developing more

formal methods of software and system testing [BEI83]. By definition, "testing...is the

process of executing a program (or a part of a program) with the intention or goal of finding

errors" [SHO83]. A test case is a formally produced collection of prepared inputs, predicted

outputs, and observed results of one execution of a program [BEI83]. In standard IEEE

terminology, a software fault is an incorrect program component; an error is an incorrect

output resulting from a fault. In order to detect occurrences of errors indicating faults, some

external source of information about the program under test must be present.

Program testing methods can be classified as dynamic and static analysis techniques

{RAM75]. Dynamic analysis of a program involves executing the program with test cases

and analyzing the output for correctness, while static analysis includes such techniques as

program graph analysis and symbolic evaluation [ADR82].

A dynamic test strategy is a method of choosing test data from the functional domain

of a program. It is based on criteria that may reflect the functional description of a program,

the program's internal structure, or a combination of both [ADR82]. These criteria specify

the method of test case generation to be used for a dynamic test strategy. The two dynamic

test strategies generally recognized are functional testing and structural testing. It is well-

documented in the literature that no one testing approach solves all testing problems;

hence, functional and structural testing techniques should be considered complementary

methods [HOWS0].

Functional Testing. Functional testing involves identifying and then testing all functions of a

program (from the lowest to highest levels) with varying combinations of input values to

check for correctness of output [BEI84, HOW86]. Correctness of output is determined by

comparing the actual output to the expected output computed from the functional

2

specificationsof the program. The specificationsare used to define the domain of each

variable or its set of possiblevalues. Since the program has input and output variables,

selectionof testdata must bebasedon the input and output domains in sucha way that test

casesforce (or try to force) outputs which lie in all intervals of each output variable's

domain. The internal structure of the program is not analyzed, thus functional testing is

often called "black box" testing.

Structural Testing. Structural testing usesthe internal control structure of a program to

guide in the selection of test data [BEI84], and it is sometimes known as metric-based test

data generation. Coverage metrics are concerned with the number of a program's structural

units exercised by test data. Test strategies based on coverage metrics examine the number

of statements, branches, or paths in the program exercised by test data. This information

can be used to evaluate test results as well as generate test data (ADR82]. It can be shown

that for many programs (especially programs with loops) the number of possible paths is

virtually infinite [BEI84, HOW78, WOO80], thus leading to the problem of determining

which paths to choose for testing. Criteria for selecting test paths have been discussed

[BEI84, HOW78a, RAM76, SHO83] and include statement, decision, condition, decision-

condition, and multiple condition coverage. "Coverage" is said to be achieved if a set of

paths executed during program testing meets a given criteria [BEI84]. The problem of

finding a minimal set of paths to achieve a particular coverage is discussed in [VIC84] and

[NTA79]. Beizer states that the idea behind path testing is to find a good set of paths

providing coverage, prove that they are correct and then assume that the remaining

untested paths are probably correct [BEI84].

Test Data Generation. Once a set of paths providing coverage has been selected, the next

step involves generating test data that will cause each of the selected paths to be executed.

Methods for generating test data from paths are discussed in [ADR82, HOW76, HOW75,

HUA75, RAM76] and others, and center around the idea of solving path predicatesor at

leastdetermining path dataconstraintsto be usedfor generatingtest casedata.

Generating test inputs for a program maynot appear to be a difficult problem since

it may be done by a random number generator [DUR81]. However, although random

testing alone has been shown to be an inadequate method for exposing errors, when

combined with extremal and specialvalue (ESV) testing, it can be an effective method and

canprovide a direction for the generationof future test cases[VOU88]. On the other hand,

algorithms for generatingtestdata to satisfy particular adequacycriteria havegenerallyhad

poor time and spacecomplexitiesand produced small amountsof testdata. In fact, it isnot

possible(i.e., there existsno algorithm) to generate testdata which causesthe executionof

anyarbitrary program path [MIL84].

DeMillo, Lipton, and Sayward[DEM78] attempted to develop a practical test data

generation methodology somewherebetween random data generation and full program

predicate solution. Noting that programmers produce code that is very close to being

correct, they observeda program property which they namedthe coupling effect. Basically,

the coupling effect is the ability of test cases,designedto detect simple errors, to surface

more subtleerrors aswell. Howden,on the other hand,developeda set of functional testing

rules [HOW87]. Although both of these research efforts were directed at helping

programmers test their code, they are also directly applicable to automatic test data

generation. They are not algorithms, but instead are useful rules of thumb. Such rules are

typically referred to as heuristics, which embody certain bits of "expert knowledge." Thus, a

knowledge-based or expert system approach is very appropriate in attacking the problem of

generating test data for software programs. This approach is made possible not only by the

maturing body of knowledge about software testing, but also by developments in the field of

rule-based systems, a branch of artificial intelligence.

INTELLIGENT TESTDATA GENERATION

The objective of our intelligent test data generation technique is to achieve a

maximal branch coverage based on test data generated using heuristic rules with feedback.

The analysis of the actual coverage achieved follows the Path Prefix Strategy of Prather and

Myers [PRA87]. In the Path Prefix Strategy, a software package is represented in a

simplified flow chart. Each condition in the flow chart contains two branches, true and false.

The goal of a set of test cases is to maximize the number of covered branches. The coverage

of these conditions and branches is recorded in a branch-coverage table. In this table each

condition contains two entries, one for the true branch and one for the false branch. When

a branch of a condition is covered (or reached), the branch's entry in the table is marked

with an "X". In addition to the marking process, the test cases that cover this branch are also

recorded. When new test eases are to be generated, we examine the table to select a

condition that is not yet fully covered, i.e., only one branch is covered. After a condition is

selected, an associated test case of this condition is retrieved. Since the earlier case started

from the package entry point and reached the condition under consideration, it is already

"close" to covering the branch that is not yet covered. The Path Prefix Strategy uses

"inverse" approach to generate a new case. However, as stated in [PRA87], the inverse

problem is still not well understood.

Our approach to intelligent test data generation includes the the following tasks: (1)

initial case generation, (2) coverage analysis and goodness evaluation, and (3) new case

generation. Figure 1 shows the relationships among these major concepts. In this system, a

test case is represented as (case number value-1 value-2 value-3 value-n). "Number"

indicates the generation sequence of this case. Value-l, value-2, ---, value-n are the values

of each input variable of the package. In this initial prototype, we made the following

simplifying assumption: a condition contains constants, arithmetic and logic operators, and

input variables only. Internal variables, i.e., defined within the tested package, would not

appear in a condition. This provides a more explicit relation between the input variables

Initial Case Generation

Coverage Analysis

and

Goodness Evaluation

yes
v Stop

Figure 1 System Concept of the Intelligent Test Data Generator.

and the conditional branches. The system is being implemented using CLIPS [CLI87], an

expert system development tool which provides various interfaces to communicate with

external functions written in other programming languages, e.g., C, Pascal, Fortran.

INITIAL CASE GENERATION

Initial test cases are needed to start the process. In the event the user provides test

cases with the target software package, this initial case generation step can be skipped.

However, if test cases are not provided, the initial test cases can be generated based on the

syntax information of each input variable, including type, lower limit, and upper limit. Three

cases are generated: (1) each variable is assigned to its mid-range, (2) each variable is

assigned to its bottom, and (3) each variable is assigned to its top.

mid-range, bottom, and top are defined as:

For each variable, the

mid-range = (upper-limit - lower-limit) / 2

bottom = lower-limit + (upper-limit - lower-limit) * 0.05

top = upper-limit - (upper-limit - lower-limit) * 0.05

These three cases are numbered cases 1, 2, and 3 respectively. This heuristic rule is

written as follows:

Rule-Initial-Cases

(If no cases exist

Then (assert

(case 1 mid-range-I mid-range-2

(assert

(case 2 bottom-I bottom-2

(assert

(case 3 top-I top-2

(assert

(basket 1 2 3))

(assert

(nextcase 4)))

mid-range-n))

bottom-n))

top-n))

6

If more cases are needed, this rule can be modified to incorporate any desired

combinations. In this rule, a basket is asserted to notify that a set of cases has been

generated and is ready for coverage analysis. The statement of"nextcase" indicates that the

case number of next new case will be 4.

COVERAGE ANALYSIS AND GOODNESS EVALUATION

As indicated above, the objective of the test case generation is to cover as many

branches as possible. When a new set of cases is generated, it is analyzed to determine what

branches these cases have covered. This process is called coverage analysis and is

performed by an instrumented simulator of the target software package. After the coverage

analysis, it will be possible to determine what branches have not yet been covered and still

need further cases.

The instrumented simulator of a target package functions just like the target package

except it contains extra code to record the branch coverage of each condition and to

calculate how "close" a test case has been to the condition boundary. For example, an IF

statement, IF (3*x+y) >= 21 THEN do-1 ELSE do-2, will be instrumented as IF

analyze((3*x+y) >= 21) THEN do-1 ELSE do-2. Here, "analyze" is a function defined in

the simulator to perform coverage analysis and other evaluation tasks. The coverage

analysis is basically a table filling process which records the covered branches. Assume a

test case (x=5, y=2) is analyzed. Since the value of the evaluated left-hand-side (LHS), i.e.,

17, is smaller than the right-hand-side (RHS), i.e., 21, the FALSE or the ELSE branch will

be executed. This means the ELSE branch is covered.

Besides the coverage analysis, the simulator also calculates how close the LHS is

from the RHS, based on the given test case. The "closeness" is defined as

ABS(LHS- RHS) / MAX (ABS(LHS), ABS(RHS))

This measure tells the closeness of the test case to the condition boundary [DEA88]. When

this measurement is small, it is generally true that this test case can be modified slightly to

cover the other branch of the condition. In the previous example, with test case (x=5, y=2),

LHS is 17 and RHS is 21. The closeness value is therefore (21 - 17) / 21 = 19 %. Assume

there is a second test case (x=6, y=2), its closeness value is (21 - 20) / 21 = 4.8 %. The

second case will be considered better than the first case. This is because a smaller change

on the second case may be enough to lead to the condition boundary or even beyond the

boundary and cover the other branch. The importance of the slight modification to the test

case is based on the fact that the original case starts from the entry point and reaches the

condition under consideration. Between these two points, this case is also used by other

conditions. In order to reach the condition under consideration again and cover the other

branch, the modified new case must pass through the same set of conditions and yield the

same branching results. For this reason, the closeness of a test case (under a particular

condition) can also be considered as its "goodness". In the current version of system, the

analyzer is written in C language. It is called as an external function from CLIPS.

In this system, each condition contains two pieces of information. The first is the

coverage of its branches. The second is the "best" test case that has reached this condition

so far. If both branches of a condition have already been covered, this condition will not be

considered for further test case generation. However, if only one branch is covered, more

test cases need to be generated, based on the best case, to cover the uncovered branch. This

heuristic is expressed in the following CLIPS rules. (These rules have been modified slightly

for easy understanding.)

Rule-No-More-Case

(If

then

(check ?cond) ;check condition ?cond

(cond ?cond true true $?x) ;both branches have been

;covered. Best case, $?x,

;ignored.

(assert (check (+ ?cond l))));check next condition.

is

8

Rule-More-Cases

(If (check ?cond)

(not

(cond ?cond true true ?x))

then (assert

(generate-more ?cond ?x)))

;check condition ?cond

;not both conditions are

;covered. There is also a

;best test case, ?x.

;pass the condition and the

;best case to the test case

;generator.

NEW CASE GENERATION

The objective of this portion of case generation is to cover the branches that are not

covered previously. As described above, a request of this kind provides the condition to be

considered and its best test case. The generation of more test cases should follow the

general philosophy of modifying the best case as little as possible. With this guideline in

mind, the test data generator (TDG) will generate several sets of new cases with various

constraints.

Consider the best test case, case-i, of condition cond-i. Case-i is a list of numerical

values (V1, V2, ---, Vj, ---, Vn). The j-th value in the list corresponds to the j-th input

variable. Since it may happen that only part of the input variables would appear in a

condition, the TDG needs to know what variables appear in the condition. The values of

these variables have the direct impact of the branching decision and should be the

candidates to be modified. Let us assume VL = (Va, Vb, ---) contains these variables. The

following heuristics have been used to generate new test cases.

1. Keep all variable values unchanged except one variable which is in VL. This

would simplify the condition under consideration. For example, in the previous best case,

(x=6, y= 2), if we keep x unchanged, the condition can be simplified in the following steps:

a. 3 * x + y >= 21 ;x=6

9

b. 18 + y >= 21

c. y >= 3

The last expression tells the condition boundary. Three more new cases can be

generated, i.e., (x=6, y=3+e), (x=6, y=3), (x=6, y=3-e). Here, e is defined as a small

positive number, e.g., e = (upper-limit of y - lower-limit of y) / 100. The same method is

then applied to every variable in VL. If there are m variables in VL, then 3 * m cases will be

generated. The simplification process is performed in C- subroutines. This is because

CLIPS does not provide symbolic evaluation functions.

2. Keep all variable values unchanged except two variables which are in VL. One of

the variables is instantiated to its mid-range value. With this instantiation, only one variable

is left in the condition. The simplification process previously mentioned can then be

applied. Assume we are considering a condition,

4 * X * y + 3 * X =< 9 * y

The best test case we have so far for this case is (x=2, y= 15, z= 10.6). Since only x

and y appear in this condition, only their values need to be considered. Also assume the

ranges for x and y are [-10.5, 20.5] and [-5.5, 30.5] respectively. Three new test cases can be

generated in the following steps.

a. Assign y = mid-range-of-y = [30.5-(-5.5)]/2 = 18

b. Replace every appearance ofy in the condition with 18.

3 * x * 18 + 3 * x =< 9 * 18

57 * x =< 162

x =< 2.842

c. Generate 3 cases (x=2.842+e, y= 18, z= 10.5), (x=2.842, y= 18,

10

z= 10.5),(x=2.842-e,y= 18,z= 10.5).

The systemthen instantiatex to its mid-range and repeatsthe process.

These two heuristicswill generate many new cases. Additional branch coverage

normally can be achieved. However, it may happen that new casesnever reach the target

condition due to the modification of previouscases. If this happens,the best test caseof the

target condition would not have been changed. Since the generation of new test casesis

basedon the bestcase,the sameset of test caseswill be generatedover and over againand

they will never out perform the original best case. The TDG hasa mechanismto prevent

this fruitless loop. Associatedwith eachcondition, there is a "bag". This bagrecords all best

casesthat the system has used to generated casesfor the condition. As more casesare

generatedand analyzed,the best caseof each condition will evolve. This is the reasonthat

there maybe more than one best casein a bag. When the best test caseof a condition is

found that it hasbeenusedbefore,a fruitless loop mayexist. This meanspreviousheuristics

did not yield good cases.If this happens,the third and the fourth heuristicswill be applied.

3. If there is only one variable in VL, then modify all variable values except the one

in VL by 10 % of their ranges and then apply the simplification process described in the first

heuristic to find the condition boundary. In a condition with only one variable, the only way

of covering both branches is to modify this variable's value according to simplification

process of the first heuristic. This is required no matter how a test case reaches this

condition. If the modification causes the change of the coverage path, i.e., the condition

under consideration can not be reached any more, other variable values must be modified to

compensate the change. However, the task of figuring out how a modified variable value

would impact the branchings of other conditions and how other variables' value should be

modified to compensate the impact is still a future study topic. In this system, all other

11

variables' valuesare changed 10percent of their correspondentrangesto compensatethe

impact. After the modification to all variables exceptthe one in the condition is made, the

simplification step in heuristic 1 is applied to determine its values.

4. If there are more than one variable in VL, heuristic 2 will be applied except all

other variables will be modified with 10 percent of their ranges.

TEST DATA GENERATION EXAMPLES

In this section, a simulation of the test data generation process is presented to

illustrate the functions of the system. Assume the flow chart of a target software package is

given in Figure 2. There are three input variables to the package, i.e., x, y, and z. They are

all real numbers and have ranges, [30, 200],

[-220, 20], and [-100, 312] respectively. The expressions of the conditions are:

Cond-l: z + 20 < 3 * x

Cond-2: 3 * x * y =< 4 * y

Cond-3: z > y + i00

When this information is presented to the TDG, three initial test cases will be

generated based on the first heuristic. They are the mid-range case, (case 1 115 -100 106),

the bottom-range case, (case 2 38.5 -208 -79.4), and the top-range case, (case 3 191.5 8

291.4). These cases are then fed to the coverage analyzer. The conditions and branches

that each case reaches are:

Case-l: (cond-i True), (cond-2 True)

Case-2: (cond-i True), (cond-2 True)

Case-3: (cond-i True), (cond-2 False)

12

Figure 2 Flowchart of a Target Software Package.

Condition

1

2

3

Branch

T F

X

X X

Figure 3 The Branch-coverage Table of the Target Software

Package after the Initial Cases.

All cases went through the truth branch of cond-1, two cases went through the truth

branch of cond-2, and one case went through the false branch of cond-2. The coverage table

at this point is shown in Figure 3. Based on the goodness of a case associated with a

condition defined earlier, the best test case for cond-1 is case-3 and the best test case for

cond-2 is case-2. This information is sent back to the TDG. The TDG will begin by

checking cond-1. Since only one branch of cond-1 is covered, more cases should be

generated for cond-1. The first and the second heuristics are applied and case-3 is used as

the best case. This will generate six new cases. The case generation sequence is:

(case 4 191.5 8 554.5) ;keep x unchanged, modify z only,
;z is out of range, illegal case.

(case 4 103.8 8 291.4) ;keep z unchanged, modify x only

(case 5 102.1 8 291.4) ;keep z unchanged, modify x only

(case 6 105.5 8 291.4) ;keep z unchanged, modify x only

(case 7 115 8 425) ;keep x at mid-range, modify z only
;z is out of range, illegal case

(case 7 42 8 106) ;keep z at mid-range, modify x only

(case 8 40.3 8 106) ;keep z at mid-range, modify x only

(case 9 43.7 8 106) ;keep z at mid-range, modify x only

The process then checks cond-2. Since both branches of cond-2 are covered, no

more cases are needed. When cond-3 is checked, the TDG finds that it has not been

covered previously. No cases will be generated for cond-3 at this point. The process then

passes the newly generated six cases to the coverage analyzer. The analysis result will be:

case-4:

case-5:

case-6:

case-7:

case-8:

(cond-i False),

(cond-i False),

(cond-i True),

(cond-i False),

(cond-i False),

(cond-3 True)

(cond-3 True)

(cond-2 False)

(cond-3 False)

(cond-3 False)

13

case-9: (cond-i True), (cond-2 False)

At this point, all conditions are fully covered. The test data generator will stop.

Totally, 9 cases are generated.

TIlE PROTOTYPE

A prototype system, Query Utility Environment For Software Testing (QUEST), has

been designed to test Ada programs. Figure 4 provides an overview of the relationships

among the major components of QUEST/Ada.

Parser/Scanner. Under control of a user interface module (discussed later) the source code

is first processed by the parser/scanner unit. A first pass produces symbol table information

for the user interface so that a unit can be selected for testing. Once a unit is selected, the

name of that unit is passed back to the parser/scanner. The parser scanner instruments the

selected module by replacing conditional expressions with function calls. The function

called by the instrumented code evaluates the relational operation and returns the value of

the condition. This function call also writes information to files to be examined for coverage

by the test coverage analyzer. Information such as the relational operation, the condition

number, the decision test case number, the value of the condition and values of the

operands to the relational operator are written to files and to the knowledge base of the

expert system.

The parser scanner also builds a symbol table to provide information to other units of

the system. This symbol table is used to determine those variables of the unit under test that

are parameters to the unit or are global variables to the unit. Information concerning the

type, ranges, initial values and scoping within the unit is gathered during the parse of the

input. The primary user of this information is the expert system test data generator, but the

symbol table information is also used for I/O by the user interface and the report generator.

14

__aanner Bolded Arrows Denote

Source Test Data Generator

I _ _ I Feedback L°°p

Parser/ Test Data
Scanner PtS Generator Exert System TCA Asserts Feedback

VLr Info (i.e. Best Case, Trend Analysis etc..)
Into The TDG Fact Base

• Parser/Scanner

Produces

Instrumented

Code

Type Info Into TDG[TDG C

Fac,-B-,e • +d 8_
_Fest Coverage

¢_ "lest Cases l-,tle) [Analyzer:.
._ [Expert System

i Lr_tntmented Code / &

| Reads Test Cases _ Expert System TCA Reads

From File / Intermediate Results

/ R_o. a_. TeA
/ _- I Reads Intermediate/ I

¢_, "_ _ l_esuiulTest Coverage I

_mea _.._,_Intermech_a.teResults"_.___ Analyzer:. [
"l co_e Jinstrumel_nt_File j _,_ Report I

/ code.l_. _ /,I_I Generator i
t:onamon uoverage / i Report Gen TCA

Instrumented Codented Code] Info / I Puts Complete

Produces Final] / IC°verage Analysis

Values of Input ,_ / _FData in CA File(s)
Variables _ / _ _

TCA Reads Output Results _,,_uvcl_?e_s_laaY_,,)

I Report Gen Reads

_CA File(s)

Test Cases File:
Intermediate Results File:

Output Results File:

File Layouts:

test#, input_valuel, input_value2 etc...
test#, decision#, condition#, T/F, LHS, RHS

test#, output_valuel, output_value2 etc...

Report]
Generator

Figure 4. Major Components of QUEST/Ada

The parser/scanner itself uses symbol table information to construct a surrounding

driver program for the unit under test. Thus all information and statement "hooks" required

by other components of the system are inserted into a copy of the original unit. This unit is

surrounded by a driver program also written in the unit language enabling the tool to be

ported to other environments supporting C, Clips, and the unit's language. This approach

also assists the users understanding of the functioning of the system and offers an

opportunity to utilize other testing or debugging tools. Since the parser/scanner unit has

been implemented using the BISON parser generator and an LALR description of ADA,

the tool can be adapted easily for other languages.

Test Data Generator and Test Coverage Analyzer. The primary components of the expert

system are the test data generator and the test coverage analyzer. Using the compiled

output of the parser/scanner, the test coverage analyzer executes the program for a test case

and analyses the results. Based on this analysis, the test data generator creates a new test

case. The function and implementation issues of these units were described above.

User Interface. The parser/scanner, the test data generator and the test coverage analyzer

components are the primary functional units of the prototype. The user interface is

designed to control these units as well as present the results in a comprehensible format.

Terminal dependencies are handled by using the VAX-C Curses runtime library routines.

Figure 5 provides an overview of the QUEST user interface and its relationship with

other major components and files in the prototype. The user interface main menu provides

access to seven subcomponents. The first two components assist the user in defining a

functionally complete set of Ada source code files and to determine the unit to be tested.

The next component is a testing component that gives the user the opportunity to select

options such as the number of test eases to run, and to initiate the automatic test/analyze

loop. This selection causes the expert system to generate initial test data and to call the

15

driver module to execute the test cases. The results are written to the knowledge base of the

system and the process can continue. The final four components of the user interface

provide the user with special capabilities of the prototype. These include regression testing,

direct manipulation of input values, report generation, and miscellaneous system utilities.

CONCLUSION

The objective of our research has been to explore the potential of expert system

based approaches to testing. By combining previous software coverage analysis techniques

and the artificial intelligence knowledge-based approach, more efficient test data generation

can be achieved. When more test cases are needed to cover a specific branch, heuristics are

used to simplify the problem of finding the condition boundaries from which new test cases

can be defined. We believe this approach provides a viable alternative with significant

advantages over traditional methods for attaining branch coverage.

The overall design of the prototype has been completed and we have implemented

the critical components of the system in order to demonstrate the feasibility of this rule-

based approach. Although the heuristics presented in this paper have been proven to be

useful, additional rules must be formulated to improve the utility and efficiency of the

system as well as to handle more complex code. For example, (1) a condition may contain

internally defined variables and (2) input variables may be modified. We are currently in

the process of completing the prototype implementation to facilitate an indepth comparison

of this approach with other more traditional methods and techniques for achieving software

branch coverage.

16

ACKNOWLEDGMENTS

We would like to expressour appreciation to each of the project participants for

their contributions: William H. Deason, John R. Huggins, William R. A. Keleher, Michael P.

Woods, Todd Blevins, and Edward Swan.

REFERENCES

[ADR82]

[BEI83]

[BEI841

[CLI87]

[DEA88]

[DEM78]

[DUR81]

[GOO75]

[HOW751

[HOW76]

[HOW78]

[HOW80]

[HOW82]

Adrion, W. Richards, et al., "Validation, Verification, and Testing of
Computer Software,"ACM Computing Surveys, Vol. 14, June 1982.

Beizer, B., Software Testing Techniques, New York: Van Nostrand Reinhold
Company, 1983.

Beizer, B., Software System Testing and Quality Assurance, New York: Van
Nostrand Reinhold Company, 1984.

CLIPS Reference Manual, Version 4.1, Artificial Intelligence Section, Johnson

Space Center, NASA, September 1987.

Deason, William H., "Rule-Based Software Test Data Generation," Thesis,

Auburn University, December 1988.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G., "Hints on Test Data
Selection: Help for the Practicing Programmer," IEEE Computer, Vol. 11, No.
4, April 1978.

Duran, J. W. and Ntafos, S., "A Report on Random Testing," in Proceedings of
the 5th International Conference on Software Engineering, March 9-12, 1981.

Goodenough, J. B. and Gerhart, S. L., 'Toward a Theory of Test Data
Selection," IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, June
1975.

Howden, W. E., "Methodology for the Generation of Program Test Data,"
IEEE Transactions on Software Engineering, Vol. C-24, May 1975.

Howden, W. E.,"Reliability of the Path Analysis Testing Strategy," IEEE
Transactions on Software Engineering, Vol. SE-2, September 1976.

Howden, W. E., 'q"heoretical and Empirical Studies of Program Testing,"
IEEE Transactions on Software Engineering, Vol. SE-4, July 1978.

Howden, W. E., "Functional Program Testing," IEEE Transactions on
Software Engineering, Vol. SE-6, March 1980.

Howden, W. E., "Life-Cycle Software Validation," IEEE Computer, Vol. 15,
No. 2, February 1982.

[HOW86] Howden, W. E., "A Functional Approach to Program Testing and Analysis,"
IEEE Transactions on Software Engineering, Vol. SE-12, October 1986.

[HOW87] Howden, W. E., Functional Program Testing and Analysis, McGraw-Hill, New
York, 1987.

[HUA75] Huang, J. C., "An Approach to Program Testing," A CM Computing Surveys,

Vol. 7, September 1975.

[MIL841 Miller, E. F., "Software Testing Technology: An Over view," in Handbook of
Software Engineering, New York: Van Nostrand Reinhold Company, 1984.

[NTA791 Ntafos, S. C. and Hakimi, S. L., "On Path Coverage Problems in Digraphs and
Applications to Program Testing," IEEE Transactions on Software Engmeering,
Vol. SE-5, September 1979.

IPAN78] Panzl, D. J.,"Automatic Software Test Drivers," IEEE Computer, Vol. 11, No.

4, April 1978.

[PRA871 Prather, R.E. and Myers, P., Jr., 'q'he Path Prefix Software Testing Strategy,"
IEEE Transactions on Software Engineering, Vol. SE-13, No. 7, July 1987, p.
761-765.

[RAM751 Ramamoorthy, C. V. and Ho, S. F., '_Festing Large Soft ware with Automated
Software Evaluation Systems," IEEE Transacttons on Software Engineering,
Vol. SE-1, March 1975.

[RAM761 Ramamoorthy, C. V. et al., "On the Automated Generation of Program Test
Data," IEEE Transactions on Software Engineering, Vol. SE-2, December
1976.

[SHO831 Shooman, M. L., Software Engineering, New York: McGraw- Hill Book

Company, 1983.

[VIC84] Vick, C. R., and Ramamoorthy, C. V., Handbook of Soft ware Engineering,
New York: Van Nostrand Reinhold Company Inc., 1984.

[vou881 Vouk, Mladen A., McAllister, David F., and Tai, K. C., "An Experimental
Evaluation of the Effectiveness of Random Testing of Fault-Tolerant

Software," in Workshop on Software Testing Proceedings, IEEE Computer
Press, 1986.

[WHI80] White, Lee J. and Cohen, E. I., "A Domain Strategy for Computer Program

Testing," IEEE Transactions on Software Engineerbtg, Vol. SE-6, May 1980.

[woo8o] Woodward, M. R., et al., "Experience with Path Analysis and Testing of
Programs," IEEE Transactions on Software Engineering, Vol. SE-6, May 1980.

APPENDIX E

DESIGN OF THE USER INTERFACE

A concerted effort was made to separate the user interface

design documentation from the other parts of the design. This

was done to eliminate the complexity that would result, making

the diagrams virtually unreadable. For this reason the user

interface is omitted from the IORL system description given in

Appendix A.

This is not to minimize the importance of the user interface

design. In fact, as the user interface evolved it contributed

heavily to the system structural design. Further, the user

interface is important from the standpoint that QUEST/Ada will be

worthless unless it can be operated easily by Ada code test

personnel.

The user interface presented in this section is expected to

continue to evolve throughout Phase 2 of the project. Until such

modifications are made, it can be used as a user manual for the

QUEST/Ada system. Figure E.I gives an overview of the user

interface as it interacts with the four components of the system

(compare with the IORL SBD, Document: QUEST).

Executes the Main

Menu

' RegrTest Ul_VerDef r Ul_TestRept _ Ul_Utllltles
_u, sysD.,_l u,.o_S.,

Creates QUEST | I Selects a Module| _eates and "Locks" Values it] Executes the Test Executes the

Systems J L from a System J Created for input variables Report Menu Utility Functions

Parser/Scanner

Creates Symbol

Table, Produces

instrumented code

Test Data Test Execution Test Covera

Generator Module Analysis

Executes Test Determines the
Test Cases

Cases and Extent to which
with Rule-Based

Provides the Module has been
Generator

Information to Covered

the Test Coverage

Analyzer

Complete Test Set
Test Coverage Dell

Figure E.I Overview of User Interface

The QUEST Prototype is invoked by typing "QUEST" at the DCL

command prompt. This executes a command file which establishes

the environment for QUEST, and then starts the system. The first

screen to appear is the title screen; press <ENTER> to go on to

the main menu, which is given in Figure E.2. This is the overall

controlling menu for the system. It will appear when QUEST is

invoked from the operating system• Each entry of this menu

corresponds to a function in Figure E.I.

Note first that there are seven major options on the main

menu which are chosen by typing the corresponding digit 1-7.

There are also two other options, Help and Exit, which are avail-

able from any QUEST screen by using the <HELP> and <PF4> keys.

The box at the bottom of the screen displays the current system
and ADA module under test.

The menu items are arranged in the order that they are
usually invoked, as described below:

I. System Definition• As a first step, the system containing

the module to be tested must be identified to QUEST.

2. Module Selection• Once a system is identified, the module to

test in that system must be selected•

• Automatic Testing• This is the actual testing of the module,

which involves a number of steps described below.

Quest Main Menu

1 System Definition
2 Module Selection

3 Automatic Testing

4 Regression Testing

5 Variable Definition

6 Test Result Reports
7 Utilities

<HELP> Help
<PF4> Exit

I Current System: None SelectedCurrent Module: None Selected

m

Figure E.2 QUEST Main Menu

F2

•

.

•

.

Regression Testing. This is only performed after module

modification, usually as a result of debugging. It has the

effect of repeating all previous tests and automatically

determining if there were any errors introduced by the modi-

fication. This is essential to assure that bugs were not

introduced by debugging, especially in areas other than that

addressed by the error removal process.

Variable Definition. This function allows the user to fix

the value of variables in the test. Since any good software

design will have predefined tests designed for verification

and validation, QUEST allows these to be entered at this

point.

Test Result Reports. This leads to a series of optional

coverage reports which display details of the tests performed

at any given point in the testing process•

Utilities. This entry contains some housekeeping functions

and other options which do not logically fit into the other

menu selections•

Each of these menu entries will be described in a separate sub-

section below which corresponds to the number of the entry in

Figure E.2.

E.I SYSTEM DEFINITION MENU

System Definition is used to identify to QUEST the collec-
tion of software modules which is to be subjected to test. This

collection of inter-related software henceforth will be called

the "system." In this context, a system is a complete functional

collection of Ada source code files. Therefore, all modules

necessary for executing any of the units to be tested must be

included in the system at this time. Figure E.3 illustrates the

screen which appears when this option is chosen from the QUEST

Main Menu.

The source files which appear in the large window are from

the current source directory (which can be altered by Option 7 on

the main menu). Source files are selected by moving the cursor

through the list using the cursor keys, and then pressing <SE-

LECT> to include a file in the system• The entry of <SELECT> on

a previously included file will remove it from the list. The

selected files are highlighted on the screen• In the example of

Figure E.3, the user moved the cursor to SOURCE4.ADA, entered

<SELECT>, and did likewise with SOURCE5.ADA, thus selecting these

two files for the system under consideration.

When finished selecting the files, Option 1 on this menu

initiates the actual creation of the system• The window at the

E3

bottom of the screen prompts for a name to be assigned to this
system, as illustrated in Figure E.4. The notice "Working..."
will the appear in the window until the system has been created,
as shown in Figure E.5.

SOURCEI.ADA

SOURCE3.ADA

SOURCE7.ADA

SOURCE2.ADA

SOURCE6.ADA

SOURCE8.ADA

1

2

3

Create System

Delete System

Recall System

<SELECT> Select Source

<HELP> Help

<PF4> Exit

I Current System:
Current Module:

None Selected

None Selected

Figure E.3 QUEST System Definition Menu

SOURCE1. ADA

SOURCE3. ADA

SOURCE7.ADA

SOURCE2 .ADA

SOURCE6 .ADA

SOURCE8. ADA

Create System

Delete System

Recall System

<SELECT> Select Source

<HELP> Help
<PF4> Exit

Figure E.4 QUEST System Definition Menu -- Naming

E4

,i

SOURCE1. ADA

SOURCE3. ADA

SOURCE7.ADA

SOURCE2.ADA

SOURCE6.ADA

SOURCES.ADA

1 Create System <SELECT> Select

2 Delete System <HELP> Help

3 Recall System <PF4> Exit

Source

Working..

Figure E.5

J

QUEST System Definition Menu -- Working

As an alternative to directly selecting the files to be

included, Option 2 of this menu presents a list of previously

defined systems. The choice may be made in a manner similar to

that described above (i.e., move the cursor and press <SELECT>).

Option 3 presents the same list, but the system chosen is a

system to be deleted. To return to the main menu, use PF4.

E.2 MODULE SELECTION MENU

Option 2 of the Main Menu enables a selection of the module

to be tested A list of all modules in the previously-defined
system will be displayed in the large window of the Module Selec-

tion Menu. Modules for test are selected by moving the cursor to

the desired module name and pressing <SELECT>. In Figure E.6,

Module 8 is being selected. The selection of a module will
automatically bring back the Main Menu.

E.3 AUTOMATIC TESTING MENU

Initially, the Automatic Testing Menu appears as shown in

Figure E.7. To initiate a test of the current module, use option

1 -- Begin Testing. QUEST responds by asking for the maximum

number of test packets to be generated. Once the desired number

is entered, testing begins. The maximum number of packets to be

generated is displayed at the top of the screen. Below it, the

E5

Test Data Generator updates the number of packets that it has
created, and the last test that it created. Immediately below
that is the coverage information. This includes the last test
updated, as well as the percentage of coverage achieved so far.
The window at the bottom displays various messages about the
progress of the testing.

i

Modulel Module2

Module3 Module4

Module5 Module6

Module7 _dule8

<SELECT> Select Module

<HELP> Help
<PF4> Exit

I Current System: newsys.sys I
Current Module: None Selected

• •

Figure E.6 QUEST Module Selection Menu

1

2

Maximum Number of Test Packets:

Packets Created:

Tests Created:

Last Test Executed:

Coverage Achieved:

Decision:

Condition:

Begin Testing

Halt Testing

I Current System:
Current Module:

i

<HELP> Help
<PF4> Main Menu

newsys.sys I
module8

i

Figure E.7 QUEST Automatic Testing Menu

E6

To stop the testing, enter 2. To return to the main menu,
press <PF4>. Help is available throughout the QUEST system as
indicated.

E.4 REGRESSION TESTING MENU

Regression Testing allows the user to replay a test of a

module. This is essential after any program modification to

assure that errors have not been introduced during debugging.

This menu is identical to the Automatic Testing Menu given in

Figure E.7 above, with the exception that the user is not prompt-

ed for the maximum number of test packets. Also, the test gener-

ation data (the top three lines) display the final information

from the original test.

E.5 VARIABLE DEFINITION MENU

Option 5 of the Main Menu brings up the screen given in

Figure E.8. This menu enables values to be defined for any or

all of the input variables of the module under test. This proc-

ess will henceforth be referenced as "locking" the variable, as

it prevents the Test Data Generator from creating values for

those variables. When the Variable Definition screen is initial-

ly displayed, the variables recognized as input variables by

QUEST are displayed in the large window.

Type :
Current Value:

<HELP> Help
<PF4> Main Menu

I Current System:Current Module:

newsys.sys
Module8

Figure E.8 QUEST Variable Definition Menu

E7

Any variables that are composite types (such as arrays and
records) are denoted with a "+" to the left of the variable name.
If a composite variable is selected, the name of that variable is
placed in the upper text window and the variable's components
(i.e. fields in a record, elements in an array, etc...) are
placed in the main text window. The user can descend as far as
the composite type allows, and can return to the depth immediate-
ly above the current depth by selecting the "UP" marker that
appears in the top left of the main text window for every compos-
ite variable.

Variables that are currently user defined are marked with an
"*" to the left of the variable name. A variable for definition
may be selected by highlighting it with the arrow keys and press-
ing return. When a variable is selected, its type, scope, and
current user-defined value (if any exists) are displayed on the
screen. A new value for that variable can then be entered in the
"New Value" field.

E.6 TEST RESULT REPORTS MENU

The Test Result Reports Menu is shown in Figure E.9. The

three reports that can be viewed are the Test Coverage Report,

the Cumulative Coverage Report, and the Regression Test Report.

Selecting any of the reports will bring up the text of the appro-

priate report. Cursor keys may be used to scroll through the

listing, and the <PF4> key will return to the Test Result Reports

Menu.

1 Test Coverage Report

2 Cumulative Coverage Report

3 Regression Test Report

<HELP> Help
<PF4> Main Menu

I Current System:
Current Module:

newsys.sys
Module8

Figure E.9 QUEST Test Result Report Menu

E8

E.7 UTILITIES MENU

This menu includes a complete list of the housekeeping and

other odd functions of QUEST, including changing directories,

renaming, copying, and deleting files, setting defaults, and

printing files. Because this menu is evolving with the design

and is expected to change so dramatically, it is not presented in

detail at this point.

E.8 SUMMARY OF USER INTERFACE DESIGN

The documentation given above has formed the basis for an

early user interface which will facilitate the remainder of the

design and development of the other component prototypes. For

this reason this portion of the design/development has been

allowed to lead the others. Recognize that many modifications of

the user interface design are expected. The documentation in

this section will continue to be modified and heavily augmented

during prototype development to form the final user manual.

E9

APPENDIX F

PROPOSAL FOR PHASE II

This appendix presents the proposal for Phase II which was

submitted to NASA in early May of 1989 in order to form the basis

for the approval of Phase II funding.

PROPOSAL

THE DEVELOPMENT OF A PROGRAM ANALYSIS

ENVIRONMENT FOR ADA

(PHASE 2)

Submitted to

National Aeronautical and Space Administration

Marshall Space Flight Center

Submitted by

Department of Computer Science and Engineering
107 Dunstan Hall

Auburn University, Alabama 36849

April 25, 1989

David B. Brown, Ph.D., P.E.
Professor and Acting Head

Computer Science and Engineering
Co-Principal Investigator

James H. Cross II, Ph.D.
Assistant Professor

Computer Science and Engineering
Co-Principal Investigator

M. Dayne Aldridge, Ph.D.
Associate Dean and Director

Engineering Experiment Station

Paul F. Parks, Ph.D.
Vice President for Research

THE DEVELOPMENT OF A PROGRAM ANALYSIS
ENVIRONMENT FOR ADA

(PHASE 2)

This proposal is for Phase 2 of a research project which was initiated on June
1, 1988. This phase of the project consists of two tasks: (1) the development of
testing tools, and (2) the development of graphically-oriented reverse engineering
tools. Both of these tasks will focus on Aria as the primary high level language for

which prototypes will be developed. The proposal is organized by the tasks given
above. Within each, the overall goals are presented, followed by the research

approach to be applied. This is followed by an overall project budget.

TASK 1
TESTING TOOLS FOR ADA SOFTWARE

TASK I: GOALS

The primary goals of software support tools for Ada are to improve software
quality and reliability as well as increasing development efficiency. Phase I of the
current project has been to design and prototype an environment to facilitate expert
system assisted testing of Ada code. A formal grammar specification of Ada and a

parser generator were used to build an Ada source code instumenter. Rule-based
techniques provided by the expert system tool, CLIPS, were used as a basis for the
expert system. The prototype performs test data generation on the instrumented
Ada program using a feedback loop between a test coverage analysis module and an
expert system module. The expert system module generates new test cases based on
information provided by the analysis module.

The current prototype for condition coverage provides a platform that
represents an expert system interaction with program testing. This expert system can
modify data in the instrumented source code in order to achieve coverage goals.
Given this prototype it is now possible to evaluate the rule base in order to develop
improved rules for test case generation. As the environment matures it is expected
that it will become increasingly user friendly.

The goals of Task 1, Phase 2 are the following: (1) to continue to develop and
improve the current user interface to support the other goals of this research effort,
(2) to empirically evaluate a succession of alternative rule bases for the test case
generator such that the expert system achieves coverage in a more efficient manner,
and (3) to extend the concepts of the current test environment to address the issues
of Ada concurrency. The proposed approach to achieving these goals will now be
discussed.

TASK 1: RESEARCH APPROACH

This phase of the research includes the following subtasks.

1. Testing and evaluation of the present prototype.

The effectivenessof different test casegeneration rule setswill be evaluated
through empirical studies. In order to accomplish this, a performance evaluation
mechanism must first be designed and developed. Performance can then be
measuredin terms of the number of covered condition branches,the percentage of
new test casesthat cover anticipated branches, and other possible coverageand
efficiency metrics. These measurementswill be performed for various test case
generationrules and different best test caseselectionpolicies.

2. Investigations into extension of new test case generation rules.

The current generation of new test cases is based on the "best previous case."
A newly generated set of cases may never out perform the best previous case, or it
may not reach the designated condition. Under these situations, the best case of a

condition would remain unchanged. This will result in fruitless regeneration of a
same set of cases. New rules must be added to redirect the case generation effort.

Alternatives include larger modification to non-dominant variables and
reinstantiation of variables that distract a test case from its designated path.

A second area that requires attention is the new case generation rule set.
Currently the new case generation philosophy is to find condition boundary and to

generate cases that are either right on the boundary or that are slightly off the
boundary. Attention is solely placed on the condition under consideration. It will be
more effective if the path that the new cases are anticipated to drive is also
considered. This effort will include determining conditions that are on the path and
obtaining values for the variables that are used by these conditions. The new case
generation rules should avoid modifying variables that appear in conditions that are
on the designated path.

3. Investigation into extensions to other testing strategies with expert system

support.

This extension is to include parameters that are returned by external functions
in the case generation rules. The current prototype considers only input parameters
for test case generation. Parameters returned by other functions (e.g., a number
typed by an operator on the terminal) may affect condition branching. Study will be
done to investigate how the externally defined parameters can be included in the test
case generation.

4. Investigation into extensions to integration testing and concurrency.

Integration testing includes combinations of (1) subprograms, (2) tasks, and
(3) packages. In particular, successful testing of Ada code must include tile testing of
the multiple threads of control associated with Ada tasks. Difficulties in such testing
arise from the fact that in addition to data dependencies, real time tasking behavior
can affect statement coverage. A testing environment for Ada programs must have
the ability to simulate or control not only data driven execution paths, but also paths
determined by synchronizations and communications.

5. Establish contacts with NASA subcontractors who are actively developing
Ada software.

NASA subcontractors have expressed interest in the prototype developed in
Phase I. Interacting with these contacts will provide input regarding testing problems

2

unique to NASA applications, provide a basis for refinements consistentwith their
needs,and facilitate eventual technologytransfer.

TASK 1: PROPOSED RESEARCH SCHEDULE

The following Gantt chart provides the sequence of Task 1 activities to be
accomplished during Phase 2 and Phase 3 of this project. Details for the Phase 2
actMties were presented above. Phase 3 activities will be developed in greater detail
as Phase 2 progresses.

3

TASK 2
REVERSE ENGINEERING TOOLS FOR ADA SOFTWARE

TASK 2: GOALS

Computer professionals have long promoted the idea that graphical
representations of software are extremely useful as comprehension aids when used to

supplement textual descriptions and specifications of software, especially for large
complex systems. The general goal of this research is the study and formulation of
graphical representations of algorithms, structures, and processes for Ada
(GRASP/Ada). The research is presently focused on the extraction and generation

of graphica.l representations from Ada source code to directly support the process of
reverse engmeenng.

Our primary motivation for reverse engineering is increased support for
software reusability and software maintenance. While applications written in Ada
may seem somewhat young to benefit from reverse engineering, NASA and others

are quickly amassing libraries of Ada packages. Both reuse and maintenance should
be greatly facilitated by automatically generating a set of "formalized diagrams" to
supplement the source code and other forms of existing documentation.

The goals of Task 2, Phase 2 are the following: (1) to study, formulate and
evaluate graphical representations for Ada software, (2) to develop a prototype
reverse engineering tool that includes support for generation of both algorithmic and
hierarchical diagrams, and (3) to investigate the generation of additional graphical
representations to provide task, package, and data flow views of Ada software. The

subtasks outlined in the research approach below are expected to provide a basis for
a methodology for graphically-oriented reverse engineering of Ada software.

TASK 2: RESEARCH APPROACH

This phase of the research includes the following subtasks.

1. Formalize a set of graphical representations that directly support Ada
software at various levels of abstraction, e.g., system, architectural, and algorithmic
levels.

A small, but representative, Ada program will be utilized to formulate and
evaluate a set of graphical representations. Specifically, the feasibility of reverse
engineering the diagrams from Ada source code will be evaluated. These graphical
representations are expected to undergo continual refinement as the automated
tools that support them are developed.

2. Design and implement a software tool for generating control structure
diagrams (CSDs) and hierarchical diagrams (HDs), e.g. structure charts, from Ada
source code.

The present prototype which has focused on CSDs will be extended to include
hierarchical diagrams. This subtask will include (1) development of procedures for

5

identifying and recording module interconnections, (2) development of algorithms
for hierarchical diagram layout, and (3) development of methods for
displaying/printing hierarchical diagrams on hardware available for this research.
The tool will be used on representative Ada software. The generated set of graphical
representations will be evaluated for completeness, correctness, and general utility as
an approach to reverse engineering.

3. Design and implement the system dictionary component of the GRASP/Ada
environment.

This subtask is expected to be done in parallel with the CSD/HD generator
subtask and will include(l) development of routines to capture general symbol table
information, (2) specification of appropriate report formats, and (3) development of
the routines to produce reports from the system dictionary. The system dictionary

component is expected to play a major role in supporting the next level of graphical
representations of Ada.

4. Investigate additional automatically generated graphical representations of
Ada software such as a task view, package/object view, and data flow view.

The task view is expected to be a non-algorithmic view in which task
dependencies and interfaces with other Ada components are indicated in a network

of communicating processes. This view should provide the user with insight into the
concurrent aspects of the Ada software. The package/object view will indicate

dependencies among packages as well as data types and operations (functions and

procedures) provided by each package. This view will become increasingly
_mportant as object-oriented design becomes more widespread. A general data flow
view of the software is expected to be the most difficult to generate.

5. Investigate the application of artificial intelligence (AI) and expert systems to
this graphically-oriented methodology.

The use of expert systems and rule-based systems will be investigated as an
approach to analysis of Ada software. In particular, AI-assisted layout of the
graphical representations described above will be investigated.

TASK 2: PROPOSED RESEARCH SCHEDULE

The fo/lowing Gantt chart provides the sequence of activities to be
accomplished during Phase 2 and Phase 3 of this project. Details for the Phase 2
activities were presented above. Phase 3 activities will be developed in greater detail
as Phase 2 progresses.

6

LU
rr

