QUEST/Ada
QUERY UTILITY ENVIRONMENT FOR SOFTWARE TESTING OF ADA

The Development of a
Program Analysis Environment
for Ada

Contract Number NASA-NCC8-14

e

Phase 1 Report // /7%~ T
/R y2a

/

Department of Computer Science and Engineering
Auburn University, Alabama 36849-5347

Contact: David B. Brown, Ph.D., P.E.
Professor and Interim Head
(205) 844-4330
dbrown@AUDUCVAX bitnet

June 1, 1989

TABLE OF CONTENTS

Acknowledgements

Executive Summary
1. IOTOAUCHON cerrmeeeenresessesesesssesscssssnsssassasssssssssssssnsssassassassiassassmsssassassessesssnstsss s tnssissesssssssnssess

2 LItETAtUIE REVIEW u.coererureeeresssasissessassussnssssssnsssssssasssssnssssssasssassssassssssiss st esssssases
2.1 Introduction .- etetetesessusaeasessssseseEessasIIEeRSESRIRTaSSS ISR STt E S S s sns
2.2 SOFIWATE TESHNG.uunnererssrsrssmsesrssssssssssssssmssessasssstsssss s s s

2.2.1 FUNCHONAL TESHNE weveersernrrnnmsssssasesssassssonsasssmsssessesssnssnmssssssmssesssssssmms st essesees
2.2.2 Structural Testing -

2.2.3 Need For Both Functional and

StIUCHUTAL TESHIZ.vveserrssecsssrsssssmsesassersssessarsssssssamssesasssnssssssssssssmsssssss s esmsseneses

2.2.4 Other TESt STALEZIES...vu.curerrrmmssserssirsssssmsassasssssssssmsssssssstssse st sseceees

2.2.4.1 MUtation TESHNE c.cvcueeemmrermsemssissemssmesnssusmasssssissmsisssasen s

2.2.4.2 DOMAIN TESNG.ccocerscmrerrenrssemssessssssmssasensssssisssmsssmssssessissssses s sasesesesse

2.2.4.3 SYMbONC EVAIUALION cvvvvvummmmmsssssssssssssssssmmsssssssissssssss s

2.3 AULOMALION cuvvvevereerensessscssesesssassnsssssssisssssssssusssassssnsnsssssnsasss veversasassssssesaransasnanensss

2 3.1 The Need FOr AN OTACIE ... eeirreueinmaseinissssmssessasssssmssssssusensstas s essses

232 Automated Testing TOOISowwrureeesiusirrssmssmssessssimssssssssessssssss s nesnese

23.2.1 Structural Testing TOOIS ...eerueceemsirsrsmsnmssssserasisssrssnsssiseasesssassesssassies

2.3.2.2 Functional Testing TOOISccvuciimriimnmssnsissssiinsnsccisissmsnsnsssssescssess

2.4 Reliability Models and Test Adequacy CTHETIA everenenrereeesersesseresassesmessussessnnnnsescas

2 5 Test Data GENETAtON..cwuceuscssserssssersssesssssssssmssssassssssssssssasismasstisssesiss st smsesseess

2.6 The Path/Predicate SOIUtion PTODIEMS ...c.ormeiiermeeuemsmmssisressenssssssmsnsssienasseseees

D 7 COMCIUSION eveenrs evsscesessssessessnisenssnsssss s sss RS ss s

5. SCOPE OF thE PTOLOLYPE crvveesseesssssssmsssssssessasssssessssssssssssssssssss s 18

6. Parser/SCANNET DESIEN cveucisscimessrsraeeseesessnsissssseesscassnmss st 19
6.1 General Parser/Scanner REQUITEMEINLS .. v einmmemssemiiuensssssesenssssssminsssssessessenseseess 19
6.2 Parser/SCANNET OVEIVIEW....u.cuuiimsrssrssesssesssmsssssssssssssssssssssmsssssssensss st ensseesses 19
6.3 Limitations of the Parser/Scanner ProtOtyPe. .o ucrcessmsscecsseussmsesuesmsemsensenecass 20
6.4 Example Module Instrumentation reveetessssessaesseseseasetsteRs s ra Rt s s s a s s 21
6.5 Parser/Scanner Implementation DetailS. .o eeceurussmssersessmsensssmssemssssseensseess 27
6.6 Future Parser/Scanner Research EffOrts.....ooiciiieniesiinsescnsssmssnssmmsnisenscsnscnees 30

7. Test Data Generator DESIZN .. rerrscussisnsanesssssssssesssssssssssussemsssassa s 32
7.1 Initial Case GENETAtION ..c.ccecrerrrmsemsnsssssssssmsessssasssseasessmasmsmsis st 34
7.2 Coverage Analysis and Goodness Evaluation......occceeceinenssemsnscscsssnsnsassssssssssssssnes 34
73 New Test Case GENETALION.....uirrrreseusessessssssssersisssissssasssasssnssinssimssmseass s 36

7.4 Test Data Generation EXamPIESccoeereuerecucescssnminemunmininensissnasissasienessnssssseecases 38

7.5 System Interface MECRAMISI c....uccevmsesiusnsssmsssesmsssenmssssisssssisssssrissssssese s 40
8. Test COVEIREE ANALYZET c...ouunerrerrrussesssecessesssssrssessusssssssssssmsssiasssssssasmesssss s snsssss s 42
9. Recommendations for Future ReSEarch ..ottt 43
10. REFETEIICES .nvneevrererssesemesssssssesesenssenssessssessssssesesssmsassassasassssssnssessasssssansnassatststessssasstsasasascacaces 44

APPENDIX A - QUEST/Ada IORL System Specifications
APPENDIX B - Paper: A Rule-Based Software Test Data Generator
APPENDIX C - Paper: QUEST/Ada: An Automated Tool for Ada Software Testing

APPENDIX D - Paper: Expert System Assisted Test Data Generation for Software
Branch Coverage

APPENDIX E - Design of the User Interface
E.1 System Definition Menu
E.2 Module Selection Menu
E.3 Automatic Testing Menu
E.4 QUEST Regression Test Menu
E.5 QUEST Variable Definition Menu
E.6 Testing Result Reports Menu
E.7 QUEST Utilities Menu
E.8 Detailed Plan for Project

APPENDIX F - Proposal for Phase 11

ACKNOWLEDGEMENTS

Portions of this report were contributed by each of the members of the project team.

The following is an alphabetized listing of project team members.

FACULTY INVESTIGATORS

Dr. David B. Brown, Principal Investigator
Dr. Homer W. Carlisle

Dr. Kai-Hsiung Chang

Dr. James H. Cross

GRADUATE RESEARCH ASSISTANTS

William H. Deason

Kevin D. Haga

John R. Huggins

William R. A. Keleher, Technical Manager
Benjamin B. Starke

Orville R. Weyrich

Michael P. Woods

UNDERGRADUATE TECHNICAL ASSISTAN TS
Todd E. Blevins

J. Edward Swan
David Wheeler

Ada is a trademark of the United States Government, Ada Joint Program Office.

EXECUTIVE SUMMARY
THE DEVELOPMENT OF A PROGRAM ANALYSIS ENVIRONMENT FOR ADA

After several preliminary meetings with the sponsor, the scope of this project was
defined to include the design and development of a prototype system for testing Ada soft-
ware modules at the unit level. This would be patterned after a previous prototype for
FORTRAN developed at Auburn University. The new system was called Query Utility
Environment for Software Testing of Ada (QUEST/Ada).

QUEST/Ada differs significantly from its predecessor in the following regard: (1)
the parser/scanner mechanism is obtained from a formal parser/scanner generator such
as YACC, LALR 3.0, or BISON, (2) the test data generator is rule-based as opposed to
traditional techniques of path generation and predicate solution, and (3) a large number of
test cases are assumed to be supportable. This third difference assumes the presence of
redundant code generated either automatically from the specification (sometimes called
simulation) or by manual coding. With automatic comparison capabilities there is no longer
a need for selecting only a relatively few test cases for verification. QUEST/Ada is being
designed under the premise that a large number of test cases will be generated from the rule
base. A subset of these, which provide the necessary path and domain coverage characteris-
tics, may be selected for verification.

The literature review can be summarized by a quotation from Fisher which stated
that currently "there are no CASE tools to assist in the unit test and integration phase”
[FIS88]. However, the literature abounds with papers on the theory of software testing, and
much work is continuing in this area. The literature review was organized according to: (1)
software testing approaches and strategies, (2) automation of the various aspects of soft-
ware testing, (3) reliability models and test adequacy criteria, (4) test data generation
approaches, and (5) a discussion of rule-based versus traditional test data generation ap-

proaches.

The design of QUEST/Ada began with a definition of the overall system structure.
This was performed in IORL, which tended to clarify component dependencies for the
project team. This led to a more formal description of these dependencies, which was
obtained by the definition of the high level interfaces between the components. The project
team was then subdivided into three groups to resolve the preliminary design of the major
three components of QUEST/Ada, namely: (1) the parser/scanner, (2) the test data genera-
tor, and (3) the test coverage analyzer.

The Phase I report is organized as a working document from which the system
documentation will evolve. The introductory section provides some history and a guide to
. the sections of the report. A fairly comprehensive literature review follows which is targeted
" . toward issues of Ada testing. The definition of the system structure and the high level inter-
* faces are then presented. A brief description of the scope of the prototype is given next.
This is followed by a chapter on the design of each of the three major components. Finally,
the plan for the remainder of the project is given. The appendices include the QUEST/Ada
IORL System Specifications to this point in time, a paper presenting statistical evidence of
the validity of the rule-based testing paradigm, and two other papers derived from the
current research on QUEST/Ada. In addition, a preliminary users’ manual for the current
?U}])E‘ZST user interface is provided. The final appendix includes the proposal and workplan
or Phase II.

1. INTRODUCTION

This project was initiated on June 1, 1988. Because funding of the original proposal was
reduced, the Principal Investigator and the NASA representatives spent the major portion
of the first month defining the scope of the project. A meeting was held on July 1, 1988 at
Auburn to present and verify this redefinition. Generally the project was subdivided with a
minor pilot effort being devoted toward an analysis of metrics for the evaluation of existing
software packages. Dr. Cherri Pancake and a graduate student were assigned to this
component of the project, and the results of their efforts are presented in a separate report.

The meeting on July 1, 1988 resolved that the major empbhasis of the project would be in
the direction of the design and prototyping of an environment to facilitate the testing of Ada
code. This would be modeled after an available prototype environment for FORTRAN
code testing, called QUEST. However, several new a proaches were required in order to
enable Ada code to be tested. Among these were: (1) the use of a formal grammar to
generate the parser to be used in the prototype, (2) the use of rule-based techniques for
generating test cases, and (3) the ultimate development of testing approaches to handle
concurrency. The first two of these were considered in the current project.

A second meeting was held on October 6, 1988 in Huntsville in which the progress over
the first three months of the project was reported. This included results of: (1) the literature
review (2) a definition of overall system structure, (3) a definition of high level interfaces, (4)
a definition of the Ada subset to be processed by the prototype, (5) a preliminary analysis of
scanner/parser requirements, and (6) a detailed plan for the second quarter.

This report continues by presenting the results of the literature review which clearly
reveals a gap in the area of automatic test data generation for Ada unit-level testing. This is
followed by the definition of the QUEST/Ada system structure, which shows a high-level
view of thé components of the system. A definition of the high level interfaces is then
presented which tends to further crystallize the component design. In Section 5 the Ada
scope of the prototype under development is defined. This is followed by the definition of
parser/scanner design, which contains an example module instrumented by an early proto-
type. Section 7 presents the rule-based test data generator design, and Section 8 presents
the test coverage analyzer design, after which the plan for the next phase of the project is
given. Finally, the high level IORL description of QUEST/Ada, the preliminary QUEST
users’ manual, three related papers, and the proposal for Phase II are given in the Appen-
dices.

2. LITERATURE REVIEW
2.1 INTRODUCTION

With the increased production of complex software systems for embedded systems appli-
cations, it becomes apparent that without some form of organized and efficient approach to
the design, development and testing phases of the software lifecycle, software reliability for
these systems will fall short of the goals set by their developers. A variety of approaches to
software testing exist [ADR82, GOO75, HOW80, HOW76, HOWS82a, WHI80]. However,
these methodologies generally require considerable manual effort, i.e,, the tester must hand
compute paths, predicates, test cases, etc. Manual implementation of these methodologies
is not only inefficient in terms of resources expended (man-hours), but it is also subject to
inconsistencies brought about by human errors. Manual methods can generate only a

1

limited number of test cases before the amount of time expended becomes unacceptably
large. All of these problems may be reduced by the use of automated software test tools.
However, automated test data generation itself is not well understood [MIL 84, PAN 78].

Ramamoorthy defines automated test tools ".. as programs that check the presence of
certain software attributes which can be program syntax correctness, proper program con-
trol structures, proper module interface, testing completeness, etc.” [RAM75]. This is the
goal of the QUEST/Ada testing tool: to reduce the resources that must be expended by
automating portions of the testing phase previously requiring manual intervention. Current-
ly "there are no CASE tools to assist in the unit test and integration phase" [FIS88].

2.2 SOFTWARE TESTING

Software testing as a software engineering discipline is coming of age in the 80’s. AsE. F.
Miller pointed out [MIL84], "there i growing agreement on the role of testing as a software
quality assurance discipline, as well as on the terminology, technology, and phenomenology
of, and expectation about testing." He also noted that the first formal conference on soft-
ware testing took place at the University of North Carolina in June of 1972. Since that time,
testing research has continued on several fronts, including the automation of portions of the

testing process.

In the testing stage of the software life cycle, the main thrust of research has been aimed
at developing more formal methods of software and system testing [BEI83]. By definition,
“testing...is the process of executing a program (or a part of a program) with the intention or
goal of finding errors” [SHOS83]. A test case is a formally produced collection of grepared
inputs, predicted outputs, and observed results of one execution of a program [BEI83]. In
standard IEEE terminology, a software fault is an incorrect program component; an error is
an incorrect output resulting from a fault. In order to detect occurrences of errors indicat-
ing faults, some external source of information about the program under test must be
present.

Program testing methods can be classified as dynamic and static analysis techniques
[RAM75]. Dynamic analysis of a program involves executing the program with test cases
and analyzing the output for correctness, while static analysis includes such techniques as
program graph analysis and symbolic evaluation [ADRS82].

A dynamic test strategy is a method of choosing test data from the functional domain of a
program. It is based on criteria that may reflect the functional description of a program, the
program’s internal structure, or a combination of both [ADRS82]. These criteria specify the
method of test case generation to be used for a dynamic test strategy. The two dynamic test
. strategies generally recognized are functional testing and structural testing. These will be

" . detailed in the next subsections.

2.2.1 FUNCTIONAL TESTING

Functional testing involves identifying and then testing all functions of a program (from
the lowest to highest levels) with varying combinations of input values to check for correct-
ness of output [BEI84, HOWS86]. Correctness of output is determined by comparing the
actual output to the expected output computed from the functional specifications of the

program. The internal structure of the program is not analyzed, thus functional testing is
often called "black box" testing.

The specifications are used to define the domain of each variable or its set of possible
values. Since the program has input and output variables, selection of test data must be
based on the input and output domains in such a way that test cases force (or try to force)
outputs which lie in all intervals of each output variable’s domain. Howden explains the
importance of testing endpoint conditions as well as any special mathematical conditions
(such as division by zero) that may be encountered in the software [HOWS80]. In his ap-
proach to functional program testing, Howden also discusses exercising such program
elements as array dimensions and subprogram arguments.

Functional program testing has been used as the basis for several combinations of test
strategies with reportedly good results [FOS80, HOWS80, HOW86, RED83]. These test
strategies consist of the test data selection rules of functional testing as well as the test
coverage measures found in structural testing techniques.

Random testing is another form of "black box" testing, since the internal structure of the
program is not considered when developing test cases. While this method is generally
viewed as the worst type of program testing, it does provide "... very high segment and
branch coverage" [DUR84]. When combined with extreme and special value testing, it can
be an effective method while providing a direction for the generation of further test cases

[VOUSS).

2.2.2 STRUCTURAL TESTING

Structural testing uses the internal control structure of a program to guide in the selection
of test data [BEI84], and it is sometimes known as metric-based test data generation.
Coverage metrics are concerned with the number of a program’s structural units exercised
by test data. Test strategies based on coverage metrics examine the number of statements,
branches, or paths in the program exercised by test data. This information can be used to
evaluate test results as well as generate test data [ADR82]. Howden and others have dis-
cussed path and branch testing strategies [G0075, HOW?76, HOW78a], while other strate-
gies such as the use of data flow analysis for obtaining structural information have been
proposed and studied [LAS83]. Symbolic evaluation, while considered to be either static or
dynamic analysis, is similar to structural testing. This will be discussed in a later section.

A program’s control can easily be represented as a directed graph [BEI84, RAMG66,
SHO83] from which program paths may be identified. It can be shown that for many pro-
grams Jespccia]ly programs with loops) the number of possible paths is virtually infinite
. [BEI84, HOW78a, WOO80], thus leading to the problem of determining which paths to
- - choose for testing. Criteria for selecting test paths have been discussed [BEI84, HOW?78a,
RAM?76, SHOS3] and include statement, decision, condition, decision- condition, and multi-
ple condition coverage. "Coverage" is said to be achieved if a set of paths executed during
program testing meets a given criteria [BEI84]. The Eroblem of finding a minimal set of
paths to achieve a particular coverage is discussed by So [VIC84] and by Ntafos [NTA79].
Beizer states that the idea behind path testing is to find a good set of paths providing cover-
age, prove that they are correct and then assume that the remaining untested paths are
probably correct [Bél84].

Once a set of paths providing coverage has been selected, the next step involves generat-
ing test data that will cause each of the selected paths to be executed. Methods for generat-
ing test data from paths are discussed in [ADR82, HOW76, HOW75, HUA75, RAM76] and
others, and center around the idea of solving path predicates (discussed later) or at least
determining path data constraints to be used for generating test case data.

2.2.3 NEED FOR BOTH FUNCTIONAL AND STRUCTURAL TESTING

The effectiveness of path testing has been questioned [G0075, NTA84], and studies have
shown that the class of errors found by this type of testing is not sufficient for complete
testing [G0075, HOW?76). As discussed in [NTA84], "... the main shortcoming of structural
testing is that tests are generated using possible incorrect code, and thus, certain types of
errors, especially errors in the specifications, are hard to detect."

Indeed, Rubey notes that "... there is no single reason for unreliable software”, and then
he states that "... no single validation tool or technique is likely to detect all types of errors”
[RUB75]. He also points out that even though a program fulfills its specifications, it could
have specification errors which would render the program unreliable. Glass draws similar
conclusions when discussing testing methods [GLAS81]. Therefore, since no one testing
approach is going to solve all testing problems, functional and structural testing techniques
should be considered complementary methods [HOW&0].

2.2.4 OTHER TEST STRATEGIES
2.2.4.1 MUTATION TESTING

Mutation testing is considered to be a new error-based testing method [ADRS82, VIC84]
that is capable of determining the number and kinds of errors that a test data set is capable
of uncovering [DEM?78]. Mutation testing is based upon two assumptions: 1) the program
being tested is nearly correct, and 2) test sets that uncover single errors will also be effective
in uncovering multiple errors [ADR82]. The later assumption is known as the coupling
effect hypothesis and is described by DeMillo in [DEM78]. He states that "...complex errors
are coupled to simple errors" and the effect can be observed in real test/debug situations.
Therefore, when testing, attempts should be made to systematically uncover simple errors
that may (or may not) eventually lead to complex errors.

Mutation testing involves creating a number of program mutations, with each of the
mutations containing different simple errors. For each set of test data there are only two
possible outcomes after execution: 1) a mutation gives different results than the original
. program, or 2) the results are the same. If different results are obtained from the mutation,
" then the test data were capable of discovering the seeded error in the mutation. Otherwise,

one of the following two conditions is true: 1% the test data were not adequate for uncover-
ing the error, or 2) the mutation is equivalent to the original program. Assuming that the
second condition is not true, it would be necessary to find more sensitive test data to discov-
er the seeded error. When test data fail to find the seeded error, the programmer should
also examine the code to determine the reason. If all errors are discovered by the test data
and an adequate number (as defined prior to analysis) and variety of mutations was used,
then it can be assumed that the test data set was adequate [DEM78].

Howden has proposed a "weaker" mutation testing technique that is more effective than
branch coverage, but less costly and less effective than mutation testing [HOW82b]. In his
technique, Howden considers five elementary program components to be used in the muta-
tion process: 1) variable references, 2) variable assignments, 3) arithmetic expressions, 4)
relational expressions, and 5) Boolean expressions. One of the main differences and advan-
tages of this technique is that weak mutation testing does not require a separate program
execution for each mutation, thus reducing testing time. Weak mutation testing does have
the disadvantage of not being able to "... guarantee the exposure of all errors in the class of
errors associated with the mutation transformations."

2.2.4.2 DOMAIN TESTING

Domain testing is a strategy designed to detect errors in the control flow of a pro%ram
(called domain errors), and it is considered to be fairly new and experimental [VIC84,
WHI80, WHIB6]. The strategy generates test data to examine the input space domain of a
program, which is defined as a set of input data satisfying a path condition. In describing the
strategy, White and Cohen state: "the control flow statements in a computer program parti-
tion the input space into a set of mutually exclusive domains, each of which corresponds to a
particular program path" [WHI80]. The strategy is based on the geometric analysis of a
domain boundary. A boundary represents the range of input values that will drive the
predicate for a given path. Each boundary consists of border segments, which are deter-
mined by the conditions of a path predicate. By generating test points on or near the
domain borders (since these test points are most sensitive to domain errors), it is possible to
detect whether a domain error has occurred [TAI80, WHI80]. An analysis of input space
subdomains is discussed in [WEY80] as an extension of the theories of testing progosed by
Goodenough and Gerhart in [GOO75]. Domain errors are further defined in the Software
Errors section below.

2.2.43 SYMBOLIC EVALUATION

Symbolic evaluation is generally considered to be a static analysis technique for testing
software [ADR82, VIC84] and involves building and solving (if possible) path predicates to
generate test data. Unsolvable predicates indicate infeasible paths in the software which
usually raises an error condition [CLA76]. The test data may be used to actually execute the
software; thus, symbolic evaluation is an effective way of generating test data for structural
testing techniques [GOO75]. This idea is the basis for generating test data in the QUEST
automated software testing system and others [BRO86a, CLA76, HOW78b].

Each decision node along a given path will add a term to the path predicate. Further, any
- of the variables within these terms that are modified by assignment statements must be
. - incorporated into the path predicate such that it can be stated in terms of the input varia-
bles. Backward substitution has an advantage over forward substitution in that no space is
required for storing the intermediate symbolic values of variables [RAM76]. The process of
traversing the Path and building the path predicate according to each statement along the
path is called "dragging" the path predicate along the path [HUA75]). There is a partial
predicate associated with each control statement along the path called a branch predicate.
As each branch predicate is added to the gath redicate, a new constraint is placed on the
values that the input variables may have [CLA76]. Each new constraint should be checked
for consistency with the path predicate as it is being built. If an inconsistency is found, the
path can be labeled as infeasible [CLA76]. Forward substitution has the advantage of allow-

5

ing "...early detection of infeasible paths with contradicting input constraints” [RAM76].
Otherwise, the predicate, which must be satisfied by the input data to drive a given path, 1s
stated purely in terms of the input variables.

2.3 AUTOMATION

There are many facets of the testing process which are ripe for automation. As expressed
above, the purpose of automation is to enable more and better test cases to be executed in
order to provide more reliable code within the testing resource constraints. Classical tools
include test harness and instrumentation. More recent literature suggests the need for
automating test case generation, regression testing, and even the oracle. These are dis-
cussed in the following subsections.

2.3.1 THE NEED FOR AN ORACLE

An oracle is defined to be an external source of information used to detect occurrences of
errors. Oracles may be detailed requirement and desi%%speciﬁcations, examples, or simply
human knowledge of how a program should behave. Theoretically, an oracle is capable of
determining whether or not a program has executed correctly on a given test case [HOW86].
Practically speaking, the manual effort needed to verify test results makes this the most
labor-intensive part of the testing process [BRO87].

Some type of oracle must be employed, either by test personnel or by an automated
testing system, to determine whether outputs are correct. Two types of oracles that could be
integrated into an automated testing environment are design specification simulators and
redundant coding. A paradigm for integrating such an automated oracle into the testing
process was given by Brown [BRO87].

2.3.2 AUTOMATED TESTING TOOLS
23.2.1 STRUCTURAL TESTING TOOLS

A path predicate states a set of conditions that must be satisfied in order for a path to be
traversed. As each branch is added to the path predicate, a new constraint is placed on the
values that the input variables may have [CLA76]. Thus the predicate, which must be satis-
fied by the input data to drive a given path, is stated purely in terms of the input variables.

A predicate may be simplified and then translated into a series of inequalities for solu-
. tion, thus generating test cases. Linear inequalities can easily be solved if variable data types
. are limited to integer and real, while non-linear cases are much more difficult and require
other less formal methods which use the generated constraints [CLA76, HOW75, RAMY/6].

Other problems affecting the solution of linear predicates include: lg array subscript
variables which are dependent upon in}l)_lilt data, 212 loop structures, 3) subprogram inter-
faces, and 4) global variables [CLA76, HOW75, RAM76]. Another approach to testing
closely related to predicate solution is that of symbolic evaluation. Several automated
systems for performing symbolic evaluation exist [CLA76, HOW78b].

2.3.2.2 FUNCTIONAL TESTING TOOLS

The goal of functional testing is to design and execute a set of test cases that exercise the
entire functionality of the software [OST86]. Numerous methods have been described for
selecting specification-based test data [MYE79, WEY80, HOWS81, OST79]. Also, tools
have been developed to assist in the generation and maintenance of specification-based test
cases [OST86, SOL85, CER81, CHO86, BOU8S]. However, these tools require considera-
ble user interaction, and they do not fully automate the process of test data generation.

Tools have been developed for static analysis, dynamic testing, and the facilitation of
regression testin A86]. The extension of these tools to include concurrency constructs
is in its infancy [GOR86]. Concurrency has been studied in terms of structural testing
[TAY86], as well as static analysis with symbolic execution LYg(gU%]. The use of symbolic
execution has been extended to a tasking subset of Ada [DIL86], to explore "safety proper-
ties", such as mutual exclusion and freedom from deadlock.

2.4 RELIABILITY MODELS AND TEST ADEQUACY CRITERIA

Attempts have been made to quantify the reliability of software entities being tested.
Statistical models for various testing approaches have been derived and applied [DURSO,
ROS85A, DURS1, ROS85B]. As in all applications of statistical modeling, assumptions and
approximations must be made. Although such models are not generally accepted as perfect
indicators of software reliability, coverage metrics will continue to be used as indicators of
software reliability until this area has advanced far beyond its present state.

Since the purpose of testing is to determine whether a particular piece of software con-
tains faults, an ideal test set would succeed only if the software contains no faults [GOO75].
Unfortunately, it is not generally possible to derive such a test set for a program, or to know
that a test set is ideal. We must use some test adequacy criterion to determine how close our
test set is to ideal and when to stop testing. Such a criterion is called program-based if it is
independent of the specification of the program, and so is based purely on the code. State-
ment coverage and branch coverage are two program-based test adequacy criteria

[WEYS6).

Instrumentation of programs aids in evaluating the degree to which an adequacy criteria
have been met. Instrumentation is the insertion of additional statements into the program
which, when the program is executed, will compute some dynamic attributes of the program
[HUA78]. For instance, a simple instrumentation scheme would insert counters t0 record
the number of times each statement is executed. Instrumentation to compute certain pro-
gram-based adequacy metrics allows the testers to evaluate their progress.

The adequacy measures produced by instrumentation may be classified as control-flow

* coverage measures, data-flow coverage measures [FRA88], and most recently data coverage

measures [SNE86). One data-flow coverage measure is definition-reference chain (dr-chain)
coverage, which is concerned with the definition and referencing of program variables
[HOWS87, WIL8S5, RAP85]. Statement and branch coverages are examples of control-flow
coverage measures. Recent work has been performed in developing adequacy criteria
derived from data flow testing criteria [FRA86], and in comparing the various criteria
[CLA86). Some experimental comparisons suggest that the various approaches should be
considered as complementary rather than competing [GIR86].

2.5 TEST DATA GENERATION

A software testing problem that is very closely related to test set evaluation is that of
test data generation. Quite often, the difference between the two blurs because test data
generation schemes generally attempt to generate data that will satisfy some specific test
data adequacy criterion. Test data generation has been defined as consistiné"o specifying
and providing the test input data and of calculating the test output data" [VOGS85].

Generating test inputs for a program may not appear to be a difficult problem since it
may be done by a random number generator [DURS81]. However, although random testing
alone has been shown to be an inadequate method for exposing errors, when combined with
extremal and special value (ESV) testing, it can be an effective method and can provide a
direction for the generation of future test cases [VOUS88]. On the other hand, algorithms for
generating test data to satisfy particular adequacy criteria have generally had very bad time
and space complexities and produced small amounts of test data. In fact, it is not possible
(i.e., there exists no algorithm) to generate test data which causes the execution of any arbi-

trary program path [MIL84].

DeMillo, Lipton, and Sayward [DEM78] attempted to develop a practical test data
generation methodology somewhere between random data generation and full program
predicate solution. Noting that programmers produce code that is very close to being cor-
rect, they observed a program property which they named the coupling effect. Basically, the
coupling effect is the ability of test cases, designed to detect simple errors, to surface more
subtle errors as well. Howden, on the other hand, developed a set of functional testing rules
[HOWS7]. Although both of these research efforts were directed at helping programmers
test their code, they are also directly applicable to automatic test data generation. They are
not algorithms, but instead are useful rules of thumb. Such rules are typically referred to as
heuristics, which embody certain bits of "expert knowledge." Thus, a knowledge-based or
expert system approach is very appropriate in attacking the problem of generating test data
for software programs. This approach is made possible not only by the maturing body of
knowledge about software testing, but also by developments in the field of rule-based sys-
tems, a branch of artificial intelligence.

2.6 THE PATH/PREDICATE SOLUTION PROBLEM

As stated earlier, test data generation algorithms are usually designed to generate test
data sets which satisfy some particular test adequacy criterion. Since algorithms such as
these are provably nonexistent for a general program, the domains of the algorithms are
some subset of all possible programs. One such subset is the set of all programs with only
linear path predicates. The applicability of each technique is, of course, limited by its re-
_ stricted domain. This limitation is the first problem with conventional test data generation
> algorithms. The second problem with such algorithms is that they usually have very bad time
* " and space complexities. For example, the path-predicate generation/solution approach for
statement coverage must: (1) choose, from the (possibly infinite) set of possible paths
through the program, a subset of these paths which will provide statement coverage, (2)
construct a path predicate for each chosen path, and then (3) solve the associated path
predicate for each path in terms of the inputs to the program. lhe predicate solution prob-
lem alone is very complex, and no algorithm exists for solving general nonlinear predicates
[MIL84]. However, there are some good methods which will find solutions to many predi-

cates.

One inw]l;mentation of the path predicate methodology is the QUEST testing tool
[BROS6, Y88]. QUEST is applicable to a subset of FORTRAN 77 and provides path
predicate generation options which attempt to generate test data to satisfy the statement
coverage, decision coverage, condition coverage, or decision/condition coverage test ade-
quacy criteria. Of course, there is no guarantee that the predicate solution algorithm will be
able to solve a given predicate; it must halt after a predefined number of unsuccessful
attempts to find a solution. Even with the ability to solve predicates, each solution yields
input data for only one test execution. This is the third problem with traditional test genera-
tion methods - they produce a relatively small number of test cases.

2.7 CONCLUSION

While QUEST/Fortran aided the testing process by automating some structural testing
techniques, its use of symbolic evaluation leads to a number of problems: 1) limitations on
the program structure which could be handled, 2) poor space-time efficiency of solving a
predicate for each program path, 3) the limited number of test cases that could be generat-
ed in a given amount of time, 4) the limitations of the algorithms used to solve the path
predicates, which sometimes meant that obvious path predicates were labeled as unsolvable
and 5) the generation of trivial test cases.

QUEST/Ada addresses the problems encountered with path predicates by generat-
ing test cases using a rule base as opposed to symbolic evaluation. While the traditional
instrumentation techniques will be used to evaluate coverage, unlike QUEST/FORTRAN,
QUEST/Ada uses a formal parser/scanner to enable the instrumentation capabilities to be
easily generalized. Further, the information obtained from this instrumentation upon execu-
tion will be fed back to the test data generator to successively improve the quality of the test
cases. These innovations make QUEST/Ada a unique approach to software testing.

3. DEFINITION OF SYSTEM STRUCTURE

The overall structure of the QUEST/Ada system was designed using the TAGS
Input/Output Requirements Language (IORL). While the entire set of IORL specifica-
tions is given in Appendix A, some of these diagrams will be used in this section for illustra-
tion. Figure 1 shows the highest level of data flow, with the user interacting with the test
environment, called QUEST (Query Utility Environment for Software Testing). As primary
data flows, the user supplies source code and receives coverage analysis reports. Test cases
are initially input by the user, who may continue to augment them throughout the test
process. The user also interacts with QUEST to provide parameters to determine the
extent and duration of testing. Requests for regression testing also proceed over interface
QUEST_ADA-12. QUEST provides the means by which an execution of the module under
test will produce output values for verification. Thus, actual module execution results also
proceed over interface QUEST_ADA-21.

Figure 2 goes into more details of the QUEST system. The module being tested is input
as Ada source code to the scanner/parser, which provides output to the test data generator
gTDG), the test execution module (TEM), and the report generator (RGEN). The inter-
aces between the various subsystems are listed in Table 1 and described in the following

section.

INTERFACE - DESCRIPTION

QUEST_ADA-12 Source Code
Test Data Generator Control Parameters

Initial/Updated User Test Data
Regression Test Signal

QUEST_ ADA-21 Coverage Analysis Reports
Source Code Listing
Test Case Execution Results

10

é8-1"r-£T1 3160 a +3NSssI dOl™LINY430 ¢ dul
T +398d a8s 23S 80U~ 1S3ND 300 *S56713 "Yau~1S3ND *W31SAS

S31[NS3Y UO1iINTIX] @SR 1SI|
Buiisi epoj asunog
vaOQOm mem_wc¢ anLo>ou

A4
1Z-80Y~1S3N0D
(®PY/1S3N0)
=Py - chvmoh Susniies -og 8AS 1un Jo mwouJMmMaMMLm“MMMM«
1usuwuouraug R 131 Ruang ! I=31 3 = d
"o mwmﬂ
Z

Z1-8087153N0

_mcmdm 1S9 CouwWUmem

eieQ 3se| Jaesn vmunﬂQD\ﬁmdpdCH
SJI3suedry |0Jiuo] 9l

apoqj aounog

A4

Figure 1 - Top Level IORL Description

11

&8-11r-£1 3160

£T1-80 J ST1-Y0

A4

ST-U0

S3 |NS8Yy UOIINDIXY 1SV :HE-YD
®ie] 3S9) ,LULEJZ 3Se] 3183) E£Z-HD
uollewdoyuy codpmwcummuaom UJ_OJEmm :Z2T1-40

ad 1 3INSSI dul™1IN8430 ‘ dul
T $394d Q8s :33S g0 200 *SSY712 Y0U™1S3ND ‘WILSAS
uotieuwdoiul abeasnaod
a1 weufig
1Z-yay—isano
|euBirg 31se@) uoirssalbey w
S3soday ebeaanoq Saseq 1S9 |ewdop) @8pon esuno
< 3 1 < " Pe3d mAV
HNI¢D”.PmmDO si|nssy s1sf|euy sbe.sroy EdePCHAV Z1-805~153N0D m Z1-8aQY~1S3N0
m | 2440 o m
" | " “ n
" | . m
! ,_ ') |
" _ ! ! I
_ | | | |
" , Y ! ¢
SISATENY 3InaoH ;

CICTENE) mwwmm>ou onP:umxm YOLUAINID |- U3NNUIS
13043y 153l 1531 Uib0 1531 /435¥4d
S+-u50 $E~-H0 EZ-H0 ZT-50
N3 a0l WSd

W
S ¢UW mm 4 1
S3|NS3Y UOIINIIX] IsSRY vaHAﬂﬂmmMI¢O ET-U0
A---m spoq ®3u4nog UuPCUEDL«WCHnﬂv
12-4Qy~1S3N0
S1NS3y HD&PDOAN
UC1 1RWJOJUT uoliIRIUISIIday UA_OjEmmAN

A4

Figure 2 - Detailed IORL Description

12

4. DEFINITION OF HIGH LEVEL INTERFACES
4.1 PARSER/SCANNER INTERFACES

The parser/scanner produces data structures which describe the program under test to
the test data generator and the report generator. This includes information concerning the
input variables and parameters, condition and decision structure, and segment or block

structure. The parser also augments the source code with a driver module for use by the
test execution module. These interfaces are detailed in Table 2.

INPUT: QUEST_ADA-12, ADA SOURCE CODE
FROM: USER
OUTPUTS: QA-13, INSTRUMENTED SOURCE CODE

TO: TEST EXECUTION MODULE
1. INSTRUMENTED DECISIONS
2. MODULE DRIVER

QA-12, SYMBOLIC REPRESENTATION INFORMATION
TO: TEST DATA GENERATOR

1. PARAMETER LIST

2. TYPE DECLARATIONS

3. DECISION/CONDITION DEFINITIONS
a. DECISION NUMBER
b. CONSTRUCT TYPE
c. DECISION STRUCTURE

QA-15, SYMBOLIC REPRESENTATION INFORMATION
TO: REPORT GENERATOR
1. DECISION/CONDITION LIST
a. DECISION NUMBER
b. CONSTRUCT TYPE
c. NUMBER OF CONDITIONS

13

4.2 TEST DATA GENERATOR INTERFACES

The Test Data Generator (TDG) interfaces are given in Table 3. The TDG obtains input
from the parser/scanner in the form of a parse tree which describes the relevant structures
within the source code. It translates this information into assertions which are used to
determine the firing of the rule base.

The TDG interacts with the test execution module via test cases and test results. The
results of each test case are analyzed by the Test Coverage Analyzer so that it can make
decisions for the creation of additional test cases. This is performed by automatically analyz-
ing the "quality" of the results generated at a given point in the testing process, where quality
is determined by coverage metrics and variable value domain characteristics. The QA-
23/QA-34/QA-42 loop is reiterated automatically until a given coverage is attained or until a
user-defined check point is reached in terms of number of test cases generated. At this
point the user will either stop the process or supply additional parametric information (via
QUEST _ADA-12) to generate additional test data. User-defined test data may also be
supplied at any of these check points.

INPUTS: QUEST_ADA_12, TEST CASES: NORMAL AND REGRESSION
FROM: USER

QA-12, SYMBOLIC REPRESENTATION INFORMATION
FROM: PARSER/SCANNER MODULE

QA-42, TEST EXECUTION RESULTS
FROM: TEST COVERAGE ANALYSIS

OUTPUTS: QA-23, TEST CASES
TO: TEST EXECUTION MODULE
1. TEST CASE NUMBER
2. TEST DATA

QUEST ADA-21, DYNAMIC COVERAGE INFORMATION
TO: USER

14

4.3 TEST EXECUTION MODULE INTERFACES

The Test Execution Module (TEM) interfaces are shown in Table 4. TEM receives
the instrumented source code sufficiently harnessed by a driver to enable it to be executed.
Thus, its task is merely to execute the instrumented source code using as input the test data
generated by the TDG component.

The TEM generates two outputs. The simplest of these is information for the Test
Coverage Analysis (TCA). Each test case executed will produce an output via the instru-
mentation (i.e., a side effect) which will indicate the decision/condition satisfied by that test
case. This information will be processed by the TCA in order to serve appropriate informa-
tion to the Test Data Generator and the Report Generator.

The second output is a library of both the intermediate coverage information described
above and the output results of each test case. This information will be stored for retrieval
by the Regression Testing function and the Report Generator. The specific format of the
coverage library will evolve as the reporting requirements evolve.

INPUTS: QA-13, INSTRUMENTED SOURCE CODE
FROM: PARSER/SCANNER MODULE

QA-23, TEST CASES
FROM: TEST DATA GENERATOR

OUTPUTS: QA-34, TEST EXECUTION RESULTS
TO: TEST COVERAGE ANALYZER
1. TEST CASE NUMBER
2. DECISION NUMBER
3. LIST OF VALUES OF DECISION VARIABLES
4. LIST OF CONDITION RESULTS

QA-35, OUTPUT RESULTS
TO: REPORT GENERATOR

QUEST_ADA-21, TEST CASE EXECUTION RESULTS
TO: USER

15

4.4 TEST COVERAGE ANALYSIS INTERFACES

Table 5 presents the Test Coverage Analyzer (TCA) interfaces. Essentially TCA
takes the output generated via the probes inserted by the instrumentation and translates this
information into the input required for efficient and straightforward report and test data
generation. Note that this is accumulated in two formats, one for the analysis of an individ-
ual test case, and the other for the cumulative results of all tests performed. As mentioned
above, a primary use of the former information is to provide feedback to the TDG to
automatically generate improved test cases.

INPUT: QA-34, TEST EXECUTION COVERAGE RESULTS
FROM: TEST EXECUTION MODULE

OUTPUTS: QA-42, INTERIM COVERAGE ANALYSIS RESULTS
TO: TEST DATA GENERATOR
1. TEST CASE NUMBER
2. DECISION NUMBER
3. LIST OF VALUES OF DECISION VARIABLES
4. LIST OF CONDITION RESULTS

QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
TO: REPORT GENERATOR

1. INDIVIDUAL TEST COVERAGE DATA
a. TEST CASE NUMBER
b. DECISION NUMBER
c. CONDITION NUMBER
d. TRUE COUNT
e. FALSE COUNT

2. CUMULATIVE TEST COVERAGE DATA
a. DECISION NUMBER
b. CONDITION NUMBER
c. ACCUMULATIVE TRUE COUNT
d. ACCUMULATIVE FALSE COUNT

16

4.5 REPORT GENERATOR INTERFACES

The symbolic representation information generated by the parser/scanner module is used
in conjunction with the coverage measurements calculated by the coverage analysis module
to produce detailed coverage analysis reports by the report generator. The user analyzes
these reports to determine if there is a need for more tests. These interfaces are shown in

Table 6.

INPUTS: QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
FROM: TEST COVERAGE ANALYZER

QA-35, OUTPUT RESULTS
FROM: TEST EXECUTION MODULE

QA-15, SYMBOLIC REPRESENTATION INFORMATION
FROM: PARSER/SCANNER MODULE

OUTPUTS: QUEST ADA-21, TEST COVERAGE REPORTS
TO: USER

1. REPORT TYPES
a. INDIVIDUAL TEST COVERAGE
b. ACCUMULATIVE TEST COVERAGE

2. COVERAGE TYPES
a. DECISION/CONDITION COVERAGE
b. MULTIPLE CONDITION COVERAGE
c. NO-HIT REPORT

17

5. SCOPE OF THE PROTOTYPE

The formidable task of constructing a working prototype of an automated testing envi-
ronment during a one-year period required a clear definition of the scope of the project.
Since the goal of the prototype was to demonstrate the feasibility of automatically generat-
ing test data for a variety of Ada modules, these limitations will be based on the data types
allowed as input to the modules being tested.

The initial prototype generates test cases for multitasking Ada programs. Standard
coverage metrics will be calculated for these programs. However, they will not necessarily
be an effective indication of program correctness, due to the unpredictable nature of ren-
dezvous sequences. Consideration has been given during the prototype design and devel-
opment to establish approaches for handling concurrency. However, the actual prototyping
of these approaches has been deferred until Phase 2.

The prototype produced in phase one of the QUEST/Ada project represents a complete
basic automatic rule-based testing environment. In addition to the rule base, the prototype
includes the ability to collect relevant testing information from an Ada module and a testing
coverage analyzer. The development of this complete environment provides the capability
for evolving a sophisticated set of testing heuristics by using statistical methods to evaluate
large numbers of test cases across a wide cross section of programs. Even the most facile
large-scale quantitative evaluation techniques are enormously complicated to perform by
hand, and more complicated procedures are virtually impossible to do manually in any
reasonable amount of time. Using the QUEST/Ada prototype, however, the speed at which
large-scale evaluations can be performed is limited only by the speed of the associated

hardware.

Notably absent from the protog'pe is the ability to automatically "instrument" the Ada
code to be tested (see the Parser/Scanner section for an explanation of instrumentation).
This capability would allow code to be placed automatically into the testing environment.
While this ability would be important to a production version of QUEST, it has become
clear from the prototype that such an automatic instrumentation tool would be even more
complicated than a full Ada parser. Consequently, while the tasks involved in producing the
automatic instrumentation tool are quite straightforward, the development would nonethe-
less require several times the manpower available to this project. Thus, while the prototype
proved the feasibility of this approach, subsequent tests of the remaining components of the
QUEST system will rely upon manually-generated instrumentation.

The main effort in developing the prototype parser concentrated on extracting informa-
tion critical to the automatic testing process, such as variable types, bounds and names.
These are essential to the automatic generation of test cases and the coverage evaluation.
Hand instrumentation, which was found to be a fairly simple task, was used to prepare code
for the testing environment.

Finally, it is notable that the subset of Ada covered by the initial prototype is small. As
the empbhasis of the first phase of the QUEST project lay in establishing the validity of the
rule-based automatic testing paradigm and providing an environment for the efficient quan-
titative evaluation of testing heuristics and techniques, the development effort was directed
toward a fully functional small subset prototype rather than a skeleton prototype of a more
robust subset. This approach additionally allows for a more intelligent expansion to a wider
set of test heuristics, since the tools for evaluating the quality of new heuristics are now
complete. The broadening of the Ada subset is one of the primary tasks of Phase two.

18

6. PARSER/SCANNER DESIGN
6.1 GENERAL PARSER SCANNER REQUIREMENTS

The parser/scanner module is responsible for building the data structures required by the
rest of the QUEST system and creating a listing of the source code for use by the tester.
Information contained in these data structures must identify the control constructs, global
variables referenced (i.e., altered) within the module, and parameters input to the module.

As mentioned above, the roles of instrumenting the Ada source code and surrounding the
module under test with an execution driver or test harness is to be performed manually.
Instrumentation of the Ada source code is required for determining test coverage and for
providing feedback data required by the Al test data generator. Each decision and condi-
tion in the program must be instrumented so that all of the standard coverage metrics may
be calculated by the report generator. The feedback data are used as an indication of test
case quality for directing the generation of new test data. While this function is not a part of
the prototype, its integration into the Ada compiler in a production test system is straight-
forward.

The data structures built by the prototype parser provide information concerning the
structure of the module under test. This includes information about the number and types
of input variables and parameters, the statements and segments executed as a result of
decision outcomes, and the structure of decisions and conditions. These data structures are
used by the test data generator and the report generator modules.

A listing of the source code is provided to the tester as an aid in analyzing the output of
the report generator. As an option to the user, this listing shows the embedded instrumenta-
tion code. Unique identification numbers are assigned to each decision, condition, and code
segment in the original code listing.

Two parser/scanner generator packages, LALR 3.0 and BISON, were evaluated for
use in producing an attributed grammar to provide the parser/scanner functions. These
were selected because of their advertised capabilities to handle the large number of produc-
tions required by the Ada grammar. While LALR 3.0 appeared to function on some small
examples, there was no evidence that it could handle the complete Ada grammar. On the
other hand, BISON has shown great promise as illustrated by the example presented below.

6.2 PARSER/SCANNER OVERVIEW

The parser scanner first determines, by a syntax-directed parse of the Ada source code,
the appropriate information for the expert system’s test case generator. It builds a symbol
table containing this information and then writes information from the symbol table into the
knowledge base of the expert system. Currently the instrumented code is surrounded by a
manually-generated Ada source driver so that the unit under test can be compiled by the
host Ada compiler. Machine independence is achieved by having the test module be a high
level unit and not dependent on any particular compiler or its symbol table representation.

In order to maintain flexibility and allow the prototype’s parser/scanner to be

extended to other forms of testing, the parser scanner unit is generated by a parser genera-
tor tool and a LALR description of Ada. As with the expert system, where rules may be

19

inserted or deleted without major modification of the system itself, the actions of the parser
generator may be modified or extended to reach a goal of a full Ada testing system.

63 LIMITATIONS OF THE PARSER/SCANNER PROTOTYPE

Because the primary goal of the first phase of the project was a working prototype of
the testing environment, only a subset of the Ada language was handled by the system. This
required decisions as to which capabilities should be included in the tprototype and which
could be safely omitted. Nevertheless a complete LALR description of Ada is used to avoid

theoretical limitations.

Certain tradeoffs were made in the decision to use a high level test module in order
to avoid host or compiler dependencies. The most significant sacrifice is that all interfaces
between the unit under test and the prototype are a part of the program when it is executed.
Limitations, such as the size constraint of the users’ systems become limitations of the proto-
type. More seriously, errors in the user’s module remain as errors of the test module.

Errors in instrumentation or the harness/driver for the module could result in false
error detection for the module under test. The remedy for this, which is strongly advised in
any event, is to run the uninstrumented module in parallel with its corresponding instru-
mented code to assure that no such errors have been introduced.

Although it avoids compiler dependencies, the decision to use a high-level parser
generator tool to generate symbol table information adds an overhead to the resulting
system. As presently implemented, each program unit which is to be visible to the proto-
type must be included with the unit. Extending the prototype to include Ada packages will
require a more sophisticated data structure for the symbol table. If extensions are made to
include separate compilations, or packages with code not visible to the module under test,
some form of library management interaction with the host system and possible sharing of
it’s compiler symbol table information might be required. However, this 1s not seen to be as
much of a problem with unit-level testing as it will be when QUEST is used for integration

testing.

The required instrumentation routines have been written to support the condition
branch coverage tested by the expert systems. The expressions handled by the prototype
are relational operations of arithmetic expressions, and Boolean operators are not allowed.
The reason for this restriction is that meaningful heuristics have been found in previous
work for path expression coverage of conditions determined by the arithmetic and relational
operators. Restricting use to these heuristics would enable more meaningful testing of the

prototype.

Control flow determined by values of access types is not handled by the prototype.
Consideration of these types, and heuristics for testing code containing conditions deter-
mined by the values of these types, is of interest in future development, since many pro-
grammers have considerable difficulty when dealing with these types. Similarly, informa-
tion-altering control flow that is determined by external sources, such as 1/O or tasking entry,
have been excluded from the initial prototype. Future work with the prototype will heuristi-
cally address these issues.

In summary, the major work done on prototyping the parser/scanner was to develop
the code to: (1) generate the symbol table to hold type and subtype information required for

20

meaningful test case generation, (2) generate the routines to write this information as
needed by the expert system, and (3) generate the Ada routines called by the instrumented
Ada codé for input and output of the values of the instrumented boolean conditions. So far,
heuristic rules utilizing routines of the prototype have been used with integer based types,
subtypes, and user- defined types based on this type. The parser/scanner symbol table
routines are written to gather the information required to support other numeric and
enumeration types as well as those user-defined types based on these types.

6.4 EXAMPLE MODULE INSTRUMENTATION

Listing 1 provides an example of uninstrumented code that has been tested by the
system. The data structure used to implement the symbol table is a linked list of linked lists,
as pictured in Figure 3. Listing 2 shows a sample from the LALR description of Ada used
by the 1;_)lrototype’s parser scanner, and the semantic actions used to generate the symbol
table. Listing 3 shows the instrumented code and the surrounding module for the previous
uninstrumented Ada code example. Finally, Listing 4 presents a fact asserted by the parser
scanner into the knowledge base of the expert system.

21

Un-instrumented Ada Code

procedure test(i: in out integer:;
j: in out integer;
k: in out integer) is

begin

while 1 > j loop
i =1 - 1
k := (k + 314) mod 25;

if 1 > k then
while 1 > k loop
k := k + 1;
if k >= 27 then
null;
else
null;
end if;
end loop:

else
if i < k-3 then
if 1-10 <) then

null;
else
null;
end if;
else
while i >= k-3 loop
i =1 - 1;
end loop;
end if;
end if;

end loop;
if 1 = j then
null:;
else
null;
end if;

end test;

Listing 1 - Uninstrumented Code

22

—1

h\

Symbol Table

Module Name

> 3
P Parm 1

L _fy1)€31

rlel=t=lnlnl—1=]

L S VI A I NP 4 U SR

. 5
I D
S V r1 y

T Level
_E Parameters
T: Returns
T Local Types
T L ocal Variagbles
\ Next
T: Previous
T

Figure 3 - Parser-Scanner Date Sturcture

23

Ada Grammar with Semantic Actions

subprg_body : subprg_spec IS_
{ $<node>1->level = level++; }
.decl_part.
BEGIN_
seq of_ stmts
.EXCEPTION__excptn_handler..excptn_handler...
END .designator. ';'

{

level--;

$<node>1->last_line = lines;

if (!strcmp($<node>l->name, module under_test))
YYACCEPT;

~a

subprg spec : PROCEDURE_ identifier

$<node>$ = make_mod():
$<node>$->name = $<str>2;
$<node>$->first_line = lines;
}
.fml _part.

{

$<node>$->parms = $<parm_1>4;
$<node>$->returns = NULL;

}

fml part : '(' prm_spec .._.prm_spec..)y
{

$<parm_1>$ = link parms($<parm_1>2,$<parm_l1>3);

prm_spec . idents ':' mode ty mk ._ASN_expr.
{ $<parm 1>$ = make_parms($<id_1>1,
S<val>3,

lookup type($<str>4));

~s

idents : identifier ...ident..
{ $<id 1>$ = make id($<str>1,$<id_1>2);)}

Listing 2 — Sample LALR Description

24

}

)

Instrumented Ada Code

with text io, instrumentation; use text_io, instrumentation;

procedure driver is

BeginTest: boolean;
TestNum: integer;
indata,

outdata: file_type;
i,j.,k: integer;

package instl is new instrumentation. integer_inst(integer);

use instl;
package int_io is new text io.integer_io(integer);

use int_io;

i: in out integer;

j: in out integer;

k: in out integer) is

procedure test(

begin
BeginTest := FALSE; -
while relop(TestNum,61,0,i,GT,j) 1loop --d1l
i =1 - 1;
k := (k + 314) mod 25;
if relop(TestNum,2,0,i,GT, k) then --d2
while relop(TestNum,3,0,i,GT,k) loop --da3
k : =k + 1;
if relop(TestNum,4,0,k,GE,27) then --d4
null;
else
null;
end if;
end loop;
else
if relop(TestNum,65,0,i,LT,k-3) then --d5
if relop(TestNum,G,O,i—lO,LT,j) then --deé
null;
else
null;
end 1if;
else
while relop(TestNum,7,0,1,GE, k-3) loop --4d7
i:=1i-1;
end loop;
end if;
end if;
end loop;
if relop(TestNum,s,O,i,EQ,j) then --ds8
null;
else
null;
end if:;
end test;

Listing 3 - Instrumented Code
25

begin
open(indata,in_file,"test.data");
create(intermediate,out_file,“intermediate.results");

create(outdata,out_file,"output.data");

while not End_OF_file(indata) loop
BeginTest := TRUE;
get (indata,TestNum) ;
get(indata,i):
get(indata,j):
get (indata, k) :

-- get test data

test(i,j,.k): -- run 1 iteration

put (outdata, TestNum) ;

put (outdata,i);

put (outdata,j):

put (outdata, k) :

new_line(outdata):
end loop;

close(indata):;
close(intermediate);
close(outdata):;

end driver;

Listing 3 - Instrumented Code (Continued)

Rules Asserted into Clips Fact Base

(deffacts parser scanner_assertions ""
(names i j k)
(types int int int)
(low_bounds 1 2 3)
(high_bounds 100 50 25)

Lizting 4 - CLIPS Asscrtion Rule Example

26

—-- put OUT parameters

6.5 PARSER/SCANNER IMPLEMENTATION DETAILS

The Parser/Scanner Module, as currently implemented, operates in two passes. The
first pass, called SYS_SCAN, creates a doubly linked list of module names to be returned to
the user interface. The only semantic actions required in this pass are those for creating a
node, filling in the module name, and appending the node to the linked list. The second
pass, SYS_PARSE, is considerably more complex. During this pass a symbol table consist-
ing of multiply linked lists is created which contains all the information necessary for test
data generation and report generation. In the production version of QUEST, this module
would also be responsible for automatic instrumentation. Thus, ultimately consideration
should be given to integrating this portion of QUEST into the Ada compiler.

Upon completion of SYS_PARSE, a subroutine, ASSERT_FACT S(), traverses the
symbol table gathering and writing information to a fact base used by the Test Data Genera-
tor. Information required by the Report Generator is currently stored in global variables.
The majority of the semantic actions in SYS_PARSE create and link various node types into
the symbol table. Many of these routines are quite similar in function -- the main difference
being the type of node upon which they operate. These routines will be described individu-
ally below.

The full symbol table is maintained during SYS_PARSE. This is somewhat different
from the usual method of maintaining a stack of (partial) symbol tables, one for each
module. The reason for maintaining the full symbol table in memory is to allow information
to be passed to the other parts of QUEST at the end of the parse. It would also serve in the
future to facilitate the instrumentation parse by saving the scoping and variable usage
information.

Scoping information is currently maintained as an integer ‘level associated with each
module. The lowest level corresponds to the outermost module. Listing 5 gives an example
which demonstrates the level concept. A module has access to it’s surrounding module (the
previous module in the list with a level one less than it’s level). The surrounding module has
access to it's surrounding module, etc. This method of scoping can be further extended to

include Ada packages.

Listing 5. Example to Illustrate QUEST Parser Levels

LEVEL MODULE
0 procedure outermost;
1 procedure innerl;
{innerl body}
end innerl;
1 procedure inner2;
2 procedure innermost;

{innermost body)
end innermost;
{inner2 body)
end inner2;
end outermost;

27

Listing 6 presents the types which are declared for use as semantic values during
SYS_PARSE.

Listing 6. Types Declared During 8YS_ PARSE

int val;
integer values

char *str;
character strings - identifiers for modules,

types, variables,...

struct rng_decl *range;
rng_decl - subtype range declaration.

struct str_list *id_1;
id 1 - linked list of identifiers. Used for

temporary storage of <idents>

struct var_list *parm_1;

parm_1 - linked list of a module's formal
parameters. also includes type info, IN OUT
info, etc.

struct var_list *var_1;

var 1 - linked list of a module's local
variables

struct type list *type 1;

type 1 - linked list of a module's local types

struct module_list *node;

module list - linked list of modules containing
scope information (level), formal parameters,
local types and variables, etc.

The following modules are called during SYSPARSE:

(1) make_mod() - creates a module_list node and appends it to the module list:
static struct module_list *make_mod()

(2) link_types() - concatenates two type lists:
static struct type_list *link_types(head,tail)
struct type_list *head, *tail,
(3) make_type() - creates a type list nodes and links it to the front of the list:

28

4)

()

(6)

(7

(8)

)

(10)

(11)

static struct type_list *make_type()

link_parms() - concatenates two var _lists:
static struct var_list *link_parms(head,tail)
struct var_list *head, *tail;

make_parms() - converts an id list to a var list. It is used for declarations such as:
id1, id2, id3: type, and it creates a var_list node for each identifier:
static struct var_list *make_parms(id_l,mode,type)

struct str_list *id_l;
int mode;
struct type_list *type;

make_id() - creates an id node and link to front of list:
static struct str_list *make_id(str,id_I)

char *str;

struct str_list *id_l;

link_id() - concatenates two id lists:
static struct str_list *link_id(head,tail)
struct str_list *head, *tail;

assert_facts() - traverses the symbol table and writes information to the CLIPS fact
base:
static assert_facts()

lookup_predefined() - looks up a predefined Ada type static struct type_list *look-
up_predefined(str):
char *str;

lookup_local() - looks up a user defined type in a module’s symbol table:
static struct type_list *lookup_local(str,module)
char *str; struct module_list *module;

lookup_type() - looks up a type in the symbol table; it calls lookup_local() for each
"visible™ module until the type is found or the symbol table is completely searched; if
not found it calls lookup_predefined():
static struct type_list *lookup_type(str)
char *str;

29

6.6 FUTURE PARSER/SCANNER RESEARCH EFFORTS

There are four major areas in which the PSM should be extended in the near future.
These are: (1) Extending the allowed data types, (2) Extending the scoping information to
include packages, (3) Enhancing the amount and type of information passed to the Test
Data Generator, and (4) Implementing the automatic instrumentation pass. The first two
areas are rather straight-forward and will not be discussed. However, area 3 is where the
greatest improvement in the performance of QUEST could be realized.

Currently the information passed to the Test Data Generator (TDG) consists of a list
of the parameters of the module under test, their type, and their range of possible values.
This information should be extended as much as possible. In particular, data flow analysis
could yield much information that is useful to the TDG. For example, it may be determined
that one side of a particular condition can be evaluated statically, or that a variable is not
modified during a particular segment of code. This is the type of information that would be
most useful to the TDG.

Although implementing the automatic instrumentation pass will be a straight-for-
ward (albeit, extremely labor-intensive) procedure, some explanation is in order. Instru-
mentation of the various flow-control constructs will entail building a syntax tree for the
condition expression and then reconstructing the original expression with function calls to
the instrumentation package inserted at the appropriate places. As explained above, hand
instrumentation will be performed in order to prevent the development of the automatic
instrumentation from delaying the development of the remaider of UEST.

The harnessing of the module in order to drive the module-under-test (MUT) is also
considered to be part of the instrumentation. Two methods have been considered for this.
The first method consists of "cutting out" the MUT from the original main program and
surrounding it with a driver. This method is simple and should probably be considered for
the near-term. However, certain modules cause difficulties when tested by this-method.

As an example, consider the program given in Listing 7. If the MUT is procedure
b8, then procedures b() and a() must both be present in the driver module in order to test
b(). However, b() modifies a global variable with the same name as the parameter to
procedure a(). Therefore, one of the variables must be renamed to avoid naming conflicts
in the driver module.

Listing 7. Example Program
X,y: integer;
procedure af()

begin
modify x; -- global variable x
end a;
procedure b(x:integer);
begin
call a()
modify x; -- parameter x
end b;

begin
call b(y):
end main;

30

A second method for constructing the driver keeps the program structure intact. A
Boolean variable, Test, is defined in the outermost module. Each lower level module tests
this variable and if it is true, reads in local data referenced by the MUT, as shown in Listing
8. If this variable is false, it executes it’s code normally. This method eliminates the need for
renaming any variables and allows mutually recursive modules to be easily tested. However,
the method is considerably more complex and it is presently uncertain whether it is truly
necessary to drive the MUT by this method.

Listing 8. Modified Example Program
procedure driver;
Test: boolean;
procedure main;
X,y: integer;
procedure a()

begin
modify x; -- global variable x
end a;
procedure b(x:in out integer);
begin
Test := false;
call a{():
modify x; -— parameter x
end b;

begin
if (Test) then
read(x,Y):
end if;
call b(y):
end main;
begin
Test = true;
call main;
end driver;

31

7.0 TEST DATA GENERATOR (TDG) DESIGN

The general goal of the Test Data Generator is to provide a prototype for intelligent test
data generation. By combining the previous software coverage analysis techniques and the
artificial intelligence knowledge-based approach, more efficient test data generation can be
achieved. When more test cases are needed to cover a specific branch, heuristics are used
to simplify the problem of finding the condition boundaries from which new test cases can
be defined. This approach has been found to obtain levels of coverage that are difficult and
inefficient to obtain under random test case generation. As the prototype develops, it will
be tested against its prior performance to assure that the rules added are leading to greater

efficiency.

The method applied by TDG has the objective to achieve a maximal branch coverage of
a software package. The analysis of actual coverage follows the Path Prefix Strategy of
Prather and Myers [PRA87]. In the Path Prefix Strategy, a software package is represented
by a simplified flow chart. Each condition in the flow chart contains two branches, true and
false. The goal of a set of test cases is to maximize the number of covered branches. The
coverage of these conditions and branches is recorded in a branch-coverage table. In this
table each condition contains two entries, one for the truth branch and one for the false
branch. When a branch of a condition is covered (or reached), the branch’s entry in the
table is marked with an "X". In addition to the marking process, the test cases that cover this
branch are also recorded.

When new test cases are to be generated, the branch-coverage table is examined to
select a condition that is not yet fully covered, i.e., only one branch is covered. After a
condition is selected, an associated test case of this condition is retrieved. Since some earlier
case started from the package entry point and reached the condition under consideration, it
is already "close" to cover the branch that is not yet covered. The Path Prefix Strategy uses
an "inverse" approach to generate a new test case. However, as stated in [PRAS87], the
inverse problem is still not totally understood.

Our approach to intelligent test data generation includes the following tasks: (1) initial
case generation, (2) coverage analysis and "goodness" evaluation, and 3) new case genera-
tion. Figure 4 shows the relationships between these major concepts. In this system, a test
case is represented as (case number, value-1, value-2, value-3, ..., value-n). "Number" indi-
cates the generation sequence of this case. Value-1, value-2, ..., value-n are the values of
each input variable of the package. The design and development of the TDG component
prototype proceeded with the following simplifying assumption: a condition contains con-
stants, arithmetic and logic operators, and input variables only. Internal variables, Le.,
defined within the tested package, would not appear in a condition. This provided a more
explicit relation between the input variables and the condition branches. The system is
being developed using CLIPS [CLI87], an expert system development tool which provides
various interfaces to communicate with external functions written in other programming
languages, e.g., C, Pascal, Fortran.

32

ﬁ)

Y

Initial Case Generation

Test Over ?

no

yes

Coverage Analysis
and
Goodness Evaluation

l

Y

New Case Generation

|

Figure 4 - Flow of Test Data Generator

33

Stop

7.1 INITIAL CASE GENERATION

Initial test cases are needed to start the process. In the event the user provides test cases
with the target software package, this initial case generation step can be skipped. However,
if test cases are not provided, the initial test cases can be generated based on the syntax
information of each input variable, including type, lower limit, and upper limit. (Note: this
will be the approach used here in order to provide a common baseline to which improve-
ments in the TDG can be compared.) Four cases are generated: (1) each variable is as-
signed to its mid-range, (2) each variable is assigned to its lowest value, and (3) each varia-

ble is assigned to its highest possible value. For each variable, the mid-range, bottom, and
top are defined as:

mid-range = (upper-limit - lower-limit) /2
bottom = lower-limit + (upper-limit - lower-limit) * 0.05

top = upper-limit - (upper-limit - lower-limit) * 0.05

These three cases are numbered cases 1, 2, and 3 respectively. This heuristic rule is
shown in the following:

Rule-Initial-Cases
(If no cases exist

Then (assert
(case 1 mid-range-1 mid-range-2 ------ mid-range-n))
(assert
(case bottom-1 bottom-2 --------- bottom-n))
(assert
(case 3 top-1top-2 ----------- top-n))
(assert
(basket 1 2 3))
(assert
(nextcase 4)))

If more cases are needed, this rule can be modified to incorporate any desired combina-
tions. In this rule, a basket is asserted to notify that a set of cases has been generated and is
ready for coverage analysis. The statement of "nextcase" indicates that the case number of
next new case will be 4.

7.2 COVERAGE ANALYSIS AND GOODNESS EVALUATION

As indicated above, the objective of the test case generation is to cover as many branches
as possible. When a new set of cases is generated, it is analyzed to determine what branches
these cases have covered. This process is called coverage analysis and is performed by an
instrumented simulator of the target software package. After the coverage analysis, it will
be possible to determine what branches have not yet been covered and still need further
cases.

34

The instrumented simulator of a target package functions just like the target package
except it contains extra code to record the branch coverage of each condition and to calcu-
late how "close" a test case has been to the condition boundary. For example, an IF state-
ment:

IF (3*x+y) >= 21 THEN do-1 ELSE do-2
will be instrumented as
IF analyze((3*x+y) >= 21) THEN do-1 ELSE do-2

Here, "analyze" is a function defined in the simulator to perform coverage analysis and other
evaluation tasks. The coverage analysis is basically a table filling process which records the
covered branches. Assume that a test case (x=5, y=2) is analyzed. Since the value of the
evaluated left-hand-side (LHS), i.e., 17, is smaller than the right-hand-side (RHS), i.e., 21,
the FALSE or the ELSE branch will be executed. This means the ELSE branch would be
covered.

In addition to providing coverage analysis, the simulator also calculates how close the
LHS is from the RHS, based on the given test case. Here "closeness" is defined as

ABS(LHS - RHS) / MAX (ABS(LHS), ABS(RHS))

This measure tells the closeness of the test case to the condition boundary [DEA88]. When
this measurement is small, it is generally true that this test case can be modified slightly to
cover the other branch of the condition. In the previous example, with test case (x=5, y=2),
LHS is 17 and RHS is 21. The closeness value is therefore (21 - 17) / 21 = 19%. Assume
there is a second test case (x=6, y=2). Its closeness value is (21 - 20) / 21 = 4.8%. The
second case will be considered "better" than the first case according to the criteria intro-
duced above. This is because a smaller change on the second case may be enough to lead to
the condition boundary or even beyond the boundary and cover the other branch.

The importance of the slight modification to the test case is based on the fact that the
original case starts from the entry point and reaches the condition under consideration.
Between these two points, this case is also used by other conditions. In order to reach the
condition under consideration again and cover the other branch, the modified new case
must pass through the same set of conditions and yield the same branching results. For this
reason, the closeness of a test case (under a particular condition) can also be considered as
its "goodness".

In the current version of system, the analyzer is written in C language. It is called as
an external function from CLIPS.

In the TDG prototype, each condition contains two pieces of information. The first re-
lates to the coverage of its branches. The second is the "best" test case that has reached this
condition so far. If both branches of a condition have already been covered, this condition
will not be considered for further test case generation. However, if only one branch is
covered, more test cases will be generated, based on the best case. This heuristic is ex-
pressed in the following CLIPS rules, which have been modified slightly (from CLIPS) for
easier understanding:

35

Rule-No-More-Case

If check ?cond) ;:check condition ?cond
cond ?cond true true $7x) ;both branches have been
-covered. Best case, $7x, is
;ignored.
then (assert (check (+ ?cond 1)))) ;check next condition.

Rule-More-Cases

(If check ?cond) ;check condition ?cond
not :not both conditions are
cond ?cond true true ?x)) :covered. There is also a

:best test case, 7x.

then (assert
(generate-more ?cond 7x))) ;pass the condition and the
;best case to the test case

;generator .

7.3 NEW TEST CASE GENERATION

The objective of this portion of case generation is to cover the branches that are not
covered previously. As mentioned earlier, a request of this kind provides the condition to
be considered and its best test case. The generation of more test cases should follow the
general philosophy of modifying the best case by a small amount. With this guideline in
mind, the test data generator (TDG) will produce several sets of new cases with various

constraints.

Consider the best test case, case-i, of condition cond-i. Case-iis a list of numerical values:
ng, Vo, ooy Vi oy V). The j-th value in the list corresponds to the j-th input variable.
ince it may h'clippen that only part of the input variables would appear in a condition, the
TDG needs to know which variables appear in the condition. The values of these variables
have the direct impact of the branching decision and should be the candidates for modifica-
tion. Let us assume VL = (V,, Vy,, ...) contains these variables. The following heuristics
have been used to generate new test cases:

1. Keep all variable values unchanged except one variable which is in VL. This would
simplify the condition under consideration. For example, in the previous best case,
(x=6, y=2), if we keep x unchanged, the condition can be simplified in the following

steps:
a. 3 *x x +y >= 21 ; X=6
b. 18 +y >= 21
c. y >= 3

The last expression gives the condition boundary. Three more new cases can be generated,
ie., (x=6,y=3+¢e), (x=6,y=3), (x=6, y=3-¢). Here, e is defined as a small positive number,

36

e.g., € = ((upper-limit of y - lower-limit of y) / 100. The same method is then applied to
every variable in VL. If there are m variables in VL, then 3 * m cases will be generated.
The simplification process is performed in C- subroutines. This is because CLIPS does not
provide symbolic evaluation functions.

2. Keep all variable values unchanged except two variables which are in VL. One of the
variables is instantiated to its mid-range value. With this instantiation, only one variable
is left in the condition. The simplification process previously mentioned can then be
applied. Assume we are considering a condition:

4*x*y+3*x =< 9*y

The best test case we have so far for this case is (x=2, y=15,z=10.6). Since only x and y
appear in this condition, only their values need to be considered. Also assume the ranges
for x and y are [-10.5, 20.5] and [-5.5, 30.5], respectively. Three new test cases can be gener-
ated in the following steps:

a. Assign y = mid-range of y = [30.5-(-5.5)}/2 = 18
b. Replace every appearance of y in the condition with 18.
3*x*18+3*x =< 9*18
57*x =< 162
x =< 2.842
c. Generate 3 cases (x=2.842+¢, y=18,z=10.5), (x=2.842, y=18,
z=10.5), (x=2.842-e, y=18, z=10.5).

The system then instantiates x to its mid-range and repeats
the process.

These two heuristics will generate many new cases. Additional branch coverage normally
can be achieved. However, it may happen that new cases never reach the target condition
due to the modification of previous cases. If this happens, the best test case of the target
condition would not have been changed. Since the generation of new test cases is based on
the best case, the same set of test cases will be generated over and over again and they will
never out perform the original best case. The TDG needs a mechanism to prevent this. We
define a "bag" to be associated with each condition. This bag records all best cases that the
system has used to generated cases for the condition. As more cases are generated and
analyzed, the best case of each condition will evolve. This is the reason that there may be
more than one best case in a bag. When the best test case of a condition is found to have
been used before, an unnecessary loop may exist. This indicates that previous heuristics did
not yield good cases. If this happens, the following third and the fourth heuristics will be

applied:

3. If there is only one variable in VL, then modify all variable values except the one in VL
by 10% of their ranges and then apply the simplification process described in the first

37

heuristic to find the condition. In a condition with only one variable, the only way of
covering both branches is to modify this variable’s value according to simplification
process of the first heuristic. This is required no matter how a test case reaches this
condition. If the modification causes the change of the coverage path (i.c., the condi-
tion under consideration can no longer be reached), other variable values must be
modified to compensate for the change. However, the task of figuring out how a
modified variable value would impact the branchings of other conditions and how
other variables’ values should be modified to compensate for this impact is still a
future study topic. Currently, all other variables’ values are changed by 10 percent of
their correspondent ranges to compensate for this impact. After the modification to
all variables except the one in which the condition is made, the simplification step in
heuristic 1 is applied to determine its values.

4. If there is more than one variable in VL, heuristic 2 will be applied, except all other
variables will be maodified by 10 percent of their ranges.

7.4 TEST DATA GENERATION EXAMPLES

In this section, a simulation of the test data generation process is presented to illustrate
the functions of the system. Assume the flow chart of a target software package is given in
Figure 5. There are three input variables to the package, i.., x, y, and z. They are all real
numbers and have ranges, [30, 200}, [-220, 20], and [-100, 312] respectively. The expressions

of the conditions are:
Cond-1: z+20 < 3*x
Cond-2: 3*x*y =< 4%y
Cond-3: z > y+100

When this information is presented to the TDG, three initial test cases will be generated
based on the first heuristic. They are the mid-range case, (case 1, 115, -100, 106%, the bot-
tom-range case, (case 2, 38.5, -208, -79.4), and the top-range case, (case 3, 191.5, 8, 291.4).
These cases are then fed to the coverage analyzer. The conditions and branches that each

case reaches are:
Case-1: (cond-1 True), (cond-2 True)
Case-2: (cond-1True), (cond-2 True)
Case-3: (cond-1 True), (cond-2 False)

It can be seen that all cases went through the truth branch of cond-1, two cases went
through the truth branch of cond-2, and one case went through the false branch of cond-2.
The coverage table at this point is shown in Figure 6. Based on the goodness of a case asso-
ciated with a condition defined earlier, the best test cases for cond-1 is case-3 and the best
test case for cond-2 is case-2. This information is sent back to the TDG. The TDG will start
by checking cond-1. Since only one branch of cond-1 is covered, more cases should be
generated for cond-1. The first and the second heuristics are applied and case-3 is used as
the best case. This will generate six new cases. The case generation sequence is:

38

Figure 5 - Example Target Software Package Flowchart

Branch
Condition T F
1 X
2 X X
3

Figure 6 - Partial Coverage Table

39

(case 4,191.5, 8, 554.5) :keep x unchanged, modify z only,
-z is out of range, illegal case.

(case 4, 103.8, 8, 291.4) -keep z unchanged, modify x only
(case 5, 102.1, 8, 291.4) :keep z unchanged, modify x only
(case 6, 105.5, 8, 291.4) :keep z unchanged, modify x only
(case 7, 115, 8, 425) :keep x at mid-range, modify z only
.z is out of range, illegal case
(case 7, 42, 8, 106) :keep z at mid-range, modify x only
(case 8, 40.3, 8, 106) :keep z at mid-range, modify x only
(case 9, 43.7, 8, 106) :keep z at mid-range, modify x only

The process then checks cond-2. Since both branches of cond-2 are covered, no more
cases are needed. When cond-3 is checked, it is found that it has never been reached (or
covered) before. No cases will be generated for cond-3 at this point. The process then
passes the newly generated six cases to the coverage analyzer. The analysis result will be:

case-4: (cond-1 False), (cond-3 True)
case-5: (cond-1 False), (cond-3 True)
case-6: (cond-1True), (cond-2 False)
case-7: (cond-1 False), (cond-3 False)
case-8: (cond-1 False), (cond-3 False)
case-9: (cond-1True), (cond-2 False)
At this point, all conditions are fully covered. The test data generator will stop. In all, 9
cases were generated.

7.5 SYSTEM INTERFACE MECHANISM

The technical description given above tends to obscure the interactions of the Test
Data Generator (TDG) with the rest of the system. This section is intended to clarify the
mechanisms by which this is accomplished.

The TDG will only respond to feedback information from the Test Execution
Module (TEM) and the Test Coverage Analysis (TCA) component. However, it should be

clear that these two modules cannot function without some original test cases being sup-
plied. It is expected that user-supplied test cases will be part of any good Ada software

40

design. The QUEST design accommodates these by allowing them to be input first, i.e.,
prior to automatically generating additional test cases.

After a packet of test data is generated, a round of executions of this data will follow.
Updated TEM and TCA information will then be returned to TDG in order to prepare for
the next round of test data generation. After each round the test cases added to the file will
be marked according to the round in which they were generated.

For purposes of efficient verification and regression testing it might be beneficial to
indicate a priority on the tests. It is expected that TDG will generate hundreds or even
thousands of tests for a given module. Depending upon the automated comparison capabil-
ity, it may not be possible to verify every one of these against an independent execution of
the design. This being the case, the following priority scheme is suggested:

0- user defined test cases (highest);

1- first test cases to add to control coverage; these
along with the 0-priority cases will form a minimal
test set;

2- subsequent n test cases which do not add to control
coverage but provide additional data coverage,
where n is a value dependent upon the program
characteristics;

3- this is the lowest priority, and it would be assigned
to any test case not falling in the three given above.

41

8.0 TEST COVERAGE ANALYZER

When the user selects option 1 (Begin Testing) from the Automatic Testing Menu,
the Test Coverage Analyzer (TCA) is invoked. The TCA receives data about the module to
test and the maximum number of test packets that the TDG should generate.

For each test packet, the TCA invokes the Test Data Generator. The instrumented
Ada module is then executed using the newly generated data. The intermediate data creat-
ed during the execution is first accumulated for the printed reports, and then it is examined
by the TCA.

The TCA creates a coverage list containing an entry for each decision encountered
so far, and it keeps up with whether the decision has been covered for TRUE and for
FALSE. After all of the new intermediate results have been placed into the coverage list,
the TCA makes assertions to the TDG.

These assertions allow the TDG to select input to cover all currently uncovered
decisions in the Ada module. The TCA informs the TDG of each decision in the Ada
module that has not been completely covered in testing, and it keeps up with the percentage
of decisions that have been completely covered.

New Test Data
TDG > Test Data File
/N
Used Data
Test to
Data Execute
Assertions \|l/ \Il/
TCA <— MUT
/\
0ld New
Results Results
\I/

Intermediate Results File

Figure 7. Test Coverage Analyzer

42

9.0 RECOMMENDATIONS FOR FUTURE RESEARCH

The completion of Phase I of this project resuited in a working prototype which
proved the concept of expert-system assisted test case generation to increase software reli-
ability. A formal grammar specification of Ada and a parser-generator were used to build
an Ada source code instrumenter. Rule-based techniques provided by the expert system
tool, CLIPS, were used as a basis for the expert system. Given this prototype it is now possi-
ble to evaluate various rule base approaches such that an improved set of rules can be
developed and validated.

Appendix F presents the proposal for Phase II of this project. It will extend the test-
ing tool developments presented above as well as incorporating the development of reverse-
engineering tools. In the area of test-tool innovation, the following goals have been estab-
lished for Phase II: (1) to continue to develop and improve the current user interface to
support the other goals of the research effort, (2) to empirically evaluate a succession of
alternative rule bases for the test case generator such that the expert system achieves cover-
age in a more efficient manner, and (3) to extend the concepts of the current test environ-
ment to address the issues of Ada concurrency. These compose Task 1 of Phase 2, and they
are discussed in detail in Appendix F.

Task 2 of Phase 2 involves the development of reverse engineering tools, basically in
the form of graphical representations. The goals of this task are: (1) to study, formulate and
evaluate graphical representations for Ada software, (2) to develop a prototype reverse
engineering tool that includes support for generation of both algorithmic and hierarchical
diagrams, and (3) to investigate the generation of additional graphical representations to
provide task, package, and data flow views of Ada software. The details and scheduled
activities for this task are also given in Appendix F.

43

10. REFERENCES

[ADR82]

*[AHO85]

[BEI83]

[BEI84]

[BOE75]

[BOUSS5]

[BROS6a]

[BROS6b]
[BROS7)

[CERS1]

[CHOS6)

[CLAT6]

Adrion, W. Richards, et al., "Validation, Verification, and Testing of Com-
puter Software", ACM Computing Surveys Vol. 14, June 1982.

Aho, A. V., Sethi, R. and Ullman, J.D., Compilers, Principles, Techniques,
and Tools, Reading, Massachusetts: Addison-Wesley Publishing Company,
1986.

Beizer, B., Software Testing Techniques, New York: Van Nostrand Reinhold
Company, 1983.

Beizer, B., Software System Testing and Quality Assurance, New York: Van
Nostrand Reinhold Company, 1984.

Boehm, B. W., et al., "Some Experience with Automated Aids to the Design
of Large-Scale Reliable Software", IEEE Trans. on Software Engineering,
Vol. SE-1, March, 1975.

Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M. C,, "App]ication of
Prolog to Test Sets Generation from Algebraic Specifications”, TAPSOFT
Joint Conference on Theory and Practice of Software Development, March

1985.

Brown, D. B., Haga, Kevin D., and Weyrich, Orville, Jr., "QUEST - Query
Utility Environment for Software Testing", International Test and Evaluation
Association 1986 Symposium Proceedings, pp. 38-43.

Brown, D. B., "Test Case Generator for TIR Programs”, Contract Number
DAAHO01-84-D-A030 Final Report, September 30, 1986.

Brown, D. B., "Advanced Simulation Support", Contract Number DAAHOI-
84-A030/0006 Final Report, June 17, 1987.

Ceriani, M., Cicu, A., and Maijocchi, M., "A Methodology for Accurate
Software Test Specification and Auditing", in Computer Program Testing,
1981.

Choquet, N., "Test Data Generation Using a Prolog with Constraints”, in
Proc. Workshop on Software Testing, IEEE Computer Society Press, July
1986.

Clarke, Lori A., "A System to Generate Test Data and Symbolically Execute
Programs", IEEE Transactions on Software Engineering, Vol. SE-2, pp. 215-
222, September 1976.

*Reference not discussed in Section 2.

44

[CLAS6]

[CLI8T]

[DEASS]
[DIL8S]
[DEM78]

[DEUS2]
[DURSO]

[DURS1]

[DURS4]
*[FAI8S]
[FIS88]
[FOS80]

. [FRAS6]
[FRAS8S]

[GIRS6]

Clarke, L. A., Podgurski, A., Richardson, D. J. and Zeil, S. J,, "An Investiga-
tion of Data Flow Path Selection Criteria", Proc. Workshop on Software
Testing, IEEE Computer Society Press, July 1986.

CLIPS Reference Manual, Version 4.1, Artificial Intelligence Section, John-
son Space Center, NASA, September 1987.

Deason, William H., Rule-Based Software Test Data Generation, MS Thesis,
Department of Computer Science and Engineering, Auburn University,
December, 1988.

Dillion, L. K., "Symbolic Execution-Based Verification of Ada Tasking Pro-
grams”, 3rd International IEEE Conference on Ada Applications and Envi-
ronments, May, 1988.

DeMillo, R. A, Lipton, R. J., and Sayward, F. G., "Hints on Test Data Selec-
tion: Help for the Practicing Programmer”, IEEE Computer, Vol. 11, No. 4,

April 1978.

Dentsch, M. S., Software Verification and Validation, Englewood Cliffs, NJ,
Prentice-Hall Inc., 1982.

Duran, J. W. and Wiorkowski, J. J., "Quantifying Software Validity by Sam-
pling", IEEE Transactions on Reliability, Vol. R-29, No. 2, June 1980.

Duran, J. W. and Ntafos, S., "A Report on Random Testing", in Proceedings
of the 5th International Conference on Software Engineering, March 9-12,
1981.

Duran, J. W. and Ntafos, S., "An Evaluation of Random Testing", IEEE
Transactions on Software Engineering, Vol. SE-10, pp. 438-444, July 1984.

Fairley, R. E., Software Engineering Concepts, McGraw-Hill, New York,
1985.

Fisher, A. S., CASE - Using Software Development Tools, John Wiley & Sons,
Inc., New York, 1988.

Foster, K. A., "Error Sensitive Test Case Analysis (ESTCA)", IEEE Transac-
tions on Software Engineering, Vol. SE-6, pp. 258-264, May 1980.

Frankl, P. G., and Weyuker, E. J., "Data Flow Testing in the Presence of
Unexecutable Paths", in Proc. Workshop on Software Testing, IEEE Com-
puter Society Press, July 1986.

Frank], P. G., and Weyuker, E. J., "An Applicable Family of Data Flow Test-
ing Criteria", IEEE Trans on Software Engineering, Vol. 14, No. 10, October
1988.

Girgis, M. R., and Woodward, M. R., "An Experimental Comparison of the
Error Exposing Ability of Program Testing Criteria", in Proc. Workshop on
Software Testing, IEEE Computer Society Press, July 1986.

45

[GLASI]

[GOO75]

[GORS6]

[HOW75]
[HOW76]
[HOW78a]

[HOW78b]

[HOWS0]
[HOWS1]
[HOWS2a]
[HOWS2b]
[HOWS6]
[HOWS7]
[HUAT75]
[HUAT7S]

[LAS83]

Glass, Robert L., "Persistent Software Errors”, IEEE Transactions on Soft-
ware Engineering, Vol. SE-7, pp. 162-168, March 1981.

Goodenough, J. B. and Gerhart, S. L., "Toward a Theory of Test Data Selec-
tion", IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, June

1975.

Gordon, A. J., and Finkel, R. A., "TAP: A Tool to Find Timing Errors in
Distributed Programs", in Proc. Workshop on Software Testing, IEEE

Computer Society Press, July 1986.

Howden, W. E., "Methodology for the Generation of Program Test
Data" IEEE Transactions on Software Engineering, Vol. C-24, May 1975.

Howden, W. E.,"Reliability of the Path Analysis Testing Strategy”, IEEE
Transactions on Software Engineering, Vol. SE-2, September 1976.

Howden, W. E., "Theoretical and Empirical Studies of Program Testing",
IEEE Transactions on Software Engineering, Vol. SE-4, July 1978.

Howden, W. E., "DISSECT - A Symbolic Evaluation and Program Testing
System", IEEE Transactions on Software Engineering, Vol. SE-4, January

1978.

Howden, W. E., "Functional Program Testing", IEEE Transactions on
Software Engineering, Vol. SE-6, March 1980.

Howden, W. E., "Errors, Design Properties, and Functional Program Testing",
in Computer Program Testing, 1981.

Howden, W. E., "Life-Cycle Software Validation", IEEE Computer, Vol. 15,
No. 2, February 1982.

Howden, W. E., "Weak Mutation Testing and Completeness of Test Sets",
IEEE Transactions on Software Engineering, Vol. SE-8, July 1982.

Howden, W. E., "A Functional Approach to Program Testing and Analysis",
IEEE Transactions on Software Engineering, Vol. SE-12, October 1986.

Howden, W. E., Functional Program Testing and Analysis, McGraw-Hill,
New York, 1987.

Huang, J. C., "An Approach to Program Testing", ACM Computing Surveys,
Vol. 7, September 1975.

Huang, J. C., "Program Instrumentation and Software Testing", IEEE Com-
puter, Vol. 11, No. 4, April 1978.

Laski, J. W., and Korel, B., "A Data Flow Oriented Program Testing
Strategy", IEEE Transactions on Software Engineering, Vol. SE-9, May 1983.

46

[MEY79]

[MIL84]

[NTA79]

[NTA84]

*[NTAS8S]

[OST79]

[OST86]

[PAN78]

[PRAS7]

[RAM66]

[RAM75]

[RAM76]

[RAPSS]

[REDS3]

[ROSS5A]

Myers, G. J., The Art of Software Testing, New York: John-Wiley & Sons,
1979.

Miller, E. F., "Software Testing Technology: An Overview", in Handbook of
Software Engineering, New York: Van Nostrand Reinhold Company, 1984.

Ntafos, S. C. and Hakimi, S. L., "On Path Coverage Problems in Digraphs
and Applications to Program Testing", IEEE Transactions on Software
Engineering, Vol. SE-5, September 1979.

Ntafos, S. C., "On Required Element Testing", IEEE Transactions on Soft-
ware Engineering, Vol. SE-10, November 1984.

Ntafos, S. C.,"A Comparison of Some Structural Testing Strategies", IEEE
Transactions on Software Engineering, Vol. 14, June 1988.

Ostrand, T. J. and Weyuker, E. J., "Error-Based Testing", in Proc. 1979 Conf.
Inf. Sciences and Systems, 1979.

Ostrand, T. J., Sigal, R., and Weyuker, E. J.,"Design for a Tool to Manage
Specification-Based Testing", in Proc. Workshop on Software Testing, IEEE
Computer Society Press, 1986.

Panzl, D. J.," Automatic Software Test Drivers", IEEE Computer, Vol. 11, No.
4, April 1978.

Prather, R. E. and Myers, J. P., Jr., "The Path Prefix Software Testing Strate-
gy", IEEE Transactions on Software Engineering, Vol. SE-13, No. 7, July
1987.

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity Considerations",
Journal of the ACM, Vol. 13, April 1966.

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Software with Automated
Software Evaluation Systems", IEEE Transactions on Software Engineering,

Vol. SE-1, March 1975.

Ramamoorthy, C. V. et al., "On the Automated Generation of Program Test
Data", IEEE Transactions on Software Engineering, Vol. SE-2, December

1976.

Rapps, S. and Weyuker, E. J., "Selecting Software Test Data Using Data Flow
Information", IEEE Transactions on Software Engineering, Vol. SE-11, No. 4,
April 1985.

Redwine, S. T., Jr., "An Engineering Approach to Software Test Data
Design", IEEE Transactions on Software Engineering, Vol. SE-9, March
1983.

Ross, S. M., "Statistical Estimation of Software Reliability", IEEE Transac-
tions on Software Engineering, Vol. SE-1, No. 5, May 1985.

47

[ROS85B]
[RUBT75]
[SHO83]
[SNES86]

[SOLS8S5]

[TAI80]

[TAY86]

[TSAS6]

[VIC84]

[VOG80]

[VOGS5]

[VOUSS]

[WEY80]

[WEY86]

[WEY88a]

Ross, S. M., "Software Reliability: The Stopping Rule Problem", IEEE
Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985.

Rubey, R. J,, et al., "Quantitative Aspects of Software Validation", IEEE
Transactions on Software Engineering, Vol. SE-1, June 1975.

Shooman, M. L., Software Engineering, New York: McGraw- Hill Book
Company, 1983.

Sneed, H. M., "Data Coverage Measurement in Program Testing", in Proc.
Workshop on Software Testing, [IEEE Computer Society Press, July 1986.

Solis, D. M., "AutoParts - A Tool to Aid in Equivalence Partition Testing", in
Proc. Softfairll: Second Conf. Software Development Tools, Techniques, and
Alternatives, 1985.

Tai, K. C., "Program Testing Complexity and Test Criteria," IEEE Trans on
Software Engineering, Vol. SE-6, pp 531-538, November 1980.

Taylor, R. N., and Kelly, C. D., "Structural Testing of Concurrent Programs",
in Proc. Workshop on Software Testing, IEEE Computer Society Press, July
1986.

Tsalalikhin, L., "Function of One Unit Test Facility", in Proc. Workshop on
Software Testing, IEEE Computer Society Press, July 1986.

Vick, C. R., and Ramamoorthy, C. V., Handbook of Software Engineering,
New York: Van Nostrand Reinhold Company Inc., 1984.

Voges, Vdo, et al, "SADAT-An Automated Testing Tool," IEEE Trans. on
Software Engineering, Vol. SE-6, May 1980.

Voges, U. and Taylor, J. R., "Systematic Testing", in Verification and Valida-
tion of Real-Time Software, Ed. by W. J. Quirk, New York: Springer-Verlag,
1985.

Vouk, Mladen A., McAllister, David F., and Tai, K. C., "An Experimental
Evaluation of the Effectiveness of Random Testing of Fault-Tolerant Soft-
ware", in Workshop on Software Testing Proceedings, IEEE Computer Press,
1986.

Weyuker, E. J. and Ostrand, T. J., "Theories of Testing and the Application of
Revealing Subdomains", IEEE Transactions on Software Engineering, Vol.
SE-6, May 1980.

Weyuker, E. J., "Axiomatizing Software Test Data Adequacy”, IEEE Transac-
tions on Software Engineering, Vol. SE-12, No. 12, December 1986.

Weyrich, O. R., Jr., Brown, D. B, and Miller, J. A., "The Use of Simulation
and Prototypes in Software Testing", in Tools for the Simulation Profession -
Proceedings of the 1988 Conferences, Orlando, Florida, Society for Computer

Simulation.

48

[WEY88b]

[WHI80]

[WHIS86]

[WILS5]

[W0080]

[YOUS6]

Weyrich, O. R., Jr., Cepeda, S. L., and Brown, D. B., "Glass Box Testing
Without Explicit Path Predicate Formation®, 26th Ann. Conf. Southeast
Regional ACM, April 20-22, 1988, Mobile, Alabama.

White, Lee J. and Cohen, E. L, "A Domain Strategy for Computer Program
Testing", IEEE Transactions on Software Engineering, Vol. SE-6, May 1980.

White, L. J., and Perera, I. A, "An Alternative Measure for Error Analysis of
the Domain Testing Strategy", in Proc. Workshop on Software Testing, IEEE

Computer Society Press, July 1986.

Wilson, C. and Osterweil, L. J., "Omega - A Data Flow Analysis Tool for the C
Programming Language", IEEE Transactions on Software Engineering, Vol.
SE-11, No. 9, September 1985.

Woodward, M. R., et al., "Experience with Path Analysis and Testing of
Programs", IEEE Transactions on Software Engineering, Vol. SE-6, May

1980.

Young, M., and Taylor, R. N., "Combining Static Concurrency Analysis with
Symbolic Execution” in Proc. Workshop on Software Testing, IEEE Comput-

er Society Press, July 1986.

49

APPENDIX A
QUEST/ADA IORL SYSTEM SPECIFICATION

This appendix contains the IORL specifications for the
QUEST/Ada system. A brief explanation related to the interpreta-
tion of IORL is in order (for details, obtain the IORL Reference
Manual, Teledyne Brown Engineering, Inc., 1984). IORL specifica-
tions are arranged into sections. The section types used for the
QUEST/Ada system include:

SBD - Schematic Block Diagram,

IORTD - Input Output Relationships and Timing Diagram, and

PPD - Predefined Process Diagram.

The SBDs are purely structural diagrams showing the capacity for
data flow. The links on these diagrams are called interfaces,
which show how data may flow between the various blocks, which
are properly called components. Components have the capacity to
operate concurrently.

Each component has a procedure by which it turns its input
interface data into data to be transmitted over the output inter-
face. The IORTD is the highest level of control flow for a
component. IORTD-x is the sole high-level procedural diagram for
component x in the SBD. It usually abstracts the many detailed
innerworkings of a component into a few input, process, and
output symbols. These symbols, on the IORTD, are connected by
control flow indicators which show transfer of control, not

dataflow (as in the SBD).

The double-edged rectangle within the IORTD (or PPD) section
indicates the abstraction of more detailed control flow contained
in the appropriately numbered PPD section. Since PPDs may them-
selves contain reference to other PPDs, IORL supports stepwise
refinement and top-down design. More importantly, every effort
has been made to organize and group sequences of events within
PPDs such that a complete thought unit is on one page. There-
fore, the IORL specification should be read sequentially without
a great deal of referral between pages. Each page contains one
thought unit which should be mastered before proceeding to the

next page.

The first two diagrams are the SBDs which were included and
discussed in Section 3. They are repeated here for completeness.
Note that the "Doc" field of the identification fields (bottom of
diagram) shows the first of these to be QUEST-ADA, the same as
the system name for the highest level SBD. The second has
DOC:QA, which indicates that component QA on the previous SBD is
being analyzed into its respective components. In this SBD the

Al

being analyzed into its respective components. In this SBD the
dotted interfaces are external, in this case linking to the user.

Each component in the SBD for DOC:QA is analyzed by an
IORTD. The IORTD numbers correspond to the component number.
Thus, DOC:QA; IORTD-1 is a control flow analysis of the
Parser/Scanner. We have chosen to place the PPD sections behind
the respective calling IORTD/PPD sections. Thus, since IORTD-1
references PPDs 10100 and 10200, they follow immediately. PPD-
10200 references PPD-10220 so it is next. PPDs referenced but
not elaborated are either still in design or else they are con-
sidered to be of low enough specification to be programmed.
Ultimately all of the lowest level PPDs will have direct refer-
ences to their respective source code files.

Note that IORTD-2 of DOC:QA (the Test Data Generator) fol-
lows the sections for IORTD-1. Its PPDs are numbered in the
20000 series, and the single one elaborated follows. Similarly,
the Test Execution Module (IORTD-3) and the Test Coverage Analy-
sis (IORTD-4) follow. As additional details of the design
evolve, they will be added in their corresponding positions to
maintain a logical presentation of the system.

A2

é8-1"r-£1 3400
T +33ud

a ‘3aNSSI
a8s *3J3s B0b~153N0 - 300

dUl™1INY430 ° duld
-558712 BQuU~ 1S3ND KW3LSAS

S3 |NS@Y UO1INDAxX] ISeT] 1S3
Guisisi epo] @dunog
sy d4odey si1sfijeuy abedusnon

A4

12-80Y~153N0

C*PY/153N0)

epy - Buiisa| @uemi jog Jo4
susuuouraug A1 Ruenp
<]V)
Z

—U)O—IPJCJ 404 U—ﬂJwCOQWUL COWL"&

apoo epy jo Buirisay

438N
1

ZT1-8ay~153N0

|euBig 13s®)] uoisseabay

eiR(] 3S@) J@sn peiepdn/|®131U]
sJaieueded [oJ3uo] qQL

@poq] @ounog

<

A3

88-320-82 ‘3160
T :396d Z-01¥01 23S

a :3NssI

BOY~153ND 200

*8SYT1D

dul™1INY430 dud
g0U™153ND HALSAS

WUN3YIA MO14 TOMLINOJ 13A3T LS3HIIR -

€ mmeHuAV

oz%

53

UI¥3LINT SNILS3IL TENOILIAAY LNdNI

S130d3y 39533A00 1Nd1lnO

@ETCEIRET YD)

B&JUH
1S3N0

A
AMNA-mocu

12-5QY~1S3N0

mmucmv

v
A4

HOLUMINTD L¥0d3y

N33
S

.3
!

37NQ0W NOILNJ3X3 1S3l
Wal
€
1534
B3 ¥O1UN3N3I Ylug 1S3l
901
Rp
NaNL3 z
S153L”1dY1S
¥3ANNUIS/33520d
WSd
T
YINILI¥D 1S3L TWILINI 8434
ONY 3003 IRANOS LNANI _,\ ZT-H0Y~LS3NG

13815

3NOQ

SISATENY 330¥3A03

ullL
b

A4

é8-1"r-£1 3160 g ‘3NSSI ddl™1INY430 ‘Ul
T :33ud ags 23S vl 300 *SSU1D b0u~153N0 WILSAS
uoctlieuwdojur abeasaoo
21 weufig

mpLoamm oanu>0u

1z-vav—1sano

|eubig 1se) uoisseaJlbay

A5

A
ssseq 31S8| |ewdJo \ @pon ®24no
< 3 1 ZAN | pPed wAV
T1Z2-Yau~153N0 s1(nssy 518R|euy 8B@IBA0T W1 J93UT Z21-80Y~1S3N0 m Z1-80Y~153N0

3 . . ~ " " "

! Zb-4D ! ! m

“ ¥ m ¥

3 ;
H0L1U¥3N3D MMMMMMMM ZOHHMMMMM YOLlW¥aN3g [~~~ A3INNUIS
13043y 1531 1531 Uiv0 1S3t /3843S3dd
S$-40 YE-BD EZ-H0 Z21-50
N394 94l HSd
W
: L a4 ; :
531 |NS@) UOIINDIX] WS vWUPAQummmI¢O E1-60
A---m 9poT ®24nog pPRIUSWNJIISUT
1Z-Yay~153N0 v
S1INS3y kDthOAN
uol 3eWJo Jug codpnpcumULQum UA—OLEmmAN
GT1-60

S3 —JWUM uol P_JUUXM FmUP ..Tm.l¢o

UPQD 1SS ¢ LULE-JZ Uﬂﬂu Pmﬂ.—. .leco

Uuo1 3ewJao JuT uo PMFCUWULQU“ 91 —Oﬂemm .NH'GG
A4

|O -
ET-BD 2 S1 ¢OAV

é8-1"r-9

3160
T +3946d T-0.1¥0I 23S

a :3nssI
to : 300

*§SU71)

dul™1NY430 ‘ duu
B0U~1S3ND :W3LSAS

asued uo1ljejuawndisug

POEDT

U—JTOE ch U._WAUOQW e

40 ueos/esaed pe

[1&28Q
20201

(QOW~N3HLONYS)
N

¥

Uo1 1@ JBPI1SUOD JIPUN
waishs {®3103 ay: jo
ueasasdJed (e111U]

22101

o
D

Qs D

A6

48-vYnr-21 3180 a :3InssI dud™11NY430 ‘ duud
T :39b6d PR1BT1-0dd 335 Yo 300 *SSY1D U0U~1S3N0 W3LSAS

a

U011 3RJSPISUOD JBpUN
uaisfis @103 ay3 jo
ueos/esued |®131UT

20181
A 11x3

sa — _JmUOE

s|qeasa1 jo 3s1| plIng

P1101

sdiysuor1e|@Jsaru
2 |npou auiwJuaia(]

A21a1

waisfis w303 Joy [§=1. 2]
8pod epy mMeJ pJQCHAQu 12-50y~153Nn0

(CA¥INS D

A7

é8-1nr-5 3140 a :3NssI
T :390d 20281-0dd I35 uD 300 *SSu1)

dod™11ny430 ¢ duid
U0U~1S3ND ‘W3LSAS

$
® | npou
epy S1410ads e jo
ueas/esued pe|1e18(

23281 J0redaualb 31 dodaa o3
H ®|gqe3: UO1I3I1pUOD/UOCISIDAp

pue @|qe: onsmm andang
: A4

Jorwaauab eijep isa3 o3

a|qes _onsmm andang
A4

®|Qe3 uo131puUod
—uoi1s12ap pl1ng

20231

a|ges
oqufis pi1ng
21201

weisfis [eio3 Joy TSJ8H
spoa epy med pJ&cHAV ZT1-40y~153N0

WEIED

A8

é8-“nr-21 ‘31ud a :3nsSI
T +39ud PVERT-0dd :J3S u0 300 *SSU1D

dul™L1NY430 ° duld
BOY~LS3ND W3LSAS

%

esued uoliejuswnaisuy

PPEDT

®|NpPoW UO13INIBX® JO4 Z2S34du
apoo pajuswnJisul pJQ«JOAOV €1-40

WU—JnOE v”Pn—ULLmPCJ
LUF_PO tcn o—jﬁoe FCUE—JLPNCH

DZEDT

(CAdING D

A9

48-Ynf-21 3460

g :3INSSI

T +39ud PZERT-0dd :J3S u0D :300 *55U713

dol™LINY430 : dul
UOU~1S3N0 H3ILSAS

.W.CL‘I
IS8y w a|npou
PRIUSUNJISUY ﬁLUWCH

243
T

(SED

LW>JLv ulew UPWLWCWU

SZEPRT

@Jnpeso.ad
peiuawnuaisur Rdog

+ZEBT

E |

ULJTUUOLQ CO&W@UUT UPULUCUU

ZZEDT

@11:1:JﬂAmu < _1NN03~33a%)

Il LNn0J~230]]

e

—*PClEtLblC

EZERT

¥

sabexyoed apn|our
uo1 3 duod Japeay a31elauaq

12€01

(CANINS D)

AlO

48-urr-z1 3140 a :3nSSI dYl™1INY43a0 : dud
1 :394d Z-01¥01 :33S gD 7300 X Thle! YU~ 1S3ND :WILSAS
Bl wods 1530 CZATAD

Uo13IRWJ0 U1
abedanoo p:&CH

Zb-"o0/

uo1iIRJIBUIY
e1ep 1S8@3 wJdojusy

PBEDT

uolrinoaxa yjp
pue Y31 4oy Re(ag

AY13d

A

W3l °©3

SISeD 1583 vJ&vJO

@|14 =iep 1s@3 o1
uo PWELO&.C.‘.
8Sed 1S58} UP._Lz

RZeZ

21493140 Buiddoss ‘saseo 84349l
1S931 paul je8p_aIsn Cdm«ﬂOAﬂ‘ ZT1-4ay~153no

o0

3ONILNOJ

QOW™LX3N

Y

S3J4N312NJ3is jusapuadsp_e|npou
suedadd ‘@13 eiep 1s83 usdp

20102

@|npouw ®¥y3 3noge
UOI 1RWIOJUY PRJINIONILG

All

é8-4Yn-21 3160

a :3INssI dUl™LTNY430 dUd
T :394d PREAZ-0dd : J3S v0 300 88Y1) vau™ 1S3N0 ‘W3L1SAS
GOW™LX3N 4, ANNTLNOI
uolieJsauab 1IX3
CEY - -1 O T- RO p | R — .
POEDRZ INNILINOD
H s uoa 4
uoililp e
—m LO.* ELO...—.Lnn @ZOU mmozw .—.
q 4
®|14 e1ep 31sS83 O3
®1@p 1S91 @3114M
Umﬂj ﬂ—JL o3
Ui pPu® 3| woj
pauieiqgo s3ioey m_Qac
PIEDL
Ma
'
4
"NT 40) QOW™LX3N
(CQ3HSINIS®) I 1Tx3

C AINA D

Al2

&8-4Nr-21 3140 Qg :3NsSsI
T +395d E-01¥01I 23S _ 0 200

*SSU710

dol™L1NY430 ‘ duud
UOu™1S3ND :W3LSAS

ﬂ—JmuOE I Xau LO,._. :vMUL Pﬂu

N

’ rrm»mmmwmoz@uv n

Joredauab elep
1s@% wody indug

eiep mau @reJdauab

O3 3904 o4 31eM

Jezfierue ®bBbedenod
o3 eiep vJQvJO

1s81 Lmntz a|npow Joj

|14 uoilindaxy sajzeadd ssuadp
FTII NOILNIIXIA™NIJO0™ 43
POTRE

)

N
CLawisD

®pod @5unos
epy ®1n2@Xx3]
PAZRE

Al3

é8-Ynr-Zr1 31460
T *33ud $-013¥0I :33S

a ¢ 3NssI dUl™LINY430 : dYld
U0 200 *S5U713 vau™1S3ND 1 H3LSAS

901 ©3 uoriewdojul
abeuanos mau wJQpJO

A4

Jo0reaauab 3 uodea
03 UO1IRWJIO U
abeuasnoo «DQaJO

v

|14 CO@P—JUUXN o3 e3iep
1S58 pelndaxe u.mn— mvﬁuc

15317 1¥3SNI™ 43
31 <

s1sfi|eue @ses i1sey 3isag

0010+

Jol@JauUeg eIR(] 3S9) J04
sisfijeue uo111puos uorsioeg

2050+

S1INS3d " 3LYIA3INATINT
PJQCH

Al4

68-9°4-42 3140
T :394d

20SP+~0dd 335

a :3NsSI
o 300

*SSY1D

dul™1InY430 * duld
BOUTL1S3ND W3LSAS

ﬂ—d% S802JNnos U.¢U.—|Aw

QEESD

‘eseq

FUQ% wDF 031 S9SKRO 1583
#mﬂﬂ 1 JasSsSe vcm aseo
1S58} meﬂ UPN—JUme

P250+v-0dd

|13 S1ITING3IN
"3IYIOINYIINI wody sseq
10@) Jojedauaq eie] 3153)
Jo} s3ioe} =b6edssod 3isa;
03Ul SPJOIVI 3 IBAUOY

R158+-0dd

(CA¥INT D

Al5

&8-unf-Z1 13180 Q 3INSSsI dul™1NY430 duld
T :394d S-a1¥0T :33S "0 <304 ‘88413 Jay~1S3N0 ‘W3ILSAS
AB13a
A\
indino abedaaon 1 J4odad
SAlI@|NUND V31RJBUBY S} |NS3J4 338I3UNY
2oTRS 28205

Al6

APPENDIX B
A RULE-BASED SOFTWARE TEST DATA GENERATOR

The paper given in this appendix was produced in part by
support provided by this project contract. This paper has been
submitted for consideration for publication in IEEE Transactions
on Knowledge and Data Engineering.

A Rule-Based Software Test Data Generator
by

William H. Deason
David B. Brown, Member, IEEE
Kai-Hsiung Chang, Member, IEEE
James H. Cross II, Member, IEEE

Address response to:

Dr. David B. Brown
Professor and Interim Head
Department of Computer Science and Engineering
107 Dunstan Hall
Auburn University, Alabama 36849-5347

(205) 844-4330

Submitted: November 15, 1988
Revised: August 15, 1989

ABSTRACT

Software reliability is of major concern in science and industry. Currently, software testing is
the only practical means of assuring reliable software. To avoid the expensive manual tasks
involved, software testing must be further automated to enable larger numbers of tests to be

performed. A key component in an automatic software testing environment is the test data

generator.

Rule-based software test data generation is proposed as an alternative to either
path/predicate analysis or random data generation. A prototype rule-based test data generator for
Ada programs was constructed and compared with a random test data generator. Four Ada
procedures were used in the comparison. Approximately 2,000 rule-based test cases and 100,000
randomly-generated test cases were automatically generated and executed. The success of the two
methods was compared using standard coverage metrics. Simple statistical tests were performed,
which show that even the primitive rule-based test data generation prototype is significantly better

than random data generation.

I. INTRODUCTION

Software reliability* is one of the primary concerns of the computer science community and
of scientific, commercial, and military organizations as well. Software testing is the only feasible
means of assuring acceptable reliability for large software systems. However, test case
development, execution, and evaluation are typically very time-consuming and labor-intensive
tasks. In general, the tester must be satisfied with examining the results of a finite number of rest

cases and concluding that either (1) the reliability of the software is acceptable or (2) the software

* Italicized terms are defined in Appendix A.

1

contains faults which produce intolerable errors. In the former case, the software is installed for
use, usually by being integrated into an overall system (with accompanying integration testing). In
the latter case, additional resources must be applied for debugging and regression testing of the
software. The alternative is either to use unacceptable software or to abandon the product

development. Neither option is very inviting.

Fortunately, there is hope for improving this situation since much of the software testing
process may be automated. Test execution may be accomplished by test drivers which are
constructed by a software testing system. Test execution results may be automatically compared to
outputs of a design-specification simulator or a redundant implementation of the software
component. Test set adequacy may be monitored as a termination condition for the testing
process. While these capabilities are not simple to achieve, they are relatively well understood.

However, automated test data generation is not well understood [12, 15].

The approach typically taken has been to attempt to generate the least number of tests that
will guarantee a certain level of test adequacy. This approach is applicable when test results must
be manually validated against design speéifications. However, it is insufficient for ensuring reliable
mission-critical software. Orders of magnitude more tests are required, which are only feasible
given the use of simulation or redundant coding for output verification. In this new scenario of very
large test sets, test data generation techniques are needed which are able to generate large
amounts of effective test data. One simple approach is to use a random number generator to
generate the data. This is generally considered to be ineffective in that it rarely provides the
necessary coverage of the program. This paper proposes a new rule-based approach to test data
generation and then demonstrates that it can easily produce a large amount of test data which
provides a much greater degree of coverage than randomly selected data. This new approach
provides an extensible framework which utilizes newly developed heuristic rules as well as existing

ones that have been used manually in traditional testing environments.

II. BACKGROUND

A. General

Software testing, as referenced in this paper, is strictly dynamic testing, which is the
execution of programs with specific input data and the production and assessment of outputs [23].
This type of software validation takes place in the programming and maintenance phases of the
software life cycle. It is recognized that verification and validation techniques must be employed
also during the requirements definition and design specification phases, as the cost of eliminating
bugs is higher the later they are uncovered in the software life cycle [6, 8]. A test case is a formally

produced collection of prepared inputs, predicted outputs, and observed results of one execution of

a program [1].

Oracles are external sources of information used to detect occurrences of errors. Oracles
may be detailed requirement and design specifications, examples, or simply human knowledge of
how a program should behave. An oracle is capable of determining whether or not a program has
executed correctly on a given test case [9). An oracle is required for dynamic testing of software
function, and must be employed, either by testing personnel or by an automated testing system, to
determine whether outputs are correct. Two automated forms of oracles, cited above, are design

specification simulators and redundant manual code implementations.

A test adequacy criterion is needed to determine when to stop testing. Such a criterion is
called program-based if it is based on the program code rather than an independent design
specification of the program. Statement coverage and branch coverage are two program-based test
adequacy criteria [23]. Instrumentation of programs aids in evaluating how well adequacy criteria
have been met. Instrumentation is the insertion of additional statements into the program which,
when the program is executed, will compute some dynamic attributes of the program [11]. For
example, a simple instrumentation scheme could insert counters to record the number of times

each statement is executed.

B. Test Data Generation

Test data generation has been defined as specifying and providing the test input data and
calculating the test output data [20]. Generating test inputs for a program may not appear tobe a
difficult problem since it may be done by a random number generator [5). However, random test
data should not be expected to satisfy test adequacy criteria as well as selectively chosen test data.
On the other hand, algorithms for generating test data to satisfy particular adequacy criteria have
generally had very poor time and space complexities, thus producing small amounts of test data. In
fact, it is not possible (that is, there exists no algorithm) to generate test data which causes the
execution of an arbitrary program path [12]. This is the predicate solution problem, which reduces
to the halting problem. For example, the path-predicate generation/solution approach for
statement coverage must: (1) choose, from the (possibly infinite) set of possible paths through the
program, a subset of these paths which will provide statement coverage, (2) construct a path
predicate for each chosen path, and then (3) solve the associated path predicate for each path in

terms of the inputs to the program.

Although the predicate solution problem is extremely complex, and no algorithm exists for
solving general nonlinear predicates [12], there are some methods which will find solutions to many
predicates. One implementation of the path predicate methodology is Query Utility Environment
for Software Testing (QUEST) [2, 21, 22). QUEST is applicable to a subset of FORTRAN 77 and
provides options to attempt to generate test data to satisfy statement coverage, decision coverage,
condition coverage, or decisionfcondition coverage. Of course, there is no guarantee that the
predicate solution algorithm will be able to solve a given predicate; it must halt after a predefined
number of unsuccessful attempts to find a solution and resort to some alternative such as random
test case generator. Even for those predicates, which can be solved, each solution yields input data
for only one test execution. This is a third problem with traditional test generation methods: they
produce a relatively small number of (posiibly trivial) test cases. The problem, then, is to propose

and evaluate an alternative to either manual or predicate-solution test case generation methods.

DeMillo, Lipton, and Sayward [3] attempted to develop a practical test data generation
methodology somewhere between random data generation and full program predicate solution.
Noting that programmers produce code that is close to being correct, they observed the coupling
effect property which is the ability of test cases, designed to detect simple errors, to surface more
subtle errors as well. Howden, on the other hand, developed a set of functional testing rules [10].
Although both of these research efforts were directed at helping programmers test their code
manually, they are also directly applicable to automatic test data generation. Instead of algorithms
they are useful rules of thumb, often called heuristics, which embody certain bits of "expert
knowledge." Thus, a knowledge-based or expert system approach is appropriate for attacking the
problem of generating test data for software programs. Such an approach is made possible not
only by the maturing body of knowledge about software testing, but also by developments in the
field of rule-based systems, a branch of artificial intelligence. Both the coupling effect and

Howden’s functional testing rules are important to the rule-based approach presented in this

paper.

[II. THE RULE-BASED APPROACH

Since the manual rules of thumb or heuristic methods can be put in a rule base, the first step
to full automation is the development and evaluation of such a rule base. The next step is the
development of a parser/scanner mechanism to generate the information from the code itself to
drive the rule base for automatic test case generation. The proposed paradigm not only draws
information from the code itself, it also uses the results of prior tests as input for the generation of
additional test cases. In this section, a brief overview of the rule-based approach is presented,
followed by a detailed discussion of rule development criteria and a description of the ten rules that

were developed and used in the prototype.

A. The Rule-Based Model

Figure 1 shows a data flow diagram of our rule-based test data generation system. In this
model, test data generation rules (Rule Base file) and symbol information specific to the subject
module under test (Symbol Table file) are used by the Rule Interpreter to generate test cases for
the subject module. A Driver Program is used to control the execution of the subject module,
which has been instrumented to collect coverage information with respect to the generated test
cases. The execution results (Prolog-Readable Results file), consisting of the test cases and
coverage statistics, are then used by the Rule Interpreter to generate additional test cases. This
cycle continues until the amount coverage requested by the tester is achieved or until the requested
number of test cases has been generated and executed. At this point, the Human-Readable results
file is examined to determine the coverage achieved. The coverage metrics computed are condition
coverage, decision coverage, and multiple-condition coverage. The items in Figure 1 will be addressed

in more detail during the discussion of the prototype.

B. Rule Development Criteria

Before developing a rule base for test data generation, a test adequacy criterion must be
established to provide the goal for rule development. Several different criteria were evaluated,
including statement coverage, condition coverage, decision coverage, and multiple-condition coverage,
and a selection was made based upon the strength of the adequacy criterion. The strength of a
criterion generally reflects the number of tests required to satisfy that criterion. Assuming that the
outputs of all test cases are checked for functional correctness, the satisfaction of stronger criteria
also provides more evidence of the correctness of the program under test. For these reasons,
condition coverage, decision coverage, and multiple-condition coverage were selected as criteria for
the prototype. Thus, the rules which were developed attempted to define a process by which the

test cases generated would satisfy these criteria.

RULE BASE

SYMBOL TABLE

PROLOG-READABLE RESULTS

TEST CASE FILE

HUMAN-READEABLE RESULTS -

Figure 1. Rule Based TCG Paradigm

A test data generation rule, which is represented as a Prolog clause, consists of two parts:
the IF part (or preconditions), and the THEN part (or actions) of the rule. The IF parts of the
rules are typically their physical requirements, reflecting the fact that a rule could possibly be
applied. The THEN parts of the rules consist of action statements which create test cases for

future execution. Examples of rules written in Prolog are given in the next section.

Before the rules can be defined, the relative value or merit of individual test cases must be
understood. The rule-based test data generator is designed to function in an iterative manner.
One iteration consists of: 1) generating new test cases based on previously executed test cases, 2)
executing the new test cases, and 3) updating the cumulative execution results. This execution
information consists of the two "best" test cases executed to that point for each condition. Only
these two test cases (i.e., one for the true and one for the false outcome) are used as a basis for the
next iteration of test data generation rules. If the number of test cases saved from iteration to
iteration was not limited, the search process would be an exhaustive breadth-first search, the
number of test cases generated per iteration would be very large, and the entire process would be
rendered ineffective. The iterative procedure used the concept of test case "goodness", which
requires more precise definition. A test case T1 will be considered better than another test case
T2, with respect to the condition Cl, if: (1) C1 is a relational expression of the form

LHS <relop> RHS
where <relop> is any relational operator, LHS is the left hand, and RHS is the right hand side of
the relation; and (2) the percent difference between the values taken on by LHS and RHS during a
given test case, T1, is less than the percent difference between the values of LHS and RHS during
test a succeeding test case, T2. The percent difference between LHS and RHS is defined as:
ABS(LHS - RHS) / MAX(LHS, RHS)
The terms LHS and RHS in the percent difference formula represent the values that LHS and
RHS take on during a particular test case execution. The entire test data generation process may
be viewed as an attempt (guided by rules) to minimize the percent difference between the values of

LHS and RHS of each condition in the module under test. This definition of test case "goodness"

7

holds because it is generally true that test cases closer to condition boundaries are superior in that
they provide more information about the correctness of the conditions. Also, in a case where one
of the two outcomes of a condition has not been executed at all, test cases closer to the boundaries

are usually more likely to lead to a test case which crosses the boundary and covers the opposite

outcome.

The rationale for rule development given above is proposed merely to provide a starting
point for rule development. Recognize that the objective here was not to develop the ultimate rule
base. Rather it was to test the concept of rule-based test case generation in order to validate the
design paradigm which will be described below. With these preliminary definitions in mind, we can

now proceed to describe the set of rules used in the evaluation.

C. Rules

This section describes a trial set of rules developed to generate test data. A narrative is
given for each rule describing its rationale and explaining implementational details as necessary.
As discussed earlier, most of these rules are based on the ideas developed by DeMillo, Lipton, and
Sayward [3] and Howden [9], who are considered to be the experts in heuristically generated

software test data.

In the following discussion, a test case is considered to be a list of values, (v1, v2, ..., vn).
Each value corresponds to an input variable of the procedure to be tested. Since a condition may
not involve all input variables, the best test case for each condition will generally differ from the
others. Suppose a condition, COND, involves only the ith variable. Its best test case (v1, v2, .. vi,..,
vn) would force the execution of COND while providing the smallest percent difference. If a

further improvement is required with respect to COND, only the value of the it! variable will be

modified.

The rule base contains 10 rules. Each rule is capable of generating multiple test cases. In
each iteration, the rules are scanned one by one. Whenever a rule is applicable (or its IF-part is
satisfied), its test case generation action is taken. Most of the time, one iteration will “fire" more

than one rule, thus generating multiple test cases for a condition.

Rule 0:
IF: None (always applicable)
THEN: Generate tests with random values for each of the inputparameters.

Rule 0 provides the starting values for test data generation. When the automatic test data
generator is used to test code, these starting points should not be random; rather, they should be
provided by the designer or the tester of the program. In fact, an entire suite of predesigned test
cases could be substituted for this rule in order to initiate testing. However, the existence of such
human-provided test cases will not be assumed. Since this would unfairly bias our evaluation, which
compares the rule-based test cases against random test cases. Rule 0 generates three test cases,
with values in the range -1 ... +1, -100 ... +100, and -1000 ... +1000. A slight variant of this rule
could take advantage of subtype ranges by picking R for a particular subtype based on the actual
range of the subtype. Unlike the rest of the rules, this rule does not require any previously
executed test cases. A simplified Prolog version of this rule is shown below.
rule(1l) :- in_parms (INPARMS), ;number of parameters

random_tests (INPARMS, 1), ;first case, range -1 to 1
random_tests (INPARMS,100), ;second case

random_tests (INPARMS,1000). ;third case

random_tests (ARGC, MAX) : - ;random number generator
one_random_test (ARGC,MAX, NEWARGS, 1),
;one new case in NEWARGS

save_a_test (NEWARGS). ;save a test case

Rule 1:
IF: The program contains a condition which contains an input variable and a constant, and the

best test so far for a (True or False) outcome of the condition gave a percent difference
greater than 5%.

THEN:Generate a test case from the previous best test case by putting the value of the constant in
the position of the input variable contained in the condition.

According to the criterion given in the previous section, Rule 1 is designed to test

conditional expressions of the form

X <relop> K

where X is an input parameter, K is a constant, and <relop> is any relational operator. This rule
comes directly from the handling of arithmetic relations in Howden [9]. However, the reason this
rule is applied to more complex expressions is that it may provide good tests because of the
coupling effect. It may also provide a good approximation which may be refined to achieve better

testing of these expressions. A simplified Prolog version of this rule is shown below.

rule(l) :- rulel applies(C,V,P,K,OLDTC), ;precondition checking
newtest (OLDTC, P, K,ARGS) , ;replace the value of
;variable P in OLDTC by
:K, result is ARGS
save_a_test (ARGS) . ;save a test case

rulel applies(C,V,P,K,OLDTC): - ;preconditions for rulel
testfor (OLDTC,C,VAL,OLDCOV), ;there is a case, OLDTC,
;for condition C. VAL is

;not used here.

oLDCOV > 5, ;percent difference > 5%
condition(C), ;C is a condition
variable(C,V), ;C's variable list is V
in parm(V,P), ;variable P is in V
constant (C,K). ;K is a constant in C.

Rule 2:

IF: The program contains a condition which contains an input variable and two constants, and the
best test so far for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

10

THEN: Generate three test cases from the previous best test case by putting the sum, then the
differences, of the constants in the position of the input variable contained in the condition.

Rule 2 is designed to test expressions of the form:
X + K1 <relop> K2

or

X - K1 <relop> K2

where K1 and K2 are constants. Solving each of these equations for X yields the expressions K2-K1
and K1+K2. Therefore, K1+K2, K1-K2, and K2-K1 are values used by rule 2.
Rule 3:

IF: The program contains a condition which contains an input variable and a constant, and the
previous best test for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

THEN: Generate two test cases from the previous best test case by putting a value slightly greater

than the constant, then slightly less than the constant, in the position of the input parameter
contained in the condition.

Rule 3 is designed to cover conditional expressions of the form

X <relop> K

where X is an input parameter and K is a constant. While rule 1 generates an "on” point for these
types of conditions, rule 3 generates two "off" points, that is, slightly off the subdomain boundary
formed by the conditional expression. As with rule 1, rule 3 comes directly from the handling of

arithmetic relations [9].

Rule 4:

IF: The program contains a condition which contains an input variable and two constants, and the
best test so far for a (True or False) outcome of the condition gave a percent difference greater
than 5%.

THEN: Generate three test cases from the previous best test case by putting the product of the
constants, then the ratio of the constants, in the position of the input variable contained in the

condition.

11

Rule 4 is designed to cover expressions of the form:

X * K1 <relop> K2

or a similar form. It uses K1*K2, K1/K2, and K2/K1 in order to cover these expressions.

Rule S:

IF: The program contains a condition which contains an input variable and three constants, and the
best test so far for a (True or False) outcome of the condition gave a percent difference greater

than 5%.

THEN: Generate test cases from the previous best test case by putting the sum of two of the
constants divided by the third, then the difference of two of the constants divided by the third, in
the position of the input parameter contained in the condition.

Rule § is designed to test conditions of the form

K1*X + K2 >K3

or similar forms. All possible combinations of K1, K2, and K3 are used so that the following values

are computed:

K1+K2)/K3 .
K1-K2)/K3
K2-K1)/K3
K1+ K3)/K2
K1-K3)/K2
K3-K1)/K2
K2 + K3)/K1
K2-K3)/K1
K3-K2)/K1

Rule 6;

- IF: An outcome of a condition has not been executed, there is at least one previously executed test
case, and the procedure contains at least one constant.

THEN: Generate a test case from the previously executed test case by replacing an input variable
with the constant.

Rule 6 was designed to use program constants to search for test cases to cover condition
outcomes which have not yet been covered at all. However, Rule 6 proved to be inefficient and so

was removed from the active rule base during the prototype evaluation phase of the project.

12

Rule 7:

IF: There is a test case which produces an outcome of a condition.

THEN: Generate test cases by incrementing and decrementing the values of the previous best test
case.

Rule 7 is the first of the purely search-oriented rules. It varies, by a small amount, the input
variable values in the best test case for an outcome of a condition. It is primarily intended to
improve the coverage of a condition outcome, although it may in some cases cause the opposite
outcome to be executed. The latter is desirable when the opposite outcome has not been covered

by any previously executed test case. This general approach was used quite successfully by Prather

[16].

Rule 8:
IF: There is a test case for an outcome of a condition.

THEN: Generate test cases by doubling and halving the values of the previous best test case.

Rule 8, like Rule 7, is a purely search-oriented rule. Rather than changing the values by a
small amount, as Rule 7 did, Rule 8 varies the values by doubling and halving them. While Rule 8

certainly provides much less precision than Rule 7, it allows much faster movement through the

search space.

Rule 9:
IF: There is a test case for an outcome of a condition.

THEN: Generate test cases by replacing a value in the test case with a random number.

Rule 9 is a partially random search rule in that it randomly changes one of the inputs in the
test case while holding the other inputs constant. This rule may cover conditions of the program

when the other rules fail.

13

IV. PROTOTYPE IMPLEMENTATION

After developing a speculative set of test data generation rules, it was necessary to
implement a prototype test data generator employing these rules in order to evaluate the ability of
a rule-based test data generator to produce good test cases. The prototype, which was
implemented in Prolog, is designed to generate test cases and analyze coverage for a subset of
Ada.* For the purposes of the prototype, each test case was simply a set of input values (e,
expected results were not required to demonstrate coverage). In this section, the prototype
support for the subset of VAX Ada is described, followed by a discussion of the rule interpretation,

test execution, and coverage evaluation portions of the prototype.

A. Prototype Support For Ada Subset

The scope of the prototype implementation was limited in two major ways. First, only
subprogram input parameters were considered as inputs to the subprogram under test. That is, no
files were generated to test programs which process files. Second, the type of inputs allowed was
limited to the VAX Ada types INTEGER and FLOAT, defined in the package STANDARD. The
INTEGER type was chosen to represent all discrete types, such as enumerated types, in that these
types map to a subset of the integers. The FLOAT type is representative of real number types.
Thus, the application of rule-based test data generation to these two data types will demonstrate its
applicability to most numeric types, and will provide some evidence of its applicability to more
complex types. While these limitations must be relaxed when this approach is actually applied in

~ practice, they are no hindrance to demonstrating the potential value of rule-based test case

generation.

The semantic information required by the expert test data generator is not nearly as detailed
as that required by a compiler. It could easily be output as a by-product of the compilation of Ada

code. The description of a program to the rule-based test data generator must contain: 1) the

* Ada is a trademark of the United States Government, Ada Joint Programs office.

14

names and types of input parameters, 2) the conditions of the program, and 3) the variables and
constants contained in these conditions. Since the test data generator expert system prototype is
implemented in Prolog, the information must be provided in the form of Prolog facts. In the
present prototype, the SYMBOL TABLE for each subject module under test was hand-coded. In
future versions of the prototype, a specialized parser/scanner will be used to generate these Prolog

facts directly from Ada source code.

B. Rule Interpreter

The Rule Interpreter, which controls the entire testing process, was written in Prolog to
expedite the implementation of the prototype. As seen in Figure 1, the Rule Interpreter reads in
the information about a subject module from the Symbol Table file, uses the Rule Base to generate
test data, and then calls a Driver Program to execute the subject module using these test cases. In
particular, once the Prolog interpreter is activated, it queries the user for the name of the subject
module to be tested, the number of iterations, and the maximum number of test cases to be
generated during a single iteration. The next step causes all applicable rules (Prolog clauses) in the
Rule Base to fire using the subject module Symbol Table information (Prolog facts) and, if
available, previous execution results. The test cases generated by the rules are placed in the Test
Case File, and control is passed to the Driver Program, which executes the subject module and
records the input values and coverage matrix for of each test case in the Execution Results File.
When control returns to the Rule Interpreter, the success of each test case is evaluated based on
the execution results. The last action is to succeed (stop) if the desired iterations have been

‘performed; otherwise the Rule Interpreter continues the testing process by recursively calling itself.

C. Module Drivers and Instrumentation

Each iteration of the Prolog rule interpreter may generate many test cases. These test cases

are stored in the Test Case File. For this reason, each procedure being tested must have a Module

15

Driver, that is, a program which reads the test file, executes the procedure, and records the results
in the two results files. This process is repeated once for every test case in the test case file. The
Module Driver, which is written in Ada, consists of two parts: 1) the procedure being tested and 2)

the instrumentation procedures, which measure coverage. The driver algorithm (in pseudocode) is

as follows:

repeat for all tests in test case file
initialize coverage matrix
execute procedure under test with test case
output input values and coverage results

The instrumentation procedures are all named CONDITION, which is allowed by Ada
overloading. This fact makes the instrumentation easier than it otherwise might be. Two different
forms of the CONDITION procedure are used. The simplest is used to instrument conditions
which do not contain a relational operator, such as Boolean function calls. For instance, suppose
there is a function which returns the type BOOLEAN (true or false) and whose value simply

indicates whether or not its one integer argument is a prime number. A statement such as this

might appear:
if IS_PRIME(I) then...

This statement would be instrumented as follows, assuming that this is the third condition in the

program:
if CONDITION(3,IS_PRIME(])) then...

The action of this form of CONDITION is simply to note in the coverage matrix whether condition
number three executed true or false (the value returned by IS_PRIME). Then, CONDITION
returns the same BOOLEAN value that IS PRIME returned to it, so that the program continues to

execute as it would have without the instrumentation.

16

The second form of the CONDITION procedure is slightly more complicated. It is used to

instrument conditions of the form
<expression> <relop> <expression>

such as X>2, X*Y<Z, and X**2+Y**2=Z**2. This form of the CONDITION procedure takes
four arguments: 1) the number of the condition, 2) the expression to the left of the relational
operator, 3) an enumerated-type value indicating the relational operator, and 4) the expression to
the right of the relational operator. The three previous example expressions would be

instrumented as follows, assuming that they are the first three conditions in the procedure under

test:

CONDITION(2,X*Y,LT,Z

CONDITION(1,X,GT,2
CONDITION(3,X**2+Y**2,EQ,Z**2).

In summary, module drivers and instrumentation were required in order to evaluate the
prototype rule-based test data generator. Their function was the same as that required for
traditional testing methods: to facilitate test case execution and to evaluate coverégé, respectively.
A specialized parser/scanner is being constructed for the purpose of generating the
instrumentation/driving mechanism as well as the Prolog facts (Symbol Table File) that describe

the subject module under test. These functions are candidates for future inclusion in commercial

Ada compilers.

V. EVALUATION OF PROTOTYPE

After developing the prototype test data generator, it was necessary to design a formal
procedure for evaluating the prototype. The test data produced by the prototype was compared,
using the test adequacy criteria described earlier, with randomly generated test data. Four Ada
procedures (TRIANGLE, ITRIANGLE, CURVE, LINEAR) were used to evaluate the test data

generator. Although the procedures are small, each contains fairly complex conditional

17

expressions on its branch statements, and relatively complicated combinations of branch
statements. Most of the path predicates for each of these procedures would be complex and quite
difficult for automatic solution using predicate solution techniques. Each procedure is briefly

described below.

The Ada procedure TRIANGLE accepts three inputs, each of the Ada type FLOAT. It
returns a value of type INTEGER indicating which of several types of triangle is formed by taking

the first two arguments as the two legs of a triangle, and the third argument as the hypotenuse.

The Ada procedure ITRIANGLE accepts three inputs, each of the Ada type INTEGER.
Otherwise, it performs the same function as TRIANGLE, which receives inputs of type FLOAT.
ITRIANGLE returns a value of type INTEGER indicating which of several types of triangle is
formed by taking the first two arguments as the two legs of a triangle, and the third argument as the

hypotenuse.

The Ada procedure CURVE accepts four inputs, each of the Ada type FLOAT. These four
inputs represent the X and Y coordinates of two points in two-dimensional space. CURVE
returns a value of type INTEGER indicating which of several types of curve best fits these two
points. For example, the test case (1,1,2,2) would represent the points (1,1) and (2,2), and CURVE

would return a value indicating that these points roughly fit an upwardly-sloping diagonal line.

The Ada procedure LINEAR accepts three inputs, one of the Ada type FLOAT and two of
the Ada type INTEGER. The procedure is called LINEAR because it is composed of all linear

conditional expressions. It performs no useful function.

Table 1 each of the procedures in terms of number of inputs, conditions, decisions, paths,
and calls to subprocedures. For example, procedure TRIANGLE requires 3 input values and
contains 13 conditions, 10 decisions (based on the 13 conditions), and 28 paths defined by the 10
decisions. In addition, TRIANGLE makes a call to one procedure. These item provide a basis for

test adequacy criteria.

18

Table 2 presents a comparison of the coverage achieved for each procedure by the two
methods of test data generation: the prototype test data generator ("Rules") and a random test
data generator ("Random"). Each row of the table represents a single test suite for the indicated
procedure and method of test generation. For example, the first row indicates that for procedure
TRIANGLE, the prototype was used to generate 45 test cases which, when executed, covered 20 of
26* possible condition outcomes, 14 of 20 possible decision outcomes, and 18 of 26 possible
multiple condition outcomes. Complete coverage is achieved whenever all possible outcomes (true
and false) are invoked. However, this can never be guaranteed for an arbitrary program since it

may contain infeasible paths.

In all, five test suites of 45, 155, 308, 429, and 504 test cases respectively were generated by
each method. Of the 15 different combinations of five test suites and 3 standard coverage metrics
for TRIANGLE, the prototype-generated test data obtained better coverage than the random test
data nine times, and the random test data obtained better coverage five times. In the remaining
case the coverage was the same. A chi-squared test was performed in order to test the statistical
signiﬁcancé of the number of times the rule-based data outperformed the random data. The chi-
squared value did not indicate a significant difference. However, if the first test suite (of only 45
tests) is neglected, then the rule-based data performs better nine of the twelve times and the
random data performs better twice. The chi-squared value for this subset showed a significant

difference with 95% confidence.

* The 26 possible condition outcomes for TRIANGLE are a result of its 13 conditions taking
on values TRUE and FALSE.

19

Table 1. Procedures Used in Prototype Evaluation

TRIANGLE ITRIANGLE CURVE LINEAR
Inputs 3 3 4 3
Conditions 13 12 16 11
Decisions 10 9 13 8
Paths 28 28 9 9
Subprocedures 1 0 4 0

Table 2. Comparison of Rule-based with Random Data

for the Four Ada Programs
PROCEDURE Test Condition Decision Multiple-Condition
Method Used Cases Outcomes Outcomes utcomes
Covered Covered Covered
TRIANGLE (of 26) (of 20) (of 26)
Rules 45 20 14 18
155 21 15 19
308 25 19 23
429 25 19 23
504 25 19 23
Random 45 22 15 20
155 22 15 21
308 22 15 21
429 22 15 21
504 22 15 21
ITRANGLE (of 24) (of 18) (of 24)
Rules 49 21 15 18
139 23 17 21
270 24 18 22
392 24 18 22
461 24 18 22
520 24 18 22
Random 49 21 11 19
139 21 14 19
270 21 14 19
392 21 14 19
461 21 14 19
520 21 14 19

20

Table 2 Comparison of Rule-based with Random Data
for the Four Ada Programs (continued)

PROCEDURE Test Condition Decision Multiple-Condition
Method Used Cases Outcomes Outcomes utcomes
Covered Covered Covered
CURVE (of 32) (of 26) (of 32)
Rules 42 24 18 21
94 28 22 25
174 28 22 25
188 28 22 25
312 28 23 27
Random 42 15 12 12
94 15 12 12
174 15 12 12
188 15 12 12
312 15 12 12
LINEAR (of 22) (of 16) (of 22)
Rules 73 13 8 11
210 18 12 17
321 18 12 17
389 18 12 17
428 18 12 17
Random 73 13 9 11
210 13 9 11
321 13 9 11
389 13 9 11
428 13 9 11

In an attempt to further discover differences in performance characteristics between rule-
“ based and random data, more random tests were run on TRIANGLE to determine the number of
random tests necessary to obtain the coverage obtained by the rule-based data. The random data
covered 23 conditions after 640 tests, but attained no further coverage, even though 40,000 tests
were run. This left the random data coverage still two conditions short of the coverage provided by

the rule-based data.

21

A comparison of the coverage of ITRIANGLE achieved by the prototype test generator and
a random test data generator for [ITRIANGLE is shown next in Table 2. Of the 18 different
combinations of six test suites and 3 coverage metrics, the prototype-generated test data obtained
better coverage than the random test data 16 times, and the random test data obtained better
coverage one time. In the remaining case the coverage was the same. This is obviously a highly
significant difference (alpha < 0.005). As with the TRIANGLE procedure, additional random tests
were performed. The random test data covered one more condition at test case 2216, and another
at 7170, for a total of 23 conditions covered. This is still one condition short of the 24 condition

outcomes covered by the rule-based data. A total of 20,000 random tests were performed for the

procedure ITRIANGLE.

An interesting feature of the test data generation for the procedure CURVE is that the
randomly generated data never improved over the initial random data. Even more importantly, the
rule-generated test data obtained better values for all coverage metrics and for all test set sizes than
the randomly-generated test data. Even at only 42 tests, condition coverage for the rule-based data
was 60% better than the random, decision coverage was 50% better than random, and multiple-
condition coverage was 75% better. When additional random tests were run for CURVE, three
more condition outcomes were covered with 730 test cases, then two more with 1662 test cases,
then one more with 1682 test cases. No more were covered up to 20,000 test cases. Cumulatively,

21 conditions were covered, which is seven short of the 28 conditions covered by the rule-based

data.

Finally, a comparison of the coverage of LINEAR showed that in only one of the 15
standard coverage cases did the randomly generated data perform better than the rule-generated

data. Only two cases was their performance the same. Chi-squared tests again showed a very

significant difference (alpha < 0.005).

22

Additional random tests for LINEAR resulted in one condition outcome being added to the
coverage for each of test case numbers 596, 1098, 1304, and 1778. The total conditions covered up

to 20,000 test cases was 17, which is still one short of the 18 covered by the rule-based data.

DISCUSSION

While the primary objective of this work was to test the concept of rule-based test data
generation, it also surfaced considerable knowledge on ways in which the rules can be further
improved. For example, rules can be generated to simplify the expressions appearing in the
conditions. Consider a condition, COND, having the format of: <expl> <rel> <exp2>. By using
the following simplification rules, the condition boundary of COND can be identified easier, and

less test data needs to be generated to obtain the equivalent coverage:

Rule A

If <expl> does not contain variables
then exchange positions of <expl> and <exp2>

Rule B
If <expl> contains constants
then move all possible constants to <exp2>

These rules would simplify <expl> such that it contains at least one variable and no

constants. For example, given a condition

3 =<5*X+4
<expl>: 3
<exp2>: 5*X+4
<rel>: =<

By applying Rule A, it becomes
5*X+4>= 3

By applying Rule B, it becomes
X >= -02

23

From this, three test cases can be generated for X. Theyare X = -0.2 + ¢, X =-0.2,and X
= -0.2 - e, where e is a relatively small number. Comparing with Rule 5 mentioned earlier, the

original 9 test cases are reduced to 3 test cases with this simplification.

The following forms of expression are subject to Rules A and B:

Example

1. constant. <exp> =10
2. single variable. <exp> =X
3. single variable + (-) constant. <exp>=x+(-)5
4. single variable *(/) constant. <exp>=x"(/)>
5. two variables (+,-). <exp>=x+(-)y
6. two variables (*,/). <exp>=x*
7. two variables + (-) constant. <exp>=x+(-)y +(-) 5
8. two variables * (/) constant. <exp> = (x+(-)y)/5,

or (x+(-)y)*S

Although there are 64 combinations between <expl> and <exp2>, after simple

simplification steps the combinations can be generalized into the following 10 cases.

<expl> ' <exp2l>

C1
Y
Y +C1
Y*C1 (orY/C1)
C1*X+C2*Y+C3
Ci*X*Y+C2
C3*X+C4*Y +CS
C3*X*Y+(C4
C1
Cl1*Y/X+C2

C1*X

@)
(&

*
=

Q

*

>
Dk

2OENALA L S
~Q
*
<

e

As a further example, consider the sixth relationship given above. Since the goal of test data
generation is to assure the generated test data will have small percent difference and cover both
sides of the condition boundary, the place where a particular test case locates on the boundary is

not critical. Thus we can determine Y as follows:

If there is a best test case for this condition
then assign Y = the value of Y in the best test case
else assign Y = (upper-bound - lower-bound) of Y/2

24 -y

W=

fewer cases which cover more branches. It is expected that experience in exercising the rule base

~ will lead to the generation of many other rules which will be subjected to comparative evaluation as

The test case value of X can then be determined by the following simplification steps.
<expl> <exp2>

X C1*Y*X+C2

Since the value of Y is now known, the relationship becomes
<expl> <exp2>
X C3*X +C2

By recursively applying Rule A and Rule B, we obtain the following:

<expl> <exp2>
X C3*X+C2
(1-C3)* X C2
X C4

From this relationship, the test case data is defined as: - -

X=Cd+e Y
X=C4 Y
X=C4-¢ Y

By using this type of simplification heuristics, more efficient test cases can be generated, i.e.,

the system is developed.

generator and to demonstrate its feasibility. This new approach to test data generation provides an

VI. CONCLUSIONS

The primary objective of this paper was to propose a rule-based software test data

25

extensible framework which utilizes new heuristic rules as well as those which have been used
manually in traditional testing environments. Such a test data generator would be used in
conjunction with a software testing environment. The most important phases of the project were:
1) the development of a simple trial rule base, 2) the implementation of the prototype test data
generator, and 3) the evaluation of the prototype. Ten test data generation rules were developed
during the initial phase. During the second phase, these rules, along with a rule interpreter, were
implemented in Prolog. Four Ada modules were selected and instrumented as test modules, and
drivers were implemented for these modules. During the evaluation phase, approximately 2,000
rule-generated tests and 102,000 randomly-generated tests were executed in all. These two sets of
data were compared using simple statistical tests. These tests clearly show that the rule-base-
generated data is significantly better than the randomly-generated data. In fact, the same coverage
could not be attained by random test-case generation even when very large numbers of randomly-
generated test cases were tried. This result demonstrates that rule-based test data generation is
feasible, and shows great promise in assisting test engineers, especially when the rule base is

developed further.

While the above results were impressive, they are not presented to demonstrate the
immediate applicability of this rule base or even this paradigm. The rule base needs considerable
development and may eventually evolve into a system of hundreds of rules. Similarly, the
parser/scanner and test case execution interfaces with the test data generator require considerable
development before the paradigm can be fully implemented. However, these can now proceed

recognizing the potential that exists as demonstrated by the experiments documented above.

26

10.
11.

12.

13.
14.

" 15.
16.

17.

18.

REFERENCES

B. Beizer, Software Testing Techniques, New York: Van Nostrand Reinhold Company, 1983.

D. B. Brown, "Test Case Generator for TIR Programs," Contract Number DAAH01-84-D-
AO030, Final Report, September 30, 1986.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, "Hints on Test Data Selection: Help for the
Practicing Programmer," IEEE Computer, Vol. 11, No. 4, April 1978.

J. W. Duran and J. J. Wiorkowski, "Quantifying Software Validity by Sampling," IEEE Trans.
Reliability, Vol. R-29, No. 2, June 1980.

J. W. Duran and S. Ntafos, "A Report on Random Testing," in Proc. of 5th Intemational
Conference on Software Engineering, Mar 9-12, 1981.

R. E. Fairley, Software Engineering Concepts, McGraw-Hill, New York, 1985.

J. B. Goodenough and S. L. Gerhart, "Toward a Theory of Test Data Selection," JEEE
Trans. Software Engineering, Vol. SE-1, No. 2, June 1975.

W. E. Howden, "Life-Cycle Software Validation," IEEE Computer, Vol. 15, No. 2, February
1982.

W. E. Howden, "A Functional Approach to Program Testing and Analysis," IEEE Trans.
Software Engineering, Vol. SE-12, No. 10, October 1986.

W. E. Howden, Functional Program Testing and Analysis, McGraw-Hill, New York, 1987.

J. C. Huang, "Program Instrumentation and Software Testing," IEEE Computer, Vol. 11, No.
4, April 1978.

E. F. Miller, "Software Testing Technology: An Overview," in Handbook of Sofiware
Engineering, New York: Van Nostrand Reinhold Company, 1984.

G. J. Myers, The Art of Software Testing, Wiley, New York, 1979.

S. C. Ntafos, "A Comparison of Some Structural Testing Strategies," IEEE Trans. Software
Engineering, Vol. 14, No. 6, June 1988.

D. J. Panzl, "Automatic Software Test Drivers," IEEE Computer, Vol. 11, No. 4, April 1978.

R. E. Prather and P. Myers, Jr., "The Path Prefix Software Testing Strategy," IEEE Trans.
Software Engineering, Vol. SE-13, No. 7, July 1987.

S. Rapps and E. J. Weyuker, "Selecting Software Test Data Using Data Flow Information,"
IEEE Trans. Software Engineering, Vol. SE-11, No. 4, April 1985.

S. M. Ross, "Statistical Estimation of Software Reliability," IEEE Trans. Software
Engineering, Vol. SE-1, No. 5, May 1985.

27

19.

20.

21.

22.

23.

S. M. Ross, "Software Reliability: The Stopping Rule Problem," IEEE Trans. Software
Engineering, Vol. SE-11, No. 12, Dec. 1985.

U. Voges and J. R. Taylor, "Systematic Testing," in Verification and Validation of Real-Time
Software, Ed. by W. J. Quirk, New York: Springer-Verlag, 1985.

O. R. Weyrich, Jr., D. B. Brown, and J. A. Miller, "The Use of Simulation and Prototypes in
Software Testing," in Tools for the Simulation Profession - Proceedings of the 1988
Conferences, Orlando, Florida, Society for Computer Simulation.

O. R. Weyrich, Jr., S. L. Cepeda, and D. B. Brown, "Glass Box Testing Without Explicit Path
Predicate Formation,” Proceedings of the 26th Ann. Conf. Southeast Regional ACM, Apr 20-

22, 1988, Mobile, Alabama.

E. J. Weyuker, "Axiomatizing Software Test Data Adequacy," IEEE Trans. Software
Engineering, Vol. SE-12, No. 12, Dec. 1986.

28

APPENDIX A
DEFINITIONS OF TERMS

Definitions for the following terms have been adapted from several sources [4, 7, 13, 14, 17, 18, 19].

branch coverage - Achieved when test cases are sufficient to ensure that each branch or decision in
a program is executed both true and false at least once (usually includes statement coverage).

condition coverage - Achieved when test cases are sufficient to ensure that each condition in a
decision takes on the value of true and false at least once during execution.

debugging - The act of searching for and removing a fault from a program.
decision coverage - See branch coverage.

decision-condition coverage - Achieved when test cases are sufficient to ensure that each condition
in a decision and the decision itself take on the values of true and false at least once during

execution.
error - An incorrect output resulting from a fault.

fault - An incorrect program component, while an error is an incorrect output resulting from a
fault.

instrumentation - The insertion of code at a strategic point in a program for the purpose of
reporting (1) when and if execution reaches that point and (2) the values of key variables and/or
expressions.

linear path predicate - A path predicate which contains only linear terms.

multiple condition coverage - Achieved when test cases are sufficient to ensure that all possible
combinations of conditions outcomes in each decision, and all points of entry, are invoked at least
once

oracle - An external source of information capable of determining whether or not a program has
executed correctly for a given test case.

path coverage - Achieved when test cases are sufficient to ensure that each path in a program is
- traversed at least once during execution. This is ususally considered an intractable problem since
the number of paths in a program may grow exponentially as a result of loops.

path predicate -The conjuction of all conditions along a given path such that if the predicate is
satisfied (i.e., a set of values for the variables is found that yields a value of true for the predicate)
then that set of values causes the path to be traversed during execution.

regression testing - Previously executed test cases executed again subsequent to program
modification to ensure that new faults were not introduced during the modification process.

software reliability - Usually characterized as mean time between failures in a particular
environment over a specified period of time.

29

statement coverage - Achieved when test cases are sufficient to ensure that each statement in a
program is exercised at least once during execution.

test adequacy criteria - A quantifiable measure of the degree to which a program has been tested,
e.g., (in increasing order) statement coverage, branch or decision coverage, condition coverage,
decision-condition coverage, multiple condition coverage, path coverage.

test case - A set of input values, expected output values, and observed results for one execution of a
program.

test data generation - The generation of input values for test cases.

test suite - A set of test cases, usually designed to meet one or more specific test adequacy criteria
such as decision coverage.

30

FOOTNOTES

W. H. Deason is with Intergraph, One Madison Industrial Park, Huntsville, Alabama 35807.

D. B. Brown, K. H. Chang and James H. Cross II are with the Department of Computer Science
and Engineering, 107 Dunstan Hall, Auburn University, Alabama 36849.

This work was supported, in part, by a contract with NASA, Marshall Space Flight Center,
Huntsville, Alabama.

31

INDEX TERMS

Software testing, test data generation, rule-based systems, Ada testing, unit level testing, test
coverage,

32

FIGURE CAPTIONS

Figure 1. Rule Based Test Case Generator Paradigm

33

APPENDIX C

QUEST/ADA: AN AUTOMATED TOOL FOR ADA SOFTWARE TESTING

The paper given in this appendix was produced in part by
support provided by this project contract. This paper was pub-
lished in the Proceedings of the 27th Annual southeastern Region-

al Conference of the ACM.

QUEST/Ada: An Automated Tool for

ORIGINAL FACE IS
OF POOR QUALITY

Ada Software Testing

William R. Keleher
David B. Brown, Ph.D.,P.E.

Aubumn University

Abstract

The increasing usc of mission-critical embedded software
systems has made apparent the nced for an effcctive and effi-
cient approach to software testing. At present a varicty of
approaches to softwarc testing cxist, but existing test meth-
odologies requirc a great deal of cffort 10 produce any
results. Thus, these mcthodologies are impractical for use
on large software systems where the complexity of the pro-
grams would require a tremendous expenditure of man-hours.
In addition to the cost problem, the conccptual complexity
of a large softwarc system would make such manual testing
methods prone to human error.

This paper will result on the preliminary design of the
Query Utility Environment for Software Testing of Ada
(QUEST/Ada), an automated tool for testing of Ada software.
Quest/Ada uscs an cxpert system in conjunction with a feed-
back loop from automatic test cxccution to produce lest data
sufficient to provide complete or near-complete decision/
condition coverage for a uscr-selected Ada sofltware module.
The paper will detail the preliminary design of the three ma-
jor components of QUEST/Ada: The parser/scanner used to
instrument Ada code, the rule-based system [or test genera-
tion, and the user interface.

Introduction to QUEST
QUEST/Ada is an automated software testing tool de-
signed to automatically generate test data for complete or

near-complete coverage of Ada programs. The test data gen-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the titie of the publication and its date appear,
and notice is given that copying is by permission of the Assocaton for
Computing Machinery. To copy otherwise, or 10 republish, requires a fee
and/or spedific permission.

©1989 ACM 0-89791-303-5/89/0400-0016 $1.50

cration will be performed by a feedback loop consisting of
an instrumented Ada module, a test data coverage analysis
module, and an expert system which generates new lest cases
based on the test coverage data provided by the analysis
module. Supporting this feedback loop is the parser/scanner
which generates the instrumented Ada code from the raw
source code, and a report generator which provides user re-
ports on the effectiveness of the test data. Figure 1 provides
an overview of the QUEST system.

The preliminary design of QUEST is being performed by
gencerating a functional prototype of the entire testing tool.
The majority of the prototype is being written in C, because
of the casc of coding system interfaces and the availability
of cxccllent parscr/scanner tools which produce C code. In
addition to C. the CLIPS expert system language is being
used to develop the test data generaltor. CLIPS was selected
because of its availability, ease of use, speed, and because
the source code is available and is itself written in C. The

QUEST prototype is being generated on a VAX 11/780 com-

puter.

Quast Overview

fFlgure 1:

27" Annual Southeast Region ACM Conference

16

The Parser/Scanner

The parser/scanner module is the first functional step in
testing a module with QUEST. It is responsible for instru-
menting the Ada source code, building a symbol table for the
module, and surrounding the instrumecnted source with a
“driver” program which will rcceive test data from the test
data generator and provide exccution results to the user inter-
face’s report generator. The parser is being developed using
the BISON parser gencrator, which produces a parscr written
in C.

The primary task of the test data gencrator is to instru-
. ment the source code to provide the data that is rcquired for
determining test coverage and providing feedback data for the
test data generator. In the prototype, this instrumecntation
consists- of replacing cach boolcan condition in the module
with a function call to the function “relop”. This function
mimics the boolean condition that it is replacing by examin-
ing the operands and operators of the condition and provid-
ing the boolean valuc of the condition as the value rcturned
by the function. More importantly, the “rclop” function
also writes intermediate test coverage information to a file
that is examined by the test coverage analyzer. The interme-
diate test coverage information provided by the function in-
cludes the decision and condition number that the function is
replacing, the number of the test case that the instumented
program is currently exccuting, the boolcan valuc of the con-
dition with its current input data, and the values of the left
and right hand sides of the condition.
An example instrumentation for a simple module is described

in Figure 2. In this case, the module being instrumented is a

procedure testil: 18 out 1ateger:
9. tn our srteger;

procedare teet{l: 18 sut lateger:
§: L eut tateger:
Az 1s est lateger) I» a: in out intwger) e
began
while relopiTeriNum,1.3,1.61. 41 lesp
LELTRE
Hieide)id) mwa 15
1l relopiTesthum 2,3, 1, ST AL then
wnile reiopiTestNum 3. 8,1.CT.2) leep

begin
while 133 lesp
1:=1-1;
Riw{ke)14) wmed 25;
1f DA thea
waile 12 leep
Niehody iieasl;
1€ h>=27 thea 1f relopiTertium 4.0,k ,CE, 27} then
mll; rulls
olose wlse
sell; awll;
oad 15 e it
ond leeps ead losp:
oles wlee
1f Lt<R-3 them 1€ relopiiestium 3, 0,:,LT.4-)1 then
10 1-10<3 then 1 relop(Testium 6,0, 1-10.LT, 3} thea
sell; mull;
alee olsn
»ell: awil:
vad Af; ond 1L
else olse
while 1r=a-3 loop while relop(Testsum,1,0,1.C0.k-31 lesp
1=t~ [ETER)
ond loep; end loop:
ond 1f: end 3[;
ond UL erd 10:
ond losp:
ond test:

era laog:

®70 Test:

procedure, although a module may be a program, procedure,
function, block, or a combination of any of the above.

In addition to the instrumentation of the source, the par- -

ser/scanner must also generate a symbol table containing in-
formation about all of the input variables to a module. Input
variables arc defined as any variables that are passed to the
module as parameters, or any variables that are global to the
module, in the case that the module is part of a larger soft-
warc system. For example, in the simple procedure instru-
mented above, all of the variables are input variables be-
causc all of the variables are passed to the module being
tested as parameters to the procedure. However, if a variable
"X" was defined within the procedure test and used internal to
the procedure, it would not be considered an input variable.
The information that must be stored about each input varia-
ble includes its name, type, bounds (in the case of subrange
types), initial value, and scoping information about the
depth at which the variable is defined, in the case that it oc-
curs in more than one procedure in the module under test.
The information in the symbol table is used by the test data
generator to ensure that the data being generated for a varia-
ble is of the right type and does not exceed the bounds of a
subrange type. The information in the symbol table is also
used by the user interface to determine the names of the var-
iables (as all data internal to QUEST are stored in files that
arc indexed by position, not name), and to provide the for-
mats in which the data is printed by the report generator. In
addition, the parser/scanner uses the symbol table informa-
tion to gencrate the driver program for the module under test.
In most cases, a QUEST module will be a subprogram of
some sort. In order to exccute the subprogram and provide it

with the test data generated by the expert system, the parser/

eith tast_fer
ves test_ies
precedure dciver 1ia

To ok sumy
[NY

isaeta,
eutdazar

Lategers
st egec)

€lle_typer
peciogs iat_ie is mew imegec_lefiateger): sse 1m_les

beging
spes (184ats, 100110, “teet .data~Ds
Cresteiiatarmediste, oot _flie, “Intarmsdists.ressits’);
Cresteientasts. snt_file. “emtput . datec};

waile set Cre_OC_Pileiilndeta) lewp
9ot tindnte, Toot uay ¢
g tiadats. 1) s
st tindats. 3) s
ot [lndeta. V) s

test (i, .0

put (seteata, ToatBumi

Pt {ont dnta, 1)

Pt (ot deta, 335

Pot fewtdacs k),

sav_lisetsstdstel
ond leeps

cleaa(ineatals
clesn {istarmediace) s
close(outdata),

end arivecy

27" Annual Southeast Region ACM Conference

ORIGINAL it
OF POOR GuaLITY

scanner must generale a driver program that rcads the test
data from a file and calls the subprogram with the input test
data provided as parameters to the subprogram. As indicated,
in Figure 3, development of the driver program rclics on the
information in the symbol table to provide the number,

names, and types of input variables to the module under test.
The Test Data Generator

The test data gencrator is responsible for gencrating sets
of test data, called “test cascs,” which altempt to provide
complete or near-complete decision/condition coverage of
the module under test. Decision/condition coverage is
achieved when each boolcan condition (i.e."x<5"), and each
boolean decision (i.e."x<5 or x>25") has been executed both
true and false at least once. The test data gencrator consists
of two main parts: the expert sysicm (written in CLIPS) and
the test coverage analyzer (written in C).

The expert system develops test data bascd upon a set of
heuristics and two major lists: the decision/condition cover-
age list and the best test case list. The dccision/condition
coverage list conlains facts of the form “(dccision number,
condition number, coverage value).” The decision and condi-
tion number are references to the instrumented Ada code de-
scribed above, and the coverage value is cither 0.1, 2, or 3,
representing decisions and conditions that havc not been
covered, been covered only truc, been covered only false, and
been covered completely, respectively. The cxpert system
operates by focusing on the first decision that has becn cov-
ered with only one truth valuc, and finding thc best test case

_that has executed that decision so far. The best test cases are
kept in the best test casc list, which contains facts of the
form “(decision number, condition number, goodness value,
input variable value #1, input variable value #2, ...)." The
decision and condition numbers correspond o the decision
and condition numbers in the decision/condition coverage
list. The goodness valuc is a value for comparison of test
cases executing a given decision or condition that is generat-
cd by the test coverage analyzer, and the input variable val-
ues represent the actual test casc. Once the first partially
covered decision has been located and its best test case has
been found, the cxpert systcm gencrales new lest €ascs by
medifying the clements of the best test case slightly. For
example, numerical data might be modificd by a percentage
and by a

a0,

-0,

of the range of values it could take, such as

small fixed amount, such as .01.

This technique is developed from a technique described by
Prather and Myers [PRA87]). The reasoning is that if a par-
ticular condition, Cn, is reached, the preceeding conditions,
C1 through Cn-1, along the path have also been satisfied.
In order to drive the target condition to its' other truth value,
all of the precceding conditions must once again be satis-
fied. In other words, the inputs are close to the intended
goal and a slight modification of the input data is all that is
required. Note that by driving the other branch of a deci-
sion, other paths and decisions are uncovered which are then
treated by the next iteration of the test data generator. The
expert system/slight modification technique has been dem-
onstrated to provide coverage that is significanily superior
to random test dala generation [DEAS8S].

The test coverage analyzer provides information to the
expert system by reading the intermediate results from the
execution of previous lest cases provided by the function
calls in the instrumented Ada code. The test coverage ana-
lyzer maintains a list of the decisions and conditions cov-
ered by an exccution of a test case and their coverage value.
It also maintains a list of the best test case for each condi-
tion bascd on the “goodness value” of that test case for that
condition. The goodness value is generated according to the

following formula:

Selcction of test cases based on this formula ensures that the
lest case sclected will be the test case whose right hand side
most closcly matches its left hand side. The reasoning be-
hind this is that minor modifications to the test case will be
most likely to drive the condition with another truth value if
the left and right hand sides of the case are very close to
cach other. After all of the intermediate results have been
analyzed, the test coverage analyzer asserts decision/
condition coverage facts and best test case facts into the ex-
pert system’s fact base. Note that the top two or three test
cascs for cach decision and condition are asserted into the
fact base. This prevents the expert system from getting
stuck in a loop if the best test case for a condition after the
exccution of a new sct of test data turns out to be the same
best test case as before the execution (thus causing the ex-
pert system to generate the same data as before, ensuring
that the best test case remains the same forever...). In the
event that this should happen, the best test case is thrown
out, and the ncxt best test case is used to generale a new set

of test cases.

27" Annual Southeast Region ACM Conference

18

The User Interface

The modules described above are the two primary func-
tional units in QUEST. The user interface cnables these two
modules to be used in an integrated uscr-friendly environ-
ment. The user interface consists of two major parts, the
menu screens and the report generator. The menu screens al-
low the user to perform all of the function required to test a
program, and the rcport gencrator provides the user with the
results of the testing process.

In addition to the main mcnu, the user interface menu
system provides 7 major menus: the system dcfinition menu,
the module selection menu, the automatic testing menu, the
regression testing menu, the variable definition menu, the
testing result report menu, and the utilitics menu.

The first three menus cach perform one step in defining and
testing a module in QUEST. The first step is for the user to
define a functionally complcte sct of Ada source code files
using the system dcfinition menu. All source code necessary
for the execution of the module to be tested (i.c. the source
code for any modules called by that module, the package
specifications etc...) must be included by the user at this
time. The user intcrface concatenates all of the files sclected
into one large file, which is passed to the parscr/scanner.

The parser/scanncr develops the symbol table and a list of
the testable modules in the source code. The user then se-
lects one of the modules from the list produced by the parser/

scanner, and passes the name of that module back to the par-

ESERESEIENED

Tont Coasotine I
Wetvin

Teet Covwope
Assiyete

Dorrmoas e

I
4 Souree Cote Limieg]L.[Compiew Tost Set } Tem Cawsrege Oma

FIGURE 4: Overview ol ihe User interlace

ser/scanner. The parser/scanner then instruments that mod-
ule and develops a driver program for it. The module is now
ready for testing. The user goes to the automatic testing
menu, selects the maximum number of test cases to run, and
presses a function key to start the automatic test generation/
exccution process. The expert system is called to generate
initial test data, then the module driver program is called
upon to exccute the test cases generated. Finally, the test
coverage analyzer is called to compute the coverage and best
test data, which it then asserts into the fact base of the ex-
pert system, thereby causing the entire process to begin
again.

The last four menus all provide access to special capabil-
itics of QUEST. The regression tesing screen allows the user
to perform regression testing by executing test cases which
have alrcady been generated and executed once. This facility
provides for quick testing of minor non-conditional state-
ment changes by re-executing the minimal test set, and pro-
vides for mutation testing of the test set itself. The variable
dcfinition screcen allows users to set any or all of the values
of input variables to fixed values, thus providing the capa-
bility for uscrs to run their own hand-generated test cases au-
tomatically. This facility provides the ability to test the
module against the requirements specification without any
human crror cntering the test case execution. The test report
menu allows the users the ability to view or print the output
of the report generator and finally, the utilities menu per-
forms the same function performed by utilites menus
throughout the free world, which is to say any function that
does not fit under one of the above headings. Figure 4 pro-
vides on overview of the user interface and the system.

The report generator analyzes test cases, intermediate re-
sults and output results of the execution of automatic test
cascs.
cascs so that the regression tesing feature may be performed.
The rcport gencrator has its own test coverage analyzer, be-
cause the input requirements to the report generator are fun-
damentally differcnt than the input requrements of the expert
sysicm - the expert system requires mathematical analysis of

The report generator also stores the all of the test

teporary data, the report generator requires record analysis of

permanent data.

Conclusion

In conclusion, it should be noticed that great pains have

27™ Annual Southeast Region ACM Conference

19

ORIGINAL 3y -
OF POOR QUALITY

been taken to make the prototype casy to cxtend, both to
other languages and other coverage crileria and tesling met-
rics. No language-dependent information is found in any
part of QUEST other than the parscr/scanner, other than the
assumption of the basic data types supported by cvery pro-
cedural language. All that would be nccessary to extend
QUEST to another proccdural lunguage would be to include
another parser/scanner module. This is not a monumental
task, as BISON grammars arc available in public domain for
many popular procedural languages. There is certainly noth-
ing unique to Ada about replacing boolcan conditions with
function calls, and no language-dependent issues are found
anywhere in the uscr interface - not even in the utilities
menu. It is entirely possible for a person with litde or no
knowledege of Ada to test Ada programs, or programs in any
other language, using QUEST. Extending QUEST to other
types of coverage criteria and corrcsponding test metrics
would only requirc placing additional function calls in the

appropriate places.
References

[BROSS] Brown, David B. ¢t al, "The Development of a
Program Analysis Environment for Ada,” Contract Report,
NASA Contract: NASA-NCC8-14, Aubum University

[DEASS] Deason, William H., A Rulc-Bascd Software Test

Data Generator, Masters Thesis, Aubum University.

[PRAS7] Prather, R. E. and Myers, P. Jr., "The Path Pre-
fix Software Testing Strategy”, 1EEE Transactions on Soft-
ware Engineering, Vol. SE-13, No. 7, July 1987.

27" Annual Southeast Region ACM Conference

20

APPENDIX D
EXPERT-SYSTEM ASSISTED TEST DATA GENERATION FOR
SOFTWARE BRANCH COVERAGE
The paper given in this appendix was produced in part by

support provided by this project contract. This paper has been
submitted for publication in Data and Knowledge Engineering.

EXPERT SYSTEM ASSISTED TEST DATA GENERATION
FOR SOFTWARE BRANCH COVERAGE

James H. Cross 11, Kai-Hsiung Chang,
W. Homer Carlisle and David B. Brown

Department of Computer Science and Engineering
Auburn University, AL 36849

ABSTRACT

With the increased production of complex software systems, verification and
validation (V & V) has evolved into a set of activities that span the entire software life cycle.
Among these various activities, software testing plays a major role in V & V. Conventional
software testing methods generally require considerable manual effort which can generate
only a limited number of test cases before the amount of time expended becomes
unacceptably large. In this paper, we present a new approach to generating test cases based
on artiticial intelligence methods. By analyzing the branch coverage of previous test cases,
an expert system is able to generate new test cases which provide additional coverage.
Heuristic rules are used to modify previous test cases in order to achieve the desired branch
coverage. This approach to software testing has the potential for greatly reducing the

overall costs associated with branch coverage testing.

Key Words:

Artificial Intelligence, Expert Systems, Knowledge-based Systems, Software Engineering,
Software Testing, Test Data generation.

EXPERT SYSTEM ASSISTED TEST DATA GENERATION
FOR SOFTWARE BRANCH COVERAGE*

James H. Cross 11, Kai-Hsiung Chang,
W. Homer Carlisle and David B. Brown

Department of Computer Science and Engineering
Auburn University, AL 36849

INTRODUCTION

With the increased production of complex software systems, verification and
validation (V & V) has evolved into a set of activities that span the entire software life cycle.
V & V attempts to ensure that a software system has been designed to meet user
requirements and has been implemented according to the design. Testing continues to play
a major role in V & V beginning with the development of test plans and test procedures
during requirements analysis and design and continuing through the execution of test cases
on the implemented system. A variety of approaches to software testing exist [ADRS2,

7GOO75, HOWS80, HOW76, HOWS82a, WHI80]. However, these methodologies generally
require considerable manual effort, i.e., the tester must hand compute paths, predicates, test
cases, etc. Manual implementation of these methodologies is not only inefficient in terms of
resources expended (man-hours), but it is also subject to inconsistencies brought about by
human errors. Manual methods can generate only a limited number of test cases before the
amount of time expended becomes unacceptably large. All of these problems may be
reduced by the use of automated software test tools. However, automated test data
generation itself is not well understood [MIL 84, PAN 78]. In this paper, we present a new

approach to generating test cases based on artificial intelligence methods.

Manuscript 1€CEIVED veuemncmeerncivinirerncenans

* Support for the development of the methodology described in this paper was funded, in part, by George C.
Marshall Space Flight Center, NASA/MSFC, AL 35812 (NASA-NCC8-14).

BACKGROUND

The main thrust of software testing research has been aimed at developing more
formal methods of software and system testing [BEI83]. By definition, "testing...is the
process of executing a program (or a part of a program) with the intention or goal of finding
errors” [SHO83]. A test case is a formally produced collection of prepared inputs, predicted
outputs, and observed results of one execution of a program [BEI83). In standard IEEE
terminology, a software fault is an incorrect program component; an error 1s an incorrect
output resulting from a fault. In order to detect occurrences of errors indicating faults, some
external source of information about the program under test must be present.

Program testing methods can be classified as dynamic and static analysis techniques
[RAMT75]. Dynamic analysis of a program involves executing the program with test cases
and analyzing the oﬁtput for correctness, while static analysis includes such techniques as
program graph analysis and symbolic evaluation [ADR82].

A dynamic test strategy is a method of choosing test data from the functional domain
of a program. It is based on criteria that may reflect the functional description of a program,
the program’s internal structure, or a combination of both [ADR82]. These criteria specify
the method of test case generation to be used for a dyﬁémic test strategy. The two dynamic
test strategies generally recognized are functional testing and structural testing. It is well-
documented in the literature that no one testing approach solves all testing problems;

hence, functional and structural testing techniques should be considered complementary

methods [HOWZ&0].

Functional Testing. Functional testing involves identifying and then testing all functions of a
program (from the lowest to highest levels) with varying combinations of input values to
check for correctness of output [BEI84, HOWS86]. Correctness of output is determined by

comparing the actual output to the expected output computed from the functional

specifications of the program. The specifications are used to define the domain of each
variable or its set of possible values. Since the program has input and output variables,
selection of test data must be based on the input and output domains in such a way that test
cases force (or try to force) outputs which lie in all intervals of each output variable’s

domain. The internal structure of the program is not analyzed, thus functional testing is

often called "black box" testing.

Structural Testing. Structural testing uses the internal control structure of a program to
guide in the selection of test data [BEI84], and it is sometimes known as metric-based test
data generation. Coverage metrics are concerned with the number of a program’s structural
units exercised by test data. Test strategies based on coverage metrics examine the number
of statements, branches, or paths in the program exercised by test data. This information
can be used to evaluate test results as well as generate test data [ADRS2]. It can be shown
that for many programs (especially programs with loops) the number of possible paths is
virtually infinite [BEI84, HOW7S, WOO80], thus leading to the problem of determining
which paths to choose for testing. Criteria for selecting test paths have been discussed
[BEI84, HOW78a, RAM76, SHO83] and include statement, decision, condition, decision-
condition, and multiple condition coverage. "Coverage" is said to be achieved if a set of
paths executed during program testing meets a given criteria [BEI84]. The problem of
finding a minimal set of paths to achieve a particular coverage is discussed in [VIC84] and
[NTA79]. Beizer states that the idea behind path testing is to find a good set of paths

providing coverage, prove that they are correct and then assume that the remaining

untested paths are probably correct [BEI84].

Test Data Generation. Once a set of paths providing coverage has been selected, the next
step involves generating test data that will cause each of the selected paths to be executed.

Methods for generating test data from paths are discussed in [ADR82, HOW76, HOWT5,

HUA75, RAM76] and others, and center around the idea of solving path predicates or at
least determining path data constraints to be used for generating test case data.

Generating test inputs for a program may not appear to be a difficult problem since
it may be done by a random number generator [DUR81]. However, although random
testing alone has been shown to be an inadequate method for exposing errors, when
combined with extremal and special value (ESV) testing, it can be an effective method and
can provide a direction for the generation of future test cases [VOUS88]. On the other hand,
algorithms for generating test data to satisfy particular adequacy criteria have generally had
poor time and space complexities and produced small amounts of test data. In fact, it is not
possible (i.e., there exists no algorithm) to generate test data which causes the execution of
any arbitrary program path [MIL34].

DeMillo, Lipton, and Sayward [DEM78] attempted to develop a practical test data
generation methodology somewhere between random data generation and full program
predicate solution. Noting that programmers produce code that is very close to being
correct, they observed a program property which they named the coupling effect. Basically,
the coupling effect is the ability of test cases, designed to detect simple errors, to surface
more subtle errors as well. Howden, on the other hand, developed a set of functional testing
rules [HOW87]. Although both of these research efforts were directed at helping
programmers test their code, they are also directly applicable to automatic test data
generation. They are not algorithms, but instead are useful rules of thumb. Such rules are
typically referred to as heuristics, which embody certain bits of "expert knowledge." Thus, a
knowledge-based or expert system approach is very appropriate in attacking the problem of
generating test data for software programs. This approach is made possible not only by the
maturing body of knowledge about software testing, but also by developments in the field of

rule-based systems, a branch of artificial intelligence.

INTELLIGENT TEST DATA GENERATION

The objective of our intelligent test data generation technique is to achieve a
maximal branch coverage based on test data generated using heuristic rules with feedback.
The analysis of the actual coverage achieved follows the Path Prefix Strategy of Prather and
Myers [PRA87]. In the Path Prefix Strategy, a software package is represented in a
simplified flow chart. Each condition in the flow chart contains two branches, true and false.
The goal of a set of test cases is to maximize the number of covered branches. The coverage
of these conditions and branches is recorded in a branch-coverage table. In this table cach
condition contains two entries, one for the true branch and one for the false branch. When
a branch of a condition is covered (or reached), the branch’s entry in the table is marked
with an "X". In addition to the marking process, the test cases that cover this branch are also
recorded. When new test cases are to be generated, we examine the table to select a
condition that is not yet fully covered, i.e., only one branch is covered. After a condition is
selected, an associated test case of this condition is retrieved. Since the earlier case started
from the package entry point and reached the condition under consideration, it is already
"close” to covering the branch that is not yet covered. The Path Prefix Strategy uses
"inverse" approach to generate a new case. However, as stated in [PRAS87], the inverse
problem is still not well understood.

Our approach to intelligent test data generation includes the the following tasks: (1)
initial case generation, (2) coverage analysis and goodness evaluation, and (3) new case
generation. Figure 1 shows the relationships among these major concepts. In this system, a
test case is represented as (case number value-1 value-2 value-3 --- value-n). "Number"
indicates the generation sequence of this case. Value-1, value-2, ---, value-n are the values
of each input variable of the package. In this initial prototype, we made the following
simplifying assumption: a condition contains constants, arithmetic and logic operators, and
input variables only. Internal variables, i.e., defined within the tested package, would not

appear in a condition. This provides a more explicit relation between the input variables

7

Initial Case Generation

yes

Test Over ?

no

Coverage Analysis
and
Goodness Evaluation

l

New Case Generation

Figure 1

Stop

System Concept of the Intelligent Test Data Generator.

and the conditional branches. The system is being implemented using CLIPS [CLI87], an
expert system development tool which provides various interfaces to communicate with

external functions written in other programming languages, e.g., C, Pascal, Fortran.

INITIAL CASE GENERATION

Initial test cases are needed to start the process. In the event the user provides test
cases with the target software package, this initial case generation step can be skipped.
However, if test cases are not provided, the initial test cases can be generated based on the
syntax information of each input variable, including type, lower limit, and upper limit. Three
cases are generated: (1) each variable is assigned to its mid-range, (2) each variable is

assigned to its bottom, and (3) each variable is assigned to its top. For each variable, the

mid-range, bottom, and top are defined as:

mid-range = (upper-limit - lower-limit) / 2
bottom - lower-limit + (upper-limit - lower-limit) * 0.05
top = upper-limit - (upper-limit - lower-1imit) * 0.05

These three cases are numbered cases 1, 2, and 3 respectively. This heuristic rule is

written as follows:

Rule-Initial-Cases

(If no cases exist

Then (assert
(case 1 mid-range-1 mid-range-2 -----=-< mid-range-n))
(assert
(case 2 bottom-1 bottom-2 --—-—==—==—--- bottom-n))
(assert
(case 3 top-1 top-2 —-—-=———=—-—- top-n))
(assert
(basket 1 2 3))
(assert
(nextcase 4)))

If more cases are needed, this rule can be modified to incorporate any desired
combinations. In this rule, a basket is asserted to notify that a set of cases has been
generated and is ready for coverage analysis. The statement of "nextcase" indicates that the

case number of next new case will be 4.

COVERAGE ANALYSIS AND GOODNESS EVALUATION

As indicated above, the objective of the test case generation is to cover as many
branches as possible. When a new set of cases is generated, it is analyzed to determine what
branches these cases have covered. This process is called coverage analysis and is
performed by an instrumented simulator of the target software package. After the coverage
analysis, it will be possible to determine what branches have not yet been covered and still
need further cases.

The instrumented simulator of a target package functions just like the target package
except it contains extra code to record the branch coverage of each condition and to
calculate how "close” a test case has been to the condition boundary. For example, an IF
statement, IF (3*x+y) >= 21 THEN do-1 ELSE do-2, will be instrumented as IF
analyze((3*x+y) >= 21) THEN do-1 ELSE do-2. Here, "analyze" is a function defined in
the simulator to perform coverage analysis and other evaluation tasks. The coverage
analysis is basically a table filling process which records the covered branches. Assume a
test case (x=5, y=2) is analyzed. Since the value of the evaluated left-hand-side (LHS), i.e.,
17. is smaller than the right-hand-side (RHS), i.e, 21, the FALSE or the ELSE branch will
be executed. This means the ELSE branch is covered.

Besides the coverage analysis, the simulator also calculates how close the LHS is

from the RHS, based on the given test case. The "closeness"” is defined as

ABS(LHS - RHS) / MAX (ABS(LHS), ABS(RHS))

This measure tells the closeness of the test case to the condition boundary [DEA88]. When
this measurement is small, it is generally true that this test case can be modified slightly to
cover the other branch of the condition. In the previous example, with test case (x=>5, y=2),
LHS is 17 and RHS is 21. The closeness value is therefore (21 - 17) / 21 = 19 %. Assume
there is a second test case (x=6, y=2), its closeness value is (21 - 20) /21 = 48 %. The
second case will be considered better than the first case. This is because a smaller change
on the second case may be enough to lead to the condition boundary or even beyond the
boundary and cover the other branch. The importance of the slight modification to the test
case is based on the fact that the original case starts from the entry point and reaches the
condition under consideration. Between these two points, this case is also used by other
conditions. In order to reach the condition under consideration again and cover the other
branch, the modified new case must pass through the same set of conditions and yield the
same branching results. For this reason, the closeness of a test case (under a particular
condition) can also be considered as its "goodness". In the current version of system, the
analyzer is written in C language. It is called as an external function from CLIPS.

In this system, each condition contains two pieces of information. The first is the
coverage of its branches. The second is the "best" test case that has reached this condition
so far. If both branches of a condition have already been covered, this condition will not be
considered for further test case generation. However, if only one branch is covered, more
test cases need to be generated, based on the best case, to cover the uncovered branch. This

heuristic is expressed in the following CLIPS rules. (These rules have been modified slightly

for easy understanding.)

Rule—-No-More-Case

(1f (check ?cond) :check condition ?cond
(cond ?cond true true $7?X) ;both branches have been
;covered. Best case, $?x, is
;ignored.

then (assert (check (+ ?cond 1)))) :check next condition.

Rule~-More—-Cases

(If (check ?cond) ;check condition ?cond
(not :not both conditions are

(cond ?cond true true ?x)) ;covered. There is also a
:best test case, ?X.

then (assert
(generate-more 2cond ?x))) ;pass the condition and the

:best case to the test case
;generator.

NEW CASE GENERATION

The objective of this portion of case generation is to cover the branches that are not
covered previously. As described above, a request of this kind provides the condition to be
considered and its best test case. The generation of more test cases should follow the
general philosophy of modifying the best case as little as possible. With this guideline in
mind, the test data generator (TDG) will generate several sets of new cases with various
constraints.

Consider the best test case, case-i, of condition cond-i. Case-i is a list of numerical
values (Vy, Vo, -, Vj, ---, V). The j-th value in the list corresponds to the j-th input
variable. Since it may happen that only part of the input variables would appear in a
condition, the TDG needs to know what variables appear in the condition. The values of
these variables have the direct impact of the branching decision and should be the

candidates to be modified. Let us assume VL = (V,, V}, ---) contains these variables. The

following heuristics have been used to generate new test cases.

1. Keep all variable values unchanged except one variable which is in VL. This
would simplify the condition under consideration. For example, in the previous best case,

(x=6, y=2), if we keep x unchanged, the condition can be simplified in the following steps:

a. 3 % x +y >= 21 ;1 X=6

b. 18 +y >= 21

cC. y >= 3

The last expression tells the condition boundary. Three more new cases can be
generated, i.e., (x=6, y=3+e€), (x=6, y=3), (x=6, y=3-¢). Here, e is defined as a small
positive number, e.g., € = (upper-limit of y - lower-limit of y) / 100. The same method is
then applied to every variable in VL. If there are m variables in VL, then 3 * m cases will be
generated. The simplification process is performed in C- subroutines. This 1s because

CLIPS does not provide symbolic evaluation functions.

2. Keep all variable values unchanged except two variables which are in VL. One of
the variables is instantiated to its mid-range value. With this instantiation, only one variable
is left in the condition. The simplification process previously mentioned can then be

applied. Assume we are considering a condition,

4 * x * y +3 *x =< 9 *y

The best test case we have so far for this case is (x=2, y=15, z=10.6). Since only x
and y appear in this condition, only their values need to be considered. Also assume the
ranges for x and y are [-10.5, 20.5] and [-5.5, 30.5] respectively. Three new test cases can be

generated in the following steps.

a. Assign y = mid-range-of-y = [30.5-(-3.5)}/2 = 18

b. Replace every appearance of y in the condition with 18.
3 % x * 18 + 3 * x =< 9 * 18
57 * x =< 162
X =< 2.842

c. Generate 3 cases (x=2.842+e, y=18, z=10.5), (x=2.842,y=18,

10

z=10.5), (x=2.842-¢, y=18,z=10.5).
The system then instantiate x to its mid-range and repeats the process.

These two heuristics will generate many new cases. Additional branch coverage
normally can be achieved. However, it may happen that new cases never reach the target
condition due to the modification of previous cases. If this happens, the best test case of the
target condition would not have been changed. Since the generation of new test cases is
based on the best case, the same set of test cases will be generated over and over again and
they will never out perform the original best case. The TDG has a mechanism to prevent
this fruitless loop. Associated with each condition, there is a "bag". This bag records all best
cases that the system has used to generated cases for the condition. As more cases are
generated and analyzed, the best case of each condition will evolve. This is the reason that
there may be more than one best case in a bag. When the best test case of a condition is
found that it has been used before, a fruitless loop may exist. This means previous heuristics

did not yield good cases. If this happens, the third and the fourth heuristics will be apphed.

3. If there is only one variable in VL, then modify all variable values except the one
in VL by 10 % of their ranges and then apply the simplification process described in the first
heuristic to find the condition boundary. In a condition with only one variable, the only way
of covering both branches is to modify this variable’s value according to simplification
process of the first heuristic. This is required no matter how a test case reaches this
condition. If the modification causes the change of the coverage path, i.e., the condition
under consideration can not be reached any more, other variable values must be modified to
compensate the change. However, the task of figuring out how a modified variable value
would impact the branchings of other conditions and how other variables’ value should be

modified to compensate the impact is still a future study topic. In this system, all other

11

variables’ values are changed 10 percent of their correspondent ranges to compensate the
impact. After the modification to all variables except the one in the condition is made, the

simplification step in heuristic 1 is applied to determine its values.

4. If there are more than one variable in VL, heuristic 2 will be applied except all

other variables will be modified with 10 percent of their ranges.

TEST DATA GENERATION EXAMPLES

In this section, a simulation of the test data generation process is presented to
illustrate the functions of the system. Assume the flow chart of a target software package is
given in Figure 2. There are three input variables to the package, i.e., x, y, and z. They are
all real numbers and have ranges, [30, 200],

[-220, 20], and [-100, 312] respectively. The expressions of the conditions are:

Cond-1: z + 20 < 3 % x
Cond-2: 3 % x *vy =< 4 * y
Cond-3: z > y + 100

When this information is presented to the TDG, three initial test cases will be
generated based on the first heuristic. They are the mid-range case, (case 1 115 -100 106),
the bottom-range case, (case 2 38.5 -208 -79.4), and the top-range case, (case 3 191.5 8

291.4). These cases are then fed to the coverage analyzer. The conditions and branches

that each case reaches are:

Case-1: (cond-1 True), (cond-2 True)
Case-2: (cond-1 True), (cond-2 True)
Case-3: (cond-1 True), (cond-2 False)

12

Figure 2 Flowchart of a Target Software Package.

Branch
Condition T F
1 X
2 X X
3

Figure 3 The Branch-coverage Table of the Target Software
Package after the Initial Cases.

All cases went through the truth branch of cond-1, two cases went through the truth

branch of cond-2, and one case went through the false branch of cond-2. The coverage table

at this point is shown in Figure 3. Based on the goodness of a case associated with a

condition defined earlier, the best test case for cond-1 is case-3 and the best test case for

cond-2 is case-2. This information is sent back to the TDG. The TDG will begin by

checking cond-1. Since only one branch of cond-1 is covered, more cases should be

generated for cond-1. The first and the second heuristics are applied and case-3 is used as

the best case. This will generate six new cases. The case generation sequence is:

(case

(case
(case
(case

(case

(case
(case

(case

4 191.5 8 554.5)

4 103.8 8 291.4)
5 102.1 8 291.4)
6 105.5 8 291.4)

7 115 8 425)

7 42 8 106)
8 40.3 8 106)

9 43.7 8 106)

The process then checks cond-2.

;keep x

unchanged, modify z only,

;z is out of range, illegal case.

;keep 2z
;keep z
;keep 2z

;keep x

unchanged, modify x only
unchanged, modify x only
unchanged, modify x only

at mid-range, modify z only

:z is out of range, illegal case

;keep 2z
:keep 2

;keep z

at mid-range, modify x only
at mid-range, modify x only

at mid-range, modify x only

Since both branches of cond-2 are covered, no

more cases are needed. When cond-3 is checked, the TDG finds that it has not been

covered previously. No cases will be generated for cond-3 at this point. The process then

passes the newly generated six cases to the coverage analyzer. The analysis result will be:

case-4: (cond-1
case-5: (cond-1
case-6: (cond-1
case-7: (cond-1
case-8: (cond-1

False),
False),
True),

False),

False),

(cond-3
(cond-3
(cond-2
(cond-3

(cond-3

13

True)
True)
False)
False)

False)

case-9: (cond-1 True), (cond-2 False)

At this point, all conditions are fully covered. The test data generator will stop.

Totally, 9 cases are generated.

THE PROTOTYPE
A prototype system, Query Utility Environment For Software Testing (QUEST), has

been designed to test Ada programs. Figure 4 provides an overview of the relationships

among the major components of QUEST/Ada.

Parser/Scanner. Under control of a user interface module (discussed later) the source code
is first processed by the parser/scanner unit. A first pass produces symbol table information
for the user interface so that a unit can be selected for testing. Once a unit is selected, the
name of that unit is passed back to the parser/scanner. The parser scanner instruments the
selected module by replacing conditional expressions with function calls. The function
called by the instrumented code evaluates the relational operation and returns the value of
the condition. This function call also writes information to files to be examined for coverage
by the test coverage analyzer. Information such as the relational operation, the condition
number, the decision test case number, the value of the condition and values of the
operands to the relational operator are written to files and to the knowledge base of the
expert system.

The parser scanner also builds a symbol table to provide information to other units of
the system. This symbol table is used to determine those variables of the unit under test that
are parameters to the unit or are global variables to the unit. Information concerning the
type, ranges, initial values and scoping within the unit is gathered during the parse of the
input. The primary user of this information is the expert system test data generator, but the

symbol table information is also used for I/O by the user interface and the report generator.

14

Code

Ada Source

Parser/Scanner Bolded Arrows Denote
Reads Ada Source

Test Data Generator

Parser/
Scanner

Feedback Loop

| »| TestData |—
P/S Asserts Generator Expert System TCA Asscrts Feedback
Var List & Info (i.c. Best Case, Trend Analysis etc..)

- Parser/Scanner
Produces
Instrumented
Code

Into The TDG Fact Base

Type Info Into TDG TDG Creates

Faci-Base Test Cases
est Coverage
Test Cases File Analyzer:
Expert System
{ Instrumented Code

Reads Test Cases
From File

Expert System TCA Reads
Intermediate Results

Report Gen TCA

Test Cases File:

Reads Intermediate
Results [T est Coverage
Instrumented termediate Results Analyzer:
Code Instrumentel File Report
Code Produces Generator
Condition Coverage Report Gen TCA
lnslmmente'd Code Info Puts Complete
Produces Final Coverage Analysis
Valx.lcs of Input Data in CA File(s)
Variables

Report Generator
TCA Reads Output Results

Coverage Analysis

Output Results File File(s)

Report Gen Reads

YCA File(s)
Report
Generator
File Layouts:

test#, input_valuel, input_valueZ2 etc...

Intermediate Results File: test#, decision#, condition#, T/F, LHS, RHS
Output Results File: test#, output_valuel, output_value2 etc...

Figure 4. Major Components of QUEST/Ada

The parser/scanner itself uses symbol table information to construct a surrounding
driver program for the unit under test. Thus all information and statement "hooks" required
by other components of the system are inserted into a copy of the original unit. This unit is
surrounded by a driver program also written in the unit language enabling the tool to be
ported to other environments supporting C, Clips, and the unit’s language. This approach
also assists the users understanding of the functioning of the system and offers an
opportunity to utilize other testing or debugging tools. Since the parser/scanner unit has
been implemented using the BISON parser generator and an LALR description of ADA,

the tool can be adapted easily for other languages.

Test Data Generator and Test Coverage Analyzer. The primary components of the expert
system are the test data generator and the test coverage analyzer. Using the compiled
output of the parser/scanner, the test coverage analyzer executes the program for a test case
and analyses the results. Based on this analysis, the test data generator creates a new test

case. The function and implementation issues of these units were described above.

User Interface. The parser/scanner, the test data generator and the test coverage analyzer
components are the primary functional units of the prototype. The user interface is
designed to control these units as well as present the results in a comprehensible format.
Terminal dependencies are handled by using the VAX-C Curses runtime library routines.
Figure 5 provides an overview of the QUEST user interface and its relationship with
other major components and files in the prototype. The user interface main menu provides
access to seven subcomponents. The first two components assist the user in defining a
functionally complete set of Ada source code files and to determine the unit to be tested.
The next component is a testing component that gives the user the opportunity to select
options such as the number of test cases to run, and to initiate the automatic test/analyze

loop. This selection causes the expert system to generate initial test data and to call the

15

BPV/LSHNO JO 2oep1au] 1050 *G a1ndig

ejeq obesonon 1sa) u

188 Isa] ejajdwon

Bupis|7 epon esinog

19)%ed ese) isa]

d|qel |oquwig

Bujis|n epon pajuswnisy

A

v v

e ™

\
l10zh1eUY

pel1eA0)
ueaq sey ejnpoyy eyl

= |

ebeisno) 1se) eyl
0] uonewJsou|

vy

J

J

re

—

J0)RIEUOYD
SepIr0ld S|

yaym ol Juslx3 pue sesen o] ummmm%msm “Ezo mmmwanw““mﬁNME

sese) se) salea) _
T SeneIRg 1901 seinoexg |0quAg sajeal)
s|sh|euy e|npopy lojeseuan
ebeionog iso uojinsaxy ise ejeq jsa ﬁoccmomto?_ma
ﬁ 2 P h\ \ uon 3 1) K d)

suonoung Amnn nueyy uLodey sejqeliea Indui o) | seseD ise) peieesn | [seses ise; sejnoex3y weisAg e woly swelsAs
eyl seinoex3 1se1 eyl seincex3 || u) sensep mxooq. 1snoinesd mmSumxm pue sejeeig SINPOW € s128/6S 183n0 seieesd
sappnTiIn tdedise 7N Bo;> 1se116ey™| :ﬁo:é In _omnos_ In jeasAs™in

t

nuepy
ureyy eyl seinsexy
nuawuiel™In

driver module to execute the test cases. The results are written to the knowledge base of the
system and the process can continue. The final four components of the user interface
provide the user with special capabilities of the prototype. These include regression testing,

direct manipulation of input values, report generation, and miscellaneous system utilities.

CONCLUSION

The objective of our research has been to explore the potential of expert system
based approaches to testing. By combining previous software coverage analysis techniques
and the artificial intelligence knowledge-based approach, more efficient test data generation
can be achieved. When more test cases are needed to cover a specific branch, heuristics are
used to simplify the problem of finding the condition boundaries from which new test cases

can be defined. We believe this approach provides a viable alternative with significant

advantages over traditional methods for attaining branch coverage.

The overall design of the prototype has been completed and we have implemented
the critical components of the system in order to demonstrate the feasibility of this rule-
based approach. Although the heuristics presented in this paper have been proven to be
useful, additional rules must be formulated to improve the utility and efficiency of the
system as well as to handle more complex code. For example, (1) a condition may contain
internally defined variables and (2) input variables may be modified. We are currently in
the process of completing the prototype implementation to facilitate an indepth comparison

of this approach with other more traditional methods and techniques for achieving software

branch coverage.

16

ACKNOWLEDGMENTS

We would like to express our appreciation to each of the project participants for

their contributions: William H. Deason, John R. Huggins, William R. A. Keleher, Michael P.

Woods, Todd Blevins, and Edward Swan.

REFERENCES

[ADRS82] Adrion, W. Richards, et al., "Validation, Verification, and Testing of
Computer Software,” ACM Computing Surveys, Vol. 14, June 1982.

[BEI83] Beizer, B., Software Testing Technigues, New York: Van Nostrand Reinhold
Company, 1983.

[BEI84] Beizer, B., Software System Testing and Quality Assurance, New York: Van
Nostrand Reinhold Company, 1984.

[CLI87] CLIPS Reference Manual, Version 4.1, Artificial Intelligence Section, Johnson
Space Center, NASA, September 1987.

[DEASS] Deason, William H., "Rule-Based Software Test Data Generation," Thesis,
Auburn University, December 1988.

[DEM78] DeMillo, R. A, Lipton, R. J,, and Sayward, F. G., "Hints on Test Data

’ Selection: Help for the Practicing Programmer,” IEEE Computer, Vol. 11, No.

4, April 1978.

[DURS1] Duran, J. W. and Ntafos, S., "A Report on Random Testing," in Proceedings of
the 5th Intemational Conference on Software Engineering, March 9-12, 1981.

[GOOT5] Goodenough, J. B. and Gerhart, S. L., "Toward a Theory of Test Data
Selection," IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, June
1975.

[HOW75] Howden, W. E., "Methodology for the Generation of Program Test Data,"
IEEE Transactions on Software Engineering, Vol. C-24, May 1975.

[HOW76] Howden, W. E."Reliability of the Path Analysis Testing Strategy," IEEE
Transactions on Software Engineering, Vol. SE-2, September 1976.

[HOW78] Howden, W. E., "Theoretical and Empirical Studies of Program Testing,"
1EEE Transactions on Software Engineering, Vol. SE-4, July 1978.

[HOWS80] Howden, W. E. "Functional Program Testing," IEEE Transactions on
Software Engineering, Vol. SE-6, March 1980.

[HOWS2] Howden, W. E., "Life-Cycle Software Validation," IEEE Computer, Vol. 15,

No. 2, February 1982.

[HOWS6]
[HOWS7]
[HUA75]
[MIL84]

[NTAT79]

[PAN78]

[PRA87]

[RAM75]

[RAM76]

[SHO83]
[VIC84]

[VOUSS]

[WHIS0]

[W0080]

Howden, W. E., "A Functional Approach to ProSgram Testing and Analysis,"
IEEE Transactions on Software Engineering, Vol. SE-12, October 1986.

Howden, W. E., Functional Program Testing and Analysis, McGraw-Hill, New
York, 1987.

Huang, J. C., "An Approach to Program Testing," ACM Computing Surveys,
Vol. 7, September 1975.

Miller, E. F., "Software Testing Technology: An Over view," in Handbook of
Software Engineering, New York: Van Nostrand Reinhold Company, 1984.

Ntafos, S. C. and Hakimi, S. L., "On Path Coverage Problems in Digraphs and
Applications to Program Testing," IEEE Transactions on Software Engineering,
Vol. SE-5, September 1979.

Panzl, D. J.,"Automatic Software Test Drivers," IEEE Computer, Vol. 11, No.
4, April 1978.

Prather, R.E. and Myers, P., Jr,, "The Path Prefix Software Testing Strategy,"
JEEE Transactions on Software Engineering, Vol. SE-13, No. 7, July 1987, p.
761-765.

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Soft ware with Automated
Software Evaluation Systems," IEEE Transactions on Software Engineering,
Vol. SE-1, March 1975.

Ramamoorthy, C. V. et al., "On the Automated Generation of Program Test
Data," IEEE Transactions on Software Engineering, Vol. SE-2, December

1976.

Shooman, M. L., Software Engineering, New York: McGraw- Hill Book
Company, 1983.

Vick, C. R., and Ramamoorthy, C. V., Handbook of Soft ware Engineering,
New York: Van Nostrand Reinhold Company Inc., 1984.

Vouk, Mladen A., McAllister, David F., and Tai, K. C., "An Experimental
Evaluation of the Effectiveness of Random Testing of Fault-Tolerant
Software,” in Workshop on Software Testing Proceedings, IEEE Computer

Press, 1986.

White, Lee J. and Cohen, E. 1, "A Domain Strategy for Computer Program
Testing," IEEE Transactions on Software Engineering, Vol. SE-6, May 1980.

Woodward, M. R., et al, "Experience with Path Analysis and Testing of
Programs," IEEE Transactions on Software Engineering, Vol. SE-6, May 1980.

APPENDIX E
DESIGN OF THE USER INTERFACE

A concerted effort was made to separate the user interface
design documentation from the other parts of the design. This
was done to eliminate the complexity that would result, making
the diagrams virtually unreadable. For this reason the user
interface is omitted from the IORL system description given in
Appendix A.

This is not to minimize the importance of the user interface
design. In fact, as the user interface evolved it contributed
heavily to the system structural design. Further, the user
interface is important from the standpoint that QUEST/Ada will be
worthless unless it can be operated easily by Ada code test
personnel.

The user interface presented in this section is expected to
continue to evolve throughout Phase 2 of the project. Until such
modifications are made, it can be used as a user manual for the
QUEST/Ada system. Figure E.1 gives an overview of the user
interface as it interacts with the four components of the systen
(compare with the IORL SBD, Document: QUEST).

Ul_MsinMenu
Execules the Main
Menu

Ul_SysDet Ul_ModSel Ul_AutoTest Ul_RegrTest Ul_VarDef Ul_TestRept Ul_Utllitles
Creates QUEST Selects a Module Creates and Executes Previously]| *Locks™ Values in || Executes the Test Executes the
Systems trom a System vecutes Test Cases| | Created Test Cases] | for input variables Report Menu Utility Functions
)) ——]

P —
Test Data

Generator

Test Coverage
Analysls

Test Execution
Module

Executes Test
Cases and
Provides

Information to

the Test Coverage
Analyzer

II 4 4
t ‘ -

Instrumented Code Listing | Symbol Table Test Case

Parser/Scanner

Creates Symbol
Table, Produces
instrumented code

Determines the
Extent to which
the Module has been
Covered

Creates Test Casas
with Rule-Based
Generator

Packet

Source Code Listing e Complete Test Set | Test Coverage Datas

Figure E.1 Overview of User Interface

The QUEST Prototype is invoked by typing "QUEST" at the DCL
command prompt. This executes a command file which establishes
the environment for QUEST, and then starts the system. The first
screen to appear is the title screen; press <ENTER> to go on to
the main menu, which is given in Figure E.2. This is the overall
controlling menu for the system. It will appear when QUEST is
invoked from the operating system. Each entry of this menu
corresponds to a function in Figure E.1l.

Note first that there are seven major options on the main
menu which are chosen by typing the corresponding digit 1-7.
There are also two other options, Help and Exit, which are avail-
able from any QUEST screen by using the <HELP> and <PF4> keys.
The box at the bottom of the screen displays the current system
and ADA module under test.

The menu items are arranged in the order that they are
usually invoked, as described below:

1. System Definition. As a first step, the system containing
the module to be tested must be identified to QUEST.

2. Module Selection. Once a system is identified, the module to
test in that system must be selected.

3. Automatic Testing. This is the actual testing of the module,
which involves a number of steps described below.

Quest Main Menu

System Definition
Module Selection
Automatic Testing
Regression Testing
Variable Definition
Test Result Reports
Utilities

Sootbk WO R

<HELP> Help
<PF4> Exit

Current System: None Selected
Current Module: None Selected

Figure E.2 QUEST Main Menu

E2

4. Regression Testing. This is only performed after module
modification, usually as a result of debugging. It has the
effect of repeating all previous tests and automatically
determining if there were any errors introduced by the modi-
fication. This is essential to assure that bugs were not
introduced by debugging, especially in areas other than that
addressed by the error removal process.

5. Variable Definition. This function allows the user to fix
the value of variables in the test. Since any good software
design will have predefined tests designed for verification
and validation, QUEST allows these to be entered at this

point.

6. Test Result Reports. This leads to a series of optional
coverage reports which display details of the tests performed
at any given point in the testing process.

7. Utilities. This entry contains some housekeeping functions
and other options which do not logically fit into the other
menu selections.

Each of these menu entries will be described in a separate sub-
section below which corresponds to the number of the entry in

Figure E.2.

E.1 B8YSTEM DEFINITION MENU

System Definition is used to identify to QUEST the collec-
tion of software modules which is to be subjected to test. This
collection of inter-related software henceforth will be called
the "system." In this context, a system is a complete functional
collection of Ada source code files. Therefore, all modules
necessary for executing any of the units to be tested must be
included in the system at this time. Figure E.3 illustrates the
screen which appears when this option is chosen from the QUEST

Main Menu.

The source files which appear in the large window are from
the current source directory (which can be altered by Option 7 on
the main menu). Source files are selected by moving the cursor
. through the list using the cursor keys, and then pressing <SE-
LECT> to include a file in the system. The entry of <SELECT> on
a previously included file will remove it from the list. The
selected files are highlighted on the screen. In the example of
Figure E.3, the user moved the cursor to SOURCE4.ADA, entered
<SELECT>, and did likewise with SOURCE5.ADA, thus selecting these
two files for the system under consideration.

When finished selecting the files, Option 1 on this menu
initiates the actual creation of the system. The window at the

E3

bottom of the screen prompts for a name to be qssigned Fo this
system, as illustrated in Figure E.4. The notice "Working..."
will the appear in the window until the system has been created,

as shown in Figure E.S.

QUEST S YSt e m:.Definition. ... s

SOURCE1l.ADA SOURCE2 .ADA
SOURCE3.ADA SOUR)2
: f SOURCEG6 . ADA
SOURCE7.ADA SOURCES8 .ADA
1 Create System <SELECT> Select Source
2 Delete System <HELP> Help
3 Recall System <PF4> Exit
Current System: None Selected
Current Module: None Selected
\ J
Figure E.3 QUEST System Definition Menu

_____QUEST System Definition . .

SOURCE1l .ADA SOURCEZ2.ADA
SOURCE3.ADA

SOURCEG6 .ADA

SOURCE7 .ADA SOURCES8 .ADA

1 Create System <SELECT> Select Source
2 Delete System <HELP> Help

3 Recall System <PF4> Exit

Please enter a name for the system:
newsys. sd
\— J

Figure E.4 QUEST System Definition Menu -- Naming

E4

S

Sstem”;béfinitibn“_

SOURCE1l.ADA SOURCE2.ADA

SOURCE3.ADA SOURCE4 .AD

SOURCE5 . ADA SOURCE6 . ADA

SOURCE7.ADA SOURCES8 .ADA

1l Create System <SELECT> Select Source

2 Delete System <HELP> He}p

3 Recall System <PF4> Exit

Working. 4@
. _J

Figure E.5 QUEST System Definition Menu -- Working

As an alternative to directly selecting the files to be
included, Option 2 of this menu presents a list of previously
defined systems. The choice may be made in a manner similar to
that described above (i.e., move the cursor and press <SELECT>).
Option 3 presents the same list, but the system chosen is a
system to be deleted. To return to the main menu, use PF4.

E.2 MODULE SELECTION MENU

Option 2 of the Main Menu enables a selection of the module
to be tested. A list of all modules in the previously-defined
system will be displayed in the large window of the Module Selec-
tion Menu. Modules for test are selected by moving the cursor to
the desired module name and pressing <SELECT>. In Figure E.6,
Module 8 is being selected. The selection of a module will
automatically bring back the Main Menu.

E.3 AUTOMATIC TESTING MENU

Initially, the Automatic Testing Menu appears as shown in
Figure E.7. To initiate a test of the current module, use option
1 -- Begin Testing. QUEST responds by asking for the maximum
number of test packets to be generated. Once the desired number
is entered, testing begins. The maximum number of packets to be
generated is displayed at the top of the screen. Below it, the

E5

Test Data Generator updates the number of packets that it has
created, and the last test that it created. Immediately below
that is the coverage information. This includes the last test
updatgd, as well as the percentage of coverage achieved so far.
The window at the bottom displays various messages about the
progress of the testing.

QUEST Module Selection

Modulel Module2
Module3 Module4
Moduleb Module®b
Module?7 Ekdule8

<SELECT> Select Module

<HELP> Help
<PF4> Exit
Current System: newsys.sys
Current Module: None Selected
\. J

Figure E.6 QUEST Module Selection Menu

Maximum Number of Test Packets:
Packets Created:
Tests Created:

LLast Test Executed:
Coverage Achieved:

Decision:
Condition:
1 Begin Testing <HELP> Help
2 Halt Testing <PF4> Main Menu
Current System: newsys.sys
Current Module: module8
. J

Figure E.7 QUEST Automatic Testing Menu

E6

To stop the testing, enter 2. To return to the main menu,
press <PF4>. Help is available throughout the QUEST system as
indicated.

E.4 REGRESSION TESTING MENU

Regression Testing allows the user to replay a test of a
module. This is essential after any program modification to
assure that errors have not been introduced during debugging.
This menu is identical to the Automatic Testing Menu given in
Figure E.7 above, with the exception that the user is not prompt-
ed for the maximum number of test packets. Also, the test gener-
ation data (the top three lines) display the final information
from the original test.

E.5 VARIABLE DEFINITION MENU

option 5 of the Main Menu brings up the screen given in
Figure E.8. This menu enables values to be defined for any or
all of the input variables of the module under test. This proc-
ess will henceforth be referenced as "locking" the variable, as
it prevents the Test Data Generator from creating values for
those variables. When the variable Definition screen is initial-
ly displayed, the variables recognized as input variables by

QUEST are displayed in the large window.

 pefinmition

Type:
Current Value:

<HELP> Help

<PF4> Main Menu
Current System: newsys.sys
Current Module: Module8
q J

Figure E.8 QUEST variable Definition Menu

E7

Any variables that are composite types (such as arrays and
records) are denoted with a "+" to the left of the variable name.
If a composite variable is selected, the name of that variable is
placed in the upper text window and the variable's components
(i.e. fields in a record, elements in an array, etc...) are
placed in the main text window. The user can descend as far as
the composite type allows, and can return to the depth immediate-
ly above the current depth by selecting the "UP" marker that
appears in the top left of the main text window for every compos-

ite variable.

Variables that are currently user defined are marked with an
"x" to the left of the variable name. A variable for definition
may be selected by highlighting it with the arrow keys and press-
ing return. When a variable is selected, its type, scope, and
current user-defined value (if any exists) are displayed on the
screen. A new value for that variable can then be entered in the
"New Value" field.

E.6 TEST RESULT REPORTS MENU

The Test Result Reports Menu is shown in Figure E.9. The
three reports that can be viewed are the Test Coverage Report,
the Cumulative Coverage Report, and the Regression Test Report.
Selecting any of the reports will bring up the text of the appro-
priate report. Cursor keys may be used to scroll through the
listing, and the <PF4> key will return to the Test Result Reports

Menu.

1 Test Coverage Report
2 Cumulative Coverage Report
3 Regression Test Report
<HELP> Help
<PF4> Main Menu
Current System: newsys.sys
Current Module: Module8
. J

Figure E.9 QUEST Test Result Report Menu

E8

E.7 UTILITIE8S8 MENU

This menu includes a complete list of the housekeeping and
other odd functions of QUEST, including changing directories,
renaming, copying, and deleting files, setting defaults, and
printing files. Because this menu is evolving with the design
and is expected to change so dramatically, it is not presented in

detail at this point.

E.8 SUMMARY OF USER INTERFACE DESIGN

The documentation given above has formed the basis for an
early user interface which will facilitate the remainder of the
design and development of the other component prototypes. For
this reason this portion of the design/development has been
allowed to lead the others. Recognize that many modifications of
the user interface design are expected. The documentation in
this section will continue to be modified and heavily augmented
during prototype development to form the final user manual.

E9

APPENDIX F
PROPOSAL FOR PHASE II
This appendix presents the proposal for Phase II which was

submitted to NASA in early May of 1989 in order to form the basis
for the approval of Phase II funding.

PROPOSAL

THE DEVELOPMENT OF A PROGRAM ANALYSIS
ENVIRONMENT FOR ADA
(PHASE 2)

Submitted to
National Aeronautical and Space Administration

Marshall Space Flight Center

Submitted by
Department of Computer Science and Engineering

107 Dunstan Hall
Auburn University, Alabama 36849

April 25, 1989

David B. Brown, Ph.D., P.E. James H. Cross 11, Ph.D.

Professor and Acting Head Assistant Professor

Computer Science and Engineering Computer Science and Engineering
Co-Principal Investigator Co-Principal Investigator

Paul F. Parks, Ph.D.

M. Dayne Aldridge, Ph.D.
Vice President for Research

Associate Dean and Director
Engineering Experiment Station

THE DEVELOPMENT OF A PROGRAM ANALYSIS
ENVIRONMENT FOR ADA
(PHASE 2)

This proposal is for Phase 2 of a research project which was initiated on June
1, 1988. This phase of the project consists of two tasks: (1) the development of
testing tools, and (2) the development of graphically-oriented reverse engineering
tools. Both of these tasks will focus on Ada as the primary high level language for
which prototypes will be developed. The proposal is organized by the tasks given
above. Within each, the overall goals are presented, followed by the research
approach to be applied. This is followed by an overall project budget.

TASK 1
TESTING TOOLS FOR ADA SOFTWARE

TASK 1: GOALS

The primary goals of software support tools for Ada are to improve software
quality and reliability as well as increasing development efficiency. Phase 1 of the
current project has been to design and prototype an environment to facilitate expert
system assisted testing of Ada code. A formal grammar specification of Ada and a
parser generator were used to build an Ada source code instumenter. Rule-based
techniques provided by the expert system tool, CLIPS, were used as a basis for the
expert system. The prototype performs test data generation on the instrumented
Ada program using a feedback loop between a test coverage analysis module and an
expert system module. The expert system module generates new test cases based on

information provided by the analysis module.

The current prototype for condition coverage provides a platform that
represents an expert system interaction with program testing. This expert system can
modify data in the instrumented source code in order to achieve coverage goals.
Given this prototype it is now possible to evaluate the rule base in order to develop
improved rules for test case generation. As the environment matures it is expected

that it will become increasingly user friendly.

The goals of Task 1, Phase 2 are the following: (1) to continue to develop and
improve the current user interface to support the other goals of this research effort,
(2) to empirically evaluate a succession of alternative rule bases for the test case

enerator such that the expert system achieves coverage in a more efficient manner,
and (3) to extend the concepts of the current test environment to address the issues
of Ada concurrency. The proposed approach to achieving these goals will now be

discussed.

TASK 1: RESEARCH APPROACH

This phase of the research includes the following subtasks.

1. Testing and evaluation of the present prototype.

The effectiveness of different test case generation rule sets will be evaluated
through empirical studies. In order to accomplish this, a performance evaluation
mechanism must first be designed and developed. Performance can then be
measured in terms of the number of covered condition branches, the percentage of
new test cases that cover anticipated branches, and other possible coverage and
efficiency metrics. These measurements will be performed for various test case
generation rules and different best test case selection policies.

2. Investigations into extension of new test case generation rules.

The current generation of new test cases is based on the "best previous case."
A newly generated set of cases may never out perform the best previous case, or it
may not reach the designated condition. Under these situations, the best case of a
condition would remain unchanged. This will result in fruitless regeneration of a
same set of cases. New rules must be added to redirect the case generation effort.
Alternatives include larger modification to non-dominant variables and
reinstantiation of variables that distract a test case from its designated path.

A second area that requires attention is the new case generation rule set.
Currently the new case generation philosophy is to find condition boundary and to
generate cases that are either right on the boundary or that are slightly off the
boundary. Attention is solely placed on the condition under consideration. It will be
more effective if the path that the new cases are anticipated to drive is also
considered. This effort will include determining conditions that are on the path and
obtaining values for the variables that are used by these conditions. The new case
generation rules should avoid modifying variables that appear in conditions that are

on the designated path.

3. Investigation into extensions to other testing strategies with expert system
support.

This extension is to include parameters that are returned by external functions
in the case generation rules. The current prototype considers only input parameters
for test case generation. Parameters returned by other functions (e.g., a number
typed by an operator on the terminal) may affect condition branching. Study will be
done to investigate how the externally defined parameters can be included in the test

case generation.

4. Investigation into extensions to integration testing and concurrency.

Integration testing includes combinations of (1) subprograms, (2) tasks, and
(3) packages. In particular, successful testing of Ada code must include the testing of
the multiple threads of control associated with Ada tasks. Difficulties in such testing
arise from the fact that in addition to data dependencies, real time tasking behavior
can affect statement coverage. A testing environment for Ada programs must have
the ability to simulate or control not only data driven execution paths, but also paths

determined by synchronizations and communications.

S. Establish contacts with NASA subcontractors who are actively developing
Ada software.

NASA subcontractors have expressed interest in the prototype developed in
Phase L. Interacting with these contacts will provide input regarding testing problems

unique to NASA applications, provide a basis for refinements consistent with their
needs, and facilitate eventual technology transfer.

TASK 1: PROPOSED RESEARCH SCHEDULE

The following Gantt chart provides the sequence of Task 1 activities to be
accomplished during Phase 2 and Phase 3 of this project. Details for the Phase 2
activities were presented above. Phase 3 activities will be developed in greater detail

as Phase 2 progresses.

TESTING TOOLS FOR ADA SOFTWARE
PROPOSED RESEARCH ACTIVITIES

PHASE i PHASE 1l

_ Sum Fall Win Spr Sum Fall Win
TESTING AND EVALUATION OF 0 e 9

Spr
PRESENT PROTOTYPE

Select test programs
Run tests

Evaluation and continued testing
Write up and report results

NEW TEST RULES AND OTHER
TEST STRATEGIES

Deslign b A LI B

Extend instrumentation Rl

Extend expert system R B A

Extend analyzer DT s R

Extended prototype testing R PR i

INTEGRATION TESTING

Definition of scope
Requirements analysis
Preliminary design

Prototype development
Prototype integration
Evaluation

BT,
INTERFACE WITH CONTRACTORS
Contacts
Visits
Reports

TASK 2
REVERSE ENGINEERING TOOLS FOR ADA SOFTWARE

TASK 2: GOALS

Computer professionals have long promoted the idea that graphical
representations of software are extremely useful as comprehension aids when used to
supplement textual descriptions and specifications of software, especially for large
com}l)lcx systems. The general goal of this research is the study and formulation of
graphical ~ representations of algorithms, structures, and processes for Ada
(GRASP/Ada). The research is presently focused on the extraction and generation
of graphical representations from Ada source code to directly support the process of

reverse engineening.

Our primary motivation for reverse engineering is increased support for
software reusability and software maintenance. While applications written in Ada
may seem somewhat young to benefit from reverse engineering, NASA and others
are quickly amassing hbraries of Ada packages. Both reuse and maintenance should
be greatly facilitated by automatically generating a set of "formalized diagrams” to
supplement the source code and other forms of existing documentation.

The goals of Task 2, Phase 2 are the following: (1) to study, formulate and
evaluate graphical representations for Ada software, (2) to develop a prototype
reverse engineering tool that includes support for generation of both algorithmic and
hierarchical diagrams, and (3) to investigate the generation of additional graphical
representations to provide task, package, and data flow views of Ada software. The
subtasks outlined in the research approach below are expected to provide a basis for
a methodology for graphically-oriented reverse engineering of Ada software.

TASK 2: RESEARCH APPROACH
This phase of the research includes the following subtasks.

1. Formalize a set of graphical representations that directly support Ada
software at various levels of abstraction, e.g., system, architectural, and algorithmic

levels.

A small, but representative, Ada program will be utilized to formulate and
evaluate a set of graphical representations. Specifically, the feasibility of reverse
engineering the diagrams from Ada source code will be evaluated. These graphical
representations are expected to undergo continual refinement as the automated

tools that support them are developed.

2. Design and implement a software tool for genmerating control structure
diagrams (CSDs) and hierarchical diagrams (HDs), e.g. structure charts, from Ada

source code.

The present prototype which has focused on CSDs will be extended to include
hierarchical diagrams. This subtask will include (1) development of procedures for

identifying and recording module interconnections, (2) development of algorithms
for hierarchical diagram layout, and (3) development of methods for
displaying/printing hierarchical diagrams on hardware available for this research.
The tool will be used on representative Ada software. The generated set of graphical
representations will be evaluated for completeness, correctness, and general utility as

an approach to reverse engineering.

3. Design and implement the system dictionary component of the GRASP/Ada
environment.

This subtask is expected to be done in parallel with the CSD/HD generator
subtask and will include)?i) development of routines to capture general symbol table
information, (2) specification of appropriate report formats, and (3) development of
the routines to produce reports from the system dictionary. The system dictionary
component is expected to play a major role in supporting the next level of graphical

representations of Ada.

4. Investigate additional automatically generated graphical representations of
Ada software such as a task view, package/object view, and data flow view.

The task view is expected to be a non-algorithmic view in which task
dependencies and interfaces with other Ada components are indicated in a network
of communicating processes. This view should provide the user with insight into the
concurrent aspects of the Ada software. The package/object view will indicate
dependencies among packages as well as data types and operations (functions and

rocedures) provided by each package. This view will become increasingly
important as object-oriented design becomes more widespread. A general data flow
view of the software is expected to be the most difficult to generate.

5. Investigate the application of artificial intelligence (AI) and expert systems to
this graphically-oriented methodology. _

The use of expert sxstcms and rule-based systems will be investigated as an
approach to analysis of Ada software. In particular, Al-assisted Jayout of the
graphical representations described above will be investigated.

TASK 2: PROPOSED RESEARCH SCHEDULE

The following Gantt chart provides the sequence of activities to be
accomplished during Phase 2 and Phase 3 of this project. Details for the Phase 2
activities were presented above. Phase 3 activities will be developed in greater detail

as Phase 2 progresses.

MmalA mol) ejep ubissq
ma|A ebexoed uswadwy pue ubiseqg

ACGE i3
QUALI

s |

V7w ay

A

/as UM lred wng 1ds UM Ired wng
lii 29VHd Il 3SVYHd

maja Bupyse) juswadw) pue ubisaqg
Poulaw inokej maia Bupse; ubisag

ORIGINAL |

8p00 80UNOS U $ySe)

epy Bunejosy Jo} poyraw ubisag
(s39VNOVd ‘SMSVYL) S.4D TVNOILIgaY

waisAs padxa ejesbajul pue dojansg

Buuaauibua asianas o) swaishs
Vadxa jo uopeoydde ajebisanu)

NOIS3Q WALSAS 1H3dX3 aNV IV

90UBJ2§8J-55010 WdlsAs a1eIaULD)
syodaJ eonpoud o} sainpadoid 3UM

Steuno} uodas ubisaqg
uoneunoju Areuololp waisAs

a.nide o} s||e2 ainpasoid paquy

NOIS3Q AHVNOILOIA WILSAS

swyiuobie gH eyeibayy;

aH 40} s19AUp uud dojanag
wuyucbie
Inoke; wesbep gH dojansg

Slied ainpasoud gH paqug
SgH ubissqg
SYDO eulal pue 8zijewi04
NOIS3A WVHOVIQ TVOIHOHVHIIH

SAILIAILOY HOHVISIH Q3SOdOHd

JHVMLH40S vav HAd 1~

RYAHUTITIAIIENAI™T ™ Ar 1= A =11

OF POOR

