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SUMMARY

The strength and toughness of two composite and two monolithic silicon
nitrldes were measured from 25 to 1400 °C. The monolithic and composite mate-

rials were made from similar starting powders. Both of the composite materi-
als contained 30 vol % silicon carbide whiskers. All measurements were made

by four-polnt flexure in surrounding alr and humidity. The composite and mono-
llthlc materials exhibited similar fast fracture properties as a function of

temperature.

INTRODUCTION

The need for more fuel efficient transportation and lower engine emls-

sions has made ceramics increasingly important structural materials. Ceramics

offer many beneficial properties, such as high-temperature strength, low

density, and low thermal conductivity. However, they exhibit low toughness

and low rellablllty.

One approach that may improve the toughness, crack growth resistance and

reliability of monolithic silicon nltride is the addltlon of whiskers or fib-

ers. Whiskers may bridge developing cracks and thereby Impart toughness,

crack growth and creep reslstance. The objective of this work was to deter-

mine properties and structural behavior of developmental s11icon carbide
whlsker reinforced silicon nitrldes. Similar monolithic materials were also

studied to provide a general base of comparison.

MATERIALS PROCESSING AND MECHANICAL PROPERTIES

Materials Processing

The materials used in this study were based on Garrett's GN-}O and a Nor-

ton monolithic silicon nltrlde. At the tlme of this study, composite versions

were not commercially available, however, limited quantities had been

processed.

Garrett Company GN-IO silicon nitride powder composition was slip cast
into 50 mm diameter, 75 mm helght billets, glass encapsulated by the ASEA I

method and HIPed to produce monolithic material. Part of the same powder
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batch was blended wlth 30 vol % SIC whiskers by ACMC2 and processed wlth the
sameprocedures as the monolithic. Densities of the monolithic and composite
materla]s were 3.31 and 3.27 g/cm3, respectively.

The Norton Companybased materials were processed by mixing silicon pow-
der wlth 4 wt %Y203 and then adding 30 vol % Tateho T44 SiC whiskers to a por-
tion of the powders. The powder mixtures were cast as a slurry into 50 mm
square by 6 mmthick p]ates, cold isostatically pressed, nitrided, and HIPed
by the ASEAglass encapsulation method. Densitles of the monolithic and com-
posite materials were 3.24 and 3.23 g/cm3, respectlvely.

Machining and Nondestructlve Evaluation

Strength and fracture toughness specimens were machined from billets of
Garrett material with the longitudinal axis perpendicular to the billet diame-
ter. Specimensfrom the Norton materials were machined wlth the 3 mmdimen-
sion paral]el to the hot pressing direction of the plates.

Test specimenswere inspected using radiography, optical microscopy and
ultrasonic evaluation. Specimenswere radiographed through the thickness and
width at several intensities and times to produce optimum conditions. Optical
inspection was performed with a machinists scope from lOx to 50x. Precislon
ultrasonic measurementswere performed with an automated system at 50 MHz
(ref. I).

Mechanica] Testing

Four-polnt bend strength was determined in accordance with MIL Standard
1942 (ref. 2) at temperatures from 25 to 1400 °C. Betweenthree and ten speci-
menswere tested per temperature. The speclmensmeasured3 by 4 mmIn thick-
ness and width and were tested with spans of 20 and 40 mm(size B). The nature
and location of failure origins was determlned with optical microscopy or scan-
nlng electron microscopy.

Fracture toughness was determined by the chevron-notch method (ref. 3).
Becauseof slight varlatlons In the notch geometry, the stress
Intenslty factor coefflclents were determined with the stralght-through crack
assumptlon (ref. 3). Specimensmeasured3 by 6 mmin thickness and width,
with 20 and 40 mmspans. Three to six specimenswere tested per temperature.
The specimenswere tested at a stroke rate of 0.05 mm/mln. The low stroke
rate used for chevron-notch testing was required to insure stable crack
extension.

RESULTS AND DISCUSSION

Nondestructive Evaluation

The Garrett monolithic material exhibited a coarse cellular structure
that was visible to the unaided eye and in radiographs. The composite
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occasionally exhlbited the samemacro-cellular structure and a banding or
chemlcal layering, flgure I, in the radial direction, slmllar to the billet
geometry (a cylinder). Thls mayhave resulted from shrinkage during the slip
casting process. Such radiographic observations have been related to density
variations (ref. 4). However, ultrasonic velocity measurements,which are sen-
sltlve to density variations, were similar for regions of radiographic dlsslml-
larity, Indlcating chemlcal, rather than density varlations. Attempts to
determine composltional differences vla energy dispersive analysis and elec-
tron mlcrophobe scans were fruitless. However, dye penetrant tests indicated
the cell boundaries to contain fine disconnected porosity.

Very little anisotropy (less than 1 percent) in composite or monolithic
billets of Garrett material could be detected with velocity measurementsin
longitudinal and transverse directions, as shown in table I. Velocity measure-
ments on samplesmachined from different billets also showedlittle difference
(table II). The velocity as a function of longitudinal position was also
determined to be similar for the center 2 cm of two billets (table III).

Radlography of the Norton material indicated the composite to be homogene-
ous. However, the monolithic material had slgnlficant density or compositional
variations on one 50 mmface of the plates (fig. 2). Acoustic microscopy was
not performed on the Norton materials. Electron microprobe scans indicated
someconcentrations of yttrium and a few regions of tungsten concentration.
No slgnlflcant edge-to-edge chemical differences were determined.

Bend Strength

A summaryof bend strength and fracture toughness test results is given
In table IV. Strength of the Garrett composite and monolithic materials were
similar at each test temperature (fig. 3).

In contrast, the Norton composite exhlblted higher strength than the cor-
respondlng monolithic at 25, 800, and 1200 °C, and similar strength at lO00
and 1400 °C (flg. 3). The low room temperature strength of the monolithlc was
attributed to the aforementioned density variations.

Fracture Toughness

Fracture toughnesses of the Garrett composlte and monolithlc materials
were comparable as a function of temperature (fig. 4). Fracture toughness,
calculated from maxlmumload and minimumstress intensity coefficient,
decreased with temperature to 1200 °C. However, at 1400 °C the observed tough-
ness Increased substantially. Evidently the combination of slow stroke rate
and high temperature resulted in creep deformation during crack extension.
For such temperatures, toughness measurementsdetermined with chevron-notches
can be muchhigher than those madewith precracked beams(ref. 5). Thus,
chevron-notches maybe inappropriate for such high temperatures.

The Norton composite and monolithic materlals exhibited similar tough-

nesses as a function of temperature; toughness Increased from a minimum at

room temperature to a maximum at lO00 °C, and decreased through 1400 °C

(fig. 4). This brittle room temperature behavior, followed by Intermediate

temperature toughening, was attributed to softenlng of glass In the grain



boundary phase. Continued glass softenlng resulted In decreasing strength and

toughness above lO00 °C.

Fractography and Microscopy

Typical microstructures are illustrated in figures 5 and 6. The whisker

distribution in the Garrett composite was somewhat heterogeneous, with the

whiskers distributed randomly in some reglons and orlented in others. Whisk-

ers, shown in figure 7, were revealed with a modified plasma etching procedure

(ref. 6). The procedure did not work well on the Norton material because of

the short whisker lengths.

TEM observations of the monolithic and composite Norton materlals indi-

cated graln-boundarles with significant crystallizatlon. The crystallized

grain boundaries were Y-rich, but the phases could not be identified. Glassy

regions remained, some of which were phase separated. These regions were low

in yttrium content, but had accumulated many impurities, e.g., K, Ca, CI, Na,

P, S, etc. thought to be from abrasion of a rubber mill seal during process-

Ing. The glassy regions also contained small, spherical H-rich particles, pre-

sumably from mllling media. Many SI3N 4 grains contained dislocations. The

composite material contained large SiC grains, which were debris added with
the SiC whiskers (Norton is taking steps to remove large chunks from whiskers).

Many of the whiskers were hollow and contained Y-rich amorphous phases and

small SI3N4 crystals. The SiC whiskers were bonded to the matrix by a glassy
phase, which explained the lack of signlflcant whisker pull-out observed on

room temperature fracture surfaces, shown In figure 8.

Fracture surfaces of both composite materials did exhibit whiskers and

their impressions. The size of exposed whlskers and impressions were typlcally

on the same order as the grains and agglomerates. However, large extensions

of fibers were occasionally observed (fig. 8). To attain toughening via whis-

ker additlons, the fibers may have to act over dlmenslons greater than the

grain and agglomerate slze.

The Garrett materials failed from porous regions, coarse grained regions,

and agglomerates (fig. 9). The failure initiating flaws in the Norton mono-

lithic were subsurface porous areas 30 to 60 _m across (fig. lO).

The Norton composite falled from SiC chunks of approximately 50 pm

length. The size of the failure orlglns were much greater than whisker

lengths, and strength improvements can only be expected If the fibers are capa-

ble of brldglng such flaws, or stabilizing cracks that extend from them.

SUMMARY OF RESULTS

The addition of 30 vol % SiC whiskers to monolithic silicon nitrides d_d

not substantially improve room or elevated temperature strength or toughness.
Sillcon carbide chunks occaslonally acted as failure origins in both composite

materials. Whiskers and remnant impressions on the order of graln size where

typIcally vlsible, however, well extended flbers were only occasionally visi-

ble. Either different whiskers, different bonding, or improved microstruc-

tures may be required to improve the fracture properties via whisker additions.
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TABLE I. - ULTRASONIC SHEARWAVE VELOCITIES IN

THE TRANSVERSE AND LONGITUDINAL DIRECTIONS

OF MOR BARS OF GARRETT MATERIALS

Billet or

specimen

C-2103
C-3103

C-11105
C-12/04
M-II01

Velocity,
cm/_s

(longitudinal)

0.628
.624

.631

.627

.601

Velocity
(transverse)

a0.626
a.624
a.632
a.628
b.601

aComposite.
bMonolithic.

TABLE II. - ULTRASONIC VELOCITIES IN GARRETT BILLETI

Billet

(composite)

C-12
C-11
C-8
C-3
C-2

Velocity,
cm/_s

1.082

1.092
1.083

1.075
1.082

Billet
(monolithic)

M-I
M-2
M-3
M-C

Velocity,
cm/_s

1.081
1.082
1. 088
1.082

TABLE III. - VARIATION OF ULTRASONIC

VELOCITY ALONG THE LENGTH OF

MONOLITHIC AND COMPOSITE

GARRETT BILLETS

Distance from

center,
cm

-I .0
-0.5
0.0
+0.5
+I .0

Velocity,
cm/_s

Monolithic

1.084
1.083
1.081
1.077
1.077

Composite

1.082
1.083
1.082
1.082
1.082



TABLEIV. - STRENGTHANDTOUGHNESS WITH STANDARD DEVIATION

Material TemPerature, °C

25 I 800 I000 1200
&

1400

Strength MPa

Garrett

Si3N4 732±61

SiC/Si3N 4 698±85

Norton

Si3N4 550±82

SiC/Si3N 4 758±66

715±52

671±45

531±67

648±95

679±15

702±14

585±40

562±362

617±35

628±44

535±109

693±31

405±68

344±27

336±36

370±6

Toughness MPa. m I/2

Garrett

Si3N4

SiC/Si3N 4

Norton

Si3N4

SiC/Si3N 4

6.5±.3

7.1±.5

4.3±.3

4.9±.2

6.5±.4

5.6±,2

4.4±.2

5.4±I

5.7±.5

6.2±.I

6.5±.7

6.2±. 1

5.8±.4

5.7±.4

6.3±. 1

5.g±. 1

10.1±1.3

I0.7±.4

5.g±.l

5.7±1.4
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(a)sic_ Js_N4

(b) Si3N 4_

Figure 1. - X-ray radiographs of MOR bars machined from cylindrical billets of Garret_

materials. Dark zones imply higher density or constituents with greater x-ray absorption.

ORIGINAL PAGE

BI_ACK AND W_ITE pwOTr_A, PF1



(a) SiC w/Si 3 N 4.

(b) Si,3 N 4.

Figure 2. - X-ray radiographs of MOR bars machined from plates of Norton materials.

Dark zones Imply higher density or oonstituents with greater x-ray absorption.
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(a) Garrett. (b) Norton.

Figure 3. - Four-point bend strength of Si3N 4 and SiCw/Si3N 4 materials•
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(a) Garrett, (b) Norton.

Figure 4, - Fracture toughness of Si 3N4 and SiOw/Si3N 4 materials.

(a)S5N4.

(b) SiCw/Si3N 4.

Figure 5. - Microstructure of Garrett materials: where darkest regions are Si3N 4, grey regions are SiC
whiskers, and light regions are tntergranular phase.
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

(a) Si3N 4.

U --,Ul
10 i.Lm

(b) SiCw/Si3N 4.

Figure 6. - Microslructure of Norton materials: where darkest regions are SiaN 4, grey regions are SIC

whiskers, and light regions are interangular phase.
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Figure 7. - Whiskers in Garrett SiCw/Si3N 4 exposed via plasma etching.
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ORIGINAL PAGE
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(a) Garrett.

2O

[
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(b) Norton,

Figure 8. - Fracture topography of SiCw;Si3N 4 fracture toughness specimens (25 °C).
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(c) Whiskerpulloutarounda failure originin Garrettcomposite.

Figure8. - Concluded.
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(a) Coarse grained region (monolithic),

(b) Agglomerate (monolithic).

Figure 9. - Failure origins in the Garrett materials.
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(c) Porous region (composite).

(d) Agglomerate (composite).

Figure 9. - Concluded.
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

(a) Porous regions (monolithic).

(b) Porous regions (monolithic).

Figure 10. - Failure origins In the Norton materials.
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(c) SiC chunk (composite).

(d) Agglomerate (composite).

Figure 10.- Concluded.
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