
NASA Contractor Report 185 166

Parallel Eigenanalysis of Finite
Element Models in a Completely
Connected Architecture

F.A. Akl and M.R. Morel
Ohio Universih'
Athens, Ohio

November 1989

Prepared for
Lewis Research Center
Under Grant NAG3-762

NASA
Nationam Aeronautics aqd
SDace Adminisrrar oq

" 1 '

Y I ,
I "

I ' , I

I 4 .

I

e

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Present State of Knowledge 2

1.3 Parallel Computers . 3

1.4 Objective . 4

2 Overview of Parallel Algorithm 5

2.1 Terminology: . 5

2.2 Load Balancing . 6

2.3 Overview of Multitasking: . 6

2.3.1 ProgramMulti . 10

3 Parallel Solution 13

3.1 Parallel Architecture . 13

3.2 Concurrent Processing . 14

3.2.1 Multifront Method . 14

1

.

3.2.2 The Modified Subspace Method 19

3.3 Outline of p-feds: . 20

3.3.1 Dynamic Array Management 20

3.3.2 p-fda . 24

4 Numerical Experiments 32

32 4.1 Purpose .

4.2 Description of Test Problems 33

4.2.1 Two-Dimensional E3ea.m 33

4.2.2 Space Truss . 34

4.2.3 Plane Stress Example 39

4.2.4 Isoparametric Plate . 40

5 Performance of the Parallel Algorithm 42

5.1 Preview . 42

5.2 Background to Testing . 43

5.3 Evaluation of Varying Domains 49

5.4 Examination of Subroutines 55

5.5 Impact of Increasing Elements 57

5.6 Subspace Dimension . 59

5.7 Size of Global Front . 62

6 Conclusions and Recommendations 65

..
11

. Bibliography 69

A The Modified Subspace Method 74

A. l The Eigenproblem in Structural Dynamics 75

A.2 Description of the Sequential Algorithm 75

A.3 Behavior of the Subspace Method 78

A.4 Convergence of The Modified Subspace Method 78

B Variable List 82

C Management of Files 88

D Error Messages 89

E Data Input for p-feda 93

F Output of p-feda 98

...
111

Nomenclature

area
right-hand side = [MI [VI
domain
Young's modulus of elasticity
moment of inertia
stiffness matrix of size N.N
element stiffness matrix
subspace stiffness :matrix of size 4.4
length
mass matrix of s i x N.N
element mass matrix
subspace mass matrix of size q.q
number of domains
number of domains, processors or tasks
total number of degrees of freedom of system
number of eigenpairs or size of subspace 5 N
eigenvectors of the auxiliary eigenproblem
thickness
eigenvectors at the t' - t h iteration
element eigenvector a t the
eigenvalues of required subspace
eigenvectors of required subspace
i - t h eigenvalue
i - t h eigenvector
mws density
Poisson's ratio

- t h iteration

Chapter 1

.

Introduction

1.1 Overview

Research work in computational structural mechanics is generally concerned
with innovative techniques in numerical methods and software algorithms
with the aim of achieving more efficient and accurate solutions. During the
past decade, the architecture of computer hardware began to emerge as an
important factor in computational structural mechanics. Parallel processing
architecture represents a major advance in computer hardware when com-
pared with the previous generation of single instruction single data (SISD)
sequential computers. Issues dealing with high level language programming,
compilers, communication links and numerical algorithms play a major role
in the performance of parallel processors.

Since the development of the finite element method, several approaches
of subdividing relatively large scale structures into a number of substructures
have been used to overcome the limitations of the computer technology of
the time. By all measures, the finite element method together with increas-
ingly resourceful digital computers led to a revolutionary progress in many
engineering and scientific disciplines. Innovative techniques in dealing with
sparse band m a t r i m allowed the solution of relatively larger order finite el-
ement systems. Creative data management approaches led to the frontal

1

met hod (24,291.

Vibration analysis of finite element models is typically time consuming
and memory demanding. This is partiicularly true in data intensive applica-
tions generally encountered in aerospace applications. Sequential computers
are rapidly achieving the physical limit of their processing power [32,37,38].
This study offers a general purpose figenproblem solver for finite element
analysis in an emerging parallel computer architecture. By utilizing t h i s new
computer architecture, i t is expected that the multifrontal and the modified
subspace methods will enhance the computational capabilities available to
engineers. It is also hoped that this study will offer researchers in the area
of parallel computational methods in engineering mechanics a thorough un-
derstanding of a new and potentially optimum method for the solution of
large finite element eigenproblems on parallel computers. The new method
is expected to be useful for future research work in nonlinear and structural
stability problems.

1.2 Present State of Knowledge

Parallel algorithms for the solution of sthe static analysis problem [K] { V} =
{ B } were implemented on multiple instruction multiple data (MIMD) com-
puters using Jacobi iteration, successive over-relaxation (SOR) and conju-
gate gradient methods [19,41]. The jlacobi iterative method exhibited no
guarantee for convergence [6,12,41]. However the conjugate gradient and
SOR methods are reported to give a speedup of 2.8 and processor efficiency
of 71% in the solution of a plane stress problem on four processors. In
general, these three approaches are based on assigning one or more nodes to
each processor. Nodal topology is mapped onto the communications links be-
tween processors. Direct solution techniques are also documented [21,34,37].
Salama et al. [34] mncluded that among the direct solution methods con-
sidered, LR-Gauss appears to be the best suited for applications on a hypo-
thetical limited processor efficient machine which closely resembles realistic
parallel computers.

.

Research work on the solution of materially nonlinear structural stabil-

2

4 ity of imperfect columns [ZO] indicates that the computational efficiency de-
creases as the number of processors increase, suggesting an optimum number
of processors.

Application of conventional substructuring techniques is recommended in
Reference [40] for the solution of nonlinear large scale finite element problems.
In this work, it is noted that the suggested substructuring algorithm may
result in a very large dense stiffness matrix along the boundaries. As a
result a tradeoff exists between the number of substructures and the amount
of additional computation introduced to solve the resulting large and dense
matrix along the boundaries. A speedup factor of an order equal to the
number of substructures is reported in simulated parallel solution of nonlinear
bending of pinched cylinder on a VAX 11/785.

Recently, structural vibration analysis in parallel processing environment
has been studied using the inverse iteration method [15,39] and the Lanczos
method [14]. These studies dealt with assigning each processor the task
of solving for a specified bandwidth of the eigenvalue spectrum. This is
accomplished by imposing a different shift region for each processor and
solving the resulting eigenproblem.

A new multifrontal/subspace method of parallel processing of large eigen-
problems is described in Reference [l]. This new approach utilizes the archi-
tecture of parallel computers in the solution of large eigenproblems generally
encountered in aerospace applications.

1.3 Parallel Computers

Parallel processing is defined as:

an eficient form of computation which emphasizes the erploita-
lion of concurrent events in the computing process. Concurrency
implies parallelism, simultaneity, pipelining. I t is in contrast t o
sequential processing (221.

3

Parallel computers are classified in a variety of ways. Hwang and Briggs
[22] divide parallel computers into two broad categories: synchronous and
asynchronous. Synchronous parallel mmputers include pipelined machines
(SISD) in which temporal parallelism is utilized, e.g. Cray 1 and Cyber 205,
and array processors (SIMD) in which spatial parallelism is used, e.g. Illiac
IV. Asynchronous parallel computers are multiprocessor machines (MIMD)
in which either memory is shared among tightly coupled processors with high
degree of interaction, e.g. Cray X-MP, or distributed loosely coupled pro-
cessors, e.g. transputers. Several topologies of parallel computer networks,
such as star, ring, pipeline and trees, can be implemented at the hardware
and/or software level [22,31,37].

1.4 Objective

The objective of this study is to investigate the performance of the multi-
frontal/subspace method (11 in solving the generalized eigenproblem:

where: [K] is positive definite squaxe matrix of order N
[MI
[@I
[A]

is positive semi-definite square matrix of order IV
is a rectangular matrix of eigenvectors of order N . q ,
where q _< N .
is a diagonal matrix of the subdominant q eigenvalues
such that X I 5 X2 5 ... 5 A,

Numerical experimentation using the CRAY X-MP/24 computer a t NASA
Lewis Research Center is conducted on typical problems to investigate the
behavior of the multifrontal/subspace method and compared it to similar
sequential solutions (3,5].

4

*

Chapter 2

Overview of Parallel Algorithm

Before we start offering a detailed description of the algorithm implemented
in the multifrontal/subspace method, an overview of the overall organization
of the parallel architecture will be first presented in this chapter.

2.1 Terminology:

Definitions are given for the following terms to clarify their meaning:

0 Domain - a section of a subdivided finite element model considered as
an independent structure except for a common boundary that connects
it to the remainder of the finite element model.

0 Speedup - the ratio between the time needed for a sequential algorithm
to solve the problem divided by the time taken to execute the same
problem using a parallel algorithm.

0 Task - a computational model consisting of the code and data of the
program, whose instructions must be processed in a sequential order.
A separate task will be assigned to each domain.

5

2.2 Load Balancing

The three most time consuming p r o c a s e in the solution of large eigenprob-
lems are:

1. the creation of element stiffness imd mass matrices.

2. the solution of linear simultaneous equations.

3. the extraction of eigenpairs.

Depending on the size of the problem and the number of eigenpairs required,
one of the preceding processes will consume the buIk of the computational
activities. Parallelizing of the first process is quite a straight forward and
obvious procedure. However parallelizing the second and third processes has
been the subject of a number of investigations as previously mentioned in
Section 1.2. The multifrontal solution and the modified subspace method
investigated in this report offer an effective parallel algorithm.

A certain amount of overhead should be expected to degrade the perfor-
mance of parallel solution algorithms. This overhead is system dependent.
In Chapter 5 it will be shown that the cumulative effect of overhead due to
the implementation of the multitasking environment is neglegible.

On the other hand bottlenecks due to single threaded 1/0 operations on
algorithms which are 1/0 intensive can lead to an appreciable performane
degradation.

2.3 Overview of Multitasking:

Multitasking, defined as the structuring of a program into two or more tasks,
which can execute concurrently, is Crety Research Inc.’s implementation of
parallel processing. There are two methods of multitasking available. The
first is mixrotasking, best suited for programs with larger long running tasks

6

A

Tasks

.

Events h C k S Barriers

Table 2.1: Cray Multitasking Utilities

1 I I I I
TSKSTART EVASGN LOCKASGN BARASGN
TSKWAIT EVWAIT LOCKON BARSYN
TSKTUNE EVPOST LOCKOFF BARREL
TSKVALUE EVCLEAR LOCKREL ! TSKLIST EVREL

(coarse granularity). The second method, refered to as microtasking, is ben-
eficial for programs with shorter running tasks. All references, examples and
developments of multitasking herein shall refer to the method of macrotask-
ing. The programmer must explicitly code his/her FORTRAN subroutines
so they can run in parallel. Multitasking subroutines can be used to decrease
execution time of a complete program; but a parallel job not efficiently multi-
tasked could take more time than a job that is sequential, due to unbalanced
concurrent tasks.

The Cray X-MP computer is a tightly coupled multiple instruction mul-
tiple data (MIMD) machine which can execute different instructions and
operate on different data, i.e. possesses m independent processors each hav-
ing its own control unit. Memory on the Cray X-MP multiprocessor system
a n be accessed independently or in parallel during execution. The system
has low overhead of task initiation for multitasking and has proven to be
very efficient [22].

Table 2.1 shows the names of most of the multitasking library routines
available on the Cray computer system [18]. These library routines provide
the basic tools necessary for the implementation of the multifrontal solution
and the modified subspace iteration in parallel architecture a t the software
level. In order to provide the reader with a grasp of the utility of the multi-
tasking library routines, let us consider a finite element problem broken down
into m domains. Each domain will be assigned a task to be initiated by a

7

TSKSTART subroutine. When calling the TSKSTART subroutine, a taskar-
ray (task control array) and a name (entry point a.t which task execution
begins) must be passed in the parameter list. An optional list of arguments
can also be passed. In our case, the specific domain will be passed along
with the taskarray and name. Therefore, the following call statement and do
loop are needed to produce a multitasking environment with each domain
assigned a separate central processing unit.

DO 10 I = 1, m
CALL TSKSTART (PROCESS(lJ), BEGIN, DOMAIN(1))

10 CONTINUE

Not all domains will be completed at the same time. For each TSKSTART
called, a TSKWAIT rnust be called so that all subprograms end a t the same
time. The taskarray is the only pairameter needed in the call list. The
TSKWAIT subroutine is called through a deloop similar to that used for
TSKSTA RT subroutine.

DO 20 I = 1, m
CALL TSKWAIT (PROCESS(1,I))

20 CONTINUE

The TSKSTART and TSK WAIT subroutines create the parallel environ-
ment needed to solve the finite element problem using multitasking. Each
domain will have its own task to be performed by a separate CPU. This will
enable the parallel finite element algorithm to execute faster than a sequential
finite element algorithm.

Communication between tasks/domains is needed to solve the finite el-
ement problem. As the tasks are executing certain variable values must be
transmitted between tasks/domains. To guarantee that the values are com-
puted in one task before they are used in another, the correspondence must
take place at a synchronization point,, defined as a point in time a t which
a task has received the go-head to proceed with its processing. Therefore,
one task computes the value before the synchronization point, and the other
tasks reference the value only after the synchronization point.

.

The facility that allows signaling between tasks is called an event, which
has two states: cleared and posted. When an event is posted it has reached
the synchronization point and the variable can be used in other tasks. If
the event is cleared, no waiting is needed because the variable has already
been posted and cleared for all tasks to continue. The event is identified
by an integer variable passed through the subroutine EVASGN. An event
variable cannot be used unless this subroutine is called before any other
event subroutines. Therefore, EVASGN passes an integer variable used as
an event and an optional value if needed. The following example initiates m
events:

DO 30 I = 1, m
CALL EVASGK(EVENT(1))

30 CONTINUE

Three other subroutines will be called along with the EVASGN sub-
routine: EVWAIT, EVPOST and EVCLEAR. Each of these subroutines
is needed to complete the process of communication between tasks when a
variable is needed by more than one task working in parallel. The three sub-
routines also must pass the same integer variable as the EVASGN subroutine
to link all subroutines to the same event.

The EVWAIT subroutine waits until the specified event is posted, but
the task resumes execution without waiting if the event is already posted.
Subroutine EVPOST returns control to the calling task after the subroutine
posts the event. By the event being posted, all other tasks waiting on that
event may resume execution. In addition, EVCLEAR clears an event and
returns control to the calling task, but if the variable is already cleared then
execution continues.

The following example program MULTI will help show the use of these
multitasking subroutines. It is assumed that the program will run on a
MIMD computer possessing a hypothetical 20 physical processors. For clar-
ification, a horizontal row of dots in the example program takes the place of
executable FORTRAN statements that are unimportant in the presentation
of the multitasking technique at this time.

9

2.3.1 Program Multi:

c+++ This program shows how multitasking can be achieved
c+++ in generating a stiffness matrix for 20 elements concurrently.
c+++ For each element a task is assigned, a global
c+++ task will receive all dement stiffntrrs matrices and assemble
c+++ them into a global matrix. The cadculation of the
c+++ element stiffness matrices should be 20 timee as fast as
c+++ a sequential algorithm performing the same computations.
c+++ domain = number of the task/e.lement.
C

EXTERNAL BEGIN
INTEGER EVENT1(20), PR.OCESS(1,20), DOMAIN(20)
COMMON/EVENTS/EVENTl

C

c+++ data declaration

DO 5 I = 1,20
C

PROCESS(1,I) = 3
DOMAIN(1) = I

5 CONTINUE
C

c+++ event assignments

DO 10 I = 1,20
C

CALL EVASGN(EVENTl(1))
10 CONTINUE

c+++ start domain tasks
C

DO 20 I = 1,20
CALL TSKSTAFt"(PROCESS(l,I), BEGIN, DOMAIN(1))

20 CONTINUE
C

c+++ start global task
C

10

CALL ASSEMBLE
C

c+++ task completion
C

DO 30 I = 1,20
CALL TSKWAIT(PROCESS(1,I))

30 CONTINUE

c+++ clear all events
C

DO 40 I = 1,20
CALL EVCLEAR(EVENTl(1))

40 CONTINUE
C

STOP
END

I SUBROUTINE ASSEMBLE I
INTEGER EVENTl (20)
COMMON/EVENTS/EVENTl

C

c+++ wait and clear all events.
C

DO 10 I = 1,20
CALL EVWAIT(EVENTl(I))
CALL EVCLEAR(EVENTl (I))

10 CONTINUE
C

c+++ read all of the element stiffness matrices from the tape
c+++ to which it was written in subroutine begin.

.................
C

11

c+++ assemble the elements into a global stiffness matrix.

.................
C

RETURN
END

[SUBROUTINE BEGIN (DOMAIN)]
INTEGER EVENTl(20)
COMMON/EVENTS/EVEN’I’l
INTEGER DOMAIN

C

c+++ read the necessary data.
C

.................
C

c+++ compute the stiffness matrix for the element.
L

.................
L

c+++ write the element stiffness matrix to a tape, thereby
c+++ allowing the subroutine assemble to access the information.
C

.................
C

c+++ post the events as they are finished
C

CALL EVPOST(EVENTl(DOMA1N))

RETURN
END

C

12

.

Chapter 3

Parallel Solution

The parallel algorithm developed in this study is robust. First, it is not prob-
lem dependent; and second its architecture is implemented a t the software
level and therefore it can be altered to investigate alternative networks.

It must also be emphasized that the speedup realized by this algorithm
is exclusively due to the parallelization of the solution method at the macro
level, i.e. by exploiting the coarse granularity of the finite element model.
Additional speedup can certainly be achieved through the implementation
of the microtasking features of the Cray computer system and through au-
tomatic vectorization. This approach allows us to isolate the impact of the
parallel architecture investigated in this study on the performance of the
parallel algorithm.

3.1 Parallel Architecture

The parallel algorithm used in this study is based on a completely connected
parallel architecture (Figure 3.1) in which each processor is allowed to com-
municate with all other processors. A finite element model is divided into
m domains each of which is assumed to p r o m s ' n elements (Figure 3.2).
Each domain is then assigned to a processor and the macrotasking library

13

routines [18] are used in mapping each domain to a user task.

3.2 Concurrent Processing

3.2.1 Multifiont Method

Concurrent analysis is realized by using each processor to create the stiffness
and mass matrices of the elements located within its assigned domain, and
by performing assembly/forward elimination and back-substi tution for each
domain.

task I
n

W
task j

task i

3

3
task m

.
Figure 3.1: Network of Completely Connected m-Concurrent Tasks

14

.

I I DOMAIN m I DoMAINj

Figure 3.2: Finite Element Model Subdivided into m Domains

Figure 3.3 shows the logical structure of the parallel algorithm. Each
processor creates the stiffness and mass matrices, [K]" and [MI', of the el-
ements located within its assigned domain. Random numbers are used to
generate an N.q starting eigenvectors [VI; and to calculate the corresponding
right-hand-sides, [B];. Each processor then assembles the element matrices,
[K]" and [B];, and eliminate the equations corresponding to the degrees-of-
freedom not located along the global fronts (boundaries) using the frontal
method [24]:

where: [K]' , [VIoi and [B]' are the stiffness matrix, approximate eigenvectors
and right-hand sides, respectively, for the it* domain just after the assembly
of matrices and before the elimination of degrees-of-freedom.

[K]'[V]" = [B]' (3 4

The frontal method eolves a set simultaneous linear equations in a unique
way based on the Gaussian elimination and back-substitution algorithm [29).
Expanding Equation 3.1, we get:

kl' ...

k,j

kij
...

kl I

k I I

ki,

...

...

k; 1
knn k y I
15

Assembly /eliinination
(elimination of B in

resolution)

I
I

Figure 3.3: Parallel Algorithm for the i ih Domain

16

To eliminate variable u,, the Gaussian method gives:

Irons [24] observed that if the dements in the curly brackets shown in
Equations 3.3 and 3.4 are fully assembled, the second term in the above
two equations can be immediately calculated. The contribution of elements
to k,, and u; can then be assembled regardless of the order in which these
contributions are made. The main idea of the frontal technique is to assemble
the equations and eliminate the variables at the same time. As soon as all
contributions to a node are made and assembled from all relevant elements,
each degreeof-freedom for this node is eliminated. As a result, the global
stiffness matrix is never formed.

The wave front, i.e. the active nodes on the front, divides the domain
into two substructures with three sections of elements (Figure 3.4). The first
section includes the elements that have already been processed, the second
section is the active elements on the front and the third is the elements that
have yet to be processed. The front begins at one end of the domain and
advances, engulfing one element a t a time, eliminating the nodes on the ele-
ment that are fully assembled until it has swept over the whole domain. After
all nodes within the domain are eliminated the front reaches the domain’s
boundary (global front).

The frontal solution possesses certain advantages over other direct tech-
niques and has proven to be a very dec t ive and powerful means for solving
the positive definite symmetric equations arising in standard finite element
analysis. The band matrix methods are the chief competitor of the frontal
solution. A comparison between the two shows that for small problems the
frontal and band routines are about the same, because of the extra coding
required by the frontal routine. However, with larger analyses, the frontal
routine is superior in terms of speed and core requirements [24,29]. In order
to optimize the solution, the band matrix methods require optimum num-
bering of nodes, while element numbering is not important. On the other

17

WAVE TRONT WAVE FRONT

Figure 3.4: Finite Element M'odel Divided into m Domains

hand, the frontal solution requires opti:mum numbering of the elements, while
node numbering is immaterial with respect to solution optimization. Opti-
mum numbering of elements will reduce the largest frontwidth, defined as
the maximum degrees of freedom on the wave front at any point in time as
the wave front sweeps across the structure.

There are additional advantages in using the multifrontal solution method
in parallel processing [l]. First, there is no need to renumber the nodes within
each domain to minimize the bandwidth of the submatrices of the domain,
because the bandwidth in the frontal solution depends on the numbering of
elements. In addition, the element numbering scheme for both sequential
and parallel may be unchanged, thereby forgoing preprocessing of the finite
element for parallel execution. Second, load balancing is dependent on the
frontwidth and the number of elements in each domain. Load balancing is
therefore relatively easier to achieve using the multifrontal solution method.

Although Equation 3.1 is never formed in the frontal solution, it is given
here to illustrate the algorithm in a more concise manner. At the conclusion
of the assembly and elimination steps, two equations are obtained for the tth

domain in which the subscript (F) refers to the degrees-of-freedom located
along the global fronts and the subscript (d) refers to all other degrees-of-
freedom in a domain (Figure 3.2):

A synchronization point is established at this stage in which each proces-
sor waits for all other processors to calculate and communicate [KIF and [E]F
and to assemble matrices [K]FF and [B]FF. The solution for the degrees-of-
freedom located along the global fronts, [V]FF is obtained and the process
of back-substitution within each domain proceeds concurrently until [VI;;,
is calculated at the I"' iteration for each element.

3.2.2 The Modified Subspace Method

Concurrent processing continues to calculate the projection of the stiffness
and matrices onto the required subspace, [K]: and [MI: of order q.q for the
if" domain. This is the second and last synchronization point in the parallel
algorithm at which the contribution from all other domains are required be-
fore proceeding to solve the auxiliary eigenproblem of the modified subspace,
[K]'[Q] = [M]'[Q)[Q]. More accurate approximation of the eigenvectors [VI;

The algorithm either terminates or continues to iterate until a test of
convergence is satisfied.

The modified subspace method [2,4] is used to solve for the least dominant
eigenpairs, [@I and (Q], of order q, where g 5 N, the total number of degrees-
of-freedom of the finite element model. The classical subspace method is
reported to provide an efficient algorithm for the solution of large problems
in sequential and parallel processing [10,39]. The rate of convergene of the
modified subspace method used in this report is faster by an average of 33%
compared to the classical subspace method (2). In Appendix A, detailed
presentation of the modified subspace method is given.

19

3.3 Outline of p-feda:

A broad outline of a parallel finite element analysis program hereinafter ref-
ered to as p-feda is given in this section showing the implementation of the
parallel algorithm described in Section 3.2.

3.3.1 Dynamic Array Management

Dynamic management of arrays is used within each domain (task) to accom-
modate the varying demands of problem analyses in an efficient manner. Two
large vectors, VEC and V E C l , are declared at the outset for each domain
with a size of LENVEC and LENVECl, respectively. Two integer vectors,
NVEC and NVECl , are equivalenced with VEC, and VECl , respectively.

Tables 3.1 and 3.2 show the addresm calculated in p-feda for arrays
VEC/NVEC and VECl /NVECl . Detailcd explanation of the variable names
is given In Appendix B. Appendices C an,d D provide a brief summary of file
management and error messages used in the program, respectively.

The reader should note that the Cray computer running the FTN2 FOR-
TRAN compiler under COS assigns integer and floating point numbers a n
equal number of words. However, the ET77 FORTRAN compiler running
under COS assigns a n integer number a length of 42 bits versus 64 bits for
a floating point number. The latter word assignment is the default under
the UNICOS operating system regardless of the FORTRAN compiler used.
It is therefore necessary to specify in the compiler command a word length
of 64 bits for integer numbers in order to achieve correct mapping between
VEC/NVEC and VECl /KVECl .

20

Table 3.1: Arrays in VEC/NVEC
~ ~~

Address

1
I1
12
I3
J1
52
53
54
55
J 6
57
58
J9
K1
K 2
K21
K3
K4
K5
K6
K 7

Name

ELSTIF
ELOAD
ELDISP
ELCORD
N D F
LTYPE
LLOAD
NDMAIN
LDMAIN
LNODS
GLNODS
G N D F
GNDFRO
COORD
VFIX
REACTN
VSTIF
VLOAD
SLOAD
V P R O P
EXCOD

Dimension

L CO EF= (LVA B * (LVAB + 1)) /2
LVAB*NRHS
LVAB*NRHS
NODEL*NDIM
NODEL*JPROP
NEL
NEL
NGLOBE
NEL
NODEL*NEL
GNODEL*NFRONT
NPOIN
NGLOBE/NFRONT
NPOIN*NDIM
NFIX*NDFMAX
NFIX*NDFMAX*NRHS
NEXTIF*NDFMAX
NLOAD*NDFMAX*NRHS
JLOAD*NRHS
IPROP*JPROP
NEL*NDIM

21

Table 3.1 Arrays in VEC/NVEC (cont'd)

Address

I, 1
L2
L3
L4
L5
L6

L7
M1
M2
M 3
M4
M5
M6
M7
M8
N1
N2
N3
N4
N5
N6
N7

Name

NODFIX
KODFIX
NOSTIF
NODLOD
L P R O P
NODFRO
NDFRO
LDEST
SUSTIF
SUBLOD
SIGDIG
T O T L O D
EQ
EQR
EQRTOT
EQSIG
N P N O T
NAME
MDEQ
STREGY
P O T E G Y
DIAGY
ERRGY --

Dimension

NFIX
NFIX
NEXTIF
NLOAD
NEL
LIMFRO
NEL
LVAB
N ST IF=(L IM F R O (L I M FRO + 1)) /2
L M F R O * N R H S
LIMFRO
LIMFRO*NRHS
LIMFRO*NBUFZ
NBUFZ*jNFtHS
N BU F Z * N RH S
NBUFZ
NBUFZ
NBUFZ
NBUFZ
NRHS
NRHS
NRHS
NRHS

22

Address

1
IG 1
IG2
IG3
IG4
IG5
IG6
IG7
IG8
IG9
IGlO
IG11
IG12
IG13
IG14

ELMASS
EIGENl
OLGNVL
SKSTR
SMSTR
C J A C
E L M S T l
ELKSTl
ELMSTR
ELMKSR
EIGSHP
FULMAS
FULSTF
NDIGEN
EIGEN2

Table 3.2: Arrays in V E C l / N V E C l

LCOEF = (LVAB(LVAB+1))/2
LVAB'NEIGEN
NEIGEN
NEIGEN*NEIGEN
NEIGEN'NEIGEN
NEIGEN*NEIGEN*3
LVAB*NEIGEN
LVAB*NEIGEN
NEIGEN*NEIGEN
NEIGEN*NEIGEN
NPOIN 1 *NEIGEN
LVAB*LVAB
LVAB*LVAB
NPOINl
LVAB*NEIGEN

Name Dimension

23

3.3.2 p-feda

I MAIN PROGRAM I

C

c+++ a parallel frontal solution of finite element systems
c+++ using a modified subspace approadz to extract the eigenpaks
C

INTEGER PROCESS(3,10), DOMAIN(10)
INTEGER EVENT(10,lO)

C

c+++ put event in common block so that all domains can access it.
C

COMMON /EVENTS/ EVENT
C

c+++ data declaration
C

DO 10 I = 1,NFRONT
PROCESS(1,1) = 3
DOMAIN(1) = I

10 CONTINUE
C

c+++ event assignments, identifies the integer variables that
c+++ the program intends to use as an event.
C

DO 20 I = 1,NFRONT
DO 20 J = 1,NFRONT

CALL EVASGN(EVENT(1,J))
20 CONTINUE

C

c+++ start all domain tasks except domain 1.
C

DO 30 I = 2,NFRONT
CALL TSKSTART(PROCESS(lJ), DOMFROKT, DOMAIN(1))

24

30 CONTINUE
C

c+++ start domain 1, which is called separately to limit the
c+++ input data to just one domain.
C

CALL DOMFRONT(DOMAIN(1))
C

c+++ upon task completion, tell each domain that domain 1 has
c+++ been completed.
C

DO 40 NF = 1,NFRONT
CALL EVPOST(EVENT(1,NF))

40 CONTINUE
L

c t t t wait for tasks to be completed that were called by tskstart.

DO 50 NF = 2,NFRONT
CALL TSKWAIT(PROCESS(1,I))

50 CONTINUE
C

STOP
END

I SUBROUTINE DOMFRONT(DOMA1N) I
C

INTEGER DOMAIN

IF(DOMAIN .EQ. 1) THEN
C

C

c t + t read initial data.
c t + t diagnose the initial data, if fatal or nonfatal errors occur
c+++ call doctor, and setup housekeeping for dynamic dimensioning
c t + + of vector arrays. the subroutine doctor will ideRtify and
c + t t list the error messages found in the data.
C

25

CALL DNURSE
C

c + + t
c + + t
C+++

c t + t
C

C

C+++

c + t t
C

read the remaining data, e.g. element types, nodal
coordinates etc., for the problem and assign them to
variables in a common block, that will be accessed by all
domains.

CALL FINPUT

tell all domains, except domain 1, that all data has
been read in.

DO 10 N F = 1,NFRONT
CALL EVPOST(EVENT(1,:NF))

10 CONTINUE
L

ELSE
C

c+++ wait for the data to be read into domain 1.
C

CALL EVWAIT(EVENT(1,DOhfAIN))
C

c+++ setup housekeeping for dynamic dimensioning of vector
c+++ arrays.
C

CALL DNURSE
C

c+++ assign all data received in the common block from
c+++ domain 1 to the correct variables.
C

CALL DINPUT
C

c+++ clear events so that they maybe used again.
L

CALL EVCLEAR(EVENT(1,DOMAIN))

ENDIF
C

c+++ check for the last appearance of each node, when it is

26

c+++ found make the node negative (creating the pre-front).
c+++ also, the size of the globd front is determined and a
c+++ few more dimensions are calculated that are needed in
c t t t subroutine dfront.
C

CALL DMATRON
C

c t t t creates the element stiffness and mass matrix files
c+++ for the specific element type, in addition, creates
c+++ the element load and eigenvector files.
C

CALL ESTIFF

DO 6 NRESOL = 1,NCASE
C

C

c+++ solves the set of linear simultaneous equations using
c+++ the frontal technique.
c

CALL DFROKT
C

I SUBROUTINE DFRONTJ
C

c t t + assemble the stiffness matrix and eliminate the
c+++ degress-of-freedom in their last appearance up to the local front.
C

.......................
C

c + + t after the local front is reached begin work on the
c + + t global front.
C

.......................
C

c+++ tell all of the other domains that you have completed the
ct t t assembly of the local front located within this domain.

27

C

DO 100 NF = 1,NFRONT
IF (N F .NE. DOMAIN) THEN
CALL EVPOST(EVENT(DOMAIN,NF))
ENDIF

100 CONTINUE
C

c+++ wait for all dornah to reach their local fronts.
C

DO 200 NF = 1,NFRONT
IF (N F .NE. DOMAIN) THEN
CALL EVWAIT(EVENT(NF,DOMAIN))
ENDIF

200 CONTINUE
C

c+++ clear the event for future use.
C

DO 300 NF = 1,NFRONT
IF (NF .NE. DOMAIN) TH:EN
CALL EVCLEAR(EVENT(NF,DOMAIN))
ENDIF

300 CONTINUE
L

c+++ assemble the global stiffness matrix and perform a gauss
c+ t + jordan elimination to solve the unknown variables
c+++ located on the global front.
C

..........................
C

c+++ begin the back-substitution to solve for all unknown
c+++ variables in the domain.

..........................
C

RETURN

C

c t t t solve for the eigenpairs.

21

,
C

CALL DCONDNS
C

(SUBROUTINE DCONDNS I
C

c+++ project the stiffness and mass matrices onto the current
c+++ subspace for each iteration.
C

..........................
C

c+++ tell all domains that this task has been completed.
C

DO 100 NF = 1,NFRONT
IF (NF .NE. DOMAIN) THEN
CALL EVPOST(EVENT(DOMAIN,NF))
ENDIF

100 CONTINUE

c + t + wait for domains to reach this point.

DO 200 NF = 1,NFRONT
C

IF (NF .NE. DOMAIN) THEN
CALL EVWAIT(EVENT(NF,DOMAIN))
ENDIF

200 CONTINUE
C

c + + t clear the event.
C

DO 300 NF = 1,NFRONT
IF (NF .NE. DOMAIN) THEN
CALL EVCLEAR(EVENT(NF,DOMAIN))
ENDIF

300 CONTINUE
C

29

c+++ assemble [k]; and [m]; from all domains.
C

............................
e*- C

c+++ solve the auxiliary eigen problem for each iteration by a
c+++ pseudejacobi method.

CALL EIGN
C

C

c+++ test the eigenvalues for convergence. if tolerance is
c+++ met then set nstop = 10. a better m-orthonormalized
c+++ approximation of the required eigen vectors is constructed.
C

............................
C

RETURN

C

IF (NSTOP .NE. 0) GO TO 710
C

c+++ after each iteration, calculate a new set of eigenvectors
c+++ that will be used in the next iteralion.
C

CALL RELOAD
C

6 CONTINUE
C

c+++ prints the output for mode shape: at prescribed nodes
c+++ rather than the customary element-by-element output.
C

70 CALL PLOTING
C

c+++ wait for tasks to be completed and clear events.
c

IF (DOMAIN .NE. 1) THEN
CALL EVWAIT(EVENT(1 ,DOMAIN))
CALL EVCLEAR(EVENT(1,DOMAIN))

ENDIF

30

C

RETURN
END

31

Chapter 4

Numerical Experiments

4.1 Purpose

This chapter has a three fold purpose:

1. Validate the algorithm's accuracy by comparing the results to the fol-
lowing: a sequential frontal/subspace algorithm called 'FEDA" (31,
MSC/NASTRAN (NAsa STRuctuiral ANalysis program) and in some
cases analytical results. Note: All MSC/NASTRAN eigenpairs were
solved by the Tridiagonal (Givens) method (361.

2. To show the capabilities and wide range of problems the algorithm can
handle.

3. Attract attention to the speedup attained for each finite element prob-
lem by subdividing the structure into two domains. As a consequence of
only two physical CPUs on the Cray X-MP/24 computer, two domains
were chosen to get the exact speedup between the sequential and paral-
lel algorithm. The ideal or theoretical speedup for the parallel solution
would be 2.0.

Therefore, in the following pages a description, diagram, input properties,
speedup and a table of eigenvalues solved by the different procedures for each

32

structure analyzed will be presented. For all problems solved a tolerance of
lo-' was imposed on each eigenvalue in the subspace. Located in Appendix E
is a description of the input data used for p-feda.

- - ---
of

Eigenvalue
1
2
3

4.2 Description of Test Problems

O -

Parallel 1 Sequential NASTRAN Closed

19.55 19.55 19.55 19.55
148.6 148.6 148.6 148.6
571.1 571.1 570.9 571 .O

feda (q = 8) Form [30]

4.2.1 Two-Dimensional Beam

The first problem solved was a beam clamped at both ends (Figure 4.1) and
having 20 elements with 57 degrees-of-freedom (dof), i.e. three dof at each
node; this rather simple problem was chosen to assist in the initial develop-
mental efforts. The global front for this beam consisted of one node located
a t the center of the beam. As a result, there are two domains/tasks, the right
half is domain one and the left half is domain two. In MSC/NASTRAN, the
beam was modeled using the CBAR element [36] along with a consistent
mass matrix. Speedup for the beam is 1.49; due to the simplicity and small
number of elements the speedup is low. Total number of iterations for the
parallel and sequential programs where 14 and 15 respectively. Table 4.1 con-
tains the four lowest eigenvalues solved by p-feda, FEDA, MSC/NASTRAN
and a closed-form solution.

i 4 [1560.8 I 1561.0 1 1559.6 I 1560.3
I I I

33

Beam with Both Ends Clamped (Speedup = 1.49)

Number of Nodes = 21 Number of Elements = 20

Input Properties:
E = 1.OE15 klV/m2
I = 1.0 m4
p = 1.0 kNse2/rn4

A = 1.OE10 m2
t = 1.0 m
L = 2.0 m

20 Q 2.0 m

= =:

Figure 4.1: Clamped-Cisniped Beam Idealization

4.2.2 Space Truss

Two structures were analyzed using the three dimensional truss element,
with all members having three degrees of freedom a t each node. Both space
trusses were constructed on MSC/NAS'I'RAN and use the CBAR element
[36] with all rotations fixed and a lumped mass matrix. The first space truss
[14] used in solving for the eigenpairs has 88 members and 26 joints with
the four base nodes fixed, shown in Figure 4.2, as a result the truss contains
66 dof. There are four nodes on the global front, located atop the third
tier from the bottom, and an equal number of elements in their respective
domains. Property set one belongs to all members that makeup the five box
subtrusses (horizontal and vertical elements are 20 ft in length) while the
eight members that protrude from the sides pertain to property set two and
have a horizontal length of 40 ft. For the space truss, a speedup of 1.77
was achieved with both parallel and sequential algorithms performing eight
iterations until convergence was met. Iin addition, a comparison of the six
lowest eigenvalues are located in Table 4.2.

34

Space Truss (:Speedup = 1.77)

Number of Nodes = 26 Number of Elements = 88

Input Properties:
Property Set 1 Property Set 2

E = 3.9385E10 psi
A = 1.0 in2
I = 1.OE02 in'
p = 1.0 lb sec2/in'

E = 3.9385310 psi
A = 3.0 in2
I = 1.OE02 in'
p = 1.0 lb sec2/in4

Figure 4.2: Idealization of Space Truss

35

Table 4.2: Space Truss Eigenvalues
-

Eigenvalues Predicted by

Eieenval ue feda (4 = 12) Method 1141

3.624E04 3.624E04 3.524E04 3.625EO4 3
4 1.819E05 1.819EO:i 1.819EO5 1.819Eo5

J

- . - - - - - -

5 3.869E05
6

The second space truss considered is an open helicopter tail-boom struc-
ture [7]. There are 108 truss members arid 28 nodes as shown in Figure 4.3,
the four left end nodes are fixed with the structure possessing 72 dof. Keep-
ing both domains balanced a n equivalent number of elements are assigned to
each separate task. The structure is subdivided at its midpoint and consists
of four nodes on the global front. An abnormally high speedup of 2.10 was
calculated for the tail-boom structure because of the smaller number of itera-
tions taken by the parallel program (15) compared to the sequential program
(20). Figure 4.4 shows the geometry and lengths of the finite element model,
furthermore, Table 4.3 contains the eigenvalues of the tail-boom.

Table 4.3: Eigenvalues for Helicopter Tail-Boom

Iteration [7]
I 1 1 1.848E04 I 1.848E04 I 1.846EO.1 I 1.880E04 1

I t 1 1.574E06 I 1.574E06 1 1.574EQ6 1 1.593E06 6

36

Helicopter Tail-Boom (Speedup = 2..10)

Number of Nodes = 28 Number of Elements = 108

Input Properties:
E = 1.05E08 psi
I = 1.OEQ2 in'

A = 1.0 in2
p = 2.5883-03 lb s d fin'

Figure 4.3: Helimptor Tail-Boom Idealization

37

BASE OF EN0 OF
rruL000kl TAIL BOOM

(8)

t ”

FRONT VIEW --
(hi)

Figure 4.4: Helicopter Tail-Boom Structure: (a) Geometry of Tail-Boom (b)
Finite Element Model for the Tail-Boom Structure [7]

4.2.3 Plane Stress Example

Referring to Figure 4.5, a rectangular plane stress element comprising of
eight elements in the form of an inverted T is analyzed. The T-section was
modeled on MSC/NASTRAN using a QUAD8 element with the rotations
fixed and a coupled mass matrix. Shown in Table 4.4 are the eigenvalues
determined by p-fda, FEDA and MSC/NASTRAN.

For the structure, each square element has eight nodes with two dof each
and a length of 2.0 in . Moving across the bottom horizontally, all nodes
are clamped which leaves 60 dof to displace. Substructures are formed by a
vertical global front in the center of the structure which includes seven joints.
Due to the lower number of iterations for the parallel program (16) matched
against the sequential program (21), speedup equaling 2.31, once again was
jutting above the theoretical speedup.

Plane Stress T-Section (Speedup = 2.31)

Number of Nodes = 39 Number of Elements = 8

Input Properties:
E = 1.0 psi
t = 1.0 in

u = 0.4
p = 1.0 lb sec2/in4

Figure 4.5: Idealizatj!on of T-Section

39

Table 4.4: Eigenvalues for Plame Stress T-Section

1
2
3
4
5
6

4.2.4 Isoparametric Plate

The final problem solved is a cantilevered plate which has a hole within the
structure shown in Figure 4.6. Free vibration analysis of the 116 element plate
on MSC/NASTRAN modeled by the QUAD4 element and an uncoupled
mass matrix was performed. The left end rotations and translations are
fixed, moving in the vertical direction from top to bottom for all nodes. The
nodal configuration for a square isoparametric thin plate used in analysis
comprised of four corner deflections and 1:2 slope variables (two at each corner
node and one a t the midside nodes), in addition, there are 701 dof for the
total structure and 12 nodes lying on the global front located at the center
of the plate along a horizontal line. The length of each plate element is 2.0
in. Speedup of the parallel algorithm is 1.84 with the number of iterations
(21) being equivalent in the parallel and sequential algorithms. Due to the
slight differences in the stiffness matrices determined by p-feda, FEDA and
MSC/NASTRAN, the eigenvalues in Table 4.5 are not equivalent but have
a difference of 1-3% for each mode.

40

Cantilevered Plate with Hole (Speedup = 1.84)

v

1
2
3
4
5

Number of Nodes = 430 Number of Elements = 116

\ .
504.8
3798.0

E = 7.7E10 ps i
t = 1.0 in

Input Properties:
v = 0.33
p = 2.8E03 lb. se2/in4

Figure 4.6: Plate with Hole Idealization

Table 4.5: Eigenvalues for 4a Plate with a Hole

Order
of

I Eigenvalue t 1

41

Chapter 5

Performance of the Parallel
Algorithm

5.1 Preview:

To measure the success of the parallel algorithm on the Cray X-MP/24 su-
percomputer, two important factors will, be determined: speedup (see Sec-
tion 2.1) and efficiency which measures the utilization of the parallel machine,
e.g. if the processors are idle or require extra calculations introduced through
parallelization of the problem the speedup and efficiency decrease (371, the
subsequent equations represent the speedup and efficiency:

(5.3)
T,
TP

SPEEDUP = SP = - (2 1)

(5 4
SP
m

EFFICIENCY = .- (5 10%)

where: T, is the time of sequential algorithm.
Tp is the time of parallel algorithm.
m is the number of processors u L d in the parallel solution.

42

These evaluation tools were computed for the following size plates 8, 16,
24, 32, 40 and 64 elements, shown in Figures 5.1 and 5.2. Variables affecting
the assessment of the algorithm are:

1. the number of domains chosen.

2. total number of elements and degrees-of-freedom (dof).

3. formulation of the global front relative to the number of degrees-of-
freedom on the local fronts.

4. direction the domain fronts move controlled by the element numbering
scheme.

5. number of iterations taken to achieve the required tolerance level.

6. total number of eigenpairs (4) predicted.

As a result, a number of test runs were analyzed to examine these vari-
ables influencing the speedup and efficiency of the algorithm in a dedicated
mode. This chapter presents the results obtained from a number of example
problems for rectangular plate structures, with all edges clamped (c). All
structural plates use an isoparametric square plate element [8] of length 2.0
in; the model consists of four corner nodes and four mid-side nodes amount-
ing to 16 degrees-of-freedom per element. The input properties for all plates
are: Young's modulus is 1.0 psi, Poisson's ratio is 0.3, the mass density is
1.0 lb sec2/in' and 1.0 in equaling the thickness. Either a tolerance level of

or was placed upon all q eigenvalues.

5.2 Background to Testing:

Time functions were inserted into the algorithm at strategic points to define
accurately the time needed to perform thle calculations. The time elapsed
from one station to another is wall-clock time and not the CPU time charged
to the job (18). A distinction must be macle between them as a consequence
of a multiple processor job having a greater CPU time than a n equivalent

43

I I I I 1 1 I I I I I
(4

Figure 5.1: Different Size Plates Used in Analysis with all Edges Clamped:

Plate (163 dof); (d) 32 Element Plate (211 dof); (e) 40 Element Plate (259
dof)

I (a) 8 Element Plate (67 dof); (b) 16 Element Plate (115 dof); (c) 24 Element

44

Figure 5.2: A 64 Element Plate Clamped (c) on all Edges

job on a single processor. The total CPU ,time for a multi-processor job will
be labeled work done by the system and will not be equal to the wall-clock
(execution) time, in contrast wall-clock and CPU time for a sequential job are
nearly equivalent, i.e. total execution time will be the sum of the subroutine
times for the slowest task in the parallel solution.

As reported earlier, the Cray X-MP/24 computer has only two physical
CPUs but the program can handle up to eight logical processors, i.e. when
the number of processors used in the parallel solution exceed the number
of processors on the machine (physical processors), the processors are called
logical processors. This must be kept in mind when assessing the speedup for
domains/tasks greater than two on account of the extra waiting introduced
at synchronization points; this time must be eliminated to get a more precise
execution time.

Shown in Figure 5.3 is a time chart of a four logical CPU system working
on a two physical CPU machine with all tasks assigned the same amount of
work. Tasks 3 and 4 cannot begin execution until tasks 1 and 2 reach the
first synchronization point (ATl). The two task processors working simulta-
neously will not finish exactly at the same time, but within 10-30 milliseconds
of each other, therefore it will be assumed that the task promsors are nearly
equivalent in time. In a two processor system it was identified that minimal
time, approximately 0.02 milliseconds, was taken to post, wait and clear an

45

event at the place of communication if the event had been previously posted
by the other task. At AT2 task 3 and 4 reach the same synchronization
point that task 1 and 2 did earlier at A'rl and all four tasks are ready to
continue execution again. Following the logic of p- feda's main program,
task one will always continue over the o1,her tasks after all tasks reach the
same synchronization point along with the last task to post the same event,
this can be seen a t point AT2 if task 4 posted its event after tasks 2 and
3. Therefore, when calculating the total wall-clock time, for domains greater
than two, only the actual time computing will be summed and not the time
accumulated by the idle domains waiting for an open processor to continue
execution. The total execution time for the four tasks in Figure 5.3 will
be calculated as if there are m physical 'processors located on the machine,
shown in Figure 5.4. The following conclusions can be drawn from Figures
5.3 and 5.4:

1 . Figure 5.3 represents a two physical CPU system with four logical CPUs
being used. Figure 5.4 shows the interpretation of how the total exe-
cution time is resolved.

2. Time begins a t AT0 and DTO and ends a t AT4 and DT2.

3. AT1, AT2 and DT1 are associated with the same synchronization point.

4 . Refer to Figures 5.3 and 5.4.

T11 E T21 Z T31 2 T41 2 Dl1 2 D21 2 D31 S D41 (5.3)

T12 Z T22 Z T32 Z T42 2 I312 D22 2 D32 2 D42 (5.4)

T11 + T12 :Z Dl1 + D12 (5.5)
T21 + T22 z D21 + D22 (5.6)
T31 + T32 :Z D31 + D32 (5.7)
T41 + T42 '2 D41 + D42 (5.8)

Input and output (I/O) for all sample runs were kept to a minimum
amount. The SSD solid-state storage device used to read and write infor-
mation on tapes/disks was bypassed because when one processor gains ac-
cess to the device the other processor becomes idle. When the problem of

46

Task 1

Task 2

Task 3

Task 4

T11

T2 1

- T3 1

- T4 1

T12

T42

T22

T32

AT0 AT1 AT2 AT3 AT4
Begin
time

End

Figure 5.3: Time Chart of Four Logical Processor System Running on a Two
Physical Processor Machine

47

Task 1

Task 2

Task 3

Task 4

DTO DT1 DT2
Begin End
time --

Figure 5.4: Time Chart Showing the Interpretation of a Four Logical Pro-
cessor System Running on a Two Physical Processor Machine

48

Table 5.1: Analysis of Various Domains for a 64 Element Plate Using a
Subspace (9) of 2

Number of Figure Speedup I Eficiency Speedup I Efficiency
Processors Number (T~l=io-~) TO^= 1 o - ~)

1 5.2 1 .oo 100% 1 .oo 100%

2 5.5 1.85 93% 1.86 93%

4 5.7 3.86 96% 3.13 78%

6 5.11 3.02 50% 3.18 53 %

8 5.12 4.15 :i2% 3.61 45%

(13) (16)

(13) (16)

(9) (14)

(13) (16)

I I I (9) I I (14) I I

The value in () is the total number of iterations to achieve the prescribed
tolerance.

singlethreaded 1/0 is resolved p-feda will incorporate the SSD device to
significantly enhance its performance.

5.3 Evaluation of Varying Domains:

The most important feature of this research is the speedup obtained by the
parallel solution. In putting all other factors aside, the bottom line is to
examine the substructured finite element model faster and accurately on
a concurrent machine compared to a sequential machine while keeping the
overhead to a minimum degree. It is expected that the speedup will increase
as the number of processors increase with a theoretical limit set to m where
m is the number of domains the finite element model has been subdivided
into. As a reminder if m>2 then the m domains will be performed on m
logical processors.

49

Number of Figure
Processors Number

1 5.2

Speedup I E'fficiency Speedup [Efficiency
(Tol= IO-') (Tol= 1 0-')

1.00 I 100% 1.00 I 100%

2
(9) (15)

5.5 1.83 92% 2.08 104%

A 64 element rectangular plate, Figure 5.2, containing 403 dof is tested to
determine the speedup and efficiency on two, four, six and eight processors
shown in Table 5.1 for q = 2 and Table 5.2! for q = 6. The decoupled plates are
shown in Figures 5.5-5.13 to show the global fronts and element numbering
layout. A sample output of program p- - fda for the two domain configuration
is located in Appendix F. Favorable results were obtained on the two and
four processor models with the six and eight processor models developing
trouble due to the high number of dof on the global front. The number
of iterations taken to achieve tolerance]plays a big part in determining the
overall speedup of the system, e.g. a greater number of iterations in the
parallel solution compared to the sequential solution will significantly lower
the speedup. A thorough evaluation will be made on the various number
of domains to show the advantages and deficiencies of p-feda compared to
sequential FEDA by looking at specific subroutines and communication links.

4

The two processor model (Figure 5.5) performed consistently well, average
speedup of 1.84, and even advanced above the theoretical limit for q = 6 and
a tolerance of because of a lower number of iterations, Tables 5.1 and

(9) (13)
5.8 2.67 67% 3. LO 77%

50

6
(9) (13)

5.11 4.04 67% 5.30 88%

VIll

VI1

DOYAIN 1 DOYAIN a
VI

V I

Figure 5.5: Two Domain Configuration of 64 Element Plate with Element
Numbering Scheme

fv

111

I1

I1

I

I1

I

Figure 5.6: Two Domain Configuration with Horizontal Global Front for 64
Element Plate

IV

DOYAIN 2

111

I

IV

DOYAIN 1

111

VI11 Iv

VI1 111
DOYAIN DOYAIN 3

VI I1

V I

DOYAIN 1

Figure 5.7: Four Domain Idealization of 64 Element Plate with Element
Numbering Scheme and Vertical Local F'ronts

51

Figure 5.8: Four Domain Idealization with a Cross (+) Front for the 64
Element Plate

I DOMAIN 4

DOMAIN 3

DOMAIN 1

DOMAIN I

Figure 5.9: Horizontal Global Front with Four Domains on a 64 Element
Plate

Figure 5.10: Six Domain Configuration of the 64 Element Plate

52

D O U A I N S DOMAIN 1

DOMAIN DOMAIN DOMAIN DOMAIN D O U A I N DOMAIN
1 3 4 5 6 7

Figure 5.11: Six Domain Idealization of a 64 Element Plate, Domains
6 have 12 Elements Each with all Others Containing Ten Elements

DOMAIN
8

DOMAIN c
1 and

Figure 5.12: Eight Domain Configuration of the 64 Element Plate with Ver-
tical Global Fronts

pqzq-T
DOMAIN 3 DOMAIN 7

Figure 5.13: Eight Domain Configuration of64 Element Plate

53

Table 5.3: Evaluation of 64 Element Plate Limited to Two Subspace Itera-
tions

Number of Figure Speedup I Efficiency Speedup I Efficiency '
Processors Number CI = 2 q = 6

2.84
5.1 1 2.88 48% 3.00
5.12 2.83 35% 3.18

5.2. When comparing the results of Tables 5.1, 5.2 and 5.3 the two domain
model gains momentum as the number of iterations increase where the total
number of sequential iterations are equivalent to the total number of parallel
iterations. The global front has only 13 dof which is the lowest possible
number for a two domain model.

This is the only system where an evaluation of the communication links
could be verified. It was found that the overhead associated with transmit-
ting information from one processor to another through common blocks was
minimal.

Scanning Tables 5.1 and 5.2 shows that the results from the four domain
models in Figures 5.7 and 5.8 benefited greatly from a lower number of it-
erations in the parallel solution. In Table 5.2 the domain model in Figure
5.8 was used over the model in Figure 5.7 because of the abnormally high
number of iterations, 21 and 27, taken by the model in Figure 5.7 to con-
verge. The r m o n for the lower speedup in Table 5.2 is a consequence of a
greater number of degrees-of-freedom (71) for Figure 5.8 compared to 39 dof
in Figure 5.7. This concern will be addressed later in the chapter. Therefore,
to get a more comparable speedup look to Table 5.3 where a limited number
of iterations were placed upon a foul- domain problem.

54

5.4 Examination of Subroutines:

To initially start the multitasking package a main program was developed to
set events and map out all domain processors. The time taken to perform
this task was calculated to be between 20 to 60 milliseconds, which does
not have a big impact on the total execution time. As mentioned earlier
in Section 3.2, a t the first synchronization point all input data is read into
task one and passed to the other tasks because of problems with 1/0 (only
single-threaded 1/0 available) on the Cray. This causes a 1.0 second delay
until all processors can move forward again. The subroutine that handled
the dynamic dimensioning of arrays has no speedup and takes approximately
the same amount of time regardless of the number of processors but since
it takes less than one millisecond to perform all calculations, the subroutine
will be assumed negligible in the total execution time.

In DMATRON, the subroutine that determines the first and last appear-
ance of all nodes in its domain has a very low speedup for all sizes of domains.
This subroutine takes about 2% of the total execution time to complete, some
overhead is accumulated in this subroutine but is not critical to the total ex-
ecution time. The creation of model matrices, [K]' and [MI', is the first
place where significant speedup is achieved because the finite element model
is substructured into an equal number of elements in each task; the individ-
ual tasks should have an ideal speedup of 2.0, 4.0, 6.0 and 8.0 for two, four,
six and eight processors in subroutine ESTIFF.

Referring to Table 5.4, the two, four and eight domain structures had
efficiencies of 89%, 90% and 90% for subroutine ESTIFF which means some
overhead has been complied at this point due to parallel processing. In the
unbalanced six processor model (Figure 5.11) the efficiency is only 80% as a
result of the extra elements in domains one and six.

After the element matrices have been generated, the program is ready to
begin the solution-resolution process to determine the natural frequencies of
the system. The first and most critical subroutine is DFRONT where the
multi-frontal technique is implemented along with !he assembly and elimina-
tion of the global front. The success of the parallel algorithm is dependent
upon the amount of dof on the global front, as the number of domains in-

55

Table 5.4: Subroutine Speedups for Varying Domain Sizes with q = 6

DFRONT
DCONDS
RELOAD

Number of Processors I Subroutine 1- I Four I Six I Eight

1.83 2.55 2.37 2.34
1.86 3.64 4.81 6.97
1.92 3.84 5.06 7.64

crease so does the number of dof on the global front. This subroutine gets
progressively worse as the number of dof on the global front and domains in-
crease which can be seen in Table 5.4. The first iteration’s execution time in
DFRONT will always be greater than the remaining subspace iteration’s ex-
ecution time because of a lower number of calculations. All equations needed
in resolve that were previously calculated are saved for future use, e.g. in
the Gauss-Jordan method for the elimination of the global front all variables
divided by the pivot in their respective equations are saved for resolution. A
more comprehensive investigation will be conducted later in Section 5.6. The
remaining two subroutines DCONDS and RELOAD perform the calculations
of the modified subspace method. Some overhead is accompanied with these
subroutines but overall their speedups were consistent and performed very
well.

For the two processor model (Figure 5.5) the percentage of total execution
time used by the different subroutines in p-feda are presented in Table 5.5.
The sum of all values in Table 5.5 is 96% which leaves 4 % of the total
execution time due to the overhead of parallel processing. In conclusion,

56

Subroutine
NiUIW

a recap of the overhead associated with p-feda is given:

Time (%)
1'' Iteration I P Iteration

1. extra coding to implement the parallel processing.

2. extra storage requirements used by the separate task processors.

3. input of data and the map of the pre-front needed in the solution.

4. communication links used to pass information.

5. assembly and elimination of the global front performed within each
task.

6. calculations that are not performed on an element by element basis.

5.5 Impact of Increasing Elements:

The effect of increasing the number of elements and degrees-of-freedom (dof)
on the overall plate will be investigated. All other factors are kept constant,
i.e. q = 6, two or six subspace iterations, always dividing the plate into two

57

I’
It
0
I i -I

DOMAIN 1

Figure 5.14: Subdivided Plate for all Test Runs with the Direction of the
Local Fronts Shown

balanced domains, 13 dof on the global front, direction the wave front sweeps
across the domain as shown in Figure 5.14 and the size of the wave front.
Plates consisting of 8, 16, 24, 32, 40 and 64 elements, Figures 5.1 and 5.2
were used in this test. Referring to Figure 5.15, the speedup is increasing at
a constant rate for both the two and six subspace iteration test cases as the
number of elements increase. These results show that for large finite element
problems a significant increase in computational speedup can be achieved
if the number of elements per domain are large enough to overcome the
deficiency of eliminating the global front. The percentage of execution time
taken by DFRONT becomes less of a factor as the number of iterations and
elements increase. The 8 and 16 element plates for two subspace iterations
are affected by the singlethreaded 1/0 more than the larger size plates.

Looking at the execution time shows a vast improvement in the parallel
algorithm with the added elements. However, another determinant to be
evaluated is the work done or CPU time for the solution process; the speedup
for the work done is displayed in Figure 5.18. The ideal speedup would be 1-00
for the parallel solution, i.e. the amount of ‘work done would be equal for both
the parallel and sequential solutions. Although the work done for the parallel
solution is greater than the sequential solution in all cases, the parallel CPU

58

1 .w

1.80

1.70

1.60

1 .so

- -

0 8 16 2 4 32 4 0 4 8 5 6 64

NWBER OF ELEMDcrs

Figure 5.15: Effect of Increasing the Number of Elements on the Execution
Time with all Other Factors Constant

time is approaching the sequential CPU time at a steady pace as the number
of elements are expanded. This is a very notable factor when applying the
parallel algorithm to enormous finite element models because the work done
by the parallel solution is not increasing as rapidly as the sequential solution.
Therefore, the overhead associated with parallel processing is becoming less
noticeable as the number of elements increase with all major factors that
affect the solution set a t constant values.

5.6 Subspace Dimension:

In this study the number of eigenvalues and mode shapes will be increased
to determine its impact on the algorithm. All factors are kept constant
when using the 64 element plate shown in Figures 5.2 and 5.5 with test runs
limited to two subspace iterations. Displayed in Figure 5.17 is the speedup
relative to the increasing eigenvalues (q = 2, 4, 6; 8 and lo), a speedup of

59

1
0.86 -

0.04 -

0.82 -

0.80 -

c
E
3
0
0,

0.70.’. I - I - I * I

0 8 16 24 32 4 0 48 56 6 4

Figure 5.16: CPU Time Affected by Extra Elements with all Major Factors
Constant a Limit of Two Subspaw Iterations were Used

execution time shows a steady increase in the speedup from 1.68 to 1.75 for
the largest two subspace dimensions. In conclusion, for large finite element
problems increasing the subspace size adds no extra overhead and shows a
steady increase in speedup for a higher number of eigenpairs.

Determining the effect of extra eigenlsairs in the subspace on the CPU
time will be the next goal. Referring to Figure 5.18, the speedup for the
CPU time slowly builds up as the eigenvalues expand in number.

Consequently, this leads to the same conclusions found in the previous
section, i.e. the overhead associated with parallel processing is b m m i n g
leas noticeable as the number of eigenvalues and mode shapes increase while
keeping all major factors constant.

60

1.76 -

1.74 - c r c
2

1.72 - E 0
W
X
w,
a 1.70-
3 n
W
W a
cn 1.60-

0 2 4 6 8 10

M B E R OF OGENPAJRS

0.88 7

0.87- E
p' 0.86-

0,

c

a 0.85-
3
0
W w 0.84- n
Qp

Figure 5.17: Impact on Execution Time with an Increasing Subspace Dimen-
sion with all Other Factors Constant

0.82 O ' I

0.81 ! I I I 1 1 4

0 2 4 6 8 10

NWBER Of OGENPAIRS

Figure 5.18: Influence of I n d Eigenpairs on the CPU Time Keeping all
Factors Constant

61

5.7 Size of Global Front:

A primary section of additional coding for pfeda is associated with the
assembly and elimination of the global front. A major portion of the overhead
is accumulated at this section of the dom,ain task.

Keeping the degrees-of-freedom on the global front to the lowest possible
total by subdividing the finite element model appropriately will increase the
speedup and efficiency of the overall problem. When the number of domains
increase so too does the dof on the globd front and the best one can hope
for is an equivalent number of dof on the boundaries when the finite element
problem is subdivided into a greater nuimber of domains compared to the
simplest two domain substructure.

This has proven to be a deficiency in pfeda which can be seen in Table
5.6 where the global front varies for different test cases. For example, in the
two domain problem (Figure 5.5) with 13 dof on the global front and 115
dof remaining in each domain, subroutine DFRONT in the first and second
iteration take up 19% of the total execution time. In contrast, the eight
domain problem with 91 dof on the global front and 19 dof remaining in each
domain takes 64% of the total execution time.

The four domain model shown in Figures 5.7-5.9 will be investigated to
determine the impact of increasing the dof on the global front with all other
factors constant, i.e. q = 6 and two subspace iterations. In Figure 5.19
the results of the four domain models located in Table 5.6 are plotted. The
degrees-of-freedom in one domain are the sum of the global front dof and
the dof remaining in one domain, e.g. in Table 5.6 for Figure 5.7, the dof for
each separate domain is 51 and the dof on the global front is 39 with a total
dof in one domain equaling 89 for this test case, the other totals are 114 dof
for Figure 5.8 and 198 dof for Figure 5.9. Clearly shown in Figure 5.19 is the
impact of increasing the global front in p-feda, a significant loss in speedup
is witnessed as the dof on the global front front increase and the remaining
dof in each domain decrease.

In Figures 5.7 and 5.9, the problem of an idle domain or waiting by one
t a sk will arise in DFRONT even though all domains have a n equal number

62

Figure DOF Located on speedup
m Number Global One Overall DFRONT

2 5.5 13 115 1.75 1.60 1.83
5.6 61 91 1.38 0.66 1.02

4 5.7 39 51 2.91 1.42 2.55
5.8 71 43 2.37 0.93 1.95
5.9 183 15 0.40 0.06 0.38

6 5.10 73 35 3.00 1.13 2.34
5.1 1 73 35 2.94 1.21 2.37

8 5.12 91 19 3.18 0.91 2.34
L 5.13 91 19 3.08 0.84 2.35

Front Domain (1) (2)

The value in () corresponds to the first or second iteration.

of elements, as a consequence of dissimilar domains, e.g. in domains two and
three a local front is located on each side of the domain, whereas in domains
one and four only one local front exists. This will cause unbalancing in the
processors work load because of an increased frontwidth in domains two and
three. The domains can not continue execution until all domains post their
event in DFRONT, therefore a domain may sit idle and cause overhead in
the parallel solution. For Figure 5.7, it was found that DFRONT had a 0.4
seconds difference between the slowest (domain 2) and fastest (domain 1)
domains. Since domain 2 has a larger wave front due to the local fronts on
either side of the domain, the wave front will sweep across the domain slower
than domain 1 which has only one local front.

63

4.00 -
3.50 -

3.00 -
2.50 -

a
3

W

cn

E] 2.001

a
1.50 -
1.00 -

0.50 -
.

SPEEDUP (OVEW)
SPEEDUP DFRONT (FIRST ITERATION)
SPEEDUP DFRONT (SECOND ITERATION)

0.00 --
80 100 120 140 160 180 200

DEGREE8 OF FREEDOM
(IN ONE DOMAIN)

Figure 5.19: Impact of Increasing the Global Front on the Different Four
Domain Models (Figures 5.7-5.9)

64

Chapter 6

Conclusions and
Recommendations

The frontal solution [24] and modified subspace method [4] were presented
with their advantages. Parallel implementation of these methods on the
Cray X-MP/24 proved successful in achieving computational speedup. In
addition, the use of multitasking routines (181 installed on the Cray X-MP
computer has proven to be very efficient in mapping each domain to a user
task.

The parallel program described in this report was found to be an accurate
and effective algorithm to solve large linear finite element eigenproblems on
the Cray X-MP/24 computer. The parallel eigensolver demonstrates that
speedups in execution time can be achieved compared to a similar sequen-
tial algorithm (Figures 6.1 and 6.2). Utilization of the Cray’s multitasking
library also proved to be an efficient tool to parallelize the FORTRAN code.
Multitasking subroutines were found to be of minimal impact on the total
execution time.

The parallel program takes advantage of the shared and local memory
on the MIMD Cray machine while successfully using a completely connected
architecture to transmit information from one processor to another.

65

8.00 -
7.00 -
6.00 -
5.00 -

P
3
O 4.00- E a
0

3.00 -
2.00 -
1.00 -

SPEEDUP (ACTUAL)
SPEEDUP (THEORmcAq

Figure 6.1: Effectiveness of p-feda for a 64 Element Plate with q = 6 and
Six Subspace Iterations

Communication links were performed by using common blocks to store
all data rather than the Cray’s SSD solid-state storage device. When the
problems with the SSD are resolved, i.e. the capability to perform multi-
threaded 1/0 rather than the single-threaded 1/0 currently available, the
authors recommends this I/O device be used 80 that larger and more sophis-
ticated problems can be solved with significant improvement in performance
and increased flexibility. Furthermore, the: arrays used in the common blocks
limited the total number of degrees+f-frdom on the global front that the
program could store, especially as the number of domains increased. By uti-
lizing the SSD, data input could be read in by each separate task, thereby
lowering storage requirements and execution time in the solution process.
This would eliminate waiting (overhead) by the it* task for the input data
from task one.

The major deficiency in this parallel algorithm was elimination of the dof
on the global front, as the domains increased so did the dof on the bound-
ary. The extra sequential calculations performed by each task to handle the

66

100 -
W -

8 0 -

10-

60-

5 0 -

40 -
30-

M -

10 -

1 2 4 6 6

NUYBER OF PROCESSORS

Figure 6.2: Evaluation of 64 Element Plate on p-feda for q = 6 and Six
Subspace Iterations

global front lowered the speedup and efficiency significantly. On the other
hand, the performance for the creation of the stiffness and mass matrices
and the modified subspace method were extremely encouraging and indicate
the effectiveness of multitasking on the Cray X-MP computer. Therefore,
when calculations were performed on an element by element basis, in parallel,
speedup and efficiency was very high compared to the section where extra
sequential coding was required.

When subdividing a finite element model into m domains one should
choose the configuration with the lowest possible dof on the global front
for this will increase speedup and efficiency of the parallel algorithm. In
addition, load balancing, i.e. assigning an equivalent amount of work to each
task by keeping the number of elements and frontwidth equal in all domains,
is very important in the performance of p-feda. Communication links were
found to be of minimal impact (no idle domains) in parallel processing if all
domains were balanced. Some overhead is accumulated due to one processor
being faster than another but the overall execution time of the problem

67

will overshadow this deficiency. Based on the results obtained, the authors
recommends that one should only further subdivide t,heir finite element model
into a greater number of domains only if the number of elements in the
separate domains are large enough to overcome the overhead associated with
the global front elimination. As a rcsult of the greater number of elements
per domain, the amount of work performed by the individual tasks on all
subroutines will outweigh subroutine DFRONT in the total execution time.
Element numbering is an important aspect in lowering the frontwidth for
the frontal technique. The user should always number the elements in the
domain so that the wave front converges to the local front, if a t all possible.
In addition, to optimize element nuimbering, one should follow the general
rules that are applied to the optimum node numbering (91.

Reported earlier were the two types of multitasking, macrotasking and mi-
crotasking, with macrotasking being used herein. The parallelization for t h e
solution of the linear simultaneous equations on the global front by using mi-
crotasking routines [181 could prove to be beneficial because all tasks perform
the same calculations on the global front stiffness matrix. These calculations
could be concurrently performed to iincrease speedup of p-feda, especially in
the larger size domains, by using a parallel direct method [26,27,34,35].

Bibliography

[l] Akl, F. A. and Hackett, R., “Multi-Frontal Algorthim for Parallel Pro-
cessing of Large Eigenproblems,” Proceedings of 27th SDM Conference,
Paper 86-0929, pp. 395-399, 1986.

[2] Akl, F., Dilger, W. H. and Irons, B. M., “Acceleration of Subspace
Iteration”, International Journal for Numerical Methods in Engineering,
VOI. 18, 4, pp. 583-589, 1983.

(31 Akl, F. A., Dilger, W. H. and Irons, B. M., “FEDA” A Finite Element
Dynamic Analysis Program, Department of Civil Engineering, The Uni-
versity of Calgary, Canada, 1979.

[4] Akl, F., Dilger, W. H. and Irons, B. M., “Over-relaxation and Subspace
Iteration”, International Journal for Numerical Methods in Engineering,
V O ~ . 14, 4, pp. 629-630, 1979.

[5] Akl, F. A., A Modified Subspace Algorithm for Dynamic Analysis b y
Finite Elements, and Vibration Control of Structures, Ph.D. Thesis,
Department of Civil Engineering, The University of Calgary, Canada,
December 1978.

(61 Adams, L., and Ortega, J., “A Multi-Color SOR Method for Paral-
lel Computation”, Proceedings of International Conference on Parallel
Processing, pp. 53-56, August 1982.

[7] Arora, J. S. and Nguyen, D. T., “Eigensolution for Large Structural Sys-
tems with Substructures”, International Journal for Numerical Methods
in Engineering 15, pp. 333-341, 1980.

69

[SI Baldwin, J. T., Razzaque, A. and Irons, B. M., "Shape Function Sub-
routine for an Isoparametric Thin Plate Element", International Journal
for Numerical Analysis in Enginee:ring 7, pp. 431-440, 1973.

[9] Bathe, K. J., Finite Element Procedures in Engineering Analysis,
Prentice-Hall, New York, NY, 1982.

[lo] Bathe, K. J. and Wilson, E. L., Numerical Methods in Finite Element
Analysis, Prentice-Hall, Inc., 1976.

[l I] Bathe, K. J., "Convergence of Subspace Iteration", U.S.-Germany Sym-
posium: Formulations and Computational P m e d u m s in Finite Element
Analysis, M.I.T., M A , 1976.

[I21 Baudet, G., "Asyrichronous Iterative Methods for Multiprocessors",
Journal of the ACAI, Vol. 25, April 1978.

[13] Bauer, F. L., "Das Verfahren der Treppen-Iteration und Verwandte Ver-
fahen Zur Losung Algebraischer Eigenwertprobleme", Z A M P 8, pp. 214-
235, 1957.

[14] Bostic, S. and Fulton, R., "Implementation of the Lanzos Method for
Structural Vibration Analysis on a Parallel ComputerP, A I A A Paper 86-
0930, A IAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics
and Materials Conference, San Antonio, TX, May 1986.

[15] Bostic, S. and Fulton, R., "A Concurrent Processing Implemen-
tation for Stuctural Vibration Analysis", AIAA Paper 85-0783,
A IAA/ASME/ASCE/A HS 26th Structures, Structural Dynamics and
Materials Conference, Orlando, FL, April 1985.

(161 Clint and Jennings, A., "The Evaluation of Eigenvalues and Eigenvec-
tors of Real Symmetric Matrices by Simulataneous Iteration", Computer
Journal 13, pp. 76-80, 1976.

[I71 Corr, R. B. and Jennings, A., "A Simultaneous Iteration Algorithm for
Symmetric Eigenvalue Problems", International Journal for Numerical
Methods in Engineering, John Wiley and Sons, Vol. 10, pp. 647-663,
1970.

70

[18] Cray Research, Inc., Cmy X - M P Multitasking Prvgmmmer’s Refemnce
Manual, SR-0222, July 1987.

[19] Crockett, T. W., and Knott, J. D., System Software for the Finite Ele-
ment Machine, NASA CR 3870, February 1985.

[20] Darbhamulla, S. P., Razzaq, 2. and Storaasli, O., ‘Concurrent Pro-
cessing in Nonlinear Structural Stability”, Proceedings of the 27th SDM
Conference, San Antonio, TX, Part 1, Paper 86-0979, pp. 545-550, May
19-21 1986.

[21] Gannon, D., “A Note on Pipelining a Mesh Connected Multiproces-
sor for Finite Element Problems by Nested Dissection”, Proceedings of
the 1980 International Conference on Pamllel Processing, pp. 197-204,
August 1980.

[22] Hwang, K. and Br igs , F. A., Computer Architecture and Parallel Pro-
cessing, McGraw-Hill, Inc., New York, NY, 1984.

[23] (Irons, B. M. and Ahmad, S., “Techniques of Finite Elementsn, Ellis
Horwood, England, 1979.

[24) Irons, B. M., “A Frontal Solution Program for Finite Element Analysis”,
International Journal for Numerical Methods in Engineering 2, pp. 5-32,
1970.

(251 Kopal, Z., Numerical Analysis, Chapman and Hale Ltd., London, 1961.

(261 Leuze, M. R., Pamllel Triangularization of Substructured Finite Element
Problems, NASA CR-172466, September 1984.

[27] McGregor, J. and Salama, M., “Finite Element Computation with Paral-
lel VLSI,” Proceedings of the 8th Conference on Electronic Computation,
ASCE, Houston, T X , pp. 540-553, February 1983. 1983.

[28] Melhem, R. G., A Modified Frontal Technique Suitable for Pamllel Sys-
tems, Technical Report ICMA-85-84, July 1985.

[29] Melosh, R. J. and Bramford, R. M., “Efficient Solution of Loading De-
flection Equations”, Journal of American So’ciely of Cioil Engineers,
StructuraI Division, Paper No. 5610, pp. 661-676, 1969.

71

[30] Paz, M., Structural Dynamics Theory and Computation, Van Nostrand
Reinhold Company, New York, NY, 1985.

[31] Quinn, M. J., Designing Eficient Algorithms for Parnllel Computers,
McGraw-Hill Book Company, IIIC., New York, NY, 1987.

[32] Rheinboldt, W. C. (Panel Chairman), 'Report of the Panel on Future
Directions in Computational Mathematics, Algorithms, and Scientific
Software", Society of Industrial and Applied Mathematics, Philadelphia,
PA, 1985.

[33] Rutishauser, H., "Computationa.1 Aspects of F. L. Bauer's Simultaneous
Iteration Method", Numerische Mathematic 13, pp. 4-13, 1969.

[34] Salama, S., Utku, S. and Melosh, R., "Parallel Solution of Finite Ele-
ment Equations," Proceedings of' the 8th Conference o n Electronic Com-
putation, ASCE, Houston, TX, pp. 526-539, February 1983.

[35] Sameh, A. and Brent, R. P., "Solving Triangular Systems on a Parallel
Computer," SIAM Journal on Numerical Analysis, 14, December 1977.

[36] Schaeffer, H. G., MSC/NASTRAN Primer Static and Normal Modes
Analysis, Wallace Press Inc., Milford, NH, 1982.

[37] Schendel, U., Introduction to Numerical Methods for Parallel Computa-
tions, John Wiley and Sons, New York, NY, 1984.

(381 Silbar, M. L., "The Pursuit of Parallelism MOSAIC", National Science
Foundation, Vol. 16, No. 3, pp. 8-17, 1988.

I391 Storaasli, O., Bostic, S., Patrick, M., Mahajan, U. and Shing, M.,
"Three Parallel Computation Methods for Structural Vibration Anal-
ysis", AIAA Paper 88-2391, AIAA/ASME/ASCE/AHS 29th Strucfres,
Structural Dynamics and Materials Conference, Williamsburg, VA, pp.
1401-1411, April 1988.

[40] Storaasli, O., and Bergan, P., "A Nonlinear Substructuring Method for
Concurrent Processing Computexs", Proceedings of the 27th SDM Con-
ference, San Antonio, TX, Part 2, Paper 86-0852, pp. 13-20, May 19-21
1986.

72

[41] Storaasli, O., Peebles, S., Crockett, T., Knott, J. and Adams, L., The
Finite Element Machine: An Ezperiment in Parallel Pmcessing, NASA
TM-84514, July 1982.

73

Appendix A

The Modified Subspace
Method

The solution of the eigenproblem is usually required in applications involving
free vibration and dynamic response analyses of finite element models. It
is typically a time consuming process if the structural system is idealized
through a large number of degrees of freedom. However experience has shown
that the response of structures can be adequately estimated using only a few
eigenvectors, and that the contribution of higher order eigenvectors can often
be neglected without significant loss in accuracy.

The subspace method is one the techniques suitable for the evaluation of
the lowest order eigenpairs in large stivctural systems [lo]. In this appendix,
the modified subspace method [2] is briefly presented and its characteristics
are discussed.

74

A.l The Eigenproblem in Structural
Dynamics

Consider the undamped free vibration of an N degree-of-freedom system:

Equation A . l expresses the motion of structural system in physical coordi-
nates {x}. However, it is more convenient to transform Equation A . l to a
new basis. Substituting

where q is defined as a generalized displacement coordinate and 4 is a new
basis of coordinates; thus

(5) = {4h (A-2)

replaces Equation A.5 in the new basis. For structural systems undergoing
periodic oscillations:

q = a sin(wt - 8) (A.4)

Substituting in Equation A.3,

which yields N solutions for N eigenvectors {4}, and the corresponding N
eigenvalues A,. The complete solution to Equation A.5 can be expressed as:

where [@I is an n.n modal matrix containing eigevectors {4}, columnwise,
and [A] is the spectral diagonal matrix of A,.

A.2 Description of the Sequential Algorithm

Subspace iterations schemes can be traced back to the fifties when [13] pro-
posed a "bi-iteration" method for solving the standard eigenvalue problem.

75

Later this method was applied to symmetric positive definite matrices by
[33], and t o symmetric [K] matrices by [16].

In 1971 Bathe introduced the subspace method, which has the advan-
tage of solving the generalized eigenproblem directly without transformation
to the standard form. The method essentially iterates on a n-dimensional
subspace rather than on n individual iteration vectors, where n 5 N .

The complete set of eigenvectors [a] of Equation A.6 spans the N-dimensional
space describing the system. These vectors are linearly independent, and sat-
isfy the following conditions:

1. M-orthonormality:

2. I(-orthogonality :

They are also unique if the system does not have multiple eigenvalues, oth-
erwise they are not unique within the subspace of eigenvectors with multiple
eigenvalues; but this subspace itself is unique, and satisfies Equations A.7
and A.8.

To demonstrate the procedure of the modified subspace method, let us
assume that we wish to calculate t h e n lowest eigenpairs of Equation A.6. The
R eigenvectors are said to span the least-dominant subspace of the operator
[K] and [MI which is called E,. The modified subspace iteration technique
can be stated as follows:

1. Establish n starting vectors [VI, which are said to span subspace El,
where n 5 PI'. Random numbers may be used for this purpose.

2. For each subspace E,, iterate from E, to E,+1, where 1 = 1 , 2 , 3 , 4 , . . .

76

3. Find the projections of the operators [K] and (MI onto E,+, :

WIi+l = [VI::llKI[Vl;+, (A.10)

[W+l = IvI::l [MI[Vl;+l (A.11)

4. Solve for the eigensystem of the projected operators using an auxiliary
eigen analysis routine:

5. Find an improved approximation to the required eigenvectors:

6. Repeat from step (2) to step (5) above until the required accuracy is
achieved. Fin ally:

There are a number of important observations concerning the subspace
procedure:

1. [KIT+, tend toward diagonal forms, and [Q),+, approaches [I] as 1 in-
creases.

2. The number of iterations required depends on how close El is to E,,
or in other words on how close [VI, is to [@I.

3. [A],+l is an upper bound to [A]

4. It is generally recommended to iterate on a number of eigenpairs large
than n, e.g. min{2n, (n + 8)) [lo]. The reason for this will be appreci-
ated when we discuss the convergence of the modified subspace method
in the next section.

77

A.3 Behavior of the Subspace Method

In general the starting vectors [VI, are linear combination of all the n eigen-
vectors [@ I . However if we assume that [VI, are a combination of only the n
required eigenvectors, then the subspace method converges in one step [lo].
The 2'' starting vector can be expressed as:

N
{.If = C a j i { b } j , where i = 1?2, ..., n. (A.14)

Those vectors of order higher than n are said to be "polluting" the subspace
El in each iteration, and basically the subspace method attempts through
the set of vectors [Q],+l to get the best combination of the vectors [V]I+l in
subspace E, to converge to subspace E,. The number of subspace iterations
required depends directly on the "noise" due to vectors of order higher than
n.

J = l

Reference [101 augmented the basic subspace approach with an elaborate
procedure to establish n starting vectors [VIl as close as possible to the
required subspace E, in order to minimize the number of subspace iterations.
In addition, the basic subspace method calls for a Sturm Sequence check on
the eigensystem to verify that all the required eigenpairs have indeed been
cal cu 1 a t ed .

However the authors share the view of researchers [17,33] that allocating
random numbers t o vectors [VIl is equally satisfactory in practice. Moreover
it is very improbable that any eigenpair will be absent a t the end of the
iteration, particulary when random numbers are used for [VIl.

A.4 Convergence of The Modified Subspace
Method

Bathe and Wilson [lo] reported the use of over relaxation, shifting, and
Aitken's Formula to improve the convergence rate of the basic algorithm.
However, no theoretical basis has been established for their performance.

78

Referring to the analysis presented in the previous section, the starting
subspace El is always polluted with eigenvectors of order higher than n. This
requires the subspace procedure to iterate in order to convergence toward E,,
or in other words to eliminate {4),,+l,. . . , (4) ~ . Writing a typical vector in
E1

N

where the first part of the right-hand-side represents the subspace E1 that
we wish to isolate, and the second part represents a complementary subspace
E; as a "noise" polluting subspace El.

The fundamental idea in accelerating the convergence of the subspace
method is based o n eliminating the complementary subspace E; a t an in-
creased rate.This task is exactly equivalent to that of persuading the coeffi-
cients up, in Equation A.15 to convergence to zero as rapidly as possible.

Proceeding with the modified algorithm of the subspace method, inverse
iteration on (21); gives

{v}& = [K] - - ' [M j { t J } f - /3{v};l (A.16)

Substituting Equation A . l into Equation A.16 and using Equation A.6,

j=l q=n+l r=l

(A.18)

If factor p is chosen t o be equal to l / X n + l , then the contribution of
vector { din+, to the complementary subspace E:+, js entirely eliminated. In
general i f we choose B equal to l / X q , vector { $ } q (where q = n + 1, . . . , A')
does not contribute noise to the eigensystem. But the important question

79

now is how can we select the factor 19 when we do not know the eigenvalues
An+], An+l, - - - 9 A N -

The following strategy proved successful in reducing the number of itera-
tions in some cases than half that required with basic subspace method using
the same starting vectors [VI,:

Step 1: After one iteration, a poor estimate of A, is known. The lowest root
rl of the 11 '" order Gaussian Quadrature formula of the closed type for
integrating over the range 0 to 1/A, [25] was used for factor in the
second iteration. Table A. l gives the roots of the Gaussian Quadrature
formula and shows how to tran.sfer these roots from the range (-1, l)
as given by [25] to (0, l/An). This value of p is not optimal, but being
small it is less dependent on the initial value of A,, than a higher root
would be.

Step 2: After the second iteration is completed, a more accurate value for
A, is known, the second root of the Gaussian formula was used for
calculating ,8.

Step 3: The process is repeated with every iteration using the current value
for A, to get the (j - 1)'" root of the Gaussian formula in the j '"
iteration until the 11'" iteration is reached. If more subspace iteration
are still needed, then proceed with p = 0 until the required accuracy is
achieved, Experience has shown t,hat the solution is sometimes sensitive
to the eleventh root of Gaussian formula, therefore beyond the 1 l th
iteration a value of zero is assigned to factor ,!I, ;.e. a return to the
basic subspace approach.

The rate of convergence of the modified subspace method can be expressed

(A.19)

which is faster than the rate of convergence of the basic subspace algorithm
of (A,/X,,+*) [lo]. By choosing factor p sufficiently small to be as close as
possible to 1/A, (root r l), the q'" element of noise in the complementary
subspace E;,,, and probably other elements of order less than n , are either

as follows:
Ai(1 - @An+*)

Xn+1(1 - P A ,)
Rate of convergence 5

80

Table A.l: Roots of the Gaussian Quadrature Formula of the Closed Type

Root Value

rl -0.9533098466
r2 -0.8462475646

r4 -0.4829098210
r5 -0.2492869301

r3 -0.6861884690

eliminated or

Root Value

r6 0.00000000000
r7 +0.2492869301

rg +0.6861884690
rl0 $0.8463475646

r8 $0.4829098210

minimized. As factor /? grows in value from root r2 to rlo,
the contribution to the noise of vectors {4} of progressively decreasing order
up to (n + 1) in the complementary subspace E;+, are swept away in turn,
collectively. This "sweeping" strategy, from root rl to rl0, ensures that no
noise due to eigenvectors of higher order is reintroduced into the subspace as
we proceed to eliminate the noise due to the lower eigenvectors.

81

Appendix B

Variable List

Variable Name

EIGEN2
EIG EN S H P

ELKSTR

ELV

ELVDOT
FULMASS
FULSTIF
INITIAL

INTEG
P R O P

Description

element eigenvectors.
profile of the modes of vibration of the
system at some prescribed nodes listed in
NODEIGN.
projection of an element stiffness matrix
onto the current subspace.
element initial displacements in modal
analysis.
element initial velocities in model analysis.
element mass matrix.
element stiff ness matrix.
maximum number of nodes with initial dis-
placement or velocities.
number of integer words per floating point.
number of properties, e.g. thickness, den-
sity, etc.

8 1!

Variable Name

JPROP
KODFIX

KODLOAD

KODSOL

LCOEF

LDEST
LENVEC
LENVECl
LIMFRO
LNODES
LPROP

LVAB

Description

number of sets of properties.
code number listing which degree of free-
dom is prescribe at each node.
code number for loading in dynamic re-
sponse analysis
= 0 no uniform dynamic loads
= 1 uniform dynamic loads
solution code
= 0 static solution.
= 1 dynamic response analysis by the
mode superposition method
= 2 dynamic response analysis by the di-
rect integration method
= 3 subspace eigen analysis
number of coefficients in the lower triangle
of (K] or [MI.
element destination vector.
length of vector VEC/NVEC.
length of vector VECl/NVECl.
length of the limiting front width.
element node numbers.
the set of properties application to each el-
ement.
maximum number of variables per element.

83

Variable Name

M AT RI C ES
MEQ

NAME

NBUFZ

NCASE

N D F
NDFRO
NDIM

NEGIEN
NEIG N T
NEL
NEXTIF
NFIX
NGAUS

NLOAD

NLOADl

Description

LVAB*(LVAB+l)/2
identifies the degree of freedom of a node
for which the current equation is to be
solved.
identifies the prescribed variables and their
locations in VFIX (with negative sign),
otherwise it gives the node number (with
positive sign).
maximum number of equations existing a t
one time in the core storage.
maximum number of iterations in sub-
stance eigen analysis.
number of degrees af freedom per node.
width of the limiting front.
dimension of the physical coordinates of
the system.
number of required eigenpairs.
NEIGEN = NRHS
total number of elements.
number of nodes with additional stiffness.
number of nodes with some fixed values.
order of the gauss rule used in numerical
intergration.
number of nodes with additional concen-
trated loads in static analysis.
number of nodes with additional concen-
trated loads in dynamic
response analysis (NLOAD must be equal
to zero).

84

. Variable Name

NMODE

NODEIGN

NODEL
NODFIX

NODINIT

NODLOD
NOPTION

NOSTIF
NPDFRO
NPIVOT

NPOINl

NPOINT
NRESOL
NRHS
NRHSl

Description

number of vibration modes used in modal
analysis 5 NEIGEN.
list of nodes at which the profile of the
modes of vibration is required.
maximum degrees of freedom per node.
list of nodes with prescribed displace-
ments.
list of nodes where initial displacements or
velocities are given.
list of nodes with additional loads.
printing option
= 0 print element stiffness, mass and load
arrays.
= 1 suppress printing.
list of nodes with additional stiffness.
node numbers in the current front.
location of the pivot in each equation in
eq.
number of nodes in plotting vibration
mode profiles.
total number of nodes.
iteration number in eigen analysis.
number of right hand sides.
number of right hand sides in model anal-
ysis _< NEIGEN.

85

Variable Name

NSTEADY

NSTIF
NSTOP

NSTRES

NTYPE

OLIGNVL
POTEGY
PSTR

REACTN

SIGDIG

SKSTR

Description

code number for steady state response un-
der harmonic loading using modal analysis
= 0 no steady state response is required.
= 1 steady state response for sine loading
function.
= 11 steady state response for cosine load-
ing function.
LIMFRO (LIMFRO + 1) /2.
= 0 if tolerance level TOL2 in subspace
eigen analysis is not achieved.

= 10 if TOL2 is achieved.
number of the stress components = size of
matrix [D).
type of the problem, e.g. plane stress,
plane strain.
eigen values from a previous iteration.
potential energy for each right hand side.
modal loads, i.e. projection of the system
loads onto the system eigenvectors.
reactions at nodes with prescribed dis-
placements.
the sum of the squares of the diagonal stiff-
ness.
projection of the system [K] matrix onto
the current subspace.

.

86

Variable Name

SMSTR

STREGY
SUBLOD

SUSTIF

TOL2
TOTLOD
VFIX

VLAD

VPROP
VSTIF

Description

projection of the system [M) matrix onto
the current subspace.
strain energy for each right hand side.
in assembly, i t is a subset of the right hand
sides corresponding to sustif. In back sub-
stitution, it is used to hold the vector of
running variables.
grandpa matrix into which elements are as-
sembled.
tolerance level in subspace eigen analysis.
total load at active nodes.
prescribed displacement at the nodes listed
in NODFIX.
additional loads at the nodes listed in
NODLOD.
element properties.
additional stiffness at the nodes listed in
NOSTIF.

87

Appendix C

NEL

NEL
NEL

NEL

NEL

Management of Files

Each record contains ELSTIF +
ELOAD of the first frontal solution
ELOAD for re-solutions
EIGENl in eigen-analysis
X, XDOT, XDDOT in the dynamic
response analysis
ELDISP in backward order, Files
i.e. first record is ELDISP of the first
element.
EnLMASS

File
Number

I I 1

9

Re-Solution

88

Appendix D

Error #

Error Messages

Interpert ation

The diagnostics provided in program pfeda are listed below. It should be
noted that if the dimensions of vectors VEC/NVEC and/or VECl/NVECl
are changed, LENVEC and/or LENVEC1, respectively, must also be changed
to the same amount. Otherwise the diagnostics will be worse than useless.

NEL = 0 or -ve
NCASE = 0 or -ve
NSTRESS = 0 or -ve
NTYPE = 0 or -ve
NGAUS # 2 or 3 or 4
NODEL = 0 or -ve
NDFMAX = 0 or -ve
IPROP = 0 or -ve

10 1 JPROP = o or -ve

89

Error #

11
12
13
14
15

Interpertation

NFIX = 0 or -ve, or NFIX > NPOIN
NEXTIF = -ve, or NEXTIF > NPOIN
NLOAD = -ve, or NLOAD > NPOIN
INTEG # 1 or 2
LENVEC or LENVECl is not adequate to accommodate
the given problem.

17
18

19
20

21

22
23
24

25

u

An entry in NDF > NDFMAX, or = 0 or -ve
An entry in NDF like 3, 2: 0, 3 is not allowed. 3, 2, 3, 0
would be allowed.
All the entries in NDF of a given node are zeros.
The summation of entries, in NDF of a given node >
LVAB.
An entry in JPROP is outside the range permitted in the
first card, or is negative or zero.
A node number in an element is -ve, or it exceeds NPOIN
An element has all the node numbers zero.
Node numbers of an element are given as e.g. (21, 13, 0,
19) instead of (21, 13, 19, 0).
Length of vector VEC is not enough even to do all the
checks. Increase the dimension of VEC and LENVEC to
the uassociated number" given in the error message.

90

26
27
28
29
30
31
32
33
34

Fatal Di

1 ::
f

Interpertation

A node is repeated.
An entry in array NODFIX = 0 or -ve, or > NPOIN.
An entry in array KODFIX = 0.
You have fixed the same node twice or more.
An entry in array NOSTIF = 0 or -ve, or > NPION.
You have added a stiffness to the same node twice.
An entry in array NODLOD = 0 or -ve, or > NLOAD.
You have applied a point load to the same node twice.
Dimension of VEC is not enough to run the program.
increase the length of VEC and LENVEC to the “asso-
ciated number” printed in the message.

Fostics in DFRONT (reading of the card is interrupted)
Diagonal stiffness + pivot is large enough to suggest that
serious roundoff damage has occurred, or the pivot is
negative .
The calculation has terminated, but a subsequent investi-
gation suggests that the results are almost certainly non-
sense because of roundoff errors.
NODFL*NEL 5 NPOIN, or 20*NEL 5 NPOIN
NODEL I NDIM, or NODEL > 20

NDFMAX > 6
NDIM # 2 or 3
NSTRES > 2.*DIM
IPROP > 10
JPROP > 50
NFIX < NDIM
LENVEC _< 300, or 2 100,000

Non-Fatal Diagnostics in DNURSE

91

Error # Interpertation
1

Non-Fatal Diamostics in DMATRON
50
51
52
53

54
55

56

57

58

59

60

61

TWO nodes have identical coordinates.
An element has repeibted node numbers.
A particular node number does not appear at all.
You have specified the coordinate of this node, then you
have not use it.
You have not use a node, and yet you have fixed it.
Or, you have not used a node, and yet you have added a
stiffness there.
Or, you have not useid a node, and yet you have added a
point load there.

Non-Fatal Dianiiostics in DFRONT
v

Diagonal stiffness t pivot is large, suggesting that some
roundoff has been done, probably not much.
Frontwidth is prematurely zero. You have not put two
independent structures in one run. Did you mean to do
this?
Your energy is zero. Did you intend to put in an unloaded
structure.
My guess is that you have a heated but unloaded struc-
ture. I trust you know what you are doing.
The final level of roundoff leaves me a little suspicious of
the value of your results.

92

Appendix E

Data Input for p-feda

DESCRIPTION

Jst line (Format 2014)
Total number of nodes.
Total number of nodes along global front.
Total number of elements.
Maximum number of nodes per element.
Maximum degrees of freedom per node.
Maximun number of solutions or iterations
in eigen analysis.

Number of dimensions (2 or 3).
Number of stresses = size of matrix D.
Number of element types.
Gauss rule used.
Number of properties, i.e., E, A, etc.
Number of sets of properties.

VARIABLE COLUMN

NPOIN
NGLOBE
NEL
NODEL
NDFMAX
NCASE

NDIM
NSTRES
NTYPE
NGAUS
IPROP
JPROP

1-4
5-8

9-12
13-16
17-20
21-24

25-28
29-32
33-36
37-40
41-44
45-48

93

DESCRIPTIO N VARIABL E COLUM N

Number of nodes with prescribed values.
Number of nodes with additional stiff-
nesses.
Number of nodes with additional loads.
Maximum number of variables per ele-
ment.
Number of right hand sides or eigenpairs.
Number of nodes in vibration mode prob-
lem.
Printing option.
S o h tion option.

NFIX
NEXTIF

NLOAD
LVAB

NRHS
NPOINl

NPTION
KODSOL

49-52
53-56

57-60
61-64

65-68
69-72

73- 76
77-80

2nd line (Format 2014)
Number of sets of element loads. JLOAD 1-4
Number of fronts/domains. NFRONT 5-8
Maximum number of nodes per global GNODEL 9-12
front.

3rd line (Format E10.2)
Tolerance level in eigen analysis. t012 1-10

4th set of lines (Format 2014)

Number of degrees of freedom per node. NDF(N,J) 1-4, etc.
where N = 1,NODEL

[Enter values for each set of properties]

J = 1,JPROP
- Total number of lines = JPROP

94

5th set of lim (Format 2014)
[Enter values for each element]

Element number. NE 1-4
Type of element. LTYPE(NE) 5- 8
Property type of element. LPROP(NE) 9-12
Load type. LLOAD(NE) 13-16
Domain/Front the element is located on. LDMAIN(NE) 17-20
Element node numbers. LNODS(N,NE) 21-24, etc.
where N = 1,NODEL

NE = 1,NEL
- Total number of lines = NEL

6th set of lines (Format I5,3F11.4)
[Enter values for each node]

Node number.
Coordinates of node (X,Y,Z).
where I = 1,NDIM

N = 1,NPOIN
- Total number of lines = NPOIN

NODES 1-5
COORD(N,I) 6-16, etc.

95

DESCRIPTION_ l ! k m u m E C o L U M N

7th set of lines (Format 216,6F11.7)
[Enter values for each node th.at is fixed]

Node number that is fixed. NODFIX(N) 1-6
Code number listing which degree of

Prescribed displacements at the nodes
listed in NODFIX. VFIX(N,I) 13-23, etc.
where I = 1,NDFMAX

freedom is prescribed at each node. KODFIX(N) 7-12

N = 1,NFIX
- Total number of lines = NFYX

8th set of lines (Format 15,6E12.5)

tional stiffness]

Additional stiffnesses at the nodes. VSTIF(N,I) 6-17, etc.
where I = 1,NDFMAX

[Enter a value for each node with addi-

Node number with additional stiffness. NOSTIF(N) 1-5

N = 1,NEXTIF
- Total number of lines = NEXTIF

9th set of lines (Format 15,6E12.5)

tional loads]

Additional loads at the nodes. VLOAD(N,I,J) 6-17, etc.
where I = 1,NDFMAX

[Enter values for each node with addi-

Node number with additional loads. NODLOD(N) 1-5

N = 1,NLOAD
J = 1,NRHS

- Total number of lines = NLOAD
Repeated NRHS times.

96

YARIABLE COLUMN

10th set of lines (Format I5,6E12.5)

Property set n um ber .
Enter property values for the
specific element you are using.
where I = 1,IPROP

[Enter values for each set of properties]

J = 1,JPROP
- Total number of values = IPROP
- Total number of lines = JPROP

11 th set of lines (Format I5,6E12.5)

Node number.
Load set.
where NR = 1,NRHS

[Enter values for each node]

I = 1,JLOAD
- Total number of lines = JLOAD

12th set of lines (Format 2014)

Node number on global front.
where I = 1,NGLOBE

[Enter each node on global front]

- Total number of values = NGLOBE

N 1-5
VPROP(1,N) 6-16, etc.

N 1-5
SLOAD(1,N) 6-17, etc.

NDMAIN(1) 1-4, etc.

13th set of lines (Format 2014)
[Enter each node on global front]

97

Appendix F

IV

I11

I1

Output of p-feda

D O Y A I N 1

vn1

VI1
D O Y A I N 1

VI

I V

An output file conntaining the input data and eigenpairs is presented for a
two domain 64 element plate as shown in Figure F.l

Figure F.l: Two Domain 64 Element P1at.e with 13 dofs on the Global Front

98

M A X I M U M N O D E N U M B E R = N P O I N =
N U M B E R OF N O D E S A L O N G B O U N D R Y = N G L O B E =
N U M B E R OF E L E M E N T S = N E L =
M A X I M U M N O D E S P E R E L E M E N T = N O D E L =
M A X I M U M D E G R E E S OF F R E E D O M P E R N O D E = N D F M A X =
N U M B E R O F S O L U T I O I I S R E Q U I R E D = N C A S E =
N U M B E R O F S T R E S S E S = SIZE O F M A T R I X D = N S T R E S
N U M B E R O F E L E M E N T R P E S = N T Y P E =
G A U S S R U L E U S E D = H G A U S =
NUMBER OF P R O P E R T I E S : E . A . I
NUI*IBER O F N O D E S W I T H S O M E F I X E D V A L U E S = N F I X =
NUEIBER OF N O D E S W I T H A D D I T I O N A L S T I F F I I E S S E S = N E X T I F =
1IUMEER OF N O D E S C I I T H A D D I T I O N A L L O A D S = N L O A D =
M A X I M U M V A R I A B L E S P E R E L E M E t I T = L V A B =
H U M B E R O F R I G H T H A N D S I D E S = N R H S =
H U I l B E R O F I N T E G E R W O R D S P E R F L O A T I N G WORD = I t J T E G =
L E N G T H O F V E C T O R O F F L O A T I N G WORDS = L E H V E C =
L E N G T H O F V E C T O R O F F L O A T I N G WORDS =
14UIlBER OF SETS OF E L E M E N T L O A D S = J L O A D =
NUPlBER O F N O D E S I N V I B R A T I O N MODE P R O F I L E S = N P O I t I 1 =
P R I N T I N G O P T I O N = N P T I O N =
S O L U T I O N C O D E = K O D S O L =
K O D S O L = 0 I E . S T A T I C S O L U T I O N
K O D S O L = -1 I E . MODAL D Y I I A M I C A N A L Y S I S
K O D S O L = -2 I E . D I R E C T D Y N A M I C A N A L Y S I S
K O D S O L = -3 I E . S U B S P A C E E I G E N A N A L Y S I S
T O L E R E N C E L N E L I N E I G E N A N A L Y S I S = T O L 2 =
N U M B E R O F F R O N T S = N F R O N T =
M A X I M U M N O D E S P E R G L O B A L F R O N T = G N O D E L =
D E G R E E S O F F R E E D O M A T N O D E S O F E L E M E t I T O F TYPE 1 = N D F
E L E M E N T TYPE P R O P E R r Y L O A D D O M A I N N O D E N U M B E R S = L N O D S
NUPlB E R

N U M B E R OF D I M E N S I O N S . 2 O R 3 . =

R H O , T H I C K = I P R O P
NUMBER OF SETS OF PROPERTIES A V A ~ L A B L E = JPROP =

L N V E C l =

2 3 3
9

6 4
8
3

100
3
3

5

2 1 P O I N T S
- -

1
8 0

0
0

16
8
A

2 0 0 0 0 0
100000

0
0
1

-3

0.10000E-06
2

' = 3 1 3 1 3 1 9

1 1 1 0 15 16 X7 11 3 2 . 3 3 1 0 1
0 1 3 11 17 18 1 9 1 2 5 4 2

3 3 1 0 1 5 12 1 9 20 21 1 3 7 6
0 1 7 1 3 2 1 22 23 1 4 9 8

5 3 1 0 1 1 5 24 2 9 30 3 1 2 5 17 16
6 3 1 0 1 17 25 3 1 32 33 26 1 9 18

0 1 1 9 26 33 3 4 35 27 21 20
8 3 1 0 1 21 27 35 36 37 28 23 2 2

0 1 29 38 43 44 45 39 31 30
10 3 1 0 1 31 39 45 46 47 40 33 32

0 1 33 40 47 48 49 4 1 35 34
0 1 35 41 49 50 51 42 37 36 1 2

1 3
1 4 3 1 0 1 45 5 3 5 9 6 0 61 5 4 47 46

1

4 3 1

7 3 1

9 3 1

11 3 1
3 1
3 1 0 1 43 5 2 57 58 59 5 3 45 44

3 1

I

99

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

. 31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
NODE

1
2
3
4
5
6
7
8
9

~~

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

X
0 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0
0 . 0 0 0 0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Y
0.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6 . O O O O
7.0000

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
.2
42
:2
;2
;2
;2
2
;z
2
2
2
2
2
i!
2
i!

47 54
49 55
57 66
59 67
61 68
63 69
71 8 0
73 81
75 82
77 83
85 94
87 95
89 96
91 97
99 108
101 109
103 110
105 111
211 220
213 221
215 222
217 223
197 206
199 207
201 208
203 209
183 192
185 193
187 194
189 195

171 179
173 180
175 181
155 164
157 165
159 166
161 167
141 150
143 151
145 152
147 153
127 136
129 137
131 138
133 139
113 122
115 123
117 124
119 125

z

169 178

1.0000
1.0000
1 . a 0 0 0
1.0000
1.0000
1.0000
1.0000
1 - 0000 0 . 0 0 0 0

0 . 0 0 0 0 8 . 0 0 0 0 1 . 0 0 0 0

61
63
71
73
75
77
85
87
89
91
99
101
103
105
113
115
117
119
225
227
229
231
21 1
213
215
217
197
199
201
203
183
185
187
18 9
169
17 1
17 3
175
155
157
159
16 1
141
143
145
147
127
129
131
133

62
64
72
74
76
78
86
88
90
92
100
102
104
106
114
116
118
120
226
228
230
232
21 2
214
216
218
198
200
202
204
1 8 4
186
188
190
17 0
172
17 4
176
156
158
16 0
162
142
144
146
148
128
130
132
134

63
65
73
75
77
79
87
89
91
93

101
103
105
107
115
117
119
121
227
229
231
233
213
215
217
219
199
20 1
203
205
185
187
189
191
171
173
175
177
157
159
16 1
16 3
143
145
147
149
129
131
133
135

55
56
67
68
69
70
81
82
83
84
95
96
97
98
109
11 0
111
112
221
222
223
224
207
208
209
210
193
194
1 0 5
196
179
18 0
18 1

16 5
166
167
168
151
152
153
154
137
138
139
140
123
124
125
126

182

49
51
59
61
63
65
73
75
77
79
87
89
91
93

101
103
105
107
213
215
217
219
199
20 1
203
205

187
189
191
17 1
17 3
175
177
157
159
16 1
163
143
145
147
149
129
131
133
135
115
117
119
121

185

48
50
58
60
62
64
72
74
76

86
88
90
92

100
102
104
106
212
214
216
218
198
200
202
204
184
186
188
190
17 0
172
174
176
156
158
16 0
162
142
144
146
148
128
130
132
134
114
116
118
120

7 8

100

1 0
11
12
13
14
15
16
17
18
1 9
20
21
22
23
24
25
26
2 7
28
2 9
30
31
3 2
33
3 4
3 5
36
37

3 9
3a

40
4 1
4 2
4 3
4 4
45
4 6
47

49
50
51

4a

52
5 3
5 4
5 5
56
57
58
5 9
6 0
6 1
6 2
6 3
6 4
6 5
66
67
68
6 9

1 . oooo
1 . 0 0 0 0
1 . 0 0 0 0
1 .a000
1 . 0 0 0 0
2 . 0 0 0 0
2 . 0 0 0 0
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
3.0000 ,

3.0000
3 . 0 0 0 0
3 . 0 0 0 0
3.0000
4 . 0 0 0 0
4 . 0 0 0 0
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
5.0000
5.0000
5 .0000
5.0000
5 . 0 0 0 0
6 .OOOO
6.0000
6 . O O O O
6.0000
6 . O O O O
6 .OOOO
6 . O O O O
6 . 0 0 0 0
6 . O O O O
7.0000
7 . 0 0 0 0
7.0000
7 . O O O O
7 . O O O O
8 .OOOO
8.0000
8 . O O O O
8 . 0 0 0 0
8 . 0 0 0 0
8 .oooo
8 . 0 0 0 0
a . 0000
a . u o o o
9 . 0 0 0 0
9 . 0 0 0 0
9 . 0 0 0 0
9.0000

0 . 0 0 0 0
2 . 0 0 0 0
4 . 0 0 0 0
6 . 0 0 0 0
a .0000
0 . 0 0 0 0
1.0000
2 . 0 0 0 0
3.0000
4 . 0 0 0 0
5 . 0 0 0 0
6 . 0 0 0 0
7 . O O O O
8. 0000
0.0000
2.0000
4 . 0 0 0 0
6 . 0 0 0 0
8 . 0 0 0 0
0 . 0 0 0 0
1 . 0 0 0 0
2 . 0 0 0 0
3 . 0 0 0 0
4 . 0 0 0 0

6 . O O O O
7 . O O O O
8 .OOOO
0.0000
2.0000
4.0000
6 .OOOO

5 . 0 0 0 0

8.0000
0.0000
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7 .OOOO
8 . O O O O
0 . o o o o
2 . 0 0 0 0
4 . 0 0 0 0
6 . 0 0 0 0
8 . 0 0 0 0
0.0000
1 . o o o o
2 . 0 0 0 0
3 . 0 0 0 0
4 . 0 0 0 0
5 . 0 0 0 0
6 . 0 0 0 0
7.0000
8.0000
0.0000
2.0000
4.0000
6. o o o o

1 . 0 0 0 0
1 .oooo
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . oooo
1 .0000
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . o o o o
1.0000
1.0000
1.0000
1.0000
1.0000
1 . 0 0 0 0
1 . 0 0 0 0
1 .oooo
1 . oooo
1 .do00
1 .oooo
1.0000
1.0000
1 . o o o o
1 . o o o o
1 . o o o o
1 . 0 0 0 0
1 . 0 0 0 0
1.0000
1 . 0 0 0 0
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . o o o o
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0
1 . o o o o
1 . 0 0 0 0

101

70
71
72
7 3
74
75
76
77
78
79

82
8 3
8 4
8 5
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

ao
ai

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

9.0000
10.0000
10.0000 .
10.0000
10.0000
10 . o o o o
10.0000
10.0000
10.0000
10.0000
11.0000
11.0000
11.0000
11.0000
11 . o o o o
12.0000
12.0000
12.0000
12.0000
12.0000
12.0000
12.0000
12.0000
12.0000
13.0000
13.0000
13.0000
13.0000
13.0000
14.0000
14.0000
14.0000
14.0000
14.0000
14.0000
14.0000
14.0000
14.0000
15.0000
15.0000
15.0000
15.0000
15.0000
16.0000
16.0000
16.0000
16 . O O O O
16 . O O O O
16.0000
16 . O O O O
16 . O O O O
16 . O O O O
17 . O O O O
17.0000
17 .O O O O
17.0000
17.0000
18.0000
18.0000
18.0000

t . 0 0 0 0
0.0000
1.0000
2.0000
3 .0000
4 . 0 0 0 0
5 . 0 0 0 0
6 .0000
7 .0000

0 .0000
2 . 0 0 0 0
4 . 0 0 0 0
6 . 0 0 0 0
a . 0000
0 . 0 0 0 0
1.0000

a . o o o o

2 . 0 0 0 0
3.0000
4 . 0 0 0 0
5.0000
6.0000
7.0000
8.0000
0.0000
2.0000
4.0000
6.0000
8.0000
0.0000
1 . a 0 0 0
2.0000
3.0000
4.0000
5.0000
6 .O O O O
7.0000
8.0000
0.0000
2.0000
4.0000
6.0000
8.0000
0.0000
1.0000
2.0000
3.0000
4 . 0 0 0 0
5 . 0 0 0 0
6 . O O O O
7 . 0 0 0 0
a . 0000
0 . 0 0 0 0
2.0000
4.0000
6.0000
8.0000
0.0000
1.0000
2.0000

1.0000
1 . a 0 0 0
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 . a000
1 . a000
1 - 0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 . o o o o
1.0000
1 . o o o o
1.0000
1.0000
1 . o o o o
1.0000
1.0000
1.0000
1.0000
1 . o o o o
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 .a000
1.0000
1.0000
1 . o o o o
1 . o o o o
1.0000
1 . o o o o
1.0000

102

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

149
150
151
152

148

153
154
155
156
157
158
159
160
16 1
162
16 3
164
165
166
167
168
16 9
17 0
171
172
17 3
174
17 5
176
177
178
179
180
18 1
182
183
18 4
185
186
187

189
la8

18.0000
18.0000
18.0000
18.0000
18.0000
18.0000
19.0000
19 .a000
19.0000
19.0000
19 .oooo
20.00 00
20.0000
20.00 00
20.0000
20.0000
20.0000
20.0000
20.0000
20.0000
21 . oooo
21 . o o o o
21.0000
21.0000
21.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
23.0000
23.0000
23.0000
23.0000
23.0000
24.0000
24.0000
24.0000
2 4 . 0 0 0 0
24.0000
24.0000
24.0000
2 4 . 0 0 0 0
24.00 0 0
25.0000
2 5 . 0 0 0 0
2 5 . 0 0 0 0
25.0 000
25.0000
26.0000
26.0000
26.0000
26 . O O O O
26 . O O O O
26 . O O O O
26 . O O O O

3.0000
4 . 0 0 0 0
5.0000
6 . 0 0 0 0
7.0000
8.0000
0. 0000
2.0000
4 . 0 0 0 0
6.0000
8.0000
0.0000
1.0000
2.0000
3.0000
4 . 0 0 0 0
5.0000
6.0000
7.0000
8.0000
0.0000
2.0000
4 . 0 0 0 0
6.0000

0.0000
1.0000
2.0000
3.0000
4 . 0 0 0 0
5 . 0 0 0 0
6.0000
7 . O O O O

0.0000
2.0000
4 . 0 0 0 0
6.0000

0 . 0 0 0 0

a. o o o o

a. 0000

a. o o o o
1 .oooo
2.0000
3.0000
4 . 0 0 0 0
5.0000
6.0000
7 . 0 0 0 0
8.0000
0.0000
2.0000
4 . 0 0 0 0
6 . O O O O
8 . O O O O
0.0000
1.0000
2 .0000
3 . 0 0 0 0
4 . 0 0 0 0
5 . 0 0 0 0
6 . O O O O

1 .oooo
I. .oooo
1 .oooo
1 .oooo
1.0000
1.0000 '
1 .oooo
1 .oooo
1 .oooo
1 .oooo
1.0000
1.0000
1.0000
1.0000
1 .oooo
1.0000
1.0000
1 . o o o o
1.0000
1.0000
1.0000
1 .oooo
1,0000
1.0000
1.0000
1.0000
1 .oooo
1 . o o o o
1.0000
1.0000
1 . a 0 0 0
1.0000
1 0000
1.0000
1.0000
1.0000
1.0000
1 . o o o o
1 .oooo
1.0000
1.0000
1 .oooo
1 .oooo
1.0000
1.0000
1 . o o o o
1.0000
1 .oooo
1.0000
1.0000
1.0000
1.0000
1 .oooo
1.0000
1 .oooo
1.0000
1.0000
1. 0000
1.0000
1.0000

103

190
191
192
193
194
195
196
197
198
199
20 0
201
202
203
204
205
206
207
208
209
210
21 1
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
NODE

= NODFIX
1
2
3
4
5
6
7
a s

225

227
228
229

226 .

26 ,0000
26.0000
27.0000 .
27.0000
27 . O O O O
27.0000
27.0000
28.0000
28 . O O O O
28.0000
28.0000
28 . O O O O
28 . O O O O
28.0000
28 . O O O O

29.0000
29.0000
29.0000
29.0000
29.0000
30.0000
30 . O O O O
3 0 . 0 0 0 0
3 0 . 0 0 0 0
3 0 . 0 0 0 0
30.0000
3 0 . 0 0 0 0
30 . O O O O
30 . O O O O
31 . O O O O
31.0000
31 . O O O O
31.0000

21 .oooo

31.0000
32.0000
32.0000
32.0000
32.0000
32.0000
32.0000
32.0000
32.0000
32.0000
F I X I N G C O D E

KODFIX
111

1
11 1
1

111
1

iii
1

111
111

11;
1

111

7 .0000

0.0000
2.0000
4 . 0 0 0 0
6 I 0000

0.0000
1 .oooo
2*0000
3.0000
4 . 0 0 0 0
5.0000
6 .a000
7.0000

0 * 0000
2.0000
4 . 0 0 0 0

a .oooo

a . o o o o

a . oooo

1.0000
1.0000
1.0000
1 .oooo
1.0000
1*0000
1.0000
1.0000
1.0000
1,0000
1. oouo
1.0000
1 .oooo
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1 .oooo 6 . O O O O

a. oooo 1.0000
0.0000 1 .oooo
1.0000 1.0000
2.0000 1.0000
3.0000 1.0000
4 . 0 0 0 0 1.0000
5.0000 1.0000
6.0000 1.0000
7 .oooo 1 .a000
8.0000 1.0000
0.0000 1.0000
2.0000 1.0000
4 . O O O O 1 .oooo
6 . O O O O 1.0000
8 . 0 0 0 0 1.0000
0.0000 1.0000
1 .oooo 1 .a000

1. 0000 2.0000
3.0000 1.0000
4 . 0 0 0 0 1.0000
5.0000 1 .oooo
6.0000 1.0000
7.0000 1.0000 a. oooo 1.0000

F I X E D VALUES
= VFIX

0.0000000 0.0000000
0.0000000 0.0000000
0 .0000000 0.0000000
0.0000000 0.0000000
0.0000000 0.0000000
0.0000000 0.0000000
0.000000l1 0.0000000
0.0000000 0 .ooooooo
0.000000(1 0.0000000
0 .000000~1 0.0000000
o.ooooooc1 0.0000000
0 . oooooocl 0.0000000
0 . oooooocl 0 .0000000
0.000000D 0.0000000

0 .ooooooo
0 . 0 0 0 0 0 0 0
0 .ooooooo
0.0000000
0.0000000
0 . o o o o o o o
0.0000000
0 .ooooooo
0.0000000
0.0000000

0.0000000
0 .0000000
0 . ooooooo

a .ooooooo

104

230
231
232
233
10
15
24
29
38
4 3
52
57
66
71

85
94
99

ao

108
113
122
127
136
141
150
155
164
169
178
183
192
197
206
21 1
22 0
14
23
28
37
42
51
56
65
70
79
84
93
98
107
112
121
126
135
140
149
154
163
168
177
182

1
111

1
111

1
111

1
111

1
111

1
111

1
iii

1
111

1
111

1
111

1
111

1
11 1
1

111
1

111
1

111
1

111
1

111
1
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

111
1

0 .ooooooo
0 . 0 0 0 0 0 0 0
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0,0000000
0.0000000
0.0000000
0.0000000
0 .0000000
0 . 0 0 0 0 0 0 0
0 .ooooooo
0 .0000000
0 .0000000
0 .0000000
a . 0000000
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0 . 0 0 0 0 0 0 0
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0.0000000
0 .0000000
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 .ooooooo
0. 0000000
0.0000000
0 .0000000
0.0000000
0.0000000
0. 00a0000
0.0000000
0.0000000
0 .ooooooo
0.0000000
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0

0 .ooooooo
0 .0000000
0.0000000
0 .ooooooo
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0 .0000000
0.0000000
0. 0000000
0 .ooooooo
0.0000000
0 .0000000
0.0000000
0 .ooooooo
0 .ooooooo
0 . 0 0 0 0 0 0 0
0 .0000000
0 .0000000
0 . ooooooo
0 . 0 0 0 0 0 0 0
0 .0000000
0 . 0 0 0 0 0 0 0
0 . ooooooo
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0. 0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 .0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . o o o o o o o
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . ooooooo
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0.0000000
0 .0000000

0.0000000
0 .ooooooo
0.0000000
0.0000000
0.0000000
0 .uouoooo
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0 . 0 0 0 0 0 0 0
0 . o o o o o o o
0 . o o o o o o o

o .oooooaa

0.0000000
0.0000000
0 .0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0 .ooooooo
0.0000000
0.0000000
0.0000000

0.0000000
0 .0000000
0 .ooooooo
0.0000000
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0 . 0 0 0 0 0 0 0
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0.0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0
0 .0000000
0 .0000000
0 .0000000
0 .0000000
0 . 0 0 0 0 0 0 0
0 . 0 0 0 0 0 0 0

0 .0000000
0 .0000000
0 .ooooooo
0 .0000000
0 . 0 0 0 0 0 0 0
0 .ooooooo
0 . 0 0 0 0 0 0 0
0.0000000
0.0000000
0 . 0 0 0 0 0 0 0
0 . o o o o o o o
0 . 0 0 0 0 0 0 0

o .ooooooo

o .oooaaoo

105

191 111 0.0000000 0.0000000 e) . o o o o o o o
196 1 0 . 0 0 0 0 0 0 0 0 .0000000 0 . 0 0 0 0 0 0 0
205 111 0 . 0 0 0 0 0 0 0 0 .0000000 0 . 0 0 0 0 0 0 0
2 1 0 1 0 . 0 0 0 0 0 0 0 0 .0000000 0 . 0 0 0 0 0 0 0
2 1 9 111 0 . 0 0 0 0 0 0 0 0 .0000000 0 .0000000
2 2 4 1 0 . 0 0 0 0 0 0 0 0 .0000000 0 .0000000

NUMBER ELEMENT PROPERTIES = VPROP
1 0 . 1 0 0 0 0 0 E + 0 1 0.100000E+Ol 0.300000E+00 0 . 1 0 0 0 0 0 E + 0 1 O.lOOOOOE+Ol

LIST OF N O D E S LOCATED A L O N G G L O B A L FRONT
113 1 1 4 115 116 117 118 1 1 9 1 2 0 121

3 1 3 1 3 1 3 1 3 - -

TOL2 HAS BEEN ACHIEVED
CURRENT TOLERENCE LEVELS

-0 .4739E-14 0.0000E+00 0.0000E+00 -0 .165 lE-13
0 .1626E-13 -0 .1164E-13 0.4111E-14 0.757SE-07

NUMBER OF SUBSPACE ITERATIONS :: 23
EIGENVALUES A R E

0 .1171E-01 0.1306E-01 0.1569E-01 0 .2017E-01
0 .2731E-01 O . 3 8 1 4 E - 0 1 0 .540 lE-01 0 .7662E-01

106

Report Documentation Page
1 Report No i 2 Government Accession No

NASA CR- 185 166 I
4 Title and Subtitle

Parallel Eigenanalq sis of Finite Element Models
in a Completelq Connected Architecture

7 Author@)

F.A Akl and M R Morel

3 Recipients Catalog No

5 Report Date

November 1989

6 Performing Organization Code

8 Performing Organization Report No

None

9 Performing Organization Name and Address

Ohio University
Department of Civil Engineering
Athens. Ohio

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
L e u is Research Center
Cleveland. Ohio 44135-3191

10 Work Unit No

505-63- 1B

11 Contract or Grant No

13 Type of Report and Period Covered

Contractor Report
Final

14 Sponsoring Agency Code

15 Supplementary Notes

Project Manager. Louis J . Kiral! . Structures Di\ ision. NASA Lewis Research Center

16 Abstract

This report presents a parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite
element analysis. [FJ[+] = [M][@][R]. uhere: [i\) and [MI are of order N . and [Q] is order of q. The concurrent
solution of the eigenproblem is based on the multifronta1,'modified subspace method and is achieved in a completely
connected parallel architecture in which each processor is allon'ed to communicate with all other processors. The
algorithm has been successfull!, implemented on a tightly coupled multiple-instruction multiple-data parallel
processing machine. Cra! X-hfP. A finite element model is divided into m domains each of which is assumed to
process I I elements. Each domain is then as5igned t o a processor or to a logical processor (task) if the number of
domains exceeds the number of ph! sical processors. The macrotasking library routines are used in mapping each
domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the
algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global
fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite
element dynamic anal! sis program. "p-feda". is documented and the performance of its subroutines in parallel
environment is anal! z d .

1- (Suggested by Author(s1i

' Pdrallel computer\. Eigeni alus. Eigen\ ectors Subqpace. Lnclassified - Unlimited
1 hlultifront. Domain$. 3 f u l i i i ~ A i n g Finite element\ Subject Categor! 39
I

i 18 Distribution Statement
I

l 19 Security Classif (of this reporti 20 Security Classif (of this page) 21 No of pages , 22 Price'

L ncld \ \ i tied L n c l d \ k i f i c . d 112 A 06

' c - 5 E ha. 3-a 1ec-1 :a iqtorma'io" Ser. ce Spr n g f e 2 L'ir(l I a 2216' NASA FORM 1626 OCT 6c

