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Nomenclature 

area 
right-hand side = [MI [VI 
domain 
Young's modulus of  elasticity 
moment of inertia 
stiffness matrix of size N.N 
element stiffness matrix 
subspace stiffness :matrix of size 4.4 
length 
mass matrix of s i x  N.N 
element mass matrix 
subspace mass matrix of size q.q 
number of domains 
number of domains, processors or tasks 
total number of degrees of freedom of system 
number of eigenpairs or size of subspace 5 N 
eigenvectors of the auxiliary eigenproblem 
thickness 
eigenvectors at the t' - t h  iteration 
element eigenvector a t  the 
eigenvalues of required subspace 
eigenvectors of required subspace 
i - t h  eigenvalue 
i - t h  eigenvector 
mws density 
Poisson's ratio 

- t h iteration 



Chapter 1 

. 

Introduction 

1.1 Overview 

Research work in computational structural mechanics is generally concerned 
with innovative techniques in numerical methods and software algorithms 
with the aim of achieving more efficient and accurate solutions. During the 
past decade, the architecture of computer hardware began to  emerge as an 
important factor in computational structural mechanics. Parallel processing 
architecture represents a major advance in computer hardware when com- 
pared with the previous generation of single instruction single data (SISD) 
sequential computers. Issues dealing with high level language programming, 
compilers, communication links and numerical algorithms play a major role 
in the performance of parallel processors. 

Since the development of the finite element method, several approaches 
of subdividing relatively large scale structures into a number of substructures 
have been used to overcome the limitations of the computer technology of 
the time. By all measures, the finite element method together with increas- 
ingly resourceful digital computers led to a revolutionary progress in many 
engineering and scientific disciplines. Innovative techniques in dealing with 
sparse band m a t r i m  allowed the solution of relatively larger order finite el- 
ement systems. Creative data management approaches led to the frontal 
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met hod (24,291. 

Vibration analysis of finite element models is typically time consuming 
and memory demanding. This is partiicularly true in data intensive applica- 
tions generally encountered in aerospace applications. Sequential computers 
are rapidly achieving the physical limit of their processing power [32,37,38]. 
This study offers a general purpose figenproblem solver for finite element 
analysis in an emerging parallel computer architecture. By utilizing t h i s  new 
computer architecture, i t  is expected that the multifrontal and the modified 
subspace methods will enhance the computational capabilities available to 
engineers. It is also hoped that this study will offer researchers in the area 
of parallel computational methods in engineering mechanics a thorough un- 
derstanding of a new and potentially optimum method for the solution of 
large finite element eigenproblems on parallel computers. The new method 
is expected to  be useful for future research work in nonlinear and structural 
stability problems. 

1.2 Present State of Knowledge 

Parallel algorithms for the solution of sthe static analysis problem [ K ] {  V} = 
{ B }  were implemented on multiple instruction multiple data (MIMD) com- 
puters using Jacobi iteration, successive over-relaxation (SOR) and conju- 
gate gradient methods [19,41]. The jlacobi iterative method exhibited no 
guarantee for convergence [6,12,41]. However the conjugate gradient and 
SOR methods are reported to give a speedup of 2.8 and processor efficiency 
of 71% in the solution of a plane stress problem on four processors. In 
general, these three approaches are based on assigning one or more nodes to 
each processor. Nodal topology is mapped onto the communications links be- 
tween processors. Direct solution techniques are also documented [21,34,37]. 
Salama et al. [34] mncluded that among the direct solution methods con- 
sidered, LR-Gauss appears to be the best suited for applications on a hypo- 
thetical limited processor efficient machine which closely resembles realistic 
parallel computers. 

. 

Research work on the solution of materially nonlinear structural stabil- 
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4 ity of imperfect columns [ZO] indicates that the computational efficiency de- 
creases as the number of processors increase, suggesting an optimum number 
of processors. 

Application of conventional substructuring techniques is recommended in 
Reference [40] for the solution of nonlinear large scale finite element problems. 
In this work, it is noted that the suggested substructuring algorithm may 
result in a very large dense stiffness matrix along the boundaries. As a 
result a tradeoff exists between the number of substructures and the amount 
of additional computation introduced to  solve the resulting large and dense 
matrix along the boundaries. A speedup factor of an order equal  to the 
number of substructures is reported in simulated parallel solution of nonlinear 
bending of pinched cylinder on a VAX 11/785. 

Recently, structural vibration analysis in parallel processing environment 
has been studied using the inverse iteration method [15,39] and the Lanczos 
method [14]. These studies dealt with assigning each processor the task 
of solving for a specified bandwidth of the eigenvalue spectrum. This is 
accomplished by imposing a different shift region for each processor and 
solving the resulting eigenproblem. 

A new multifrontal/subspace method of parallel processing of large eigen- 
problems is described in Reference [l]. This new approach utilizes the archi- 
tecture of parallel computers in the solution of large eigenproblems generally 
encountered in aerospace applications. 

1.3 Parallel Computers 

Parallel processing is defined as: 

an eficient form of computation which emphasizes the erploita- 
lion of concurrent events in the computing process. Concurrency 
implies parallelism, simultaneity, pipelining. I t  is in contrast t o  
sequential processing (221. 
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Parallel computers are classified in a variety of ways. Hwang and Briggs 
[22] divide parallel computers into two broad categories: synchronous and 
asynchronous. Synchronous parallel mmputers include pipelined machines 
(SISD) in which temporal parallelism is utilized, e.g. Cray 1 and Cyber 205, 
and array processors (SIMD) in which spatial parallelism is used, e.g. Illiac 
IV. Asynchronous parallel computers are multiprocessor machines (MIMD) 
in which either memory is shared among tightly coupled processors with high 
degree of interaction, e.g. Cray X-MP, or distributed loosely coupled pro- 
cessors, e.g. transputers. Several topologies of parallel computer networks, 
such as star, ring, pipeline and trees, can be implemented at  the hardware 
and/or software level [22,31,37]. 

1.4 Objective 

The objective of this study is to investigate the performance of the multi- 
frontal/subspace method (11 in solving the generalized eigenproblem: 

where: [K] is positive definite squaxe matrix of order N 
[MI 
[@I 
[A] 

is positive semi-definite square matrix of order IV 
is a rectangular matrix of eigenvectors of order N . q ,  
where q _< N .  
is a diagonal matrix of the subdominant q eigenvalues 
such that X I  5 X2 5 ... 5 A, 

Numerical experimentation using the CRAY X-MP/24 computer a t  NASA 
Lewis Research Center is conducted on typical problems to investigate the 
behavior of the multifrontal/subspace method and compared it to similar 
sequential solutions (3,5]. 
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Chapter 2 

Overview of Parallel Algorithm 

Before we start offering a detailed description of the algorithm implemented 
in the multifrontal/subspace method, an overview of the overall organization 
of the parallel architecture will be first presented in this chapter. 

2.1 Terminology: 

Definitions are given for the following terms to clarify their meaning: 

0 Domain - a section of a subdivided finite element model considered as 
an independent structure except for a common boundary that connects 
it to the remainder of the finite element model. 

0 Speedup - the ratio between the time needed for a sequential algorithm 
to solve the problem divided by the time taken to execute the same 
problem using a parallel algorithm. 

0 Task - a computational model consisting of the code and data  of the 
program, whose instructions must be processed in a sequential order. 
A separate task will be assigned to each domain. 
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2.2 Load Balancing 

The three most time consuming p r o c a s e  in the solution of large eigenprob- 
lems are: 

1. the creation of element stiffness imd mass matrices. 

2. the solution of linear simultaneous equations. 

3. the extraction of eigenpairs. 

Depending on the size of the problem and the number of eigenpairs required, 
one of the preceding processes will consume the buIk of the computational 
activities. Parallelizing of the first process is quite a straight forward and 
obvious procedure. However parallelizing the second and third processes has 
been the subject of a number of investigations as previously mentioned in 
Section 1.2. The multifrontal solution and the modified subspace method 
investigated in this report offer an effective parallel algorithm. 

A certain amount of overhead should be expected to degrade the perfor- 
mance of parallel solution algorithms. This overhead is system dependent. 
In Chapter 5 it will be shown that the cumulative effect of overhead due to 
the implementation of the multitasking environment is neglegible. 

On the other hand bottlenecks due to single threaded 1/0 operations on 
algorithms which are 1/0 intensive can lead to an appreciable performane 
degradation. 

2.3 Overview of Multitasking: 

Multitasking, defined as the structuring of a program into two or more tasks, 
which can execute concurrently, is Crety Research Inc.’s implementation of 
parallel processing. There are two methods of multitasking available. The 
first is mixrotasking, best suited for programs with larger long running tasks 
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A 

Tasks 

. 

Events h C k S  Barriers 

Table 2.1: Cray Multitasking Utilities 

1 I I I I 
TSKSTART EVASGN LOCKASGN BARASGN 
TSKWAIT EVWAIT LOCKON BARSYN 
TSKTUNE EVPOST LOCKOFF BARREL 
TSKVALUE EVCLEAR LOCKREL ! TSKLIST EVREL 

(coarse granularity). The second method, refered to as microtasking, is ben- 
eficial for programs with shorter running tasks. All references, examples and 
developments of multitasking herein shall refer to the method of macrotask- 
ing. The programmer must explicitly code his/her FORTRAN subroutines 
so they can run in parallel. Multitasking subroutines can be used to decrease 
execution time of a complete program; but a parallel job not efficiently multi- 
tasked could take more time than a job that is sequential, due to  unbalanced 
concurrent tasks. 

The Cray X-MP computer is a tightly coupled multiple instruction mul- 
tiple data (MIMD) machine which can execute different instructions and 
operate on different data, i.e. possesses m independent processors each hav- 
ing its own control unit. Memory on the Cray X-MP multiprocessor system 
a n  be accessed independently or in parallel during execution. The system 
has low overhead of task  initiation for multitasking and has proven to be 
very efficient [22]. 

Table 2.1 shows the names of most of the multitasking library routines 
available on the Cray computer system [18]. These library routines provide 
the basic tools necessary for the implementation of the multifrontal solution 
and the modified subspace iteration in parallel architecture a t  the software 
level. In order to provide the reader with a grasp of the utility of the multi- 
tasking library routines, let us consider a finite element problem broken down 
into m domains. Each domain will be assigned a task to be initiated by a 
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TSKSTART subroutine. When calling the TSKSTART subroutine, a taskar- 
ray (task control array) and a name (entry point a.t which task execution 
begins) must be passed in the parameter list. An optional list of arguments 
can also be passed. In our case, the specific domain will be passed along 
with the taskarray and name. Therefore, the following call statement and do 
loop are needed to  produce a multitasking environment with each domain 
assigned a separate central processing unit. 

DO 10 I = 1, m 
CALL TSKSTART (PROCESS( lJ), BEGIN, DOMAIN(1)) 

10 CONTINUE 

Not all domains will be completed at the same time. For each TSKSTART 
called, a TSKWAIT rnust be called so that all subprograms end a t  the same 
time. The taskarray is the only pairameter needed in the call list. The 
TSKWAIT subroutine is called through a deloop similar to  that used for 
TSKSTA RT subroutine. 

DO 20 I = 1, m 
CALL TSKWAIT (PROCESS(1,I)) 

20 CONTINUE 

The TSKSTART and TSK WAIT subroutines create the parallel environ- 
ment needed to  solve the finite element problem using multitasking. Each 
domain will have its own task to  be performed by a separate CPU. This will 
enable the parallel finite element algorithm to execute faster than a sequential 
finite element algorithm. 

Communication between tasks/domains is needed to  solve the finite el- 
ement problem. As the tasks are executing certain variable values must be 
transmitted between tasks/domains. To guarantee that the values are com- 
puted in one task before they are used in another, the correspondence must 
take place at  a synchronization point,, defined as a point in time a t  which 
a task has received the go-head to  proceed with its processing. Therefore, 
one task computes the value before the synchronization point, and the other 
tasks reference the value only after the synchronization point. 
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The facility that  allows signaling between tasks is called an event, which 
has two states: cleared and posted. When an event is posted it has reached 
the synchronization point and the variable can be used in other tasks. If 
the event is cleared, no waiting is needed because the variable has already 
been posted and cleared for all tasks to continue. The event is identified 
by an integer variable passed through the subroutine EVASGN. An event 
variable cannot be used unless this subroutine is called before any other 
event subroutines. Therefore, EVASGN passes an integer variable used as 
an event and an optional value if needed. The following example initiates m 
events: 

DO 30 I = 1, m 
CALL EVASGK(EVENT(1)) 

30 CONTINUE 

Three other subroutines will be called along with the EVASGN sub- 
routine: EVWAIT, EVPOST and EVCLEAR. Each of these subroutines 
is needed to complete the process of communication between tasks when a 
variable is needed by more than one task working in parallel. The three sub- 
routines also must pass the same integer variable as the EVASGN subroutine 
to link all subroutines to the same event. 

The EVWAIT subroutine waits until the specified event is posted, but 
the task resumes execution without waiting if the event is already posted. 
Subroutine EVPOST returns control to  the calling task  after the subroutine 
posts the event. By the event being posted, all other tasks waiting on that 
event may resume execution. In addition, EVCLEAR clears an event and 
returns control to the calling task, but if the variable is already cleared then 
execution continues. 

The following example program MULTI will help show the use of these 
multitasking subroutines. It is assumed that the program will run on a 
MIMD computer possessing a hypothetical 20 physical processors. For clar- 
ification, a horizontal row of dots in the example program takes the place of 
executable FORTRAN statements that  are unimportant in the presentation 
of the multitasking technique at this time. 
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2.3.1 Program Multi: 

c+++ This program shows how multitasking can be achieved 
c+++ in generating a stiffness matrix for 20 elements concurrently. 
c+++ For each element a task is assigned, a global 
c+++ task will receive all dement stiffntrrs matrices and assemble 
c+++ them into a global matrix. The cadculation of the 
c+++ element stiffness matrices should be 20 timee as fast as 
c+++ a sequential algorithm performing the same computations. 
c+++ domain = number of the task/e.lement. 
C 

EXTERNAL BEGIN 
INTEGER EVENT1(20), PR.OCESS( 1,20), DOMAIN(20) 
COMMON/EVENTS/EVENTl 

C 

c+++ data declaration 

DO 5 I = 1,20 
C 

PROCESS(1,I) = 3 
DOMAIN(1) = I 

5 CONTINUE 
C 

c+++ event assignments 

DO 10 I = 1,20 
C 

CALL EVASGN( EVENTl(1)) 
10 CONTINUE 

c+++ start domain tasks 
C 

DO 20 I = 1,20 
CALL TSKSTAFt"(PROCESS( l,I), BEGIN, DOMAIN(1)) 

20 CONTINUE 
C 

c+++ start global task 
C 
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CALL ASSEMBLE 
C 

c+++ task completion 
C 

DO 30 I = 1,20 
CALL TSKWAIT(PROCESS(1,I)) 

30 CONTINUE 

c+++ clear all events 
C 

DO 40 I = 1,20 
CALL EVCLEAR(EVENTl(1)) 

40 CONTINUE 
C 

STOP 
END 

I SUBROUTINE ASSEMBLE I 
INTEGER EVENTl (20) 
COMMON/EVENTS/EVENTl 

C 

c+++ wait and clear all events. 
C 

DO 10 I = 1,20 
CALL EVWAIT( EVENTl( I)) 
CALL EVCLEAR( EVENTl (I)) 

10 CONTINUE 
C 

c+++ read all of the element stiffness matrices from the tape 
c+++ to which it was written in subroutine begin. 

................. 
C 
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c+++ assemble the elements into a global stiffness matrix. 

................. 
C 

RETURN 
END 

[SUBROUTINE BEGIN (DOMAIN)] 
INTEGER EVENTl(20) 
COMMON/EVENTS/EVEN’I’l 
INTEGER DOMAIN 

C 

c+++ read the necessary data. 
C 

................. 
C 

c+++ compute the stiffness matrix for the element. 
L 

................. 
L 

c+++ write the element stiffness matrix to a tape, thereby 
c+++ allowing the subroutine assemble to  access the information. 
C 

................. 
C 

c+++ post the events as they are finished 
C 

CALL EVPOST(EVENTl(DOMA1N)) 

RETURN 
END 

C 

12 
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Chapter 3 

Parallel Solution 

The parallel algorithm developed in this study is robust. First, it is not prob- 
lem dependent; and second its architecture is implemented a t  the software 
level and therefore it can be altered to investigate alternative networks. 

It must also be emphasized that the speedup realized by this algorithm 
is exclusively due to the parallelization of the solution method at the macro 
level, i.e. by exploiting the coarse granularity of the finite element model. 
Additional speedup can certainly be achieved through the implementation 
of the microtasking features of the Cray computer system and through au- 
tomatic vectorization. This approach allows us to isolate the impact of the 
parallel architecture investigated in this study on the performance of the 
parallel algorithm. 

3.1 Parallel Architecture 

The parallel algorithm used in this study is based on a completely connected 
parallel architecture (Figure 3.1) in which each processor is allowed to com- 
municate with all other processors. A finite element model is divided into 
m domains each of which is assumed to p r o m s ' n  elements (Figure 3.2). 
Each domain is then assigned to a processor and the macrotasking library 
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routines [18] are used in mapping each domain to a user task. 

3.2 Concurrent Processing 

3.2.1 Multifiont Method 

Concurrent analysis is realized by using each processor to create the stiffness 
and mass matrices of the elements located within its assigned domain, and 
by performing assembly/forward elimination and back-substi tution for each 
domain. 

task I 
n 

W 
task j 

task i 

3 

3 
task m 

. 
Figure 3.1: Network of Completely Connected m-Concurrent Tasks 
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I I DOMAIN m I DoMAINj 

Figure 3.2: Finite Element Model Subdivided into m Domains 

Figure 3.3 shows the logical structure of the parallel algorithm. Each 
processor creates the stiffness and mass matrices, [K]" and [MI', of the el- 
ements located within its assigned domain. Random numbers are used to 
generate an N.q starting eigenvectors [VI; and to calculate the corresponding 
right-hand-sides, [B];. Each processor then assembles the element matrices, 
[K]" and [B];,  and eliminate the equations corresponding to the degrees-of- 
freedom not located along the global fronts (boundaries) using the frontal 
method [24]: 

where: [K]' ,  [VIoi and [B]' are the stiffness matrix, approximate eigenvectors 
and right-hand sides, respectively, for the it* domain just after the assembly 
of matrices and before the elimination of degrees-of-freedom. 

[K]'[V]" = [B]' ( 3 4  

The frontal method eolves a set simultaneous linear equations in a unique 
way based on the Gaussian elimination and back-substitution algorithm [29). 
Expanding Equation 3.1, we get: 

kl' ... 

k,j 

kij 
... 

kl I 

k I I  

ki, 

... 

... 

k; 1 
knn k y  I 
15 



Assembly /eliinination 
(elimination of B in 

resolution) 

I 
I 

Figure 3.3: Parallel Algorithm for the i ih Domain 
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To eliminate variable u,, the  Gaussian method gives: 

Irons [24] observed that if the dements in the curly brackets shown in 
Equations 3.3 and 3.4 are fully assembled, the second term in the above 
two equations can be immediately calculated. The contribution of elements 
to k,, and u; can then be assembled regardless of the order in which these 
contributions are made. The main idea of the frontal technique is to assemble 
the equations and eliminate the variables at the same time. As soon as all 
contributions to a node are made and assembled from all relevant elements, 
each degreeof-freedom for this node is eliminated. As a result, the global 
stiffness matrix is never formed. 

The wave front, i.e. the active nodes on the front, divides the domain 
into two substructures with three sections of elements (Figure 3.4). The first 
section includes the elements that  have already been processed, the second 
section is the active elements on the front and the third is the elements that  
have yet to be processed. The front begins at one end of the domain and 
advances, engulfing one element a t  a time, eliminating the nodes on the ele- 
ment that  are fully assembled until it has swept over the whole domain. After 
all nodes within the domain are eliminated the front reaches the domain’s 
boundary (global front). 

The frontal solution possesses certain advantages over other direct tech- 
niques and has proven to be a very dec t ive  and powerful means for solving 
the positive definite symmetric equations arising in standard finite element 
analysis. The band matrix methods are the chief competitor of the frontal 
solution. A comparison between the two shows that for small problems the 
frontal and band routines are about the same, because of the extra coding 
required by the frontal routine. However, with larger analyses, the frontal 
routine is superior in terms of speed and core requirements [24,29]. In order 
to optimize the solution, the band matrix methods require optimum num- 
bering of nodes, while element numbering is not important. On the other 
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WAVE TRONT WAVE FRONT 

Figure 3.4: Finite Element M'odel Divided into m Domains 

hand, the frontal solution requires opti:mum numbering of the elements, while 
node numbering is immaterial with respect to solution optimization. Opti- 
mum numbering of elements will reduce the largest frontwidth, defined as 
the maximum degrees of freedom on the wave front at any point in time as 
the wave front sweeps across the structure. 

There are additional advantages in using the multifrontal solution method 
in parallel processing [l]. First, there is no need to renumber the nodes within 
each domain to minimize the bandwidth of the submatrices of the domain, 
because the bandwidth in the frontal solution depends on the numbering of 
elements. In addition, the element numbering scheme for both sequential 
and parallel may be unchanged, thereby forgoing preprocessing of the finite 
element for parallel execution. Second, load balancing is dependent on the 
frontwidth and the number of elements in each domain. Load balancing is 
therefore relatively easier to achieve using the multifrontal solution method. 

Although Equation 3.1 is never formed in the frontal solution, it is given 
here to illustrate the algorithm in a more concise manner. At  the  conclusion 
of the assembly and elimination steps, two equations are obtained for the tth 

domain in which the subscript (F) refers to the degrees-of-freedom located 
along the global fronts and the subscript (d) refers to all other degrees-of- 
freedom in a domain (Figure 3.2): 



A synchronization point is established at this stage in which each proces- 
sor waits for all other processors to calculate and communicate [KIF and [E]F  
and to assemble matrices [K]FF and [B]FF. The solution for the degrees-of- 
freedom located along the global fronts, [V]FF is obtained and the process 
of back-substitution within each domain proceeds concurrently until [VI;;, 
is calculated at  the I"' iteration for each element. 

3.2.2 The Modified Subspace Method 

Concurrent processing continues to calculate the projection of the stiffness 
and matrices onto the required subspace, [K]: and [MI: of order q.q for the 
if" domain. This is the second and last synchronization point in the parallel 
algorithm at which the contribution from all other domains are required be- 
fore proceeding to solve the auxiliary eigenproblem of the modified subspace, 
[K]'[Q] = [M]'[Q)[Q].  More accurate approximation of the eigenvectors [VI; 

The algorithm either terminates or continues to iterate until a test of 
convergence is satisfied. 

The modified subspace method [2,4] is used to solve for the least dominant 
eigenpairs, [@I and (Q], of order q, where g 5 N, the total number of degrees- 
of-freedom of the finite element model. The classical subspace method is 
reported to provide an efficient algorithm for the solution of large problems 
in sequential and parallel processing [10,39]. The rate of convergene of the 
modified subspace method used in this report is faster by an average of 33% 
compared to the classical subspace method (2). In Appendix A, detailed 
presentation of the modified subspace method is given. 
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3.3 Outline of p-feda: 

A broad outline of a parallel finite element analysis program hereinafter ref- 
ered to as p-feda is given in this section showing the implementation of the 
parallel algorithm described in Section 3.2. 

3.3.1 Dynamic Array Management 

Dynamic management of arrays is used within each domain (task) to accom- 
modate the varying demands of problem analyses in an efficient manner. Two 
large vectors, VEC and V E C l ,  are declared at the outset for each domain 
with a size of LENVEC and LENVECl, respectively. Two integer vectors, 
NVEC and NVECl ,  are equivalenced with VEC, and VECl , respectively. 

Tables 3.1 and 3.2 show the addresm calculated in p-feda for arrays 
VEC/NVEC and VECl  /NVECl .  Detailcd explanation of the variable names 
is given In Appendix B. Appendices C an,d D provide a brief summary of file 
management and error messages used in the program, respectively. 

The reader should note that the Cray computer running the FTN2 FOR- 
TRAN compiler under COS assigns integer and floating point numbers a n  
equal number of words. However, the ET77 FORTRAN compiler running 
under COS assigns a n  integer number a length of 42 bits versus 64 bits for 
a floating point number. The latter word assignment is the default under 
the UNICOS operating system regardless of the FORTRAN compiler used. 
It is therefore necessary to specify in the compiler command a word length 
of 64 bits for integer numbers in order to achieve correct mapping between 
VEC/NVEC and VECl /KVECl .  
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Table 3.1: Arrays in VEC/NVEC 
~ ~~ 

Address 

1 
I1 
12 
I3 
J1 
52 
53 
54 
55 
J 6  
57 
58 
J9 
K1 
K 2  
K21 
K3 
K4 
K5 
K6 
K 7  

Name 

ELSTIF 
ELOAD 
ELDISP 
ELCORD 
N D F  
LTYPE 
LLOAD 
NDMAIN 
LDMAIN 
LNODS 
GLNODS 
G N D F  
GNDFRO 
COORD 
VFIX 
REACTN 
VSTIF 
VLOAD 
SLOAD 
V P R O P  
EXCOD 

Dimension 

L CO EF= ( LVA B * ( LVAB + 1 ) ) /2 
LVAB*NRHS 
LVAB*NRHS 
NODEL*NDIM 
NODEL*JPROP 
NEL 
NEL 
NGLOBE 
NEL 
NODEL*NEL 
GNODEL*NFRONT 
NPOIN 
NGLOBE/NFRONT 
NPOIN*NDIM 
NFIX*NDFMAX 
NFIX*NDFMAX*NRHS 
NEXTIF*NDFMAX 
NLOAD*NDFMAX*NRHS 
JLOAD*NRHS 
IPROP*JPROP 
NEL*NDIM 
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Table 3.1 Arrays in VEC/NVEC (cont'd) 

Address 

I, 1 
L2 
L3 
L4 
L5 
L6 

L7 
M1 
M2 
M 3  
M4 
M5 
M6 
M7 
M8 
N1 
N2 
N3 
N4 
N5 
N6 
N7 

Name 

NODFIX 
KODFIX 
NOSTIF 
NODLOD 
L P R O P  
NODFRO 
NDFRO 
LDEST 
SUSTIF 
SUBLOD 
SIGDIG 
T O T L O D  
EQ 
EQR 
EQRTOT 
EQSIG 
N P N O T  
NAME 
MDEQ 
STREGY 
P O T E G Y  
DIAGY 
ERRGY -- 

Dimension 

NFIX 
NFIX 
NEXTIF 
NLOAD 
NEL 
LIMFRO 
NEL 
LVAB 
N ST IF=( L IM F R O  ( L I M FRO + 1 ) ) /2 
L M F R O * N R H S  
LIMFRO 
LIMFRO*NRHS 
LIMFRO*NBUFZ 
NBUFZ*jNFtHS 
N BU F Z * N RH S 
NBUFZ 
NBUFZ 
NBUFZ 
NBUFZ 
NRHS 
NRHS 
NRHS 
NRHS 
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Address 

1 
IG 1 
IG2 
IG3 
IG4 
IG5 
IG6 
IG7 
IG8 
IG9 
IGlO 
IG11 
IG12 
IG13 
IG14 

ELMASS 
EIGENl  
OLGNVL 
SKSTR 
SMSTR 
C J A C  
E L M S T l  
ELKSTl  
ELMSTR 
ELMKSR 
EIGSHP 
FULMAS 
FULSTF 
NDIGEN 
EIGEN2 

Table 3.2: Arrays in V E C l / N V E C l  

LCOEF = (LVAB(LVAB+1))/2 
LVAB'NEIGEN 
NEIGEN 
NEIGEN*NEIGEN 
NEIGEN'NEIGEN 
NEIGEN*NEIGEN*3 
LVAB*NEIGEN 
LVAB*NEIGEN 
NEIGEN*NEIGEN 
NEIGEN*NEIGEN 
NPOIN 1 *NEIGEN 
LVAB*LVAB 
LVAB*LVAB 
NPOINl 
LVAB*NEIGEN 

Name Dimension 
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3.3.2 p-feda 

I MAIN PROGRAM I 

C 

c+++ a parallel frontal solution of finite element systems 
c+++ using a modified subspace approadz to extract the eigenpaks 
C 

INTEGER PROCESS(3,10), DOMAIN( 10) 
INTEGER EVENT( 10,lO) 

C 

c+++ put event in common block so that all domains can access it. 
C 

COMMON /EVENTS/ EVENT 
C 

c+++ data declaration 
C 

DO 10 I = 1,NFRONT 
PROCESS( 1,1) = 3 
DOMAIN(1) = I 

10 CONTINUE 
C 

c+++ event assignments, identifies the integer variables that 
c+++ the program intends to use as an event. 
C 

DO 20 I = 1,NFRONT 
DO 20 J = 1,NFRONT 

CALL EVASGN( EVENT(1,J )) 
20 CONTINUE 

C 

c+++ start all domain tasks except domain 1. 
C 

DO 30 I = 2,NFRONT 
CALL TSKSTART(PROCESS( lJ),  DOMFROKT, DOMAIN(1)) 
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30 CONTINUE 
C 

c+++ start domain 1, which is called separately to limit the 
c+++ input data to just one domain. 
C 

CALL DOMFRONT(DOMAIN( 1)) 
C 

c+++ upon task completion, tell each domain that domain 1 has 
c+++ been completed. 
C 

DO 40 NF = 1,NFRONT 
CALL EVPOST(EVENT( 1,NF)) 

40 CONTINUE 
L 

c t t t  wait for tasks to be completed that were called by tskstart. 

DO 50 NF = 2,NFRONT 
CALL TSKWAIT(PROCESS( 1,I)) 

50 CONTINUE 
C 

STOP 
END 

I SUBROUTINE DOMFRONT(DOMA1N) I 
C 

INTEGER DOMAIN 

IF( DOMAIN .EQ. 1 ) THEN 
C 

C 

c t + t  read initial data. 
c t + t  diagnose the initial data, if fatal or nonfatal errors occur 
c+++ call doctor, and setup housekeeping for dynamic dimensioning 
c t + +  of vector arrays. the subroutine doctor will ideRtify and 
c + t t  list the error messages found in the data. 
C 
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CALL DNURSE 
C 

c + + t  
c + + t  
C+++ 

c t + t  
C 

C 

C+++ 

c + t t  
C 

read the remaining data, e.g. element types,  nodal 
coordinates etc., for the problem and assign them to 
variables in a common block, that will be accessed by all 
domains. 

CALL FINPUT 

tell all domains, except domain 1, that all data  has 
been read in. 

DO 10 N F  = 1,NFRONT 
CALL EVPOST(EVENT( 1,:NF)) 

10 CONTINUE 
L 

ELSE 
C 

c+++ wait for the data  to  be read into domain 1. 
C 

CALL EVWAIT(EVENT(1,DOhfAIN)) 
C 

c+++ setup housekeeping for dynamic dimensioning of vector 
c+++ arrays. 
C 

CALL DNURSE 
C 

c+++ assign all data  received in the common block from 
c+++ domain 1 to the correct variables. 
C 

CALL DINPUT 
C 

c+++ clear events so that they maybe used again. 
L 

CALL EVCLEAR(EVENT( 1,DOMAIN)) 

ENDIF 
C 

c+++ check for the last appearance of each node, when it is 
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c+++ found make the node negative (creating the pre-front). 
c+++ also, the size of the globd front is determined and a 
c+++ few more dimensions are calculated that are needed in 
c t t t  subroutine dfront. 
C 

CALL DMATRON 
C 

c t t t  creates the element stiffness and mass matrix files 
c+++ for the specific element type, in addition, creates 
c+++ the element load and eigenvector files. 
C 

CALL ESTIFF 

DO 6 NRESOL = 1,NCASE 
C 

C 

c+++ solves the set of linear simultaneous equations using 
c+++ the frontal technique. 
c 

CALL DFROKT 
C 

I SUBROUTINE DFRONTJ 
C 

c t t +  assemble the stiffness matrix and eliminate the 
c+++ degress-of-freedom in their last appearance up to the local front. 
C 

....................... 
C 

c + + t  after the local front is reached begin work on the 
c + + t  global front. 
C 

....................... 
C 

c+++ tell all of the other domains that you have completed the 
ct t t assembly of the local front located within this domain. 
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C 

DO 100 NF = 1,NFRONT 
IF ( N F  .NE. DOMAIN ) THEN 
CALL EVPOST(EVENT(DOMAIN,NF)) 
ENDIF 

100 CONTINUE 
C 

c+++ wait for all dornah to reach their local fronts. 
C 

DO 200 NF = 1,NFRONT 
IF ( N F  .NE. DOMAIN ) THEN 
CALL EVWAIT( EVENT(NF,DOMAIN)) 
ENDIF 

200 CONTINUE 
C 

c+++ clear the event for future use. 
C 

DO 300 NF = 1,NFRONT 
IF (NF .NE. DOMAIN ) TH:EN 
CALL EVCLEAR(EVENT(NF,DOMAIN)) 
ENDIF 

300 CONTINUE 
L 

c+++ assemble the global stiffness matrix and perform a gauss 
c+ t + jordan elimination to solve the unknown variables 
c+++ located on the global front. 
C 

.......................... 
C 

c+++ begin the back-substitution to solve for all unknown 
c+++ variables in the domain. 

.......................... 
C 

RETURN 

C 

c t t t  solve for the eigenpairs. 
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, 
C 

CALL DCONDNS 
C 

(SUBROUTINE DCONDNS I 
C 

c+++ project the stiffness and mass matrices onto the current 
c+++ subspace for each iteration. 
C 

.......................... 
C 

c+++ tell all domains that this task has been completed. 
C 

DO 100 NF = 1,NFRONT 
IF ( NF .NE. DOMAIN ) THEN 
CALL EVPOST(EVENT( DOMAIN,NF)) 
ENDIF 

100 CONTINUE 

c + t +  wait for domains to  reach this point. 

DO 200 NF = 1,NFRONT 
C 

IF ( NF .NE. DOMAIN ) THEN 
CALL EVWAIT(EVENT(NF,DOMAIN)) 
ENDIF 

200 CONTINUE 
C 

c + + t  clear the event. 
C 

DO 300 NF = 1,NFRONT 
IF ( NF .NE. DOMAIN ) THEN 
CALL EVCLEAR(EVENT(NF,DOMAIN)) 
ENDIF 

300 CONTINUE 
C 
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c+++ assemble [k]; and [m]; from all domains. 
C 

............................ 
e*- C 

c+++ solve the auxiliary eigen problem for each iteration by a 
c+++ pseudejacobi method. 

CALL EIGN 
C 

C 

c+++ test the eigenvalues for convergence. if tolerance is 
c+++ met then set nstop = 10. a better m-orthonormalized 
c+++ approximation of the required eigen vectors is constructed. 
C 

............................ 
C 

RETURN 

C 

IF ( NSTOP .NE. 0 ) GO TO 710 
C 

c+++ after each iteration, calculate a new set of eigenvectors 
c+++ that will be used in the next iteralion. 
C 

CALL RELOAD 
C 

6 CONTINUE 
C 

c+++ prints the output for mode shape: at prescribed nodes 
c+++ rather than the customary element-by-element output. 
C 

70 CALL PLOTING 
C 

c+++ wait for tasks to be completed and clear events. 
c 

IF ( DOMAIN .NE. 1 ) THEN 
CALL EVWAIT(EVENT( 1 ,DOMAIN)) 
CALL EVCLEAR(EVENT( 1,DOMAIN)) 

ENDIF 
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C 

RETURN 
END 
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Chapter 4 

Numerical Experiments 

4.1 Purpose 

This chapter has a three fold purpose: 

1. Validate the algorithm's accuracy by comparing the results to the fol- 
lowing: a sequential frontal/subspace algorithm called 'FEDA" (31, 
MSC/NASTRAN (NAsa STRuctuiral ANalysis program) and in some 
cases analytical results. Note: All MSC/NASTRAN eigenpairs were 
solved by the Tridiagonal (Givens) method (361. 

2. To show the capabilities and wide range of problems the algorithm can 
handle. 

3. Attract attention to the speedup attained for each finite element prob- 
lem by subdividing the structure into two domains. As a consequence of 
only two physical CPUs on the Cray X-MP/24 computer, two domains 
were chosen to  get the exact speedup between the sequential and paral- 
lel algorithm. The ideal or theoretical speedup for the parallel solution 
would be 2.0. 

Therefore, in the following pages a description, diagram, input properties, 
speedup and a table of eigenvalues solved by the different procedures for each 

32 



structure analyzed will be presented. For all problems solved a tolerance of 
lo-' was imposed on each eigenvalue in the subspace. Located in Appendix E 
is a description of the input data used for p-feda. 

- - --- 
of 

Eigenvalue 
1 
2 
3 

4.2 Description of Test Problems 

O - 

Parallel 1 Sequential NASTRAN Closed 

19.55 19.55 19.55 19.55 
148.6 148.6 148.6 148.6 
571.1 571.1 570.9 571 .O 

feda (q = 8) Form [30] 

4.2.1 Two-Dimensional Beam 

The first problem solved was a beam clamped at  both ends (Figure 4.1) and 
having 20 elements with 57 degrees-of-freedom (dof), i.e. three dof at  each 
node; this rather simple problem was chosen to assist in the initial develop- 
mental efforts. The global front for this beam consisted of one node located 
a t  the center of the beam. As a result, there are two domains/tasks, the right 
half is domain one and the left half is domain two. In MSC/NASTRAN, the 
beam was modeled using the CBAR element [36] along with a consistent 
mass matrix. Speedup for the beam is 1.49; due to the simplicity and small 
number of elements the speedup is low. Total number of iterations for the 
parallel and sequential programs where 14 and 15 respectively. Table 4.1 con- 
tains the four lowest eigenvalues solved by p-feda, FEDA, MSC/NASTRAN 
and a closed-form solution. 

i 4 [ 1560.8 I 1561.0 1 1559.6 I 1560.3 
I I I 
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Beam with Both Ends Clamped (Speedup = 1.49) 

Number of Nodes = 21 Number of Elements = 20 

Input Properties: 
E = 1.OE15 klV/m2 
I = 1.0 m4 
p = 1.0 kNse2/rn4 

A = 1.OE10 m2 
t = 1.0 m 
L = 2.0 m 

20 Q 2.0 m 

= =: 

Figure 4.1: Clamped-Cisniped Beam Idealization 

4.2.2 Space Truss 

Two structures were analyzed using the three dimensional truss element, 
with all members having three degrees of freedom a t  each node. Both space 
trusses were constructed on MSC/NAS'I'RAN and use the CBAR element 
[36] with all rotations fixed and a lumped mass matrix. The first space truss 
[14] used in solving for the eigenpairs has 88 members and 26 joints with 
the four base nodes fixed, shown in Figure 4.2, as a result the truss contains 
66 dof. There are four nodes on the global front, located atop the third 
tier from the bottom, and an equal number of elements in their respective 
domains. Property set one belongs to all members that makeup the five box 
subtrusses (horizontal and vertical elements are 20 ft in length) while the 
eight members that protrude from the sides pertain to property set two and 
have a horizontal length of 40 ft. For the space truss, a speedup of 1.77 
was achieved with both parallel and sequential algorithms performing eight 
iterations until convergence was met. Iin addition, a comparison of the six 
lowest eigenvalues are located in Table 4.2. 
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Space Truss (:Speedup = 1.77) 

Number of Nodes = 26 Number of Elements = 88 

Input Properties: 
Property Set 1 Property Set 2 

E = 3.9385E10 psi 
A = 1.0 in2 
I = 1.OE02 in' 
p = 1.0 lb  sec2/in' 

E = 3.9385310 psi 
A = 3.0 in2 
I = 1.OE02 in' 
p = 1.0 lb sec2/in4 

Figure 4.2: Idealization of Space Truss 
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Table 4.2: Space Truss Eigenvalues 
- 

Eigenvalues Predicted by 

Eieenval ue  feda (4 = 12) Method 1141 

3.624E04 3.624E04 3.524E04 3.625EO4 3 
4 1.819E05 1.819EO:i 1.819EO5 1.819Eo5 

J 

- . - - - - - - 

5 3.869E05 
6 

The second space truss considered is an open helicopter tail-boom struc- 
ture [7]. There are 108 truss members arid 28 nodes as shown in Figure 4.3, 
the four left end nodes are fixed with the structure possessing 72 dof. Keep- 
ing both domains balanced a n  equivalent number of elements are  assigned to 
each separate task. The structure is subdivided at  its midpoint and consists 
of four nodes on the global front. An abnormally high speedup of 2.10 was 
calculated for the tail-boom structure because of the smaller number of itera- 
tions taken by the parallel program (15) compared to the sequential program 
(20). Figure 4.4 shows the geometry and lengths of the finite element model, 
furthermore, Table 4.3 contains the eigenvalues of the tail-boom. 

Table 4.3: Eigenvalues for Helicopter Tail-Boom 

Iteration [7] 
I 1 1 1.848E04 I 1.848E04 I 1.846EO.1 I 1.880E04 1 

I t 1 1.574E06 I 1.574E06 1 1.574EQ6 1 1.593E06 6 
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Helicopter Tail-Boom (Speedup = 2..10) 

Number of Nodes = 28 Number of Elements = 108 

Input Properties: 
E = 1.05E08 psi 
I = 1.OEQ2 in' 

A = 1.0 in2 
p = 2.5883-03 lb  s d  fin' 

Figure 4.3: Helimptor Tail-Boom Idealization 
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BASE OF EN0 OF 
rruL000kl TAIL BOOM 

(8)  

t ”  

FRONT VIEW -- 
(hi) 

Figure 4.4: Helicopter Tail-Boom Structure: (a) Geometry of Tail-Boom (b) 
Finite Element Model for the Tail-Boom Structure [7] 



4.2.3 Plane Stress Example 

Referring to Figure 4.5, a rectangular plane stress element comprising of 
eight elements in the form of an inverted T is analyzed. The T-section was 
modeled on MSC/NASTRAN using a QUAD8 element with the rotations 
fixed and a coupled mass matrix. Shown in Table 4.4 are the eigenvalues 
determined by p-fda, FEDA and MSC/NASTRAN. 

For the structure, each square element has eight nodes with two dof each 
and a length of 2.0 in .  Moving across the bottom horizontally, all nodes 
are clamped which leaves 60 dof to displace. Substructures are formed by a 
vertical global front in the center of the structure which includes seven joints. 
Due to the lower number of iterations for the parallel program (16) matched 
against the sequential program (21), speedup equaling 2.31, once again was 
jutting above the theoretical speedup. 

Plane Stress T-Section (Speedup = 2.31) 

Number of Nodes = 39 Number of Elements = 8 

Input Properties: 
E = 1.0 psi 
t = 1.0 in 

u = 0.4 
p = 1.0 lb  sec2/in4 

Figure 4.5: Idealizatj!on of T-Section 
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Table 4.4: Eigenvalues for Plame Stress T-Section 

1 
2 
3 
4 
5 
6 

4.2.4 Isoparametric Plate 

The final problem solved is a cantilevered plate which has a hole within the 
structure shown in Figure 4.6. Free vibration analysis of the 116 element plate 
on MSC/NASTRAN modeled by the QUAD4 element and an uncoupled 
mass matrix was performed. The left end rotations and translations are 
fixed, moving in the vertical direction from top to bottom for all nodes. The 
nodal configuration for a square isoparametric thin plate used in analysis 
comprised of four corner deflections and 1:2 slope variables (two at each corner 
node and one a t  the midside nodes), in addition, there are 701 dof for the 
total structure and 12 nodes lying on the global front located at  the center 
of the plate along a horizontal line. The length of each plate element is 2.0 
in. Speedup of the parallel algorithm is 1.84 with the number of iterations 
(21) being equivalent in the parallel and sequential algorithms. Due to the 
slight differences in the stiffness matrices determined by p-feda, FEDA and 
MSC/NASTRAN, the eigenvalues in Table 4.5 are not equivalent but have 
a difference of 1-3% for each mode. 
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Cantilevered Plate with Hole (Speedup = 1.84) 

v 

1 
2 
3 
4 
5 

Number of Nodes = 430 Number of Elements = 116 

\ .  
504.8 
3798.0 

E = 7.7E10 ps i  
t = 1.0 in  

Input Properties: 
v = 0.33 
p = 2.8E03 lb. se2/in4 

Figure 4.6: Plate with Hole Idealization 

Table 4.5: Eigenvalues for 4a Plate with a Hole 

Order 
of 

I Eigenvalue t 1 
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Chapter 5 

Performance of the Parallel 
Algorithm 

5.1 Preview: 

To measure the success of the parallel algorithm on the Cray X-MP/24 su- 
percomputer, two important factors will, be determined: speedup (see Sec- 
tion 2.1) and efficiency which measures the utilization of the parallel machine, 
e.g. if the processors are idle or require extra calculations introduced through 
parallelization of the problem the speedup and efficiency decrease (371, the 
subsequent equations represent the speedup and efficiency: 

(5.3) 
T, 
TP 

SPEEDUP = SP = - (2  1) 

( 5 4  
SP 
m 

EFFICIENCY = .- (5  10%) 

where: T, is the time of sequential algorithm. 
Tp is the time of parallel algorithm. 
m is the number of processors u L d  in the parallel solution. 
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These evaluation tools were computed for the following size plates 8, 16, 
24, 32, 40 and 64 elements, shown in Figures 5.1 and 5.2. Variables affecting 
the assessment of the algorithm are: 

1. the number of domains chosen. 

2. total number of elements and degrees-of-freedom (dof). 

3. formulation of the global front relative to  the number of degrees-of- 
freedom on the local fronts. 

4. direction the domain fronts move controlled by the element numbering 
scheme. 

5. number of iterations taken to  achieve the required tolerance level. 

6. total number of eigenpairs (4) predicted. 

As  a result, a number of test runs were analyzed to  examine these vari- 
ables influencing the speedup and efficiency of the algorithm in a dedicated 
mode. This chapter presents the results obtained from a number of example 
problems for rectangular plate structures, with all edges clamped (c). All 
structural plates use an isoparametric square plate element [8] of length 2.0 
in; the model consists of four corner nodes and four mid-side nodes amount- 
ing to 16 degrees-of-freedom per element. The input properties for all plates 
are: Young's modulus is 1.0 psi, Poisson's ratio is 0.3, the mass density is 
1.0 lb  sec2/in' and 1.0 in equaling the thickness. Either a tolerance level of 

or was placed upon all q eigenvalues. 

5.2 Background to Testing: 

Time functions were inserted into the algorithm at strategic points to define 
accurately the time needed to perform thle calculations. The  time elapsed 
from one station to  another is wall-clock time and not the CPU time charged 
to  the job (18). A distinction must be macle between them as a consequence 
of a multiple processor job having a greater CPU time than a n  equivalent 
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I I I I 1 1 I I I I I 
(4 

Figure 5.1: Different Size Plates Used in Analysis with all Edges Clamped: 

Plate (163 dof); (d) 32 Element Plate (211 dof); (e) 40 Element Plate (259 
dof ) 

I (a) 8 Element Plate (67 dof); (b) 16 Element Plate (115 dof); (c) 24 Element 
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Figure 5.2: A 64 Element Plate Clamped (c) on all Edges 

job on a single processor. The total CPU ,time for a multi-processor job will 
be labeled work done by the system and will not be equal to  the wall-clock 
(execution) time, in contrast wall-clock and CPU time for a sequential job are 
nearly equivalent, i.e. total execution time will be the sum of the subroutine 
times for the slowest task in the parallel solution. 

As reported earlier, the Cray X-MP/24 computer has only two physical 
CPUs but the program can handle up to eight logical processors, i.e. when 
the number of processors used in the parallel solution exceed the number 
of processors on the machine (physical processors), the processors are called 
logical processors. This must be kept in mind when assessing the speedup for 
domains/tasks greater than two on account of the extra waiting introduced 
at synchronization points; this time must be eliminated to get a more precise 
execution time. 

Shown in Figure 5.3 is a time chart of a four logical CPU system working 
on a two physical CPU machine with all tasks assigned the same amount of 
work. Tasks 3 and 4 cannot begin execution until tasks 1 and 2 reach the 
first synchronization point (ATl). The two task  processors working simulta- 
neously will not finish exactly at  the same time, but within 10-30 milliseconds 
of each other, therefore it will be assumed that the task promsors are nearly 
equivalent in time. In a two processor system it was identified that minimal 
time, approximately 0.02 milliseconds, was taken to post, wait and clear an 
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event at the place of communication if the event had been previously posted 
by the other task. At AT2 task 3 and 4 reach the same synchronization 
point that  task 1 and 2 did earlier at A'rl and all four tasks are ready to 
continue execution again. Following the logic of p- feda's main program, 
task one will always continue over the o1,her tasks after all tasks reach the 
same synchronization point along with the last task to  post the same event, 
this can be seen a t  point AT2 if task 4 posted its event after tasks 2 and 
3. Therefore, when calculating the total wall-clock time, for domains greater 
than two, only the actual time computing will be summed and not the time 
accumulated by the idle domains waiting for an open processor to continue 
execution. The  total execution time for the four tasks in Figure 5.3 will 
be calculated as if  there are m physical 'processors located on the machine, 
shown in Figure 5.4. The following conclusions can be drawn from Figures 
5.3 and 5.4: 

1 .  Figure 5.3 represents a two physical CPU system with four logical CPUs 
being used. Figure 5.4 shows the interpretation of how the total exe- 
cution time is resolved. 

2. Time begins a t  AT0 and DTO and ends a t  AT4 and DT2. 

3. AT1, AT2 and DT1 are associated with the same synchronization point. 

4 .  Refer to  Figures 5.3 and 5.4. 

T11 E T21 Z T31 2 T41 2 Dl1 2 D21 2 D31 S D41 (5.3) 

T12 Z T22 Z T32 Z T42 2 I312 D22 2 D32 2 D42 (5.4) 

T11 + T12 :Z Dl1  + D12 (5.5) 
T21 + T22 z D21 + D22 (5.6) 
T31 + T32 :Z D31 + D32 (5.7) 
T41 + T42 '2 D41 + D42 (5.8) 

Input and output (I/O) for all sample runs were kept to a minimum 
amount. The SSD solid-state storage device used to read and write infor- 
mation on tapes/disks was bypassed because when one processor gains ac- 
cess to the device the other processor becomes idle. When the problem of 
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AT0 AT1 AT2 AT3 AT4 
Begin 
time 

End 

Figure 5.3: Time Chart of Four Logical Processor System Running on a Two 
Physical Processor Machine 
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Task 2 
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Task 4 

DTO DT1 DT2 
Begin End 
time -- 

Figure 5.4: Time Chart Showing the Interpretation of a Four Logical Pro- 
cessor System Running on a Two Physical Processor Machine 
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Table 5.1: Analysis of Various Domains for a 64 Element Plate Using a 
Subspace (9) of 2 

Number of Figure Speedup I Eficiency Speedup I Efficiency 
Processors Number (T~l=io-~)  TO^= 1 o - ~ )  

1 5.2 1 .oo 100% 1 .oo 100% 

2 5.5 1.85 93% 1.86 93% 

4 5.7 3.86 96% 3.13 78% 

6 5.11 3.02 50% 3.18 53 % 

8 5.12 4.15 :i2% 3.61 45% 

(13) (16) 

(13) (16) 

(9) (14) 

(13) (16) 

I I I (9) I I (14) I I 

The value in ( ) is the total number of iterations to achieve the prescribed 
tolerance. 

singlethreaded 1/0 is resolved p-feda will incorporate the SSD device to 
significantly enhance its performance. 

5.3 Evaluation of Varying Domains: 

The most important feature of this research is the speedup obtained by the 
parallel solution. In putting all other factors aside, the bottom line is to 
examine the substructured finite element model faster and accurately on 
a concurrent machine compared to a sequential machine while keeping the 
overhead to a minimum degree. It is expected that the speedup will increase 
as the number of processors increase with a theoretical limit set to m where 
m is the number of domains the finite element model has been subdivided 
into. As a reminder if m>2 then the m domains will be performed on m 
logical processors. 
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Number of Figure 
Processors Number 

1 5.2 

Speedup I E'fficiency Speedup [ Efficiency 
(Tol= IO-') (Tol= 1 0-') 

1.00 I 100% 1.00 I 100% 

2 
(9) (15) 

5.5 1.83 92% 2.08 104% 

A 64 element rectangular plate, Figure 5.2, containing 403 dof is tested to 
determine the speedup and efficiency on two, four, six and eight processors 
shown in Table 5.1 for q = 2 and Table 5.2! for q = 6. The decoupled plates are 
shown in Figures 5.5-5.13 to show the global fronts and element numbering 
layout. A sample output of program p- - fda  for the two domain configuration 
is located in Appendix F. Favorable results were obtained on the two and 
four processor models with the six and eight processor models developing 
trouble due to the high number of dof on the global front. The number 
of iterations taken to achieve tolerance ]plays a big part in determining the 
overall speedup of the system, e.g. a greater number of iterations in the 
parallel solution compared to the sequential solution will significantly lower 
the speedup. A thorough evaluation will be made on the various number 
of domains to show the advantages and deficiencies of p-feda compared to 
sequential FEDA by looking at specific subroutines and communication links. 

4 

The two processor model (Figure 5.5) performed consistently well, average 
speedup of 1.84, and even advanced above the theoretical limit for q = 6 and 
a tolerance of because of a lower number of iterations, Tables 5.1 and 

(9) (13) 
5.8 2.67 67% 3. LO 77% 
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VIll  

VI1 

DOYAIN 1 DOYAIN a 
VI 

V I  

Figure 5.5: Two Domain Configuration of 64 Element Plate with Element 
Numbering Scheme 
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Figure 5.6: Two Domain Configuration with Horizontal Global Front for 64 
Element Plate 
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Figure 5.7: Four Domain Idealization of 64 Element Plate with Element 
Numbering Scheme and Vertical Local F'ronts 
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Figure 5.8: Four Domain Idealization with a Cross (+) Front for the 64 
Element Plate 

I DOMAIN 4 

DOMAIN 3 

DOMAIN 1 

DOMAIN I 

Figure 5.9: Horizontal Global Front with Four Domains on a 64 Element 
Plate 

Figure 5.10: Six Domain Configuration of the 64 Element Plate 
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D O U A I N  S DOMAIN 1 

DOMAIN DOMAIN DOMAIN DOMAIN D O U A I N  DOMAIN 
1 3 4 5 6 7 

Figure 5.11: Six Domain Idealization of a 64 Element Plate, Domains 
6 have 12 Elements Each with all Others Containing Ten Elements 

DOMAIN 
8 

DOMAIN c 
1 and 

Figure 5.12: Eight Domain Configuration of the 64 Element Plate with Ver- 
tical Global Fronts 

pqzq-T 
DOMAIN 3 DOMAIN 7 

Figure 5.13: Eight Domain Configuration of64 Element Plate 
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Table 5.3: Evaluation of 64 Element Plate Limited to Two Subspace Itera- 
tions 

Number of Figure Speedup I Efficiency Speedup I Efficiency ' 
Processors Number CI = 2 q = 6  

2.84 
5.1 1 2.88 48% 3.00 
5.12 2.83 35% 3.18 

5.2. When comparing the results of Tables 5.1, 5.2 and 5.3 the two domain 
model gains momentum as the number of iterations increase where the total 
number of sequential iterations are equivalent to the total number of parallel 
iterations. The global front has only 13 dof which is the lowest possible 
number for a two domain model. 

This is the only system where an evaluation of the communication links 
could be verified. It was found that the overhead associated with transmit- 
ting information from one processor to another through common blocks was 
minimal. 

Scanning Tables 5.1 and 5.2 shows that the results from the four domain 
models in Figures 5.7 and 5.8 benefited greatly from a lower number of it- 
erations in the parallel solution. In Table 5.2 the domain model in Figure 
5.8 was used over the model in Figure 5.7 because of the abnormally high 
number of iterations, 21 and 27, taken by the model in Figure 5.7 to con- 
verge. The r m o n  for the lower speedup in Table 5.2 is a consequence of a 
greater number of degrees-of-freedom (71) for Figure 5.8 compared to 39 dof 
in Figure 5.7. This concern will be addressed later in the chapter. Therefore, 
to get a more comparable speedup look to Table 5.3 where a limited number 
of iterations were placed upon a foul- domain problem. 
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5.4 Examination of Subroutines: 

To initially start the multitasking package a main program was developed to 
set events and map out all domain processors. The time taken to perform 
this task was calculated to be between 20 to 60 milliseconds, which does 
not have a big impact on the total execution time. As mentioned earlier 
in Section 3.2, a t  the first synchronization point all input data is read into 
task one and passed to the other tasks because of problems with 1/0 (only 
single-threaded 1/0 available) on the Cray. This causes a 1.0 second delay 
until all processors can move forward again. The subroutine that  handled 
the dynamic dimensioning of arrays has no speedup and takes approximately 
the same amount of time regardless of the number of processors but since 
it takes less than one millisecond to perform all calculations, the subroutine 
will be assumed negligible in the total execution time. 

In DMATRON, the subroutine that determines the first and last appear- 
ance of all nodes in its domain has a very low speedup for all sizes of domains. 
This subroutine takes about 2% of the total execution time to complete, some 
overhead is accumulated in this subroutine but is not critical to the total ex- 
ecution time. The creation of model matrices, [K]' and [MI', is the first 
place where significant speedup is achieved because the finite element model 
is substructured into an equal number of elements in each task; the individ- 
ual tasks should have an ideal speedup of 2.0, 4.0, 6.0 and 8.0 for two, four, 
six and eight processors in subroutine ESTIFF. 

Referring to  Table 5.4, the two, four and eight domain structures had 
efficiencies of 89%, 90% and 90% for subroutine ESTIFF which means some 
overhead has been complied at  this point due to parallel processing. In the 
unbalanced six processor model (Figure 5.11) the efficiency is only 80% as a 
result of the extra elements in domains one and six. 

After the element matrices have been generated, the program is ready to 
begin the solution-resolution process to determine the natural frequencies of 
the system. The first and most critical subroutine is DFRONT where the 
multi-frontal technique is implemented along with !he assembly and elimina- 
tion of the global front. The success of the parallel algorithm is dependent 
upon the amount of dof on the global front, as the number of domains in- 
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Table 5.4: Subroutine Speedups for Varying Domain Sizes with q = 6 

DFRONT 
DCONDS 
RELOAD 

Number of Processors I Subroutine 1- I Four I Six I Eight 

1.83 2.55 2.37 2.34 
1.86 3.64 4.81 6.97 
1.92 3.84 5.06 7.64 

crease so does the number of dof on the global front. This subroutine gets 
progressively worse as the number of dof on the global front and domains in- 
crease which can be seen in Table 5.4. The  first iteration’s execution time in 
DFRONT will always be greater than the remaining subspace iteration’s ex- 
ecution time because of a lower number of calculations. All equations needed 
in resolve that were previously calculated are saved for future use, e.g. in 
the Gauss-Jordan method for the elimination of the global front all variables 
divided by the pivot in their respective equations are saved for resolution. A 
more comprehensive investigation will be conducted later in Section 5.6. The 
remaining two subroutines DCONDS and RELOAD perform the calculations 
of the modified subspace method. Some overhead is accompanied with these 
subroutines but overall their speedups were consistent and performed very 
well. 

For the two processor model (Figure 5.5) the percentage of total execution 
time used by the different subroutines in p-feda are presented in Table 5.5. 
The  sum of all values in Table 5.5 is 96% which leaves 4 %  of the total 
execution time due to the overhead of parallel processing. In conclusion, 
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Subroutine 
NiUIW 

a recap of the overhead associated with p-feda is given: 

Time (%) 
1'' Iteration I P Iteration 

1. extra coding to implement the parallel processing. 

2. extra storage requirements used by the separate task processors. 

3. input of data and the map of the pre-front needed in the solution. 

4.  communication links used to pass information. 

5. assembly and elimination of the global front performed within each 
task. 

6. calculations that are not performed on an element by element basis. 

5.5 Impact of Increasing Elements: 

The effect of increasing the number of elements and degrees-of-freedom (dof) 
on the overall plate will be investigated. All other factors are kept constant, 
i.e. q = 6, two or six subspace iterations, always dividing the plate into two 
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Figure 5.14: Subdivided Plate for all Test Runs with the Direction of the 
Local Fronts Shown 

balanced domains, 13 dof on the global front, direction the wave front sweeps 
across the domain as shown in Figure 5.14 and the size of the wave front. 
Plates consisting of 8, 16, 24, 32, 40 and 64 elements, Figures 5.1 and 5.2 
were used in this test. Referring to Figure 5.15, the speedup is increasing at 
a constant rate for both the two and six subspace iteration test cases as the 
number of elements increase. These results show that for large finite element 
problems a significant increase in computational speedup can be achieved 
if the number of elements per domain are large enough to overcome the 
deficiency of eliminating the global front. The percentage of execution time 
taken by DFRONT becomes less of a factor as the  number of iterations and 
elements increase. The 8 and 16 element plates for two subspace iterations 
are affected by the singlethreaded 1/0 more than the larger size plates. 

Looking at  the execution time shows a vast improvement in the parallel 
algorithm with the added elements. However, another determinant to be 
evaluated is the work done or CPU time for the solution process; the speedup 
for the work done is displayed in Figure 5.18. The ideal speedup would be 1-00 
for the parallel solution, i.e. the amount of ‘work done would be equal for both 
the parallel and sequential solutions. Although the work done for the parallel 
solution is greater than the sequential solution in all cases, the parallel CPU 
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Figure 5.15: Effect of Increasing the Number of Elements on the Execution 
Time with all Other Factors Constant 

time is approaching the sequential CPU time at  a steady pace as the number 
of elements are expanded. This is a very notable factor when applying the 
parallel algorithm to enormous finite element models because the work done 
by the parallel solution is not increasing as rapidly as the sequential solution. 
Therefore, the overhead associated with parallel processing is becoming less 
noticeable as the number of elements increase with all major factors that  
affect the solution set a t  constant values. 

5.6 Subspace Dimension: 

In this study the number of eigenvalues and mode shapes will be increased 
to determine its impact on the algorithm. All factors are kept constant 
when using the 64 element plate shown in Figures 5.2 and 5.5 with test runs 
limited to two subspace iterations. Displayed in Figure 5.17 is the speedup 
relative to the increasing eigenvalues (q = 2, 4, 6; 8 and lo), a speedup of 
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Figure 5.16: CPU Time Affected by Extra Elements with all Major Factors 
Constant a Limit of Two Subspaw Iterations were Used 

execution time shows a steady increase in the speedup from 1.68 to 1.75 for 
the largest two subspace dimensions. In conclusion, for large finite element 
problems increasing the subspace size adds no extra overhead and shows a 
steady increase in speedup for a higher number of eigenpairs. 

Determining the effect of extra eigenlsairs in the subspace on the CPU 
time will be the next goal. Referring to Figure 5.18, the speedup for the 
CPU time slowly builds up as the eigenvalues expand in number. 

Consequently, this leads to the same conclusions found in the previous 
section, i.e. the overhead associated with parallel processing is b m m i n g  
leas noticeable as the number of eigenvalues and mode shapes increase while 
keeping all major factors constant. 
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Figure 5.17: Impact on Execution Time with an Increasing Subspace Dimen- 
sion with all Other Factors Constant 
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Figure 5.18: Influence of I n d  Eigenpairs on the CPU Time Keeping all 
Factors Constant 
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5.7 Size of Global Front: 

A primary section of additional coding for pfeda is associated with the 
assembly and elimination of the global front. A major portion of the overhead 
is accumulated at this section of the dom,ain task. 

Keeping the degrees-of-freedom on the global front to the lowest possible 
total by subdividing the finite element model appropriately will increase the 
speedup and efficiency of the overall problem. When the number of domains 
increase so too does the dof on the globd front and the best one can hope 
for is an equivalent number of dof on the boundaries when the finite element 
problem is subdivided into a greater nuimber of domains compared to the 
simplest two domain substructure. 

This has proven to be a deficiency in pfeda which can be seen in Table 
5.6 where the global front varies for different test cases. For example, in the 
two domain problem (Figure 5.5) with 13 dof on the global front and 115 
dof remaining in each domain, subroutine DFRONT in the first and second 
iteration take up 19% of the total execution time. In contrast, the eight 
domain problem with 91 dof on the global front and 19 dof remaining in each 
domain takes 64% of the total execution time. 

The four domain model shown in Figures 5.7-5.9 will be investigated to 
determine the impact of increasing the dof on the global front with all other 
factors constant, i.e. q = 6 and two subspace iterations. In Figure 5.19 
the results of the four domain models located in Table 5.6 are plotted. The 
degrees-of-freedom in one domain are the sum of the global front dof and 
the dof remaining in one domain, e.g. in Table 5.6 for Figure 5.7, the dof for 
each separate domain is 51 and the dof on the global front is 39 with a total 
dof in one domain equaling 89 for this test case, the other totals are 114 dof 
for Figure 5.8 and 198 dof for Figure 5.9. Clearly shown in Figure 5.19 is the 
impact of increasing the global front in p-feda, a significant loss in speedup 
is witnessed as the dof on the global front front increase and the remaining 
dof in each domain decrease. 

In Figures 5.7 and 5.9, the problem of an idle domain or waiting by one 
t a sk  will arise in DFRONT even though all domains have a n  equal number 
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Figure DOF Located on speedup 
m Number Global One Overall DFRONT 

2 5.5 13 115 1.75 1.60 1.83 
5.6 61 91 1.38 0.66 1.02 

4 5.7 39 51 2.91 1.42 2.55 
5.8 71 43 2.37 0.93 1.95 
5.9 183 15 0.40 0.06 0.38 

6 5.10 73 35 3.00 1.13 2.34 
5.1 1 73 35 2.94 1.21 2.37 

8 5.12 91 19 3.18 0.91 2.34 
L 5.13 91 19 3.08 0.84 2.35 

Front Domain (1) (2) 

The  value in ( ) corresponds to the first or second iteration. 

of elements, as a consequence of dissimilar domains, e.g. in domains two and 
three a local front is located on each side of the domain, whereas in domains 
one and four only one local front exists. This will cause unbalancing in the 
processors work load because of an increased frontwidth in domains two and 
three. The  domains can not continue execution until all domains post their 
event in DFRONT, therefore a domain may sit idle and cause overhead in 
the parallel solution. For Figure 5.7, it was found that DFRONT had a 0.4 
seconds difference between the slowest (domain 2) and fastest (domain 1) 
domains. Since domain 2 has a larger wave front due to  the local fronts on 
either side of the domain, the wave front will sweep across the domain slower 
than domain 1 which has only one local front. 
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Figure 5.19: Impact of Increasing the Global Front on the Different Four 
Domain Models (Figures 5.7-5.9) 
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Chapter 6 

Conclusions and 
Recommendations 

The frontal solution [24] and modified subspace method [4] were presented 
with their advantages. Parallel implementation of these methods on the 
Cray X-MP/24 proved successful in achieving computational speedup. In 
addition, the use of multitasking routines (181 installed on the Cray X-MP 
computer has proven to be very efficient in mapping each domain to a user 
task. 

The parallel program described in this report was found to be an accurate 
and effective algorithm to solve large linear finite element eigenproblems on 
the Cray X-MP/24 computer. The parallel eigensolver demonstrates that  
speedups in execution time can be achieved compared to a similar sequen- 
tial algorithm (Figures 6.1 and 6.2). Utilization of the Cray’s multitasking 
library also proved to be an efficient tool to parallelize the FORTRAN code. 
Multitasking subroutines were found to be of minimal impact on the total 
execution time. 

The parallel program takes advantage of the shared and local memory 
on the MIMD Cray machine while successfully using a completely connected 
architecture to transmit information from one processor to another. 
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Figure 6.1: Effectiveness of p-feda for a 64 Element Plate with q = 6 and 
Six Subspace Iterations 

Communication links were performed by using common blocks to store 
all data rather than the Cray’s SSD solid-state storage device. When the 
problems with the SSD are resolved, i.e. the capability to perform multi- 
threaded 1/0 rather than the single-threaded 1/0 currently available, the 
authors recommends this I/O device be used 80 that larger and more sophis- 
ticated problems can be solved with significant improvement in performance 
and increased flexibility. Furthermore, the: arrays used in the common blocks 
limited the total number of degrees+f-frdom on the global front that the 
program could store, especially as the number of domains increased. By uti- 
lizing the SSD, data input could be read in by each separate task, thereby 
lowering storage requirements and execution time in the solution process. 
This would eliminate waiting (overhead) by the it* task for the input data 
from task one. 

The major deficiency in this parallel algorithm was elimination of the dof 
on the global front, as the domains increased so did the dof on the bound- 
ary. The extra sequential calculations performed by each task to handle the 
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Figure 6.2: Evaluation of 64 Element Plate on p-feda for q = 6 and Six 
Subspace Iterations 

global front lowered the speedup and efficiency significantly. On the other 
hand, the performance for the creation of the stiffness and mass matrices 
and the modified subspace method were extremely encouraging and indicate 
the effectiveness of multitasking on the Cray X-MP computer. Therefore, 
when calculations were performed on an element by element basis, in parallel, 
speedup and efficiency was very high compared to the section where extra 
sequential coding was required. 

When subdividing a finite element model into m domains one should 
choose the  configuration with the lowest possible dof on the  global front 
for this will increase speedup and efficiency of the parallel algorithm. In 
addition, load balancing, i.e. assigning an equivalent amount of work to each 
task by keeping the number of elements and frontwidth equal in all domains, 
is very important in the performance of p-feda. Communication links were 
found to be of minimal impact (no idle domains) in parallel processing if all 
domains were balanced. Some overhead is accumulated due to one processor 
being faster than another but the overall execution time of the problem 
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will overshadow this deficiency. Based on the results obtained, the authors 
recommends that  one should only further subdivide t,heir finite element model 
into a greater number of domains only if the number of elements in the 
separate domains are large enough to overcome the overhead associated with 
the global front elimination. As a rcsult of the greater number of elements 
per domain, the amount of work performed by the individual tasks on all 
subroutines will outweigh subroutine DFRONT in the total execution time. 
Element numbering is an important aspect in lowering the frontwidth for 
the frontal technique. The user should always number the elements in the 
domain so that the wave front converges to the local front, if a t  all possible. 
In addition, to optimize element nuimbering, one should follow the general 
rules that  are applied to the optimum node numbering (91. 

Reported earlier were the two types of multitasking, macrotasking and mi- 
crotasking, with macrotasking being used herein. The parallelization for t h e  
solution of the linear simultaneous equations on the global front by using mi- 
crotasking routines [ 181 could prove to be beneficial because all tasks perform 
the same calculations on the global front stiffness matrix. These calculations 
could be concurrently performed to  iincrease speedup of p-feda, especially in 
the larger size domains, by using a parallel direct method [26,27,34,35]. 
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Appendix A 

The Modified Subspace 
Method 

The solution of the eigenproblem is usually required in applications involving 
free vibration and dynamic response analyses of finite element models. It 
is typically a time consuming process if the structural system is idealized 
through a large number of degrees of freedom. However experience has shown 
that the response of structures can be adequately estimated using only a few 
eigenvectors, and that the contribution of higher order eigenvectors can often 
be neglected without significant loss in accuracy. 

The subspace method is one the techniques suitable for the evaluation of 
the lowest order eigenpairs in large stivctural systems [lo]. In this appendix, 
the modified subspace method [2] is briefly presented and its characteristics 
are discussed. 
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A.l  The Eigenproblem in Structural 
Dynamics 

Consider the undamped free vibration of an N degree-of-freedom system: 

Equation A . l  expresses the motion of structural system in physical coordi- 
nates {x}. However, it is more convenient to transform Equation A . l  to a 
new basis. Substituting 

where q is defined as a generalized displacement coordinate and 4 is a new 
basis of coordinates; thus 

( 5 )  = {4h (A-2)  

replaces Equation A.5 in the new basis. For structural systems undergoing 
periodic oscillations: 

q = a sin(wt - 8) (A.4) 

Substituting in Equation A.3, 

which yields N solutions for N eigenvectors {4}, and the corresponding N 
eigenvalues A,. The complete solution to Equation A.5 can be expressed as: 

where [@I is an n.n modal matrix containing eigevectors {4}, columnwise, 
and [A] is the spectral diagonal matrix of A,. 

A.2 Description of the Sequential Algorithm 

Subspace iterations schemes can be traced back to the fifties when [13] pro- 
posed a "bi-iteration" method for solving the standard eigenvalue problem. 
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Later this method was applied to symmetric positive definite matrices by 
[33], and t o  symmetric [ K ]  matrices by [16]. 

In 1971 Bathe introduced the subspace method, which has the advan- 
tage of solving the generalized eigenproblem directly without transformation 
to the standard form. The  method essentially iterates on a n-dimensional 
subspace rather than on n individual iteration vectors, where n 5 N .  

The  complete set of eigenvectors [a] of Equation A.6 spans the N-dimensional 
space describing the system. These vectors are linearly independent, and sat- 
isfy the following conditions: 

1. M-orthonormality: 

2. I( -orthogonality : 

They are also unique if the  system does not have multiple eigenvalues, oth- 
erwise they are not unique within the subspace of eigenvectors with multiple 
eigenvalues; but this subspace itself is unique, and satisfies Equations A.7 
and A.8. 

To demonstrate the procedure of the modified subspace method, let us 
assume that  we wish to calculate t h e n  lowest eigenpairs of Equation A.6. The 
R eigenvectors are said to  span the least-dominant subspace of the operator 
[K] and [MI which is called E,. The modified subspace iteration technique 
can be stated as follows: 

1. Establish n starting vectors [VI, which are said to  span subspace El, 
where n 5 PI'. Random numbers may be used for this purpose. 

2. For each subspace E,, iterate from E, to  E,+1, where 1 = 1 , 2 , 3 , 4 , .  . . 
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3. Find the projections of the operators [ K ]  and (MI onto E,+, : 

WIi+l = [VI::llKI[Vl;+, (A.10) 

[W+l = IvI::l [MI[Vl;+l (A.11) 

4. Solve for the eigensystem of the projected operators using an auxiliary 
eigen analysis routine: 

5. Find an improved approximation to the required eigenvectors: 

6. Repeat from step (2) to step ( 5 )  above until the required accuracy is 
achieved. Fin ally: 

There are a number of important observations concerning the subspace 
procedure: 

1.  [KIT+, tend toward diagonal forms, and [Q),+, approaches [I] as 1 in- 
creases. 

2. The number of iterations required depends on how close El is to E,, 
or in other words on how close [VI, is to [@I.  

3. [A],+l is an upper bound to [A] 

4. It  is generally recommended to iterate on a number of eigenpairs large 
than n, e.g. min{2n, (n + 8)) [lo]. The reason for this will be appreci- 
ated when we discuss the convergence of the modified subspace method 
in the next section. 
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A.3 Behavior of the Subspace Method 

In general the starting vectors [VI, are linear combination of all the n eigen- 
vectors [ @ I .  However if we assume that [VI, are a combination of only the  n 
required eigenvectors, then the subspace method converges in one step [lo]. 
The 2'' starting vector can be expressed as: 

N 
{.If = C a j i { b } j ,  where i = 1?2,  ..., n. (A.14) 

Those vectors of order higher than n are said to be "polluting" the subspace 
El in each iteration, and basically the subspace method attempts through 
the set of vectors [Q],+l to  get the best combination of the vectors [V]I+l in 
subspace E, to converge to subspace E,. The number of subspace iterations 
required depends directly on the "noise" due to  vectors of order higher than 
n. 

J = l  

Reference [ 101 augmented the basic subspace approach with an elaborate 
procedure to  establish n starting vectors [VIl as close as possible to  the 
required subspace E, in order to  minimize the number of subspace iterations. 
In addition, the basic subspace method calls for a Sturm Sequence check on 
the eigensystem to  verify that  all the required eigenpairs have indeed been 
cal cu 1 a t  ed . 

However the authors share the view of researchers [17,33] that  allocating 
random numbers t o  vectors [VIl is equally satisfactory in practice. Moreover 
it is very improbable that  any eigenpair will be absent a t  the end of the 
iteration, particulary when random numbers are used for [VIl. 

A.4 Convergence of The Modified Subspace 
Method 

Bathe and Wilson [lo] reported the use of over relaxation, shifting, and 
Aitken's Formula to improve the convergence rate of the basic algorithm. 
However, no theoretical basis has been established for their performance. 
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Referring to the analysis presented in the previous section, the starting 
subspace El is always polluted with eigenvectors of order higher than n. This 
requires the subspace procedure to iterate in order to convergence toward E,, 
or in other words to  eliminate {4),,+l,. . . , ( 4 ) ~ .  Writing a typical vector in 
E1 

N 

where the first part of the right-hand-side represents the subspace E1 that  
we wish to isolate, and the second part represents a complementary subspace 
E; as a "noise" polluting subspace El. 

The fundamental idea in accelerating the convergence of the subspace 
method is based o n  eliminating the complementary subspace E; a t  an in- 
creased rate.This task is exactly equivalent to  that  of persuading the coeffi- 
cients up, in Equation A.15 to  convergence to zero as rapidly as possible. 

Proceeding with the modified algorithm of the subspace method, inverse 
iteration on (21);  gives 

{v}& = [ K ] - - ' [ M j { t J } f  - /3{v};l (A.16) 

Substituting Equation A . l  into Equation A.16 and using Equation A.6, 

j=l q=n+l r=l 

(A.18) 

If factor p is chosen t o  be equal to  l / X n + l ,  then the contribution of 
vector { din+, to the complementary subspace E:+, js entirely eliminated. In 
general i f  we choose B equal to l / X q ,  vector { $ } q  (where q = n + 1, .  . . , A') 
does not contribute noise to the eigensystem. But the important question 
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now is how can we select the factor 19 when we do not know the eigenvalues 
An+], An+l, - - - 9 A N -  

The following strategy proved successful in reducing the number of itera- 
tions in some cases than half that required with basic subspace method using 
the same starting vectors [VI,: 

Step 1: After one iteration, a poor estimate of A, is known. The lowest root 
rl of the 11 '" order Gaussian Quadrature formula of the closed type for 
integrating over the range 0 to 1/A, [25] was used for factor in the 
second iteration. Table A. l  gives the roots of the Gaussian Quadrature 
formula and shows how to tran.sfer these roots from the range (-1, l )  
as given by [25] to (0, l/An). This value of p is not optimal, but being 
small it is less dependent on the initial value of A,, than a higher root 
would be. 

Step 2: After the second iteration is completed, a more accurate value for 
A, is known, the second root of the Gaussian formula was used for 
calculating ,8. 

Step 3: The process is repeated with every iteration using the current value 
for A, to get the ( j  - 1)'" root of the Gaussian formula in the j '" 
iteration until the 11'" iteration is reached. If more subspace iteration 
are still needed, then proceed with p = 0 until the required accuracy is 
achieved, Experience has shown t,hat the solution is sometimes sensitive 
to the eleventh root of Gaussian formula, therefore beyond the 1 l th  
iteration a value of zero is assigned to factor ,!I, ;.e. a return to the 
basic subspace approach. 

The rate of convergence of the modified subspace method can be expressed 

(A.19) 

which is faster than the rate of convergence of the basic subspace algorithm 
of (A,/X,,+*) [lo]. By choosing factor p sufficiently small to be as close as 
possible to 1/A, (root r l  ), the q'" element of noise in the complementary 
subspace E;,,, and probably other elements of order less than n ,  are either 

as follows: 
Ai(1 - @An+* )  

Xn+1(1 - P A , )  
Rate of convergence 5 
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Table A.l:  Roots of the Gaussian Quadrature Formula of the Closed Type 

Root Value 

rl -0.9533098466 
r2 -0.8462475646 

r4 -0.4829098210 
r5 -0.2492869301 

r3 -0.6861884690 

eliminated or 

Root Value 

r6 0.00000000000 
r7 +0.2492869301 

rg +0.6861884690 
rl0 $0.8463475646 

r8 $0.4829098210 

minimized. As factor /? grows in value from root r2 to rlo, 
the contribution to the noise of vectors {4} of progressively decreasing order 
up to (n + 1) in the complementary subspace E;+, are swept away in turn, 
collectively. This "sweeping" strategy, from root rl to rl0, ensures that no 
noise due to eigenvectors of higher order is reintroduced into the subspace as 
we proceed to eliminate the noise due to the lower eigenvectors. 
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Appendix B 

Variable List 

Variable Name 

EIGEN2 
EIG EN S H P 

ELKSTR 

ELV 

ELVDOT 
FULMASS 
FULSTIF 
INITIAL 

INTEG 
P R O P  

Description 

element eigenvectors. 
profile of the modes of vibration of the 
system at some prescribed nodes listed in 
NODEIGN. 
projection of an element stiffness matrix 
onto the current subspace. 
element initial displacements in modal 
analysis. 
element initial velocities in model analysis. 
element mass matrix. 
element stiff ness matrix. 
maximum number of nodes with initial dis- 
placement or velocities. 
number of integer words per floating point. 
number of properties, e.g. thickness, den- 
sity, etc. 
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Variable Name 

JPROP 
KODFIX 

KODLOAD 

KODSOL 

LCOEF 

LDEST 
LENVEC 
LENVECl 
LIMFRO 
LNODES 
LPROP 

LVAB 

Description 

number of sets of properties. 
code number listing which degree of free- 
dom is prescribe at each node. 
code number for loading in dynamic re- 
sponse analysis 
= 0 no uniform dynamic loads 
= 1 uniform dynamic loads 
solution code 
= 0 static solution. 
= 1 dynamic response analysis by the 
mode superposition method 
= 2 dynamic response analysis by the di- 
rect integration method 
= 3 subspace eigen analysis 
number of coefficients in the lower triangle 
of ( K ]  or [MI. 
element destination vector. 
length of vector VEC/NVEC. 
length of vector VECl/NVECl. 
length of the limiting front width. 
element node numbers. 
the set of properties application to each el- 
ement. 
maximum number of variables per element. 
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Variable Name 

M AT RI  C ES 
MEQ 

NAME 

NBUFZ 

NCASE 

N D F  
NDFRO 
NDIM 

NEGIEN 
NEIG N T  
NEL 
NEXTIF 
NFIX 
NGAUS 

NLOAD 

NLOADl 

Description 

LVAB*(LVAB+l)/2 
identifies the degree of freedom of a node 
for which the current equation is to be 
solved. 
identifies the prescribed variables and their 
locations in VFIX (with negative sign), 
otherwise it gives the node number (with 
positive sign). 
maximum number of equations existing a t  
one time in the core storage. 
maximum number of iterations in sub- 
stance eigen analysis. 
number of degrees af freedom per node. 
width of the limiting front. 
dimension of the physical coordinates of 
the system. 
number of required eigenpairs. 
NEIGEN = NRHS 
total number of elements. 
number of nodes with additional stiffness. 
number of nodes with some fixed values. 
order of the gauss rule used in numerical 
intergration. 
number of nodes with additional concen- 
trated loads in static analysis. 
number of nodes with additional concen- 
trated loads in dynamic 
response analysis (NLOAD must be equal 
to zero). 
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. Variable Name 

NMODE 

NODEIGN 

NODEL 
NODFIX 

NODINIT 

NODLOD 
NOPTION 

NOSTIF 
NPDFRO 
NPIVOT 

NPOINl 

NPOINT 
NRESOL 
NRHS 
NRHSl 

Description 

number of vibration modes used in modal 
analysis 5 NEIGEN. 
list of nodes at which the profile of the 
modes of vibration is required. 
maximum degrees of freedom per node. 
list of nodes with prescribed displace- 
ments. 
list of nodes where initial displacements or 
velocities are given. 
list of nodes with additional loads. 
printing option 
= 0 print element stiffness, mass and load 
arrays. 
= 1 suppress printing. 
list of nodes with additional stiffness. 
node numbers in the current front. 
location of the pivot in each equation in 
eq. 
number of nodes in plotting vibration 
mode profiles. 
total number of nodes. 
iteration number in eigen analysis. 
number of right hand sides. 
number of right hand sides in model anal- 
ysis _< NEIGEN. 
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Variable Name 

NSTEADY 

NSTIF 
NSTOP 

NSTRES 

NTYPE 

OLIGNVL 
POTEGY 
PSTR 

REACTN 

SIGDIG 

SKSTR 

Description 

code number for steady state response un- 
der harmonic loading using modal analysis 
= 0 no steady state response is required. 
= 1 steady state response for sine loading 
function. 
= 11 steady state response for cosine load- 
ing function. 
LIMFRO (LIMFRO + 1) /2. 
= 0 if tolerance level TOL2 in subspace 
eigen analysis is not achieved. 

= 10 if TOL2 is achieved. 
number of the stress components = size of 
matrix [D). 
type of the problem, e.g. plane stress, 
plane strain. 
eigen values from a previous iteration. 
potential energy for each right hand side. 
modal loads, i.e. projection of the system 
loads onto the system eigenvectors. 
reactions at nodes with prescribed dis- 
placements. 
the sum of the squares of the diagonal stiff- 
ness. 
projection of the system [ K ]  matrix onto 
the current subspace. 

. 
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Variable Name 

SMSTR 

STREGY 
SUBLOD 

SUSTIF 

TOL2 
TOTLOD 
VFIX 

VLAD 

VPROP 
VSTIF 

Description 

projection of the system [M) matrix onto 
the  current subspace. 
strain energy for each right hand side. 
in assembly, i t  is a subset of the right hand 
sides corresponding to sustif. In back sub- 
stitution, it is used to hold the vector of 
running variables. 
grandpa matrix into which elements are as- 
sembled. 
tolerance level in subspace eigen analysis. 
total load at active nodes. 
prescribed displacement at the nodes listed 
in NODFIX. 
additional loads at the nodes listed in 
NODLOD. 
element properties. 
additional stiffness at the nodes listed in 
NOSTIF. 
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Appendix C 

NEL 

NEL 
NEL 

NEL 

NEL 

Management of Files 

Each record contains ELSTIF + 
ELOAD of the first frontal solution 
ELOAD for re-solutions 
EIGENl in eigen-analysis 
X, XDOT, XDDOT in the dynamic 
response analysis 
ELDISP in backward order, Files 
i.e. first record is ELDISP of the first 
element. 
EnLMASS 

File 
Number 

I I 1 

9 

Re-Solution 
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Appendix D 

Error # 

Error Messages 

Interpert ation 

The diagnostics provided in program pfeda are listed below. It should be 
noted that if the dimensions of vectors VEC/NVEC and/or VECl/NVECl 
are changed, LENVEC and/or LENVEC1, respectively, must also be changed 
to the same amount. Otherwise the diagnostics will be worse than useless. 

NEL = 0 or -ve 
NCASE = 0 or -ve 
NSTRESS = 0 or -ve 
NTYPE = 0 or -ve 
NGAUS # 2 or 3 or 4 
NODEL = 0 or -ve 
NDFMAX = 0 or -ve 
IPROP = 0 or -ve 

10 1 JPROP = o or -ve 
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Error # 

11 
12 
13 
14 
15 

Interpertation 

NFIX = 0 or -ve, or NFIX > NPOIN 
NEXTIF = -ve, or NEXTIF > NPOIN 
NLOAD = -ve, or NLOAD > NPOIN 
INTEG # 1 or 2 
LENVEC or LENVECl is not adequate to accommodate 
the given problem. 

17 
18 

19 
20 

21 

22 
23 
24 

25 

u 

An entry in NDF > NDFMAX, or = 0 or -ve 
An entry in NDF like 3, 2: 0, 3 is not allowed. 3, 2, 3, 0 
would be allowed. 
All the entries in NDF of a given node are zeros. 
The  summation of entries, in NDF of a given node > 
LVAB. 
An entry in JPROP is outside the range permitted in the 
first card, or  is negative or zero. 
A node number in an  element is -ve, or it exceeds NPOIN 
An element has all the node numbers zero. 
Node numbers of an element are given as e.g. (21, 13, 0, 
19) instead of (21, 13, 19, 0). 
Length of vector VEC is not enough even to do all the 
checks. Increase the dimension of VEC and LENVEC to 
the uassociated number" given in the error message. 
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26 
27 
28 
29 
30 
31 
32 
33 
34 

Fatal Di 

1 :: 
f 

Interpertation 

A node is repeated. 
An entry in array NODFIX = 0 or -ve, or > NPOIN. 
An entry in array KODFIX = 0. 
You have fixed the same node twice or more. 
An entry in array NOSTIF = 0 or -ve, or > NPION. 
You have added a stiffness to the same node twice. 
An entry in array NODLOD = 0 or -ve, or > NLOAD. 
You have applied a point load to the same node twice. 
Dimension of VEC is not enough to run the program. 
increase the length of VEC and LENVEC to the “asso- 
ciated number” printed in the message. 

Fostics in DFRONT (reading of the card is interrupted) 
Diagonal stiffness + pivot is large enough to suggest that  
serious roundoff damage has occurred, or the pivot is 
negative . 
The calculation has terminated, but a subsequent investi- 
gation suggests that the results are almost certainly non- 
sense because of roundoff errors. 
NODFL*NEL 5 NPOIN, or 20*NEL 5 NPOIN 
NODEL I NDIM, or NODEL > 20 

NDFMAX > 6 
NDIM # 2 or 3 
NSTRES > 2.*DIM 
IPROP > 10 
JPROP > 50 
NFIX < NDIM 
LENVEC _< 300, or 2 100,000 

Non-Fatal Diagnostics in DNURSE 
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Error # Interpertation 
1 

Non-Fatal Diamostics in DMATRON 
50 
51 
52 
53 

54 
55 

56 

57 

58 

59 

60 

61 

TWO nodes have identical coordinates. 
An element has repeibted node numbers. 
A particular node number does not appear at all. 
You have specified the coordinate of this node, then you 
have not use it. 
You have not use a node, and yet you have fixed it. 
Or, you have not used a node, and yet you have added a 
stiffness there. 
Or, you have not useid a node, and yet you have added a 
point load there. 

Non-Fatal Dianiiostics in DFRONT 
v 

Diagonal stiffness t pivot is large, suggesting that some 
roundoff has been done, probably not much. 
Frontwidth is prematurely zero. You have not put two 
independent structures in one run. Did you mean to do 
this? 
Your energy is zero. Did you intend to put in an unloaded 
structure. 
My guess is that  you have a heated but unloaded struc- 
ture. I trust you know what you are doing. 
The final level of roundoff leaves me a little suspicious of 
the value of your results. 
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Appendix E 

Data Input for p-feda 

DESCRIPTION 

Jst  line (Format 2014) 
Total number of nodes. 
Total number of nodes along global front. 
Total number of elements. 
Maximum number of nodes per element. 
Maximum degrees of freedom per node. 
Maximun number of solutions or iterations 
in eigen analysis. 

Number of dimensions (2 or 3). 
Number of stresses = size of matrix D. 
Number of element types. 
Gauss rule used. 
Number of properties, i.e., E, A, etc. 
Number of sets of properties. 

VARIABLE COLUMN 

NPOIN 
NGLOBE 
NEL 
NODEL 
NDFMAX 
NCASE 

NDIM 
NSTRES 
NTYPE 
NGAUS 
IPROP 
JPROP 

1-4 
5-8 

9-12 
13-16 
17-20 
21-24 

25-28 
29-32 
33-36 
37-40 
41-44 
45-48 
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DESCRIPTIO N VARIABL E COLUM N 

Number of nodes with prescribed values. 
Number of nodes with additional stiff- 
nesses. 
Number of nodes with additional loads. 
Maximum number of variables per ele- 
ment. 
Number of right hand sides or eigenpairs. 
Number of nodes in vibration mode prob- 
lem. 
Printing option. 
S o h  tion option. 

NFIX 
NEXTIF 

NLOAD 
LVAB 

NRHS 
NPOINl 

NPTION 
KODSOL 

49-52 
53-56 

57-60 
61-64 

65-68 
69-72 

73- 76 
77-80 

2nd line (Format 2014) 
Number of sets of element loads. JLOAD 1-4 
Number of fronts/domains. NFRONT 5-8 
Maximum number of nodes per global GNODEL 9-12 
front. 

3rd line (Format E10.2) 
Tolerance level in eigen analysis. t012 1-10 

4th set of lines (Format 2014) 

Number of degrees of freedom per node. NDF(N,J) 1-4, etc. 
where N = 1,NODEL 

[Enter values for each set of properties] 

J = 1,JPROP 
- Total number of lines = JPROP 
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5th set of lim (Format 2014) 
[Enter values for each element] 

Element number. NE 1-4 
Type of element. LTYPE(NE) 5- 8 
Property type of element. LPROP( NE) 9-12 
Load type. LLOAD(NE) 13-16 
Domain/Front the element is located on. LDMAIN(NE) 17-20 
Element node numbers. LNODS(N,NE) 21-24, etc. 
where N = 1,NODEL 

NE = 1,NEL 
- Total number of lines = NEL 

6th set of lines (Format I5,3F11.4) 
[Enter values for each node] 

Node number. 
Coordinates of node (X,Y,Z). 
where I = 1,NDIM 

N = 1,NPOIN 
- Total number of lines = NPOIN 

NODES 1-5 
COORD(N,I) 6-16, etc. 
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DESCRIPTION_ l ! k m u m E C o L U M N  

7th set of lines (Format 216,6F11.7) 
[Enter values for each node th.at is fixed] 

Node number that  is fixed. NODFIX(N) 1-6 
Code number listing which degree of 

Prescribed displacements at the nodes 
listed in NODFIX. VFIX( N,I) 13-23, etc. 
where I = 1,NDFMAX 

freedom is prescribed at each node. KODFIX( N) 7-12 

N = 1,NFIX 
- Total number of lines = NFYX 

8th set of lines (Format 15,6E12.5) 

tional stiffness] 

Additional stiffnesses at the nodes. VSTIF( N,I) 6-17, etc. 
where I = 1,NDFMAX 

[Enter a value for each node with addi- 

Node number with additional stiffness. NOSTIF( N )  1-5 

N = 1,NEXTIF 
- Total number of lines = NEXTIF 

9th set of lines (Format 15,6E12.5) 

tional loads] 

Additional loads at the nodes. VLOAD(N,I,J) 6-17, etc. 
where I = 1,NDFMAX 

[Enter values for each node with addi- 

Node number with additional loads. NODLOD(N) 1-5 

N = 1,NLOAD 
J = 1,NRHS 

- Total number of lines = NLOAD 
Repeated NRHS times. 
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YARIABLE COLUMN 

10th set of lines (Format I5,6E12.5) 

Property set n um ber . 
Enter property values for the 
specific element you are using. 
where I = 1,IPROP 

[Enter values for each set of properties] 

J = 1,JPROP 
- Total number of values = IPROP 
- Total number of lines = JPROP 

11 th set of lines (Format I5,6E12.5) 

Node number. 
Load set. 
where NR = 1,NRHS 

[Enter values for each node] 

I = 1,JLOAD 
- Total number of lines = JLOAD 

12th set of lines (Format 2014) 

Node number on global front. 
where I = 1,NGLOBE 

[Enter each node on global front] 

- Total number of values = NGLOBE 

N 1-5 
VPROP(1,N) 6-16, etc. 

N 1-5 
SLOAD(1,N) 6-17, etc. 

NDMAIN(1) 1-4, etc. 

13th set of lines (Format 2014) 
[Enter each node on global front] 
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Appendix F 

IV 

I11 

I1 

Output of p-feda 

D O Y A I N  1 

vn1 

VI1 
D O Y A I N  1 

VI 

I V  

An output file conntaining the input data and eigenpairs is presented for a 
two domain 64 element plate as shown in Figure F.l 

Figure F.l: Two Domain 64 Element P1at.e with 13 dofs on the Global Front 
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M A X I M U M  N O D E  N U M B E R  = N P O I N  = 
N U M B E R  OF N O D E S  A L O N G  B O U N D R Y  = N G L O B E  = 
N U M B E R  OF E L E M E N T S  = N E L  = 
M A X I M U M  N O D E S  P E R  E L E M E N T  = N O D E L  = 
M A X I M U M  D E G R E E S  OF F R E E D O M  P E R  N O D E  = N D F M A X  = 
N U M B E R  O F  S O L U T I O I I S  R E Q U I R E D  = N C A S E  = 
N U M B E R  O F  S T R E S S E S  = SIZE O F  M A T R I X  D = N S T R E S  
N U M B E R  O F  E L E M E N T  R P E S  = N T Y P E  = 
G A U S S  R U L E  U S E D  = H G A U S  = 
NUMBER OF P R O P E R T I E S :  E . A . I 
NUI*IBER O F  N O D E S  W I T H  S O M E  F I X E D  V A L U E S  = N F I X  = 
NUEIBER OF N O D E S  W I T H  A D D I T I O N A L  S T I F F I I E S S E S  = N E X T I F  = 
1IUMEER OF N O D E S  C I I T H  A D D I T I O N A L  L O A D S  = N L O A D  = 
M A X I M U M  V A R I A B L E S  P E R  E L E M E t I T  = L V A B  = 
H U M B E R  O F  R I G H T  H A N D  S I D E S  = N R H S  = 
H U I l B E R  O F  I N T E G E R  W O R D S  P E R  F L O A T I N G  WORD = I t J T E G  = 
L E N G T H  O F  V E C T O R  O F  F L O A T I N G  WORDS = L E H V E C  = 
L E N G T H  O F  V E C T O R  O F  F L O A T I N G  WORDS = 
14UIlBER OF SETS OF E L E M E N T  L O A D S  = J L O A D  = 
NUPlBER O F  N O D E S  I N  V I B R A T I O N  MODE P R O F I L E S  = N P O I t I 1  = 
P R I N T I N G  O P T I O N  = N P T I O N  = 
S O L U T I O N  C O D E  = K O D S O L  = 
K O D S O L  = 0 I E .  S T A T I C  S O L U T I O N  
K O D S O L  = -1  I E .  MODAL D Y I I A M I C  A N A L Y S I S  
K O D S O L  = -2  I E .  D I R E C T  D Y N A M I C  A N A L Y S I S  
K O D S O L  = -3 I E .  S U B S P A C E  E I G E N  A N A L Y S I S  
T O L E R E N C E  L N E L  I N  E I G E N  A N A L Y S I S  = T O L 2  = 
N U M B E R  O F  F R O N T S  = N F R O N T  = 
M A X I M U M  N O D E S  P E R  G L O B A L  F R O N T  = G N O D E L  = 
D E G R E E S  O F  F R E E D O M  A T  N O D E S  O F  E L E M E t I T  O F  TYPE 1 = N D F  
E L E M E N T  TYPE P R O P E R r Y  L O A D  D O M A I N N O D E  N U M B E R S  = L N O D S  
NUPlB E R  

N U M B E R  OF D I M E N S I O N S .  2 O R  3 .  = 

R H O  , T H I C K  = I P R O P  
NUMBER OF SETS OF PROPERTIES A V A ~ L A B L E  = JPROP = 

L N V E C l  = 

2 3 3  
9 

6 4  
8 
3 

100  
3 
3 

5 

2 1 P O I N T S  
- - 

1 
8 0  

0 
0 

16 
8 
A 

2 0 0 0 0 0  
100000 

0 
0 
1 

-3 

0.10000E-06 
2 

' = 3 1 3 1 3 1  9 

1 1 1 0  15 16  X7 11 3 2  . 3  3 1 0 1 
0 1 3 11 17 18 1 9  1 2  5 4 2 

3 3 1 0 1 5 12 1 9  20 21  1 3  7 6 
0 1 7 1 3  2 1  22 23 1 4  9 8 

5 3 1 0 1 1 5  24  2 9  30 3 1  2 5  17 16 
6 3 1 0 1 17 25 3 1  32 33 26 1 9  18  

0 1 1 9  26 33 3 4  35  27 21  20 
8 3 1 0 1 21  27 35  36 37 28  23  2 2  

0 1 29 38 43  44 45 39 31 30  
10  3 1 0 1 31 39 45 46 47 40 33 32 

0 1 33  40 47 48 49 4 1  35 34  
0 1 35 41 49 50 51  42 37 36 1 2  

1 3  
1 4  3 1 0 1 45 5 3  5 9  6 0  61 5 4  47 46 

1 

4 3 1 

7 3 1 

9 3 1 

11 3 1 
3 1 
3 1 0 1 43 5 2  57 58 59  5 3  45 44 

3 1  

I 
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15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

. 31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
NODE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

~~ 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

X 
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Y 
0.0000 
1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6 . O O O O  
7.0000 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
.2 
42 
:2 
;2 
;2 
;2 
2 
;z 
2 
2 
2 
2 
2 
i! 
2 
i! 

47 54 
49 55 
57 66 
59 67 
61 68 
63 69 
71 8 0  
73 81 
75 82 
77 83 
85 94 
87 95 
89 96 
91 97 
99 108 
101 109 
103 110 
105 111 
211 220 
213 221 
215 222 
217 223 
197 206 
199 207 
201 208 
203 209 
183 192 
185 193 
187 194 
189 195 

171 179 
173 180 
175 181 
155 164 
157 165 
159 166 
161 167 
141 150 
143 151 
145 152 
147 153 
127 136 
129 137 
131 138 
133 139 
113 122 
115 123 
117 124 
119 125 

z 

169 178 

1.0000 
1.0000 
1 . a 0 0 0  
1.0000 
1.0000 
1.0000 
1.0000 
1 - 0000 0 . 0 0 0 0  

0 . 0 0 0 0  8 . 0 0 0 0  1 . 0 0 0 0  

61 
63 
71 
73 
75 
77 
85 
87 
89 
91 
99 
101 
103 
105 
113 
115 
117 
119 
225 
227 
229 
231 
21 1 
213 
215 
217 
197 
199 
201 
203 
183 
185 
187 
18 9 
169 
17 1 
17 3 
175 
155 
157 
159 
16 1 
141 
143 
145 
147 
127 
129 
131 
133 

62 
64 
72 
74 
76 
78 
86 
88 
90 
92 
100 
102 
104 
106 
114 
116 
118 
120 
226 
228 
230 
232 
21 2 
214 
216 
218 
198 
200 
202 
204 
1 8 4  
186 
188 
190 
17 0 
172 
17 4 
176 
156 
158 
16 0 
162 
142 
144 
146 
148 
128 
130 
132 
134 

63 
65 
73 
75 
77 
79 
87 
89 
91 
93 

101 
103 
105 
107 
115 
117 
119 
121 
227 
229 
231 
233 
213 
215 
217 
219 
199 
20 1 
203 
205 
185 
187 
189 
191 
171 
173 
175 
177 
157 
159 
16 1 
16 3 
143 
145 
147 
149 
129 
131 
133 
135 

55 
56 
67 
68 
69 
70 
81 
82 
83 
84 
95 
96 
97 
98 
109 
11 0 
111 
112 
221 
222 
223 
224 
207 
208 
209 
210 
193 
194 
1 0 5  
196 
179 
18 0 
18 1 

16 5 
166 
167 
168 
151 
152 
153 
154 
137 
138 
139 
140 
123 
124 
125 
126 

182 

49 
51 
59 
61 
63 
65 
73 
75 
77 
79 
87 
89 
91 
93 

101 
103 
105 
107 
213 
215 
217 
219 
199 
20 1 
203 
205 

187 
189 
191 
17 1 
17 3 
175 
177 
157 
159 
16 1 
163 
143 
145 
147 
149 
129 
131 
133 
135 
115 
117 
119 
121 

185 

48 
50 
58 
60 
62 
64 
72 
74 
76 

86 
88 
90 
92 

100 
102 
104 
106 
212 
214 
216 
218 
198 
200 
202 
204 
184 
186 
188 
190 
17 0 
172 
174 
176 
156 
158 
16 0 
162 
142 
144 
146 
148 
128 
130 
132 
134 
114 
116 
118 
120 

7 8  
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1 0  
11 
12 
13 
14 
15 
16 
17 
18 
1 9  
20 
21 
22 
23 
24 
25 
26 
2 7  
28 
2 9  
30 
31 
3 2  
33  
3 4  
3 5  
36 
37 

3 9  
3a 

40 
4 1  
4 2  
4 3  
4 4  
45 
4 6  
47 

49 
50 
51 

4a 

52 
5 3  
5 4  
5 5  
56 
57 
58 
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
6 5  
66 
67 
68 
6 9  

1 . oooo  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 .a000 
1 . 0 0 0 0  
2 . 0 0 0 0  
2 . 0 0 0 0  
2.0000 
2.0000 
2.0000 
2.0000 
2.0000 
2.0000 
2.0000 
3.0000 , 

3.0000 
3 . 0 0 0 0  
3 . 0 0 0 0  
3.0000 
4 . 0 0 0 0  
4 . 0 0 0 0  
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 
4.0000 
5.0000 
5.0000 
5 .0000  
5.0000 
5 . 0 0 0 0  
6 .OOOO 
6.0000 
6 . O O O O  
6.0000 
6 . O O O O  
6 .OOOO 
6 . O O O O  
6 . 0 0 0 0  
6 . O O O O  
7.0000 
7 . 0 0 0 0  
7.0000 
7 . O O O O  
7 . O O O O  
8 .OOOO 
8.0000 
8 . O O O O  
8 . 0 0 0 0  
8 . 0 0 0 0  
8 .oooo 
8 . 0 0 0 0  
a .  0000 
a .  u o o o  
9 . 0 0 0 0  
9 . 0 0 0 0  
9 . 0 0 0 0  
9.0000 

0 . 0 0 0 0  
2 . 0 0 0 0  
4 . 0 0 0 0  
6 . 0 0 0 0  
a .0000  
0 . 0 0 0 0  
1.0000 
2 . 0 0 0 0  
3.0000 
4 . 0 0 0 0  
5 . 0 0 0 0  
6 . 0 0 0 0  
7 . O O O O  
8.  0000 
0.0000 
2.0000 
4 . 0 0 0 0  
6 . 0 0 0 0  
8 .  0 0 0 0  
0 . 0 0 0 0  
1 . 0 0 0 0  
2 . 0 0 0 0  
3 . 0 0 0 0  
4 . 0 0 0 0  

6 . O O O O  
7 . O O O O  
8 .OOOO 
0.0000 
2.0000 
4.0000 
6 .OOOO 

5 . 0 0 0 0  

8.0000 
0.0000 
1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 
7 .OOOO 
8 . O O O O  
0 . o o o o  
2 . 0 0 0 0  
4 . 0 0 0 0  
6 . 0 0 0 0  
8 . 0 0 0 0  
0.0000 
1 . o o o o  
2 . 0 0 0 0  
3 . 0 0 0 0  
4 . 0 0 0 0  
5 . 0 0 0 0  
6 . 0 0 0 0  
7.0000 
8.0000 
0.0000 
2.0000 
4.0000 
6. o o o o  

1 . 0 0 0 0  
1 .oooo 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . oooo  
1 .0000  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . o o o o  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 .oooo 
1 . oooo  
1 .do00 
1 .oooo 
1.0000 
1.0000 
1 . o o o o  
1 . o o o o  
1 . o o o o  
1 . 0 0 0 0  
1 . 0 0 0 0  
1.0000 
1 . 0 0 0 0  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . o o o o  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . 0 0 0 0  
1 . o o o o  
1 . 0 0 0 0  
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70 
71 
72 
7 3  
74 
75 
76 
77 
78 
79 

82 
8 3  
8 4  
8 5  
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

ao 
ai 

102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

9.0000 
10.0000 
10.0000 . 
10.0000 
10.0000 
10 . o o o o  
10.0000 
10.0000 
10.0000 
10.0000 
11.0000 
11.0000 
11.0000 
11.0000 
11 . o o o o  
12.0000 
12.0000 
12.0000 
12.0000 
12.0000 
12.0000 
12.0000 
12.0000 
12.0000 
13.0000 
13.0000 
13.0000 
13.0000 
13.0000 
14.0000 
14.0000 
14.0000 
14.0000 
14.0000 
14.0000 
14.0000 
14.0000 
14.0000 
15.0000 
15.0000 
15.0000 
15.0000 
15.0000 
16.0000 
16.0000 
16.0000 
16 . O O O O  
16 . O O O O  
16.0000 
16 . O O O O  
16 . O O O O  
16 . O O O O  
17 . O O O O  
17.0000 
17 .O O O O  
17.0000 
17.0000 
18.0000 
18.0000 
18.0000 

t . 0 0 0 0  
0.0000 
1.0000 
2.0000 
3 .0000  
4 . 0 0 0 0  
5 . 0 0 0 0  
6 .0000  
7 .0000  

0 .0000  
2 . 0 0 0 0  
4 . 0 0 0 0  
6 . 0 0 0 0  
a .  0000 
0 . 0 0 0 0  
1.0000 

a .  o o o o  

2 . 0 0 0 0  
3.0000 
4 . 0 0 0 0  
5.0000 
6.0000 
7.0000 
8.0000 
0.0000 
2.0000 
4.0000 
6.0000 
8.0000 
0.0000 
1 . a 0 0 0  
2.0000 
3.0000 
4.0000 
5.0000 
6 .O O O O  
7.0000 
8.0000 
0.0000 
2.0000 
4.0000 
6.0000 
8.0000 
0.0000 
1.0000 
2.0000 
3.0000 
4 . 0 0 0 0  
5 . 0 0 0 0  
6 . O O O O  
7 . 0 0 0 0  
a .  0000 
0 . 0 0 0 0  
2.0000 
4.0000 
6.0000 
8.0000 
0.0000 
1.0000 
2.0000 

1.0000 
1 . a 0 0 0  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 . a000  
1 . a000  
1 - 0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 . o o o o  
1.0000 
1 . o o o o  
1.0000 
1.0000 
1 . o o o o  
1.0000 
1.0000 
1.0000 
1.0000 
1 . o o o o  
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 .a000 
1.0000 
1.0000 
1 . o o o o  
1 . o o o o  
1.0000 
1 . o o o o  
1.0000 
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130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 

149 
150 
151 
152 

148 

153 
154 
155 
156 
157 
158 
159 
160 
16 1 
162 
16 3 
164 
165 
166 
167 
168 
16 9 
17 0 
171 
172 
17 3 
174 
17 5 
176 
177 
178 
179 
180 
18 1 
182 
183 
18 4 
185 
186 
187 

189 
la8 

18.0000 
18.0000 
18.0000 
18.0000 
18.0000 
18.0000 
19.0000 
19 .a000 
19.0000 
19.0000 
19 .oooo 
20.00 00 
20.0000 
20.00 00 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
20.0000 
21 . oooo  
21 . o o o o  
21.0000 
21.0000 
21.0000 
22.0000 
22.0000 
22.0000 
22.0000 
22.0000 
22.0000 
22.0000 
22.0000 
22.0000 
23.0000 
23.0000 
23.0000 
23.0000 
23.0000 
24.0000 
24.0000 
24.0000 
2 4 . 0 0 0 0  
24.0000 
24.0000 
24.0000 
2 4 . 0 0 0 0  
24.00 0 0 
25.0000 
2 5 . 0 0 0 0  
2 5 . 0 0 0 0  
25.0 000  
25.0000 
26.0000 
26.0000 
26.0000 
26 . O O O O  
26 . O O O O  
26 . O O O O  
26 . O O O O  

3.0000 
4 . 0 0 0 0  
5.0000 
6 . 0 0 0 0  
7.0000 
8.0000 
0. 0000 
2.0000 
4 . 0 0 0 0  
6.0000 
8.0000 
0.0000 
1.0000 
2.0000 
3.0000 
4 . 0 0 0 0  
5.0000 
6.0000 
7.0000 
8.0000 
0.0000 
2.0000 
4 . 0 0 0 0  
6.0000 

0.0000 
1.0000 
2.0000 
3.0000 
4 . 0 0 0 0  
5 . 0 0 0 0  
6.0000 
7 . O O O O  

0.0000 
2.0000 
4 . 0 0 0 0  
6.0000 

0 . 0 0 0 0  

a. o o o o  

a. 0000  

a. o o o o  
1 .oooo 
2.0000 
3.0000 
4 . 0 0 0 0  
5.0000 
6.0000 
7 . 0 0 0 0  
8.0000 
0.0000 
2.0000 
4 . 0 0 0 0  
6 . O O O O  
8 . O O O O  
0.0000 
1.0000 
2 .0000  
3 . 0 0 0 0  
4 . 0 0 0 0  
5 . 0 0 0 0  
6 . O O O O  

1 .oooo 
I. .oooo 
1 .oooo 
1 .oooo 
1.0000 
1.0000 ' 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1.0000 
1.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
1.0000 
1 . o o o o  
1.0000 
1.0000 
1.0000 
1 .oooo 
1,0000 
1.0000 
1.0000 
1.0000 
1 .oooo 
1 . o o o o  
1.0000 
1.0000 
1 . a 0 0 0  
1.0000 
1 0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 . o o o o  
1 .oooo 
1.0000 
1.0000 
1 .oooo 
1 .oooo 
1.0000 
1.0000 
1 . o o o o  
1.0000 
1 .oooo 
1.0000 
1.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
1 .oooo 
1.0000 
1.0000 
1. 0000 
1.0000 
1.0000 
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190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
20 0 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
NODE 

= NODFIX 
1 
2 
3 
4 
5 
6 
7 
a s 

225 

227 
228 
229 

226 . 

26 ,0000  
26.0000 
27.0000 . 
27.0000 
27 . O O O O  
27.0000 
27.0000 
28.0000 
28 . O O O O  
28.0000 
28.0000 
28 . O O O O  
28 . O O O O  
28.0000 
28 . O O O O  

29.0000 
29.0000 
29.0000 
29.0000 
29.0000 
30.0000 
30 . O O O O  
3 0 . 0 0 0 0  
3 0 . 0 0 0 0  
3 0 . 0 0 0 0  
30.0000 
3 0 . 0 0 0 0  
30 . O O O O  
30 . O O O O  
31 . O O O O  
31.0000 
31 . O O O O  
31.0000 

21 .oooo 

31.0000 
32.0000 
32.0000 
32.0000 
32.0000 
32.0000 
32.0000 
32.0000 
32.0000 
32.0000 
F I X I N G  C O D E  

KODFIX 
111 

1 
11 1 
1 

111 
1 

iii 
1 

111 
111 

11; 
1 

111 

7 .0000  

0.0000 
2.0000 
4 . 0 0 0 0  
6 I 0000 

0.0000 
1 .oooo 
2*0000 
3.0000 
4 . 0 0 0 0  
5.0000 
6 .a000 
7.0000 

0 * 0000 
2.0000 
4 . 0 0 0 0  

a .oooo 

a . o o o o  

a .  oooo  

1.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
1*0000 
1.0000 
1.0000 
1.0000 
1,0000 
1. oouo 
1.0000 
1 .oooo 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1 .oooo 6 . O O O O  

a. oooo 1.0000 
0.0000 1 .oooo 
1.0000 1.0000 
2.0000 1.0000 
3.0000 1.0000 
4 . 0 0 0 0  1.0000 
5.0000 1.0000 
6.0000 1.0000 
7 .oooo 1 .a000 
8.0000 1.0000 
0.0000 1.0000 
2.0000 1.0000 
4 . O O O O  1 .oooo 
6 . O O O O  1.0000 
8 . 0 0 0 0  1.0000 
0.0000 1.0000 
1 .oooo 1 .a000 

1. 0000 2.0000 
3.0000 1.0000 
4 . 0 0 0 0  1.0000 
5.0000 1 .oooo 
6.0000 1.0000 
7.0000 1.0000 a. oooo 1.0000 

F I X E D  VALUES 
= VFIX 

0.0000000 0.0000000 
0.0000000 0.0000000 
0 .0000000  0.0000000 
0.0000000 0.0000000 
0.0000000 0.0000000 
0.0000000 0.0000000 
0.000000l1 0.0000000 
0.0000000 0 .ooooooo 
0.000000(1 0.0000000 
0 .000000~1  0.0000000 
o.ooooooc1 0.0000000 
0 .  oooooocl  0.0000000 
0 .  oooooocl  0 .0000000  
0.000000D 0.0000000 

0 .ooooooo 
0 . 0 0 0 0 0 0 0  
0 .ooooooo 
0.0000000 
0.0000000 
0 . o o o o o o o  
0.0000000 
0 .ooooooo 
0.0000000 
0.0000000 

0.0000000 
0 .0000000  
0 . ooooooo  

a .ooooooo 
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230 
231 
232 
233 
10 
15 
24  
29 
38 
4 3  
52 
57 
66 
71 

85 
94 
99 

ao 

108 
113 
122 
127 
136 
141 
150 
155 
164 
169 
178 
183 
192 
197 
206 
21 1 
22 0 
14 
23 
28 
37 
42 
51 
56 
65 
70 
79 
84 
93 
98 
107 
112 
121 
126 
135 
140 
149 
154 
163 
168 
177 
182 

1 
111 

1 
111 

1 
111 

1 
111 

1 
111 

1 
111 

1 
iii 

1 
111 

1 
111 

1 
111 

1 
111 

1 
11 1 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

111 
1 

0 .ooooooo 
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0,0000000 
0.0000000 
0.0000000 
0.0000000 
0 .0000000 
0 . 0 0 0 0 0 0 0  
0 .ooooooo 
0 .0000000  
0 .0000000  
0 .0000000  
a .  0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0 .0000000  
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 .ooooooo 
0. 0000000 
0.0000000 
0 .0000000 
0.0000000 
0.0000000 
0. 00a0000 
0.0000000 
0.0000000 
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  

0 .ooooooo 
0 .0000000  
0.0000000 
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0 .0000000  
0.0000000 
0.  0000000 
0 .ooooooo 
0.0000000 
0 .0000000  
0.0000000 
0 .ooooooo 
0 .ooooooo 
0 . 0 0 0 0 0 0 0  
0 .0000000  
0 .0000000  
0 . ooooooo  
0 . 0 0 0 0 0 0 0  
0 .0000000  
0 . 0 0 0 0 0 0 0  
0 . ooooooo  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0. 0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 .0000000  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . o o o o o o o  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . ooooooo  
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0.0000000 
0 .0000000  

0.0000000 
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 
0 .uouoooo 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . o o o o o o o  
0 . o o o o o o o  

o .oooooaa 

0.0000000 
0.0000000 
0 .0000000  
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 

0.0000000 
0 .0000000  
0 .ooooooo 
0.0000000 
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 .  0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0 . 0 0 0 0 0 0 0  
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  
0 .0000000  
0 .0000000  
0 .0000000  
0 .0000000  
0 . 0 0 0 0 0 0 0  
0 . 0 0 0 0 0 0 0  

0 .0000000  
0 .0000000  
0 .ooooooo 
0 .0000000  
0 . 0 0 0 0 0 0 0  
0 .ooooooo 
0 . 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0 . 0 0 0 0 0 0 0  
0 . o o o o o o o  
0 . 0 0 0 0 0 0 0  

o .ooooooo 

o .oooaaoo 
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191 111 0.0000000 0.0000000 e ) . o o o o o o o  
196  1 0 . 0 0 0 0 0 0 0  0 .0000000  0 . 0 0 0 0 0 0 0  
205 111 0 . 0 0 0 0 0 0 0  0 .0000000  0 . 0 0 0 0 0 0 0  
2 1 0  1 0 . 0 0 0 0 0 0 0  0 .0000000 0 . 0 0 0 0 0 0 0  
2 1 9  111 0 . 0 0 0 0 0 0 0  0 .0000000  0 .0000000  
2 2 4  1 0 . 0 0 0 0 0 0 0  0 .0000000 0 .0000000  

NUMBER ELEMENT PROPERTIES = VPROP 
1 0 . 1 0 0 0 0 0 E + 0 1  0.100000E+Ol 0.300000E+00 0 . 1 0 0 0 0 0 E + 0 1  O.lOOOOOE+Ol 

LIST  OF N O D E S  LOCATED A L O N G  G L O B A L  FRONT 
113 1 1 4  115 116 117 118 1 1 9  1 2 0  121 

3 1 3 1 3 1 3 1 3  - - 

TOL2 HAS BEEN ACHIEVED 
CURRENT TOLERENCE LEVELS 

-0 .4739E-14 0.0000E+00 0.0000E+00 -0 .165 lE-13  
0 .1626E-13 -0 .1164E-13 0.4111E-14 0.757SE-07 

NUMBER OF SUBSPACE ITERATIONS :: 23 
EIGENVALUES A R E  

0 .1171E-01  0.1306E-01 0.1569E-01 0 .2017E-01 
0 .2731E-01  O . 3 8 1 4 E - 0 1  0 .540 lE-01  0 .7662E-01 
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