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ABSTRACT

This thesis investigates the effects of clutter-rejection

filtering on estimating the weather parameters from pulse Doppler radar

measurement dat_. The pulse pair method of estimating the spectrum

mean and spectrum width of the weather is emphasized. The loss of

sensitivity, a measure of the signal power lost due to filtering, is

also considered.

A flexible software tool developed to investigate these effects is

described. It allows for simulated weather radar data, in which the

user specifies an underlying truncated Gaussian spectrum, as well as

for externally generated data which may be real or simulated. The

filter may be implemented in either the time or the frequency domain.

The software tool is validated by comparing unfiltered spectrum

mean and width estimates to their true values, and by reproducing

previously published results. The effects on the weather parameter

estimates using simulated weather-only data are evaluated for five
J %

filters: an &ideal % filter, two infinite impulse response filters, and

two finite impulse response filters. Results considering external

data, consisting of weather and clutter data, are evaluated on a range

cell by range cell basis. Finally, it is shown theoretically and by

computer simulation that a linear phase response is not required for a

clutter rejection filter preceeding pulse-pair parameter estimation.
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CHAPTERI

INTRODUCTION

Radar Detection of the Microburst Hazard

Microbursts are sudden downdrafts of highly turbulent air that,

upon hitting the ground, cause powerful windshears in all directions.

Microbursts, when occurring in the vicinity of an airport's runway, can

be particularly hazardous to a large airliner, which responds slowly to

the pilot's input, during its takeoff or landing. A landing aircraft

entering a microburst, for example, may encounter head winds which

increase its speed and lift, "followed by a downdraft which causes it to

sink, and then a tail wind which reduces its speed, all in a matter of

seconds.

Microbursts are the main killers of U.S. airline passengers,

contributing to at least 26 major airline accidents resulting in 626

deaths and over 200 injuries between 1964 and 1985 [i]. This fact has

led the Federal Aviation Administration (FAA) and the National

Aeronautics and Space Administration (NASA) to research and develop

foward-looking means of microburst detection. The FAA is developing a

ground-based detection system whereas NASA is developing an

airborne-based detection system.

The pulse Doppler radar, which transmits a string of

electromagnetic pulses and uses the Doppler frequency shift of the

return pulses to determine the velocity of the air, is being considered

as a way of obtaining quantitative information from turbulent wind

conditions which require both a high range resolution and frequency

resolution [2]. The conventional method of processing the radar-return



is on a range cell by range cell basis [I]. The pulse repetition

frequency (PRF) of the radar must be high enough such that no velocity

ambiguities exist for either the signal or clutter being considered

[3]. The PRF determines the maximumunambiguous Doppler frequency,

±PRF/2, for each range cell, and the maximumunambiguous range of the

radar, c/(2PRF), where c is the speed of light [2].

The distance that two targets must be separated in order to be

distinguishible is called the range resolution. This distance is

determined by the duration, T, of a single electromagnetic pulse. The

minimumrange resolution of the pulse Doppler radar is ±cT/2 [4].

In an airborne-based system, the radar return echos can be assumed

stationary if the signal dwell time is below i00 milliseconds/sample

[5]. The PRFconstrains the number of samples in the airborne-based

detection system. A PRF that is less than 6000 samples/second, for

example, allows a maximumof 600 samples for the maximumsignal dwell

time of 100 milliseconds/sample assuming stationarity. The PRF also

determines the real-time processing interval. If M represents the

number of pulses, then the processing interval is M/PRF seconds.

The radar-return data must be processed in a way that meaningful

information such as the energy, average velocity, and turbulence can be

obtained. The first three moments of the power spectrum of the radar's

in-phase and quadrature-phase (IQ) intermediate frequency output yields

this information for each range cell. The zeroth moment is a measure

of the water content within a range cell. The first and second

moments, normalized to the zeroth moment, are measures of the mean

velocity and the spread of velocities within a range cell. The first

and second moments are commonly referred to as the spectrum mean and



spectrum width, respectively. The zeroth moment, or echo power, can be

estimated by calculating the power of the radar-return data. The

pulse-pair algorithm is currently being considered as a means of

estimating the first and second momentsof the Doppler spectrum [6].

This method is also called the autocovariance method because both the

spectrum meanand spectrum width estimates are functions of the complex

autocorrelation of the radar's IQ intermediate frequency output.

Another widely used method of estimating the first and second

moments is the Fourier Transform method [5] in which the momentsare

computed from an estimate of the power spectrum obtained by using a

discrete Fourier transform (DFT). These two methods have been

discussed and compared with the general conclusion that the pulse-pair

technique is superior to the Fourier Transform method [5].

The Clutter Problem

A radar-return signal generally includes undesired returns called

clutter, in addition to any desired "target" returns. The description

of the desired and undesired returns depends on the detection

situation. Considering the problem of detecting an aircraft using a

ground-based radar, for example, the wanted returns are the echos from

that specific aircraft, whereas the unwanted returns can consist of

echos from other aircraft, weather, birds, etc [7]. Considering the

problem of detecting a microburst by means of an airborne-based radar,

the desired returns are the weather echos, which are the echos from

rain, dust, insects, or any other object that is trapped in and

controlled by the air motion of the microburst. The clutter can

consist of undesired returns from buildings, trees, cars and planes.



This clutter is commonly called ground clutter, because the radar

returns are from objects on the ground.

The clutter can occur at a range exceeding the unambiguous range

of the radar resulting in ambiguous clutter [8]. Ambiguousclutter is

commonly called nth-time-around clutter, where the second-time-around

clutter results comes from the first ambiguous range.

Third-time-around clutter results from the second ambiguous range, and

Nth-time-around clutter results from the (N-l)th ambiguous range.

Nth-time-around clutter degrades the ability to reject the clutter, and

MTI-filtering methods are being researched to reject nth-time-around

clutter [9]. No provision has been made in this research to reject the

clutter outside the unambiguous range of the radar.

As the term implies, clutter interferes with the target detection

by cluttering the radar return data with spurious returns. It also

affects the radar's automatic gain control (AGC), limiting the radar's

effective dynamic range, which affects the number of bits and word

size of the analog-to-digital (A/D) converters. This limitation in the

dynamic range can cause "misinterpretations of the thunderstorm heights

and radial velocity measurements [i0]." Clutter particularly degrades

the pulse-pair spectrum mean and width estimates since the pulse-pair

technique yields estimates which are averages of the entire Doppler

spectrum [6]. Therefore, to obtain meaningful pulse-pair estimates of

the microburst return alone, a means of rejecting the clutter is

paramount before processing the radar IQ data. This problem has been

addressed in earlier works [4,11].



Clutter rejection for Land-based Radars

Clutter rejection for a ground-based radar is frequently achieved

by preprocessing the radar-return data using clutter maps based on the

particular environment in the radar's vicinity and/or high-pass

filtering based on an apriori knowledge of the clutter characteristics

[12]. Both analog and digital clutter cancellers have been considered

[6]. Advantages of analog clutter rejection include the fact that it

would reduce the dynamic range requirement of the A/D converters

following the filter [6]. A smaller number of bits is required to

represent the reduced dynamic range. Advantages of digital clutter

rejection include the fact that the filter can be controlled more

accurately, it offers flexibility, and the implementation of its design

is more economical [6]. Several digital FIR and elliptic filters have

been suggested [6,11]. Typically, Fourier or pulse-pair methods are

used on filtered radar data to estimate the the average windspeed and

windspeed variation within a range cell [2,4].

Clutter rejection for Airborne-based Radars

This thesis is related to the problem of clutter rejection when

attempting to remotely detect a microburst using an airborne-based

pulsed Doppler radar. The pulse-pair technique is considered as a

means to estimate the spectrum mean and width of the Doppler

radar-return data. A high level of ground clutter is a problem in this

application, particularly when the aircraft is operating at a low

altitude in the vicinity of an urban terminal area as in the landing
I

scenario. The clutter occurs when the radar antenna's mainlobe or

sidelobe is directed at the ground. The sidelobe return can be

eliminated through range-gating if the radar starts receiving the



return signals after the sidelode-return signal is dissipated [7].

Therefore, the mainlobe clutter is the bigger problem. For a narrow

beamradar in a look-ahead situation, the clutter spectrum is generally

centered at the ground speed of the aircraft. With knowledge of the

aircraft's ground speed, the spectrum mean of the stationary clutter

can be centered at the middle of the Doppler processing bandwidth

through heterodyning in the radar's receiver.

Figure 1 provides a qualitative illustration of the ground clutter

interference problem in terms of the magnitude of the Fourier transform

of the radar IQ data. The spectrum of any particular range cell can

contain both weather and clutter returns. Figure 1 illustrates two

scenarios in terms of both the signal and clutter components of the

return spectrum, which would actually be seen as the superposition of

the two. The clutter is illustrated here as being concentrated in the

vicinity of zero Doppler, where zero would typically represent the

aircraft's ground speed. In Figure la, which represents one range

cell, the signal and clutter largely occupy the same frequency range.

The signal and clutter are separated in frequency in Figure Ib, which

represents another range cell.

The basic problem is how the clutter can be removed before

estimating the weather parameters. The spectral characteristics of the

clutter may differ from that of the weather, allowing the removal of

the clutter without destroying the integrity of the weather signal.

Even if the total clutter power is greater than the total signal power,

some form of notch filtering may be effective at reducing the clutter

levels. The relationship between the spectrum mean of the clutter and

the spectrum meanand width of the weather is important in determining
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the effectiveness of notch filtering since clutter rejection almost

always affects the weather data [3]. The loss of sensitivity , a

measure of the the signal power lost due to filtering, is also

important. In this thesis, the loss of sensitivity is defined as the

ratio in decibels of the total signal power after filtering to the

total signal power before filtering.

The clutter may also appear as discrete lines appearing throughout

the Doppler bandwidth. Whena busy interstate is located near the

airport's runway, for example, discrete clutter can occur at

frequencies determined by the relative velocity between the aircraft

and highway traffic. Someform of frequency-domain filtering may be

the most effective meansof removing discrete c_utter.

Any method of rejecting clutter from the radar's IQ data will

degrade the weather signal. Understanding how clutter-rejection

filtering affects the ability to derive useful weather information is

important because a filter that is effective at getting rid of the

clutter may also affect the signal to the extent that reliable measures

of wind conditions are not possible.

Problem Statement

The clutter returns can frequently be discriminated from the

weather returns based on the the frequency content. Rejecting the

clutter using a notch filter while minimizing the filter's effects on

the weather signal should be evaluated in terms of the filter's effect

on the weather signal in addition to the abilily to reject the clutter.

The effects of clutter-rejection filtering on the weather data can be

evaluated in terms of the filter's effects on the pulse-pair estimates

and loss of sensitivity.



Figure 2 illustrates an ideal notch filter centered at zero Doppler

with two different weather spectrum situations: one with a modeat zero

Doppler and another with a mode in the positive half of the spectrum.

The weather spectrum is first filtered. The weather parameters are

then estimated, and the estimates are compared to their true values.

General conclusions on the filter's efects on the weather parameters

are drawn from this analysis.

In Figure 2a, the loss of sensitivity is greatest whenthe weather

spectrum mean is centered at zero frequency because of the high

concentration of spectrum power in the filter's notch. Since the

post-filter data is symmetrical about zero frequency, the post-filter

mean estimate may not be affected. But since a large part of the mode

is lost, the spectrum becomes more distributed. Therefore, the

post-filter width estimate will be inflated. The variances of the

post-filter estimates can be expected to be greater than the

theoretical variances of the spectrum mean and width of the unfiltered

data because of the large loss of sensitivity and the distributed

nature of the post-filter data.

As the spectrum mean of the weather is increased for this case,

the center of the weather spectrum moves outside the filter's notch as

depicted in Figure 2b. Here, less signal power is lost through

filtering, and the loss of sensitivity is not expected to be as great.

The post-filter mean estimate is generally expected to be biased high

because the filtered weather spectrum is skewed to the positive side of

the spectrum. The post-filter spectrum becomes less distributed, and

the width estimate will generally be less than the spectrum width of

the unfiltered data.
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As the spectrum meanof the weather is increased further for this

case, less weather data is lost through filtering. The loss of

sensitivity should approach zero, and the post-filter spectrum meanand

width estimates should approach the spectrum mean and width of the

unfiltered data. The post-filter variances of the spectrum mean and

width estimates also should approach the theoretical variances of the

spectrum meanand width of the unfiltered data.

Based on Figure 2, it is expected that the bias of the post-filter

estimates introduced by filtering will be inflated as the notch

bandwidth of the filter is increased. For the case where both the

filter and weather spectrum are centered at zero frequency, for

example, a larger notch bandwidth should cause more bias in the width

estimate than a smaller notch bandwidth. Thus, it is anticipated that

a bias in the the post-filter spectrum meanand width estimates will be

associated with the loss of sensitivity and the distributed nature of

the post-filter weather data. Anticipating and understanding these

effects on turbulent weather detection is important when considering

the best approach to clutter-rejection filtering.

This thesis will investigate this problem of the clutter-rejection

filter's effects on the weather parameters using a computer analysis.

A flexible software tool which has been developed for this purpose is

described in Chapter II. Provision has been made to generate simulated

weather data as well as make use of externally generated weather data

which may be simulated or real. Clutter rejection filters may be

implemented in the time domain or in the frequency domain.

Validation of the software tool is presented in Chapter III. The

unfiltered spectrum mean and width estimates along with the variances
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of each are compared to their true values. Previously published

results investigating the loss of sensitivity, mean error, and width

error are used to validate the analysis procedure.

Clutter-rejection filtering results using the software tool are

presented in Chapter IV. Several infinite impulse response (IIR)

filters and finite impulse response (FIR) filters are evaluated and

compared to a baseline ideal filter. Each filter's unit-sample

response, time-domain transient response, and frequency-domain

magnitude and phase response are presented. The effects of the

filter's magnitude and phase response on the post-filter estimates are

independently evaluated. Selected results considering external data

are presented to illustrate the use of the software analysis capability

in evaluating actual radar data.

Chapter V contains the conclusions and recommendations for future

work. Appendix A is included to provide a more complete description of

the analysis software. Appendix B provides the data used to illustrate

the capability of the analysis software to evaluate actual radar data.



CHAPTERII

DESCRIPTIONOFSOFTWARE

It is assumedthat clutter-rejection filters will generally be

implemented in the time domain, because the radar IQ data sequence is a

complex time series, and digital filters are readily and efficiently

implemented in terms of a difference equation. Additionally, the

pulse-pair method of estimating weather parameters, which is

emphasized, is based on the complex autocorrelation of the complex time

series [2,13]. The implementation of the filter using a difference

equation is, of course, an equivalent operation to linearly convolving

the filter's unit-sample response with the complex time series [14].

Regardless of the implementation, the filter may be specified in

the frequency domain. It maytherefore be particularly expeditious for

analysis purposes to implement the filter directly in the frequency

domain. Since a DFT is used for the time/frequency transformations,

the frequency-domain filtering is accomplished using preliminary

transformations with zero padding before multiplying the filter's

frequency response with the frequency-domain weather data [14]. The

resulting final filtered sequence is the same sequence as if the

filter's difference equation were used.

A given frequency characteristic maybe implemented without regard

to the equivalent linear convolution in the time domain, which is

particularly useful when investigating an ideal filter. An ideal

filter here is one that has a unity amplitude response in the

passband(s) and a zero amplitude response in its stopband(s) . The
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phase response of this filter can be independently and arbitrarily

specified. This filter is useful in providing a baseline for

performance evaluations when compared to other filters. It also

provides a ready means to implement "line-editing," in which selected

frequency lines are zeroed, as a part of the filtering process.

Line-editing may be particularly useful in eliminating discrete

clutter; i.e., clutter power that is concentrated at particular

isolated frequencies. This chapter describes a computer analysis tool

that has been developed to evaluate clutter-rejection filters. A

listing of the software is given in Appendix A.

Analysis Description

The computer analysis has been designed to determine the effects

of clutter-rejection filtering on the ability to extract useful

information from the Doppler radar weather return data. The data to be

processed can be generated from a computer simulation which allows the

underlying weather spectrum to be specified in terms of its spectrum

mean and width assuming a Gaussian magnitude spectrum [5]. This

procedure has been incorporated as part of the overall analysis

package. The data can also be externally generated and simply read

from a specified file for further analysis, allowing the use of real

data or simulated data of any spectrum characteristic.

Provision has been made to operate on the data by filtering it in

either the time domain or the frequency domain with any specified

clutter rejection filter. The post-filter estimates of the spectrum

mean and width are calculated using the pulse-pair algorithm and are

compared to the specified mean and width. The standard deviation of

each estimate is calculated and compared to theoretical values, and the



15

loss of sensitivity is computed. For any particular filter, the loss

of sensitivity, S, in decibels is defined here as

Pa

: (i)

where Pa is the total power of the post-filter radar IQ data, and Pb is

the total power of the radar IQ data at the filter's input. Note that

a positive value is associated with lost power at the filter's output.

The number of samples, which is restricted to a power of two

because of the fast Fourier transform (FFT) routine used, and the PRF

are specified by the user. Either the filter's unit-sample response or

frequency response is also user specified. The true spectrum width and

the number of trials of a simple Monte Carlo procedure involving

repeated trials are input parameters when simulated data are used. The

expected value of the estimate of a weather parameter, E(x), is

estimated by [15]

E (x) = N (xi)
i = i

(2)

where x i is the i th estimate of the weather parameter, x, and N is the

number of trials in the Monte Carlo procedure. The unbiased estimate

of the variance of a weather parameter, VAR(x), is given by [15]
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N

_(X i -- X) 2
i = 1

VAR (x) _ (3)
N - 1

where x is the expected value of the weather parameter given in (2).

Then the true value of the weather parameter, XT, is used to

estimate a bias error given by

E{x - x T} = E{x} - x T (4)

where x T corresponds to the theoretical value of the spectrum mean or

spectrum width [2]. The theoretical value of the variance of the

weather parameter, _x 2, given by (8) and (I0) in Chapter 3, is used to

estimate a variance error as

error = VAR(x) - _x 2 (5)

where x is the spectrum mean or spectrum width estimate [2]. These

bias and variance errors are then used as a basis for evaluating the

clutter-rejection filter over a range of situations.

The Main Program for Simulated Data

Figure 3 represents the flowchart of the main program for

analyzing clutter-rejection filters using simulated weather data. A

clutter-rejection filter to be evaluated is input in terms of the

filter's unit-sample response or frequency response as read from an

external file. The weather spectrum is simulated in the frequency

domain, and the weather and filter specification are passed to one of
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the filtering subroutines. As mentioned earlier, a time-domain filter

may be preferred since many filters are conveniently represented by a

difference equation. Frequency-domain filtering is included to offer

the advantage of implementing an ideal filter, i.e. , one with a

perfect passband/stopband characteristic. It also provides the

capability to independently evaluate the effects of a filter's

magnitude and phase response.

The filtered data is returned to the main program as a complex

time series which represents a filtered Doppler radar IQ data sequence.

The weather parameters are estimated from the time-domain data using

the pulse-pair processing algorithm which will be described in Chapter

3. This procedure is repeated for the specified number of trials, and

the statistics described by (2) and (3) are computed to represent

averages over the ensemble of trials. Appendix A provides a software

listing of the program.

m_h_u_ing_

The Time-domain Filter Subroutine

To implement a time-domain filter, the complex weather spectrum

data is first transformed into the time domain. The filtering is

accomplished by linearly convolving the filter's unit-sample response

with the time-domain weather data or by passing the time-domain weather

data through the filter's difference equation. The resulting complex

data sequence is then passed to the main program. A software listing

of this subroutine can be found in Appendix A.
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The Frequency-domain Filter Subroutine

A general frequency-domain filter implementation is accomplished

by the complex multiplication of the filter's frequency response, which

is the Fourier transform of the filter's unit-sample response, with the

Fourier transform of the complex weather time series [14]. Because a

discrete Fourier transform that has a finite length, M, is used for the

time/frequency transformations, the multiplication of the

frequency-domain filter data with the weather spectrum does not equal

the linear convolution of the filter's unit-sample response with the

time-domain weather data. The frequency-domain multiplication is

actually equivalent to a time-domain circular convolution. Using

preliminary transformations'with zero-Padding , however, the circular

convolution can be carried out to yield a linear convolution result

[14] .

Figure 4 represents the flowchart for the subroutine which filters

data in the frequency domain. To implement a frequency-domain filter,

the filter and weather data, which are both data vectors of length M,

are transformed into the time-domain and are padded with M complex

zeroes. The zero-padded weather and filter data are then transformed

back into the frequency-domain using a fast Fourier transform (FFT) and

are point-by-point multiplied. The result is then transformed back

into the time-domain, and the first M complex data points of the

time-domain sequence are passed to the main program. The final

filtered sequence is the same sequence as if the filter's unit-sample

response were linearly convolved with the time-domain weather data.

One special case is an ideal filter, and provision has been made

to implement an ideal filter in terms of an amplitude response that is

one in the passband and zero in the stopband. The phase response of
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the filter is arbitrary. This ideal filter does not have a

causal-realizable equivalent in the time domain but can be specified

exactly in the frequency domain. Implementing the ideal filter as

illustrated in Figure 2 is accomplished by the complex multiplication

of the frequency-domain filter data with the weather spectrum. The

resulting data are then transformed into the time-domain using an

inverse fast Fourier transform (IFFT) and passed to the main program.

The software listing to the frequency-domain subroutine can be found in

Appendix A.

The Main Program for Externally Generated Data

Filtering of externally'provided radar IQ data can be processed as

illustrated in the flow diagram of Figure 5. The filter's unit-sample

or frequency response specification is read from an external file

according to which domain would be used to filter the data. The

complex time-domain weather sequence is read from an external file and

the filter and weather data are passed to the appropriate subroutine

which filters the data. The filtered data are returned to the main

program as a complex time-domain sequence, and the estimates of the

weather parameters are then calculated from the time-domain data.

Appendix A includes the software listing for this program.
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CHAPTERIII

SOFTWAREVALIDATION

This chapter describes the procedure that has been used to

validate the analysis software discussed in Chapter II. Results are

presented to demonstrate that previously published theoretical

pulse-pair estimate quality [4,5,6] can be achieved without filtering

using the Monte Carlo procedure. The number of trials used in the

Monte Carlo procedure was determined iteratively. The theoretical

variances of the spectrum meanand width estimates were first analyzed

without filtering for a particular weather spectrum. The weather

spectrum was then simulated and filtered. A variance error, the

post-filter variance minus the theoretical variance, was computed. The

numberof trials was increased, and various weather spectra and filters

were considered. The variance error was observed as a function of the

number of trials to determine the number of trials required for the

variance error to converge. This number was determined to be 200, and

is used in computing the results presented in this thesis, unless

stated otherwise.

The pulse-pair meanand width estimates are compared to their true

values, as specified in the simulation of the Gaussian weather

spectrum. The computed variances of the estimates are compared to

their theoretical variances. Additionally, earlier results for

clutter-rejection filter analysis have been reproduced as a further

meansof validation [4].
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Width Estimate

The standard deviation of the Gaussian weather spectrum is

referred to as the spectrum width. The pulse-pair width estimate, w,

is defined [2] as

IR(Ts) I ] _6_^ 2 1
w = 2 R(0)

(2KT s)

where T s is the interpulse spacing of the transmitted pairs of pulses

from the radar. R(T s) is estimated by

l
R(Ts) = _ V*(m)V(m + i)

m = 1

(7)

where * denotes the complex conjugate, M denoted the number of pulses

or samples, and V(m) represent the m th sample of the complex time

series. The theoretical variance of the width estimate [2] for narrow

widths, large SNR, and contiguous pairs is approximated by

3w (8)

VAR (w) = 23_MT
$

where M is the number of pulses, and w is the true width. Using a

simulated truncated Gaussian spectrum magnitude with an arbitrary

phase, the width bias error, the expected value of the width estimate
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as defined by (2) minus the true width as specified in the simulation,

is plotted versus the normalized (Nyquist bandwidth scaled from -i to

i) true width in Figure 6 for three cases: 128 samples, 256 samples,

and 512 samples. The number of samples here refers to the number of

pulses that would be processed for a pulse Doppler radar return, and

does not relate to the number of Monte Carlo trials, N, used in

Equations (2) and (3). The normalized true mean is 0.0 for each case.

The pulse pair method appears to very slightly underestimate the

normalized true width as the normalized true width increases. This

occurs because the simulated truncated Gaussian spectrum data that are

outside the Nyquist bandwidth are discarded. Since approximately 99%

of the weather data are within ±3 standard deviations of the true mean,

the lost data are negligible for small true widths. For larger true

widths, the spectrum is more distributed across frequencies. This

results in more data being discarded, which causes a bias in the

estimate. These results are virtually unchanged by increasing the

numberof Monte Carlo trials beyond 200.
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The pulse-pair mean estimate, f, is defined [2] as

^ ARG [R (T s) ]
f = (9)

2KT
S

where ARG['] is the arctangent of the ratio of the imaginary part of

R(T s) to the real part of R(Ts) . The theoretical variance of the mean

estimate [2] for narrow spectrum widths, large signal-to-noise ratios

(SNR), and contiguous pairs is approximated by

^ W

==

VAR (f) 4_MT

5

(i0)

The mean bias error, the expected value of the mean estimate minus the

true mean, was plotted versus the normalized true mean in Figure 7 for

the three cases: 128, 256, and 512 samples corresponding to the number

of pulses. For each case, three normalized widths were considered:

0.05, 0.15, and 0.25. The mean bias error is approximately zero for

all cases when the normalized true mean is between -0.5 and 0.5. The

true mean here is the mean specified to the simulation, and is actually

the mode, since the Gaussian magnitude that is simulated is truncated.

The mean and the mode are virtually the same for the values considered

here. The pulse pair method appears to underestimate the true mean for

normalized true means greater than 0.5 and less than -0.5. This also

occurs because the simulated truncated Gaussian spectrum data that is

outside the Nyquist interval is discarded. The lost data are
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negligible for relatively small true widths when the true mean is not

at either extreme in the Nyquist interval. Therefore, for normalized

true means greater than 0.5 and less than -0.5, the true widths

considered were large enough that the lost data are a factor, and the

true mean is underestimated. As expected, the larger true widths

resulted in a larger mean error for true means that were near either

end of the Nyquist interval. Again, these results are virtually the

samewhen the numberof Monte Carlo trials is increased beyond 200.

Variances of Mean and Width Estimates

Since the theoretical variances of both the mean and width

estimates are functions of the true width, the theoretical and

estimated variances of both estimates are plotted versus the true width

for 128, 256, and 512 samples. The estimated variances are computed

using (3) of Chapter II. The theoretical variance of each estimate

increases linearly as the true width increases and decreases linearly

as the number of samples increase.

Figure 8 shows that the estimated variance of the width estimate

is approximately equal to the theoretical variance of the width

estimate for the true widths considered. The linear relationship that

exists between the theoretical variance and the true width does not

occur with the estimated variance here because of the limited number of

samples considered.

The estimated and theoretical variance of the mean estimate are

approximately equal for the true widths considered, as illustrated in

Figure 9. For each case, the estimated variance of the mean estimate

generally increases as the true width increases and generally decreases
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as the number of samples increases. These results were again virtually

unchanged with the number of Monte Carlo trials increased beyond 200.

Reproduction of Previous Results

As a means of validating the post-filter analysis software,

previously published results [4] based on a ,Chebyshev FIR filter

designed using the Parks-McClellan procedure [16] are reproduced.

Using a frequency-domain implementation of the NEXRAD system FIR filter

#I [4], 512 data samples and 500 trials produce the results in Figure

I0. These plots represent the loss of sensitivity (reflectivity

error), mean bias error, and width bias error versus true mean

(velocity) after the simulated Gaussian data are passed through a

finite impulse response clutter rejection filter. These results agree

with the previously published results.
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CHAPTERIV

RESULTS

Five clutter-rejection filters are evaluated using the analysis

software described in Chapters III and IV. Simulated weather data with

no added clutter are generated to model a truncated Gaussian magnitude

spectrum with a uniformly distributed random phase. Time-domain data

consisting of 128 complex samples representing the digitized IQ output

of a 9.3 GHz pulse Doppler radar with a pulse repetition frequency

(PRF) of 3723 pulses/second, are used in the computation of the

pulse-pair estimates as defined by (6) and (9) of Chapter 3. The

number of repeated trials used in the Monte Carlo procedure is 200.

The Nyquist windspeed Doppler bandwidth corresponding to the selected

PRFand radar wavelength is ±30 m/s and the specified simulated weather

spectrum width is 2.5 m/s for every case. This width is larger than

the narrow widths used in previously published results [4] where the

radar platform is stationary. Since the radar platform is moving in

the airborne case, the clutter spectrum is more distributed than that

for a stationary platform.

This chapter analyzes five clutter-rejection filters in terms of

the loss of sensitivity and post-filter spectrum estimates. The loss

of sensitivity and the post-filter weather spectrum estimates are

plotted versus the specified weather spectrum mean for each filter, as

the specified mean (mode) of the truncated Gaussian spectrum is

increased from 0 m/s to 15 m/s. Bars representing ±3 standard
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deviations of the post-filter estimates are included on the plots of

the spectrum estimates.

An ideal notch filter is considered as a baseline to which other

filters can be compared. Several non-ideal notch filters are also

evaluated including an unnormalized first-order Butterworth filter, a

three-stage cascaded first-order Butterworth filter, a simple pulse

canceller, and finally a 39-tap finite impulse response (FIR) filter.

For each of the non-ideal filters considered in the analysis, plots are

provided to show the filter unit-sample response and the magnitude and

phase response. The response of the filter to a sinusoid that has a

digital frequency corresponding to a windspeed of 15 m/s is also

presented. The response of the filter to a sinusoid with a digital

frequency well into the filter's passband is used to indicate the

length of the filter's transient response.

In addition to the analysis of clutter-rejection filters with the

simulated Gaussian weather spectrum, analysis results are provided from

external data obtained from a radar simulation model [I]. This

simulation uses a finite element approach to create a radar return

typical of an aircraft radar illuminating a microburst located along

the final approach glide path, and includes a clutter model.

Analysis results are also included to evaluate the effect of the

phase response of a notch filter on the post-filter estimates Whether

the clutter-rejection filter must have a linear phase response is of

particular interest here. The magnitude and phase response of the

first-order Butterworth filter is initially considered. The phase

response of this Butterworth filter is approximately linear in the

filter's passband. The magnitude response of the first-order
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Butterworth filter with a zero phase response is considered. This, of

course, represents a special case of a linear phase over all

frequencies. Finally, the magnitude response of the first-order

Butterworth filter with a random phase response is considered. A

randomly specified phase response is intended to represent a

"worst-case" arbitrary phase response.

Ideal Filter {notch bandwidth - 3.00 m/s)

Figure ii contains the results of the analysis software when the

simulated weather data are filtered using an ideal filter that has a

notch bandwidth of ±3.00 m/s. The gain of this filter is unity for

frequencies greater than ± 3_00 m/s, and zero for frequencies less than

±3.00 m/s. The results agree with the predicted results described in

the problem statement in Chapter I. The loss of sensitivity is

greatest, 17.02 dB, when the true weather mean is 0.0 m/s. As the

true weather mean is increased, the loss of sensitivity approaches 0.0

dB.

When the true weather mean is 0.0 m/s, the post-filter mean bias

is 2.90 m/s, and the variance of the estimate is very large when

compared to the variance at other specified means. The post-filter

mean bias generally decreases as the specified mean is increased out of

the filter's notch. The maximum post-filter mean bias, 4.87 m/s,

occurs when the specified mean is 1.5 m/s.

The true weather width is 2.50 m/s for all values of the true

mean. The post-filter width bias is 3.08 m/s when the true mean is 0.0

m/s, and the variance of the estimate is large. As the true mean is

increased to 3.0 m/s, the post-filter width bias becomes -1.22 m/s. As
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the specified mean is increased further, the post-filter mean estimate

becomes unbiased.

by

Unnormalized Ist-order Butterworth Filter

An unnormalized first-order Butterworth filter that is represented

y(n) = 0.5y(n - i) + x(n) - x(n - i)

has been considered in previous research. The 3dB bandwidth, _6.15

m/s, of this filter with respect to its maximum gain, 2.5 dB, appears

adequate for rejecting the clutter from the simulated data of Appendix

B. This filter is referred to as "unnormalized" because it does not

have a gain of unity at 30 m/s. The gain is actually 2.5 dB. The

unnormalized filter is of interest because it is potentially much

simpler to implement than the normalized version with its coefficients:

0.5, 1.0, and -I.0. The only multiplication required to implement the

difference equation is actually a power of two, which can be

accomplished with a bit shift. Analysis of the system function in the

z-domain by taking the z-transform of the above difference equation

will show that this filter has a zero at z = i, which corresponds to 0

m/s, and a pole at z = 0.5, which corresponds to 30 m/s. The filter's

unit-sample response and response to a 15 m/s sinusoid is presented in

Figure 12. Figure 12b shows that the transient response of the filter

is negligible. The filter's magnitude and phase response are also

plotted in Figure 12. The magnitude response of this filter is

negative infinity at 0.0 m/s on the dB scale because there is a zero at

z = i. The magnitude response of" the filter is 2.5 dB at 30 m/s
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representing a gain in the filter's passband. The phase response of

this filter is non-linear, but may be considered approximately linear

in the filter's passband.

The results with the unnormalized first-order Butterworth filter

used to filter the simulated Gaussian weather data are presented in

Figure 13. The loss of sensitivity is greatest, 6.77 dB, when the

specified weather mean is 0.0 m/s as expected. The loss of sensitivity

approaches -1.98 dB as the specified mean is increased. A loss of

sensitivity that is less than 0.0 dB is a result of the power of the

post-filter weather data actually being greater than that of the

unfiltered weather data. This occurs because the filter has a positive

gain in its passband. The loss of sensitivity for small specified

means is not nearly as great as it is for the ideal filter whose notch

bandwidth is ±3.00 m/s. This result occurs because the ideal filter

eliminates all the power in the filter's notch whereas a non-ideal

filter only attenuates the power in the filter's notch. Of course, the

ideal filter will also eliminate the clutter power in the notch better

than the Butterworth filter.

The post-filter mean estimate is approximately equal to the true

weather spectrum mean for the Butterworth filter when the true mean is

0.0 m/s. As the true weather mean is increased, a slight bias occurs

which converges to zero as the true mean increases out of the filter's

notch. The maximum bias in the mean estimate, 1.89 m/s, occurs when

the true mean is 3.0 m/s. Compared to the ideal filter, the bias error

in the post-filter mean estimates, particularly for small true weather

means, is not nearly as great for the Butterworth filter. Also the

large variance of the post-filter mean estimate associated with the
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ideal filter at the true weather mean of 0.0 m/s is not present with

the Butterworth filter.

The post-filter width bias is 1.8 m/s when the true mean is 0.0

m/s. AS the true mean is increased to 6.0 m/s, the post-filter width

bias decreases to -0.29 m/s. The post-filter width estimate approaches

the true width as the true width is increased further. The error in

the post-filter width estimates considering the Butterworth filter is

not nearly as great as that for the comparable ideal filter. As with

the post filter mean estimate, the large variance of the post-filter

width estimate for the ideal filter at the true weather mean of 0.0 m/s

is not present with the Butterworth filter. The non-ideal filter

appears to offer less error than the ideal filter when considering

weather parameter estimation. This is reasonable since the weather

data in the notch are not completely eliminated. This, however, must

be weighed against the fact that the ideal filter will do a much better

job at clutter rejection.

Three-staqe Cascaded Normalized

ist-order Butterworth Filter

Three stages of the previous Butterworth filter are cascaded as a

simple way to obtain a higher-order filter [14]. The resulting

third-order filter is easily realizable since it is simply three stages

of the previous unnormalized first-order Butterworth filter. The

system function in the z-domain has three zeros at z = I, three poles

at z = 0.5, and a 3-dB notch bandwidth of ±ii m/s with respect to the

maximum gain, 5.98 dB. Figure 14 represents the unit-sample response

of the three-stage Butterworth filter and the response of the filter to

a sinusoid that has a discrete frequency of 15 m/s. Figure 14b shows
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that the transient response of this filter is negligible. The filter's

magnitude and phase responses are also plotted in Figure 14. The

magnitude response is negative infinity at 0.0 m/s, -3 dB at 5.54 m/s,

and 7.50 dB at 30 m/s. The phase response is non-linear.

The analysis output is represented in Figure 15. The loss of

sensitivity is 11.70 dB when the true mean is 0.0 m/s and decreases to

-5.98 dB when the true mean is 15.0 m/s. The post-filter mean estimate

is approximately equal to the true mean at 0.0 m/s. The variance of

the estimate for a true mean of 0.0 m/s is large when compared to the

variance at other values of the true mean. The error of the

post-filter mean estimate is its maximum, 3.88 m/s, when the true mean

is 1.5 m/s, and the mean estimate bias approaches zero as the specified

mean is increased.

The post-filter width estimate bias is 4.79 m/s when the true mean

is 0.0 m/s. The width estimate bias becomes -0.27 m/s as the true mean

is increased to 7.5 m/s. The variance of the estimate is large for

small values of the true mean, and generally decreases as the true mean

increases out of the filter's notch.

Pulse Canceller

The simple pulse canceller which can be represented by

y(n) _ x(n) - x(n - i)

is a commonly used clutter-rejection filter [ii]. This filter's system

function in the z-domain has a zero at z = i, and a pole at z _ 0. The

pulse cancellor's unit-sample response and transient response are

illustrated in Figure 16. Figure 16b_shows that the transient response
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of the filter is negligible. Figure 16 also shows the filter's

magnitude and phase response. The magnitude response is negative

infinity at 0.0 m/s because of the zero at z = i. The gain is 3 dB

below its maximum value, 6.02 dB, at 15 m/s. The phase response of the

pulse canceller is linear.

Figure 17 provides analysis of the pulse canceller's effects on

the weather parameters. The loss of sensitivity is 11.22 dB when the

true mean is 0.0 m/s, and decreases to -3.00 dB when the true mean is

15 m/s. The post-filter mean estimate bias is essentially zero when

the true mean is 0.0 m/s, and the variance of the estimate is slightly

larger than that at other values of the true mean, as expected. The

bias of the mean estimate reaches its maximum value, 2.51 m/s, when the

true mean is increased to 3.0 m/s, and approaches zero as the true mean

is increased further.

The post-filter width estimate bias is 3.19 m/s when the true mean

is 0.0 m/s. As the specified mean is increased to 13.5 m/s the

post-filter width estimate bias becomes -0.16m/s. The width estimate

bias approaches zero as the true mean is increased to 15.0 m/s. The

variance of the estimates is much larger at small values of the true

mean than at larger values, as expected.

39-tap FIR Filter

The 39-tap FIR filter whose specifications are given in Table 1

has been considered in previous research [9]. The stopband/passband

characteristics of this filter, whose notch is much narrower than that

of the other filters presented here, is based on models for distributed

and discrete clutter characteristic of ground-based stationary platform

pulse-Doppler radar [9]. This fil%er_ unlike the other nonideal
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TABLE1

FINITE IMPULSERESPONSEFILTERSPECIFICATIONS

IMPULSERESPONSE

H(I) = -0.145E+00 = H(39)
H(2) -- -0.052E-01 = H(38)
H(3) = -0.159E-01 = H(37)
H(4) = -0.166E-01 = H(36)
H(5) -- -0.173E-01 = H(35)
H(6) -- -0.179E-01 -- H(34)
H(7) = -0.187E-01 = H(33)

H(8) = -0.191E-01 = H(32)

H(9) = -0.197E-01 = H(31)

H(10) = -0.204E-01 = H(30)

H(II) = -0.208E-01 = H(29)

H(12) = -0.212E-01 = H(28)

H(13) = -0.215E-01 = H(27)

H(14) = -0.219E-01 = H(26)

H(15) -- -0.221E-01 = H(25)

H(16) = -0.225E-01 = H(24)

H(17) =, -0.226E-01 = H(23)

H(18) = -0,228E-01 = H(22)

H(19) = -0.229E-01 = H(21)

H(20) = +0.977E+00 = H(20)

LOWER BAND EDGE

UPPER BAND EDGE

DESIRED VALUE

WEIGHTING

BAND1

0.0000

0.0050

0.0000

5.0000

BAND2

0.0167

0.5000

1.0000

1.0000
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filters considered here, does not have a zero at z = I. The lowest

null, -60.30 dB occurs at a frequency of 0.09 m/s. Figure 18a

represents the 39-tap FIR filter's unit-sample response, which

resembles a 20-sample-delay delta function. This delay is also

exhibited in Figure 18b, which represents the filter's response to a

sinusoid in its passband. The filter's magnitude response is plotted

from zero to K radians in Figure 18c. The magnitude response is -30.02

dB when the frequency is 0.0 m/s and -3 dB when the frequency is 0.85

m/s. This figure shows that the magnitude response has a ±2 dB ripple

in the filter's passband. Figure 18d represents the filter's magnitude

response from 0 to K/25 radians. This figure shows that the filter's

notch is not its deepest at 0.0 m/s. Figure 18e illustrates that the

phase response of the 39-tap FIR filter is linear.

Figure 19 represents the analysis output using the 39-tap FIR

filter. The loss of sensitivity is 1.04 dB when the true weather mean

is 0.0 m/s and decreases to -0.17 dB when the true mean is 15.0 m/s. A

small ripple in this curve occurs for large values of true means

because of the ripple in the filter's passband. The post-filter mean

estimate bias is approximately zero at a true mean of 0.0 m/s. As the

true mean is increased to 3.0 m/s, the mean estimate bias increases to

0.38 m/s. When the true mean is increased to 11.5 m/s, the mean

estimate bias becomes 0.Ii m/s. The bias approaches zero as the

specified mean is increased further.

The post-filter width estimate is 2.91 m/s when the true mean is

0.0 m/s. As the true mean is increased, the width estimate bias

fluctuates slightly as it approaches zero. The variance of the

estimate does not change significantly.
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Results from

Results are presented using external data, obtained from a

radar-return simulation model [I] which creates typical radar returns

that might result from an aircraft radar sensing a microburst which is

on the final approach glide path. The magnitude response for each

range cell is provided in Appendix B. The data in range cells 1 - 9

consists only of clutter, and the data in range cells i0 - 40 consists

of a wet microburst and clutter. The energy of the clutter in range

cells 30 - 35 is much greater and more distributed than that in the

other range cells. Results of the analysis from the 40 range cells are

presented in Figure 20.

The estimate of the average windspeed estimated using the

pulse-pair algorithm given in (6) and (9) is plotted in Figure 20a for

each range cell. The estimate is approximately -2.5 m/s for range

cells 1 - 9, the range cells which consist of clutter-only data. The

estimate then increases steadily to 18 m/s at range cell 15 and then

decreases to -18 m/s at range cell 38. The estimate fluctuates at

range cells 30- 35 due to the high clutter levels, yielding erroneous

estimates for the average weather windspeed. The estimate of the

average windspeed after filtering the data with the normalized

first-order Butterworth filter is presented in Figure 20b. The

estimate appears random for the first nine range cells because the

filter almost completely eliminates the signal. The curve for the

remaining range cells, however, is smoother than the curve before

filtering. It, too, increases steadily to 18 m/s at range cell 15, and

then decreases steadily to -18 m/s at range cell 38. The filter
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reduces the variation of the mean estimate in range cells 30 - 35,

resulting in a more accurate measure of the average weather windspeed.

Figure 20c represents the width estimate versus range without

filtering. The width estimate fluctuates between 4 m/s and 12.5 m/s

across all range cells. The post-filter width estimate is plotted

versus range in Figure 20d. The estimate is generally much higher in

the first nine range cells, which contain clutter-only data, when

compared with the remaining range cells. Range cells 26 and 27 have a

large width estimate because the mean of the weather is around 0.0 m/s,

and range cell 35 has a large width estimate because the clutter

energy is unusually large and distributed in that range cell.

As can be seen in Appendix B, the signal, centered away from zero

Doppler, is well separated from the clutter, centered at zero Doppler,

in range cell 16. The clutter level is about 40 dB above the -i00 dB

noise level. Therefore, about 40 dB of clutter suppression appears to

be required. Although it is not easily seen from Figure 20, the mean

and width estimates before filtering were 15.5 m/s and 5.0 m/s,

respectively. The post-filter estimates were then determined

considering the normalized first-order Butterworth filter presented

earlier, and are 16.5 m/s and 2.0 m/s, respectively. This shows that

the Butterworth filter yields meaningful weather estimates for this

case. These results also show that the pulse-pair technique yields

estimates which are averages of the entire spectrum.

Evaluation of the Effects o_ the

Filter's Phase Response

The effects of the filter's phase response on the post-filter

estimates were evaluated considering the normalized first-order
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Butterworth filter. A theoretical solution was developed and compared

to the results of the analysis software using simulated data. The

number of pulses considered was 128, and 200 trials in the Monte Carlo

procedure were used.

As seen from (6) and (9) in Chapter II_, both the pulse-pair

spectrum mean and spectrum width estimates involve the computation of

specific values of the complex autocorrelation of the radar's IQ data.

with a clutter rejection filter specified by a system function H(_),

the filtered IQ sequence y(n) is used in this autocorrelation

computation. Consider a linear, time-invariant system where x(n) is a

complex sequence representing the radar's IQ data at the system input.

Defining Sxx(_) as the spectrum of x(n), Syy(_) as the spectrum of

y(n), and "." as a linear convolution operator, then [17]

Syy(_) = IH(_) 12Sxx(_).

This states that the spectrum of y(n) depends on the filter's amplitude

response but does not depend on the filter's phase response. The

autocorrelation of the post-filter IQ data can be determined as [17]

Ryy(T) = F-l{ IH(£0) 12 Sxx(03) }

F-I{ IH(0_)1 2 F{Rxx(T) }}

F-I{IH(0_) 12} . F-I{F{Rxx(T)}}

- F-I{IH(t0)1 2 } . Rxx(T) •

where F-I{ -} is the Fourier transform operator. This result shows that

the autocorrelation at the input of the filter specified by H(_) is
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modified only by the magnitude of H(_) in determining the

autocorrelation of the output. The filter's phase response is not

relevant. This result can be reduced further in terms of a unit-sample

response to yield

Ryy(T) = F-I{H*(03) H((_) ) * Rxx(T )

= F-I[H*(_) ) , F-I{H(£0) } , Rxx(T )

= [h*(-n) , h(n)] . Rxx(T ) .

This analysis shows that the complex autocorrelation after filtering is

not affected by the phase response of the filter. Therefore the phase

response of the filter theoretically has no effect on the post-filter

spectrum mean and width estimates as computed using the pulse-pair

algorithm given by (6) and (9) of Chapter III.

To further investigate the effects of the clutter-rejection

filter's phase response, simulation analysis results obtained using the

unnormalized Butterworth filter's magnitude and phase response are

compared to results obtained using the filter's magnitude response with

a zero phase response and also the filter's magnitude response with a

random phase response. The results are plotted in Figure 21. Figure

21a shows that the phase response of the filter has no effect on the

average value of the post-filter mean estimate. A random phase

response, however, does appear to affect the variance of the mean

estimate, particularly when the specified weather mean is small, as

Figure 21b illustrates.

Figure 21c shows the post-filter width estimate as a function of

the true weather mean for the three cases. This plot illustrates that
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forcing a random phase response does appear to affect the average value

of the post-filter width estimate for this case. In this analysis,

forcing a random phase response affected the variances of both

estimates, especially at small values of the true weather mean. The

random phase response also has a small effect on the post-filter width

estimate. Those effects occur because of the small number of samples,

128, used in the simulation. Although the results are not presented

here, when the number of samples is increased, the performance of the

random phase response filter approaches that of a filter that has a

linear phase response. These results illustrate that a linear phase

response clutter-rejection filter is certainly not required with

pulse-pair processing. When considering the estimation of weather

parameters using short data records, however, these results suggest

that the clutter rejection filter phase response should be

well-behaved, i.e. it should not have large instantaneous fluctuations

as frequency varies.



CHAPTERV

CONCLUSIONS

Airborne radar sensing can complementground-based sensing in the

forward-looking detection of hazardous wind conditions. This thesis

concerns the problem of cancelling clutter from the return of an

airborne-based pulse-Doppler radar. Emphasis has been placed on

developing a tool to aid in the understanding of how clutter-rejection

filters affect the ability to estimate weather parameters.

Rejecting the clutter will almost always affect the weather signal

since the two signals have concurrency in both the time and frequency

domain. Understanding how a clutter-rejection filter affects the

ability to derive useful weather information from the radar I/Q data,

therefore may be important. A flexible software tool designed to

evaluate these effects is described and validated. The pulse-pair

technique was used to estimate the average windspeed and average

turbulence per range cell. Another widely used technique, the Fourier

method, for deriving useful weather was not considered in this thesis.

Clutter data is continually being evaluated to determine the

optimum clutter-rejection filter characteristics. Only distributed

clutter near 0.0 m/s was considered in the analysis results presented

here. A provision has been made in the software, however, to allow for

the evaluation of virtually any form for clutter-rejection filters

since the user may specify the filter in the frequency domain or time

domain. Generally 50 dB of clutter suppression is required at the

filter's notch [1,4,11]. The results of this thesis may lead to
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specific requirements for the width of the filter's notch, width of the

filter's transition band, and shape of the filter's phase response.

This thesis also shows that with pulse-pair processing, a linear phase

response is not a requirement of a clutter-rejection filter.

The analysis results presented here give an indication of the

maximum error in estimating the weather statistics introduced by a

particular filter. The 'best case' is considered: a weather signal

with a very high signal-to-noise ratio and no clutter. Therefore, a

filter whose maximum error in estimating the weather statistics exceeds

the maximum tolerable error introduced by clutter cancellation may be

rejected on this basis.

The ideal filter whose notch width is ± 3.00 m/s affects the

weather statistics to a much greater extent than the normalized

ist-order Butterworth filter with a 3-dB notch width of ±6.15 m/s,

particularly when the filter's notch and the weather spectrum occupy

the same frequency range. This does not suggest, however, that the

Butterworth filter should be preferred over the ideal filter since, of

course, the ideal filter would more completely reject the clutter. The

results also indicate that the resulting notch bandwidth of cascaded

filters is wider than that of one stage, causing a greater bias error

in the weather parameters. The cascaded filter will of course also

eliminate more clutter than the single-stage filter.

The analysis of the external data illustrates the effects of

clutter rejection filtering on the radar IQ data on a cell by cell

basis. The evaluation of the filter's phase response shows that

certainly a linear phase response is not required of a

clutter-rejection filter when the pulse-pair technique is used to
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estimate the weather spectrum mean and width. A phase response that

does not fluctuate greatly over frequency is desired, however, since

for short data records the quality of the pulse-pair estimates were not

as good with a random phase response clutter rejection filter.

This research indicates that 128 pulses (samples) may be sufficient

for estimating parameters. The results considered in this thesis for

128 pulses are almost identical to that for 512 samples.

This work provides _ means to evaluate future clutter-rejection

filter designs which result from a more thorough analysis of the

clutter characteristics associated with airborne radar measurements in

the vicinity of urban airports.
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Appendix A

Software Listing

This appendix contains the Fortran code for two programs designed

to evaluate the effects of notch filtering on estimating weather

parameters. One simulates a truncated Gaussian magnitude spectrum, and

the other reads in a complex weather time series which may be

representative of radar returns typical of an aircraft radar

illuminating a microburst located along the final approach glide path.

Program for Simulated Data

The user specifies the number of radar pulses, the radar's pulse

repetition frequency (PRF), the normalized (Nyquist bandwidth scaled

from -I to i) one-sided spectrum width of the simulated Gaussian

spectrum, and the number of repeated trials in the Monte Carlo

Procedure. The PRF must be a power of two because of the fast Fourier

transform (FFT) routine used. The user then choses any combination of

three types of filters to implement.

The first two types are frequency-domain filters. One type filters

the data in the frequency domain without regard to a time-domain

equivalent filter. It is useful for implementing an ideal filter, one

with a unity gain in its passband(s), a zero gain in its stopband(s),

and an arbitrary phase response. The other frequency-domain filter

filters the data with regard to its time domain causal-realizable

equivalent filter [14]. The complex frequency response of each filter

is read from an external file corresponding to frequencies ranging from

0 to 2K. The third type is a time-domain filter. The user can
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implement the filter by reading the filter's complex unit-sample

response from an external file or by adding the code to implement the

filter's difference equation.

The Gaussian magnitude spectrum is simulated and filtered. The

post-filter spectrum mean and width estimates are calculated using the

pulse-pair technique [2]. The loss of sensitivity, S, in decibels

defined by

Pa

s

is also computed, where Pa is the total power of the post-filter radar

in-phase and quadrature-phase (IQ) data, and Pb is the total power of

the radar IQ data at the filter's input.

This procedure is repeated, and the expected value of the estimate

of each weather parameter, E(x), is estimated by [15]

N

= (xi)

where x i is the i th estimate of the weather parameter, x, and N is the

number of trials in the Monte Carlo procedure. The true value of the

weather parameter, XT, is used to estimate a bias error given by

E{x - XT} = E{x} - x T

where x T corresponds to the theoretical value of the spectrum mean or
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spectrum width [2] . The estimate of the variance of a weather

parameter, VAR(x), is given by [15]

VAR (x) =

N

i - x)2

N - 1

where x is the expected value of the weather parameter given above.

theoretical variances of the pulse-pair estimates [2] are

calculated.

The

also

Program for External Data

This program reads in a complex time series and filters the data as

in the previous program. The loss of sensitivity and pulse-pair mean

and width estimates are computed. The inputs to this program are the

number of pulses and the radar's PRF. The Monte Carlo procedure is not

used.
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c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

dimension g(I024), s(1024), xp(1024), p(i024), sx(1024),

c sy(1024), x(I024), y(i024), areal(1024), aimag(1024),

c yimean(1024), yistd(1024), yimean2(1024), yistd2(1024),

c tfiltr(1024), tfilti(1024), filtr(1024), filti(1024),

c tdatar(1024), tdatai(1024), hreal(1024), himag(1024),
c datar(1024), datai(1024)

open (unit = i, file = 'outl.dat', status = 'unknown')

open (unit = 2, file = 'out2.dat', status = 'unknown')

print*, 'enter number of samples ( a power of 2 ) '

read*, n

print*, 'enter normalized width'

read*, std

print*, 'enter pulse repetition frequency'

read*, fs

print*, 'enter number of trials'

read*, m

print*, 'Do you wish to implement an ideal filter'

print*, ' 1 = YES 0 _ NO'

read*, ql

print*, 'Do you wish to filter data in the frequency domain'
print*, ' 1 = YES 0 = NO'

read*, q2

print*, 'Do you wish to filter data in the time domain'

print*, ' 1 = YES 0 = NO'

read*, q3

pi -- 4.0 * atan(l.0)

Determine theoretical variance of mean and width estimates
***************************************************************

theomean = std / (2.0 * sqrt(pi) * real(n))

theostd = 3.0 * std / (16.0 * sqrt(pi) * real(n))

write (I, *)

write (i, *)

write (i, *)

write (I, *)

write (i, *)

write(l, *)

c '

number of samples ', n

normalized width ', std

pulse repetition frequency ', fs

number of trials ', m

true mean est mean mean bias',
est width width bias'

write(2,*) 'number of samples ', n
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i0
c

2O
c

3O
c
c
c

write (2,*) 'normalized width

write (2,*) 'pulse repetition frequency

write (2,*) 'number of trials

write(2,*) 'true variance of mean estimate

write(2,*) 'true variance of width estimate

write (2,*) '

write (2,*) ' true mean est var

c ' signal '

write (2,*) ' of mean

c 'power loss '

' std
f

' fs

', m

' theomean
l

' theostd
q

est vat ',

of width ',

n2 = 2.0 * n

prp = 1.0 / fs

snr I 200

gs = 0.0
il = 0

i2 = 0

do I000 k = I, Ii

fm = 0.05 * real(k-- I)

avgmean = 0.0

avgwidth = 0.0

do 2000 1 = i, m

suing = 0.0

do i0 i= i, n

f = -i.0 + 2.0 * real(i - i) / real(n)

exponent = (-(f - fm) ** 2) / (2.0 * std ** 2)

g(i) = exp(exponent) / (sqrt(2.0 * pi) * std)

suing = sumg + g(i)

continue

pt : 0.0

do 20 i = i, n

c = (I0.0 ** (snr / I0.0)) / sumg

s(i) = c * g(i)

call randu(il, i2, a)

xp(i) = -i.0 * alog(a) * (s(i) + 1.0 / real(n))

pt - pt + xp(i)

continue

do 30 i = I, n

p(i) - xp(i) / pt

call randu(il, i2, b)

sx(i) = sqrt(p(i)) * cos(2.0 * pi * b)

sy(i) = sqrt(p(i)) * sin(2.0 * pi * b)

continue

shift data so that range of spectrum will be -pi/2 to pi/2

powerb4 = 0.0

do 40 i = I, n

if (i .le. n / 2) xii) - sx(i + n / 2)
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40

C

C

C

C

C

42

43

C

C

C

C

C

44

46

C

C

50

C

C

52

C

54

C

if (i .ie. n / 2) y(i) w sy(i + n / 2)

if (i .gt. n / 2) x(i) = sx(i - n / 2)

if (i .gt. n / 2) y(i) _ sy(i - n / 2)

powerb4 = powerb4 + x(i)**2 + y(i)**2
continue

powerb4 --powerb4 / real(n)

if (ql .eq. O) goto 44

open (unit = 3, file = 'ideal.dat', status = 'unknown')

do 42 i = i, n

read (3,*) filtr(i), filti(i)

continue

do 43 i = i, n

x(i) = filtr(i) * x(i) - filti(i) * y(i)

y(i) = filti(i) * x(i) + filtr(i) * y(i)
continue

close (unit - 3)

if (q2 .eq. O) goto 70

open (unit = 4, file = 'freq.dat', status - 'unknown')

do 46 i = i, n

read (4,*) filtr(i), filti(i)

datar(i) = x(i)

datai(i) s y(i)

continue

call fft842(l, n, filtr, filti)

do 50 i = I, n

tfiltr(i) = filtr(i)

tfilti(i) = filti(i)

continue

call fft842(l, n, datar, datai)

do 52 i = I, n

tdatar(i) = datar(i)

tdatai(i) = datai(i)

continue

do 54 i = i, n2

if (i .gt. n) tfiltr(i) _ 0.0

if (i .gt. n) tfilti(i) = 0.0

if (i .gt. n) tdatar(i) -0.0

if (i .gt. n) tdatai(i) = 0.0

continue

call fft842(O, n2, tfiltr, tfilti)

do 56 i = i, n2
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filtr(i) = tfiltr(i)

filti(1) = tfilti(i)

continue

call fft842(O, n2, tdatar, tdatai)

do 58 i = I, n2

datar(i) _ tdatar(i)

datai(i) = tdatai(i)
continue

do 60 i = I, n2

x(i) -- filtr(i) * datar(i) - filti(i) * datai(i)

y(i) = filti(i) * datar(i) + filtr(i) * datai(i)
continue

close (unit = 4)

nprime - n

if (q2 .eq. I) nprime - n2

call fft842(l, nprime, x, y)

do 72 i = I, n

areal(i) = x(i)

aimag(i) = y(i)
continue

if (q3 .eq. O) goto 78

open (unit = 5, file = 'time.dat', status = 'unknown')

do 74 i = I, n

read (5,*) hreal(i), himag(i)
sumr = 0.0

sumi = 0.0

do 76 k2 = I, i

sumr = sumr + hreal(i - k2 + I) * areal(k2)

sumi = sumi + himag(i - k2 + i) * aimag(k2)
continue

x(i) = sumr

y(i) = sumi

continue

do 77 i = i, n

areal(i) = x(i)

aimag(i) = y(i)
continue

close (unit = 5)

powafter = 0.0
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do 80 i = I, n

powafter = powafter + areal(i)**2 + aimag(i)**2

continue

powerloss = -i0.0 * aloglO( powafter / powerb4)

realsum = 0.0

aimagsum = 0.0

do 82 i = I, n - 1

prtdl = areal(i) * areal(i + I)

prod2 = aimag(i) * areal(i + l)

prod3 = areal(i) * aimag(i + I)

prod4 - aimag(i) * aimag(i + i)

realsum = prodl + prod4 + realsum

aimagsum = prod3 - prod2 + aimagsum

continue

amagnrts = sqrt(realsum ** 2 + aimagsum ** 2) / real(n - i)

if ((aimagsum .eq. 0.0) .or. (realsum .eq. 0.0)) argrts = 0.0

if ((aimagsum .he. 0-.0) .and. (realsum .ne. 0.0))

c argrts = atan(aimagsum / realsum)

if ((aimagsum .it. 0.0) .and. (realsum .it. 0.0))

c argrts = atan(aimagsum / realsum) - pi

if ((aimagsum .gt. 0.0) .and. (realsum .it. 0.0))

c argrts = atan(aimagsum / realsum) + pi

sum = 0.0

do 84 i - I, n

amaglsqr = areal(i) ** 2 + aimag(i) ** 2

sum - amaglsqr + sum
continue

rO = sum / (real(n))

eofmean = argrts / pi

amult = 2.0 / ((2.0 * pi * prp) ** 2)

bmult = abs(l.O - (abs(amagnrts) / rO))

eofstd = sqrt(amult * bmult) * 2-.0 / fs

***************************************************************

compute expected value and standard deviation of estimates

if (i .eq. I) avgmean = eofmean

if (i .eq. I) avqstd = eofstd

if (1 .eq. i) avgpwr = powerloss

if (i .gt. I) avgmean = (avgmean * real (i- I) + eofmean)

c / real(l)

if (i .gt. I) avgstd = (avgstd * real(l- I) + eofstd)

c / real(l)

if (i .gt. I) avgpwr = (avgpwr * real(l- I) + powerloss)

c / real(l)

biasmean - avgmean - fm

biasstd = avgstd - std
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yimean(1) = eofmean

yistd(1) = eofstd

yimean2(1) = eofmean ** 2

yistd2(1) = eofstd ** 2

il = il + I

i2 = i2 + 1

continue

yimsum = 0.0

yimsum2 = 0.0

yiwsum = 0.0

yiwsum2 = 0.0

do 86 1 = i, m

yimsum = yimean(1) + yimsum

yimsum2 = yimean2(1) + yimsum2

yiwsum - yistd(1) + yiwsum

yiwsum2 = yistd2(1) + yiwsum2
continue

vmean = (yimsum2 - ('(yimsum ** 2) / real(m))) / (real(m) - 1.0)

vstd = (yiwsum2 - ((yiwsum ** 2) / real(m))) / (real(m) - 1.0)

write(l,500) fm, avqmean, biasmean, avgstd, biasstd

write(2,600) fm, vmean, vstd, avgpwr

format (4x, f8.6, 4x, f8.6, 4x, f8.6, 4x, f8.6, 4x, f8.6)

format (4x, f8.6, 4x, f8.6, 4x, f8.6, 4x, f8.4)

print*, k

continue

close (unit = 2)

close (unit x i)

stop
end
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dimension areal(1024), aimag(1024), breal(1024), bimag(1024),

hreal(1024), himag(1024), x(1024), y(I024), filtr(1024),

filti(1024), datar(1024), datai(1024), tdatar(1024),

tdatai(1024), tfiltr(1024), tfilti(1024)

open (unit _ i, file = 'out3.dat', status - 'unknown')

open (unit = 2, file = 'iqrc.dat', status - 'unknown')

print*, 'enter number of samples ( a power of 2 )'

read*, n

print*, 'enter pulse repetition frequency'

read*, fs

print*, 'Do you wish to implement an ideal filter'

print*, ' 1 = YES 0 = NO'

read*, ql

print*, 'Do you wish to filter data in the frequency domain'

print*, ' 1 = YES 0 = NO'

read*, q2

print*, 'Do you wish to filter data in the time domain'

print*, ' 1 = YES 0 = NO'

read*, q3

write(l,*) 'number of samples

write(l,*) 'pulse repetition frequency

write(l,*) '

write(l,*) ' range est mean est width

pi = 4.0 * atan(l.0)

n2 = 2.0 * n

prp _ 1.0 / fs

1, n

' fs

power loss'

do 2000 1 = I, 40

read(2,01) number, range

format (i4, el2.5)

format (2e12.5)

powerb4 = 0.0

do 10 i = I, 512

read (2,02) areal(i), aimag(i)

powerb4 = powerb4 + areal(i) ** 2 + aimag(i) ** 2
continue
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45

if (q3 .eq. O) goto 25

open (unit = 3, file = 'time.dat', status- 'unknown')
do 15 i = 1, n

read (3,*) hreal(i), himag(i)
surer = 0.0

sumi = 0.0

do 20 k2 - 1, i

sumr = sumr + hreal(i - k2 + I) * areal(k2)

sumi = sumi + himag(i - k2 + i) * aimag(k2)
continue

x(i) = sumr

y(i) = sumi
continue

do 22 i -- I, n

areal(i) = x(i)

aimag(i) = y(i)

continue

close (unit = 3)

call fft842(0, n, areal, aimag)

do 30 i = i, n

x(i) = areal(i)

y(i) = aimag(i)
continue

if (ql .eq. 0) goto 45

open (unit _ 4, file = 'ideal.dat', status = 'unknown')

do 35 i = I, n

read (4,*) filtr(i), filti(i)

continue

do 40 i = I, n

x(i) = filtr(i) * x(i) - filti(i) * y(i)

y(i) = filti(i) * x(i) + filtr(i) * y(i)
continue

close (unit = 4)

Frequency Domain Filter Implementation

if (q2 .eq. 0) goto 85

open (unit = 5, file- 'freq.dat', status- 'unknown')

do 50 i -- I, n

read (4,*) filtr(i), filti(i)

datar(i) u x(i)
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datai(i) = y(i)

continue

call fft842(l, n, filtr, filti)

do 55 i= i, n

tfiltr(i) = filtr(i)

tfilti(i) = filti(i)

continue

call fft842(l, n, datar, datai)

do 60 i= I, n

tdatar(i) = datar(i)

tdatai(i) = datai(i)

contlnue

do 65 i = I, n2

if (i .gt. n) tfiltr(i) = 0.0

if (i .gt. n) tfilti(i) = 0.0

if (i .gt. n) tdatar(i) = 0.0

if (i .gt. n) tdatai(i) = 0.0

continue

call fft842(O, n2, tfiltr, tfilti)

do 70 i = i, n2

filtr(i) - tfiltr(i)

filti(i) - tfilti(i)

continue

call fft842(O, n2, tdatar, tdatai)

do 75 i = i, n2

datar(i) = tdatar(i)

datai(i) _ tdatai(i)

continue

do 80 i = I, n2

x(i) -- filtr(i) * datar(i) - filti(i) * datai(i)

y(i) = filti(i) * datar(i) + filtr(i) * datai(i)
continue

close (unit = 5)

nprime - n

if (q2 .eq. i) nprime m n2

call fft842(l, nprime, x, y)

do 90 i = I, n

areal(i) = x(i)

aimag(i) = y(i)
continue
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powafter - 0.0

do 95 i = I, n

powafter = powafter + areal(i)**2 + aimag(i)**2
continue

powerloss = -i0.0 * aloglO( powafter / powerb4)

realsum = 0.0

aimagsum = 0.0

do i00 i = i, n - 1

prodl = areal(i) * areal(i + I)

prod2 = aimag(i) * areal(i + i)

prod3 = areal(i) * aimag(i + i)

prod4 = aimag(i) * aimag(i + i)

realsum = prodl + prod4 + realsum

aimagsum = prod3 - prod2 + aimagsum
continue

amagnrts = sqrt(realsum ** 2 + aimagsum ** 2) / real(n - I)

if (realsum .eq. 0.0) argrts - 0.0

if (aimagsum .eq. 0.0) argrts = 0.0

if ((aimagsum .ne. 0.0) .and. (realsum .ne. 0.0))

c argrts - atan(aimagsum / realsum)

if ((aimagsum .It. 0.0) .and. (realsum .it. 0.0))

c argrts = atan(aimagsum / realsum) - pi

if ((aimagsum .gt. 0.0) .and. (realsum .it. 0.0))

c argrts = atan(aimagsum / realsum) + pi

sum - 0.0

do II0 i = i, n

amaglsqr - areal(i) ** 2 + aimag(i) ** 2

sum = amaglsqr + sum
continue

rO = sum / (real(n))

eofmean = 30.02 * argrts / pi

amult = 2.0 / ((2.0 * pi * prp) ** 2)

bmult m abs(l.O - (abs(amagnrts) / rO))

eofstd m 30.02 * sqrt(amult * bmult) * 2.0 / fs

write(l,500) real(1),eofmean, eofstd, powerloss

format (4x, f8.4, 4x, f8.4, 4x, fS.4,4x, f8.4)

continue

close (unit = 2)

close (unit = i)

stop

end



Appendix B

Externally Generated Data

The magnitude of the Fourier transform of simulated data is

presented. The simulation utilizes a finite element approach to create

a radar return typical of an airborne-based radar sensing a microburst

which is on the final approach glide path [I]. The input parameters to

the simulation are given. The aircraft is located 7 km from touchdown,

traveling on a three degree glideslope. The microburst is located 2 km

before the touchdown point. The number of range cells processed is 40,

with the initial range cell located 1 km in front of the aircraft.

SIMULATIONPARAMETERS

A/C Distance to touchdown (km)

Aircraft Velocity (kts)

Glideslope Angle (deg)

Roll Attitude (deg)

Pitch Attitude (deg)

Yaw Attitude (deg)

Az Integration Range/2 (deg)

Az Integration Increment (deg)

E1 Integration Range/2 (deg)

E1 Integration Incerment (deg)

Rng Integration Increment (m)

Random Number Seed (0 - I)

MICROBURST & CLUTTER

Along Track Offset from TD (km)

Cross Track Offset fron TD (km)

Rain Standard Deviation (m/s)

Clutter Standard Deviation (m/s)

Clutter Calc. Flag (!=ON, 0=OFF)

Reflectivity Calc. Thres. (dBz)

Minimum Reflectivity (dBz)

Attenuation Code (0,1,2)

RADAR PARAMETERS

Initial Radar Range (km)

Number of Range Cells

Antenna Az - if no scan (deg)

o

0.

7.

150.

3.

0.

0.

0.

6.0

.3

4.0

.2

I00.

.224

0.

0.

0.

--2.

0.

i.

.5

i.

200.

-15.

2.

0.

0.

0.

i.

40.

0.



Azimuth Scan Range/2 (deg)
Azimuth Scan Increment (deg)
Antenna Elevation (deg)
Transmitted Power (watts)
Frequency (GHz)
Pulse Width (microsecs)
Pulse Interval (microsecs)
Receiver Noise Figure (dB)
Receiver Losses (dB)
Antenna Type (l=para., 2=flat)
Antenna Radius (m)
Aperature Taper Parameter
RMSTrans. Phase Jitter (deg)
RMSTrans. Freq. Jitter (Hz)

SIGNALPROCESSING

Numberof Pulses
Numberof A/D bits
AGCGain Factor
Processing Threshold (dB)
Clutter Filter Code (-2 to N)
Clutter Filter Cutoff (m/s)
No. of Bins for F-factor Avr.

,

3.

i.

2000.

9.3

i.

268.6

4.

3.

i.

.381

.316

.2

0.

0.

0.

0.

512.

12.

.6

4.

0.

3.

5.
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