" December 1989 UILU-ENG-89-2241
CSG-117

— s - B - P e
e d

 NETRA—A PARALLEL
—ARCHITECTURE

~ FOR INTEGRATED

~ VISION SYSTEMS I:

~ ARCHITECTURE

- AND ORGANIZATION

Alok N. Choudhary
- Janak H. Patel
- Narendra Ahuja

T (NASA-CR-18595%) NETRA: A PARALLCL N90-14539

© ARCHITECTURE FUR INTEGRATFD VISTON SYSTFMS.

1: ARCHITFCTUPE AND QORGANIZATION (I1linois
Univ.,) 40 p CSCL o098 unclus
63/63 0254490

Approved for Public Release. Distribution Unlimited.

;
i

n

>

i

e

|
[

[
[
Ponl

i
L

™

,
i

, ﬁ :, ,W "- ,,7;_., ,_, - _m w1 il '
o L , ! ;,; A o i
; il o I, i Wil

o

{

LI

M

<

I

bty

USRS | {

1!

—

UNULADDLE LD
URITY CLASSIFICATION OF THIS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

Unclassified None

T2, SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-83-2241 (CSG-117)

5. MONITORING QRGANIZATION REPORT NUMBER(S)

o NAME OF PERFORMING ORGANIZATION] 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if applicable)
University of Illinois N/A NASA _

6c. ADDRESS (City, State, and 2IP Code)

1101 W. Springfield Avenue

Urbana, IL 61801 Hampton, VA 23665

7b. ADDRESS (City, State, and 2IP Code)
NASA Langley Research Center

8a. NAME OF FUNDING/SPONSORING

8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

see /b

ORGANIZATION (f applicable) NASA NAG 1-61 3
NASA .
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS _
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

NETRA - A Parallel Architecture for Integrated Vision Systems I:
Organization

Architecture and

12. PERSONAL AUTHOR(S)

Choudhary, A. N., Patel, J. H. and Ahuja, N.

13a. TYPE OF REPORT 13b. TIME COVERED
Technical FROM________TO

1989 December 7

14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT
37

16. SUPPLEMENTARY NOTATION

—

17. COSATI CODES

FIELD GROUP SUB-GROUP

evaluation

18. SUBJECT TERMS (Continue on reverse if mecessary and identify by block number)
multiprocessor architecture, parallel processing, vision,
image processing, parallel algorithms, performance

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Computer vision has been regarded as one of the most complex and computationally intensive problems. An
intcgrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing
for a high level application (such as object recognition). This paper prescnts a model of computation for parallel
processing for an 1VS. Using the model desired features and capabilities of a parallel architecture suitable for IVSs
are derived. Then a multiprocessor architecture (called NETRA) is presented. Originally NETRA was proposed in

1, NETRA is highly ficxible without the use of complex interconnection schemes. The topology of NETRA is
recursively defined, and hence, is casily scalable from small to large systems. Homogeneity of NETRA permits fault
tolerance and graceful degradation under faults. NETRA is a recursively defined tree-type hicrarchical architecture
each of whose leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective
broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then gen-
eral schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their
communication requirements for parallel processing. An extensive analysis of inter-cluster communication stra-
tegies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on
NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
EIUNCLASSIFIEDAUNUIMITED [SAME AS RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

[J oTiC USERS Unclassified

22b. TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE __

All other editions are obsolets.
UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1

Part I1 of this paper 2 prescnts performance evaluation of computer vision algorithms on NETRA, Perfor-
mance of algorithms when they are mapped on a cluster is described. For some algorithms, performance results
based on analysis arc compared with those observed in an implementation. It is observed that the analysis is very
accurate. Performance analysis of parallel algorithms when mapped across clusters is presented, Altemnative com-

‘ munication communication strategies in NETRA arc cvaluated. The effect of the requirement of interprocessor
communication on the execution of an algorithm is studied. Tt is observed that if communication speeds are
matched with the computation speeds, almost linear speedups are possible when algorithms are mapped across clus-
ters.

LTI T i L T & T & T N

&

1"

nlﬂ\\l !

u i

LIMI Il

ll“ (1] Lﬂ [ANl

l 1w

il

UNCLASSIFIED
SECURITY CLASSIFICATION OF TRHIS PAGE

u

(L
o il

1

|

CRU

am:

qm:

!

v

e qm

t!l

(e g

!

(1

L

NETRA - A Parallel Architecture for Integrated Vision Systems I:
Architecture and Organization

Alok N. Choudhary, Janak H. Patel and Narendra Ahuja

Coordinated Science Laboratory
University of Illinois
1101 W. Springfield
Urbana, IL 61801

Index Terms - Multiprocessor Architecture, Parallel Processing, Vision, Image Processing, Parallel Algorithms,
Performance Evaluation

Corresponding Author : Prof. Alok N. Choudhary

Electrical and Computer Engineering Department
Science and Technology Center
Syracuse University,

Syracuse, NY 13244

i

b]

g ounn

Hie

"
I

am!

o

iU

ol

r

{1

NETRA - A Parallel Architecture for Integrated Vision Systems I:
Architecture and Organization

Alok N. Choudhary, Janak H. Patel and Narendra Ahuja

Coordinated Science Laboratory
University of Illinois
1101 W. Springfield
Urbana, IL 61801

Abstract

Computer vision has been regarded as one of the most complex and computationally intensive problems. An
integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing
for a high level application (such as object recognition). This paper presents a model of computation for parallel
processing for an IVS. Using the model desired features and capabilities of a parallel architecture suitable for IVSs
are derived. Then a multiprocessor architecture (called NETRA) is presented. Originally NETRA was proposed in
1, NETRA is highly flexible without the use of complex interconnection schemes. The topology of NETRA is
recursively defined, and hence, is easily scalable from small to large systems. Homogeneity of NETRA permits fault
tolerance and graceful degradation under faults. NETRA is a recursively defined tree-type hierarchical architecture
each of whose leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective
broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then gen-
eral schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their
communication requirements for parallel processing. An extensive analysis of inter-cluster communication stra-
tegies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on
NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.

Part 11 of this paper 2 presents performance evaluation of computer vision algorithms on NETRA. Perfor-
mance of algorithms when they are mapped on a cluster is described. For some algorithms, performance results
based on analysis are compared with those observed in an implementation. It is observed that the analysis is very
accurate. Performance analysis of parallel algorithms when mapped across clusters is presented. Alternative com-
munication communication strategies in NETRA are evaluated. The effect of the requirement of interprocessor
communication on the execution of an algorithm is studied. It is observed that if communication speeds are
matched with the computation speeds, almost linear speedups are possible when algorithms are mapped across clus-
ters.

This research was supported in part by National Acronautics and Space Administration Under Contract NASA NAG-1-613.

¢

(n:

o

e

LA

t { { LTI

i

Table of Contents
1. Introduction . rvesesstsasasteTerRTOR L PR vOTT AT S IO TS S SH R SHS SOOI RVE SRS A S HRSSROSE BRSSOV N
2. Model of Computation for Integrated Vision Systems '
2.1. Data Dependencies rerevaenersesassensarersnens
2.2. Features and Capabilities of Parallel Architectures for IVS
3. Architecture .. R
3.1. Processor Clusters
3.1.1. Crossbar Design .
3.1.2. Scalability Of CIOSSDATveeursersmssermmsemssmsssnssassnscosemsisssranssassasmmrsnssmsssassnsessansssenans “
3.2, The DSP HIETAICRY .uvucemereresrsssscresessenssssssssssassnsrnss sosnssssssssassasiasssss sessssnsessssassaststsssass sotasonsasissssssns nasssnses
3.3. Global Memory -
3.4. Global Interconnection S
3.5. IVS Computation Requirements and NETRA O
4. Mapping Paraliel AIZOMAMS ... rssserssssnssrersessssesssesssssessssmsmnssssassasssmsmssssssssiesesmamssssisssasssssssss s esssss
4.2. Mapping an Algorithm on One Cluster S .
4.3. Mapping an Algorithm on More than one CIUSIET ...c..uemmurmmismmmmmussmsemssmmssssssssesssstssssmssssmsses s sasceess
5. Inter-cluster Communication in NETRAcoviiimmimennnmmssesssnsmassrassmms sssrnsmsamsassssssmasssssssesesasssonssanass
5.1. Analysis of Inter-Cluster Communication “ resrrsnsassensssesrenEeR TSI s ReRranes
5.2. Approach to Performance Evaluation of Algorithms renessensesanarnpesasa e rne
6. Summary - ressrenesassansrrensssenassns e TR ORI LSS IR TORSESER SO IR LSR S SER RO SO S PO SOOR SRS LRSS SRR AT SS

00 ~d & W =

v

LS

L

¢

)

LR 1)
A .

{

s

U

g

Qi

et

oy

1. Introduction

Computer vision has been regarded as one of the most complex and computationally intensive problems. The
algorithms involved employ a very broad spectrum of techniques from several areas such as signal processing,
advanced mathematics, graph theory, and artificial intelligence. These algorithms are, in general, characterized by
massive parallelism. For low level processing, spatial decomposition of image provides a natural way of generating
parallel tasks. For higher level processing operations, parallelization may also be based on other image characteris-
tics. The multi-dimensional divide-anci-cmquer paradigm [3] is an attractive mechanism for providing parallelism
in both of the above cases.

There is no general definition of an Integrated Vision System (TVS). However, an application dependent
definition of an IVS is possible. For example, an object recognition, system that takes an image (or a set of images)
of an object as input and produces as an output a description of the object can be considered an IVS. However, a
system (or an algorithm) that takes an image input and produces its Discrete Fourier Transform (DFT) is not con-
sidered an IVS though computing DFT itself may be a part of an IVS. Therefore, IVS can be viewed as a system
which employs a number of vision algorithms in a systematic way to produce a specified output. In this paper we are
interested in an IVS from the viewpoint of complexity and execution of the necessary computations. An architec-
ture for vision must be powerful as well as general enough to efficiently execute algorithms for any given computer
vision problem. Researchers in vision and architecture communities are recognizing the need for architectures that
are suited for IVSs rather than those architectures that are good for a few applications but are too rigid to perform
any other applications efficiently. In [4] Weems et al. present an integrated image understanding benchmark that
consists of algorithms that may comprise an object recognition system.

The advent of VLSI technology has provided architects to produce high performance chips for specific appli-
cations. But these special purpose chips can only be used in an IVS as accelerators of specific algorithms (e.g., con-
volution chips or FFT chips). Another use of VLSI technology has been to create massively parallel Single Instruc-
tion Multiple Data (SIMD) processors for vision and other applications. Massively parallel SIMD processors are
well suited for low level and well structured vision algorithm that exhibit spatial parallelism at pixel level. However,
such architectures are not well suited for for high level vision algorithm because high level vision algorithms require
non-uniform processing, more complex data structures and data dependent decision making capabilities. Further-

more, mapping a parallel algorithm on such architectures becomes really inefficient when the problem size does not

match with the available processor size and when its communication requirements do not match with the underlying
interconnection structure of the parallel processor machine..

Meshes, array processors, hypercubes and pyramids are some of the most common SIMD parallel processors
proposed for image analysis and processing. In meshes, the processing elements are arranged in a square array.
Examples of mesh connected computers include CLIP4 (5,6,7], and the MPP (8,9, 10]. In [11], Ahuja and Swamy
proposed multiprocessor pyramid architecture of the divide-and-conquer based approach model of computation.
Such pyramids are, therefore, natural candidates for executing divide-and-conquer algorithms that closely mirror the
flow of information in these algorithms. Example of other pyramid architectures include PAPIA [12], SPHINX [13],
MPP pyramid [14), and HCL Pyramid (15, 16]. However, design of an integrated vision system requires a greater
flexibility, partitionability, and reconfigurability than is offered by regular array, mesh connected or pyramid struc-
tures as discussed in [1). For this reason other multiprocessor architectures and parallel algorithms have been pro-
posed [17, 18 19 20], some of which discuss the ﬂexlbnhty, paruhonablhty, ‘and reconfigurability issues. CMU
Warp processor [21,22,23,24] is another machine proposed and built for image understandmg The machine has a
programmable systolic array of linearly connected cells. The array can pe;fggn }qw level and high level vision
algorithms in systolic mode for lowl level operations and in MIMD mode for high level operations. There are unique
features in the Warp processor that are not present in other architectures. The machine can be reconfigured in
several modes [25]. The UMass image understanding ar;:hitecture is based on Content Addressable Array Parallel

Processor for low level vision and a MIMD parallel processor for high level vision [26].

The effectiveness and performance of architectures such as pyramid, array processors, and meshes is limited
as architectures for integrated vision systems due to several reasons. First, they are mostly suitable for SIMD type
of algorithms which only constitute low level vision operations. Secondly, the architectures are inflexible due to the
rigid interconnections. Third, the number of processors needed to solve a problem of reasonable size is thousands.
Such a large number of processors is not only cost pfbhibitive, but the processors themselves cannot be very power-
ful and can have only limited features due to technological limitations. Fourth, it is normally assumed that the prob-
lem size exactly matches the number of processors available. Most of the time it is not clear how to adapt algo-
rithms so that problems of different sizes can be solved using the same number of processors. Finally, the problem
of input-output of data and fault-tolerance is rarely addressed in any of these architectures. It is important to note

that no matter how fast or powerful a particular architecture is, its utilization can be limited by the bandwidth of the

L

&

L)

[Tl
l

‘
e

@i

Qe

S

i

"y
i

m
14

i

1"

e

e

d”“”

¢ m

1

1/O. Furthermore, a failure normally either results in a breakdown of the entire system or the performance degrades
tremendously. It is important that the architecture provide for graceful degradation. Graceful degradation can be
achieved by providing flexibility in the interconnection and a capability for dynamic reconfiguration and partitioning
of the architecture.

In this paper, we present a parallel architecture called NETRA for IVSs which is intended to provide the
above flexibility. The architecture was originally proposed by Sharma, Patel and Ahuja [1]. NETRA is a recur-

sively defined tree-type hierarchical architecture each of whose leaf nodes consists of a cluster of processors con-

“nected with a programmable crossbar with selective broadcast capability. The internal nodes are scheduling proces-

sors whose function is task scheduling, load balancing, and global memory management. All the scheduling proces-
sors and the cluster processors are connected to a global memory through a multistage circuit switched network.
The processors in clusters can operate in SIMD, MIMD or systolic mode, and therefore, are suitable for both low

level as well as high level vision algorithms.

In Section 2 we propose a model of computation for integrated vision systems. The model is discussed from
the parallel processing perspective. Using the model we derive desired features and capabilities of a parallel archi-
tecture for IVSs. Section 3 presents the architecture of NETRA and describes its components and their functions in
detail. Then the architecture is critically examined with respect to the IVS requirements. In Section 4 we present
methods to map parallel algorithms on NETRA. We also discuss the altemative communication strategies in
NETRA and present a qualitative evaluation of the strategies. The algorithms are classified according to their com-
putation and communication requirements for parallel processing. Section 5 presents analysis of alternative inter-
cluster communication strategies in NETRA and discusses a methodology to evaluate a parallel algorithm which has

been mapped across clusters. Finally, a summary is presented in Section 6.

2. Model of Computation for Integrated Vision Systems

There are two types of parallelism available in vision tasks. First, Spatial Parallelism, in which the same
operation is applied to all parts of the image data. That is, the data is divided into many granules and distributed to
different subtasks which may execute on different processors in parallel. Most low level vision algorithms exhibit
this type of parallelism. However, different tasks may be performed sequentially in time on the same granules of

data. Each such tsk operates on the output data of the previous task. Therefore, the type of data, data structures, etc.,

may be different for each task in the system but each form of data can be partitioned into several granules, to be pro-
cessed in parallel. For example, consider one IVS that performs object recognition. The input image is smoothed
using some filtering operation, then on the smoothed image an operator is applied for feature extraction, features
with similar characteristics are grouped, then matching with the models is performed. Each of these tasks takes the

output of the previous tasks as its input and produces an output which becomes the input for the next task.

Second form of parallelism called Temporal Parallelism is available when these tasks are repeéted on a time
sequence of images or on different resolutions of imhges. For eiaﬁiplé, the s&stéih in which the motion of a moving
object is estimated from an image sequence performs the same set of computation on all image frame(s) in the
sequence. The processing of each frame or sets of frames can be done in parallel.

Figure 1 shows a computational model of IVS” which incorporates the above mentioned characteristics. Each
pipeline shows a number of tasks applied to a set of inputs. Each block in the pipeline represents one task. The
input to the first task in a pipeline is the image, and the input to the rest of the tasks is the output of the previous task.
Entire pipeline of tasks is repeated at different images in time and/or resolution. Each task is decomposed into sub-
tasks to be performed in parallel. For example, Ty is one task, and T (d) is a subtask of Ty operating on data
granule d . The figure shows m tasks in the pipeline. The number of subtasks depends on the amount of data in a

granule and number of available processors. D; ;41 represents data transfer from task T; to task T;; in the pipe-

line.

2.1. Data Dependencies

Existence of spatial and temporal parallelism may also result in two types of data dependencies, namely, spa-
tial data dependency and temporal data dependency. The spatial data dependency can be classified into intratask
data dependency and intertask data dependency. Intratask data dependency arises when a set of subtasks need
exchange data in order to execute a task in parallel. The exchange of data may be needed during the execution of the
algorithm, or to combine their partial results, or both. Therefore, each task itself is a collection of subtasks which
may be represented as a graph with nodes representing the subtasks and edges representing communication between
subtasks. Intertask data dependency denotes the transfer and reorganization of data to be passed onto the next task in
the pipeline. This may be done by exchanging data between subtasks of the current tasks and the subtasks of the

next task, or by collection and reorganization of the output data of current task and then redistribution of the data.

{

Qi e

]

il

i

I

L]

i

Qi

U

i

vl

el

ih

t!

vl

i

i

("

Data Dependencies (Spatial) Data De;)endencies (Spatial)
- - =D -- -3 - -
Tl(dl) Tz(dl) Tm(dl)
Input
, T | |Ta@) | p., Tw@d2) | Ougpur
; | . 12 2, ;
° [X N/ L]
D, : o
° [J
T1(dn1) T2(dn2) Trm(dnm)
Input l Data Dependencies l (Temporal)
Image .
mes 7y (dy) Tydy) Tn(@)
Input 1T, (d2)
, T,(d ’ Tn(d
’ ® ® [X N J ®
DY] °)
. ° .
T1(dn1) T2(dn2) T\n(dpm)
l Data Dependencies l (Temporal)
Ty(dy) Ty(dy) Tpm(d))
Input
| ndn |, |Ta@) ., Tn(d2)
I,'.,.z ‘ D 1,2 . D 2.3 . Output
D” ° ® [X N]
1 . .
g .
T1(dn1) T2(dn2) Tn(dpm)
®
[J

Figure 1 : A Computational Model of ;n Integrated Vision System
The choice and method depends on the underlying parallel architecture and mapping of the algorithms. Temporal
data dependency is similar to spatial data dependency except that some form of output generated by tasks executed
on the previous image frames may be needed by one or more tasks executing on the current image frames. A simple
example of such a dependency is the system for motion estimation in which features from the previous image
frames are needed in the processing of the current image frames so that featres can be matched to establish

correspondences between features of different time frames.

The total computation to execute one pipeline includes time to input data, time to output data and results, sum
of the times to execute all tasks in the pipeline (which includes computation time of subtasks and communication
time between subtasks) and, data transfer and reorganization time between two successive tasks. Let’s denote Ip
as computation time for a subtask, £;omm as total communication time for a task, #;, as data input time, Z,,, as data

output time, and ? as data transfer and reorganization time. Then the time to complete task i, denoted as T; is given
by

{lg&X 1o (Ti(d})) + teomm(T) m

Total time to execute one pipeline including the input and output of the data is given by
i=m i=m-1

ot = X U+ X 1aDiiv)) + tin + low o))
i=1 i=1

Let us now consider some characteristics of the algorithms involved in IVS, and using the above model deter-
mine the desired features and capabilities of a multiprocessor mchitecu;rc suitable for IVS. First, an IVS involves
algorithms from all levels of processing, i.e., an IVS normally includes low, intermediate and high level vision algo-
rithms. Typically, the first few tasks of the pipeline require low level algorithms and last few require high level
algorithms. 'me low level algorithms are well understood and well defined. They are normally data independent,
have regular structure, and spatial parallelism is mostly avaxlable at pixel level. They are well suited for both SIMD
and MIMD type of processing. If commgn@gn between processors is fast enough, almost linear speedups are pos-
sible by using multiple processors Therefore an archxtecmre for IVS should be capable of efficiently executing low
level algorithms and algorithms suited for SIMD type of processing. Also, data /O should not be a bouleneck
because otherwise, speedups through parallelism can be nullified. Examples of low level algorithms include various

transforms, filtering algorithms, convolution algorithms etc.

High level algorithms are not well catalogued. They are normally global data dependent, involve more com-
plex data structures (compared to pixel representation), and need varying amount of communication for parallel pro-
cessing. These type of algorithms are better suited for MIMD type of processing. Hence, the architecture should be

capable of executing MIMD algorithms efficiently. :

@i s el . vl @&u &6 €« e s el el e on

@i

(IR

b
i

!

l

I

il |

il

¢

g

ernooan e o

("

2.2. Desired Features and Capabilities of Parallel Architectures for IVS

0

@

3

@

®

Reconfigurability : From the model and the above discussion it is clear that the architecture should be capable
of executing both SIMD and MIMD type of algorithms efficiently. That is, it should be possible to
reconfigure the architecture such that each algorithm can be implemented efficiently using the most suited

mode of computation.

Flexible Communication : The communication requirements vary for different algorithms. The communica-
tion pattern between processors executing subtasks of a larger task depends on the algorithm involved in the
task. If the connectivity between processors is too rigid then the communication overhead of intratask and
intertask communication may become prohibitive. Therefore, it is desirable that the communication be flexi-

ble in order to provide most efficient communication with low overhead.

Resource Allocation and Partitionability : As we discussed earlier, there are several tasks with vastly different
characteristics and computational requirements in an IVS. These tasks need to exist simultaneously in the sys-
tem. Therefore, the system should be partitionable into many independently controlled subsystems to execute
each task. Since the high level algorithms exhibit varying level of parallelism and data dependent perfor-
mance, it should be possible to allocate resources (such as processors, memory) dynamically to meet the per-

formance requirements.

Load Balancing and Task Scheduling : Load balancing and task scheduling are very important, specially for
high level vision algorithms. High level vision algorithms are data dependent, and therefore, in order to obtain
better utilization of resources and better speedups, dividing the computation equally among the processor is
critical [27]. The underlying architecture on which load balancing is done and the type of algorithm(s)
involved contribute significantly to how well load balancing can be achieved. In low level algorithms since
the computations are data independent, partitioning data equally among the processors normally balances the
load among the processors. However, for high level algorithms more sophisticated load balancing and
scheduling strategies are needed. The architecture should include features such that it is easy to perform load

balancing and task scheduling and that the overhead of doing so is minimal.

Topology and Data Size Independent Mapping : For a system as complex as an IVS, if the underlying archi-
tecture is rigid such that the problem size that can be solved on it dependent on the size of the architecture,

the effectiveness of the architecture for an IVS will diminish.

(6) Input-Output of Data : It is most often the case that an architecture is able to perform very well on some algo-
rithms and high speedups are obtaim;,d but input-output (I/O) of data is inefficient. I/O is an integral part ofa
system and if it is a bottleneck then performance of the system will be limited.

(7) Fault-Tolerance : Fault-tolerance is an important part of a system of such complexity. A failure in a processor
or communication structure should not affect the performance drastically which is normally the case when

rigid interconnections are present between processors. The architecture should provide for graceful degrada-

tion in case of failures.

3. Architecture of NETRA

In this section we describe the architecture of NE:I'RA and its features. We examine and evaluate the charac-
teristics of the architecture using the criteria developed in the previous section.

Figure 2 shows the architecture of "NETRA" for integrated vision systems. The architecture consists of the
following components :-
(1) A large number (1000 - 10000) of Processing Elements (PEs), organized into clusters of 16 to 64 PE§ each.

(2) A tree of Distributing-and-Scheduling-Processors (DSPs) that make up the task distribution and control struc-
ture of the multiprocessor.
(3) A parallel pipelined shared Global Memory and a Global Interconnection that links the PEs and DSPs o the

Global Memory.

3.1. Processor Clusters

_ The clusters consist of, 16 10 64 PEs, each with its own program and data memory. They form a layer below
the DSP-tree, with a leaf DSP associated with each cluster. PEs within a cluster also share a common data memory.
The PEs, the DSP associated with the cluster, and the shared memory are connected together with a crossbar switch.
The crossbar switch permits point-to-point communications as well as selective broadcast by the DSP or any of the
PE;. Figure 3 shows the cluster organization. A 4x4 crossbar is shown as an example of the implementation of the
crossbar switch. The crossbar design consists of pass transistors connecting the input and output data lines. The
switches are controlled by control bitsr Mdicaﬁng rthe connecti;n battem. If a processor ofiD"Silr> necds to broadcast

then all the control bits in its row are made one. In order to connect processor P; 1 processor P, control bit (i,j) is

IHWNH ¢ 4 ¢ € wE e emWw Wi o

&

au

)T

i

g oy end

L

t

I

€

mn

"

(R R (.

{

DSP

DSP | DSP |

DSP DSP [DsP | DSP

GLOBAL INTERCONNECTION

o [fe e (e [[lo |
&) CHLECHLECHIICEILE,

SECONDARY STORAGE AND 1/0 DEVICES

5o

DSP : Distributing and Scheduling Processor
C : Processor Cluster M : Memory Module
Figure 2 : Organization of NETRA

set to one and rest of the control bits in row i and column j are off.

Clusters can operate in an SIMD mode, a systolic mode, or an MIMD mode. Each PE is a general purpose
processor with a high speed floating point capability. In an SIMD mode, PEs in a cluster execute identical instruc-
tion streams from private memories in a lock-step fashion. In the systolic mode, PEs repetitively execute an instruc-
tion or set of instruction on data streams from one or more PEs. In both cases, communication between PEs is syn-

chronous. In the MIMD mode PEs asynchronously execute instruction streams resident in their private memories.

10

SYNCHRONIZATION BUS

DSH
P
) CDM

7 P 7|
TO —M ' af{:jn),?iﬂg %7C0m1‘013it
@ 2

M 2
_.—@—@ }i:mi\:MCmssbﬁar

TO
%géy o UNIDIRECTIONAL
M—{PE CROSSBAR
- [PE}—
DSP
CDM
PE : PROCESSOR M : LOCAL MEMORY

CDM : COMMON DATA MEMORY
Figure3 : Organization of Processor Cluster
‘The streams may not be identical. In order to synchronize the processors in a cluster, a synchronization bus is pro-
vided which is used by processors to indicate to the DSP that a processor@ has finished its computation or a proces-

sor wants to change the communication pattern. The DSP can either poll the processors or the processors can inter-

rupt the DSP using the synchronization bus.

i

a

I

il

Qi

il

- @

G . e

(g

1 &

@i

Im mr
| T

.

U

.

ey

v ooy

i

g

am

(HIn

11

3.1.1. Crossbar Design

There is no arbitration in the crossbar switch. That is, the interconnection between processor has to be pro-
grammed before processors can communicate with each other. Programming a crossbarrrequires writting a com-
munication pattern into the control memory of the crossbar. A processor can alter the communication pattern by
updating the control memory as long as it does not conflict with the existing communication pattem. The DSP asso-
ciated with the cluster can write into the control memory to alter the communication pattern. The most common
communication patterns such as linear arrays, trees, meshes, pyramids, shuffle-exchanges, cubes, broadcast, can be
stored in the memory of the crossbar. These patterns need not be supplied externally. Therefore, switching to a dif-
ferent pattern in the crossbar can be fast because switching only requires writing the patterns into the control bits of

the crossbar switches from its control memory.

The advantages of such a crossbar design are the following: first, since there is no arbitration, the crossbar is
relatively faster than one which provides arbitration because switching and arbitration delays are avoided. Secondly,
it is easier to design and implement the crossbar because arbitration is absent, and therefore, switches are simple.
Furthermore, it is possible to implement systolic algorithms using the crossbar because it can transfer data at the
same or greater speed than required by the systolic computation. Such a crossbar is easily scalable. Unlike other
interconnections (such as cubes, shuffle-exchanges etc.), the scalability need not be in power of 2. A unit scalability
is possible. Furthermore, due to the same reason, it is easy to provide fault-tolerance because one spare processor
can replace any failed processor, and one extra crossbar link can replace any failed link. This is possible because
there is no inherent structure that connects the processor and each processor (link) is topologically equivalent to any

other processor (link).

3.1.2. Scalability of Crossbar

Figure 4(a) depicts a 1 bit 4x4 crossbar switch. In order 0 obtain byte or word parallel crossbar, the crossbar
switches can be stacked together as shown in figure 4(b). The control, address and communication pattern informa-
tion is exactly the same in all the stacked switches. Figure 4(c),(d) and (e) illustrate the size scalability. Figure 4(c)
shows how a 4x8 crossbar can be obtained from tW&; 4x4 crossbars. Similarly, figure 4(d) and (e) illustrate how
8x4 and 8x8 crossbars can be obtained respectively. Note that the smallest switch need not be a bit crossbar.

Depending on the technology and availability of the [/O pins, it can be of any size (such as 4 bit or a byte). Further-

12

more, depending on the available pins, it can be a 16x16 or 32x32 bit crossbar. Finally, sizes of the crossbar

need not be a multiple of two but can be any arbitrary.

3.2. The DSP Hierarchy -
The DSP-tree is an n-tree with nodes;or’responding to DSPs and edges to !}i-directional communication links.
Each DSP node is composed of a processor, a buffer memory, and a cormpondmg controller. |
The tree structure has two primary functions. First it represents the control hierarchy for the multiprocessor. A
DSP serves as a controller for the subtree structure under it. Each task starts at a noderorrrx?an appropriate level in the

tree, and is recursively distributed at each level of the sub-tree under the node. At the bottom of the tree, the sub-

tasks are executed on a processor cluster in the desired mode (SIMD or MIMD) and under the supervision of the

leaf DSP.
Pttt | ettt
= 4X4 ' 7 4xd 4X4
- Pt =
a) 4xd N-1 c) 4X8
n2
il e R titt o it
:: 4X4 - : 4X 4 4X 4
—_ b) Stacking —
] ! YN
E 4X4 E 4X4 4X4
d 8X4 o ¢) 8X8

Figure 4 : Scalability of Crossbar

@ wm owr an o« Qi @ e & F el eml m

€

i

&

LI ﬂwmﬂ

e

ﬂ! "WW‘W
i ki

(!

g

ourt

gnm

I

13

The second function is that of distributing the programs to leaf DSPs and the PEs. Vision algorithms are
characterized by a large number of identical parallel processes that exploit the spatial parallelism and operate on dif-
ferent data sets. It would be highly wasteful if each PE issued a separate request for its copy of the program block
to the global memory because it would result in large unnecessary traffic through the interconnection network.
Under the DSP-hierarchy approach, one copy of the program is fetched by the contrglling DSP (the DSP at the root
of the task subtree) and then broadcast down the subtree to the selected PEs. Also, DSP hierarchy provides com-
munication paths between clusters to transfer control information or data from one cluster to others. Finally, the

DSP-tree is responsible for Global Memory management.

33. Global Memory

The multiport global memory is a parallel-pipelined structure as introduced in [28]. Given a memory(chip)-
access-time of T processor-cycles, each line has T memory modules. It accepts a request in each cycle and responds
after a delay of T cycles. Since an L-port memory has L lines, the memory can support a bandwidth of L words per
cycle.

Data and programs are organized in memory in blocks. Blocks correspond to "units” of data and programs.
The size of a block is variable and is determined by the underlying tasks and their data structures and data require-
ments. A large number of blocks may together constitute an entire program or an entire image. Memory requests
are made for blocks. The PEs and DSPs are connected to the Global Memory with a multistage interconnection
network.

The global memory is capable of queuing requests made for blocks that have not yet been written into. Each
line (or port) has a Memory-line Controller (MLC) which maintains a list of read requests to the line and services
them when the block arrives. It maintains a table of tokens corresponding to blocks on the line, together with their
length, virtual address and fulllempty status. The MLC is also responsible for virtual memory management func-
tions.

Two main functions of the global memory are input-output of data and program to and from the DSPs and
processor clusters, and to provide intercluster communication between various tasks as well as within a task if a task

is mapped onto more than one cluster.

14

3.4. Global Interconuection

The PEs and the DSPs are connected to the Global Memory using a multistage circuit-switching interconnec-
tion network. Data is transferred through the networic in pages. A page is transferred from the global memory to the
processors which is given in the header as a destinaﬁdn port address and the header also contains the starting
address of the page in the global memory. When the data is written into the global memory, only starting address

needs to be stated. In each case, end-of-page may be mdxcawd usmg an extra flag bit appended to each word.

We are evaluating an alternative strategy to connect DSPs, clusters and the global memory using a high speed
bus. In this organization one port of each cluster will be connected to the high speed bus. Also, each DSP will be
connected to the bus. Processors that need to communicate with processors in other clusters use explicit messages
to send and receive data from the other processors. Figure 5 illustrates this method. A processor P; in cluster C;
can send data to a processor P; in cluster C; as shown in the figure. P; sends the data tol.heiDSP‘ which sends the

data to DSP; in a burst mode. DSP; then sends the data to the processor P;. We are evaluating both alternatives

for intercluster communication.

GLOBAL BUS

M
E DSP; DSP;
M A
o
R P; Y P;
Y

C; C;

Figure 5 : An Alternative Strategy for Inter-Cluster Communication

I

ay wi e

I

al

i

Qly @ Al il e

I

Qi

PILE
Ll

m e 5
b

t

!l

it

¢

b

(4

{508

g

i

il

=}

o

I

(A

15

3.5. IVS Computation Requirements and NETRA

In the following discussion we examine NETRA's architecture in the light of requirements for an IVS dis-

cussed in the previous section.

Reconfigurability (Computation Modes)

The clusters in NETRA provide SIMD, MIMD and systolic capabilities. As we discussed earlier, it is desir-
able to have these modes of operations in a multiprocessor system for IVS so that all levels of algorithms can be
executed efficiently. For example, consider matrix multiplication operation. We will show how it can be performed
in SIMD and systolic modes. Let us assume that the computation requires obtai;ling matrix C = A xB. For simpli-
city, let’s assume that the cluster size is P and the matrix dimensions are P xP. Note that this assumption is made to
simplify the example description. In general, any arbitrary size computation can be performed independent of the

data or cluster size.

SIMD Mode

The algorithm can be mapped as follows. Each processor is assigned a column of the B matrix, i.e., processor
P; 1s assigned column B;. Then the DSP broadcasts each row (o the cluster processor which compute the inner pro-
duct of the row with their corresponding column in lock-step fashion. Note that the cleniems of the A matrix can be
continuously broadcast by DSP, row by row without any integ'mptions, and therefore, efficient pipelining of data
input, multiply, accumulate operations can achieved. Figure 6(a) illustrates a STMD configuration of a cluster. The
following pseudo code describes the DSP and processor (Py’s program, 0<k <P —1) program.

SIMD Computation

DSP Py
1. FOR i=0to i=P-1 DO 1 -
2. connect(DSPP;) 2, -
3. out(column B;) 3. in(column B;)
4. END_FOR _ 4. -
5. connect(DSP, all) 5. -
6. FOR i=0 to i=P-1 DO 6. Cyp =0
7. FOR j=0to j=P-1 DO 7. FOR j=0to j=P-1 DO
8. out(a,'j) 8 iu(a,-,-)
9. END_FOR 9 Ccp=cCgt a,-j*bj
10. END FOR 10. END_FOR

16

In the above code, the computation proceeds as follows. In first three lines, the DSP connects with each pro-
cessor through the crossbar aﬁd writes the column on the output port. That column is input by the corresponding
processor. In statement 5, the DSP connects with all the processors in a broadcast mode. Then from statement 6
onwards, the DSP broadcasts the data from matrix A in row major order and each processor computes the inner pro-
duct with each row. Finally, each processor has a column of the output matrix, It should be mentioned that the above

code describes the operation in principal and does not exactly depict the timing of opemtions.

Systolic Mode

The same computation can be performed in a systolic mode. The DSP can reconfigure the cluster in a circular
linear array after distributing columns of matrix B to processors as before. Then DSP assigns row A; of matrix A to
processor P;. Each processor computes the inner product of its row with its column and at the same time writes the
element of the row on the outout port. This element of the row is input to the next processor. Therefore, each pro-
cessor receives the rows of matrix A in a systolic fashion and the computation is performed in the systolic fashion.
Note that the computation and communication can be efficiently pipelined. In the code, it is depicted by statements
7-i0. Each element of the row :is used by é processor and immediately written on to the output port, and at the same
time, the processor receives an element of the row of the previous processor. Therefore, every P cycles a processor
computes new element of the C matrix from the new rows it receives every P cycles. Again, note that the code

describes only the logic of the computation and does not include the timing information. Figure 6(b) illustrates a

systolic configuration of a cluster.

Systolic Computation
DSP P;

1, FOR i=0to i=P-1 DO L -
2. connect(DSP.P;) 2. -
3. out(column B;) 3. in(column B;)
4 out(row A;) 4. in(column A;)
S. END FOR 5. - T
6. connect(P; to P; ., mod P) 6.c;=0
7. ; 7. FOR j=0 10 j=P-1 DO
8. - 8. cii = ¢ii +a;j*bj;
9. - 9. oul(a;;), in(a;_ ljj
0. - 10. END_FOR
11 - 11. repeas 7-10 for each new row

I

¢/ @& 4« a g

LY

Qi il Wi «mw

QELT|

o

17

In a companion paper we present several examples of mapping different algorithms in different modes on the

clusters as well as their performance evaluation.

Partitioning and Resource Allocation

There are several tasks with vastly different characteristics in an IVS, and therefore, the number of processors
needed for each task may be different and may be needed in different computational modes. Hence, partitionability
and dynamic resource allocation are keys to high performance. Partioning in NETRA can be achieved as follows.
When a task is to be allocated, the set of subtrees of DSPs is identified such that the required number of PEs is avail-
able at their leaves. One of the subtrees is chosen on the basis of characteristics of the task. The chosen DSP
represents the root of the control hierarchy for the task. Together with the DSPs in its subtree, it manages the execu-
tion of the task. Note that partitioning is only virtual. The PEs are not required to be physically isolated from the rest
of the system. Oncc the subtree is chosen, the processes may execute in SIMD, MIMD or systolic mode. The fol-
lowing are some of the advantages of such a scheme. Firstly, only one copy of the programs needs to be fetched
thereby reducing the traffic through the global interconnection network. Secondly, simple load balancing techniques
may be employed while allocating tasks (examples are discussed in a companion paper). The tasks of global
memory management can be distributed over the DSP tree by assigning it to the DSP at the root of the subtree exe-

cuting the subtask. Finally, locality is maintained within the control hierarchy, which limits the intratask

DSP
Py e o0 0o P; e o o Pp—l
a) SIMD Mode
LPO 7P1 P" .-,OOO—»PP_I__I
b) Systolic Mode

Figure 6 : An Example of STIMD and Systolic Modes of Computation in a Cluster

18

communication to within the subtree.

Load Balancing and Task Scheduling

Two levels of load balancing need to be employed, namely, global load balancing and local load balancing.
Global load balancing aids in partitioning and allocating the resources for tasks as discussed earlier. Local load
' balancing is used to distribute computations (or data) to processors executing subtasks of a larger task. Local load
balancing can be either static or dynamic or a combination of both. With static load balancing, given a task, it§
associated data and the number of processors allocated for the task, the data is partitioned in such a way that each
processor gets equal or comparable amounts of computation [27]. In dynamic load balancing, the subtasks are
dynamically assigned to the processors as and when they finish the previously assigned tasks. In NETRA when a

task is assigned to a subtree, the DSPs involved perform the local load balancing functions.

Using the infpnnatiqn from local load balanc'ing and other measures of computation, global load balancing
can be achieved hierarcﬁically be using the DSPhnerarchy In this séheme, each controller DSP sends its measure of
load to its parent DSP and the root DSP receives the load information for the entire system. The root DSP then
broadcasts the measure of load of the entire system to the DPSs. When a task is to be allocated, these me‘asures can
be used to select a subtree for its execution as follows: If any subtree corresponding to the child of the current DSP
has an adequate number of pﬁcmors then the task is &hnsfertéd to a child DSP with the lowest load, else if the
current subtree has enough resources and the load is not sngmﬁgantly greater than the average system load then the

task is allocated to the current subtree, else the current DSP transfers the task to the parent DSP.

Flexible Communication

Availability of flexible communication is critical to achieving high performance. For example, when a parti-
tion operates in SIMD mode there is a need to broadcast the programs. When a partition operates in MIMD mode,
where processors in the partition cooperate in the execudon of a task, one or more programs need to be transferred
to the local memories of the processors. Performing t.be above justifies the need for selective broadcast capability. In
order to take advantage of spatial parallelism in vision tasks processors working on neighboring data need to com-
municate fast amongst themselves for high performance. The programmability and flexibility of the crossbar pro-
vide fast local communication. Most common vision algorithms such as FFTs, filtering, convolution, counting,

transforms, etc., need a broad range of processor connectivities for efficient execution. These connectivities include

Il

&« e e

g

@i W W Sy S

{

(1

|
|

1

'

LS

il

nr
[

il

19

arrays, pipelines, several systolic configurations, shuffle-exchanges, cubes, meshes, pyramids etc. Each of these con-
nectivities may perform well for some tasks and badly for others. Therefore, using a crossbar with a selective broad-
cast capability, any of the above configurations can be achieved, and consequently, optimal performance can be

achieved at the clusters.

Several techniques for implementing reconfigurability between a set of PEs were studied [29,30]. It was
discovered that using a crossbar switch to connect all PEs was simpler than any other schemes. The popular argu-
ment that crossbar switches are expensive was easily thwarted. When designing communication networks in VLSI,
the primary constraint is the number of pins and not the chip area. The number of pins is governed by the number of
ports on the network and is independent of the type of network. Furthermore, it was realized that a crossbar wi& a
selective broadcast capability was not only very powerful and flexible structure, but was also simpler, scalable and

less expensive.

The need for global communication is relatively low and infrequent. Global communication is needed for
intertask communication, i.e., from one task to another in the IVS pipeline. It is also needed to input and output data,
to transfer data within a subsystem when a task is executed on more than one cluster, and finally, it is needed to load
the programs. The most important issue in global communication is that the network speed should be matched with
the crossbar speed as well as with the processors speed. The global communication is performed through the global
memory using the interconnection network, or using the DSP hierarchy. Another alternative we consider is connect-
ing all the clusters and DSPs to a global bus. Since the DSPs perform most control functions and loading of pro-
grams and data, the responsibility of intertask communication does not lie with hierarchy. In a Section 5 we preserit
an extensive analysis of the global communication networks in NETRA. Then using the analysis developed here we

present performance of several algorithms in a companion paper.

4. Mapping Parallel Algorithms

There are two main considerations in mapping the parallel algorithms. First, mapping individual tasks or
algorithms, and the second, integration of various tasks. Mapping individual tasks involves efficient division of the
task(s) on the available processors, intratask communication, load balancing and, ihput and output of data. If the
task is mapped onto more than one processor cluster then the mapping will require both intra-cluster as well as

inter-cluster communication. Integration of algorithms involves intertask communication, data transfer between

20

tasks, formatting the data for the next task, and global load balancing.

The methodology we use for mapping parallel ;lgoﬁmms is multi-dimensional divide-and-conquer with
medium to large grain parallelism. An individual task (in the following discussion task and algorithm are used inter-
changeably) can be efficiently mapped using spatial parallelism because most of the vision algorithms are performed
on two dimensional data. However, integration of tasks involves exploiting both spatial as well as temporal parallel-
ism. Temporal parallelism can be exploited by recognizing intertask data dependencies. In NETRA, by providing
virtual partitioning of processors, reconfigurability, flexibility of communication and distributed control, it is possi-
ble with much ease to exploit temporal paxallehsm available in integrated vision systems. Furthermore, temporal
parallelism can be improved by making data avaxlable to the next task in the plpelme as soon as n is produced by the

previous task. This is achieved using the macro data flow approach between tasks.

4.1. -Classification of Common Vision Algorithms
We can classify some of the common vision algoﬁ&m# éccbrding to ﬂieir cé&imunicatioﬁ reﬁuiremeﬁts when

mapped onto parallel processors. The classification provides an insight to the performance of an algorithm depend-

ing on its communication requirements. ‘

(1) Local Fixed - In these algorithm, the output depends on a small neighborhood of input data in which the
neighborhood size is normally fixed. Sobel edge detection, image scaling and, thresholding are examples of
such algorithms.

(2) Local Varying - Like the local fixed algorithms, the output at each point depends on a small neighborhood of
input data. However, the neighborhood size is an input parameter and is independent of the input image size.
Convolutions, edge detection and most other filtering and smoothing operations are examples of such algo-
rithms.

(3) Global Fixed - In such algorithms each output point depends on the entire inpﬁt h;xage. However, the compu;
tation is normally mput data mdependem (i.e., computation does not vary with the type of image and only
depends on the size of the image). Two Dlmensmnal Dlscxete Fourier Transform and Hxstogram computation
are examples of such algomhms

(4) Global Varying - Unlike global fixed algorithms, in these algomhms the amount of computation and commun-

ication depends on the image input as well as its size. That is, the output may depend on the entire image or

o @ W

Wi

al

LI

€

il

@l

i

e
itk

¢l

-

Qe

e

(!

t " (! {

21

may depend on a part of image. In other words, the computation is data dependent. Hough Transfoﬁn and,
Connected Component Labeling are examples of such algorithms. In an image, a connected component may
span only a small region, or in the worst case the entire image may be one connected component (a spiral).
Similarly, in case of the Hough transform for detecting lines, a line may span across image (meaning its votes

must come from distant pixels or edges) or it may be localized.

4.2. Mapping an Algorithm on One Cluster

Mapping a task on one cluster means that intratask communication will only invol\}e communication between
processors of the same clusters. Figure 7 shows how a parallel algorithm is mapped on a cluster. Let us assume that
there are P processors in a cluster. As shown in figure 7, first program and data are loaded onto the processor clus-
ter. Both in case of SIMD or MIMD mode, the program is broadcast onto the cluster processors. The data division
'dcpends on the particular algorithm. If algorithms are mapped in SIMD or systolic mode then the compute and
communication cycles will be intermixed. If the algorithms are mapped in MIMD mode then each processor com-

putes its partial results and then communicates with others to exchange or merge data.

Let us assume that an algorithm is mapped on one cluster with P processors. The total processing time in such
a mapping consists of the following components. Program load time onto the cluster processors ({7), data load and
partitioning time (f4), computation time of the divided subtasks on the processors (fcp) which is the sum of the
maximum processing time on a processor P; and intra-cluster communication time (¢.omm), and the result report
time (2,,). tg consists of three components: 1) data read time from the global memory (¢,) by the cluster DSP, 2)
crossbar switch setup time (Z5,) and, 3) the data broadcast and distribution time onto the cluster processors (fp,).

The total processing time T(P) of the parallel algorithm is given by

TP)=ty +ig+ip+iy (3)
where,
ta =ty + lserup + tor @

and if the computation and communication do not overlap then ,

lep = Ig‘ASXP (tpi) + tcomm 6)]

else if computation and communication can completely overlap then,

22
Program Ipi
Load
Data L4
Load
Y
Compute Compute Compute
P, P, P f)
;]
ece ‘ .
Communi- Communi- Communi-
cation cation cation
Result Ly
QOutput
l Next Task
o o Flgure 7: Mappmg Algonthms on One Cluster
Iep = = MAX (MAX (tPt) teomm) (6)

In the above equations ¢, depends on the effective bandwidth of the global interconnection network.

4.3. Mapping an Algorithm on More than one Cluster

If an algorithm is mapped oﬁ Wrﬁore than one cluster then the communication consists of intra-cluster commun-
ication as well as inter-cluster communication. Since the cost of inter-cluster communication is more than that of
intra-cluster communication, the inter-cluster communication should be minimized while mapping a paraliel algo-

rithm on more than one cluster. Figure 8 shows how a typical algorithm will be mapped onto two clusters.

Figure 5 shows how processor P in cluster C; will commumcate wnh processor P; in cluster C; usmg the
global bus. The communication will be performed explicitly by messages. Processor P; w1ll send the data and the
identification of the receiving processor to its DSP (DSP;). The DSP then will forward the message to the
corresponding DSP in the other cluster (DSP;). DSP; will send the data to P;. A processor P; in cluster C; will

communicate with a processor P j in cluster C j using the global memory as shown in figure 9. Processor P; will

Ilh U\ il | lﬂ‘il%‘l\‘}ld L NI 1] an wmer el o W

i sEm oW

W |

WG

¢

¢

il

{1

(!

rn

¢

o'

E“ n

n

¢

TASK
| Program Program
Load Load
Data Data
Load “\\ ,A Load
\ I4
Next i Ny /’ ¥ Next
) . ,
Task F-—=—===-] AR . F-==—====- b Task
? 1}
Compute 1 \\\) » Compute :4-
]] \ ’ |]
| SR - - \ 4 ke e —m—--- =
s
r----b A\ {1---1
i Communi- |‘/ - N '\a:» Communi- '
] I
1 cation ' , A ' cation '
| O ’I \\ | S
/ A Y
’ \
s \
’ \
/ A Y
? \
Result ,/ *J Result
Output Output
Y \j
Next Task Next Task

Figure 8 : Mapping Algorithms on Multiple Clusters

write the data into a specified memory location in the global memory using its port connected to the multistage inter-
connection network. Processor P j will request for the data from the Memory Line Controller on its port connected
to the interconnection network. The basic difference between the two approaches is the available bandwidth through
the global interconnection. In case of the bus, the effective bmdwidth will be much lower compared to the effective
bandwidth of the multistage interconnection network because only one processor or DSP can access the bus at a
time.

The performance of the algorithm mapped on more than one cluster depends on how much inter-cluster com-
munication is required and by how many processors, which in tum depends on the type of algorithm. Figure 9 illus-

trates various ways in which an algorithm can be mapped on two or more clusters. However, in the figure we only

24

show two clusters. Case a) represents the best case in which a parallél algorithm can be mapped such that only one
or no processors need to communicate with any processor in the other cluster. This is obtained by partitioning the
data in such a way that only one processor in each cluster gets the boundary data and the algorithm is such that com-
munication is only exchanging boundary values. Example of such algorithms include local fixed and local varying
algorithms.

In an average case, some of the pmcessors in one cluster are requxred 10 communicate with processors in the
other cluster. Case b) in Fxgure 9 illustrates such a case. The figure shows that data processed by a few processors is
needed by corresponding processors in the other cluster. However, the figure does not show how the transfer of the
data will take place. 'I'hat depends on the chosen global interconnection network and how the algorithm is mapped.
Global varymg algorithms may need Llns type of communication. For example, the connected component labeling

algorithm can be mapped in such a way thax only those processors need 10 commumcate across clusters which have

boundary components.
......... Prooo e : : :P,,
Cr b c, L.... . .
1] 1
"""" P, &] Pooh o,
_______ PL X ooy vy
Co b] C, _’Zl_--z_--_d: _____ S
]]
""""" - : : Pn
Best Case Average Case
N
o T
] I 1] 1 1]
Pu vy 0 P
A At A A Ah A A
*:W:V:W:W;V:W:V
ToP S it H N
1 1]] I] 1
}]) 1 I 1 I
1) ' t] 1 I

Worst Case o

Figure 9 : Types of Intercluster Communication

Qe Eml o w o Ul el wm smo o«

.
&l

Y

N
i

oo 0T enrooenro vt

T

v

ere

b !Hl

!

"
.

for

25

The third case (c) represents the worst case. The worst case means that data produced by each processor is
required by at least one processor in another cluster. Global fixed and some global varying algorithms need this
type of communication.

Now, let us discuss how inter-cluster communication is incorporated in the performance of an algorithm. Let
us assume that an algorithm is mapped on C clusters. The total computation time for an algorithm (EQ. 5) is now

given by

1., = MAX (MAX (tp;)) + 1, '
cp lsjsC(OSisP(P')) comm ')

now, Icomm is given by

teomm = tet + tict ®
where, t represents the intra-cluster communication time and, fic/ denotes the inter-cluster communication time.

t;c; not only depends on the type of algorithm, how it is mapped, how many clusters it is mapped on but also

-depends on the effective bandwidth of the global interconnection. The effective bandwidth depends on the commun-

jcation requirements of the other tasks in the system which may be executing on other clusters. Let us assume that
t;c; denotes the communication time when_ there is no interference in the interconnection network, that is, Iy
denotes the data write and read time given that the network is available whenever inter-cluster communication is
needed. Then the actual inter-cluster communication will be degraded by a factor w which depends on the traffic
intensity in the network and the interference by communication of other tasks in the system. Therefore, instead of

1,1, the inter-cluster communication time will be wXZ;;.

§. Inter-cluster Communication in NETRA

Communication between processors within the same cluster is performed using the crossbar connections.
Communication between processors in different clusters can be performed in various ways. First, the global memory
is used for this purpose as follows. The processor(s) needing to send data to another processor in a different cluster
writes the data into designated locations in the memory. This involves setting the appropriate circuit through the glo-
bal multistage interconnection network to the memory module followed by a data transfer. The data is transferred in
block mode. The Memory Line Controller (MLC) updates the information about the destination port(s), the length
of the data block, block’s starting address and sets a flag indicating the availability of the data. Now, the destination

processor can read the data using this information. Note that this method permits out of order requests to be ser-

26

viced. For example, if the destination processor tries to read the data before it has been written, MLC informs the
processor of this situation and when the data is really written into the global memory then the MLC informs the des-
tination processor. This is a block level data-flow approach. The main advantages of this approach are that asyn-

chronous communication is possible, out of order messages can be handled and efficient pipelining of data can be

achieved.

The second alternative to perform inter-cluster communication is to use the DSP tree links. However, for dis-
tant inter-cluster communications, the tree may not perform well because of the root bottlenecks typical to any tree
structure. The main function of the tree structure is to provide control hierarchy for the clusters. Its links are mainly
used for program and data broadcast to subtrees, and DSPs use the tree links to send (receive) control information to
(from) other DSPs.

The third alternative strategy to perform inter-cluster communication is to use a high speed global bus that
connects all DSPs and one port from each cluster. The global memory is also connected to the bus and is accessible
to all the clusters via the bus. The communication is done explicitly by messages and synchronously. Figures 10 and
5 show the first and third communication methods. The ﬁgure# show how a processor P; of cluster C; will com-
municate with processor P j of cluster C j using the two strategies.

Inter-cluster communication is needed in the following cases : i) An algorithm is mapped in parallel on more

than one cluster and the processors need to communicate to exchange partial results or combine their results, ii) in

C C; C C C; C C C
P

GLOBAL INTERCONNECTION

[

Figure 10 : Inter-Cluster Communication Using Global Memory

L] ol ew wr e

I

Wi s & & o

LU

(o

gur oo

I

01

e

AN i

ume

"

(

e

v

t

27

an integrated vision system, output data of a task produced at one or more clusters needs to be transferred to the next

task executing on different clusters and, iii) to perform input and output of data and results.

The extent of inter-cluster communication depends on the type of algorithms, how they are mapped in paral-

lel, frequency of communication and amount of data to be communicated.

5.1. Analysis of Inter-Cluster Communication

There are several parameters that affect the inter-cluster communication time. The architecture dependent
parameters are: number of processors (i.c., number of clusters and number of processors in each cluster), number of
memory modules, number of processors per port connected to the global interconnection, and the type of intercon-
nection network. Some parameters depend both on the architecture as well as on the type of algorithms, how they
are mapped, their communication requirements when mapped onto multiple clusters etc. Furthermore, not only does
the communication time depend on the underlying algorithms but also on the network traffic generated by other pro-

cessors in the system because there may be conflicts in accessing the network as well as memory modules.

We consider an equivalent model of the architecture as shown in figure 11. The model shows N processors
connected to M memory modules through a global interconnection n‘etwork. N is given by C XP; + N g, where
C is the number of clusters, P, is the number of ports in each cluster and N g, is the number of DSPs in the system.
For simplicity, we assume that each cluster contains equal number of processors. The number of physical processors

will be given by C XP; XP,, where P, is the number of processors per port.

Ports Ports Ports

Global Interconnection

® © ©

Figure 11 : Equivalent Model for Global Communication

28

The following analysis is based on the analysis presented by Patel in [31,32]. He developed an analytical
model for evaluating alternative processor memory interconnection performance and showed that the analysis is rea-
sonably accurate. Consider execution of a typical parallel algorithm on multiple clusters. The execution will consist
of processing, intra-cluster communication and inter-cluster communication. Figure 12 shows the computation and

_communication phases of an algorithm. The computation time is given by Ip, the intra-cluster communication time

is given by f;, and the inter-cluster communication time is given by f;cy in terms of equivalent processor cycles. .

However, due to conflicts in the network or in memory modules, a processor may have to wait for w, cycles before
being able to access the network and write to (or read from) the mempgﬁ.ﬁln effeg;,_ tlus can be seen as the communi-
cation time being elongated by a factor w for eéch request, and instead of itrbeing L;q, it is now WXt as shown in
figure 12. Therefore, if the probability of accessing the global network in each processing cycle is m and for each
access the communication time is i, then the useful computation for f prbcessor cycles takes 1 + mXtXwXl;.,

where t = 1., +iy. The fraction of useful work (utilization U) is given by

1
U= .)
t + mXtXWXic
The average number of busy memory modules (or fraction of time when the bus is busy when the global intercon-

nection is a bus) is

NxmXtxt
= (10)
t + mXti Xt Xw }
and in terms of utilization,

tce + L =<ticl - Iep +1ct _biet
No Interference
tep + by WXt

With Interference

Figure 12 : Computation and Communication Activities of a Processor

L

W

L

il

L)

[

T

o

{

L 1 SR

"

D O |

T

1B

29

B = NsunxtigxU an
In (31] it is shown that the utilization primarily depends on the product mX¢;¢; rather than m and ¢;y indivi-
dually. In other words, the processor utilization primarily depends on the traffic intensity and to a lesser extent on

the nature of the traffic.

For a particular algorithm, all the parameters are known except w. The probability of acceséing the global
network is essentially given by the number of times communication is needed per processor cycle and is known
when an algorithm is mapped in parallel. The factor w depends on the algorithm parameters as well as the interfer-
ence from other processors accessing the global network and the memory, number of processors, number of
memory modules, the type of interconnection network and the access rate M.

Consider the processor activities again. A processor needing to access the global memory or the bus submits
requests again and again until accepted; on an average this happens for (w—1)xt,; time units. After the request is
granted, the processor has a path to memory for f;; time units. In other words, the network sees an average of
wXlicl copsecutivc requests for unit service time. Therefore, thé request rate (for unit service) from a processor as

seen by the network is

mxXwXti.;

= 12
14+ mxwxty (12

and in terms of utilization
m=1-U.
For details, the reader is referred to [31].

The model that we analyze is a system of N sources and M destinations. Each source generates a request with
probability m” in each unit time. The request is independent, random, and uniformly distributed over all destina-
tions. Each request is for one unit service time. The following is an analysis for a bus and for multistage delta net-

work.

Bus : We know from earlier discussion that

B = Nxmxti;;xU (13)
and also, assuming all sources have the same request rate, average amount of time the bus is busy is given by

B=[1-(1-m")"]. (14)

30

The equations 12 and 13 result in a non-linear equation

NxmxtigxU [1= (1 =m" ¥ =0. (15)

In the above equation, value of m’ can be substituted in terms of w, and hence, value of w can be computed.

If the request rate from sources is not uniform, i.e., if the request rate from source N; is m; then the above equation

becomes
j=N , =N ,
zl(mix‘kIU)xUj)-[l— _1'[1(1—m,-)]=0. B - (16)
j= 1= '

When evaluating performance of a parallel algorithm mapped across clusters there will be two request rates,

one for the processors taking part in runing the algorithm and the other for rest of the processors in the system which

will be an input parameter.

Multistage-Interconnection (Delta) : A delta network is an n stage network constructed from a@xb crossbar

switches with a resulting size of a"xb". 'Iherefcr)'r;:iv;}&i and M=b" Foricoxr?pleter description refer to

[32]. Functionally, a delta network is an interconnection network which allows any of N sources (processors) to
communicate with any one of the M destinations (memory modules). However, two requests may collide in the net-

work even if the requests are made to different memory modules. We use results from[32,31] to obtain average

number of busy main memory modules B, which is given by

B =Mxm, an
and the following equation in satisfied.

Nxmxt;gxU — M xm, =0 (18)
where,

mi a -
m; . =1—(1‘T) ,0<i<n
mo=1-U.
For details, the reader is referred to [31, 32].
These equations are solved numericaily to obtain the interference deléy factor w which is used in the perfor-

mance evaluation of algorithms mapped across multiple clusters.

|

ql . AR 1

L

@il

Il

ORI X

6l

LN ol @ Wi M

ail |

S SON B S S

el

ul

"

(!

31

52. Approach to Performance Evaluation of Algorithms

Performance of an algorithm mapped on multiple clusters is governed by various factors. Table 1, summarizes
time parameters affecting the performance of a parallel algorithm. The approach to evaluating the performance of an
algorithm is as follows. Using the parameters and a particular mapping, computation (fp), intra-cluster communi-
cation (f;) and inter-cluster communication time (#;c;) are determined. The traffic intensity for a processor(s) (or a

tict

cluster depending on how an algorithm is mapped) is given by . Using the traffic intensity values, and using

cp lel
a range of traffic intensity values for interference, the effective bandwidth of the network is determined, that is, the

factor w is computed. In a companion paper, we will present performance evaluation of several algorithms using the

above method.

Consider a parallel execution of an algorithm across clusters. If the execution time when the algorithm is exe-

cuted on a single processor is fs.4 then the speed up in the best case is given by

t
Sp=———o (19)
lep + 1+l

That is, assuming there is no interference while accessing the network or the global memory. Under the condi-
tions in which there are conflicts while accessing the network, the inter-cluster communication time will be given by
WX, and therefore, the speed up will be given by

’— tuq
tep +tci + WXt

Sp (20)

Table 1 ; Parameters for Performance Evaluation

P No. of proc. executing an algorithm
c Cluster size

N Total no. of proc. in the system

D Data size

P, No, of proc./port

M No. of memory modules

GICN Type of global interconnection

mxt Traffic intensity for interference in network

and memory accesses by (N—P) processors
myxty | Traffic intensity for network and

memory access by partition executing the algorithm

32
Hence, degradation in speed up with respect to the best case speed up will be
Sp-Sp _ __(w=D)Xtia a an
Sp tep +le + WXl
6. Summary

In this paper we presented a model of computation for IVSs. Using the model desired features and capabili-
ties of a parallel architecture for IVSs were anved. Then a multiprocessor architecture suitable for IVS (called
NETRA) was presented. The topology of NETRA is recursively defined and, hence is easily scalable from small 10
large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. NETRA isa
recursively defined tree-type hierarchical architecture whose leaf nodes consist of cluster of processors connected
with a programmable crossbar with selective broadcast capability to provide for desired ﬂez&i?ility. We presented a
qualitative evaluation is NETRA. Then general schemes were described to map paralle! algorithms onto NETRA.
Finally, an analysis to evaluate alternative inter-cluster communication stratzgies in NETRA was presented with a

methodology to evaluate performance of parallel algorithms mapped across multiple clusters.

In a companion paper (part II of this paper) we present performance evaluation of several common vision
algorithms on NETRA. The paper discusses performance of algorithms on one cluster, their analysis and implemen-
tation. Furthermore, the paper includes performance evaluation of alternative communication strategies as well as

presents mapping of algorithms across multiple clusters. The effect of interference in the global interconnection net-

work and global memory on the performance of algorithms is also studied.

6

[T

I

i |

i

QL

|

(IR
it

t W b

m wrome
T

bw b

rem

g oo ot

M

{

| S I

"o

t

(1

(2]

(31

(4]

(5]
(6]
(7]
(8]
9]
(10]
(11]
(12]

(13

(14]
(15]
(16]
(17
(18]

(191

(20]

33
REFERENCES

M. Sharma, J. H. Patel, and N. Ahuja, *NETRA: An architecture for a large scale multiprocessor vision
system,” in Workshop on Computer Architecture for Pattern Analysis ans Image Database Management,
Miami Beach, FL, pp. 92-98, November 1985.

Alok Choudhary, Janak Patel, and Narendra Ahuja, *“NETRA - A parallel architecture for integrated vision
systems II: algorithms and performance evaluation,”” IEEE Transactions on Parallel and Distributed
Processing (submitted), August 1989.

J. L. Bentley, “Multidimensional divide-and-conquer,’” Communications of the ACM, vol. 23,, pp. 214-229,
April, 1980.

C. Weems, A. Hanson, E. Riseman, and A. Rosenfeld, ““An integrated image understanding benchmark:
recognition of a 2 1/2 D mobile,” in International Conference on Computer Vision and Pattern Recognition,
Ann Arbor, MI, June 1988.

M. J. B. Duff, “‘CLIP 4: a large scale integrated circuit array parallel processor,’” JEEE Iml. Joint Conf. on
Pattern Recognition, pp. 728-733, November 1976.

M. 1. B. Duff, “*Review of the CLIP image processing system,” in Natonal Computer Conference,
Anaheim, CA, 1978.

L. Cordella, M. J. B. Duff, S. Levialdi, ‘*An analysis of computational cost in image processing: a case
study,’”’ IEEE Transactions on Computers, vol. c-27, no.10, pp. 904-910, 1978.

K. Batcher, “‘Design of a massively parallel processor,” IEEE Transactions on Computers, vol. 29, pp.
836-840, 1980.)
T. Kushner, A. Y. Wu, and A. Rosenfeld, ‘‘Image processing on MPP:1,”" Pattern recognition, vol. 15,, pp.
120-130, 1982.

J. L. Potter, “*Image processing on the massively parallel processor,” IEEE Computer, pp. 62-67, January
1983.

N. Ahuja and S. Swamy, ‘‘Multiprocessor pyramid architectures for bottom-up image analysis,”” /EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, pp. 463475, July 1984,

V. Cantoni, S. Levialdi, M. Ferretti, and F. Maloberti, °A pyramid project using integrated technology,” in
Integrated Technology for Parallel Image Processing, London, pp. 121-132, 1985.

A. Merigot, B. Zavidovique, and F. Devos, **SPHINX, A pyramidal approach to parallel image processing,”
IEEE Workshop on Compuler Architecture for Pattern Analysis and Image Database Management, pp.
107-111, November 1985.

D. H. Schaefner, D. H. Wilcox, and G. C. Harris, ‘A pyramid of MPP processing elements - xperience and
plans,’” Hawaii Intl. Conf. on System Sciences, pp. 178-184, 1985.

S. L. Tanimoto, “‘A hierarchical cellular logic for pyramid computers,” J. of Parallel and Distributed
Processing, vol. 1, pp. 105-132, 1984.

S. L. Tanimoto, T. J. Ligocki, and R. ling, *‘A prototype pyramid machine for hierarchical cellular logic,”” in
Parallel Hierarchical Computer Vision, L. Uhr (Ed.), London, 1987.

F. A. Briggs, K. S. Fu, J. H. Patel, and K. H. Huang, *PM4 - A reconfigurable multiprocessor system for
pattern recognition and image processing,’’ 1979 National Computer Conference, pp. 255-266.

H. J. Siegel et al., ‘‘PASM - a partitionable SIMD/MIMD system for image processing and pattern
recognition,”” IEEE Transactions on Computers, vol. C-30, pp. 934-947, December 1981.

Y. W. Ma and R. Krishnamurti, *“The architecture of REPLICA - a special-purpose computer system for
active multi-sensory perception of 3_dimensional objects,”” Proceedings International Conference on
Parallel Processing, pp. 30-37, 1984,

W. A. Perkins, “INSPECTOR - A computer vision system that leams to inspect parts,”” /EEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-5 , pp. 584-593, November, 1983.

(21]
(22]
(23]
[24)
(25]
[26]

(27]

(28]
29
(30
(1]

(32]

34

H. T. Kung and J. A. Webb, *‘Global operations on the CMU WARP machine,”” Proceedings of 1985 AIAA
Computers in Aerospace V Conference, October 1985.

T. Gross, H. T. Kung, M. Lam, and J. Webb, ‘*“WARP as a machine for low-level vision,” in /EEE
International Conference on Robotics and Automation, ST. Louis, Missouri, pp. 790-800, March 1985.

H. T. Kung, *'Systolic algorithms for the CMU Warp processor,”” in Tech. Rep. CMU-CS-84-158, Dept. of
Comp. Sci., CMU, Pittsburgh, PA, September, 1984.

F. H. Hsu, H. T. Kung, T. Nishizawa, and A. Sussman, *‘LINC: The link and interconnection chip,’’ in Tech.
Rep., Dept. of Comp. Sci., CMU, CMU-CS-84-159, Piusburgh, May 1984. "

M. Annaratone et al., ‘“The Warp computer : architecture, implementation, and performance,”” /EEE
transactions on Computers, December 1987.

C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, J. G. Nash, and D. B. Shu, ‘‘The image
understanding architecture,”” COINS Tech. Rep. 87-76..

M. K. Leung, A. N. Choudhary, J. H. Patel, and T. S. Huang, “‘Point matching in a time sequence of stereo
image pairs and its parallel implementation on a multiprocessor,”” in JEEE Workshop on Visual Motion,
Irvine, CA, March 1989. '

F. A. Briggs and E. S. Davidson, ‘‘Organization of semiconductor memories for parallel-pipelined
processors,”’ IEEE Transactions on Computers, pp. 162-169, February 1977.

D. Degroot, ‘‘Partitioning job structures for SW-banyan networks,” Proceedings of the International
Conference on Parallel Processing, pp. 106-113 , 1979.

H. J. Siegel, *‘Partitioning permutation networks : the underlying theory,” Proceedings of the International
Conference on Parallel Processing, pp. 175-184, 1979. ‘ .

Janak H. Patel, “‘Analysis of multiprocessors with private cache memories,”’ IEEE Transactions on
Computers, vol. C-31, pp. 296-304, April 1982.

Janak H. Patel, “‘Performance of processor-memory interconnections for multiprocessors,”” JEEE
Transactions on Computers, vol. C-30, pp. 771-780, October 1981.

an o« o« e | i

I

amy €

LI

L TH

