
1"r

"L

NASA Contractor Report 181958

ICASE Report No. 89-71

ICASE
MODIFIED CHEBYSHEV PSEUDOSPECTRAL METHOD

WITH O(N "1 ) TIME STEP RESTRICTION

Dan Kosloff
Hillel Tal-Ezer

Contract No. NAS 1-18605

December 1989

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, V£rginia 23665-5225

Operated by the Universities Space Research Association

(NAqA-CR-IoI958) MODIFILO CH_YSH_V

PSEUDOSP_CTRAL METHOD WITH O(N FXP -I) TIME

STEP RESTPICTION Findl Report (ICA_E) 2 o P
CSCL 12A

G3/o4

Unclas

025_02B

NASA
National Aeronautics and
Space Administration

Langley Research Center

Hampton, Virginia 23665-5225



rT:z:



MODIFIED CHEBYSHEV PSEUDOSPECTRAL METHOD

WITH O(N-I_ TIME STEP RESTRICTION
\ /

Dan Kosloff

Department of Geophysical and Planetary Sciences

Raymond and Beverly Sackler Faculty of Exact Sciences

Tel-Aviv University

Hillel Tal-Ezer 1

Institute for Computer Applications in Science and Engineering

and

School of Mathematical Sciences

Raymond and Beverly Sackler Faculty of Exact Sciences

Tel-Aviv University

ABSTRACT

The extreme eigenvalues of the Chebyshev pseudospectral differentiation operator are

O (N 2) where N is the number of grid points [4]. As a result of this, the allowable time

step in an explicit time marching algorithm is O (N -2) which, in many cases, is much below

the time step dictated by the physics of the P.D.E. In this paper we introduce a new set of

interpolating points such that the eigenvalues of the differentiation operator are O (N) and

the allowable time step is O (N-l). The properties of the new algorithm are similar to those

of the Fourier method but in addition it provides highly accurate solution for nonperiodic
I

boundary value problems.
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1. Introduction

Consider the first order hyperbolic initial boundary value problem

ut-u_ = 0 -1<x<1, t>__O (1.1)

u(x,0) = u°(x) -1<x<1 (1.2)

u(1,t) = s(t) t > O. (1.3)

A standard pseudospectral method [5] for solving (1.1)-(1.3) is based on interpolating the

solution at the extremal points

xi =cos(N ) i-O,'",N (1.4)

of the Nth-order Chebyshev polynomial

TN(x) = cos(N arccos(x)). (1.5)

Using this method for space discretization and a standard explicit scheme (e.g., Runge-

Kutta) for time discretization, one encounters a stability condition which has to satisfy [5]

At = O(N-2). (1.6)

This restriction is very stringent and forces the user to march in time steps which, in many

cases, are much bellow the time step dictated by the physics of the problem. A way of

overcoming this annoying phenomenon is to use implicit or semi-implicit time marching

techniques. Since the pseudospectral differentiation matrix is dense, the resulting algorithm

is highly time consuming. Therefore, we would like to find a way to advance explicitly in

time with a less restrictive stability condition. Our research is aimed at this target.

Chebyshev points (1.4) are bunched near the boundaries with minimal spacing of O(N-_).

Since the pseudospectral method is global, there is no direct relation between the minimal

spacing and the stability condition as in the finite-difference method [9]. Nevertheless, nu-

merical experience and heuristic reasoning led us to 'blame' the super fine grid near the

boundaries for the severe stability condition (1.6). When there are sharp gradients near the

boundaries, the clustering of points is needed for resolution and the small time step can

also be anticipated by physical reasonings. But when the high gradients are elsewhere, or

if the solution is evenly smooth, there seem to be no justification in putting more points

near the boundary. Thus, we are led to the conclusion that the numerical tool we are using

(polynomial interpolation) is not appropriate in these cases.

In [2], Bayliss et al. describe a physical model with very sharp gradients. In order to

overcome the numerical difficulties, they have designed an algorithm where the problem is
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transformed so as to minimize some func.tional. In our research, we use a similar transfor-

mation approach. The collocation points are chosen as

x,=g(yi;cr) -l_<x,_<l i=O,...,N, 0_<(_< 1, (1.7)

where

(1.8)

a is a parameter and g(y; a) is a 'stretching function'. By a proper choice of the parameter

a we increase the minimal spacing near the boundaries such that

Ax_i. = O (N-1) . (1.9)

Consequently, we are able to advance in time with the favorable stability condition

At = O(N-'). (1.10)

Moreover, it is shown that, as N --* ¢x_ , one needs only two points per wavelength for

resolution (as in the Fourier method ) and not _r points as in the Chebyshev case [5]. Thus,

fewer points are needed to model the P.D.E. (a saving of almost 40% ). The transformation

function is described in Section 2. In Section 3 we present the resolution analysis which also

reveals the approximation subspace on which the solution is projected. In order to efficiently

implement the algorithm, it is important to choose the appropriate parameter a and this

subject is discussed in Section 4. In Section 5 we present a more genera! transformation

Which gives additional flexibility to the new interpolation method. The paper is concluded

in Section 6 in which we present numerical results.

2. New Interpolation Points

Chebyshev pseudospectral solution of (1.1)-(1.3) is based on approximating the spatial

derivative by differentiating analytically the interpolating polynomial. If v is an N

dimensional vector which approximates u(x) at the interpolation points (1.4) then the

vector
F

v = Dv (2.1)

approximates u'(x) at (1.4). D is the spatial differentiation matrix which incorporates the

boundary condition (1.3). The entries of n are given in [6] ((2.1) can be accomplished by

using FFTs requiring only O(NlogN) operations [6]). The matrix D is very iii-condltioned,

with eigenvalues scattered in the left side of the complex plane [4]. While most of the

eigenvalues grow like O(N), a few of them are O(N 2) [4]. These extreme eigenvalues
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can be considered as the reason for the severe stability condition (1.6). We have to choose

At = O(N -2) so that all the eigenvalues of AtD will be included in the domain of stability

of the time marching scheme.

Furthermore,

Ax_i,, = min Ix,+, - x, I = 1 - cos(Tr/N) = O(N-2). (2.2)
!

This phenomenon of having domain of eigenvalues whose size is proportional to the reciprocal

of the minimal spacing is typical to many differentiation matrices. Even in cases where this

correspondence does not hold, as in the Legendre pseudospectral method [10] , we still have

to choose time step dictated by the minimal spacing due to numerical instability whose origin

is the ill-conditioning of the matrix which diagonalizes the differentiation matrix [12]. Thus,

we would like to have a set of interpolating points with larger minimal spacing. We are going

to attain this goal by mapping the Chebyshev points (1.8) to another set of points in [-1, 1]

such that the minimal spacing near the boundary is 'stretched'.

Let us consider the transformation

x = 9(v;4) -
arcsin(ay)

arcsin(a)

Computing the derivative at the grid points xi

• ,v e [-1,1]. (2.3)

xl = g(Yi; o<) 0 < i < N, (2.4)

where

cos( )
is accomplished by making use of the chain rule. For given f E C1[-1, 1] , we have

(2.5)

1 d/
dx g'(y; a) dy

(2.6)

Hence, we modify (2.1) to read

v'= ADv (2.7)

where A

and

is a diagonal matrix
1

Ai, - 9'(Yi; 4) (2.8)

, a 1
9 (y; a) = . (2.9)

arcsin(a) X/1 _ (ay)2

v and v' contains the approximated values of u(x) and u'(x) respectively at xi = g(Yl; a).

We have

3



Lemma 2.1. If xl ,0 < i < N, satisfy(2.4) then the minimal spacing between the points

is attained near the boundaries.

Proof: Define

Using the mean value theorem

0 = arccos(y). (2.10)

Axi Xi+ 1 -- X i

@
= d-_ff,)AO, 0i _< _i _< 0i+1, 0 < i < N- 1 (2.11)

while

By (2.3) and (2.10) we have

where

Since

is negative in 0 < 0 <

and the result follows.

Furthermore,

7r

A0 = --. (2.12)
N

dO - arcsin(a) h(O) (2.13)

h(O) = sin(O)

¢1 - (a cos(O)) 2 (2.14)

h'(O)= cos(O)(o,_- 1)

and positive in _ < 0 < 7r, -h(O)

(2.15)

attains its minima at 0 = O, _-

Axmin = 1 - z 1 -- 1 - arcsin(a cos(_))
arcsin(a)

It is easily verified that the R.H.S. of (2.16) is monotonically increasing with

and

2
limAxmi, = -- (as in Fourier ease) (2.17)

_-*1 i

limAxmin = 1-cos(N ) (as in Chebyshevcase). (2.18)ot ---*0

Lemma 2.2. If

then

a = 1 - N--5 + O (2.19)

_ 2re (N)+OiN, 0 (2.20)Axmi.- _/'_ + 2c + v_

=

4



Proof: Define z =-_ then

where

We have h(0) = 1 and

Ax,..i. - 1 - h(z)

arcsin(gl(z))

h(z) = arcsin(g2(z))'

gl(z) = (1- cz2)¢os(_z)+o (z3),

g2(z) = (1 -cz 2) + 0 (z3).

/2
h'(O) = lim |.

Using L'Hospital's rule it easily verified that

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

_m mh'(0)

_ 2 (v/-_+2c_vf_ " (2.26)
r

and the result follows. Based on Lemma 2.2 we conjecture that the time restriction of the

new interpolation method satisfies (1.10). Numerical results reported in section 6 assist this

conjecture.

3. Resolution Analysis

Let

fl(x) =cos(,_x) -1 <x<_l, (3.1)

......f2(X) = sin(vTrx) - 1 < x < 1 (3.2)

be functions whose derivative we want to approximate ( v is a real number which indicates

the wave number). Substituting (2.3) in (3.1) and (3.2) we have

fl(x) = ]l(Y) = cos[ra arcsin(c_y)] (3.3)

f2(x) = ]2(Y) = sin[m arcsin(ay)] (3.4)

where

In the appendix we show that

m - mr (3.5)
arcsin(a) "
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for m even

for m odd

Hence, using (3.3)-(3.5)

cos(me) = (-1)_Tm(sin(¢)),

sin(me) = (-1)-m-_T,,(sin(¢)).

(3.6)

(3.7)

_(y) = (-1)_Tm(ay) ( m even ) (3.8)

and

fu(V) = (-1)m_-XTm(aV) ( m odd ). (3.9)

Tm(ay) is a polynomial in V, therefore, interpolating at N+ 1 points, m _< N, will

result in the function itself. Hence, the new algorithm is exact for the following N + 1

functions (N even)

1, cos(2px), cos(4px), • • •, cos(Npx), sin (px), sin( 3px),.-., sin((N - 1)px)

where = =

p = arcsin(a).

(3.10)

(3.11)

The set of functions (3.10) span the approximation subspace. An elaborate discussion of this

subspace will be given in future paper.

Let us clarify now what we mean by resolution. If the Chebyshev expansion of a function

h(y) is

h(y) = akTk(y) Co = 2, Ck = 1 for k # O, (3.12)
k=0 t:k

and there is K such that a k decreases rapidly when k increases beyond K then we say

that h(y) is resolved by K terms. Since Chebyshev expansion is qualitatively similar to

interpolation in Chebyshev points (1.8), it is equivalent to saying that we need K points

in order to resolve h(y) by interpolation.

We speculate that ......

Conjecture: The function T,,,(ay) is resolved by M + 1

M = [am].

terms where

(3.13)

The reasoning for this conjecture goes as follows: let

Tm(ay) = _ larTu(y ) Co = 2, ck =1 fork # O,
k=O

(3.14)

6
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then

2 ) Tm(ay)Tk(y) dy.a'_ = _ v/-f_ y2
-1

Chebyshev polynomials satisfy the recurrence relation

(3.15)

T.+,(x)= 2_T.(x)- T._,(x). (3.16)

Hence

2 f {2ayTm-l(Cr_2(_rY)} Tk(Y)dy 'a_--

-1

m > 2 (3.17)

a° =0, a_= 0, a_= _. (3.18)

By (3.16), 2yTk(y) = Tk+l(y ) -_- Tk_l(y) which imply the relation

a r_-_-a_ n-2 k>0 m>2, (a_ -_ =0).a_'=ck_(a_'_q 1+ k+1] - , - (3.19)

We have programmed (3.19) with initial values (3.18) and ran it for many values of m and

a and have always observed that when k < M, a_' are nondecreasing. Once k is greater

then M, a_' decreases very rapidly.

Therefore, using (3.5), the maximal wave number which can be resolved by the new

method is

rmax -- N arcsin(a) (3.20)

while, since (3.10)

N arcsin(c_)
FN ---

71"

is the largest wave number of mode resolved exactly by the new method.

Observe that

(3.21)

limr,_,x = N/2

lim rm._, = N/_r
a-'*O

(as in Fourier case),

(as in Chebyshev case).

Thus, by (3.22), asymptotically, two points per wavelength are needed for resolution.

We have shown that for r satisfying (3.5) with m even(odd), ]l(y)(]2(y))

polynomial in y. Let us discuss now the resolution of general trigonometric function

f(x) =exp(irrx).

We have
r_

f(y) = f (g(y; a)) = exp[iarcsin(a ) arcsin(ay)].

(3.22)

(3.23)

is a

(3.24)

(3.25)



If

then

rTr

arcsin(a)
- k + fl , 0 <_ fl <_ 1 , k integer (3.26)

](y) = exp[ik arcsin((_y)] exp[ifl arcsin(c_y)].

Let us assume, without loss of generality, that k is even then by Lemmas A.1, A.2

(3.27)

](y) = (-1)_ (Tk(ay) - i_/1- (oly)2Pk_l(Oly)) (_/1- (ay) 2 + lay) _ (3.28)

Resolution of ](y) by interpolation is influenced by the degree k of the polynomials

involved and by the singularities at ± _- The degree of the interpolating polynomial has toQ,"

be at least ak but the asymptotic rate of convergence depends only on the singularities.

The relevant theory is presented below in greater generality.

Let f(x) be an analytic function in E D [-1,1]. Since g'(y;a) (2.9) has singularities

at y = :hl/a ,so does ](y) = f(g(y;a)). Define

B= (_1, 1) (3.29)

and assume that a is close enough to 1 such that

B C g-' (E). (3.30)

Thus, ](y) is analytic in B. The rate of convergence of polynomial interpolation at

Chebyshev points is based on the following theory from [13]: let K be a bounded continuum

in C such that K c -- the complement K is simply connected in the extended plane and

contains the point at infinity. For such K there exist a conformal mapping _(w) which

maps the complement of the unit disc onto K c [13]. Let (I)(z) be the inverse of _(w) and

B, = {z: IO(z)l = t} ( t > 1) (3.31)

denote the level curves in K c .

Theorem 2.1: Suppose t > 1 is the largest number such that f(z) is analytic inside Bt. The

interpolating polynomials Pn(z) with interpolating points z_ that are uniformly distributed

on K then satisfy

lim max If(z ) - P.(z)l- _ _- -.1 (3.32)
n---_oo zEK t



Since Chebyshev points satisfy the definition of uniformly distributed points on [-1, 1]

[13], the asymptotic rate of convergence can be computed by making use of this theorem.

We choose K = [-1,1], and the relevant conformal mapping is given by [8]

¢(y)=y 1.

Assume now that if .f(y) has additional singularities in the complex plane then

enough to 1 so that the largest t corresponds to the singular points 4-1. Thus

l+vff-a 2
t = (3.34)

O_

and the asymptotic rate of convergence is

1 1 - vrf - a 2
- = (3.35)
t a

Hence, by interpolating at N + 1 points, the asymptotic accuracy is c¢ where

(1e = (3.36)

and c is constant which depends on f but does not depend on N or y.

(3.33)

is close

4. On the Choice of the Parameter

For a predetermined degree N , we would like to choose the appropriate parameter

a. We give below three constructive ways for choosing a, based on different considerations.

Resolution considerations - Sometimes we have an idea on the maximal wave number

(Vma_) which we want to resolve. For instance, if there is a source term in our equations with

known band of frequencies. In this case we will solve (3.20) for a. Assuming that a is

close to 1 we can simplify (3.20) and use instead

If

then

N

er : sin (2 - N_r )

N
rm._ < --. (4.1)

2

N

, j << -_- (4.2)

= COS 71" )

J

(4.3)

being the number of modes which we 'give up' resolving. Expanding in Taylor series

1
c_ = 1 - 2 j2 +.-- (4.4)



which satisfies(2.19) and by using (4.4) and (2.20)weget

2 1
j + _ + 1N + 0 t" _kN-2}.

Ax,,i, (4.5).m.

_Y551

Remark 4.1 - Resolution analysis is closely related to maximal spacing analysis. By the

sampling theorem we know that for any sampling interval A, there is maximal mode wc

called the Nyquist critical frequency and is given by wc = _. For Fourier method we have

Ax = -_ hence the maximal mode which can be resolved is N Similarly, in the Chebyshev, "_'.

case Axmax = ±u and the maximal mode is -gN which is equivalent to stating that rr

points per wavelength are needed for resolution. This result is given also in [5] based on

expanding the trigonometric functions in Chebyshev polynomials. By Lemma 2.1 we get

that for the transformed interpolating points, the maximal spacing is attained in the center

of the interval. Therefore

A xrnax .(0)
arcsin[c_ sin(_)]

-- arcsin(a) (4.6)

Substituting (4.3) in (4.6) we get

1 N
llm -- -j (4.7)

N--*oo AXmax 2

as in (4.2).

Accuracy considerations - For given

explicit expression
2 _a.

t+t-1

To examine the minimal spacing dictated by this choice, we expand

¢ and N, we can solve (3.36) for

1 2 (N) 2a=l-_ln (e) +O(N-2).

a and get an

(4.8)

in Taylor series

(4.9)

The expansion (4.9) is of the form (2.19), using it and (2.20) we get

2r 1

Axmi,,- ([ln(e)l + k/r2+ ln2(¢) ) N + O(N-2)" (4.10)

and the computed accuracy will depend on the constant

c. Observe that there is a _give and take' relation between resolution and accuracy. By

decreasing rmax, a is decreased (4.1) and therefore ¢ is getting smaller (3.36). Hence, by

The agreement between ¢

=

=

G
m

z
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sacrificing the resolution of the high modes we get in return higher accuracy on the rest of

the modes. See numerical results in Section 6.

Adaptive approach - We have described above two formulas which give explicit expres-

sions for a. One can also consider a third approach, an adaptive algorithm for computing

a. Observing (2.6) we can regard the method described in this paper as a 'preconditioning'

one. For a given function with large gradients, we are looking for a parameter a such that

after the transformation ](y) will be a smooth function. One can consider the tail of the

series of pseudospectral Chebyshev coefficients to measure the smoothness of ](y). Since, by

stability considerations we would like

should find

ama_ = max {a ]

where e0 is a given tolerance and ai

a to be as large as possible, the adaptive algorithm

ESN- [a,(a)[ )

<e0 k <<N_ (4.11)E_0 [a,(_)l '

are the computed Chebyshev coefficients. When the

adaptive approach is implemented in time dependent problems, the search for an optimal

a should restart whenever the solution behavior has been changed significantly.

5. Non-Symmetric Transformation

The transformation function (2.3) is symmetric. The interpolating points (2.4) are dis-

tributed symmetrically around the origin. When there is a boundary layer on one side of

the domain, we would like to have the flexibility of putting more points on this side. To this

end we modify the transformation (2.3) and take

1 (_(y; a, fl) - b) (5.1)
x = g(y;a,_) = a

where

and

For the derivative we have

g(Y; a'fl) = arcsin ( 2afly + a - fl)+8

1

a= _ {_(I;a,fl)- 0(-I; a, fl)}

I

b= _ {0(1; a,/_) + _(-1; a, fl)}.

a

- vf_4(l - _y)(1 +/_y).

(5.2)

and the parameters

and x = -1

future paper.

(5.3)

(5.4)

g'(y; a, fl) (5.5)

a and fl control the distribution of interpolation points near x = I

respectively. An elaborate discussion of this transformation will be given in a

11



6. Numerical Results

The following notations are used in this section:

N = number of interpolating points,

E = relative error of the der{vative in the maximum norm,

j = number of unresolved modes (4.2),

Yi = Chebyshev interpolating points (2.5),

zl = check points,

z,=g-_ ;.)) , 0<i<=N:i. (6.1)

In the first table we present the spectral radius p of AD (2.7) where a is given by (4.3).

The spectral radius of the Chebyshev pseudospectral differentiation operator D is given in

the last column. Using the new method for time dependent problems we have observed that

At(new method) p(D)
_ (6.2)

At(Chebyshev) p(aD)"

Thus, from Table I we see that for N = 128 for example, the time step restriction of

the new algorithm is almost 8 times larger then the one used in a standard Chebyshev

discretization.

i

Table I

j N a

1 16 0.9808

1 32 0.9952

1 64 0.9987

1 128 0.9997

2 16 -0.9239

2 32 0.9808

2 64 0.9952

2 128 0.9988

3 16 0.8312

3 32 0.9569

3 64 0.9892

3 128 0.9973

Spectral Radius

p(AD)
18.927

42.897

92.286

192.165

17.934

41.061

89.957

189.454

18.624

44.600

97.846

204.997

p(D)
23.560

91.559

363.779

1452.706

231560

91.559

363.779

1452.706

23.560

91.559

363.779

1452.706

The results given in Tables II and III demonstrate the resolution and accuracy properties

of the new algorithm and Clarify the 'give and take" relation between the two as mentioned

in Section 4. We applied the new differentiation algorithm to the trigonometric functions

uk(x) = cos(k_rx) I < k < 16, (6.3)

12
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and obtained approximations vk , k = 1,..-, 16. a is given by (4.3). Corresponding results

for Chebyshev method are shown in the last column. In the last row we have printed e as

given by (3.36). The resolution property of _-j modes (4.2), (4.7) is clearly demonstrated• 2

in Tables II, III. As j increases, so does the accuracy of the modes resolved. As shown in

Section 3 the new method should be exact if

2kN
m - (6.4)

N- 2j

is an even integer. This explains the high accuracy exhibited in relevant entries of Tables II

and III. Comparing Table III to Table II we see that the accuracy by which the low modes

are resolved is almost the same. The effect of increasing N is in the number of modes

resolved with accuracy imposed by the choice of j.

H

Table II N = 32

k E(j = 1) E(j = 2)
1 9.35E-03 7.14E-04

2 1.S6E-02 1.35E-03

3 2.84E-02 1.82E-03

4 3.70E-02 2.02E-03

5 4.76E-02 1.88E-03

6 5.44E-02 1.25E-03

7 6.29E-02 3.19E-14

8 7.04E-02 2.04E-03

9 7.76E-02 5.07E-03

10 8.36E-02 9.26E-03

11 8.58E-02 1.48E-03

12 8.46E-02 2.10E-02

13 7.82E-02 2.48E-02

14 5.70E-02 4.07E-14

15 3.87E-14 1.25E+00

16 1.69E+00 1.92E+00

[ 4.32E-02 1.79E-03

E(j = 3)
3.78E-05

6.23E-05

5.84E-05

2.06E-05

5.14E-05

1.42E-04

2.10E-04

1.68E-04

1.54E-04

1.07E-03

3.12E-03

6.60E-03

3.52E-14

7.39E-01

1.79E+00

1.76E+00

6.99E-05

E(j = 4)
1.57E-06

1.77E-06

1.66E-06

2.97E-06

4.42E-06

3.90E-14

1.36E-05

2.93E-05

4.10E-14

2.46E-04

1.16E-03

3.01E-14

3.75E-01

1.32E+00

1.86E+00

1.79E+00

2.49E-06

Echb

1.57E-12

5.83E-13

3.29E-13

5.65E-11

4.41E-08

7.56E-06

4.14E-04

9.33E-03

9.34E-02

4.52E-01

8.94E-01

1.56E+00

1.72E+00

1.70E+00

1.34E+00

1.63E+00

13



k

1 4.55E-03

3 1.36E-02

5 2.26E-02

7 3.16E-02

9 4.04E-02

11 4.90E-02

13 5.74E-02

15 6.52E-02

17 7.25E-02

19 7.89E-02

21 8.38E-02

23 8.66E-02

25 8.57E-02

27 7.85E-02

29 5.82E-02

31 1.48E- 13

Table III N = 64

E(j = 1) E(j = 2) E(j = 3) E(j = 4) EChb

3.53E-04

1.03E-04

1.60E-03

1.99E-03

2.13E-03

1.93E-03

1.26E-03

6.58E-03

1.99E-03

4.89E-03

8.91E-03

1.42E-03

2.07E-03

2.72E-03

2.46E-02

1.5lET00

2.04E-05

5.53E-05

7.29E-05

6.35E-05

2.14E-05

5.26E-05

1.47E-04

2.32E-04

2.44E-04

6.26E-05

5.40E-04

1.96E-03

4.94E-03

1.01E-02

9.01E-14

2.03E+00

1.04E-06

2.49E-06

2.26E-06

1.99E-13

3.53E-06

6.13E-06

4.12E-06

6.77E-06

2.76E-05

4.56E-05

5.81E-14

3.12E-04

1.53E-03

4.48E-03

7.12E-01

1.91E+00

3.49E-11

7.16E-12

3.50E-12

1.85E-12

1.02E-12

2.15E-12

1.55E-08

1.48E-05

2.62E-03

9.76E-02

6.61E-01

1.78E+00

1.76E+00

1.86E+00

1.62E+00

1.77E+00

4.32E-02 1.84E-03 7.80E-05 3.21E-06

In Tables iV and V we present mesh refinemen_t-char_ for the functions

0.05

fl(X) -- X2 + 0.05 '
(6.5)

exp(2x)

f_(x) = 2 + cos(15x) (6.6)

respectively. In Table IV, a is given by (4.3) with j = 3. Observe the fast convergence up

to N = 64 . The error is not decreasing beyond this points, since all the modes have been

resolved to the accuracy enforced bythe choice of j. in Table V, a is computed by (4:8)

with e = 1.E - 05 . The results for Chebyshev method are given in the last column.

Table _ Mesh refinement chartl f_(x)= o.osx_--_.05

N

16 0.83147

32 0.95694

64 0.98918

128 0.99729

256 0.99932

ct E(j = 3) E_hb

9.394E-02

1.019E-03

1.507E-06

1.794E-06

1.939E-06

1.777E-01

9.281E-03

1.486E-05

8.845E-11

9.923E-11
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Table V Mesh refinement chart, f2(x) "-- 2-{-cos(15x)

N

16 0.80761

32 0.94208

64 0.98452

128 0.99603

256 0.99899

c_ E(e = 1.E-05) Echb
1.853E-01

9.007E-02

2.298E-03

1.968E-06

6.344E-06

1.717E-01

6.461E-02

9.032E-03

5.774E-05

1.669E-09

We have solved the model problem described in the introduction (1.1)-(1.3) and the

results are reported in Table VI. The solution is computed at t = 1 using fourth order

Runge-Kutta as time marching algorithm. The initial and boundary conditions are

u°(x) = [xexp-C_-l)2cos(mrx) -(-1)'_] ' , (6.7)

s(t) o (6.8)

respectively. The numerical solution is compared to the exact solution

0 x+t>lu(x,t)= [(x+t)exp -(_+t-1)2cos[mr(x+t)]-(-1)_] ' x+t<l.- (6.9)

The results presented in the table provide a comparison between the new method, where c_

is computed by (4.3) with j = 1, and standard Chebyshev method, nsteps is the number

of time steps. For m = 6 we needed 91 points, in the Chebyshev case, in order to

achieve the accuracy given in the last column. For stability we had to use 1300 time steps.

Taking smaller At would not decrease the error as shown in the second row. Using the new

algorithm, we took only 65 points. 80 time steps were sufficient for stability. In order to

get accuracy close to the one we had in the Chebyshev case, 200 time steps were needed.

Reducing At beyond this point would not reduce the error significantly as shown by the

fifth row. In the next set of experiments we took m = 12. In both cases, we had to double

the number of points in order to resolve the solution. The results are provided in the rest of

the table.
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Table VI Time-dependent problem (1.1)-(1.3)

m N

6 91 0

6 91 0

6 65 0.9988

6 65 0.9988

6 65 0.9988

12 181 0

12 129 0.9997

12 129 0.9997

c_ nsteps max(lED/max(lul)
1300

2600

80

200

300

5200

200

600

8.59E-03

8.53E-03

1.79E-01

7.08E-03

5.64E-03

5.32E-03

2.22E-01

5.71E-03

Lamb Problem

The problem is of wave propagation in a uniform and isotropic elastic two dimensional

halfspace subjected to a point source applied in the vicinity Of the free surface. This problem

is numerically challenging because of the presence of Ray!eigh surface waves around the

free surface the calculation of which requires an accurate representation of the boundary

conditions.

Let x and y denote horizontal and vertical cartesian coordinates respectively and t

the time variable. The system of equations to be solved is

Ot - p\ Ox + Oy ) + L

at - p _, Oz + Oy ] +fu

Ocrx_

Ot

O0"yy

Ot

Oa_y

Ot

oy. a
- (A+2/z)-_-x + Oy

_ aov. oy,
Oz + ()_ + 2#) Oy

- It--ff-y-y+l_ox.

(6.9)

(6.1o)

(6.11)

(6.12)

(6.13)

Vx and Vy respectively denote the horizontal and vertical velocities, a**, auu and a,_

are the stress components, f, and f_ are the body forces, p is the density and A and

# are Lamb's constants. The system is the same as the orre ,used by Bayliss et. al. [1] for a

fourth order finite difference scheme.

During the calculations, the variables V_, Vu, a_, ayy and a_ are advanced in time

after specification of the body forces f_ and fu" In this work we choose to approximate the

horizontal derivative by the Fourier method whereas for the vertical coordinate y we choose

the modified Chebyshev discretization as described in this paper, using the transformation

function (5.1). The boundary conditions at y = 0 is au_ = _r,_ = 0 whereas for the

=
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bottom boundary y = L we choose the condition that the incoming characteristics are

zero [1]. In addition an absorbing strip was applied along the lower boundary and the sides

of the grid to prevent reflections or wraparound from the boundaries [7]. For the present

problem the material parameters had uniform values of p = 1.2g,/_2, and P and S

velocities of Vp = _ = 2000"/8,c and V, = _ = 1155"/o,c respectively. For the

body forces, f, = 0 and f_ = 5(x- Xo)5(y - yo)h(t), where x0 = 250", y0 = 1.8m

and h(t) was a band limited Ricker wavelet with highest frequency of 40Hz [11]. For

the spatial discretization Ax = Ay = 10" and the grid modification parameters (5.1)

are a = 0.729 and fl = 0.620. The solution was advanced in time to ls,¢ by the

fourth-order Runge-Kutta method using a time step of 0.002 seconds. This time step is

approximately sevea times larger then the maximum allowable time step for an ordinary

Chebyshev discretization, and is approximately equal to the time step which would be used

with a uniform Fourier grid from accuracy considerations (e.g. cat-_- _ 0.4 ).

Figures 1-3 present a comparison between the numerical and analytical horizontal dis-

placement time histories at points located at respective distances of 200", 500" and 800,,

from the source. A corresponding comparison of vertical displacements is presented in Fig-

ures 4-6. As the figures show the match between numerical and analytical solutions is

virtually perfect.
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Lemma A.I: For m even

For m odd

APPENDIX

cos( ¢) " "=

sin(me) = (-1) 2"_tTm(sin(¢)).

(A.1)

(A.2)

Proof: Chebyshev polynomials satisfy the recurrence relation

Tn+l(X ) = 2xTn(x ) -- Tn_l (x).

Using basic trigonometric identities, the reccurence relation and induction we get

(A.3)

¢os((m + 2)¢) = 212cos2(¢)- llcos(m¢ ) - cos[(m- 2)¢ 1

----- (--1) _+1 {212 sin2(¢)- liTre(sin(C))- Tm_2(sin(¢))}

= (-1)_+lTm+2(sin(¢)). (A.4)

We will use now (A.4) to show (A.2).

sin((m + 2)_b)

m+l
= (-1) 2 T,,,+2.

= cos(2¢) sin(m_b) + cos(me) sin(2¢)

= (1 - 2sin 2 ¢) (-1)-_=_Tm (sin(C)) + sin(C) {cos ((m + 1)¢) + cos ((m - 1)¢)}

= (-1) 2_a {(2sin 2 ¢ - 1)Tin(sin(C)) + sin(C)[Tm+t(sin(¢)) - Tm_l(sin(¢))]}

= (-1) _2"_a{2 (2sin2(¢)- 1) Tin(sin(C))- T,__2(sin(¢))}

(A.5)

Lemma A.2: For m odd

and .for m even

where Pro-l, Q,_-I

cos(me) = cos(¢)Pm_l(sin(¢)) (A.6)

sin(me) = cos(¢)Qm_,(sin(¢))

are polynomials of degree m - 1.

(A.7)

Lemma A.2 is easily verified by using trigonometric identities, induction and the results of

Lemma A.1.
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