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Abstract: It is becoming increasingly evident that, in order to optimize the observing effi-
ciency of large telescopes, some changes will be required in the way observations are planned
and executed. Not all observing programs require the presence of the astronomer at the tele-
scope: for those programs which permit “service observing” it is possible to better match
planned observations to conditions at the telescope. This concept of “flexible scheduling” has
been proposed for the VLT: based on current and predicted environmental and instrumental
conditions, a flexible scheduler would help the telescope operations staff select and execute
observations which make the most efficient possible use of valuable telescope time. A similar
kind of observation scheduling is already necessary for some space observatories, such as Hubble
Space Telescope (HST). Space Telescope Science Institute is presently developing scheduling
tools for HST, based on the use of “artificial intelligence” software development techniques.
These tools could be readily adapted for ground-based telescope scheduling since they address
many of the same issues. This paper describes the concepts on which the HST tools are based,
their implementation, and what would be required to adapt them for use with the VLT and
other ground-based observatories.

“All too frequently at the moment someone travels to [.a Silla for a programme
which requires excellent seeing to have only some mediocre nights, while another
astronomer a week later experiences superior conditions which his programme does
not need. With the VLT such wastcful procedures cannot be accepted.”

- Proposal for the Construction of the 16m Very Large Telescope

1 Introduction

et

Optimizing telescope utilization is an important but difficult problem. Observing time on large
telescopes is a scarce resource: oversubscription by factors of several are already typical, and
this is hardly likely to decrease with the construction of newer and more advanced facilities.
It is thus important to consider how the utilization of existing and planned telescopes can be .
increased to the maximum extent possible. '

The simplest mode of telescope operation i8 the “classical” cne: allocate fixed blocks of time to >
individual programs to be carried out by the astronomer who travels to the telescope for this
purpose. This mode has the advantages that advance planning is possible, and that observers

TTo appear in Proceedings of the ESO Conference on Very Large Telescopes and their Instrumentation, Garching,
March 1988,
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are in control of their own observations and, except for weather, are primarily responsible for
their quality. The drawbacks of this mode are well known: too much is left to the vagaries of
the weather, and both individual programs and overall observatory efficiency can suffer as a
result. The most obvious way to improve this situation is to move towards an integrated mode
of operation in which nights are not pre-allocated to specific programs but can be scheduled
dynamically as conditions warrant (“fiexible scheduling”). In this way observations can be
matched to the prevailing environmental and instrumental conditions. Not only does this
premise to increase the effective utilization of the telescope, but it also increases the chances
that any individual program will be carried out under its moat appropriate conditions. This
latter point is especially important for programs with the most stringent observing requirements.
Some programs will continue to require the presence of the observer at the telzszope, so that
in practice some mixture of classical and integrated operation is likely to evolve. Remote
observing offers an important way to bridge these two modes, especially if remote observing
stations become sufficiently widely available so that travel and advance planning for access to
them can be minimized.

So long as the responsibility for scheduling and executing observations is vested solely in the
individual astronomer, observatory-level telescope scheduling can be limited to the relatively
simple probiém of allocating blocks of time to each accepted program. The development of
flexible scheduling will greatly expand the scheduling needs of an observatory, to the point that it
is not reasonable to expect operations staff to schedule telescope usage without software support.
It is therefore important to consider what elements are necessary to provide thie support, and
how automated scheduling can become an effective part of overall telescope opere tion.

2 Aspects of Telescope Scheduling

There are several aspects of telescope operations that are related to scheduling, ranging from
the initial allocation of observing time to the scheduling decisions made within one night by
the observer. What is common to these various aspects is the existence of a pool of candidate
activities (observations, programs, instrument tests, eic.) to be scheduled over some time
period. What distinguishes one aspect from another are the goals and constraints that act as
dominant scheduling factors.

From an operations point of view, telescope scheduling can be roughly divided into long-term
and short-term problems. The long-term problem is concerned with construction of an overall
scientific program for one or more observing periods, without necessarily considering the details
of which observations are scheduled on which night. This process is not often thonght of as
scheduling, but in fact it is essentially the construction of a high-level integrated schedule
incorporating the scientifically highest-ranked proposals, balanced against available resources
and satisfying institutional or policy objectives. In this coniext the activities to schedule will
generally be whole programs, although blocks of reserved time or individual observations could
equally well be considered.

Short-term scheduling can be viewed as the process of deciding on a sequence of individual
obscrvations to schedule over a more limited time range. In general a short-term schedule
implements in detail a portion of some long-term schedule, on which it is based and to which
it must conform. The nature of the short-term scheduling problem depends greatly on the
“mode” of observation, where by this we distinguish “classical” observing (carried out by the
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astronomer who travels to the telescope for a run of a specified number of nights) from the more
recently developed “service” or “absentee” observing |carried out by on-site telescope operations
staff from specifications provided by the proposing astronomer) and from “remote” observing
(carried out the by the astronomer, but via remote control from a site more convenient than
the telescope itself). Exneriments with service and remote observing have been conducted at
several observatories (e.g. [1,2]) anc it is expected that these modes will become more and more
widely used. Time for these observing modes will thus have to be allocated for each observing
period, along with the nights for classical observing.

Long-term and short-term scheduling are of course intimately related. Both are subject to
the same basic telescope and operational constraints. Both schedule the same activities but
at different levels of granularity. It is important to devise long-term schedules which can be
implemented when considered in detail, just as it is important that short-term schedules satisfy
the overall boundary conditions imposed by a long-term schedule. These differences in timescale
and level of granularity are not fundamental: as discussed further below, long-term and short-
term scheduling can be regarded as different views of essentially the same process and could
well make use of the same underlying scheduling software.

The short-term scheduling “horizon” is fundamentally limited by the unpredictability of the
weather: there is therefore no point in constructing in advance short-term schedules for extended
periods of time. This is the motivation for flexible scheduling, i.e. short-term scheduling (and
re-scheduling) conducted on the same timescale as changes in the weather. The ability to
deal with the unpredictability of the telescope environment, and to effectively handle schedule
disruptions when they inevitably occur, are essential components of any telescope scheduling
system.

It is evident that the greatest efficiency gains from automated scheduling will be obtained when
the greatest flexibility exists to exploit good scheduling opportunities as they arise. There are
three main requirements on this flexibility:

1. the physical capability to respond to schedule changes (<.g. rapid instrument changeovers).
This factor is well recognized and, e.g., is being designed into the VLT from the outset
[3]. 1t will not be considered further here.

2. a sufficiently rich pool of candidate observations that a probable good match can be found
to current environmental conditions.

3. the absence of prior commitments that would forbid taking advantage of new and better
scheduling opportunities when they occur.

Clearly, criteria (2) and (3) above are most satisfactorily met in service observing mode, where a
relatively large pool of observations is available to be scheduled at the discretion of the telescope
operations staff. Classical observing offers the fewest opportunities for schednle optimization
because of the generally limited number of choices nvinlable to respond to varying observing
conditions. To the extent that remote observing is simply classical observing via remote control,
schedule optimization is also very limited. However, since the travel requirements to a remote
observing station are not as strict as to the telescope site itself, it can be expected that some
degree of fiexibility could be incorporated into remote observing which would be impractical in
the pure classical observing mode.
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3 Avutomated Scheduling

In this section we first discuss the basic elements and capabilities that are required of a telescope
scheduling system, and then consider various approaches to implementing these elements.

3.1 Scheduling Tools: Concept

The approach we take here is that automated scheduling is fundamentally a support tool for the
people who are responsible for making scheduling decisions. Automated scheduling software can
provide this support by rapidly evaluating scheduling choices based on appropriate constraint
and preference criteria. It is essential to realize from the start that these criteria basically
represent human decision rules and value judgements.

In this approach one of the most important characteristics of a scheduling system is how it
interacts with the user. The user must have visibility into all aspects of the scheduling prob-
lem and the evolving schedule. The user must also have control, i.e. the ability to override
any decisions made by the scheduling software, and the ability to create and evaluate alterna-
tive schedule fragments. Because of the large volume of information required to specify even
modest-sized realistic scheduling problems, it is almost essential to utilize graphical display
and interaction capabilities. This leads to the concept of implementing scheduling tools on

single-user workstations, where high-speed graphics and dedicated processing power can both
be exploited.

Fundamental to the operation of any scheduling system is an adequate description of precisely
what activities are to be scheduled. Not only the activities but also their statuses and the
relationships among them must be known. This implies the existence of what is essentially an
up-to-date database of activities to schedule.

A realistic scheduling system must have the ability to handle a rich variety of scheduling con-
straints, where by constraint we mean here any factor that affects when an activity can or
should be scheduled. It is not very difficult to focus on only one or a few aspects of schedule
optimization and find adequate solutions, only to discover that essential factors have been left
out of consideration and do not fit into the chosen scheduling framework. Constraints can be
roughly classified into three major categories:

o absolute constraints depend only on time and not on when other activities are schednled.
Examples of this type include target visibility constraints, moon brightness. and eclipse
times in binary systems.

» relative constraints represent explicit dependencies of an activity on when one or more
other activities are scheduled. Examples of this tvpe include precedence {order) constraints
and minimum and maximum time separation « on-traints.

e resource constraints specify implicit mutual dependencies of activities on each other. In-

cluded in this category are resource availability and capacity constraints.

Constrainta in all three categories may be either “sirict” or “preference”: strict constraints
cannot be violated under any circumstances; preference constraints specify conditions that are
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more desirable than others to appear in the schedule. Degrees of preference are of course
common and must be represented.

Since the primary purpose of automating telescope scheduling is to optimize telescope utiiiza-
tion, it is clearly important that a scheduling system adequately represent what is meant by
“optimal”. This is less straightforward than it might seem at first: scheduling goals vary de-
pending on the circumstances, so that a schedule which is optimal in some sense can be far from
optimal in another. For example, at different times the most important optimization criterion
could be some combination of ove-all telescope throughput, picking up a disrupted schedule,
diagnosing an instrument problem, and scheduling a best match to changing environmental
conditions. It is thus important that a scheduling system be flexible in terms of the high-level
criteria by which schedule optimality is judged.

The capability to weigh and balance conflicting constraints and goals is implicit in the discussion
of constraints and optimization above, but is worth noting separately as a major area that
must be addressed. Strict constraints can be exploited to help reduce the search required to
find optimal schedules: schedules tnat violate strict constraints can be quickly eliminated from
consideration. This in itself, however, does nothing to solve the problem of conflicting preference
constraints. For example, some balance must be struck between high priority observations and
those which better match current seeing conditions. Resolution of conflicting preferences is one
of the core issues that must be addressed by any scheduler.

On the more practical side, system flexibility and throughput are both important consider-
ations. Scheduling problems are not static. While many of the most important scheduling
constraints and goals can be well specified and will not change, others will arise as a reault of
operational experience with different types of observations. It should therefore be straightfor-
ward to “teach” the scheduling system about new constraints, goals, and optimization criteria
without a major redesign effort. Throughput is especially important in telescope scheduling
where the unpredictability of the weather will demand frequent reactive scheduling as well
as the ability to maintain a “grid” of simultaneous alternative schedvles for different weather
conditions.

Finally, we note that none of the above criteria make any essential distinction between long-term
and short-term scheduling: these differ only in that different types of activities, constraints,
and optimization criteria are relevant.

3.2 Approaches to Scheduling Software

Computer techniques for optimal scheduling have been i vestigated for a number of applications
(see, e.g., [4] for a comprehensive review and bibliography). Much of this classical work has fo-
cused on versions of the idealized “job-shop” scheduling problem, i.e. the problem of scheduling
n tasks on m machines. This problem and related ones are NP-complete. meaning essentially
that there are no efficient algorithms for finding optiml solutions (<ee. e v 51} Much of the
work on finding approximate solutions cannot be reaclily applied to “real” schedulir.g problems
(including telescope scheduling) because of the large number of simplifying assumptions that
must be made and because only very simplistic optimization criteria are permitted.

In recent years a variety of new software methodologies have been developed under the gen-
eral term of “artificial intelligence” (Al). This refers to a collection of software development
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techniques and tools that have evolved in the ccurse of computer science research as effective
ways to represent and solve certain kinds of problems. These techniques have moved from the
laboratory into widespread use in applications as their effectiveneas has been demonstrated.
For the purposes of automated scheduling. the most important of these are: a language (Lisp)
that is particularly appropriate for manipulating complex data structures and symbolic data;
object oriented programming with inheritance and message passing; rule-based programming
facilities; integrated graphics and window tools; and a rich software development environment..

Several artificial intelligence research efforts have considered scheduling as a domain where Al
techniques can be fruitfully applied. Of particular interest is the factory scheduling work of
Fox, Smith, and co-workers [6,7,8) who have developed a rich constraint representation and
versatile reasoning process for attacking realistic factory scheduling problems. While factory
scheduling shares a number of common features with telescope scheduling (most notably a
similar set of precedence and efficiency constraints), there are some important differences. The
most significant of these is the enormous variation in the degree of predictability of critical
scheduling constraints, e.g. from the weather at one extreme to the motions of celestial objects
at the other.

At the Space Telescope Science Institute (STScl) we have for some time been working on
a project (SPIKE) to apply Al software technology specifically to the problem of scheduling
Hubble Space Telescope [9,10]. HST scheduling is an extremely demanding task {11,12,13],
requiring the scheduling of some tens of thousands of exposures per year. These exposures are
subject to a large number of scheduling constraints [14,15], some derived {rom the scientific
goals of the proposer, some a consequence of HST design, operating characteristica, and low
earth orbit environment. Because HST operates almost entirely in a pre-planned mode, detailed
short-term schedules must be defined weeks ahead of time. These schedules are integrated, in
that exposures from many different proposals may be scheduled to occur during a single day of
observing.

As part of the SPIKE project we have developed a framework for representing and reasoning
with the multiplicity of constraints that enters into astronomical observation scheduling [16].
Associated with each activity to be scheduled (typically an exposure or coll:ction of exposures)
is a “suitability function”, a function of time whose value represents how desirable it is to
start an activity at that time. Suitability functions are derived from constraints, an arbitrary
number of which may be associated with each activity depending on the type of activity and
any specific factors that can affect when it is scheduled. The suitability function of an activity
is the product of all of the suitability functions derived from its constraints. This not only
mirrors an intuttive notion of how to combine different sonrces of evidence for and against for
scheduling an activity at a given time, 1t can also be shown to be logically required by the
plausible assumptions that the combination of evidence should bhe associative and monotonic

[17,18,16).

Suitability functions provide for “low-level” reasoning ahont scheduling constraints and prefer-
ences: there remains the problem of searching the encrimons space of <oheduling possibilities to
find optimal scheduling choices. This process, referied 1o as “strategic” scheduling, has been
approached in three ways in SPIKE [13

¢ procedural search: this includes standard search techniques such as best-first or most-
constrained-first algorithms. These approaches tend to be computationally expensive and
often encounter dead-ends which result in grossly sub-optimal schedules.
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e rula-based scheduling: one way tc represent high-level strategic scheduling knowledge is in
the form of rules. For example, it is possible to write almost verbatim a rule of the form
“if there is an unscheduled high priority activity which is highly constrained and related
to activities already scheduled, then try to schedule it next.” This form of control allows
for easy incorporation of new scheduling strategies as experience is gained with complex
scheduling situations.

¢ neural networks: a very different approach makes use of an “artificial neural network”
[19,20,21] to represent a set of discrete scheduling choices [22,23]. These networks are con-
ceptually composed of a large number of simple processing elements operating in parallel
whose computational power comes from their massive interconnection. These connections
can be derived directly from the suitability functions of the activities to schedule. The
advantages of this approach are rapid execution, the ability to easily reschedule, and, on
hardware now in the development stage, the possibility for a true parallel implementation.

On the basis of our experience in developing SPIKE we have concluded that Al software devel-
opment methodology provides an extremely powerful means with which to attack scheduling
problems. The advantages of using these techniques are primarily a rapid software development
cycle, a concise but expressive representation of scheduling data, flexibility in the definition and
modification of scheduling constraints, and the ability to incorporate a graphics-oriented user
interface to help the scheduler understand and modify the schedule.

3.3 Ground-based Telescope Scheduling with SPIKE: An Experiment

The development of the SPIKE scheduling system has followed closely the general principles
described in Section 3.1, but, for obvious reasons, has focused closely on the specifi. constraints
most relevant to the HST scheduling problem. Since one of these general principles is flexibility,
we have conducted a experiment designed to test this aspect of our approach by applying SPIKE
to a problem very different from that of HST scheduling, ».amely the problem of scheduling
the ESO 3.6m telescope in Chile [24]. For the trial period (41), this problem consists of 50
(“classical” mode) programs to be scheduled in 183 nights. Each program is subject to strict
and preference constraints on month (first and second priority), and on dark, gray, or bright
time. A few programs also have additional absolute timing constraints or participate in relative
constraints on order and time separation. A constraint was also included that the “cost” of
switching between an  ‘ical and IR instrument was a night of setup and calibration time.

Figure 1 shows a copy of the workstation screen illustrating some of the programs being sched-
uled in this experiment. The central window (which is partly obscured) shows the values over
a 6-month time span of the suitability functions for a sample of programs. These represent
the preferences for month and moon phase. The bottom window is another view of the same
information but at a higher time resolution. The top window is a snapshot of the neural net-

work in operation: each grid point (neuron) repre . ut the schedubmg of « program (vertical
axis) to start on a specific night (horizontal axis). In this example not all programs have been
scheduled.

What is interesting to note is that none of the existing SPIKE scheduling software had to be
modified in order to handle this problem: three new constraints were defined (month preference,
tnoon phase, and optical/IR switching time) along with one new type of activity (program).
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Figure 1: Workstation screen showing the HST scheduling tools at work on programs for the
ESO 3.6m telescope in La Silla.

While this experiment is still in progress, particularly on strategic approaches to generating
complete schedules, the results so far are very encouraging.

4 Discussion

It is clear that software technology and approaches to scheduling have reached a sufficient level
of development that automated telescope scheduling is a realistic goal. The use of artificial
intelligence techniques makes it possible to develop and adapt software_ suc as the HST SPIKE
scheduling tools, for a variety of telescope scheduling problems. For the next generation of
astronomical observatories, now in the design stage. automated scheduling offers a significant
potential for increases in observing efficiency and telescope utilization There remain, however,
a number of issues that must be addressed before automated schednling can he suceessfully
integrated into the routine operation of large teloeo 1

e A flexible scheduling system must be aware not only of what remains to be scheduled but
also of what has happened and of current and predicted environmental conditions. This
means that the scheduler must be integrated into the overall operational environment in
such a way that this information 1s readily accessible (see, e.g. [25])
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¢ Optimal scheduling requires the existence of a pool of observations not all of which can be
executed (see, ¢.g., [26]). It must be accepted by the community that, in order to optimize
the overall observing program, some individual programs may not be scheduled. STScl
has allowed for this by accepting proposals at a priority level of “supplemenia’ bt so
far no one has been disappointed by being accepted at this priority leve! ar : = -+ ‘ng
their program fail to be executed.

e For scheduling software to exploit preferences and constraints to generate -+ .on « he.
ules it must know about them, which means that they must be specified by ::. . .
or be derivable from information implicit in the proposal. Significantly more deta.. may
be required in future proposals than has been necessary in the nast. STScl has simplified
this process by providing a remo*e proposal submission system which accepts machine-
readable observing proposals submitted over a computer network(27|. Facilities of this
type are likely to be necessary for groundbased telescopes which plan to make extensive
use of automated scheduling capabilities.
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