
Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel
Computation

October 1 &12,1988
George Mason University
Fairfax, Virginia

IEEE Computer Society Order Number 892
Library of Congress Number 88-82088
IEEE Catalog Number 88CH2649-2
ISBN 0-8 1 860892-7
SAN 264420X

@ lEEE COMPUTER WCIETY

IEEL

GMPUTER George Mason Uruversity Nalronal Aeronaur~cs and
SoClET'y IEEE-NATIONAL CAPITAL AREA COUNCIL Space Admintslration
PRESS @a Goddard space Flight Center

IlEt

COVER PHOTOS:

TOP LEFT: Fluid Flow. This picture shows the flow of water around rectangular objects
in an open tank. Flow patterns are calculated using the Navier-Stokes equations on a
1,024-processor I)AP 510.

TOP RIGHT: Graphics. "Mercur?" by H. C. Delany, M.I.T. Media Laboratory. This pic-
ture shows reflective spheres over an alien sunset. It was computed a t 1024 x 1024 pixel
resolution with 5 orders of reflection in 6 minutes using a 16,384-processor Connection
Machine-2.

BOTTOM RIGH'I!: Stereo Image Matching by J. P. Strong and J. E. Dorband, NASA1
Goddard Space Flight Center. A three-dimensional perspective view of terrain in north-
east India created by automatically fusing a pair of 512 x 512 stereo images in 50 seconds
using NASA's 16,384-processor Massively Parallel Processor.

Cover design by ST Systems Corporation (STX) G r a p h i c s J m n Sargies, Jane Foltz, and
Barbara Gogan-hlnrinnro.

Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel
Computations

The 2nd Symposium on the

Massively Parallel
Computation

Ronnie Mills, Editor
ST Systems Corporation

Lanham, Maryland

Proceedings of the second symposium sponsored by the
Computer Society of the IEEE,

NASAIGoddard Space Fight Center,
IEEE National Capital Area Council, and

George Mason University, and held at
George Mason University

Fairfax, Virginia
October 10-12,1988

Supported by grants from
Active Memory Technology,

Digital Equipment Corporation,
LORAL Defense Systems-Akron,

Martin Marietta Aerospace,
Science Applications Research,

ST Systems Corporation, and
Thinlung Machines Corporation

Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel
Computations

@IEEE Computer Society Press

Washington Los Alamitos Brussels 6 Tokyo

@IEEE Computer Society e ~ h e Institute of Electrical and Electronics Engineers. Inc.

The papers In this book comprlse the proceedings of the meeting mentioned on the cover and title
page. They reflect the authors' opinions and are published as presented and without change, in the
interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, the IEEE Computer Society Press, or The lnstitute of Electrical and
Electronics Engineers, Inc.

Published by

IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.

Washington, D.C. 20036-1 903

Copyright O 1988 by The Institute of Electrical and Electronics Engineers, Inc.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this vdume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isdated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing
Services, IEEE, 345 East 47th Street, New York, NY 1001 7. Ail rights reserved.

iEEE Computer Societ Order Number 892

2 K., Libra of Congress umber 88-82088
IEE Catalog Number 88CH2649-2

ISBN 0-81 86-0892-7 (paper I ISBN 0-81 86-5892-4 (microfic e)
ISBN 0-81 86-8892-0 (case)

SAN 264-620X

Additional copies may be ordered from:

IEEE Computer Society IEEE Service Center IEEE Computer Society IEEE Computer Society
Order Department 445 Hoes Lane 13, Avenue de I'Aquilon Ooshima Building

10662 Los Vaqueros Circle P.O. Box 1331 81200 B~seelS 2-141 Minami Aoyama
Los Alamitos, CA 90728-2578 Piscetaway, NJ 088551331 BELGIUM Minato-ku, Tokyo 107, JAPAN

4h THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

IEEE

PREFACE

Individuals interested in developing, using, and selling massively parallel
computers converged on George Mason University in Fairfax, Virginia, on
October 10 for Frontiers '88: The Second Symposium on the Frontiers of
Massively Parallel Computation. Four-hundred-forty-five registrants (in-
cluding five from foreign countries) attended the 3-day conference. Seven-
ty-six universities, 81 corporations, and 37 Government organizations were
represented.

There were 52 oral presentations and more than 60 poster presentations.
There were also exhibits, a tutorial (attended by 129 registrants), and a
panel discussion. The wide attendance and scope of the papers indicates
that the field of massively parallel computing is attaining ever greater im-
por tance.

The sponsors and grantors look forward to continuing this series of sympo-
sia every other year at university sites in the greater Washington, DC,
area. We hope these Proceedings give you some feel of the excitement that
Frontiers '88 generated.

James R. Fischer
NASAIGoddard Space Flight Center
Conference Chairman

David H. Schaefer
George Mason University
Program Chairman

A note about the exhibits:

Nine organizations mounted exhibits a t the symposium. Four of these
exhibits featured operational massively parallel systems:

Active Memory Technology had both their 1024 processor
DAP 510 and their 4096 processor DAP 610 performing
demonstrations.

George Mason University demonstrated the student-built
GAM 2 pyramid structure, containing 1365 processing ele-
ments on six levels, in their Advanced Computer Architec-
ture I~boratory .

Martin Marietta Aerospace had a 40,000 processor Geo-
metric Arithmetic Parallel Processor (GAPP) system in op-
eration.

Thinking Machines Corporation had a 32,768 processor
Connection Machine-2 running and demon st rat in^ a va-
riety of applications.

Other exhibitors were the Space Data and Computing Division a t NASA,
Goddard Space Flight Center with an exhibit of Massively parallel-pro-
cessor (MPP) applications, LORAL Defense Systems-Akron with an ex-
hibit on the MPP and the Associative Parallel Processor (ASPRO)
computer, and the Corn.el1 Theory Center with an exhibit of their Trolli-
us Operating System. Two publisher exhibitors were John Wiley & Sons,
Ltd., who advertised their new journal Concurrency: Practice and Experi-
ence, and the publishers of Supercomputing Review.

This section was transcribed from welcoming remarks presented at the symposium.

Dr. George W. Johnson,
President of George Mason University
George Mason University, in order to move quickly, has had to make certain bets.
Two of those bets are represented by this conference. One bet was that we had
always to anticipate what the cutting edge of developments in the fields that we
chose to embark on would be. We decided that we would have to build a new
engineering school, but that i t would not be one built on the base of the physical
sciences, but on the base of the information sciences. That was the first bet that we
made.

The 2nd bet was that as a new university, we could not afford to be aloof and remote
from our community, that we had to be what we call "interactive." We had to
break down the walls between town and gown, the walls between marketplace and
academy, and we have embarked aggressively on doing exactly that. You can see
that the two come together in our School of Information Technology and
Engineering, where the demarcation between business, government, and academy
really is successfully blurred. And so this conference coming here a t this
particular time is really a signal event for George Mason University, and for that
reason, among many others, you're very very welcome to the institution, and I'm
glad to see you here. Thank you.

Dr. h e Holcomb
Director, Information Sciences and Human Factors Division
NASA Headquarters
On behalf of NASA, I would like to welcome you all to this symposium-The 2nd
Symposium on the Frontiers of Massively Parallel Computation. The NASA Office
of Aeronautics and Space Technology has had a long history in parallel processing
technology. Beginning in the early 1970's with the evaluation of the ILLIAC IV,
we gained valuable knowledge on how to apply parallel processing power to
aerospace computational requirements. In the late 1970's NASA was a t the
forefront of this important computing technology by funding the development of the
world's first massively parallel processor, the MPP, which was originally intended
for image processing applications. The MPP was designed, fabricated, and
delivered to NASA in 1983, and an Applications Working Group was formed to
encourage researchers from widely varied disciplines to conduct research on the
MPP. That early investment is now bearing fruit, and is certainly evident, in part,
by this symposium.

In the 1982 and 1983 time frame, the White House Office of Science and Technology
Policy (OSTP) Federal Coordinating Committee on Science Engineering and
Technology (FCCSET) established a subcommittee on supercomputing to
coordinate the activities of the various federal government agencies. The early
FCCSET committee focused on the concept of the federal government as a friendly
buyer of supercomputers and on the concept of providing researchers access to
supercomputers. Some of the programs that came out of this early activity were
the Numerical Aerodynamic Simulation program a t NASAIAmes, the NSF
supercomputer centers that have been established throughout this country, and
the Supercomputing Research Center in Maryland.

More recently, the FCCSET committee has focused on the government being more
than a friendly buyer. A recent OSTP report titled "A Research and Development
Strategy for High Performance Computing," which was issued in November 1987,
calls for government sponsorship of research in high performance computers,
software technology and algorithms, networking, and basic research, and
resources. Each government agency that is participating in FCCSET is preparing
a response to this report. NASA has developed a high-performance computing
initiative which includes 3 parallel computing testbeds, one for computational
aerosciences, one for Earth & space sciences, and one for spaceborne applications.
We intend to support algorithm and architecture research and advances in
software for massively parallel systems, both operating systems and languages.

To date, this initiative has been worked primarily within the government through
planning activities of the FCCSET committee. NASA now wants to solicit stronger
involvement from industry and universities in this program. Dr. Paul Smith of
my staff, who is here today, will be formulating an approach for forming a
government, industry, and university planning team to advance this country's
massively parallel computational capability. Dr. Smith will be present throughout
this conference, and we solicit your views on how best to form this partnership. At
the hearings on the National Supercomputer Network in September 1988, Senator
Albert Gore, challenged the government to strengthen its ties with academia and
industry. This conference provides one forum to begin forming a partnership of
federal, academic and industrial researchers in this important frontier. I'm
happy to welcome you to this symposium and hope that you will find i t stimulating
and productive.

ACKNOWLEDGEMENTS

Frontiers '88 could not have taken place without the contributions of many people including:

Technical Meeting Committee
James Fischer (Conference Chair) Pearl Wang (Tutorials Chair)
NASNGoddard Space Flight Center George Mason University

James Tilton (Finance Chair) Mark Stevens (Publicity Chair)
NASNGoddard Space Flight Center S.T. Systems Corporation

David Schaefer (Program Chair) Samuel Earp (Exhibition Chair)
George Mason University George Mason University

Ronnie Mills (Publications Chair) Barbara Framer (Local Arrangements Chair)
S.T. Systems Corporation George Mason University

Representatives of Cosponsors and Grantors

Ai C. Fang
NASA Headquarters

Jonathan Harris
Digital Equipment Corporation

Anne Marie Kelly Alan Hinkle
Magdelene Johnson LORAL Defense Systems-Akron
Denise Felix
IEEE Computer. Society Wade Pemberton

Eugene Cloud
Thomas Doeppner Ron Sartain
IEEE National Capital Area Council Martin Marietta Aerospace

Lydia Walls Ron Estes
Nancy Joyner S.T. Systems Corporation
George Mason University

Marvin Denicoff
Bruce Alper Carol Bee-Latty
Kevin Linck Thinking Machines Corporation
Active Memory Technology, Inc.

Working Program Committee
Prof. David Schaefer
George Mason University

Dr. James Strong
NASNGoddard Space Flight Center

Prof. Marvin Denicoff Dr. James Tilton
Thinking Machines Corporation NASNGoddard Space Flight Center

Dr. John Dorband Prof. Pearl Wang
NASNGoddard Space Flight Center George Mason University

Prof. Michael Rice
George Mason University

Steering Committee
Carol Bee-Latty R. Michael Hord
Thinking Machines Corporation MRJ, Inc.

James Fischer Michael Rice
NASNGoddard Space Flight George Mason University
Center

Chester Grosch
Old Dominion University

Program Committee
Prof. David Schaefer Prof. Tomaso Poggio
George Mason University Massachusetts Institute of Technology

Dr. Ray Arnold
NASA Headquarters

Prof. John Reif
Duke University

Dr. Ken Batcher Prof. Anthony Reeves
LORAL Defense Systems-Akron University of Illinois

Dr. Jack Dongarra Prof. Azriel Rosenfeld
Argonne National Laboratory University of Maryland

Prof. Michael Duff Dr. Paul Schneck
University College, Loncfon Supercomputing Research Center

Dr. Milton Halem Dr. Steven Squires
NASAIGoddard Space might Center DARPA

Dr. James Hardy Dr. Guy Steele
WhitneyDemos Productions Thinking Machines Corporation

Prof. Dennis Parkinson Prof. Leonard Uhr
Active Memory Technology University of Wisconsin

Tutorial Lecturers

Prof. Dennis Parkinson Prof. Pearl Wang
Active Memory Technology, Inc. George Mason University
Queen Mary College

Dr. John Dorband
Prof. David Schaefer NASNGoddard Space Flight Center
George Mason University

Invited Speakers

Dr. Kenneth Wilson
Ohio State University

Prof. Azriel Rosenfeld
University of Maryland

Gary Demos Dr. Guy Steele
WhitneyDemos Productions Thinking Machines Corporation

Session Chairs

R. Michael Hord
M U , Inc.

Prof. Pearl Wang
George Mason University

Dr. James Tilton Prof. Joseph 'Ja 'Ja
NASNGoddard Space Flight Center University of Maryland

Dr. James Strong Prof. H.J. Siege1
NASNGoddard Space Flight Center Purdue University

Dr. Samuel Earp
George Mason University

Dr. Michael Rice
George Mason University

Prof. Chester Grosch
Old Dominion University

Dr. John Dorband
NASNGoddard Space Flight Center

Jonathan Harris Prof. Marvin Denicoff
Digital Equipment Corporation Thinking Machines Corporation

Special thanks to Maxine Schaefer for developing the database of abstract submissions, Millie Brice and
Towanda Plater a t NASNGoddard for handling the numerous large mailings, Michele Braithwaite a t
George Mason University and Jim Elliott a t NASNGoddard for supporting publicity efforts, and the
George Mason University student chapter of the IEEE for supporting the exhibition and audiovisual needs
of the conference.

CONTENTS

Preface
Foreword
Acknowledgements

PANEL DISCUSSION

INVITED PRESENTATIONS

Languages for Massively Parallel Computers
Guy L. Steele, Jr., Thinking Machines Corporation

Generating Movie-Quality Animated Graphics With Massively Parallel Computers
Gary Demos, Whitney-Demos Productions

The Impact of Massively Parallel Computers on Image Processing
Azriel Rosenfeld, University of Maryland

SECTION I: ALGORITHMS
Part 1: Oral Presentations

How To Cluster in Parallel With Neural Networks
Behzad Kamgar-Parsi, University of Maryland
J. A. Gualtieri, NASA GSFC
Judy E. Devaney, Science Applications Research
Behrooz Kamgar-Parsi, George Mason University

Modeling Neural Networks on the MPP
Joe Hicklin and
Howard Demuth, University of Idaho

Artificial Neural Network on a SIMD Architecture
Joe R. Brown,
Melissa M. Garber, and
Steven F. Venable, Martin Marietta Electronic Systems

Characterizing the Error Function of a Neural Network
Barbara Moore and
Marcelo Fogaca, MZT
Alan Kramer, University of California, Berkeley

The Impact of Rent's Rule on Massive Parallelism
P. J . Koopman and
D. P. Siewiorek, Carnegie Mellon University

PRECEDlNG PAGE BLANK NOT FILMED

v
vii
ix

xxv

Overview and Extensions of a System for Routing Directed Graphs on SIMD Architectures
Sherry1 Tomboulian, NASA Langley Research Center

An Analysis of Disjoint Path Properties in Data Manipulator Networks
Wayne G. Nation and
Howard Jay Siegel, Purdue University

Data Structures for Associative Supercomputers
J. L Potter, Kent State University

Parallel Implementations of the Siniplex Algorithm
Richard Marciano and
Teodor Rwr, University of Zowa

Region Growing on a Highly Parallel Mesh-Connected SIMD Computer
Marc Willebeek-LeMair, Cornell University
Anthony P. Reeves, University of Illinois at Urbana-Champaign

Hypercube Algorithms Suitable for :Image Understanding in Uncertain Environments 101
T. L. Huntsberger and
A. Sengupta, University of South Carolina

Efficient Scan Operators for Bit-Serial Processor Arrays
C. M. Fiducciu and
R. M. Mattheyses, Geneml Electric R & D Center
R. E. Steclrns, S U M at Albany

SECTION I: ALGORITHMS
Part 2: Poster Presentations

An Efficient Method for the Representation and Transmission of Message Patterns
P. J. Bernhard, Ckmson University
D. J. Rosenkrantz, SUNY at Albany

Minimum Spanning Tree on the HMESH Architecture
R. V. Boppanrr and
C. S. Raghavendm, University of Southern California

Optimal Mesh Algorithms for VLSI Routing
Shing-Chong Chang and
Joseph J U d , University of Maryland

A Uniform and Reconfigurable Framework for the Multidimensional Fourier Transform 129
Ron Coleman and
Michael Post, Polytechnic University
Alan Waksman, Plex Systems Research, Znc.

xiv

Parallel Algorithms for Interactive Manipulation of Digital Terrain Models
E. W. Davis,
D. F. McAllister, and

V. Nagaraj, North Carolina State University

Sort Computation
John E. Dorband, NASA GSFC

Parallel Frequency Domain Adaptive Line Enhancer
Mohamed El-Sharkawy, Bucknell University
Maurice Aburdene, Naval Research Laboratory

Optimal Geometric Algorithms for Digitized Pictures on an Optical Mesh
Mehrnoosh Mary Eshaghian and
V. K. Pmsanna Kumar, University of Southern California

An SIMD Parallel &-Approximation Scheme for 011 Knapsack
Thomas E. Gerasch, SPARTA, Inc.

Fault Tolerant Message Routing on Large Parallel Systems
Jesse M. Gordon and
Quentin F. Stout, University of Michigan

Load Balancing for Massively-Parallel Soft-Real-Time Systems
Max Hailperin, Stanford University

Eficient Algorithms for Massively Parallel Computers
I. Design of Stable Computational Systems Using Linear Systems Models

Harold M. Hastings, Hofstra University
Ivan Kadar, Grumman Corporation

Applied Geometric Algorithms on Boolean N-Cube Computers
Wen-Jing Hsu and
Ximla Lin, Michigan State University-
Kuan-Tsae Huang, IBM Corporation

A Fas t Algorithm for Voronoi Diagram Calculation Based on Distance Doubling
David Izraelevitz, The Analytic Sciences Corporation

Provably Good Parallel Algorithms for Channel Routing of Multiterminal Nets
Sridhar fiishnam urt hy and
Joseph JUa , University of Maryland

Sparse Matrix Vector Multiplication on Polymorphic-Torus
Hungwen Li, Almpden Research Center
Ming-Cheng Sheng, IBM Corporation

Almost Linear Speed-Up of Distributed Discrete Event Simulations
Boris D. Lubachevsky, Bell Laboratories

Dynamically Allocating Sets of Fine-Grained Processors to Running Computations
David Middleton, NASA Langley Research Center

Portable Parallel Algorithms for Geometric Problems
Russ Miller, SUNY at Buffalo
Quentin F. Stout, University of Michigan

Algorithms for Long Fast Fourier Transforms on a Connection Machine
J. P. Norris,
P. Hertz, and
K. S. Wood, Naval Research Laboratory
Paul Anderson, Planning Researclt Corporation

Simulating Neural Networks Using C:*
Mark J. Norton, GE Aerospace Advanced Technology Labomtories

DTrees: A Class of Dense Regular Iriterconnection Topologies
B. Ramkumar and
L. V. Kale, University of Illinois at Urbana-Champaign

A Model of Task Migration in Partitionable Parallel Processing Systems
Thomas Schwederski,
Howard J. Siegel, and
Thomas L. Casavant, Purdue University

Sparse Matrix Computations on an FFP Machine
B. T. Smith,
R. K Singh, and
G. A. Mag6, University of North Carolina

A Parallel Algorithm for Finite Element Computation
P. Submmaniam, Picker International
N. I&, University of Akron

The Fast Fourier Transform as a Test Case for a Systolic Data Flow Machine
Doron Tal,
John Comfort, and
Maria Martinez, Florida International University

Optimal Tilings for Iterative PDE Solvers
Anthony E. Terrano, Rutgers University

Parallel Algorithms for Direct Solution of Large Systems of Equations
Jian-She Wang and
Nathan Ida, University of Akron

xvi

SECTION 11: APPLICATIONS
Part 1: Oral Presentations

Stochastic Simulation of Charged Particle Transport on the Massively Parallel Processor 237
James A. Earl, University of Maryland

Suitability of Simulation of a Population of Chemical Polymers on the Massively Parallel
Processor 24 1

David Marshall Cohen, University of Iowa

Estimating Water Flow Through a Hillslope Using the Massively Parallel Processor
J. E. Devaney, Science Applications Research
P. J. Camillo and
R. J. Gurney, NASA GSFC

Implementation of a 3D Thermal Analysis Code on the CM-2 Connection Machine Computer 257
R. E. Cline, Jr., Sandia National Laboratories
B. M. Boghosian and
B. Nemnich, Thinking Machines Corporation

Fractal Graphics and Image Compression on a SIMD Processor
S. F. Reddaway and
A. Wilson, Active Memory Technology
A. Horn, Oxford University

Application of Massively Parallel Machines to Molecular Dynamics Simulation of
Free Clusters

L. L. Boyer and

P. J. Edwardson, Naval Research Laboratory

An Overview of Current Connection Machine Applications a t MRJ
R. Michael Hord, MRJ, Inc.

A High Performance Parallel Approach to Medical Imaging
G. Frieder, Syracuse University
0. Frieder, Bell Communications Research

M. R. Stytz, Air Force Institute of Technology

Parallel Algorithm for the Solution of Nonlinear Poisson Equation of Semiconductor
Device Theory and I ts Implementation on the MPP

J. P. Darling, The Johns Hopkins University Applied Physics Laboratory
I. D. Mayergoyz, University of Maryland

DARPA Sensor National Testbed: Hardware and Software Architecture
D. R. Guarirro,
R. P. Kruger,
S. Sayre,
T. Sos,
C. J. Turner, and
C. L.. Winter, Science Applications International Corporation

Eficient Management of Sensory Data for an Autonomous Submersible Utilizing a
Parallel Processing Architecture

a h a d Chande,
Sondm Shapirv, and
Art Acampom, Martin Marietta Aero & Naval System

SECTION 11: APPLICATIONS
Part 2: Poster Presentations

Simulations of Conposit, a Supra-Connectionist Architecture for Commonsense Reasoning 311
John A Barnden, New Mexico State University

Massively Parallel Computing Applied to the One-Dimensional Bin Packing Problem 317
Judith 0. Berkey, George Mason llniversity

Surface Modeling Algorithm for Pyramid Architectures
D. Britton, George Mason University and Trident Systems, Inc.

A Homogeneous Computational Model for Spatial Inference on Massively-Parallel
Architectures

Mark J. Carlotto, The Analytic Sciences Corporation

Scan Line Graphics Generation on the Massively Parallel Processor
John E. Dorband, NASA CSFC

Fingerprint Identification on a Massively Parallel Architecture
T. R. Gowrishunkar, George Mason University

Gray Scale Adjustment Algorithms on SIMD Architectures
Christopher Lee Kuszmaul, MRJ, Inc.

A Parallel Particle-In-Cell Model for the Massively Parallel Processor
C. S. Lin,
A L. Thring, and
J. Koga, Southwest Research Institute

xviii

Parallel Algorithm for Determining Motion Vectors in Ice Floe Images by Matching
Edge Features

M. Manohar,

H. K. Ramapriyan, and
J. P. Strong, NASA GSFC

Symbolic Solution of Simultaneous Linear Algebraic Equations via Parallel
Numerical Computing

I. D. Mayergoyz and
F. P. Emad, University of Maryland

Parallel Implementation Considerations for a Class of Signal Processing Algorithms
Nidal M. Sammur and
Martin T. Hagan, Oklahoma State University

Image Segmentation by Iterative Parallel Region Growing With Applications to Data
Compression and Image Analysis

James C. Tilton, N A S A GSFC

The Performance of the Image Understanding Architecture on the DARPA Integrated
Image Understanding Benchmark

Charles C. Weems, University of Massachusetts

SECTION 111: ARCHITECTURES
Part 1: Oral Presentations

The Martin Marietta Advanced Systolic Array Processor
A. Haug and
R. Gmybill, Martin Marietta Aero & Naval Systerrs

The Geometric Arithmetic Parallel Processor
Eugene L. Cloud, Martin Marietta Electronic Systems

NAP (No ALU Processor): The Great Communicator
JeffFried, MIT and GTE Laboratories
Bradley C. Kuszmaul, MZT and Thinking Machines Corpomtion

Generalization of Orthogonal Multiprocessor for Massively Parallel Computatiotr
Kai Hwang and
Dongseung Kim, Ur iversity of Southern California

xix

BLITZEN: A Highly Integrated Massively Parallel Machine
D. W. Bkvine, The Microelectronics Center of North Carolim
E. W. Davis, North C a r v l i ~ State University
R. A Heaton, The Microelectronics Center of North Camlina
J. H. Reif, Duke University

Massively Parallel Computing System for Research and Development Applications
W. Keith Johmon, Amber Engineering, Znc.

The APx Accelerator
E. Abreu,
D. Jenkins,
M. Hervin, and
D. Evans, Visionary Systems, Znc.

The Design of a Bit-Serial Coprocessor to Perform Multiplication and Division on a Massively
Parallel Architecture 419

Robert E. Morky, Jr.,
Gary E. Christensen,
Thomas J. Sullivan, and
Orly Kamin, Washington University

Controlling and Programming the Sphinx Multi-SIMD Pyramid Machine
J. Mdhat, Universitk Paris VZZZ
A. Mkrigot, Znstitut d'Electronigw Fondurnentale, Universitd Paris Sud

The Ynet: An Interconnect Structure for a Highly Concurrent Data Base Computer System 429
Philip M. Necks, Terndata Corporation

A Reconfigurable Optical Interconnection Network for Highly Parallel Architecture 437
X. Thibault,
D. Comte, and
P. Siron, 0.N.E.R.A 1C.E.R.T.

The GAM I1 Pyramid
&hi A b u h a d h , George Mason LTniversity

SECTION 111: ARCHITECTURES
Part 2: Poster Presentations

Parallel and Pipelined VLSI Design for the Histogramming Operation
M. Abdelguerji, University of Detroit
A. K. Sood, George Mason University
S. KhalaL Wayne State University

The Function of a Connection Network Between Host and Processing Elements in
Massively Parallel Computer Systems

Timothy Bridges, Indiana University and Massively Parallel Arch. Corp.

Dense Symmetric Networks From Linear Groups
L. Campbell and
M. Fellows, University of Idaho
G. Carlsson, Princeton University
V. Faber and
J. Moore, Los Alamos National Laboratories
M. Langston, Washington State University
A. Mullhaupt. University of New Mexico
H. Sexton, Lucid, Inc.

A Massively Parallel Processing System Based on a Hyper-Crossbar Network
C. Chin and
W. Lin, General Electric Company

Hypercomputers: Design and Architecture
Ron Coleman and
Michael Post, Polytechnic University
Alan Waksman, Plex Systems Research, Inc.

A Reduced Diameter Interconnection Network
IC Efe, University of Southwestern Louisiana
P. Blackwell,
T. Shiau, and
W. Slough, University of Missouri-Columbia

The PSMH: A Pyramid of Fractional Dimension
Jean Hecquard and
Raj Acharya, SUNY at Buffalo

Routing Linear Permutations Through the Omega Network in Two Passes
John Keohane and
Richard E. Stearns, SUNY at Albany

Performance of the ASP on the DARPA Architecture Benchmark
A. Krikelis and
R. M. h a , Aspex Microsystems Ltd.

Simulation and Analysis of Enhanced Switch Architectures for Interconnection Networks
in Massively Parallel Shared Memory Machines

Yue-sheng Liu and
Susan Dickey, New York University

Fault Tolerance of Allocation Schemes in Massively Parallel Computers
Marilynn Livingston, Southern Illinois University
Quentin F. Stout, University of Michigan

Computer Architecture for Intelligent, Real-Time, Numeric and Symbolic Processing
R. K Mahadevan and
C. C. Carrdl, University ofAlabama

Regular Processor Arrays
Allen D. Malony, University of Illinois at Urbana-Champaign

Interconnection Networks for Fifth-Generation Computers
Bernard L. Menezes, University of Maryland

Reliability Considerations in Large-Scale Computing Systems
W. Najar, Information Sciences Institute
J.-L Gaudid, University of Southern California

Design Considerations for a Pyramidal Cellular Logic Processor
Joseph J. Pfeiffer, Jr., New Mexico State University

Microcode Generation for the Contrc~l of a Massively Parallel Computer
Tom Phillips,
Bret Michael, and
Zahi Abuhamdeh, George Mason University

A Multi-Layered G-Network for Massively Parallel Computation
Teresa Haynes Rice, East Tennessee State University
Ratan K. G u h , University of Central Florida

A Sequenced Hypercube Topology for a Massive1y;Parallel Database Computer
Naphtali Rishe,
Doron Tal, and
Qiang Li, Flnriah International University

An Architecture for the Implementation of a Parallel Marker Propagation System
Houmrd Schneider, Citk de la Santk de Lava1 Hospital

LN-Tree: A Fault-Tolerant Tree Architecture
K Y. Srinivasan, University of Toledo
A. K. Sood, George Mason University

A Sliding Memory Plane Array Processor
M. H. Sunwoo and
J. K. Aggarwal, University of Texas at Austin

Study of the Generalized Multiple Bus-Connected Parallel Computer
Chia J i u Wang, University of Colorado
C. W u and
Victor P. Nelson, Auburn University

Neurocomputing With Optical Pipeline Networks
Zhiwei Xu, Rutgers University
Kai Hwang, University of Southern California

SECTION IV: LANGUAGES
Part 1: Oral Presentations

Massively Parallel Data Optimization
Kathleen Knobe, Compass, Inc.

Joan D. Lukas, University of Massachusetts at Boston
Guy L. Steele, Jr., Thinking Machines Corporation

Testing Shared-Memory Parallel Programs
Andrew H. Sung, New Mexico Tech

On the Expansion, Analysis, and Mapping of Conventional Programs Into Code for Bit
Level Processor Arrays

Jose A. B. Fortes, Purdue University

Compiling Collection-Oriented Languages Onto Massively Parallel Computers
Guy E. Blelloch, MIT
Gary W. Sabot, Thinking Machines Corporation

Implementation and Use of an Image Processing Algebra for Programming Massively
Parallel Machines

J. N. Wilson,
G. R. Fischer, and
G. X. Ritter, University of Florida

MPP Pascal
Tim Busse, Computer Sciences Corporation

A Formal Model for SIMD Computation
M. D. Rice,
S. B. Seidman, and
P. Y. Wang, George Mason University

Abstract Data Types for SIMD Hypercube Machines
Famkh B. Bastani and
Dar-Ren Leu, University of Houston

An Optimally Portable SIMD Programming Language
Russ Twk , Duke University and University ofNorth Carolina at Chapel Hill

A Generic Fine-Grained Parallel C
L. Hamet and
J. Dorband, NASA GSFC

MPP Implementation of Abstract Data Parallel Architectures for Declarative Programming
Languages 629

John T. O'Donnell, University of Glasgow

SECTION IV: LANGUAGES
Part 2: Poster Presentations

Performance Analysis of Interconnection Networks for Massively Parallel Multicomputsrs 639
Hassan 2. Abdalla and
Scott F. Midkifi Virginia Polytechnic Institute

Parallel Hashed Key Access on the Connection Machine
Paul B. Anderson, Planning Research Corporation

Object-Oriented Prototypes of Parallel Architectures for the Performance Evaluatim
of Algorithms

Herb Barad, Tulane University

Characterizing the Advantages of Illassively Parallel Computing
R. M. Hord,
T. A. Kmay, and
E. P. McMahon, MRJ, Inc.

A Systematic Approach for Designing Pipelined Data Parallel Algorithms
Chung-Ta King, New Jersey Institute of Technology
Wen-Hwa Chou and
Lionel M. Ni, Michigan State Ur~iversity

CMS: An Integrated Simulation Environment
J. Leslie Walker, Charles River Analytic8
Abbas Birjandi, Northeastern University

ADDITIONAL PAPERS

Signal Processing With Nodal Networks on a SIMD Massively Parallel Processor
William I. Lundgren, GE Aerospace Advanced Technology Laboratories

Usefulness of the Massively Parallel Processor for Study of Electronic Properties of
Atomic and Condensed Matter Systems

N. Sahoo and
T. P. Das, SUNY at Albany
S. N. Ray, Sofiware Corporation of America

Tools for Managing Massively Parallel Systems
K. M. Nichols, Apple Computer, I w .

Programming Considerations in the Design and Use of a SIMD Image Computer
A l h n L. Fisher, Carnegie Mellorr University
Peter Highnam, Schlumberger Doll Research

Illustrations
Attendees
Author Index
Title Index

xxiv

CMGtNAL PAGE IS
OF P60R QUALITY

THE PANEL DISCUSSION

Oa W h d a y afternoon, October 12, a panel convened to discuss the following topics:

Wht is the future of MIMD in massively parallel systems?

Will massively parallel computingenvironments ever be comparable to those of
vector processors?

Can progress in the use of massively parallel computing take place in a world
dominated by dusty FORTRAN decks?

Prokrsoc David Schaefer of George Mason University led the discussion. The panel
m e m h were:

Dr. Milton Halem - Goddard Space Flight Center
h f e e s o r Kai Hwang - University of Southern California
R o h s o r Dennis Parkinson - Active Memory Technology and

Queen Mary College
M o o o r John Reif - Duke University
Professor Anthony Reeves - Cornell University
Dr. Paul Schneck - Supercomputing Research Center
Dr. Guy Steele - Thinking Machines Corporation
Professor Leonard Uhr - University of Wisconsin.

Tbe Mbwing is an edited version of this session. It was prepared by David Schaefer
from a tape recording of the discussion. He gratefully acknowledges help from Jim
F i d w ofGoddard, from notes taken during the session by David Middleton of ICASE,
and fnnn the panel members, all of whom reviewed the first draft and made sugges-
ti-.

The -ion started with the reading of a communication.

T h b b g Machines Corporation has given me a memo concerning their feelings about
SIMD m d MIMD. The memo, a little edited, is as follows:

People have an emotional attachment to MIMD. They keep wanting it to
be the answer, but they keep seeing SIMD come up as the answer.

Appeal ofMIMD: You only understand in terms ofwhat you understand,
and people know single processors.

Achievements of SIMD:
high processor count
applications fit (God is SIMD)
very basic circuitry
price performance ratio is good

The ultimate issue: Software is too expensive to be run on just one
processor. You need to write as little code as possible and run each
program on as many processors as possible. w
MIMD: Yfyou are willing to accept a lot ofcomplexity, you can do amazing
things."

SIMD: "If you are willing to accept a lot of simplicity, you can do amazing
things. "

That is the end of the Thinking Machines communique. Milt, do you want to take the
ball and give your answer to the question, W h a t is the future of MIMD in massively
parallel systems?"

Milt Halem

With the proliferation and increase in power of our workstations and our growing
powerful PC's, the impetus on industry will be to tie that capability together to develop
a more powerful resource. It is fairly obvious that there is a place for MIMD in massively
parallel systems and there is a place for SIMD in massively parallel systems. I think
we will see them both continue to evolve and merge in the next dozen years.

Do you think the panel should agree on what we mean by "massively parallel?"

Kai Hwang

The definition of massive parallelism is a time function-it varies. If you said a
thousand now, five years from now you would be embarrassed to say a thousand.

What I feel about massive parallelism in MIMD systems relates to computations in the
neural computing area. I feel that is where massively parallel MIMD operations are
needed. Neurons are not synchronized in the biological case. To model a large neural
mass, we need a simulation which is asynchronous.

The real bottom line concerning MIMD massive parallelism is not the hardware-it's
really the software. We don't know how to partition programs so that multiple
instruction streams can handle them. So software is one of the major research areas
where we should push in order to see really large scale MIMD machines.

xxvi

I feel there are real massively parallel MIMD candidates (with even a million PE's) in
the neural computing area.

Dennis Parkinson

Whenever you get two groups of human beings fighting very hard about any subject
such as BASIC versus FORTRAN, you know it is really a n irrelevant argument. This
is another of these irrelevant arguments which keeps academics happy most of the
time. The future is not going to be MIMD, the future is not going to be SIMD, it is going
to be some mucky mixture of the two.

When I look a t the system I use, it has a component, one ofits many components, which
is a SIMD processor. I t also has a Sun host which has a few other independent units.
I use a collection of processors and I'm using them for their different abilities to do
different parts of my total task, and that really is what is going to happen.

I think the massively parallel components are probably going to bevery much of a SIMD
nature. But they are going to be connected into an environment which we would
consider to be MIMD in principle.

Schaefer

I have a quote here, that maybe you recognize. I t says "the optimal algorithm for a
MIMD system is a SIMD algorithm, therefore there is no point in building MIMD
systems." Does that sound a t all familiar?

Parkinson

I think I have heard i t before. I actually usedit many times, but it was, in fact, first said
to me by Enrico Clemente, who put together MIMD systems from array processors a t
the IBM labs.

MIMD has an apparent advantage for the dusty LISP deck people, and that smaller
community which uses dusty FORTRAN decks. If you start from how we used to
program a serial machine, then the MIMD model is the easiest one to play with.
Naturally, most people are starting from there.

If you start from old-fashioned languages like LISP, then you really are stuck in a
computation model which wants to do one thing at a time. The easiest way to do that
is to break your problem up into a few large independent tasks.

If you want to go into thousands of processors or tens of thousands of processors or
millions ofprocessors (I aspire, for Christmas every year, of1 6 million, by the way), you
will find that you can optimally keep everything synchronized by using SIMD algo-
rithms. That's the best algorithm for many MIMD architectures. That's why the quote
is there.

xxvii

Tony Reeves

The thing I see with the SIMD system is that there is a remarkable number of
applications that map onto such an architecture. When you get a good mapping from
a n algorithm to the architecture, then there is very little that you can do to beat that
in terms of performance. The additional cost of an MIMD system is never going to be
justified in that context.

I guess what concerns me is that class, even though an increasing class, is a restrictive
class. I have been moving some algorithms that don't fit well onto SIMD systems over
to MIMD systems. And what, do you know? They turn out to be a lot faster and a lot
more efficient.

We say SIMD is easy to program. I think software is the key. We don't really know how
to program an MIMD system and it is going to be a while, a number of years, before we
have the proper formalized techniques for doing so. We don't know how to express
problems for MIMD systems. This harks back to the type ofmathematics we use. There
is a tremendous amount of work to be done in algorithms and concepts.

Consider simulation, for example. I think the mathematical approach we take to i t
right now is very clumsy. We specify a vast number ofoperations that are not necessary.
I t is going to take a more flexible computing structure to take advantage of any
techniques we devise to not bother with some ofthe redundant calculation operations.

The answer is that there has got to be a place for both kinds of systems. MIMD
architectures are going to assume a more important role as we are able to make the
hardware cheaper as more effective software systems and environments are developed.

Schaefer

Tony, do you see a million-processor, MIMD system?

Reeves

Why not?

John Reif

I guess there are perhaps a number of answers to your question. I am a partly
theoretical computer scientist, and there are some interesting ideas on the theory side
of this issue. You've probably all heard of P versus NP. Can you take any arbitrary
sequential problem that is running on a conventional machine, and then can you take
i t and put i t on a parallel machine so i t runs in, say, polylog time? This is a deep
theoretical issue, but the conventional wisdom from the theory community is that the
answer is "no."

xxviii

PRECEDING PAGE BLANK NOT FILMED

So what this means in practice is that there will remain out there, in spite of very
brilliant algorithm people and brilliant architectures like the Connection Machine, and
other machines like that, a vast collection of non-parallelizable applications areas.
That's the bad news.

The good news is that, as we have seen in demos here and from many of the talks, there
remains a very large class of scientific problems that we can parallelize. The great
advantage of these specialized SIMD architectures is they are more cost effective than
a Cray.

Cray type architectures, incidentally, include SIMD attributes in their vector opera-
tions, and they have very fast MIMD capability. That is crucial if you want a general
purpose machine that can handle anything. As I mentioned, there are significant
classes of application areas which you cannot parallelize.

SIMD architectures are not necessarily purely SIMD any more. They once were, say
five years ago, but as an example there is a MIMD indirect address feature which was
first added by the DEC people. It was also added in our project where we have 128
processors on a chip, each having MIMD addressing. The Connection Machine now has
that capability as well. Probably many of the future SIMD systems will involve MIMD
aspects.

What they probably won't have is full independent control. But they are evolving in that
direction. MIMD systems will evolve very successfully and there will eventually be a
capability ofputting more than one MIMD processor on a chip, perhaps even dozens to
hundreds. There will be million-processor MIMD systems ifwe believe in the continual
evolution of VLSI, just as we have seen in SIMD applications.

What will not happen will be that MIMD will take over because for specialized scientific
computing problems, such as matrix problems and many fluid-flow problems and so
forth, i t is more cost effective to have massively parallel SIMD. So it is really a
coexistence of two types of intellectual cultures that I think will become somewhat
fused. They will remain and have various costs and computation power tradeoffs even
through the next century.

As soon as you have a mask register, you don't have a completely SIMD system
anymore. Therefore, hardly any pure SIMD systems are around anyway.

Well, indirect addressing is a significant jump past conditional control a t the processor
level.

Paul Schneck

Professor Parkinson pointed out that this is a religious issue, so let me state immedi-
ately that I'm a polytheist.

Some ofyou will recall the IBM compatible systems. That first operating system made
a 360175 completely compatible to a 360/30. They all ran a t the same speed.

Allen Turing pointed out in a little informal proof that all computing systems, in the
sense that we know of them, are equivalent. A problem which is soluble on one is soluble
on another. The only difference is speed. Of course it is that difference which is the
essence ofwhy we are all here and why some computers are supercomputers and others
are not supercomputers.

When I look a t a computer system, I don't look directly a t the computer. (Remember
Dave introduced me as a compiler person.) I see it through a programming language,
actually through an algorithm and then through a programming language, then
through acompiler. There is an operating system that gets in the way before I ever get
on the machine, and there is a loader and alibrary. There are a lot ofinterveninglayers.

I would challenge almost anyone in this audience (this is an analog of the Turing test)
to figure out not whether the thing on the other end of the teletype line is a person or
a computer, but whether it's a SIMD machine, a MIMD machine, or a sequential
machine.

You've got a twisted pair going out of the room (if you want to go modern, a fiber cable)
and all that you have in front of you is a keyboard and a screen. You get to write a
program and the important point is capturing the ideas ofthe program. Then you leave
i t to the compiler writing community to worry about the issue of parallelization.

Not that those are trivial issues, but I think all of the harder issues ofSIMD and MIMD
and sequential pale by comparison. In fact, right now there are 80 to 100 university
projects building various types of parallel machines. Very few of those will see the light
of day as commercial machines. Very few of those have compilers or languages
associated with them.

I t is largely a software compiler and language expressivity issue. Right now, probably
among the couple of hundred people in this room, there are a couple of hundred ideas
as to machines. I dare say there are far fewer language ideas, and that is where the real
difference will be.

Schuefer

So Paul, you do see massively parallel MIMD systems?

Schneck

Sure I do, not to the exclusion of anything else, however.

Guy Steele

I don't believe in driving nails with a wrench-unless that's all I've got; or in driving
carpet tacks with a sledge hammer or spikes with a tack hammer-unless that is all I've
got. And by the way, these are not hypothetical examples. I've been in all these
situations both literally and metaphorically. So my position is that let a thousand
flowers bloom. Some of them will prove to be perennial and the rest won't.

Len Uhr

Yes, I agree. There are many intriguing possibilities to be explored. MIMD systems
certainly will develop in many fruitful directions, but probably very gradually in
relatively simple small steps.

I t might make sense to look a t our technology curve and pack as much into as good a
system as we can build economically. Indeed, we developed more powerful individual
processors that way, and the Cray is our standard leading example. We have much
more powerful processors than the one-bit processingelements that today we associate
with SIMD, and remember there is no reason to associate bit serial PE's with SIMD.
That just happens to be the case today.

So my point is that the MIMD people have a very good argument. Let's build a good
cheap powerful processor. Let's put a lot of them together. Each one has its own
controller and that is what MIMD means, not the power of each processor.

But now they have the problem that they have not been able to solve. How on earth do
these independent computers talk to each other? The best I have heard now is 5,000,
or maybe 500, instructions to get a message from me to you. So they have major
problems, but they will probably make progress toward solving them. Almost certainly
what we want is to combine the virtues of SIMD and MIMD.

SIMD also has its problems when synchronous operation and a fixed topology are not
appropriate.

We do have, fortunately, many cases ofbeautiful mappings of algorithms, usually onto
an array, but sometimes onto a pyramid. Without a good mapping, we really need
something to augment the array or pyramid. At the moment I'dsuggest we see whether
we can't design powerful SIMD-MIMD systems. I'm hoping that we will be able to solve
the major problems on both sides, and get many successful new architectures.

Parkinson

Your references to Turing reminded me of when I had a few less gray hairs than I have
now and I went to the office of Tony Hoare (who had a number of things that he was
responsible for, including things like Quick Sort and MIMD languages) to describe the
DAP architecture. I gave my talk describing the lock step, one thousand single-bit
processor system.

At the end he threw me completely by saying "It's all a lie. You have not described a
multiple processor a t all to me. What you have described is a system with a 1,000-bit
word which is arranged as a 32 by 32 matrix and has a rather strange instruction set
which does operations between these words."

He would say the same to Guy Steele about his sixty-four thousand processor hyper-
cube. He would say it was a one-word machine, that every instruction just has a
hypercube shaped word. It's a totally valid approach to SIMD architectures.

Even if you had a million processors with 16 bit words, Tony Hoare would sort of say
that you have got this three-dimensional word which is xyz, and it is a totally validview
that these SIMD architectures arejust single-processor machines. I t all depends what
kind of software you care to put on these machines and how you care to interpret the
results. And as I say, the argument is religious.

Hwang

I believe this audience, most of you, are probably more experienced with SIMD
machines because signal processing and image processing need fine-grain processors.
I t is really the state of the technology and the simplicity of the control of the SIMD
machines that leads to the massive parallelism of today.

The control complexity of a MIMD machine is tremendous. So that is why we didn't see
large scale MIMD machines. The fundamental difference is that, on the one hand,
SIMD machines have higher efficiency. On the other hand, MIMD machines have
greater application flexibility. So you are talking about a trade-off between efficiency
and flexibility.

Sometimes I use this comparison, communism versus capitalism. O.K.? In terms of
production, you want to use SIMD machines; in terms ofconsumption, you want MIMD
machines. Right! We need a hybrid architecture. When we want to engage in extensive
production operations, we use the SIMD portion. When we are involved in the area of
applications, we need flexibility, we needinteractions. The MIMD machines then play
more of a role.

I would concur, but we need the resources that are available for Crays. The better Crays
cost $1 5 million. One could have the hypothetical massively parallel machine with

significant MIMD capabilities and with state-of-the-art SIMD capabilities as well.
That would be very very exciting.

What we have currently is the first stage toward that. It is not anywhere near what
could be, given significant monetary resources. Imagine a $15 million Connection
Machine-type of computer with MIMD capability and incredible IfO. I t would be very
interesting then to compare its ability with the Cray. We are really not playing a fair
game. The Cray, the full expensive version of the Cray, is far more expensive than
existing SIMD machines.

Schneck

I have two comments, the first being, I would like to argue with John about economics.
We are talking about the price of the Cray, not its cost. When you own a big piece of the
market you price it a t what you can get for it Cost, I think, changes the equation rather
dramatically.

More importantly, Ken Iobst, who is sitting in this audience, his chin just dropped, has
an interesting test for these machines. He simulates one ilkofmachine on another. You
simulate a connection machine or the MPP on a Cray. You can try simulating a Cray
on a Connection Machine, or if you have an SIMD machine, you can try simulating a
Cray on an Intel V-6. I wouldn't try that too long, but you get the essence of the
experiment.

If machine A can simulate machine B and machine C and do it well, but machine B
cannot simulate machine A, then maybe there is a hierarchy that one sees coming out
of this. I think the hierarchy is that for simulation purposes, SIMD machines seem to
do a goodjob ofsimulatingeven MIMD machines. Part ofthat may be because so much
of the effort is spent in instruction access, instruction decode and control and so little
of the hardware, relatively speaking, is spent on the disparate aims and disparate
actions of the program, which is ofcourse the only thing we really care about. So I would
pose this simulation metaphor as something to think about.

Uhr

It may well be that if we can handle a 64 computer MIMD system (one big enough so
we can't stick i t on a bus) then we can go up to any number.

Assume we have 64 anarchists, the MIT "actors,"each one an independent agent that
does all sorts of A1 style "reasoning." It's as if each one of us on this panel is thinking,
and then we decide we want to interrupt each other. If we were all talking then you,
the audience, wouldn't hear much of the panel, and none of us would hear much of
anything, or do much of anything.

The point is there is a problem in 5 or 10 people coordinating effectively. We might
examine the sociology of small group behavior to try to develop the kind of message
passing that MIMD systems need.

xxxii i

On a related issue, I used to think that we were really being cost efficient in SIMD
systems in that everybody was working all the time. Which indeed they are, because
they have to be working all the time. But are they working on anything useful?

For computer vision, i t is pretty clear they initially are doing useful work because when
a general vision program starts out, i t doesn't know what is going to be where and,
therefore, i t has to look everywhere for everything. But as soon as it gathers some
information, then clearly everything is not going to be everywhere, but all the
processing elements continue to cycle in synchrony.

As processing continues, I get more and more unhappy. All the processors are working
all the time, but more and more of them are just doing nothing.

Now the MIMDsystem is able to reconfigure its structure and handle that kind ofthing
with much more efficiency. If it were only capable of passing messages, which today,
of course, i t is not.

Schaefer

Well, we have whipped through the first questionin record time of40 minutes. So, Milt,
I am going to ask you this question, 'Will massively parallel computing environments
ever be comparable to those of'vector processors?"

Well, if I should take this question literally, I think it is safe to say that people are not
going to give up an operation that already has a long heritage in mathematics, such as
vector and scalar operations. The number of applications that currently are running
on vector processing machines is almost exclusive with the exceptions of a few
disciplines, perhaps computer vision or neural networking, and even those have been
put on vector processors.

I think it is pretty obvious that vector processors will continue to dominate the
computing market. But that doesn't mean that i t will be exclusively avector processing
or serial market. There certainly is a place for massively parallel processing because
we have a class of problems that will continue to require an architecture which is more
suited to those problems.

So I think the problem domain will guarantee a place for massively parallel processing,
but that vector processors will still continue to develop and expand and dominate the
markets.

Let me mention a very specific problem domain area-problems related to the space
program. We will be acquiringimages in space with arrays of sensitive detectors. The
use of massively parallel processors will be required to reduce the data and to analyze
this high volume of data.

But that is not the public market, that is not the mass market. In the mass market, we
will continue to have growing vector processing capabilities, especially as vector
processors shrink down into the work station domain.

Hwang

TO me, "environments" represents application environments, that is the environment
a user will see where he or she will be located. The environment includes user interface,
language support, software support, run time support, debugging systems, etc.

I would say that the concurrent processing growth in environment build-up will be
much slower because it is a lot more difficult. Vectorizing compilers vectorize the inner
loops of do-loops. The inner loop operation is an identical operation being vectorized.
So that is easy to detect in a program construct.

You see a lot ofvectorizing compilers around. You don't see too many concurrentizing
or parallelizing compilers. I have seen only two. One is the Alliant, which has a
FORTRAN compiler and that can do a "do across." That is a do loop spread into several
processors. The other is the CMU Warp machine compiler that can partition a job and
spread it around.

Until we have very intelligent parallelizingcompilers, I really don't see that a massively
parallel environment is there yet. It will grow, but it will be very slow.

Park inson

We have a large community of people now who have by heroic efforts modified their
sequential FORTRAN to run on vector FORTRAN machines, even though they were
promised that that wasn't going to be necessary. They are not going to lose that
investment. Their problem is not to solve a particular problem in physics. It is to run
an existing FORTRAN code.

The commercial realities of that means that even after fifty years we will still have
things which accept that kind ofcode. There will be manufacturers who will make alot
of money from the fact that i t is human nature to not want to learn anything new.

I don't know when Newton invented the calculus, but when I was a schoolboy you still
were able to take courses in physics which didn't use calculus. People don't want to
learn anything new, and these things are. People keep talking about algorithms. I wish
people would talk about problems.

Everybody says "how do you do xyz algorithm on SIMD or MIMD machines?" Nobody
comes to me and says how do you solve such and such a problem on the machine. They
always talk about method and that's the difficulty. If we could only talk about our
problems, then half of this argument would go away.

X X X V

When John Reif was talking he said he knows algorithms which are not suitable for
SIMD machines. I don't know any groblemswhich are not suitable for SIMD machines.

I t is important for the audience to know that as far as the theory community seems to
know, there are many problems out there that cannot be parallelized. It was not
algorithms I was talking about, it was problems. That means that for a fair amount of
code out there, you cannot expect that i t can be parallelized.

I t is not the algorithms; in fact, we are relatively creative about new parallel algorithms.
That is what I do a lot, and I should be more optimistic. But the absolute truth, as far
a s people who have thought long and deeply about this, is that we will not be able to
parallelize the world away. There are fundamental problems with that. Even if you
have gigantic massively parallel machines, they will never reach their full potential for
every problem.

Person in audience

Give us one example.

Sure, there is the example of the Boolean circuit evaluation problem. Given a Boolean
circuit, the problem is to evaluate it. Suppose the circuit has ninputs, size polynomial
in n, and depth d. No one knows how to take an arbitrary circuit and evaluate i t a t a
depth significantly less than d. Therefore an arbitrary sequential computation cannot
be parallelized as far as anyone knows. There have been very very bright individuals
that have looked a t that problem.

On the other hand, that does not mean that we are out ofourjobs. I t means that instead
we should look carefully a t scientific computing problems that do, in fact, have good
parallel solutions. Many people in the audience have had major application areas
where they have found beautiful parallel algorithms. It is both apositive and negative
thing.

You shouldn't take the religion of parallelism too far. The realistic answer is, i t does
work in many, many cases, but by no means is every problem parallelizable.

Uhr

That is obviously true. It is a complexity argument in terms of the worst case.

On the other hand, surely anything to do with intelligence, anything that the brain does
is massively phenomenalogically parallelized. I would imagine that most data base
problems and most scientific problems are highly parallelizable. So in terms of the real
world and the real kinds of problems that dointerest us, that argument should be sort
of tempered.

Reeves

Will parallel computingenvironments ever be comparable to those ofvectorprocessors?
I hope they never sink so low!

As Guy pointed out, there aren't many vectorizingcompilers that really look very neat
even today, and they have had many years of development to get into the act. I hope
we make vast improvements in software over the next 20 or 30 years.

One should imagine that there will be tremendous improvements in both vectorizing
compilers and parallelizing compilers, and in ways of expressing problems. This will
far transcend what we currently do today in FORTRAN, although of course I don't
expect FORTRAN to die in any sense.

I am sure that in the future there will be much better environments. I see these
environments more tailored to specific application areas. Today we don't program in
raw FORTRAN, we program with packages, which is a very limited higher level
approach.

I see much higher level approaches as specific application areas evolve. Then there may
be systems and environments tailored specifically to those application areas. These
environments may be ported to more than one type of machine architecture, even to
heterogeneous collections of different computing resources.

So I think we should look to much better paradigms than those we are currently using.
Ultimately we will get better environments, more ofthe kind of environments that we
deserve for both massively parallel and vector machines, or whatever our computing
resources may be.

I don't think there is anything natural about the computing environments around
vector processors. I t is true that i t is fairly easy to port certain types of scientific
computing code into these vector processors. In part, that is due to work by Kuck at
Illinois and his group.

In that type of technology, Kuck takes recurrence equations, the FORTRAN code,
unwraps i t and develops a recurrence equation model for certain inner loops, and
vectorizes those. In fact that can be done for massively parallel SIMD architectures.
Within five years, there will be systems that can do that for SIMD computing
components.

I would also comment that again, I don't think the vector environments, which are
FORTRAN based, generally speaking, are anything magical. I think they will persist,
but I think that in the software world there are other environments, C-based environ-
ments, Connection Machine C*, things like that, that look tome like they would be more
effective in the future.

One example, this is actually a star LISP example. The fellow who gave the talk last
night about computer graphics wrote his original code in half a million lines of
vectorizedcode. He ported that onto the Connection Machine and, this is second hand,
the new code was approximately one to two hundred thousand lines ofcode instead of
500 thousand lines ofcoding. So already, there exists parallel computingenvironments
about which I think the community can be very proud.

So I am fairly optimistic about evolving environments for massively parallel comput-
ing. There is also a lot of interest in DARPA. They are really pushing in this direction.
It is possible to have very flexible, very powerful primitives for massively parallel
computing. What is not possible again, is just that you can effectively use all that
parallel computing power in all possible instances.

Schneck

Dave Schaefer asked me to join the panel because I am an argumentative cuss. Since
I don't want to disappoint him, this is my opportunity.

It seems to me there are two issues here that are getting confused. One is languages
and the other is environments. Although they are strongly related, they are not the
same.

The languageissue deals with expressivity and the way in which we write an algorithm
or a problem. Environments have to do with what I like to call the psychological issues.
How we deal with the programming process. I think the psychological issues belong in
a different conference; I think that environments belong in a different conference.

I think we are much more concerned with technical issues of parallelism, issues of how
programs work, how algorithms work, how we express parallelism in a concise and
direct way. Not whether we get ten lines of code or whether when we change one
package or subroutine, we need to change another one. Not whether we need to do a
recompile or a make. I think those are all things that are second-order effects.

In the high speed computing community, much more time and effort is given to the
running of the programs than to the writing of programs. Down a t the PC level, much
more time and effort goes into the writing of the programs. I think our attention ought
to be carefully focused on the running of programs and the speed a t which programs run,
not on, from my point of view, the mundane issues of how to write programs and how
to do i t effectively and efficiently with the smallest number of people.

Steele

I suppose I am going to take a very pragmatic position, not that the previous arguments
have not been pragmatic. I just want to tell you that I am going to take an extreme on
that. I think that the issue here is purely an economicone. Alot ofinvestment has gone

xxxviii

into program environments and compilers and other tools for the developing of
programs for vector processors.

If the approach of massive parallelism proves to be effective, then over the long run at
least as much effort is going to be investedin producing good environments there. The
question is "how can we go about improving those environments?", and the other
question is "will it be worth our while to do so?".

I think reasonable people may have differences of opinion over what fraction of the
market, measured in dollars, or problems to be solved, or whatever, is going to be
tackled through massive parallelism in preference to vector or other approaches. Ifthat
fraction turns out to be large, the investment will be made.

What needs to be done to improve those environments is to look at the necessary
abstraction and metaphors that will make things easier. It is necessary to capture the
standard pattern of doing things and because the approach of massively parallelism is
still relatively young, we haven't figuredout what all the standard patterns andidioms
are going to be.

To connect that with the previous remark, Tony Hoare might choose to characterize a
SIMD machine as being a serial processor with very wide words. I agree that is a
perfectly valid description for some programming purposes, a very useful description.
The question is,"is that the most useful description for all ways in which one might use
the machine?" I think that the answer to that is "no."

Sometimes you want to think of the metaphor as programming many individual
processors. Sometimes you want to think about wide words. Sometimes you want to
think about organizing your view of the machines in other ways. We need to figure out
what these patterns are and then capture them in an integrated way with the other
tools in the programming environment, so we can deal with them easily.

Uhr

It has never been clear to me, and I guess to a lot of people, why two-dimensional array
processors shouldn't replace vector processors. About '78 or '79, the DAP group tried
to sell a lot of DAPs and didn't get very far, I think for quite irrelevant commercial
reasons.

Probably there are also relatively small but crucial things that still need to be ironed
out. The lack of fast floating point operations, that you finally have in the Connection
Machine, is one of the things that sort ofput massively parallel systems behind. Others
are the rigidity of a fixed size array and the fact that the array is not an integral part
of a larger system.

We have avery comparable situation with image processing where we have pipelining
vector processors and we have array processors. They are both sort of flourishing

x x x i x

equally now, although the vector processors are much easier to handle and more
popular. I personally think that the array processors will end up ahead.

I am suggesting that image processing is one of the better shots for massively parallel
systems. In image processing, we don't have what seems to be aproblem for numerical
processing, where a short pipeline is better than a long one. I believe it is Fujitsu that
has a long pipeline which may not be too usable. The short pipeline gives more
flexibility but, of course, i t gives slower processing.

In a similar manner, a fixed size array, like the DAP 64 by 64, is too rigid for applications
using arrays of different sizes.

Schaefer

We are running out oftime. Let's see if we can get this panel to give one word answers
to the question "Can progress in the use of massively parallel computing take place in
a world dominated by dusty FORTRAN decks?" 'Yes" or "No", right!

I think the answer is pretty obvious. Over the last two years, we've seen the size ofthis
conference double. I believe there is every reason to expect it will double again in
another two years based on what we see coming in the market and what the agencies
are putting in. We live in the world of dusty decks, and we are still making tremendous
exponential growth.

Schaefer

Thank you for your one word answer.

Hwang

My answer is "yes", but I want to give you an explanation. We were talking about
parallel programingenvironrnents. There is a special issue on language compilers and
the environments for parallel programming which appeared last monthin the Journal
of Parallel and Distributed Computing. If you are interested, David Kuck edited a
special issue of eight papers. One describes how IBM is developing a "PTRAN"
environment. 'TTRAN" stands for "Parallel FORTRAN". Jus t for your information.

Schaefer

We are having massively parallel one-word answers.

Parkinson

Yes, the FORTRAN programmers are going to die out of old age.

Reeves

Yes, ofcourse. FORTRAN programmers oftoday won't die so quickly, but they will die.

I think the dusty FORTRAN deck will stay around until we are quite old, but I think
that massively parallel computing will be real exciting in the next few years.

Schneck

John has said it, but let me just remind you since no one has said it before. We don't
know what the next language will look like, but it certainly will be called "FORTRAN".

Steele

Yes.

Uhr

No, in the sense that we will be developing into a new world with new kinds of
computers to handle new kinds of problems, and the old world will continue to exist.

INVITED PRESENTATIONS

PRECEDLNG PAGE BLANK NOT FILMED

PRECEDlNG PAGE BLANK NOT FILMED

Languages for Massively Parallel Computers

Guy L. Steele, Jr.
Thinking Machines Corporation

I'm here to talk about languages for massively
parallel computers. Programming languages
is a very wide field and there isn't any way I
can possibly cover everything that's been
done. I'm just going to talk about the ones I
know about, which is always a good policy.
This is an outline for what I'm going to dis-
cuss.

First off, we'll discuss some common themes
I've seen over and over again in many pro-
gramming languages that have been de-
signed for parallel computation. These are
common themes about the way you organize
control structures of programs, the way you
organize data, and about communication
patterns. As we will see through the course of
this talk, these themes tend to pop up in
different ways in different language design.
They are common threads and serve as a
taxonomy I use to categorize the different
aspects of parallel programming languages.
Once I've shown you these common themes,
I'm going to give you thumbnail sketches of
three different parallel programming lan-
guages. They happen to be ones with which I
am particularly familiar because they are
running on, or are in the process of being
designed for, the CM-2 computer system with
which I work at Thinking Machines. After I've
sketched out these three languages, I'm going
to try to pull them back together and do a
thematic comparison of them so we can see
how the themes fit in and how various aspects
of these languages can be ccmpared according
to these themes.

First, I'd like to present some principles of
language design that are merely guidelines

that I've found useful in trying to design
parallel programming languages. The first
rule is don't start from scratch. It is very
important to build on existing knowledge and
traditions partly to avoid reinventing the
wheel. And it is important to take advantage
of programmers' existing familiarity about
ways one can do things in programming lan-
guages and take advantage of certain tradi-
tions. For example, the standard scientific
notation of floating point numbers is a tradi-
tion and you just do i t that way unless you've
got a really good reason to do it some other
way in your language. A particularly impor-
tant kind of tradition to build on in designing
parallel languages is a set of expectations we
build up about how serial programming lan-
guages are designed. Even when running
parallel programs, there are still large parts
of them that will be sequential, or that can be
regarded as sequential programs operating
on each of many data items a t once. So, it is
important to build on that set of traditions. A
consequence of that first principle, and one
approach, is to start with existing serial lan-
guages that are well understood, and then
judiciously make extensions for parallelism.

On the other hand, which brings us to the
second principle, don't settle for a superficial
patch. It doesn't produce a really satisfactory
parallel programming language simply to
take Fortran or C and add two message-
passing primitives, or add semaphores or
something like that, and call that a parallel
programming language. Yes, it is possible to
program a parallel computer that way, but it
tends to feel very low level because you simply
slap the two primitives on top rather than

integrating them into the structure of the
language. You ought to arrange i t so that the
features you add for parallelism fit in well
with the personality of the language and are
integrated with the various other features of
the language so as to interact smoothly. The
other important thing is you want to be sure
that the features you add support important
paradigms of parallel programming, and
those paradigms are the subject of my list of
themes.

Given those principles, a third possible deci-
sion one might make is to concentrate on the
data rather than on the control structures,
and this is particularly appropriate for mas-
sively parallel computations. There are dif-
ferent styles of parallelism: there are MIMD
and SIMD; there is focusing on large amounts
of data, there is focusing on large numbers of
processors, there is focusing on small num-
bers of processors in the 10-20 range. These
call for different styles of programming lan-
guage. My interest happens to lie in the
massively parallel arena, so most of what I
have to say will address languages and topics
in that area.

If one chooses to concentrate on the data, then
a strategy one can adopt is to take an addi-
tional sequential programming language,
add a parallel data type-whatever that
means-and that may mean different things
in different languages, but having added a
data type, try as hard as possible to use the
existing language operators rather than in-
venting a whole slew of new ones. In this way,
one can take advantage of understanding on
the part of programmers of the semantics of
the existing operators. On the other hand, you
have to ensure that those semantics extend
smoothly and in an intuitive way for the new
data type.

Now, let's look a t these common themes: ele-
mentwise parallelism, replication, reduction,
permutation, and conditionals. There is noth-

ing terribly profound about them, this is just
a list of useful things. However, I would ex-
hort you to examine each item on the checklist
when programming in a parallel language.

One obvious theme is elementwise parallel-
ism. Typically, if you've got two arrays, you
want to add the elements of the arrays, com-
ponentwise, for example. This is a case where
you're doing computation on corresponding
elements of arrays. But, the elements in cor-
respondence aren't interacting much. That's
one kind of thing you want to see. That hap-
pens so often, it is so pervasive in parallel
programming, that i t seems commonplace to
mention it. Yet, you want to ensure that,
because i t is so commonplace, that it is easy to
say in the language. As we'll see when we get
to the thumbnail sketches, sometimes, it's not
so easy to design languages that make that
smooth.

Another example is replication: taking a
small amount of data and making more of it.
This breaks down into several cases: there is
the one-to-many case which you might call
broadcasting; there is the few-to-many case,
which can be in either a regular or an irregu-
lar pattern. The regular case is sometimes
called spreading (in Fortran, for example).
The converse of replication is reduction,
where you're taking many data items and
reducing them to a few items or one item.
Then, there is the question of how you do that
reduction. You might take many data items,
reduce them to one data item by choosing one
and discarding the rest. Or, you might take
the sum over many values or the product, or
the maximum or minimum, or the greatest
common divisor. There are any number of
interesting reduction operators, some of
which are more useful than others.

Then, there is the case of permutation, where
the amount of data doesn't change, but you
are rearranging it in some interesting way.
That breaks down into dozens of subcatego-

ries, such as shifting of the Cartesian grid or
arbitrary permutations controlled by a per-
mutation vector.

By the time we get to substantive condition-
als, it is a control structure issue rather than
a data stucture issue. In fact, one can try to
categorize other kinds of control structures as
well, except I don't see a theme that pops up in
any regular way in all the programming lan-
guages except for conditionals. It is very fre-
quently the case that, based on the value of
some piece of data, you want to make a choice
of doing this or that computation. Sometimes,
this is the most difficult theme to embed in a
parallel programming language in a true way.

So, that is my list of themes. I'm now going to
give you thumbnail sketches of three pro-
gramming languages. The first is the particu-
lar dialect of Fortran running on the CM-2,
which is not particularly specific for the
CM-2. It is precisely Fortran 77 with the
proposed Fortran 8X array features added in.
But no other features of Fortran 8X. There
was no particular reason to leave out the other
ones, i t was just an implementation decision
made for the purpose of this project. When we
set out to do Fortran a t Thinking Machines,
we were prepared for the possibility of having
to do i t our own way and invent a new lan-
guage. That is something we are loathe to do
when we can stand on the shoulders of some
other giants. We were delighted to find, in
fact, that the Fortran comittee, X3J3, has
come up with a very reasonable and plausible
design for a data parallel Fortran in the pro-
posed array features.

This is going t o be a very quick sketch of a
parallel Fortran since there is no way that I
can do justice to any of these languages in
10-1 5 minutes, or even in an hour. I'm simply
going to show you some highlights of the
language that will hook into the develop-
ments I want to show you later.

First of all, the Fortran 8X array extensions
provide for elementwise expressions. If you
declare three arrays (A, B, and C), each with
1,000 elements, they are said to conform since
they are the same length. Because they con-
form, I can mix them in expressions. For
example, I can write A = B. That means copy
the entire process of b into a elementwise. So,
that B1 gets aassigned to A1 , and B2, to A2.
Similarly, I can do elementwise addition. In A
= B + C, the corresponding elements of B and
C are added together and were both assigned
to A. Or, I can do multiplication. like
A = B x C. This is elementwise multiplication.
I can also use the built-in library intrinsics
from the built-in subroutine library. For ex-
ample, in
A = SQRT(B)/SIN(C), I can take the square
root of every element of B, and a sine of every
element of C, do an elementwise division, and
assign the result to A.

Also, there is no reason why arrays have to be
constrained to be one-dimensional. I could
have taken matrices for five-dimensional
objects, and as long as their corresponding
dimensions matched, I could use them in an
elementwise fashion. What this technique of
language design manages to do, is to take
operations on arrays and make them look
syntactically like operations on single items.
In effect, I have overloaded addition and
multiplication and extended i t to the array
case.

Another important rule in language is scalar
extension. Again, this is something that is so
natural and so embedded into mathematical
and programming notations, that i t hardly
seems worth remarking on. With scalar ex-
tension, you can take a scalar and mix i t with
an array within an expression. The rule is
that the scalar is automatically replicated to
match the array. For example, if A = 0, the
effect is to replicate the zero so that there are
enough zeroes to match all of the components
in A. So that every element in A gets cleared.

Similarly, I can write a complex expression
such as A = B/2 = C/(I+4), and i t looks perfectly
natural. I'd take every element of :B, divide by
2, take every element of C, and divide by I + 4
(which is scalar), add them, and assign to the
corresponding elements of A. As you look at i t
closer, you'll see that parts of this expression
are scalar and parts are arrays. So, for ex-
ample, the constant 2 is scalar. The addition
operation (I+4) has scalar operands, so i t will
be executed in scalar mode. First, this scalar
subexpression is computed. Then, the result
is replicated, and then divided into C.

The Fortran 8X proposal provides for reduc-
tion by providing a series of new intrinsics
such as SUM, MAXVAL, PRODUCT, MIN-
VAL, COUNT, ANY, ALL, etc. In the simplest
case, you can just give i t an array as an
argument and get a scalar value back. A more
complex variant involves specifying an op-
tional mask argument, the value of which is
an array of logicals that matches the first
array argument and specifies which ones are
to participate in reduction. For example, in
the case SUMSA,MASK=A.GT.OO, it adds up
only those elements ofA that are greater than
zero and ignores the elements of A that are
less than or equal to zero. Also, i t is possible to
do summation over an entire array, along
rows or columns of a matrix. For example,
REAL M(100,lOO) provides a matrix of 100 x
100 elements. SUM(M,DIM=2) sums up rows.
So, the result of either of these would be an
array of length 100. Given a square, it pro-
duces a result that is either stored along the
top or down the edge.

The converse of the reduction intrinsics is an
intrinsic called "spread." Spread can take an
array of some smaller dimension and repli-
cate it along a new axis so as to make an array
that's of a rank one higher. For example, in
REAL A (loo), M(100,100), I have a vector A
of length 100 and a matrix, M. Then, M =
SPREAD(A, DIM=l ,NCOPIES=100) says:
take A and make 100 copies of it. The new

dimension is to be dimension 1 and should be
assigned to M. Because the new dimension is
dimension 1, the vertical direction, A, gets
replicated and is used to fill in each row of M.
On the other hand, if I had said DIM = 2, then
A would be used to fill in the columns of M
instead.

A very interesting feature of the proposal,
which is in the category of removed exten-
sions, is vector-valued subscripts. This is a
feature that the committee has debated and
both inserted and deleted a few times. It is one
of those things that looks really important,
but that might be hard to implement on some
machines. We decided to include it in Fortran
for the CM-2, because it seems to be a very
valuable thing, and we have a reasonable
implementation for it. Vector-valued sub-
scripts can be viewed as simply allowing the
subscripting operation to be componentwise
in the same way that addition and multiplica-
tion are. For example, in

REAL A(100), B(593)
INTEGER V(100).

I have a vector A of length 100, a vector V of
length 100, and a vector B of length 593. The
assignment A=B(V) means that for every
element of V, use its value to subscript. This
produces a vector of results of the subscript-
ing operation which then gets assigned to A.
So, you can see why the length of V has to
match the length of A because there will be
one result in the subscripting operation for
every element of V. The length of B is not
relevant to the conformality property.
Rather, the rule is that the value stored in
vector V would have to be suitable indices for
B. By using the subscript vector this way, you
can encode fairly arbitrary patterns of data
rearrangement. For example, V might be a
permutation vector, in which case, you'd want
B to be the same length of A. You can also
arrange for few-to-many replications, since it
might be that V has duplicate values. In that

case, many elements of A might receive copies
of the same element of B.

You can also use a vector-valued subscript on
the left-hand side as in B(V)=A. In which case,
elements of A will be assigned to places in B
that are dictated by V. In this case, the lan-
guage designers imposed the rule that no
collisions are allowed. That is, i t is forbidden
for V to contain duplicate values. This avoids
the problem ofwhat happens when two values
try to get assgned to the same location. That
problem was solved in Fortran by fiat. We'll
see later that in C*, i t is solved in a different
way.

Another of the very powerful removed exten-
sions is the FORALL statement. This is an-
other feature that has come in and out of the
standard, and I'm not sure what its status is
as of this week. It is a very powerhl state-
ment. You can say all kinds of marvelous
things with it. It is effectively like a parallel
DO loop (or at least a DO loop that is easier to
parallelize than the standard DO loop, which
has sequential semantics). For example,

The body of the FORALL statement must be
a single array assignment statement. That is
an important restriction that is imposed be-
cause it eliminates the problem that can
happen if you have multiple assignment
statements in the regular semantics for "exe-
cute all assignment statements where I=l,
then execute all of the assignments for I=2."
Or, whether you execute the first assignment
for all values of I and then the second for all
values of I, or some other scrambled order.
You avoid that set of problems by saying that
there will only be one assignment statement
within a FORALL.

FORALL allows you to solve a problem with
the vector-valued subscripts where you have

duplicate indices on the left-hand side. If you
write a sufficiently elaborate statement, you
can specify how to resolve collisions. For ex-
ample,

In this case, I tried to represent B(V)=A, but,
where V may have duplicate values. If there
are duplicate values, then I want the corre-
sponding elements of A to be summed and
have the sum of all the values acquired there
put into B. What I am saying is: for I runs from
1 to 593 (which is the length of B, not A), B(1)
gets the sum over A in the positions where V
equals I. So, in effect, instead of using sub-
scripting, I have used this calculated logical
mask instead. Now, whether the implementa-
tion of that will be as efficient as what you
would expect from B(V)=A is a question that
can only be decided by looking a t the implem-
entation and the architecture. Some architec-
tures will do a much better job of this kind of
thing than others. So, it is possible to say it in
the language, but whether o r not it is an
effective statement of what you want, one that
will be efficiently executable, depends on your
implementation. This points out the differ-
ence between expressiveness and effective-
ness.

There is a parallel condition statement that is
very much like a parallel IF. The syntax is as
follows:

WHERE (A.NE.0)
B=BIA
C=C/A

ELSE WHERE
B=O
C=C*3

END WHERE

In this example, I am saying, in positions
where A does not equal zero, you can divide
both B and C by A. In all other places, you

execute the other statements in the corre-
sponding positions of B and C. Again, there is
a restriction. The statements that are con-
trolled by the WHERE statements are only
permitted to be array assignment state-
ments, and all of the arrays assigned to it
must conform to the array logical expression
that appears as the predicate of the WHERE.
So, it better be the case that B and C conform
with A.

A very important observation of this language
design is that very few of these features
matter. If you don't use these array features,
if you don't use the array expressions and the
reduction transitions for work, then the lan-
guage looks like plain old sequential For-
tran-it's completely upward compatible. So,
any Fortran 77 code is, in fact, CM Fortran
code, and also h l l Fortran 8X code. That is a
nice property of the design.

Okay, now let's take a look a t C*. C* is a
parallel dialect of C that was developed a t
Thinking Machines Corporation, but which
seems also to be in use elsewhere in the world
now. In fact, I think there is a project at the
University of New Hampshire that Michael
Quinn is invclved with and he is implement-
ing it on, I believe, the NCUBE machine. A
language isn't real until i t is running on more
than one machine. So, C* is at least real in
that sense, if not in other senses.

Okay, now, let's look a t a particularly nasty
language design problem. We would like to
have scalar extension in C*, much the same
way that we did in Fortran because it is so
convenient. But, suppose that Xis the name of
an array. What does X+l mean? Well, unfor-
tunately, that already means something in C.
Because in C, unlike Fortran, arrays are
pointers, and to have an array wit11 a bunch of
things is the same as to have a pointer to the
first element. In C, X+l already means to do
pointer arithmetic. It means take the address

of X (which, if it is the name of an array, then
i t is a pointer), and increment that pointer by
1 to point to the next element. So, if you just
say, "Well, we'll just let tbat mean add 1 t o
every element of X," it won't work.

How do you get around that? This is a problem
that I worried over for several months and
just couldn't see how to do it. Then finally, we
came up with a solution that sort of goes in the
back door. Instead of trying to wedge the
parallel data type in using C arrays, which
won't work because arrays coerce to pointers,
we introduce the parallel data type in another
way and then later add the necessary "array-
ness." This was accomplished by adding two
new storage classes to C that describe where
the data reside. The keywords used are:
"monon for scalar data, and "poly" for parallel
data.

Poly data are organized into domains. For
example,

domain particle {
float x, y, z;
float mass;
float vx, vy, vz;
1;
domain particle w[10000];

Each particle can have a bunch of compo-
nents. Here, I have chosen position, velocity
coordinates, and mass as a demonstration.
Within a declaration of a domain, given that
declarations are implicitly poly, I could have
written the word poly explicitly in front of
each of these declarations. In fact, the words
mono and poly tend not to pop up too much in
actual C* code simply because the defaults
are arranged so you get what you want by the
time that you write it. Since these are implic-
itly poly, these will represent parallel data.
There is an essential rule about domain ar-
rays. When you make an array of domains, the
result is to get something that can be proc-
essed in parallel. In the above example, we
have an array of 10,000 particles called W.

When you select a domain, you are activating blooe~, will get called only on behalf of Par-
parallel processing, ~t is as if for every in- ticles whose energy k exceeds 1 billion.
stance of that domain that you have declared,
there is a separate processor that can execute SO, within a domain, code is parallel. It looks
code. TO select a domain, I would like to just like serial code except that ifyou mention
introduce a new statement type (square P O ~ Y quantities, the effect is to get elemen-
brackets around "domain particle" with the tWise operation. NOW, if YOU Use mono data in
body enclosed by {) and a . in between). Within parallel code, i t results in broadcast. This is
the selection statement, i t can again be ar- how You get X+1 to behave as expected, be-
ranged so that parallel code looks like serial cause in sense, X is not the name of an
code. This is the nice property that Fortran array in this theory of data types. Rather, Xis
also had, but it was in C* by alter- the name ofa scalar that is, however, declared
nate means. as a poly value within an array of particles.

So, X is technically not an array-it is a scalar
Once I have selected the domain of particles, value with some ''arrayness" hiding outside
all of the data that are declared to be around having to do with the domain data type. So,
in that domain (such as x, y, z, mass, vx, vy, this is how we do the end run mound the array
and vz) can be referred to as if they are scalar problem-
values. So, it is as if you wrote code within a
selection statement that is to act on each An interesting consequence of all this is that
particle independently. In computing this, I we find the reduction operators are already
can declare a new variable which temporarily there in the laneage in the guise of Corn-

becomes part of the domain. In the example: pound assignment, which is a set of operators
that Fortran does not have. Ifyou use a scalar

[domain particle]. (value on the left side of an assignment and a
float v2 = vx*vx+vy*vy+vz*vz; parallel value on the right side, you can get
float k = mass*v2*0.5; lots of assignments to happen a t once to the

same place. In this example:

a new automatic variable, v2, is allocated for
each particle. For each particle, I calculate vx
squared plus vy squared plus vz squared and
store that into v2. Then, I can compute the
kinetic energy by multiplying mass by v2 by
0.5. Notice the implicit use of scalar extension
here. If I simply use a mono value here, then
there is implicit replication. I can also use all
kinds of sequential program constructs in
here, such as IF statements. I can use, in fact,
any C control structure within the parallel
code. Now, how all that works out is really
tricky, and I will address that in a few min-
utes. In the preceding example, the function,

mono float total-mass=O;
[domain particle]. (

total-mass +=mass;
1

I have declared a mono variable called
total-mass and initialized i t to zero. Then, I
activate all particles and ask each particle to
add its mass to the total-mass. This requires
a new semantic rule which is that in cases
where you have side effects like this that
collide in single locations, you have to have a
rule that says i t is okay, and defines what the
result is.

We have chosen to state the rule as simply:
the assignments happen as if in some serial

order. That is one way of resolving the con-
flict. Of course, you don't implement it that
way, you implement it by making a binary
tree, for example, and doing the summation in
logarithmic time (or some other technique).
The net effect from the language point ofview
is that all of the masses get added into the
total-mass. Since C provides these built-in
compound assignments for all kinds of opera-
tors, there is multiplication assignment, OR
assignment, AND assignment, etc., and this
gives you pretty much all of the standard
compound operators. C does not have MAS
and MIN operators built into it, so we added
those into C* purely so that we could get
compound MAX and MIN assignments so
that we could get this reduction eff'ect because
i t is so useful.

The fact that arrays were pointers was a
decided disadvantage in trying to get array
features into the language. However, there is
another part of the language where you can,
in fact, turn pointers to great advantage.
Pointers in C are perfectly general. For al-
most any data object, you can make a pointer
to it, and then pass that pointer and assign
through that pointer or reference through
that pointer. C* simply carries that over di-
rectly. If you think of each particle as residing
in a different processor, then a consequence is
in effect that one processor can have pointers
to the memory of another processor. Every
time you do a pointer indirection, that is
potentially interprocessor communication.

In the following example, let's suppose that
every particle has an additional component
that is a pointer to some other particle called
nearest (assuming it will have a pointer to the
particle that is nearest it). We can then do
such things as having every particle compute
the distance (dx) betweenit (in the x direction)
and its nearest neighbor.

domain particle {
domain particle *nearest;

I;

[domain particle]. {
float dx=x-nearest->x;

You basically say: assign to dx my x and
subtract from that value obtained by taking
the pointer to my nearest neighbor, indi-
recting through it, and selecting its x compo-
nent. You do not necessarily have to have
pointers to nearest neighbors, you can have
any kinds of pointers you like. This is one of
those cases where identical-looking state-
ments in the language, depending on the
values of those pointers, can have radically
different implementation consequences. If
you have an architecture that supports near-
est-neighbor communications particularly
well, but supports general communications
fairly poorly, then i t is not surprising that
nearest-neighbor communication will be
faster than the general case. However, that is
from the point of view of the implementation.
From the point of view of the language, all
pointers are alike.

Also note that if one combines the idea of
using compound assignments to do reduction,
this allows the possibility of doing many-to-
one or many-to-few reductions.

[domain particle]. {
float nearmass=O;
nearest->nearmass+=mass;

If you have every particle create a new par-
ticle nearrnass and initialize t o zero, and then
have every particle add its mass into the

nearmass of its nearest neighbors, then you
will end up with a complicated pattern. De-
pending on how you precompute the pointers,
you will often end up with complicated pat-
terns of many-to-few reductions.

In C*, all control statements may be used in
parallel code. The simplest statement is the
IF statement where E is a poly value.

if (E) S
if (El S1 else S2

In particles in positions where E is true, you
execute S, in particles where it is not true, you
don't execute S. And similarly for the if-then-
else statement. So, these work as expected.
Furthermore, the generalized semantic the-
ory gives "while" statements a reasonable
meaning, and even "break," "continue," and
"goto." It is beyond the scope of this talk to
describe how all of that works, but I can refer
you to a Thinking Machines Technical Report
that describes it.

A final observation is that if you don't use
domains at all, then C* code looks like plain
old serial C code. You can take any C code and
run it through the C* compiler, and i t is a
valid program. It executes serially and be-
haves like any ordinary C code.

Now, I am going to take a look a t CM-Lisp.
This is the highest level and most abstract
language. I t is an attempt to take the symbolic
programming language, Lisp, and cast it into
a parallel framework. It has always been the
cultural attitude of Lisp that i t tries to ab-
stract a good deal away fronm the details of
the machine hardware and to provide not just
numerical objects to compute on but, in fact,
abstract symbolic constructs. The first-order
strategy is very similar to what was done in
Fortran and C, which is to introduce one new
data type. This then gets operated on in par-
allel. However, the data type has a very differ-
ent nature. In keeping with the perhaps puck-

ish sense of humor on the part of the Lisp
hackers, this data structure is given a strange
name. It is called a "xapping."

A xapping is an unordered set of ordered
pairs. Each of the two elements in the pair
may be any Lisp object. Lisp objects may look
like numbers, atomic symbols (look like iden-
tifiers), and lists (ordered sequences of Lisp
objects). In the case of xappings, we take a
sequence of pairs and write them between
braces:

A pair is written as the index object, then a
right arrow, then the value object. The pre-
cedingis a xapping of three pairs that map sky
to blue, apple to red, and grass to green. The
indices may be any Lisp objects, but they must
be distinct, and the values may be anything.

[Editors Note: the details on CM-Lisp have
been removed. If you would like further infor-
mation on CM-Lisp, refer to Thinking Ma-
chines Technical Report PL87-6.1

Now, let's do a thematic comparison of the
languages: Fortran, C*, and CM-Lisp. First,
let's look a t elementwise parallelism. That is
achieved in Fortran simply by making two
arrays be an operand to, for example, the +
operator (A + B). That does not work in C*
because addition on arrays already means
something else. Instead, you have t o write A +
B in the context of parallel code: within a
selection statement using poly data. In the
case of CM-Lisp, A and B are xappings, so
instead of using +, you have to use alpha+.
You have to explicitly say that you want the +
distributed over it. The reason for that differ-
ence is that CM-Lisp, unlike the other two,
allows nesting of symbolic data.

For broadcasting, which is one-to-many repli-
cation, Fortran and C do it by simply having
a built-in rule about scalar extension. In the

case ofFortran, i t is when scalar data meet an
array. In the case of C*, it is when mono data
meet poly data, the mono data gel; replicated.
CM-Lisp has an operator for that. I t is the job
of alpha to do that replication. In the case of
many-to-many replication, there are widely
different mechanisms. Fortran can do irregu-
lar communication by using vector-valued
subscripts. A particularly interesting regular
case is accomplished by the SPREAD intrin-
sic. It turns out that both these cases are
accomplished in a single syntactic way in C*,
which is that you compute a pattern of point-
ers and then do pointer arithmetic (effectively
vector-valued subscripting). In the case of
CM-Lisp, regular communication can be ac-
complished with alpha because you can apply
alpha to a xapping to make a xapping of
xappings. Again, the concept of a nested data
stucture actually simplifies things here. You
get irregular patterns by doing alpha aref
where aref is the Lisp subscripting operator.

In the case of reduction, I have broken it down
into many-to-one and many-to-few reductions
and in both the regular and irregular cases,
because there is an interpreting pattern here.
Many-to-one cases and regular many-to-few
cases are both handled in Fortran by different
cases of the SUM intrinsic (depending on
what arguments you give it). To get irregular
many-to-few reductions, you have to use some
complicated form of the FORALL statement.
In C*, all three of them are accomplished in
much the same way by using compound as-
signments. The difference between them
depends simply on what you use on the left
side. If you use a mono lvalue on the left side,
you get a many-to-one reduction (m+=x). If
you use a poly value on the left side particu-
larly involving pointers, you get many-to-few
reductions and regular and irregular compu-
tations look the same (*p+=x). In the case of
CM-Lisp, the data operator handles all three
cases. Ifyou want many-to-one reduction, you
only have to supply one argument. If you want
complicated values, you supply two argu-

ments and you get the xipping effect. A pecu-
liar thing here is the strange pattern where
each of the languages has two cases the same,
but Fortran does not have the same two the
same as the other languages. This points out
a difference in the styles of language design.

Now, let's look a t permutations. In the case of
Fortran, there are some built-in intrinsics for
doing regular permutations. In the case
where you have rectangular arrays (which is
what Fortran is good at), there are intrinsics
to do circular shifts along any axis, end-off
shifts that shift in zeroes and discard shifted-
out data, and a matrix transpose operator. In
the case of C*, you just do i t with general
mechanisms again by just computing the rele-
vant pointer pattern and hoping that the
compiler will recognize a special case pattern
or that the underlying hardwarelsoftware
will deal with that case as well. You can take
these separate cases and bury them in macros
to make them linguistically convenient. In the
case of CM-Lisp, one can also use calculated
indices, such as in C*, but there are also
intrinsics that we built into the language to
handle interesting special cases.

As for conditionals, I am going to contrast the
scalar and parallel case. Fortran uses the IF
statement to do scalar conditionals, but it
uses a separate kind of WHERE statement
that is otherwise syntactically very similar
except that i t has restrictions as to what you
can put in the body. I think that is why they
chose a different key word, namely the
WHERE statement. Certain kinds of condi-
tionalization are accomplished with a special
mask=argument in some of the intrinsics. In
the case of C*, the same if statement or the
same conditional expression serves in both
the scalar and parallel cases. It is merely a
matter of whether you use mono or poly data.
In the case of CM-Lisp, again, the if construct
serves for both cases. However, you have to
distinguish whether you want the scalar or

parallel case by the explicit use of alpha. That
has to do with the nesting of data structures.

Finally, let's compare the languages by look-
ing at the data structures. Fortran provides
arrays and the elements are scalar. At least in
the dialect I described, which is Fortran 77
with the 8X array extensions. Fortran 8X also
provides many other kinds of data structure
constructs including record structures. So, for
full BX, the following restriction does not
apply. For the dialect that I discussed, there
are only scalar elements and the indices are
strictly integers. C* gets its parallelism by
introducing domains and then there is a
funny thing that arrays of domains are spe-
cial. You can select and activate them. Or
rather, you can activate their domains, which
causes the array elements to become active.
Again, the indices are restricted to beinginte-
gers. In the case of CM-Lisp, we introduce
xappings, which you can think of as being very
much like arrays except the indices and ele-
ments may be any Lisp objects. This makes i t
fit in better with the symbolic computation
nature of Lisp.

So, to wrap up, each of these common themes
having to do with elementwise operation and
replication or reduction showed up in all ofthe
languages. However, they got realized in very
different ways because they had to be embed-
ded in such a way as to suit the personality of
the language and the standard cultural way
that things are done in that language. I think
it is important t o take that into account when
doing a language design.

I would like to point out some patterns that I
think will be important in the future. Themes
that I think will become increasingly common
in the future include the parallel prefix opera-
tors. These are what APL calls a "scan opera-
tor." Not only just the simple case of taking an
entire array and doing parallel prefix, but also
taking an array and breaking i t into pieces
and doing parallel prefix. Some work has been

done in this area by an MIT student, Guy
Blelloch, on models of computation that are
based on doing segmented scans. There are
some fairly powerful ideas on how to build up
algorithms that way. I think that sorting is
going to become increasingly important and
we have to understand better how to use that
in a language context. The ideas of convolu-
tions are also important, including simple
ideas like taking an array, looking up/down/
leftlright, adding them up, and dividing by
four, which happens all the time, as well as
more complicated patterns of convolution.
Here, we not only need to understand these
patterns and provide them as facilities, we
need to do more than just provide subroutines
in a library, we need to understand how to
integrate these patterns into the language
designs. They need to fit in smoothly with
everything else that is going on.

I think I've raised more questions than an-
swers in giving this talk, but these are what I
see as important topics for the future of paral-
lel language design.

Generating Movie-Quality Animated Graphics
with Massively Parallel Computers

Gary Demos
Whitney-Demos Productions

I'll start by posing some challenges to the
audience. I'd like to challenge you to push
the state of the art in scientific computing.
Graphics, as a discipline, or, as a software
problem, really acts very much like many
scientific problems, and tends to stress a lot
of the directions of the general use of the
machine, and the general performance
capabilities.

If you have a hypercube that's got 4,000
nodes, you essentially have 12 wires a t each
cell of the hypercube.

A 12-wire hypercube also has, by its attrib-
utes, 12 nearest neighbors. So, if you think
of this as the dimension, it's really some-
thing like 3.5, Now, 23.6 is 12. I'm not sure
whether this is three or four dimensions.

We found with the CRAY X M P that the If you think of the cell dividing space as

vector scalar balance was pretty good for being a cube, it really has six faces. I t

doing graphics. And, scientists, I think, doesn't have four. It doesn't have eight.

have found, in general, that it was a fairly Many three-dimensional scientific codes

good balance for their codes. are based around cell subdivisions.

We're beginning to see a lot of scientific and This brings up the whole issue of how to
subdivide space and map it onto massively engineering applications running on mas-
parallel topologies. If you're thinking of a sively parallel systems, and, it's a challenge

to see just how far we can take that. I think 3-, 4-, or 5-D kind ofa space-filling topology,
what you really need is spaces that can be ,

the potential for massively parallel ma-
chines to go way beyond their present close packed. And, of the regular polyhe-

power level is quite large. dron, in which all the faces are the same,
and all the angles are the same, there aren't

Let's talk a little about the topology of very many such things. And, those that

massively parallel machines. It's obvious there are can be kind of strange. Cubes tend

that two-dimensional grids are quite usehl to be good ones.

for some problems. However, I'm sure a lot
ofpeople here have run into those problems Three dimensional shapes that can be close

where you have to do funny things to get the packed are tetrahedrons. But, I don't know

grid to solve the problem. In many ways, really how you solve a tetrahedral composi-

scientific problems are modeling three- tion of 3-D space. I'm sure there are other

dimensional space. At least, most of them irregular polyhedrons that are made up of

are. And, most of them are beginning to two classes of faces, e.g., a square and a

model timeframe problems, as well. triangle or, maybe, some asymmetrical
shapes. But, these are very difficult to

For this you want a 3-D, maybe 4-D-typi- construct scientific codes around.

callynot more than 5-D-kind ofgrid. Now,
obviously, having eight directions is more Anyway, I think this is part of the chal-

helpful than four in the sense of a 3-D grid. lenge. Obviously, a general purpose rout-
ing capability is one way to solve the issue.

15 PRECEDING PAGE BUNK NOT FllMED
CH2649-2/89/0000/0015$01 .OO O 1988 IEEE d y rn~tniiwuq BUY

But, there are natural topologies in three
dimensions that deal with some of these
issues.

Another problem is local subdivision: if you
have a grid around an aircraft, and you
want t o have finer resolution around the
fronts of the wings, it's nice if the grid can
subdivide in those regions without leaving
gaps where pieces are not connected.

One of the big topics for several. years has
been SIMD versus MIMD. And, it might
even be possible to think of some hybrids. I
heard some discussed today where each
processing node has some limited comput-
ing capability, but, in general, the whole
thing can turn over as a unit. These things
remain to be investigated.

For graphics problems, the main issue re-
ally is numeric power. And, it's easiest to
deal with that numeric power with floating
point operations. Let's just think in terms
of this scientific problem and bei ng a power-
ful machine and just in terms of floating
point power. I realize there are intercon-
nectivity issues, and other issues.

But, let's just think of it in terms of floating
point for a second. Let's say that we have a
goal of obtaining a machine that was 1,000
times more powerful than an XMP proces-
sor. Now, obviously, that's something that
a lot of people would be excited about. Let's
just figure out what that might mean.

If I have 4,000 processors, that means that
each processor has to be 25 megaflops.
Well, that's a lot of megaflops. This is, by
the way, taking the basepoint that an XMP
is about 100 megaflops. And, I realize it can
vary anywhere from 10 megaflops to about
200, depending on how your code's written.

But, let's just say it's a 100. So, I'm givingit
a pretty good peak rate there. So, this is-

1,000 times that is about 100 gigaflops. So,
4,000 processors with each processor at 25
megaflops-you could do i t with 16,000
processors where each processor had 6
megaflops. That might be a little more
possible.

You could do i t with 1,000 processors where
each had 100 megaflops. Now, that sounds
hard. You could do it with 64,000 processors
where each one had a megaflop and a half.
I think it's somewhere in this space. Now,
I don't know how to optimize this in trying
to find the peak point, where you'd get the
most bang for your buck, if you will. I don't
think scientific codes care that most ofthem
have million-node meshes. Certainly,
graphics doesn't care.

If you have a 1,000-x-1,000 screen, that's a
million picture elements. Ifyou want to put
a million polygons on it, that's another
handy million. You get 1,000 frames per
minute, roughly, within an order of mag-
nitude, so, you could do 1 billion things in
parallel and just compute 1 minute's worth.
So, you can go pretty parallel in that sense.

One of the issues facing everybody, of
course, is 32 versus 64 bits. Some of the
scientific community absolutely insists on
64 bit. Other people seem to be willing to
work with 32. This tends to create shop
cultures. Certain shops are 64-bit only.
Other shops are hybrids, or 32 bit, or what-
ever.

Graphics can be done on either, depending
on the algorithm. Most graphics algo-
rithms can be done pretty well with 32 bits
with an occasional 64-bit computation in a
couple of isolated spots. But, I think a
scientific machine really has to have high
performance in the 64-bit range to satisfy
the broad number of users. Because,
clearly, there are a number of machines out

that are largely parallel. And, each of them
is serving certain niches.

But, if you want a general machine serving
most problems, I think you'd want to think
in terms of 64. That's just my personal bias.
In the work that we did, and, I think, also in
scientific work, the 1-bit granules are not
used. In some sense, they're good for other
kinds of simulations than scientific or
graphic type work. So, in some sense, I
thought of that machine as being a smaller
number of floating point chips as opposed to
a larger number of 1 bit processors.

Of course, some of the problems you en-
counter in programming massively parallel
machines is how to track the state, measure
its performance, and evaluate the available
tools. Some presentations on these issues
were made earlier today. And, something,
I think, is pretty interesting- I thinkifyou
use graphics to display parallel variables
where you have a large number of them and
you can put them in some coded way on the
screen where you can watch the machine
and similarly use it to display utilization,
router activity, grid activity - those kinds
of things that it can be used for.

At the other end of the spectrum-not the
high end, but the lower end-when we go
home and play with our personal comput-
ers, or we get something on our desktop for
our office - there's a trend toward rapidly
increasing power. There's really two rea-
sons for this. One is the RISC technology
seems to have pushed the performance of
small machines, and these machines are
starting to become something that's moving
towards our home and our desktop. But,
also floating point power becomes much
cheaper, particularly, pipeline floating
point.

And, it's even possible to get parallelism in
a Macintosh I1 or a PC. You can put boards

in there that will accelerate you up to sig-
nificant speeds. And, i t won't be very long
before you have the power of a CRAY 1,
which is about 50 megaflops, on your desk-
top for about $10-15,000.

There are some interesting things going on
in our field-revolutionary things. I'm
going to digress a little bit and talk about
our experiences with the CRAY X/MP. We
wrote an algorithm for graphics that ended
up being about 500,000 lines of code, which,
by my measures, is a large code.

The algorithm averaged about 500,000
polygons in a frame. That's a lot of complex-
ity. A polygon is a unit of surface. It's a
piecewise linear spatial way to approxi-
mate 3-D images. We typically approxi-
mate them by their surface because one
typically doesn't see inside of things unless
one is refracting light through crystals or
something. We typically made frames a t
2,000-x-2,500 pixels with 36 bits per pixel-
that's 24 megabytes. So, we pushed a lot of
data in each frame.

We made some frames that are 5,000-x-
4,000, or 75 megabytes. We made use of the
100-megabyte-per-second channels. People
are beginning to explore this. Doing graph-
ics has a lot of bandwidth requirements.
Feeding the tube requires a lot of band-
width.

Just t o give you a sense of how much com-
puting is involved, in The Last Starfighter,
we did about 30 minutes of film, and we had
to compute on a CRAY-1 for about 6-9
months, and we were backed up with about
2 years' worth of computing.

We brought in the X/MP and then computed
on it for about 6 months. If you just figured
in two processor X/MP time, i t was almost 9
months of solid computing-that's a lot of
cycles. And, we were producing about 1.5

hours of imagery per year for an average
frame time of about 2 rninutes/fiame.

We found that there is a perceptual thresh-
old for interacting with complex pictures of
5 minutes. If you can make your frames in
less than 5 minutes, everyone's productive.
If you take longer than 5 minutes, nobody
makes any progress and the production
grinds to a halt.

We also find in computer graphics that an
issue such as volume visualization, where
you have a big field of 3-D images and you
want to see what's going on, that the data
can be very complex. You may be looking
through many layers. And, it requires the
same high levels of computing such as the
kinds of graphics that we've been working
on for entertainment.

We've declared parallel variables on the
CM-2 by creating an operator,which is
really a 1-character prefix on our parallel
variables. We used exclamation points with
the data we processed on the CM. So, every
parallel variable (P-VAR) was "bang" some-
thing or other. We called the renderer the
"bang render," the thing that makes the
pictures. But, anyway, I think it's my vote
that is counter to everything that
everybody's doing to make the parallel
variable jump out at you by having them
look different.

I think i t makes the code easier. I think the
whole general trend toward having lan-
guages hide the machine's activities is
wrong. I think it's much better to just bring
it up and let you control this machine.
You've got to think in terms of these mas-
sively parallel machines, anyway, o r you're
not going to get to square 1. Nobody's going
to throw a normal FORTRAN program on
these machines. Or, if they do, they're not
going to like it.

We made use of *LISP, which is the parallel
LISP dialect for the CM and used the sym-
bolic~ front end. For me, who had been
programming in FORTRAN for many
years, to change from normal, vectorized
FORTRAN, to parallel LISP was a pretty
radical culture shock, but, I'm alive to tell
you about it.

However, not very many people are willing
to go through this kind of psychological
lobotomy, or whatever i t takes to redesign
your brain patterns. Programming the CM
is like solving 3-D puzzles. There are people
who are good a t it, but, I'm not one of them.
My work cycle on the CRAY was typically as
follows: I would think about something to
code up, e.g., a couple of pages. I would
think about it for a day. I would code it for
a day. And, I would go debug it for a day. On
the CM, I'd think about it for about 3-4 days,
code it in about 2 hours, and debug it any-
where from half a day to a week. Some of
the problems were very hard to debug be-
cause i t was difficult to see the state of the
machine-what it was doing.

You had to build a lot of test cases to find out
what the processors were sending or get-
ting or whatever i t may be. Anyway, there
are different coding styles. It's a different
lifestyle, if you will. It's still in the middle
of the night for most of us. But, other than
that, it's a different hnction.

On the CRAY, we used precision film-re-
cording scanning systems that use cathode
ray tubes. With the CM, we were targeting
mostly commercial production, and we used
"digital video." There's a broadcast indus-
try standard now called "422 Component
Digital Video," for short, it's called CCIR
601. This particular standard is a way of
sending numbers to represent the picture.
It's a vast improvement over analog sig-
nals, where they're always drifting around
on you. And, there are media that are kind

of interesting peripherals that support this
digital medium. One is a disk system that
holds 100 seconds, and you can random
access it. It's made by a company called
Abekas.

There's also a tape machine that will store
this visual video made by Sony. It's called
a DVR 1000; the format on the tape is called
Dl; but, the data are transmitted at 20
megabytes per second-a healthy data
rate. It's over an eight-bit-wide differential
ECL signal level cable. And, this 20-mega-
byte-per-second stuff can be laid down on a
tape. Well, that's a hell of a tape machine.

Each tape is a little cassette that will hold
either 35 minutes; a slightly larger one will
hold 75 minutes. That's 50 gigabytes! A
little tape of 50 gigabytes transfers at 20
megabytes per second, and has a disk that
goes with it. That was pretty exciting stuff.
Our connection to it was over the Ethernet.
Oh, well, a t least we've preconditioned all
the data. So, it ran100 Kilobytes per second,
or whatever the Ethernet would go. We
were going to hook up a VME, but didn't get
around to it. We also made some use of the
HBTV standard, which is the high defini-
tion video spec. There are people who have
produced systems for i t including Phillips
in Europe and Sony and NHK in Japan.
Anyway, it's 1,125 lines. They account for
the lines that scan back that you don't see.
It's really a 1,040-lines visible system.

But, it's not a square screen or even a 540-
4 type screen. It's a 1.6-to-1 aspect ratio
which is the old European movie format.
So, it's 1,040 lines-x-1,660 pixels. We made
some use of this. We actually used
nonsquare pixels and used 1,280 lines and
stretched them.

We were not a t the optimum performance
on the CM that we would be if we just kept
pounding on our performance and our soft-

ware. On the CRAY, we figured that we'd
put 8 man-years into the algorithm and 16
man-years into optimizing it. We had put
the 5, or whatever, man-years in the CM;
but, we hadn't put the subsequent 10 in the
optimization, so, we had a long way to go.
But, among the things that were-that we
could see to do to improve ourselves-is
that we had about 35-percent efficiency
based on the front-end issuing instructions.
It wasn't keeping the CM busy. It wasn't
issuing instructions fast enough. We would
have benefitted a lot from the later CM
operating system release where they have
something they call "variable virtual proc-
essor ratios."

The way that that machine uses its floating
point chips and pipelines, i t does not get
very good floating point efficiency in terms
of its peak unless you use hikh virtual
processor ratios. We had to use a virtual
processor ratio on our code of 1, meaning we
just barely fit with the number of tempo-
rary variables. We have a large number of
temporary variables. But, we could've had
a few variables that would've fit in there
and we could've used large virtual proces-
sor ratios for that and gotten significant
improvement-probably a factor of 2 on our
code.

We also found that we used mostly many-
collision routing, that is to say, lots ofpeople
wanted to get from or send to the same
place. Let's say a processor was a pixel.
And, a t some point, every processor's a
polygon. And, i t says, okay, I'm going to see
what pixels I touch. And, it's going to start
to scan itself out. As it does, it's going to
send to some other processor that's a pixel.
So, it does that. And, now every processor
puts on a different hat and pretends t o be a
pixel. And, it sees who all the polygons are
that touched it.

So, we made almost no use of our graphics would collect them up, do them all in paral-
hardware on the news grid. It was almost lel and send them back. And, that turned
d l general routes with lots of collisions. SO, out to gain significant speed.
for any of you who are designing machines
and are interested in complex graphics
algorithms, that's our experience, at least - i

for the kind of algorithms I design.

Others may design other kinds of algo-
rithms. We also used indirect addressing.
That's how you build things on the list that
are different length, where every processor
has a different length list. It was h d a -
mental through our design. We also used
some of the more exotic operations that the
CM provides in *LISP--scans, ranks, and
enumerates copy scans and segmented
copy scans, etc.

We made lots of use of them. Everytime
they would say "here's something funny
and it does something funny. Is it useful?"
we'd say "yeah," and we'd stick it over here.
We made lots of use of all that and, it
became important for performance.

Another thing we did was adopt a concept
that has been bouncing around known as
data flow in the industry where you group
pieces of work to be done together. If you're
going to turn off 90 percent of your proces-
sors and only have 10 percent active, that's
not very good use. But, if a whole bunch of
different things need the same-let's say, a
whole bunch of users need a multiplier, but
each one would only be 10 percent active if
you did them separately.

So, you'd collect them all together. You'd do
the multiplying and then, send them all
back. Now, multiply isn't a big enough unit
of work to justify all that sending and col-
lecting, but, we had units of work that were
similarly small which meant entirely differ-
ent things because they were from com-
pletely different parts of the code. But, we

The Impact of Massively Parallel
Computers on Image Processing

Azriel Rosenfeld
University of Maryland

The use of massively parallel computers for
image analysis was first suggested in a
paper entitled "A Computer Oriented Ap-
proach Toward Spatial Problems," which
appeared in the proceedings of the IRE, if I
remember correctly aRer 30+ years. It was
suggested that if you took an image and
loaded it into a bit and then connected an
array of processors--one pixel per proces-
sor, perhaps-you could do an awfkl lot in a
small number of computational steps using
pixel parallelism. I want to start off from
that baseline and say something about
what kind of things we want to do with
images once we get them loaded into a
massively parallel system, and how hard
some of those things are going to be. We
know how to massively parallelize some
operations; but, we don't necessarily know
where the bottlenecks are. I have my own
prejudices, and I11 comment on them as I go
along.

Let's look at real-time vision. You point a
camera at a scene. You get a video image,
grab a frame, digitize it, and now you have
this massive data set, but the frames keep
coming at you. You're dealing with perhaps
many megabytes per second, depending on
frame rate and size. One of the serious
limitations in our business is that you often
have to do things in real time. These limita-
tions have no meaning, however, if you get
an image every day &om somewhere out in
space, and you are willing to take 24 hours
to make some decision about it. For most
systems, we don't have that kind of luxury.
In most real-world applications, for ex-
ample, if you are trying to create eyes for a

robot that actually has to move around and
manipulate things in real time, then imple-
menting what the system has to do in real
time at low cost is a challenge.

Let's go into the factory and look at the
industrial machine vision systems that are
being sold. They don't work with massive
parallelism, because massive parallelism is
not something you can put on a chip for a
few thousand dollars so that you can install
them economically. So, they work with the
sort of simple operations that you can per-
form sequentially more or less at frame
rates, which tremendously limits what they
can do. The things that computer vision
researchers were inventing, exploring, and
developing 20-30 years ago, you can now do
in real time on a single-processor system.

Massive parallelism offers the tantalizing
promise of being able to do less trivial
things in real time once the cost of mas-
sively parallel systems comes down. The
axiom is that computer power is getting
cheaper, and this trend will continue. We
are far from being up against a stone wall.

There are experts on hardware here who
will tell you how soon you'll be able to buy a
1,000-x-1,000 mesh-connected system for
$1,000. It'll be awhile, no doubt. But, unless
the economic pressures for doing it go away,
it would surprise me if, by the turn of the
century (plus or minus a few years), we
weren't within shooting distance of that
target, if not already there. This implies
that although we keep coming up with ever
more diabolical ideas about how to torture

data and squeeze drops of wisdom out of it,
anything we can do today will eventually be
done in real time a t low cost. This is my
underlying hypothesis.

What types of data do we need to process
when we try to do computer vision? What
stages do we go through from the time we
get the image into our retina (so to speak)
until the time we are able to do things?
What types of operations do we need to
perform on these types of data, and in what
way can we speed up those operations using
parallelism?

It's fashionable to say nowadays that com-
puter vision has two major goals: construct-
ing a map of the environment, and recogniz-
ing the objects.

The catch for goal 1 is that the environment
is three-dimensional (3-D), while the cam-
era image is two-dimensional (2-D). To map
the environment, you need surface topogra-
phy. If I pointed a camera a t this room,
there's a lot of depth here, lots of objects
occluding one another, and they are very
complex objects.

With regard to goal 2, recognizing the ob-
jects, lets look a t the people in this room.
Can I recognize and count them? Can I tell
the men from the women? Can I ciistinguish
which ones are wearing eyeglasses or
beards? Such recognition tasks are beyond
the state of the art. You might come up with
a technique that recognizes 80-90% of
them, but, that doesn't mean you're doing it
right-and when you blow it, you really
blow it. Maybe the slide projector down the
aisle will show up as a guy wearing a funny
hat because your technique doesn't know
about slide projectors and projector stands.

Recognition is a very hard and open-ended
problem. Naturally, there are simple do-
mains in which we can do topographic re-

covery; but, very little of the topographic
recovery stuff has successfully been done
robustly on real data. Much of it gets dem-
onstrated on synthetic examples. Vision
problems are not easy. We're starting with
an image and we want to end up with
certain products, or outputs, one of which is
a depth map. Many people are using range
sensors nowadays instead of TV cameras,
although they're very slow, because they
give you a depth map. Recognition is still a
mess, though, because objects are 3-D. You
only see one side of them. They hide one
another. Objects may not even be precisely
defined. (Give me the precise definition of
the human head or, for that matter, a pre-
cise definition of a beard. Heads and beards
come in many varieties.)

I want to stress the data types involved in
vision. If you are trying to get from the pixel
array to the depth map, which is also a pixel
array (the pixel means something else), the
data types involved are primarily pixel
arrays, and you might actually get away
with pixel parallelism, with what we might
call "retinoptic" processing, involving proc-
esses that look a t local patches of the data,
chew them up, and spit them out again in
array form in a way that is now more mean-
in&l: it's now a depth map instead of an
image.

In this situation, you are basically process-
ing arrays of data; the basic data type is the
array. The kinds of operations you're per-
forming are primarily local operations
where you look a t little pieces of the array
and infer the logical topography by massag-
ing them. If this was all we wanted to do, i t
would substantiate the contention that the
big bottleneck in doing vision quickly is the
massive local processing of all those pixels
in parallel. Mesh-connected machines like
the Massively Parallel Processor (MPP)
might, in fact, be the basic solution. And,
even though these machines, in their pres-

ent states, still have some limitations,
they're developing and improving all the
time.

When you come to recognition tasks, how-
ever, it's fairly clear that you need other
types of data representations. What's a
human face? It's got eyes, eyebrows, nos-
trils, lips, and so on. In order for i t to be a
face, however, the parts have to be in the
right places. So, now we are talking not just
about images as pixel arrays, but about
image parts. We're talking about eyes being
almond-shaped, with pointy ends. We're
talking about noses being aquiline-that
even sounds 3-D. We're talking about
mouths being pursed or smiling. We're talk-
ing about image parts-about geometric
properties of those parts, and relations
among the parts.

So, when we want to do recognition, we're
not just talking about pixel arrays; We're
talking about other kinds of data and data
types--other kinds of information about
these data types, and other kinds of proc-
essing of these data types.

A computer vision system may be con-
fronted with a variety of data types. It
certainly starts with array data and, a t the
very beginning, a particular numeric ar-
ray-that's the pixel array. It may go from
there to do all kinds of derived arrays. Some
of them may no longer be numeric; some of
them may be symbolic and look like over-
lays. Even in the domain of numeric arrays,
which may not even be scalar valued. These
arrays might represent surface orientation.
They might represent textural informa-
tion, which is painfully gathered on a local
basis in the neighborhood of each pixel. In
short, there are many array-like represen-
tations.

Above and beyond that, we must eventually
start extracting geometric entities in two

and three dimensions from the pixel array.
Now, we are confronted with how to repre-
sent geometric entities-patches of the
image, patches of surface, or pieces of solid.
These are entities in two dimensions, two-
and-a-half dimensions (surface patches),
and pieces of solid, not all of which you can
see. A vision system must deal with the
representation of that kind of information
and its processing.

Going up to a still higher level of abstrac-
tion, how do you represent this data collec-
tion about pieces of the image and their
properties and relations? The old standby is
that you create some kind of labelled graph
in which you represent the image pieces as
nodes. The graph then tells you how they
are related. That's how you get from the
array to some sort of abstract structure.
The reason for doing this is object recogni-
tion. The description of the object is in
terms of parts and their relations. So,
somebody has to get that kind of informa-
tion out of the image and check it against
the models-the descriptions of what a
generic thing is going to look like. Modeling
is hard. Description is hard. Making them
meet halfway so that you can check one
against the other is hard.

There's an even more abstract data type
that we might call "knowledge." I won't
even try to speculate how easy or hard it is
to do vision in an AI-ish [artificial intelli-
gence-ish] context in which you can reason
about what you are doing. The processes of
extracting parts from an image are not very
AI-ish. The processes of setting up the data
structures are not very AI-ish. People are
attempting to make use of AI-ish control
structures in doing some of the higher level
massaging of the more abstract data types.
Parenthetically, I would contend that if the
AI-ish approach is going to do the vision
community any good, they ought to start
using it, even down at the pixel level. But,

since I'm not prepared to prove that specu-
lation, let's pass it by.

The real thing I want to call your attention
to is to not assume that the bottleneck is
only a t the pixel level. Yes, the data you
begin with in your vision system are pixel
arrays of various sorts, whether the origi-
nal one or all sorts of derived ones. Yes,
those arrays involve fairly massive
amounts of data. For example, 1,000-x-
1,000 pixel images give rise to arrays of 1
million pixels, and if we have 1. or a few
bytes per pixel, we're talking 1 or a few
million bytes of data. Yes, that's a lot of
data. But massive parallelism is approach-
ing the million level, even if it hasn't quite
gotten there yet. (Maybe you11 hear product
announcements at this meeting.) We al-
ready know how to break the bottleneck a t
the pixel level for certain type6 of opera-
tions through massive parallelism, be-
cause, as massive as the parallelism may
be, we're on our way toward it. And, once we
achieve that level, when the parallelism of
the machine is equal to that of the problem,
then we can process every pixel in the image
simultaneously. If all we're trying to do is
some kind of local processing, maybe re-
peated local processing (local means not
very large neighborhood sizes), of the pixel
arrays, massive parallelism of the conven-
tional kind-mesh-connected machines-
would allow us to do it very fast. Thus, if the
bottleneck occurred a t the pixel level, con-
ventional massive parallelism would break
it.

The question is, what about the possible
bottlenecks a t the more abstract levels?
Here, an optimist might say that, at these
levels, we're working with fragments of the
image; and how many of them are there?
Perhaps just a few hundred. But how many
bytes does it take to tell us everything we

want to know about one of these fragments?
Not a vast number. Then, why do I insist
that there may be problems up ahead?

Because we may run into a combinatorial
explosion. True, I said that from your mil-
lion-pixel image, all you need do is extract,
say, 1,000 image fragments. What gets you
into trouble is that you pull out these 1,000
fragments in 100 different ways. Anybody
who thinks you can run one canonical seg-
mentation technique on an image and get
the definitive thousand atomic image frag-
ments is wrong. You need t o extract the
fragments in many different ways. So, in
fact, they represent possibly overlapping
inconsistent interpretations of pieces of the
image. Then, you need to put those frag-
ments together in combinations. True,
you're almost certainly not considering
arbitrary combinations of the thousand-
image fragments (2-to-the-thousandth-
power combinations); you're probably look-
ing only at certain connected combinations,
and although I'm not prepared to count
them, it's certainly not a fully combinato-
rial problem. But, there are still many
combinations, and that's where the true
bottleneck may lie.

What kinds of operations do we want to
perform on these various data types? There
is a taxonomy; it's a kind of textbook ofbasic
image processing and analysis techniques
organized by type of operation.

If I'm given a pixel array, I might want to
work on it one pixel at a time. I might want
to do a stretch of the gray scale or a thresh-
olding. I might want to do a huge variety of
local operations. These are a generalization
of point operations, where we're not just
operating on single pixels, but one pixel and
a few other related pixels everywhere in the
image. It's obvious how to do that kind of

thing in a massively parallel way, but some
kinds of things get a little less obvious.

Suppose I want to do statistics on the im-
age, perhaps to analyze its texture. How do
you get global statistics on a 1,000 x 1,000
image? Not by local operations. Somehow,
you've got to get all the information to-
gether in one place, so you can count noses,
so to speak. (How many occurrences of some
particular local property are there in the
entire image?) The mesh doesn't support
that too well. A 1,000 x 1,000 mesh looks
like its's giving you a millionfold speedup
factor in processing, but that's for local or
point operations. It's giving you only a
1,000-fold speedup in statistical computa-
tion, because you still have a communica-
tion problem.

Other kinds of image transformations pro-
vide other problems. There are geometric
image transformations that perform arbi-
trary warping of our image to correct distor-
tions. There are other kinds of transforma-
tions in which the output is still an image,
but it no longer has even a geometrically
distorted point-by-point correspondence
with the input image. Finally, there is the
large class of segmentation operations that
perform the segment extraction of the
image parts. The input is an array, but the
output no longer is.

Suppose we have managed t o pull out of our
million-pixel image 1,000 image fragments,
or something on that order, and we have
somehow represented them (without giving
a lecture on representations), so we now
have descriptions that are sufficient to re-
construct each of those fragments. In other
words, we have a collection of geometric
entities. What sorts of things do we want to
do with them?

It starts right out as combinatorial in that
we want to assemble them in various ways.

I may need to take unions of collections of
them. I may need to intersect some of them.
I may need to derive other subsets from
them. I don't think there's a general agree-
ment on the taxonomy on what you may
want to do with image parts. What are the
geometric computations you need to per-
form? And how can they be efficiently per-
formed? What are the good ways of repre-
senting the geometric entities?

Yes, you only have 1,000 entities; but, you
may need to deal with a very large number
of combinations of the entities. And every
time you form a new combination, you may
have to recompute everything, especially
since the images are coming along a t 30 per
second. Whatever it is you do, you may have
to do it again, especially if things changed
rapidly. On the very next frame, you may
have to extract and/or combine fragments,
a different combination every time, and
then compute derived structures, geomet-
ric properties, and decide on geometric rela-
tions of all sorts on the resulting mass of
data.

We have accumulated a lot of ideas over the
past decades as to the types of things we
need to do. We have reasonably efficient
algorithms for doing them. We can now look
at this body of tasks and ask how can we
speed them up? Is massive parallelism
useful when you are trying to handle the
combinatorics of search with the goal of
combining image parts so that you can get
to the next stage of description?

Similar remarks are true a t the next level of
abstraction, the graph level, where we have
thrown away the geometric details. A geo-
metric entity is now represented by a graph
node a t the location of the entity. But
graphs are combinatorial objects, too. Even
at the graph level, you get into the combina-
torics of considering collections of nodes,
and the complexity gets a t least polyno-

mid. I'm not a graph theorist. I'rn not ask-
ing what the taxonomy of computations is
that you want to do on labelled graphs. I'm
only asking what a taxonomy of labeled
graph computations is that a vision person
might want to do.

When you look at vision benchmarks nowa-
days, you find that the creators of the
DARPA vision benchmarks deliberately
stuck their necks out and said 'What about
computational geometry and graph algo-
rithms?" The next DARPA architectures
workshop will be held next week, in Avon,
CT, where people will report on a unified
benchmark involving operations at all the
different levels of abstraction.

To summarize: What's the vision problem?
What are we trying to do? Topographic
recovery? Object recognition? What sorts of
data do we need to process? The pixel array?
Derived arrays of all kinds? Geometric ob-
jects, represented in various ways? Still
more abstractly, labeled graph structures?
Beyond that, I don't even want to suggest
anything.

What kind of operations do we want to
perform on these data types? We have a
long list for the array types, a shorter list for
the geometric types, and a still shorter list
for the graph types. I don't claim that the
list is really shorter, but only that I've been
too lazy to think harder and come up with a
convincing, definitive taxonomy of what we
may want to do. Now comes the question,
"What about the speedup of these opera-
tions using various forms of parallelism?"

The pipeline idea yields operation parallel-
ism. No sooner do you finish doing an opera-
tion on the first little piece of your image,
then, treading right on its heels, comes
another processor that starts the next op-
eration on the partial output of the first
operation. By doing this, you're overlaying

operations; if you can do one operation at
frame rates, then you can do K operations,
not in K times the frame rate, not K times
slower; by overlapping, you can do K opera-
tions practically at frame rates.

The MPP, and the other mesh-connected
parallel systems, provide another ap-
proach, which allows an operation to be
performed in parallel at every pixel. The
tree-structured machines represent some-
thing that you might call orthogonal to the
mesh. It's a different interconnection struc-
ture, but tremendously powerful for certain
purposes. If you want to do statistics opera-
tions-for example, if you want to do histo-
gramming, a tree is great.

A pyramid is basically the cross-product of
the mesh and the tree. It has the advan-
tages ofboth. I'm not going to give you a pep
talk on pyramids, but, it should be clear
from the program of this meeting, and
almost any meeting these days, that pyra-
mids are currently undergoing a wave of
popularity, which is nice.

Finally, there's a wave of commercial ma-
chines using hypercube achitectures.
Hypercubes-if they're sufficiently mas-
sively parallel-are very advantageous. In
terms of communication flexibility, they
can simulate pyramids very handily.

These architectural ideas have been
around for some decades. The mesh has
been around in a conceptual way since
1958, so it's having a 30th anniversary.
Eventually, a succession was built. People
have been talking about hypercubes for
10-20 years. People have been talking
about pyramids for I S 1 5 years. Using all
these kinds of parallelism-a lot is known
about that. But the vision problem is still a
challenge.

Suppose I was showing slides instead of how many neuron firings were there in that
these dull black-and-white, alphanumeric time? It's on the order of hundreds. How do
transparencies. Suppose I hit the slide you vision in the order of 100 cycles? What
changer button and up on the screen ap- kind of architectures can achieve such per-
peared a slide of an octopus. How long formance? How do we program them?
would i t take you to recognize it? A fraction That's the next lecture.
of a second. Suppose I hit the button, and
the next slide is the Eiffel Tower. Again, in
l/lOth of a second, you think "Eiffel Tower."
They are familiar objects. A typewriter is
familiar. My Doberman Pinscher (which I
don't have) is familiar. And so on. You never
saw that particular dog before, and maybe
you don't know breeds that well; but, in 11
10th of a second, you recognize i t as a dog.
It's a familiar object. You didn't expect it,
but you recognize i t in a fraction of a second.
You have a long-term memory in your head.
As a child, you learned a t an incredible rate.
It's been estimated that a child learns to
recognize 5,000 objects by the age of 10.
(This is based on counting the entries in a
picture dictionary.) You can name more
than 5,000 objects reliably. You have all
this information stored in your head. And
you can instantly access it in a fraction of a
second. How much processing could have
gone on in your head from the time the light
hit your retina to the time the word "octo-
pus" came to the surface?

Neurons are slow; they take milliseconds.
There is controversy as to exactly how
neurons do their computations (computa-
tion is the best metaphor we have these
days), but, whatever i t is they do, and
however they encode it, and however it is
represented computationally-somehow,
there is something going on in your head
that goes fi-om the light hitting your eye
with an octopus pattern t o the word "octo-
pus" coming up in your short-term auditory
memory, and coming out as a word.

When we do that in a few tenths of a second,
uncoached, unprompted, and unexpected,

SECTION I: ALGORITHMS

Part 1 : Oral Presentations

PRECEDENG PAGE BhASM NOT FILMED

HOW TO CLUSTER IN PARALLEL WITH NEURAL
NETWORKS sR *,3 9 5*0J)

/

/'
Behzad Kamgar-Parsi J. A. Gualtieri Judy E. Devaney dd 4

Center for Automation Research Code 635 Science Applications Research
University of Maryland NASA GSFC 4400 Forbes Blvd.
College Park, MD 20742 Greenbelt, MD 20771 Lanham, MD 20706

Behrooz Kamgar-Parsi
Dept. of Computer Science
George Mason University

Fairfax, VA 22030

ABSTRACT

Partitioning a set of N patterns in a d-dimensional met-
ric space into K clusters - in a way that those in a given
cluster are more similar to each other than the rest -
is a problem of interest in astrophysics, image analysis
and other fields. As there are approximately possible
ways of partitioning the patterns among K clusters, find-
ing the best solution is beyond exhaustive search when N
is large. We show that this problem in spite of its expo-
nential complexity can be formulated as an optimization
problem for which very good, but not necessarily opti-
mal, solutions can be found by using a neural network.
To do this the network must start from many randomly
selected initial states. The network is simulated on the
MPP (a 128x128 SIMD array machine), where we use
the massive paralleliim not only in solving the differen-
tial equations that govern the evolution of the network,
but also by starting the network from many initial states
a t once thus obtaining many solutions in one run. We
obtain speedups of two to three orders of magnitude over
serial implementations and the promise through Analog
VLSI implementations of speedups comensurate with hu-
man perceptual abilities.

Keywords: Combinatorial Optimization, Synchronous
Analog Network, Parallel Simulation, SIMD.

INTRODUCTION

Problems that involve data analysis are becoming in-
creasingly severe in that data sets are becoming very large
and their rate of acquisition is growing rapidly. It is clear
that humans possess immense computational power for
solving certain problems through visualization and that
what is needed is the development of algorithms that have
some of these capabilities.

The value of neural networks - whose development has
been motivated by human beings' computational capabil-
ities - as a computational device ia yet to be explored. In
fact, little is known about the reliability and complexity
of these algorithms, and how they scale with the size of
the problem. The work we present in this paper is an
attempt to answer some of these questions. For this, we
will concentrate on the problem of data clustering - a
problem of interest in astrophysics, image analysis and
other fields. The conjecture is that because of the many
connections among neurons, neural networks should be
particularlp useful for the class of problems that involve
collective decision making, of which one example is un-
supervised clustering. Here the patterns must decide to-
gether how to partition themselves into subsets according
to a given criterion. The problem considered here, as in
all partitioning problems, is a discrete optimization with
a goodness-of-fit criterion. By embedding this discrete
problem in the continuous space of an analog network
one can perform a downhill search on the energy surface
which is more purposeful and effective than the search
in the discrete space. Until hardware implementation of
analog neural networks in VLSI become available - which
is expected in the next few years [I] - simulation is going
t o be an indispensible tool in the study and design of these
systems. Analog networks are intrinsically synchronous
and hence well suited for simulation on massively parallel
SIMD machines.

In this paper, we simulate the neural net we propose for
solving the clustering problem on the MPP [a 128x128
SIMD array machine with 1024 bits of local memory per
processor]. The issue of performance of neural net algo-
rithms on parallel machines is also addressed. Before we
proceed, however, we will discuss the clustering problem
in some detail.

PRECEGiNG PAGE BUaF.1K NOT FilMED

THE CLUSTERING PROBLEM

By clustering we mean partitioning a set of N patterns
(the patterns are represented as points in a d-dimensional
metric space) into K clusters in a way that those in a
given cluster are more similar to each other than the
rest. As there are approximately possible ways of
partitioning the patterns among K clusters [2], the prob-
lem has exponential complexity and finding the best so-
lution is beyond exhaustive search. As is often employed,
we let our criterion for best solution be the minimum
square-error. That is, representing the patterns by d-
dimensional points (61, = l,. . . , N), thd best solution
is the one minimhing X 2 = xN S= 1 (<("I -- dp)' with re-
spect to (gplp = 1, . . . , K). Here cluster p contains the

subset of the points, {ifp)), and its centroid is given by

Np -(P), where Np is the number of points in 'p = Ci=lri
the cluster. A partitioning baaed on such a criterion is
also known as minimum variance partioning. Because of
the complexity of the problem, finding the best solution
may not be possible. Thia, however, is not a major con-
cern, because in practice usually only a good solution is
sufficient.

Due to the importance of this problern many meth-
ods have been propoeed by various researchers. (See Jain
and Dub- 13) for a survey of the literature.) Many of
these approaches are based on iterative schemes and of-
ten the differences between the suggested algorithms are
quite subtle. The number of clusters K may or may not
be fixed. For a given value of K , the essence of iterative
algorithms is as follows.

After the initial partioning of the patterns into K clus-
ters, their centroids, i.e. seed points in the d-dimensional
metric space of the patterns, are computed. Each pattern
is then aasigned to the cluster with the nearest seed point
and new centroids are computed. The process is repeated
until the partitioning ceases to change. However, the pro-
cess of the computation of new centroids can be carried
out in two ways: (i) Keep the centroids fixed until the
distances of all patterns to the K centroids are computed
[4]; (ii) Update centroids as frequently as one pattern is
found to be closer to the centroid of a cluater other than
the one it is assigned to. In thia case, the pattern is irnme-
diately reassigned and the centroids of the winning and
the losing clusters are updated 151. This method is some-
times referred to as K-means. Note that for a parallel
machine, where the distances of the patterns from clus-
ter centroids can be computed simultaneously, the first
approach appears to be more efficient.

The neural net approach that we propose has many
similarities with the iterative scheme described above. As
will be explained later in more details, the major differ-
ence, however, is that the neural net allows a given pat-

tern to belong to several clusters until the final iteration.
That is, a t least during the execution of the algorithm,
a given pattern belongs to all clusters, though with dif-
ferent weights. The closest conventional method to thia
is the one proposed by Gordon and Henderson (61. In
their method, however, the sum of the weights for every
pattern ie restricted to one a t any given iteration; thus,
it dose not possess the full flexibility of neural networks.

As for the initial cluster centroids, one may take the
first K points of the input data, which is very simple and
inexpensive; or if one suspects the input points are pre-
arranged in some special way, one may choose at random
any K points of the input data [7]. More elaborate and
expensive methods for choosing more promising initial
centroids have been proposed in the literature (see Ref.
181 and 131). Such methods, however, are not of interest
to us.

OPTIMIZATION WITH NEURAL NETS

It haa been recognized in recent years that artificial
neural networks have computational properties [9,10].
The Hopfield model of neural network, which we use in
this work, is particularly suitable for solving certain o p
timisation problems. A neuron is a simple nonlinear pro-
cessor that is connected to many (possibly all) other neu-
rons in the network; it adds up the signals it receives
from other neurons and fires a signal accordingly. The
state of the network, that is the firing rates or activi-
ties of the neurons, through interactions with each other,
change with time but eventually the network settles into
a steady state where the neuronal activities remain con-
stant. The energy of the Hopfield network is Lyapunov
(i.e. it does not increase with time) and its minima are
the steady states of the network. It is this property of
neural networks that is used in optimization. The ap-
proach is t o cast the problem in terms of an energy func-
tion that is then minimbed by the corresponding network
as it evolves spontaneously from some randomly selected
initial state to states of lower energy. The energy function
has typically many minima that represent valid solutions
to the problem; deeper minima correspond to good aolu-
tions and the deepest minimum to the best solution.

In this paper we use analog neural nets, because they
outperform digital nets in solving optimisation problems
[9,11]. Many problems of interest, including the problem
we address in this paper, can be cast in terms of an energy
function, E, that is quadratic in the neuronal activities
and has the form 191,

Here n is the number of neurons in the network, and

% (0 5 5 1) is the activity or firing rate of neuron
i. The h t term in (1) is the interaction energy among
neurons, and the elements of the connection matrix, Tij =

' I E are completely determined from E. In the Tji =
second term Ii is the bias or activity threshold of neuron
a. The thud term encourages the network to operate in
the interior of the n dimensional unit cube (0 5 V, 5 1)
that forms the state space of the system. In this term r
is the self-decay time of the neurons, and g(u), a sigmoid
function, is the gain or transfer function of the neurons
that relates the input ui to the output K. A standard
form for g, which we will also use, is

where uo determines the steepness of gain. The neuronal
activities, V,, aa well as the input signals, q, depend on
time t. The evolution of the network is determined by
the n coupled ordinary differential equations, du,/dt =
-aE/aVi, which are

We will set r = 1, SO that time is measured in units of
7. Note that the bias-tern can be eliminated from the
energy and instead incorporated into the gain function if
we define V, = g(ui - rIi).

To find a solution (i.e. a minimum), we start the net-
work from a randomly selected state and let it evolve
freely until it reaches a minimum of the function E and
stops. As is usual in dealing with computationaUy in-
tractable problems, we find not just one but several solu-
tions by starting the network from different initial states,
and then take the best one as the solution which may
or may not be the optimum. Since a neural network con-
verges rapidly to a minimum we can afford to run it many
times thus ensuring that we find at least a very good solu-
tion. Below, we discuss how to construct an appropriate
network for solving this problem.

CONSTRUCTION OF THE ENERGY FUNC-
TION

We want to partition a set of N points in a 2-D plane
into the best K clusters (generaliiation to arbitrary di-
mensions is trivial) - best in the sense that sum of the
squares of the distances of the points from their respective
cluster centroids (ie. sum of "within cluster variancesa)
is minimired. We formulate the problem in a manner
that can be solved by a neural network; that is we cast
the problem in terms of an energy function that can be
minimized by the network.

The energy function will consist of two parts: (i) con-
straint terms which make certain a point, at the end of

the search, belongs to one and only one cluster; (ii) the
cost term which is the sum of the residuals and is the
function we actually wish to minimhe. The formulation
can best be illustrated through an example. Let us con-
sider the case where we wish to partition N = 10 points
into K = 3 clusters. A possible solution (not necessarily
the best one) would be that, say, points 1, 2, 6 and 9 be-
long to cluster A, points 4 and 5 belong to cluster B, and
points 3, 7, 8 and 10 belong to cluster C. This particu-
lar solution can be represented by the 3x 10 rectangular
array given in Table 1, where the rows are labeled by the
clusters and the columns are labeled by the points. The
elements of this matrix are 0 or 1 with the interpretation
that "element Al=l" indicates that point 1 belongs to
cluster A, 'element B1=Oa indicates that point 1 does
not belong to cluster B, and so on.

Table 1: A possible solution for partitioning 10 points
into 3 clusters.

Cluster

0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0

If we think of the elements of this matrix as the activities
of neurons (n = K x N neurons altogether), and denote
them by Vpi, where p and i refer to the cluster and the
point, respectively, then the constraint part of the energy
function, E, can be expressed as

N K K B N E = ~CCCV'V,+ - ~ (X V P (- 1)2, (4)
2

i=l p=1 q # p i=1 p=l

where the coefficients A and B are positive constants.
The A-term has its minimum value (i.e. rero) if in each
column (representing a point) at most one neuron is active
and the rest are off. The B-term has its minimum value
(also rero) if the sum of activities in each column equals 1.
The two terms together enforce the syntaz of the solution
given in Table 1.

There is an additional constraint that we should, in
principle, include in the energy function: that each cluster
should contain at least one point. In terms of the solution
matrix of Table 1 it means that in each row there should
be at least one full active neuron. Such a constraint can
be imposed by *(I- zfit Vpi) , where 8(z) = 0
for 2 1 0 and 8(z) = 1 for x > 0 is the step function.
However, since this term is nonanalytic its inclusion in
the energy function creates problems and a better strat-
egy appears to be to leave out this term and rather reject

those solutions that violate this constraint. In our sim-
ulations of neural networks (several thousand trials) the
solutions never violated thia constraint. Therefore, it a p
pears that the absence of thia constraint from the energy
function is of little consequence.

To complete the energy function we must also formulate
the coat term. We denote the square of the distance of
point i from the centroid of cluster p (i.e. the residual)
with R. which is given by

RPi = (zi - xp) + (yi - yp)', (5)

where (zi, yi) are the coordinates of point a, and (X,, Yp)
are the coordinates of the centroid of cluster p. Here we
have chosen the Euclidean distance as the metric; but one
can define any metric one wants. Let us consider again
the solution represented by Table 1. The sum of residuals
or the cost for thia solution is

which can be written as
K N

Hence the energy function E, including coat and con-
straint, for this problem can be expressed in the final form

N K K B N
E = $cccv~v~~+~c(cv,,A) 2

i=l p= l q#p i=l p=l

where C is also a positive constant. When the constraints
(or the syntax) are satisfied the A-term and the B-term
vanish and the energy function, E, reduces to just the
coat term, therefore deep minima of E correspond to good
solutions, and the deepest minimum to the best solution.

The network dynamics, obtained from -aE/aVpi, are

(9)
Note that (8) is only the quadratic part of the energy
function corresponding to the first term in (I), and that
the two terms Ipi and -upi in (9) come from the second
and third terms in (I), respectively.

To find a solution we assign random values between 0
and 1 to all the n = K x N neuronal activities, Vpi. Thus
the N points are partitioned into K clusters. Note that
the partitioning is not done in the proper sense that a
point belongs to a particular cluster and to no others;

rather, point i ia partitioned among all the K clusters
with varying strengths that are the magnitudes of V.,
that is, we interpret V . as the strength of hypothesis
that point i belongs to cluster p. Hence the centroid of
cluster p is obtained from the weighted average

As the state of the network changes with time the cen-
troids, as well as the residuals R,., also change. Start-
ing from thia randomly selected initial state the network
evolves toward states of lower energy according to the
equations of motion (9), until it reaches a minimum en-
ergy state and stops. The downhill motion of the network
on the energy surface in guided toward a proper solution
(one that satisfies the constraints) by the A- and B-terms
and toward solutions of good quality by the C-term. As
the network ia searching for a solution the constraints are
moat surely violated since most neurons are partially ac-
tive. Only a t the end of the march when a solution is
found the cluetering becomes unambiguous. Note that
the energy E also contains other minima that do not cor-
respond to solutions (ie. violate the syntax); such min-
ima when found by the network are of course rejected aa
meaningless.

We remark that the cost term (7) can be written as a
linear function of activities such as RpiVpi which ia baa$-
like rather than interaction-like, However, bias-like terms
are not as effective in breaking the symmetry among the
states that satisfy the syntax, and leave the energy land-
scape more flat. Hence it will not be as easy for the
network to find valid solutions aa i t frequently becomes
stuck in the middle of the n-dimensional unit cube. This
in confirmed in our simulations, where the rate of success
for finding valid solutions drops significantly when we use
the linear form for the cost.

For simulations we have chosen the following values for
the parameters of the energy function: A = B = 1,
C = 0.9/RaVg, all Ipi = 1, and the gain function pa-
rameter uo = 0.1. Scaling parameter C with the average
residual R,,, in necessary to ensure good solutions, be-
cause as the network evolves, the residuals become gen-
erally smaller and the cost term becomes less effective in
driving the network toward good solutions; this rescaling
of parameter C keeps the cost term of the same order of
magnitude as the syntax terms.

PARALLEL IMPLEMENTATION
We have simulated the behavior of the neural net on

the MPP. TO do this we first generate a random initial
state {Vpi(t = 0)) and then solve the equations of motion
(9) to find which of the minima (or solutions) it converges
to. Solutions of ordinary differential equations, such aa

the equations of motion, lend themselves very nicely to
a massively parallel computational approach. In addi-
tion, since we want to find several solutions starting from
different initial statea - as is usual in computationally in-
tractable problems - we run several triala a t once on the
MPP. Thus the speedup comes from parallel solution of
the differential equations as well as running several trials
at the same time.

We use the Euler method (121 with a fixed time step 6t
to solve the differential equations (9), i.e. we iterate the
set of n = K x N equations,

until the system converges to a stationary state. The only
stopping criterion we use is when the changes in the fir-
ing rates become insignificant, i.e. when all (V,(t + st) -
Vpi(t)l < E, where 6 a 1. After the network converges to
a solution, we must check if it is a valid solution that sat-
isfies the syntax, i.e. for every point t we must have one
V, = 1 and all the rest Vqi = 0 for q # p. In analog net-
works the activity of a neuron can never become exactly
0 or 1 and can only reach close to the limits. Therefore,
if V+ < qo we take V, = 0, and if V, > 1 - ql we take
V,, = 1, where qo and ql are small positive numbers.
In the simulations we have chosen the following parame-
ter values: time step 6t = lo-', convergence parameter
E = lo-', and the syntax parameters qo = ql = 0.2.

Mapping onto a SIMD parallel processor was accom-
plished by assigning a unique processing element to each
data point. With this requirement, all of the necessary
operations reduce to simple array arithmetic, parallel
sums, row and column broadcasts, and global boolean
tests. All of these are the strong points of a massively
parallel processor such as the MPP. Since the MPP has
16384 processors, fewer data points allow more separate
trials to be run in paralleL Thus, for example, the 128
point case allowed for 128 trials with different starting
conditions to be run at the same time. The overhead to
the program to keep track of the different trials is trivial
since the data movement required is straightforward and
controlled by the programmer. The set of data points is
replicated for each trial run in parallel.

Each processor has stored in its memory its coordinate
values zi and yi, the neuronal activities V,, input signals
ufi, residues Rpi for p = 1, . . , K, convergence indicators
for each neuron, and other ancillary information. The
processing begins with the calculation of the centroids of
each cluster according to (10). This involves a simple ar-
ray multiplication of the xi and yi by Vfi for each cluster

p = 1, . . - , K. This result ia summed using the cascading
sum technique [13] and divided by the sum of Vfi for each
cluster. These centroids are broadcast in parallel over the
remainder of the array using the MPP micrcoded broad-
cast primitive. This primitive, designed by Rudi Feiss
(described in 114)) is very fast using only 231 cycles to
broadcast a row or column - 128 32 bit numbers - to
the remainder of the rows or columns of the 128x128
array. Then we calculate the residues from (5) which
involves more array arithmetic. The new input signals
u,(t + bt) are calculated from (11) and the new activi-
ties Vfi(t + 6t) are calculated from the sigmoid function
(2). These are all array arithmetic operations. A boolean
mask for each cluster is created in parallel to record where
the new activities are different from the old activities by
more than the convergence parameter E. A logical 'or'
(implemented as the ANY function in MPP Pascal) on
the masks determines whether the convergence criteria
has been met for all activities. This logical 'or' directly
translates into a hardware instruction on the MPP and
thus allows simultaneous checking of conditions which on
a serial processor would have to be done individually. U p
dating of all neurons for each trial was continued, regard-
less of whether a particular trial had converged, until all
trials had converged. Thus unnecessary bookkeeping time
is eliminated.

Thus the speed on the MPP is obtained from, (i) the
mapping which allows most operations to be formulated
in terms of array arithmetic, (ii) the movement of data
among the processing elements which can be done with
parallel algorithms, and (iii) the global boolean tests
which are done by the machine hardware. For the case
of 128 points to be clustered into 5 clusters, 128 trials
were run simultaneously. This required 19 seconds per
500 iterations. The corresponding CPU time on a VAX
8800 was 2940 seconds (a speedup of over 150 times), and
21100 seconds on a VAX 111780 (a speedup of about 1100
times).

EXAMPLES

To study the performance of the neural net we have
tested it on some examples. In the first data set, there are
128 points divided among 5 clusters with within-cluster
Gaussian distributions (Fig. la). Here the 5 clusters are
rather well defined and out of the 128 trials the neural
net found the optimum clusters 128 times. The aver-
age number of iterations for convergence was 4263; since
bt = the average convergence time is about 4.37,
where r is the decay time of a neuron. In VLSI im-
plementations of neural networks that are currently in
progress 111, the decay time of neurons, r, is in the range
low6 - second, hence the convergence time of the
network should be in the range of a few micro-seconds to
a few milli-seconds. Note that from numerical solution of

differential equations one can only obtain an estimate of
the actual convergence time, because the number of itera-
tions for convergence depends on the value of the conver-
gence parameter as well as the time step. Obviously if the
convergence parameter is made smaller it will take more
iterations for the network to meet the convergence crite-
rion, resulting in a higher estimate for the convergence
time. On the other hand if the time step is made smaller
by, say, a factor of 10, it will take fewer than 10 times
the number of iterations to converge, thus resulting in a
lower estimate for the convergence time. Fig. 2 shows in
more detail the number of iterations for the convergence
of all the 128 trials.

The conventional method of Forgy (41 in 128 trials
found the best clusters only 46 times and various other
solutions 82 times. The average number of iterations for
convergence was 7. Clearly, in this example, the neural
net outperforms the conventional method, in that it finds
the best solution much more frequently. On the other
hand, the conventional method takes far fewer iterations
to converge than the neural net. But we should bear in
mind that these are simulations of the neural net, and
that the number of iterations needed for convergence is
not the true measure of the processing time of the net-
work. The convergence time of an actual analog VLSI
network must be measured in 7 , the characteristic time
of a neuron, which is in the micro to milli-second range.'

To test the performance of the network in cases where
clusters are fussy, we started from the data points of Fig.
la , randomly selected 10% of the points and distributed
them uniformly throughout the unit square (Fig. lb).
Thus we obtained 5 clusters with uniform background
noise. The neural net in 128 trials found the best clusters
28 times. It failed to find valid solutions statisfying the
syntax 46 times. This large number of failed solutions can
be interpreted as an indication that the clusters are fussy,
that there are outliers, and that perhaps the specified

5 clusters become less discernible the network increas-
ingly fails to satisfy the syntax indicating that clusters
are fussy and that 5 clusters are not sufficient. The con-
ventional method, on the other hand, always finds valid
solutions, and although the variety of solutions that it
finds increases (this is true in both methods) which may
be taken as a clue to the fussiness of clusters it is not as
objective an indicator as the failure to satisfy the syntax;
(ii) When there are well defined clusters the neural net
perform better than the conventional techniques which is
reflected in the lower average X 2 (X2 is the sum of within-
cluster variances) for solutions found by the neural net.
And as clusters become fussier the quality of solutions
found by both methods become comparable.

Table 2: In thii table the results obtained by Forgy's
conventional algorithm are compared with those by the
neural network. The Data refer to data points of Fig.
la-f. These are baaed on 128 trials.

Data

a

number of clusters, K = 5, is too few. However, even Iter: is the average number of iterations for convergence.
when the syntax ie not we can a Best Var: the variance of the best solution found.
solution with the following scheme. For each point i set Best%: is the percentage of trials that found the best
the largest V' to 1 and all the other Vqi with q # p solution.

O, and interpret this the One favored Avg Var: is the average vwiance of the solutions found.
the network, thus we obtain 128 solutions. Conventional Time: is the average estimated time of convergence in
algorithms always find valid solutions and cannot give an Units of 7.
objective indication of the fussiness of clusters. Synt%: is the percentage of trials that found solutions

Conventional
Iter I Best Var I Best% I Avg Var

7 1 0.62 1 36 1 1.23

Data

a

Similarly to Fig. lb, we generated other data sets by satisfying the syntax.
increasing the background noise to 25%, 50%, 75%) and
100% (i-e. no clusters). These data are shown in Fig. In Fig. 3, we have plotted the trajectories of the cen-
lc-f- The results of partitioning the data among 5 clus- troids of the 5 clusters as a function of time for all the 128
tern obtained, in 128 trials, with the neural net and with trials for the data of Fig. la . It can be seen that although
F o r g ~ ' ~ n~ethod are listed in 2- The average ea- the centroids start from different places in different trials,
timated convergence times for the network are given in they all eventually converge to the same 5 points which
units of 7. Two points of note in this table (i) As the are the true centroids of the 5 clusters. This clearly shows

Neural Net
Time I Best Var 1 Best% 1 Avg Var 1 Synt%

4 1 0.62 I lo0 I 0.62 1 100

that the network succeeds, in every trial, in finding the [3] A.K. Jain and R.C. Dubes, Algorithms for Clustering
structure in the data. In Fig. 4, we have plotted the cen- Data (Prentice Hall, 1988).
troid trajectories for the data of Fig. If. The spreading
of trajetories (as c o n t r ~ t e d t o the contraction of trajec- l41 E.W. FOrg~, data:

tories in ~ i ~ . 3) of different t iah, shows that where there efficiency versus interpretability of classifications",

is no underlying structure in the data, the network does Biometric Sot. Meetings, Riverside, California. Ab-

not prefer any particular clustering and hence finds many stract in Biornetrics, 21, 768 (1965).

different solutions. 151 J.B. MacQueen, 'Some Methods for Classification
CONCLUDING REMARKS and Analysis of Multivariate 0 bservations" , Pro-

Preliminary results for clustering with neural networks ceedings of Fifth Berkeley Symposium on Mathemat-

are promising. The neural net appears to outperform con- ical Statistics and Probability, Vol. 1, p. 281 (1967).

ventional iterative techniques, when there are well defined
clusters since it finds better solutions more frequently.
And when clusters are fussy, or when the number of clus-
ters we specify is not compatible with the structure of
data, the neural net indicates that it cannot find valid
solutions easily, and that something may be wrong. This
indicator is an objective measure and hence more reliable
than the user supplied bounds and tolerances for conven-
tional techniques. Work on larger data sets is in progress.

The clusteripg criterion we have used in this paper,
that is minimum sum of within-cluster variances, results
in convex compact clusters. Often clusters are not round
or compact. By adding t o the energy function, appropri-

(6) A.D. Gordon and J.T. Henderson, 'Algorithm for
Euclidean sum of squares classificationn, Biornetrics,
33, 355 (1977).

171 D.J. McRae, 'MIKCA: A FORTRAN IV iterative
k-means cluster analysis program", Behavioral Sci-
ence, 16, 423 (1971).

[8] M.R. Anderberg, Cluster Analysis for Applications
(Academic Press, 1973).

[9] J. J. Hopfield and D. W. Tank, 'Neural computation
of decisions in optimization problems", Biological
Cybernetics, 62, 141 (1985).

ate terms that favor closeness of a point to its neighbors
(and not just to the cluster centroid), one can design a [lo] Neural Networks for Computing, edited by J.S.

network that finds non-convex elongated clusters of vari- Denker (American Institute of Physics, 1986).

ous shapes.
I

(111 B. Kamgar-Parsi and B. Kamgar-Parsi, "An efficient
Simulations of the neural net on the MPP for the clus- model of neural networks for optimization", in Pro-

tering problem are two to three orders of magnitude faster ceedings of the IEEE First International Conference
than simulations on serial machines such as the VAX 8800 on Neural Networks, edited by M. Caudill and C.
and VAX 111780. The speedup is due to parallel solution Butler, Vo1.3, p. 785 (1987).
of the differential equations that govern the behavior of
the network, as well as running several trials a t the same 1121 C.W. Gear, Numerical Initial Value Problems in Or-

time. However, the real benefit of neural nets may lie dinary Differential Equations (Prentice-Hall, 1971).

in the future when they can be mapped on analog chips- 1131 H.S. Stone, 'Problems of Parallel Computationn, in
There are forecasts that analog VLSI neural nets will be- Complezity of Sequential and Parallel Numerical Al-
come available in several years [I]. These devices will gorithms, edited by J.F. Traub (Academic Press,
have processing times in the micro to milli-second range, 1973).
making their performance comensurate with human per-
ceptual abilities. 1141 J.E. Devaney, 'The MPP - a Totally Different Ap-

proach t o Programming", presented at the IEEE
Computer Society Workshop on Computer Architec-

References

[I] C. Mead, 'Real-time analog computation in VLSI
neural networks", in the First Annual International
Neural Networks Society Meeting (Boston, 1988).

ture for Pattern Analysis and Image Data Base Man-
agement (1985).

(2) W. Feller, An Introduction to Probability Theory and
Its Applications, 2nd edition (John Wiley, 1959) VoL
1, p. 58.

e 0 0
0

e l
D a O o

8
" ' C . . .," .

D O
0 " 8 0 ' . , ro

0 ' a . , o s -
0 : 0"

0 0 g o 0

0 D * t o 0

" 0 ".
0 O D

o o B 0 0 0
0 0 0

s o 0.. a f 0 .

a 8 0
Q D 0 .

Fig. 3. Trajectories of the five cluster centroids for all 128
trials for the data in Fig. l a . (0 % background). Lower
left corner of Fig. la. corresponds to back top corner in
this figure

Fig. 1. 128 points divided among 5 clusters and re-
spectively 0,10,25,50,75,100 % uniform background in
a,b,c,d,e,f.

Fig. 2. Number of trials not converged versus iteration
for the data in Fig. l a . (0 % background) (loop is the Fig. 4. Trajectories of the five cluster centroids for the
iteration number). data in Fig. If. (uniform distribution - 100% back-

MODELING NEURAL NETWORKS ON THE MPP

Joe Hicklln Howard Demuth

Department of Electrical Engineering
The University of Idaho

Moscow, Idaho

ABSTRACT

A network of fixed-connection-weight neuron-like
elements has been simulated on the massively
Parallel Processor (MPP) in two ways. First, the
square connectivity matrix of a 128 neuron
network was mapped onto the square MPP
processor array. This allowed a highly parallel
simulation in which 128 MPP processors were
active a t all times. Next, a 128 by 128 array of
neurons was mapped onto the 16384 MPP
processors. Here the MPP processor limits neuron
connections somewhat but all MPP processors are
active a t all times and a large speedup is obtained.
The first simulation, based on the mathematics

This is followed by a description and a comparison
of the two simulations implemented on the MPP.

Logically, the MPP is a single instruction stream,
multiple data stream (SIMD) machine that has a
rectangular mesh of 128 by 128 one bit processors.
Each processor has 1024 bits of local memory and
can communicate directly with its four nearest
neighbors, including opposite edge neighbors. This
topology can be used in several ways to simulate the
neural networks described below.

NEURAL NETWORK MODEL

(weight matrix)* produced a significant speedup but A simple example of the kind of neural network
tended to obscure the second faster simulation studied here is in Figure The neuron
based On mapping the physics (entire physical bodies are labeled A, B, and C. Their connections

the onto the MPP. are labeled p through u. The connection from A to C
The authors experience suggests that alternative says that when A a signal of strength is

Onto the MPP be sought and sent to neuron C. A neuron fires when the sum of its
examined carefully. accumulated activation and its present inputs

exceed its threshold. On firing, the accumulated
Keywords: massively parallel processor, neural activation of a neuron is set to zero.
network, neural network simulation.

INTRODUCTION

This paper describes two simulations of neural
networks on the Massively Parallel Processor
(MPP). The first simulation seemed to be a natural
fit of the the mathematics involved to the MPP
architecture. It gave a significant speedup but it was
found that only a small percentage of the potential
power of the MPP was being utilized. The second
simulation mapped the physical process under
study to the MPP and led to a much better
utilization of the MPP. In the first implementation
we fell into what we believe may be a common trap,
that of simulating the mathematics a s opposed to
the process. We would like to make this trap clear so
that others may recognize it and perhaps avoid it in
the future.

This paper provides a brief description of the MPP
and an outline of the neural model to be simulated.

From

Figure 1, A Simple Neural Network

The operation of an N neuron network like that
shown in Figure 1 can be described nlathematically
as follows:

Ai(tp) P activation of neuron i a t time tp (real
number 1

Wij d strength of connection from jth neuron to the
ith neuron

(Also, the i j th element of the weight m a t h W.)

T d threshold a t which any neuron will fire

Here the first term says that if a neuron fired on the
last time step its activation is not carried forward
and its contribution to the current activation is
zero; but if it did not fire its previous activation is
carried forward to the new activation. The second
(summation) term indicates the current effects of
the firings of other neurons.

This neuron model has a variety of simplifications.
First. time is discreet. Second, all neuron
thresholds are identical. This constancy is not a
limitation for the effect of different thresholds can
be achieved through adjustment of the weight
matrix elements. Third, the neuron connections are
not adjusted once the simulation begins. Thus, no
"learning" involving change in the elements of W is
involved. This last approximation allows the
behavioral investigation of relatively large non-
learning networks.

The activation update phase of the simulation of the
models requires the majority of the computation
time. Here the activation vector for the next time
step is generated from the current activation vector
and the weight matrix. On each time step some
elements of the activation vector are above
threshold, and so the associated neurons fire. A
binary firing vector, F, is generated ulth a one in
the elements associated with neurons that fire on
this time step and a zero in the others. Each neuron
that fires on a given time step alters the activation
of the other neurons by the amount in the element
of the weight matrix corresponding to the
connection from the firing neuron to 1 he receiving
neuron.

FIRST SIMULATION

A first look a t the problem reveals that the topology
of the MPP is the same as that of a weight m a w . If
each processor served the function of a single
element of the weight matrix then the problem
would be well mapped to the hardware. For this
strategy a 128 neuron system, matching the
column/row size of the MPP, would be simulated.
Each processor has its particular weight stored in
its local memory. Since the activation vector has
128 elements, it can be handled by a single row or
column of the MPP. Activation update steps proceed
as follows. The activation vector is held in the
uppermost row of the MPP. A firing vector is
generated in the top row as each processor in that
row determines if the activation held there is above
threshold. As shown in Figure 2, this firing vector is
passed downward across the entire array so that
each processor in the i'th column can know whether
the i'th neuron is to fire on this time step.

I P P P P P P]

P P P P P P

P P P P P P

P P P P P P
I

P P P P P P

P P P P P P

Figure 2. Firing Information Moves Downward

Next all processors in columns that fire pass their
weights to the right while the other columns pass
zeroes. As shown in Figure 3, these weights are all
passed to the rightmost column where they are
summed. This results in a vector in the rightmost
column that represents the change in A due to the
firlng of the neurons.

Figure 3, Weights move to the Left

This vector must be added to the old A vector in the
top row to form the new A. (More correctly, it is
added to the old A vector after the firing neurons in
the old A vector have been reset.) This stage is time
consuming since 256 shifts are needed to move all
the data from column form to row form. The
activations are shifted a s shown in Figure 4.

P P P P P P P p P P p j . l l

P P P P P P

P P P P P P

Figure 4, Activation Shifts from Left to Top

t

As described above, 128 processors work on the
problem in parallel a t every step except the final
shifting stage. This gives a tremendous speedup over
single processor simulations. Another way of
looking at this performance however, is that at any
given time, about 1% of the MPP is being used while
the remaining 99% is idle. This second view
prompted a search for a better method of
simulation.

SECOND SIMULATION

The second simulation can model a much larger
neuron population and utilizes the MPP more fully,
but it does this a t the expense of altering the neural
model slightly. Each processor now represents a
single neuron and stores its own activation level, as
well as the row of the weight matrix containing the
weights from other neurons to itself, in its own
local memory. Due to the 1024 bit memory
limitation of the MPP, there is not room for all
connections to all 16,384 neighbors, and only those
connections to the 24 nearest neighbors are held.
This is not as drastic a change in the model as it
might seem. for in the brain, connections between
nearby neurons are vastly more common that those
between distant neurons. A second change in the
model is that now the neurons have neighbors in
two dimensions rather than only one a s in the
previous model. This change also leads to a more
realistic model, a s the cerebral cortex is essentially
a two dimensional sheet of neurons.

The activation update procedure is shown in Figure
5. There each processor [neuron) determines if its
activation is above threshold. Each processor then

passes a one bit flag to the processor on its right,
informing that processor a s to whether the first
processor i s firing. Each processor stores this
information and then passes it upward. The process
repeats and each processor passes the flag to the left.
In this manner, the flag spirals outward around the
processor that generated it until it has reached all
24 of the nearest neighbors. If more then 24
connections are desired. the flag can spiral outward
a s far a s necessary. Thus, every processor
communicates its firing with its 24 neighbors using
only 24 shifts. Notice that the entire bit plane is
shifted so that all 16.384 processors pass their
firing information together.

P P P P P P

P P'-P'-P'-P P
t

P P P P P P

Figure 5, Data Flow in the Second Simulation

After this communication phase, each processor
sums its weights associated with its neighbors that
fired and updates its own activation, completing the
activation update. Every processor is used in every
step, achieving full utilization of the MPP. The size
of the network has been increased by a factor of 128,
the total number of connections has been increased
by a factor of 24, and the similarity of the model to
the real world has been improved.

CONCLUSION

The simulation of neural networks on the MPP
architecture may be done in at least two ways. The
second simulation described above allows
connections between a limited set of neural
neighbors but all of the processors of the MPP are
active a t all times and a much larger network can be
simulated. The update step in the second simulation
runs in approximately one fifth the time of that of
the first simulation and processes 24 times as many
connections. This yields a factor of 120 in the
number of connections processed per unit time. The
experience of the authors suggests that the
simulation of neural networks- on massively
parallel machines can be done in several ways not
obvious a t first glance and that alternatives should
be examined carefully a s some may yield higher
computational rates than others. We first attempted

to match the MPP to the matrix mathematics of the
model. Then we tried to match the physics of the
situation. It is interesting that the mathematical
modeling got in the way here. In a sense, the
hardware of the MPP more closely matches the
brain that the mathematical model originally
chosen.

ARTIFICIAL NEURAL NETWORK O N A SIMD
ARCHITECTURE

Joe R. Brown, Melissa M. Garber, and Steven F. Venable

Martin Marietta Electronic System3
M P 1304, P . O . Box 555837
Orlando, Florida 32855-5837

ABSTRACT

An impletnentation of a fully connected artificial neural net-
work using the multi-layered perceptron model is described.
The neural network is inlplen~ented on Martin Marietta's
systolic array processor based on the Geometric Arithmetic
Parallel Processor (G A P P ~ ~) chip. Arrays of G A P P chips
make up a single instruction multiple da t a (SIMD) class
machine which has fine-grained connections and is fully
programmable. Previous application areas of the G A P P
system are i~nagefsignal processing, computer vision, and
knowledge-based processing. T h e neural network is a rel-
atively new processing model for the GAPP, but one that
readily [naps onto the architecture of the overall array proces-
sor. The proof-of-concept neural network was a multi-layered
perceptron model which used the back-propagation learning
paradigm. This initial network had fewer than 100 nodes in
three layers, and was trained to recognize letters of the al-
phabet. Work is progressing towards inlplementing a massive
artificial network environment (more than 40,000 nodes and
tnore than 10,000,000 connections) on the GAPP-based ar-
ray processor. Alternate learning techniques are also being
investigated

Keywords : Neural Networks, Back Propogation, Parallel
Processors, Single-Instruction Multiple-Data (SIMD), Char-
acter Recognition

INTRODUCTION

The Image and Signal Processing Section of Martin Marietta
Electronic Systems is developing artificial neural network im-
plen~entations in the Geometric Arithmetic Parallel Proces-
sor (G A P P * ~) . The G A P P is a Martin Marietta-developed
systolic array processor, made u p of one-bit processing el-
ements, or cells, connected in a two-dimensional nearest-
neighbor mesh. Adhering to the axiom, "the algorithm is
the architecture," G A P P array sire may be directly tailored
to the size of the problen~ being solved, making possible many
different configurations of G A P P systems. A single instruc-
tion nlultiple da t a (SIMD) class machine, previous applica-

tions of the G A P P system were image and signal processing,
associative processing, and knowledge-based processing. The
neural network is a relatively new processing model for the
GAPP, but one that readily maps onto the architecture using
techniques developed from the above mentioned application
areas.

Artificial neural networks a t tempt t o model the human rogni-
tive process in a computer. They are massively parallel hier-
archically interconnected networks of simple elements which
interact with the real world similar t o the way biological ner-
vous systems do. Neural network models have the great-
est potential in areas where many hypotheses are pursued
in parallel and high computation rates are required, areas
which take full advantage of the GAPP's parallel architec-
ture. One such promising field of application is pattern recog-
nition. Traditional artificial intelligence (AI) algorithms for
pattern recognition are too specialized: they are designed to
deal with information in a single, strict forin For example,
in machine vision there are separate algorithms for boundary,
disparity, curvature, shading, and spatial frequency informa-
tion. Such algorithms typically use different cotnputational
schemes t o analyze each type of information, so that fusing
multiple types of information into a single general-purpose
vision algorithm is difficult.

The neural network learning paradign~ offers a unique solu-
tion to this problem. Requiring only a general algorithm for
learning, neural networks automatically and dynamically de-
termine what informaiion is salient t o a solution. The fortn
that information must assume is therefore much less rigid
than that required by traditional A1 systems, allowing eas-
ier correlation of different levels of information. For exam-
ple, this implementation uses pixel-level inputs t o a network
which recogniees letters.

Our first imple~nentation in the G A P P system has been suc-
cessfully trained on letters of the alphabet. After training,
the implementation allows the user t o place various inputs
under a camera and in this way examine the extent to which
the net has generalized the learning of the inputs. Via the
camera, rotated and corrupted versions of the inputs can be
provided to help in identifying some of the salient features
determined by the net.

~~2649-2/89/OOOO/OO43$Ol .OO 63 1988 l EEE

M O D E L D E S C R I P T I O N

The network model selected is that of a fully connected,
three-layer feed-forward net containing a total of 91 nodes
and 1728 weighted connections. For ease of initial develop
ment, the input domain of letters was broken into a 5-by-7
grid in which i t is possible to pixelise all 26 letters of the
alphabet. As these 35 cells were selected a s the input t o the
net, the first layer, or input, layer contains 35 nodes, one per
input pixel. Further, an input can only take on the value Eero
or one corresponding t o the cell being off or on, respectively.

The third, or output , layer was selected to have 27 nodes, one
for each letter of the alphabet and one tc- designate "other
than letter' recognition. The second, or hidden, layer was
initially chosen to be 25 nodes based on a rule of thumb
stating that the hidden layer should be roughly 213 of the
input or output layers. It was later increased to 27 nodes
after some experimentation on a VAX-based network indi-
cated that using these two additional nodes provided faster
network settling.

While the input nodes can only take on values ofzero or one
due to input considerations, the values at both the hidden
and output nodes are positive 10-bit fixed point numbers (10
bits to the right of the decimal point) and range iron1 0 0
to 0.99902. T h e decision to use 10 bits was somewhat arbi-
trary, although the decision was influenced by the amount of
available G A P P memory. The output node with the largest
value is selected as the total net output If two or more
nodes have the same value, they are all selected. Because
the net is expected to output a value greater than sero and
greater than the smallest non-zero value (0.000976), an ad-
ditional constant-valued node was added tcr the output layer.
The constant-valued node is selected if the value of all other
nodes are less than or equal t o it. This node is used to signal
an internal network error condition and is not included in the
count of 91 total nodes. The selected output nodes, including
this special constant-valued node, are then highlighted on the
display which shows each letter of the alphabet.

There are two other special nodes, one on the input layer
and one on the hidden layer. Termed "bias nodes," these
constant-valued nodes supply a n offset or bias t o the dis-
criminant function a t the node layer to which the node con-
nects. These nodes have no incoming connections but do
have weights and connections to the next node layer and for
all practical purposes act a s just another node on the layer
(thus appearing as 36 input nodes and 28 hidden nodes). The
value of these nodes is considered to be one (actually 1.0 on
input, 0.99902 on hidden) so that the value of the weights on
connections are the actual bias for the discriminant function.

The net niodel used is a fully connected net: each node on a
layer is connected t o all nodes (excluding the bias nodes) on
the next layer (see Figure 1). Attached t o each connection
is a weight which is multiplied by the node value to provide
the value arriving on the connection to the destination node.
Weights in our irnple~nentation are assigned 16-bit fixed point
numbers, ranging from -16.0 to +15.9995 (4 bits t o the left

of the decimal point, 11 bits to the right). Following the
standard net training techniques, these weights are adjusted
to provide a "trained network." Note that a weight of sero
would map a non-connection.

N E T W O R K E X E C U T I O N

To exploit the power of the G A P P system, the model was
laid out such tha t a unique processor cell is assigned to each
nodal interconnect as well as assigning a processor for each
node, thus utiliring a total of 1756 processors. The input
node da t a is duplicated down rows of cells and then summed
across the columns producing the hidden node values. These
are in turn duplicated across columns and summed down thr
rows ofcells, providing the final node values. This final node
layer also uses one processor per node, utilicing a total of
1756 processors.

The network is executed by following the standard feed-
forward operations. These processing steps are described br-
low.

The value a t node k on any layer 1 is defined as:

where f () is a limiting non-linear function (see Equation 2);
N is the number of nodes on the previous level (J - 1); w,k
is the weight connecting nodes 1 and k; z,,-1 is the value of
node a on the previous level; and 8 is the bias (or value of the
weight on the connection from the bias node to node k).

1. P l a c e i n p u t i n i n p u t n o d e s . For training this is a
fixed input with known correct output. For camera input
this entails thresholding the can~era's &bit da t a to values
of zero and one, then pixelizing and shifting the da t a to
the G A P P cells designated as input nodes.

2. S p r e a d t h e i n p u t a c r o s s t h e w e i g h t s a n d mul t ip ly .
As there is a distinct weight for the connection from each
input node to each hidden node (i.e. 27 weights per
input node), the input node values are spread across an
array of 36 (35 inputs + 1 bias) by 27 G A P P cells. This
distribution allows the process of multiplying the node
values times the weight values t o be done in parallel.

3. S u m t h e va lues a r r i v i n g a t e a c h h i d d e n n o d e a n d
p a s s t h r o u g h t h e non- l inea r i t y f u n c t i o n . The prod-
ucts from step 2 are summed across all input nodes, in-
cluding the bias. All hidden nodes are sumn~ed simul-
taneously in the G A P P systern. These sums are passed
through a pseudo-sigmoid function [f (z) in Equation 21
to provide the hidden node value. T h e desired sigrnoid
function is f (z) = 1/(1 + e-'). But for easy in~plemen-
tation this function was coded as a group of conditionals

Output nodes
(27 nodes)

Figure 1: Network node connections

which simulate the sigmoid function as follows:

o . m o a , if + 2 +53;
0.000976, i f x 5 -6.0;
, if +l.O 5 x < +5.0; (2)

, if -5.0 < z 5 -1.0;
9, otherwise.

4. Spread t h e h idden n o d e values across t h e weights
and multiply. Repeat step 2 using the values obtained
in step 3 for the 28 hidden nodes and 27 output nodes.

5. S u m a n d threshold. Repeat step 3 using the values
for the 27 output nodes.

6. Determine t h e nodes wi th m a x i m u m value a n d
display accordingly. The value at each output node
is conlpared to the others and those with the largest
value are identified. The desired result is that only one
node has the largest value. When this node (or nodes)
is identified, a display is generated in which the letter
corresponding to the node is highlighted.

NETWORK TRAINING

The training algorithm selerted is the back propagation tech-
nique which uses a gradient heuristic, enabling a network
to self-organire for improved performance over time. Back
propagation requires a specific training period in which the
correct (or desired) output is known b r each potential input
that will be trained. All possible inputs do not need to be
shown, but rather only a subset of the inputs. The actual sire
and contents of this subset is not known and is expected to
be domain dependent. Only those outputs that are trained
can be expected to be correct.

Back propagation consists of sdjusting the weights by a small
amount based on the difference between desired node values
and present node values d e r executing the net for the given
input. The weight adjustment is based on the followingequa-
tions:

wij(t + 1) = w,,(t) + q6,zi (3)
where wiJ is the weight on the connection from either input
or hidden node i to node j on the next layer; 7 is a gain term;
6, is an error term given in Equation 4; and z, is the value
of node i. For the hidden-to-output node level:

where yj is the value of output node j and d, is the desired
value for that output node. For the input-to-hidden node
level:

6, = x J (l - zj) z 6 k l u j k PI
k

where k is over all nodes in the layers above node j.

In our implementation, these ateps are followed precisely with
the gain term (q) variable at execution time. The best results
have been achieved with a value of 0.0625 (1116). While
most literature references gains of 0.3 to 0.6, the gain used
in our implementation is believed to be smaller due to the
increased speed of training, errors in weight adjustment due
to truncation, and lose of significant precision in the use of
fixed point, rather than floating point operations.

The actual steps in training are:

1. Execute t h e ne t . The exact steps given under execu-
tion are performed with the correct output known for
the input used. The only operations not performed are
determining maximal output node and generating the
display.

2 C a l c ~ t l a t e t h e e r r o r d e l t a (6) o n t h e o n t p u t layer .
Here the desired node value is considered to be 0 99902
if that is the node which corresponds to tlre letter being
trained, with a value of 0.0 for all other nodes

3. S p r e n d t h e d e l t a and mult ip ly . Thrs is the same
operation as used to execute the net excrpt the spread
operation is in the reversr direction: the delta is spread
from the output nodes over the previously spread hidden
node values These values are then ~nultiplied by the
node values and the gain (7).

4. A l t e r h i d d e n l a y e r weights . The product from step
3 is then added to the weights to produce new weights
for the next execution iteration.

5. C o m p u t e n e x t l aye r e r r o r d e l t a . The previously
computed delta (step 2) is multiplied by the weights and
summed for all hidden nodes. This sum is then multi-
plied by the hidden node variance, per the back propa-
gation algorithm.

6. S p r e a d t h e d e l t a a n d mul t ip ly , a l t e r i n p u t l aye r
weights . Repeat steps 3 and 4 using the weights on the
input layer.

After these operations the network has had one iteration of
training for the given input. Typically many iterations are
performed for all possible outputs. In this example the train-
ing was perfor~ned on the four "perfect" (meaning no corrup-
tions in the da t a) inputs of T, A , X, and blank With some
experimentation the pr i~nary features which the net extracted
for three of the four inputs were found to be the c;nter line
for the T, left and right sides for the A , and nlost anything
else for X. If no input cells were on, or if even any one a t
random was on, the blank was considered. Pigure 2 shows
the training input to the network and Figure 3 shows some
test case inputs. Note that while the network was trained on
only the inputs shown in Figure 2, the net can still recogni~e

pieces of the inputs shown in Figure 3. After sotlte analysis of
the weights during training, i t was found that all the desirrd
output nodes were driven high while all other output nodes
were low and remained so. All remaining iterations appeared
to act only to differentiate between the inputs. Further ex-
perimentation and analysis must be done to study what the
values a t the hidden oodes represent.

CONCLUSION

We plan to investigate a t least two alternative learning strate-
gies t o provide more flexible training capabilities: Grossberg
and Carpenter's Adaptive Resonance Theory (Ref. 131) and
Genetic Algorithms as described by Booker, C:oldberg, and
Holland (Ref. [I]) . The Adaptive Resonance Theory self-
organizes stable pattern recognition codes in response to an
arbitrary input environment. This theory is based on mul-
tiple interacting memory systems to monitor and adaptively
react to the novelty of events without an external teacher.
Genetic Algorithms, which model gene pools, have been pro-
posed mainly for pattern classification. They are hazr~l on
replacing weak classifiers by recombining contpon,~t~ts from
strong classifiers, similar t o Darwin's theory of natural selec-
tion.

In summary, the artificial neural network is a proruisir~g pro-
cessing paradigm which may be used to enhancr existing A1
techniques. As mentioned previously, future resenrrl~ nrtiv-
ity in neural networks a t Martin Marietta will exn~nine alter-
nate learning strategies and architectural tol)ulogirs u ' l ~ i r l ~
are "GAPP-able". We will pursue applications sl~erificnlly i l l

the areas of image understanding and spatial rra5011ing, and,
in general, expert systems which learn. With our past expe-
rience in pattern recognition and feature detection, coupled
with our proprietary G A P P architecture, we brlievr t l ~ a t we
can produce neural network systems that are well suited to
real-world problems.

Figure 2: Training inputs Figure 3: Test input%

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

References

/ I] Bookrr, Laslron B., David E. Goldberg, and John H. Hol-
land, C'lasstfier Systems and Genrttc Algortthtns, The
University of Michigan, Cognitive Science and Machine
Intelligence Laboratory, Technical Report No 8.

[2j C'arpentrr, Gall A and Stephen Grossberg, Asso-
i 1at71 e Leorntng, Adapttoe Pattern Recognttton, and
('ooperattr~e Cornpetttttte Dectston Alaktng by Neural
i\etulorks, SPIE Vol 634 Optical and Hgbrld C'o~nputlng
1986, p p 218-247

(31 Groqsberg, Stephen, Competztrt~e Learnrng From Inter-
n c l i ~ r Acttt atton to Adaptrue Resonance, C'ognltive Sci-
ence 11 1987, pp 23-63

j4] Hopfield, John J . , and David N'. Tank, Con~ptittng ~11 th
N e u ~ n l C'trrults: A Model, Science Vol 233, 8 August
1986, pp. 625-633.

[5] Jones, Willianl P. and Josiah Hoskins, Back-Propa-
gatzon, BYTE, October 1987, pp. 155-162.

[6] Kohonen, Teuvo, Self-Organzztng Feature Maps and
Abstracttons, Proceedings of the Third lntrrnational
Conference on A1 and Information-Control Systems of
Robotics, 11-15 June 1984, Snolcnice, C'zk , pp. 39-45 .

[7] Kohonen, Teuvo, Cluslertng, Tazononly, and Topologtcal
Maps of Paflerns, Proceedings of the Sixth International
Conference on Pattern Recognition, Vol 1, 19-22 Oct
1982, Munich pp. 114-128.

[8] Lipp~nann , Richard P , An Iniroductron to Coinputtng
wtth Neural Nets, IEEE ASSP Magazrnr, April 1987,
pp. 4-22

19) Tank, David W . and John J . Hopfield, Collec t t~~e Com-
putatzon tn Neuronltke Ctrcutts, Scientific An~rr ican, pp.
104-114.

PRECEDING PAGE BLANK NOT FILMED

CHARACTERIZING THE ERROR FUNCTION O F A
NEURAL NETWORK

Barbara Moore*, Marcelo Fogaqa*, and Alan Kramert.
x

MIT A1 Lab, NE43-826, 545 Technology Square, Cambridge MA 02139
tDepartment of EECS, Cory Hall, UC Berkeley, Berkeley CA 94720

Abstract

We consider several means of exploring the error function of
a multi-layer, feedforward neural network. In particular, we
look at hyperplane configurations over time, and the gen-
eralization of the network function to a regi0.r of the input
space. Using this approach, we analyze th* iesults of sev-
eral experiments run on the massively parallel Connection
Machine computer, as well as other reported results and ob-
servations.

Keywords: Neural Networks, Error Function, Layered Feed-
forward Network, Connection Machine, Hyperplanes, Geo-
metric Analysis of Neural Networks.

1 Introduction

Feedforward neural networks can "learn" surprisingly com-
plex input/output mappings using simple gradient-descent
algorithms which minimize an error function whose variables
are the network weights. These networks are an attractive
computational paradigm not only for their adaptation capa-
bilities, but also because they have natural parallel imple-
mentations.

IIowever, even massively parallel implementations of neu-
ral networks may require extremely long training times. We
are hoping to reduce training times by incorporating into
the learning algorithm knowledge of both the structure of
the problem to be learned and the learning network topol-
ogy. To this end, we are investigating various means of char-
acterizing the shape of the error function in weight space,
for the case of a feedforward layered network and the sum-
of-squared-differences error function. We have also found it
useful to look at the movement in input space of hyperplanes
corresponding to the weights on links to hidden units, over
the course of training with the classical back-propagation al-
gorithm. (This representation of network state is referred to

below as the hyperplane configuration.) There is often struc-
ture inherent in a network's architecture and in a problem
(or training set) which is reflected in the error function and
in the hyperplane configurations over time. An understand-
ing of this structural information can help to better deter-
mine parameters such as size, connectivity, and initial weight
values of the learning network, and can contribute to the de-
sign of faster learning algorithms and input preprocessing
stages. Our analysis also allows us to provide explanations
for empirically observed phenomena, such as "flat spots" in
the energy surface, and improvements in performance with
extra hidden units.

In Section 2 we describe the implementation of the back-
propagation network training algorithm on the Connection
Machine. Section 3 presents results of a scaling experiment,
in which we study the effect on learning time of the number
of hidden units. We also present results of an experiment
on adjusting the length of the initial random weight vectors.
Section 4 discusses our explorations of the shape of the en-
ergy function in weight space, and developes the hyperplane
configuration. In Section 5 we apply the hyperplane analysis
to explain our experiments and other empirically observed
phenomena. Section 6 suggests several methods for obtain-
ing speedup in training times based on our analyses, and
summarizes the paper.

2 Connection Machine Implemen-
tation of Back-Propagation

To run our experiments, we wrote an optimized Connec-
tion Machine version of the back-propagation learning al-
gorithm for multilayer feedforward neural networks. (We do
not describe that algorithm here; see reference [4]. The node
function for the units is assumed to be the sigmoid func-
tion varying between 0 and 1.) The Connection XIachinels
massive parallelism is well suited for neural network imple-
mentations. For most of the ~ r o b l e m s we experimented with,
the Connection Machine allowed us to completely parallelize
the network, with one processor allocated to each node and
each weight.

Figure 1. Implementation of neural network on the Connection
Machine: snapshots during feed-forward of activity from one
layer to the next. Squares at left (1,2,3,4) represent node pro-
cessors in layer i. Circles to their right represent forward-link
processors from layer i to layer i + 1. Squares at right (a,b,c,d)

The Connection Machine is a powerful fine-grained par-
allel machine having between 4000 and 16000 processors. It
is a single-instruction multiple-data (SIMD) machine. Each
of the processors is a simple 1-bit processor with 4000 bits
of memory (the CM-2 has more memory and floating point
operations). There are two modes of communication among
the processors. In the first, the processors are connected by
a mesh of wires into a two-dimensional grid network (the
NEWS network, so-called because the connections are in the
four cardinal directions), allowing rapid direct communica-
tion between neighboring processors. The second communi-
cation mode is the router, which allows messages to be sent
from any processor to any other processor in the machine.

The back-propagation algorithm that we implemented on
the Connection Machine takes advantage of the fast parallel
scan operation [I]. One processor is assigned to each node
in the neural network. Each node processor is preceded by
a linear string of "backward-link" processors, each of which
stores information corresponding to a link from a node in
the previous layer. Each node processor is also followed by
a set of "forward-link" processors, each corresponding to a
link to a node in the next layer. The purpose of this linear
arrangement is to ,allow use of the fast scanning operation
to pass information along the linear string of node and link
processors.

Forward propagation starts with the inputs being loaded
into the first layer node processors. Then a forward scan op-
eration sends the activities from these nodes into their asso-
ciated forward-link processors. Each forward-link processor
multiplies this activity by its weight value, and the rout-
ing network of the Connection Machine is used to send this
value to the corresponding backward-link processor in the
next layer of processing nodes. The final step in the loop is
another forward scan which adds the values of the backward-
link processors into the node processor for the second layer.
Then each node processor in this layer computes the sigmoid
output function and we start again on the next layer with a
forward scan (Figure 1).

Back-propagation of error works in a similar way, using
the backward scan operation instead of the forward scan. Er-
rors instead of activities are transmitted backward through
the network, and weight values at the node processors are
updated.

are node processors for layer i + 1. Circles preceding squares
are backward-link processors from layer i to layer i + 1. In
the first snapshot, activities a t the layer i node processors are 3 Some Experimental Results
forward scanned into their forward-link processors. In the sec-
ond snapshot, these activities are scaled by the weights in each
forward-link processor. Third, the link values are routed from
the forward-link to the backward-link processors. Fourth, a for-
ward scan is used to sum link values into the layer i + 1 nodes,
where the sigmoid function is applied to obtain layer i t 1 ac-
tivities.

The problems we are investigating include the parity func-
tion of n inputs and classification of n-dimensional vectors
over real-valued intervals: R" 4 {0,1}. The parity function
is useful because it scales in an obvious way, and because
it is the most complex Boolean mapping to learn. Many
of our experiments used two-input XOR as the input; al-
though occasionally maligned as being somehow unrepresen-
tative of problems to which neural networks ought to be
applied, we note that it is in fact very useful as the simplest

binary problem which requires a hidden layer in a network.
The problem of classifying real-valued vectors problem since
there has been less work with real-valued inputs than with
binary-valued inputs, although many applications
involve analog data.

3.1 Learning Time as a Function of Hid-
den Layer Size

One critical question in the design of a neural network is the
number of units in the hidden layers. There is often a min-
imum hidden layer size below which the network is not ca-
pable of representing certain input-output mappings. Even
above this minimum size, however, it may still be difficult
for the network to learn. By running experiments, we have
confirmed reported results that adding hidden units reduces
the learning time. The speed of our parallel implementa-
tion allowed us to run enough experiments to get reasonable
statistics on this phenomenon.

In all of the experiments described in this paper we used
a network with one hidden layer. The input layer had two
units and the output layer had one unit, while the numbel
of units in the hidden layer was varied. We used the XOR
problem as the mapping to be learned by the network. The
learning algorithm employed was back-propagation, with a
learning rate of 1.0 and the momentum term set to 0.0. The
initial weights of the connections in the network were ran-
domly initialized to values in the range -1.0 to 1.0. In each
run, the stopping criterion adopted was that the error must
be less than or equal to 0.02. The learning time of a network
is then defined as the minimum number of passes through
the backpropagation algorithm that are necessary to bring
the error of the network to 0.02 or less. (We make the as-
sumption that results on learning times obtained for one set
of parameters scale simply for other values of these parame-
ters. Setting the momentum term to 0 was useful in that it
allowed us to interpret our results as reflecting the true shape
of the energy function in weight space.) In our experiments
we varied the hidden layer size from 2 to 128 units.

Table 1 summarizes our results on the scalability of the
hidden layer size. It confirmes reported results that adding
hidden units reduces the learning time of a network.

The relationship between the learning time and the size
of the hidden layer resembles a hyperbolic curve (Figure Z),
and so we looked for a linear correspondence between the
learning time and the inverse of the size of the hidden layer
for a particular network. Figure 3 shows a plot of learning
time as a function of the inverse of the size of the hidden
layer. A linear regression was performed using the data for 2
to 48 hidden units in order to obtain an equation relating the
number of hidden units and the learning time. (As discussed
i11 section 5, this model breaks down for a large number of
hidden units because of overshoot effects.) The equation
obtained was:

Table I . Learning time vs. number of hidden units

hidden units
2
3
4

where

t = learning time,

trials
60
60
60

h = number of units in hidden layer.

-
t

968 f 254
802 f 144
719 f 128

The model described by the equation above was tested
with our previous results, as described in the Table 2. The
values for the learning time that were predicted from the
model equation fell within 3.3 % of the mean value obtained
for each case.

hidden units
2
3
4
5
6
7
8
9
10
12
16
20
24
32
48

Table 2. Fit of model to data.

predicted t
990
800
705
648
610
583
563
547
534
515
491
477
468
456
444

actual t
968
802
719
665
618
597
580
544
545
504
484
467
453
452
432

e m r
+ 2.3 %
- 0.2 %
- 1.9 %
- 2.6 %
- 1.3 %
- 2.3 %
- 2 . 9 %
- 0.6 %
- 2.0 %
+ 2.2 %
+ 1.4 %
+ 2.1 %
+ 3.3 %
+ 0.9 %
+ 2.8 %

Figure 2: Graph of learning time as a function of the number of hidden units on the XOR problem.

Figure 3: Graph of learning time as a function of the inverse of the number of hidden units on the XOR
problem.

Further, the model was tested with new experimental
data obtained independently of that from Tables 1 and 2.
The experiment was performed in the same manner, but dif-
ferent values for the number of units in the hidden layer were
used. The results are summarized in Table 3. The model was
again able to predict the learning time for all new cases with
an error variation not greater than 5 %.

hidden units predicted t f a actual S

445

Table 3. Fit of model to new data.

1 Probability of Succ... r--*

- d V L

Figure 4: A. Probability of success as a function of initial weight vector length. B. Learning time as a
function of initial weight vector length.

3.2 Learning time as a function of initial
weight vector length

Weight values are usually initialized to "small" random val-
ues. We have found that the length of this initial weight vec-
tor is important and has a strong effect on measured learning
time results, a t least for the XOR problem with two hidden
units. For all of our experiments, initial weights were cho-
sen by randomly choosing a point in the unit-radius hyper-
sphere according to a uniform probability distribution, and
then normalizing the length of the weight vector to a user-
specified length. (To achieve a uniform distribution over the
unit-radius hypersphere, we chose points in the unit hyper-
cube by choosing each coordinate independently from a uni-
form distribution, and then rejected points which were not

within the unit hypersphere. While this method works well
for a small problem like XOR which has a nine-dimensional
weight space, i t becomes impractical for much larger prob-
lems because too many of the randomly chosen points are
rejected before a "hit".)

The learning algorithm used was batch back-propagation
with a learning rate of 0.25 and a momentum of 0.9. The
algorithm terminated with a L'success" if the error was re-
duced to less than 0.125. Learning time for successful trials
was measured in epochs, or passes through the entire train-
ing set. The algorithm terminated with a "failure" if it had
not succeeded after 10,000 epochs.

Graph A in Figure 4 shows that for XOR, the proba-
bility of back-propagation terminating successfully does de-
pend on initial random weight vector length. Eight initial

Figure 5: IIyperplane configurations in learning the XOR problem with two hidden units. Snapshots at
epochs 50, 250, 500, and 750.

rand0111 weight vector lengths were chosen and these values
appear on the WVL axis. For each length, 100 random initial
weight vectors were generated and run through our learning
algorithm. The percentage of these hundred runs which ter-
minated successfully is plotted and is seen to decrease with
increasing WVL.

Graph B in Figure 5 shows that average learning time
does depend on initial weight vector length. Eight initial
random weight vector lengths were chosen and these values
appear on the WVL axis. For each length, 100 random initial
weight vectors were generated and run through our learning
algorithm. The average number of learning sweeps needed
for the trials which terminated successfully is plotted, and
shows that learning time increases if the length of the initial
random weight vector is too small, as well as if it is too big.

4 Exploring the Error Function in
Weight Space

We have considered several ways of looking at the error func-
tion in weight space. The error function is defined as the sum
of the squares of the differences for each input in the train-
ing set of the desired output and the actual network output.
For the two-input, two-hidden-unit XOR problem, we nu-
merically explored the energy function in weight space, and

derived the error equation analytically (for these results, see
the forthcoming A1 working paper [2]). We ran many back-
propagation experiments. We watched the evolution over
time of the hyperplanes representing the hidden units, and
we performed a geometric analysis of final weight configu-
rations. JVe found it very useful in practice to overlay the
hyperplanes on a color image representing the function com-
puted by the network (with a range of colors from blue to
red representing values from 0.0 to 1.0). We now develope
the hyperplane configuration approach.

Consider a sigrnoid unit in a feedforward neural network,
which computes the function

where x is the weighted sum of inputs to the unit. The unit
will output a value of .5 whenever its weighted inputs sum to
0. Given weights on the input links, then, the locus in input
space of values which will ~ r o d u c e a 0 input to the node is a
hyperplane. In the case of two inputs, this is a line. For bi-
nary output problems, a network that has learned to output
correct responses t o training set elements has a hyperplane
configuration in which hyperplanes separate training inputs
which have different outputs.

We plotted snapshots of the movement of these lines in
input space over the course of learning. Figure 5 is an exam-
ple of training a 2-hidden-unit network on the XOR problem.
The four training set elements are represented in the input
space by the four circles. The filled circles at (1,O) and (0,l)
have a desired output of 1, and the open circles at (0,O) and
(1,l) have a desired output of 0. The final solution, with the
parallel lines separating the two classes of inputs, is in one
of only two possible configurations (the other configuration
has the ~ a r a l l e l lines cutting the training examples the other

way).
Figures 6 and 7 illustrate snapshots during the training

of a 3-hidden-unit network on XOR. The final configuration
in Figure 6 is similar to that of a 2-hidden-unit network; a
glance at the output weights for each hidden unit reveals
that the "extra" hyperplane has weight much smaller than
the other two. On the other hand, the final configuration in
Figure 7 is structurally dissimilar from that of a 2-hidden-
unit network: a star of lines is formed instead of two parallel
lines. All three of the hidden units are important in the
network, and the magnitudes of the weights between them
and the output node are approximately equal.

We can characterize the final configurations of the hy-
perplanes into informal equivalence classes. For example,
the 2-hidden-unit solution with parallel lines is one equiva-
lence class (the two possible orientations are considered to
be in the same equivalence class, by symmetry). The star
configuration is another equivalence class. Thus we found
that increasing the complexity of the learning network not
only allowed for variations of existing final configurations,
but also added new structural equivalence classes. We are

Ulndou 2 175
1 Ulndou 2 250

-

Ulndou 2

Figure 6: Hyperplane configurations in learning the XOR problem with three hidden units. Final config-
uration is similar to that of 2-hidden-unit network. Snapshots at epochs 50, 100, 175, 250, 375, 475, and
675.

Figure 7: Hyperplane configurations in learning the XOR problem with three hiddenunits. Final config-
uration is not similar to that of 2-hidden-unit network. Snapshots at epochs 50, 250, 375, 500, 525, 550,
and 675.

currently working on the problem of describing the regions of
attraction in weight- or hyperplane-space for each of the final
configurations. In particular, we noticed that there are long
learning times corresponding to initial configurations which
lie on the boundary of these regions of attraction, indicating
that it takes some time to make the decision about which
direction in which to go.

The motion of the hyperplanes during the course of learn-
ing (as well as the color map of the network function in in-
put space) shows a lot about the shape of the error function.
Slow movement of hyperplanes corresponds to low deriva-
tives in the error function. Fast and often oscillatory move-
ments of the hyperplanes indicate rapidly changing areas of
the error function; the oscillation is due to overshoot of a
local energy minimum along the direction of the gradient at
a point.

5 Explaining Empirical Observations

The hyperplane configuration approach has provided answers
or clues for various observed phenomena, as well as pointing
out new questions we had not previously asked. We were par-
ticularly interested in such phenomena as speedup in learn-
ing with increased number of hidden units, "flat spots" in
the error function, the initial shrinking of the weight vec-
tor, symmetry-breaking and hidden unit differentiation, and
the success of the heuristic of removing hidden units after
learning has been partially completed. By watching the hy-
perplanes as learning progressed, we were particularly struck
by certain oscillatory effects, fast vs. slow movements, and
analogies with attractive and repulsive forces.

Let's start by considering the experiments in which we
varied the number of units in the hidden layer. We found
a steady decrease in the learning time, up to a point, after
which the learning time began to rise again. By looking at
the hyperplanes and the color graph of the network function
in input space, we could see that one of the explanations for
decreasing learning time was that more final configurations
were available to the network, and it had more freedom in
choosing weight values with more hidden units and redun-
dancy. For only two hidden units, the values of the weights
could not vary much at all before violating the required er-
ror bound. Another thing we noticed was that the effective
step size increased dramatically as the dimensionality of the
weight space increased: the step size in the gradient descent
algorithm is used by each weight in adjusting itself, so the
morc weights there are, the larger the total step size. There-
fore, we were seeing a lot of oscillation in the large networks
because there was a lot of overshoot of local minima in the
direction of the gradient.

On many of our training sessions, we noticed that the
length of the weight vector would often change rapidly over
a brief period right away, and this would be accompanied

by a rapid reduction in the error. After this there would be
a leveling off of both signals. This was easy to understand
when we looked at the plot of the network function over the
input space: the first thing that happens is that the output
layer weights are adjusted so as to bring the output function
of the network to be approximately .5 everywhere. Usually
the hyperplanes do not intersect the unit hypercube that
is defined by the binary training vectors, because they are
chosen at random. Then the hyperplanes would be slowly
dragged in toward the unit hypercube; the farther away they
were from the cube the slower they would move. Thus the
initial location of the hyperplanes is a key factor in learning
time.

Another interesting aspect was symmetry-breaking and
hidden unit differentiation. We observed several cases where
one or more of the hyperplanes was in a location near a "deci-
sion point". On one side of this point, the hyperplane would
go in one direction, and on the other side of this point, i t
would be pulled in a different direction. Hyperplane move-
ment near this decision point was generally quite slow. There
were also times when more than one hyperplane was serv-
ing the same function (located in a similar place), and one
was needed elsewhere. It would take a long time for the two
hyperplanes to differentiate.

If two networks have been trained successfully on a prob-
lem, the smaller one tends to generalize better. However, the
smaller networks also tend to become trapped in unaccept-
able local minima more readily during the training phase.
Therefore researchers have investigated the possibility of re-
moving hidden units after learning has been partially com-
pleted. Our conclusion is that this heuristic works well only
under certain conditions, wherein "redundant" hidden units
are chosen for elimination. Often useless or redundant units
have smaller weight vector magnitudes, so this is a good
heuristic.

We also did some experiments with larger-size problem
such as parity'of n inputs and more complex classifications
of two real-valued inputs. We found that the learning time of
the networks tended to correspond to the number of hyper-
planes that were needed to separate the inputs in different
classes, and we used this as an informal definition of the
complexity of the problem.

6 Speeding Up the Learning Algo-
rithm and Future Work

Several approaches to obtaining speedup in training times
have suggested themselves from our experiments. One is the
choice of initial weights. By starting with the hyperplanes
near the unit hypercube and separated from each other, we
very much decreased the learning times. Various compu-
tational geometry algorithms are also attractive for deter-
mining initial hyperplane configurations; depending on the
complexity of these algorithms as a function of input dimen-

sionality and training set size, they might even become a re-
placement for back-propagation network training methods.
For large training sets, we would like to consider alternatives
such as those suggested by Stephen Omohundro [3].

We also implemented a steepest descent algorithm, and
the more efficient Fletcher-Powell algorithm for determining
the next direction in which to change the weights combined
with a quadratic interpolation for optimum step size. This
algorithm is parallelizable and achieves learning rates at least
as good, and usually better, than others reported in the lit-
erature.

We are currently working on characterizing the regions
of attraction of the final hyperplane configurations. In ad-
dition to studying the hyperplane configurations experimen-
tally, we hope to make a theoretical statement about the
hyperplane configurations of final solutions obtained by the
back-propagation learning algorithm. We may be able to de-
rive analytically the configurations which correspond to local
minima of the error function in weight space. We are also
interested in considering the movement of the hyperplanes
in terms of forces between them and the training set inputs,
as well as among hyperplanes themselves.

We would like to look a t the behavior of other learning
algorithms in hyperplane configurations. For example, we
are particularly curious to try it on David Rumelhart's new
scheme which adds terms to the error function that reduce
the size of the network dynamically during learning.

References

[I] G. Blelloch, "Scans as Primitive Parallel Operations",
Proceedings International Conference on Parallel Pro-
cessing, pp. 355-362, 1987.

[2] B. Moore, "Error Function Explorations, or Beating
XOR to Death," forthcoming MIT A1 Lab Working Pa-
per.

[3] S. Omohundro, "Efficient Algorithms with Neural Net-
work Behavior," Report no. UIUCDCS-R-87.1331, De-
partment of Computer Science, Univ. of Ill. at Urbana-
Champaign. April 1987.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
"Learning Internal Representations by Error Propaga-
tion," in D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Ezplorations in the Mi-
crostructure of Cognition, Bradford Books/MIT Press,
Cambridge MA, 1986.

[5] A. Wieland and R. Leighton, "Geometric Analysis of
Neural Network Capabilities," Proceedings of the IEEE
First International Conference on Neural Networks, pp.
385-392, 1987.

PRECEDING PAGE BLANK NOT FILMED

THE IMPACT OF RENT'S RULE ON MASSIVE PARALLELISM

P. J. Koopman D. P. Siewiorek
ECE Department CS Department

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT: Rent's Rule is an empirical relationship stating
that the number of pins on a chip increases as the number of
gates on the chip increases. In massively parallel systems,
every extra pin is multiplied by the number of processors.
This causes a rapid increase in system complexity, cost, and
failure rate. The key to more efficient massively parallel sys-
tems is finding a way around Rent's Rule. By studying the
effects of re-implementing a system of fixed complexity using
different integration levels, we have found that Rent's rule
does not apply to systems which place program memory on
the same chip as the processor. This suggests that a focus for
massively parallel systems might be to use processing ele-
ments simple enough to completely fit on a single chip, rather
than faster but more complex processors that use external
memory devices.

Keywords: Rent's Rule, integration level, system complexity.

INTRODUCTION

Rent's Rule (Ref. 1) is an empirical relationship between the
number of gates and the number of 110 pins a single chip.
The relationship is given by:

In this equation, 10 is the number of input/output pins on the
chip. AS is the complexity of a single logic gate on the chip
as measured by the number of inputs for the gate. G is the
number of logic gates on the chip. R is the Rent Exponent,
which is a circuit-dependent "magic" number between 0 and
1, which is often near 0.5.

The trend in VLSl processor design has been: given the
availability of more silicon real estate, put more sophisti-
cated functions or wider data paths into a single chip. Thus,
memory chips have progressed from 256K bits to 1M bits to
4M bits. Also, microprocessors have evolved from 8 bits
wide to 16 bits to 32 bits. These chips all obey the Rent's
Rule prediction of a logarithmic increase in the number of

pins as the number of gates on the chip increases. This in-
crease in the number of pins has important implications for
the builders of massively parallel systems.

THE COST OF TOO MANY PINS

Since the innovation of standardized integrated circuits we
have progressed from the introduction of the 14-pin dual in-
line package (DIP) to common use of pin grid array packages
(PGAs) with hundreds of pins. The addition of extra pins to
a chip has some obvious as well as hidden costs.

The most obvious cost is the manufacturing cost of the chip
package itself. Small DIPs are very inexpensive to manufac-
ture since they use stamped metal pins. As chips require
more pins, DIPs become impractical, and packages such as
leadless chip carriers (LCCs) are used. Each contact on an
LCC costs more than a DIP pin, because it must be more
precisely manufactured and placed around four sides of the
package. At the high end of the spectrum, PGAs use
precision-machined round pins that are precisely placed in a
matrix on the back of the chip. It is not unusual for each pin
of a PGA to be several times more expensive than an entire
DIP package. Thus, there is a very steeply increasing cost
curve for the entire chip as the number of pins is increased.

The direct cost of the chip package only begins to describe
the costs of adding pins, however. At the on-chip level, every
pin must have an on-chip pad. This pad consumes valuable
silicon real estate. But, more importantly, each pad con-
sumes power. As geometries become smaller, the amount of
power used by a chip to drive its output pins can dwarf power
consumption for on-chip logic. The problem is especially
severe with CMOS technology, which is coming into favor for
high density circuits.

At the system level, the footprint of the package on the
printed circuit board increases as the number of pins on the
package increases, costingvaluable printed circuit board real
estate. Increased printed circuit board sizes result in bigger
cabinets and, ultimately, more boards with expensive and

slow interconnect structures. Dense pin arrangements such
as those found on PGAs further aggravate the problem by re-
quiring expensive multi-layer boards.

Many indirect costs are associated with chips that have large
pin counts. These costs include the use of very expensive
automated chip testers when they are manufactured. Also,
every extra pin in a finished computer reduces the over-all
system reliability, since interconnect failure is a frequent sys-
tem failure mode. (Ref. 2)

In a parallel computer, these pin costs are multiplied by the
amount of parallelism in the design. Since the premise be-
hind a massively parallel system is that more processors are
better, all massively parallel designs will ultimately be
limited in processingpower by the number of processors that
can be afforded within a given space/power/cost budget. The
number of pins in each processing element within the system
can therefore directly affect the ultimate computational
power of a massively parallel processor.

BREAKING THE RULE

One should not infer from the previous discussion that the
use of VLSl chips with large pinouts is bad. These chips,
while expensive, are less expensive than the total system cost
of using a large number of less complex chips instead. The
question is: can we do better?

Rent's Rule predicts that increased VLSI chip complexity
will lead to an inexorable increase in pin count. A key to
making massively parallel systems faster and more cost-ef-
fective is to find a way to break out of Rent's empirical
relationship. One way to accomplish this goal is to find an
implicit assumption in the relationship that can be altered.

There is an historic relationship between chip complexity
and overall system complexity. As chips have become more
dense, computer systems have not only become more highly
integrated, but have also become more complex. Adding
more complexity to a system makes sense in a uniprocessor
environment, where the added complexity squeezes the most
possible performance from the machine. Rent's Rule ap-
plies to computer systems as they have been built over the
years, so it accounts for this implicit assumption. But what if
we violate that assumption, and hold system complexity as a
constant?

The answer to this question may be found by conducting an
experiment that holds system complexity as a constant for
varying ir~tegration levels. In order to do this, we built a
hierarchical description of a 16-bit microprocessor system
(Ref. 3) starting at the gate level. All circuit functions were
ultimately reduced to combinations of 2-input NAND gates
for simplicity. Then, we did a redesign of the system using
six different integration levels ranging from SSI (all 2-input

NANDgates) to high density VLSI (entire system on a single
chip). Each integration level was chosen to correspond to a
reasonable method for partitioning the system components.
Figure 1 shows a graph of chip complexity versus pin count
for the various implementations, as well as the curve for a
Rent exponent of 0.38. There are more than six data points
in this graph, since most implementations had several chips
in the design. RAM chips are not shown as they obey a Rent
curve with a different slope that clutters the diagram. Power
supply pins are not accounted for since they vary with im-
plementation technology.

Integration Levels 1 and 2, which correspond to SSI and MSI
components, obey a classic Rent's Rule curve with an ex-
ponent value of approximately 0.38. Integration Level 4,
which corresponds to a 3-chip system, also falls neatly on this
curve. Integration Level 5, which corresponds to a standard
micro-processor 2-chip system (processor chip and memory
chip) is somewhat off the curve, but is still a reasonable fit.
Integration Level 3 turned out to be an awkward level of in-
tegration, which forced a very poor partitioning of the sys-
tem, resulting in a very high pin count for one of the chips.

The really interesting point on the graph is Integration Level
6. This design is nowhere near the curve! Integration Level
6 corresponds to a single-chip system, which incorporates
program memory and the processing logic on the same chip.
This implementation appears to break Rent's Rule.

INTERPRETING THE RESULTS

Figure 2 shows a curve that helps us interpret the results of
the experiment. If we ignore Integration Level 3 as a "bad
data point", then what is really happening is that the designs
obey Rent's rule quite well through Integration Level 4.
Then, as we reach very high levels of system integration, the
number of pins on the chips begins to decrease. If the entire
system is on a single chip, only a few pins for system 110 are
needed. While the microprocessor seems to be near the
break in the curve, the break is not really noticeable until the
system-on-a-chip approach is taken.

The results, once one thinks about the situation, are rather
straightforward. A system-on-a-chip needs off-chip inter-
connection only for UO, so it needs very few pins. Why hasn't
this concept been exploited then? The reason is that it is of
limited use in the uniprocessor world. Most high-perfor-
mance uniprocessors are too complex to allow enough room
for on-chip memory.

The situation in a massively parallel processor environment
is quite different than in a uniprocessor environment. Since
massive parallelism is cost effective only in applications
which can achieve roughly linear speed improvements as
processors are added, N processors that perform at 1/Nth the

speed of a given uniprocessor are roughly equal in process-
ing power to that same uniprocessor.

The approach that is supported by these findings is one of
building relatively simple processor/memory systems that
can fit on a single chip. Since these chips will be much less
expensive to manufacture and use in a system, more proces-
sors can be included in a system.

There are several methods of implementing this strategy.
One method is to simplify a given processor implementation
as much as possible, probably sacrificing speed-enhancing
hardware features for overall system size. With current tech-
nology (1 to 2 micron CMOS), this approach can lead to
simple 16-bit processing elements with small program
memories. Of course, appropriate software techniques to
keep code size small are vitally important. This approach is
probably the most attractive for MIMD machines.

Another possible method is to reduce the word-size of each
processing element. The ultimate extension of this
philosophy is bit-serial machines which can, in fact, have mul-
tiple processing/memory elements per chip. This approach
is obviously well-suited to SIMD machines.

CONCLUSIONS

In the near term, the challenge to achieving the maximum
level of processingelement integration is to find design styles
and programming methodologies that can fit enough
functionality onto available chip real estate to go beyond the

Rent's Rule breaking point. Current architectures which
may be able to do this include: bit-serial processors, which
can pack several processors with memory onto a single chip;
8-bit microcontrollers, which are probably not powerful
enough to be of interest in their currently available form; and
stack-oriented processors, with their small program memory
size requirements. In the future, chip sizes may increase
enough to allow RISC processors to have a full-sized on-chip
cache and slow serial interfaces to their program memories.
CISC processors may eventually reach this point as well, but
only if they are frozen at a particular complexity level.

Some parallel processor architectures, especially SIMD ar-
chitectures, are clearly already embracing the philosophy of
simple computational elements that can fit on a single chip.
What we have explored are some of the theoretical under-
pinnings of this approach, and why it makes sense for mas-
sively parallel architectures.

REFERENCES

1. Landman, B.S. and Russo, R.L., "On a Pin Versus Block
Relationship For Partitions of Logic Graphs," IEEE Trans-
actions on Computers, December 1971, C20(12), pp. 1469-
1479

2. Siewiorek, D.P. and Swarz, R.S., The Theory and Pracfice
of Reliable Sjstern Design, Digital Press, Bedford MA, 1982

3. Koopman, P.J., CPUI16 Technical Reference Manual,
WISC Technologies, La Honda CA, 1986.

1 = SSI
2 = MSI
3 = LSI
4 = 3-chip system
5 = microprocessor
6 = 1 -chip system

I I
1 1 I

0
I

20
I

40
I

60
I

80 100 120
Number of Pins

Figure 1. Experimental data shown with a Rent curve (R = 0.38)

1 = SSI
2 = MSI
3 = LSI
4 = 3-chip system
5 = microprocessor
6 = 1-chip system

Number of Pins

Figure 2. A different curve that better fits the data

OVERVIEW AND EXTENSIONS OF A SYSTEM FOR
ROUTING DIRECTED GRAPHS ON SIMD ARCHITECTURES *

Sherry1 Tomboulian

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton VA 23665

ABSTRACT must have a consistent invertible labeling. A more precise definition
of the labeling requirements can be found in (Ref. 16). It suffices that

Many problems can be described in terms of directed graphs that con- most networks (Ref. 4) including grid, hypercube, cube connected cy-
tain a large number of vertices where simple computations occur using cles (Ref. 13), shuffle exchange (Ref. 14), and mesh of trees (Ref. 7)
data from adjacent vertices. A method is given for paralleliring such are admissible under the %heme. Additional requiremente are that the
problems on an SIMD machine model that uses only nearest neighbor processors be able to read from or write to their neighbors' memories,
connections for communication, and has no facility for local indirect and that at least one of the processors acts as a serial port between the
addressing. Each vertex of the graph will be asnigned to a processor procesaon and the controller.
in the machine. Rules for a labeling are introduced that support the The Massively ParaUel Processor (MPP) built by Goodyear
use of a simple algorithm for movement of data along the edges of the Aerospace is an SIMD architecture with single bit processors arranged
graph. Additional algorithms are defined for addition and deletion of in a 128 by 128 (~ ~ f , 2). ~h~ ~ p p not the
edges. Modifying or adding a new edge takes the same time an parallel machine for this algorithm it is limited by its diameter being
traversal. This combination of architecture and algorithms defines a m, but nevertheless is a good candidate.* A machine design
system that is relatively simple to build and can do faat graph Proces* that fits our model well is the Boolean Vector Machine (BVM) being
ing. All edges can be traversed in parallel in time O(T), where T is built a t Duke University which is an SIMD machine that uses the cube
empirically proportional to the average path length in the embedding connected cycles interconnection (~ ~ f . 13).
times the average degree of the graph. Additionally we present an ex- . =he connection hi^^, produced by ~ h i n k i , , ~ hi^^^ carp*
tension to the above method which allows for enhanced performance ration, is an SIMD architecture with & l ~ processors, each with 4~
by allowing some broadcasting capabilities. bits of memory, and complex routing hardware that supports arbitrary

Keywords: routing algorithm, SIMD architecture, parallel processing, (Ref. 5) . While a hardware router may be a preferred

graph embedding, interconnection network method for solving graph problems, many applications do not require
this arbitrary communication facility and would profit by replacing the
equivalent silicon area with more processors and using software for com-

INTRODUCTION munication. BY choosing a software alternative, problems that do not
need generalized communication are more economical and graph ori-

There are many problems that can be formulated as directed graphs. ented problems are still viable. Independent of the argument of whether

such problems include circuit networks and t* one should or should not build an SIMD architecture with routing hard-
pography. Typically the real-world versions of these problems contain Ware, the fact remains that architectures such aa the MPP are being

100,000 vertices or more, and while the that occur at built that do not have routing hardware, and routing software extends

each vertex are simple, the size of the problems makes them compu- their usability.

tationally intensive. A natural way to parauelize these problems in a
paradigm in which each processor is assigned a vertex in the graph,
and there is some mechanism for reali~ing the arcs. This fine grained

THE METHOD
approach suggests the use of SIMD architectures, which can be built
with many thousands of processors.

The problem with using SIMD architectures is that often they do
not easily support generalized message passing schemes. This paper
presents a method of embedding graphs in a class of SIMD architectures
by using a special space-time labeling that supports message delivery
and incremental addition of paths. The algorithms for this system are
presented in (Refs. 16, 17). Basic concepts of the system will be re-
viewed, followed by an important generalization of the original method.

To maximize the number of processors which can be built, we choose
the simplest hardware definition necessary to solve graph oriented prob-
lems. The machine model used is SIMD: there is a controller and a
large number of slave processors which can execute the same instruction
stream simultaneously. The processors have exclusively local memory,
and they have no facilities for indirect addressing. The processors must
be connected in a topology with the following requirements: (1) there
must be some path between any two processors; (2) every neighbor
link must be bi-directional, i.e. if A is a neighbor of B, then B must
be a neighbor of A; and (3) the neighbor relations between processors

In this section we present the concept of conflict-free pace-time la.
beling, henceforth referred to as CFST-labeling. Using this labeling
scheme, we present a simple algorithm for data movement and an al.
gorithm for generating CFST-labeling of a graph incrementally.

It is necessary to distinguish between the graph problem being at-
tacked and the computer model being used. The graph being embedded
will be referred to using standard graph terminology with regards to
vertex, edge, and degree. The machine elements are called processors
and wires. Each vertex will be assigned to a different processor. Each
edge in the graph will be realired by a path in the physical network
which is a list of consecutive wires joining adjacent processors. Each
wire specification that is part of a path is referred to as a link.

Traversing all the edges of the embedded graph in parallel will take
more than one step since messages cannot be sent instantaneously but
rather must be paased along through successive neighbors. Traversing
all edges in parallel, referred to as the delivery phase, will be consid-
ered an uninterruptible operation that takes T steps. In addition to
the spatial characterization of a path, a path will also be character-
ized by a relative temporal offset within the delivery phase. Rules are - -

'THIS WORK WAS SUPPORTED BY THE NATIONAL AERONAUTICS provided governing paths. Algorithms are presented to create paths
AND SPACE ADMINISTRATION UNDER NASA CONTRACT NO. NAS1-18107
WHILE THE AUTHOR WAS IN RESIDENCE AT ICASE. 'See (Ref 3) for an implementation of sorting on the MPP

CH2649-2/89/0000/~63$01 .OO O 1988 l EEE

incrementauy and to trander a collection of messages through paths
simultaneously.

We will begin by defining the data structures which will be resident
a t each processor.

ALLDCATED ---- boolean f l a s ind ica tes that procerror
i r asmigned a graph vertex

VERTEX-LABEL --- l a b e l of graph vertex
HAS-NEICHBOR[l..wighbor_limit] --- f l a g ind ica te r

existence of wires
SLOTS[l..T] OF ed&e pa th information

START---------- new edge s t a r t . here

DIRECTION------direction t o send
<l..neighbor-lirit,PREE)

END-----------edge ends here
ARC LABEL-----label of edge

The ALLOCATED and VERTEX-LABEL fields indicate that the pro-
cessor has been assigned a vertex in the graph. The HAS-NEIGHBOR
field is used to indicate whether a physical wire exists in the particular
direction (e.g. in a Eat grid, edge processom only have 3 neighbors, and
corner processors 2, while internal processors have 4); for a completely
regular topology it is superfluous. The SLOTS data structure in the key
to the routing system. It is used in the delivery algorithm to instruct
the processor where to send a message and in the labeling algorithm to
inaure that paths are constructed so that no collisions will occur. The
SLOTS array in used to tell the processors what they should do on each
relative time position within the delivery phase.

One of the characteristics of this algorithm is that a fixed path is
chosen to connect two processors and once chosen it is never changed.
For example, consider the grid in Figure 1.

Figure 1.

If there is an edge between vertices in A and H, there are several pow
sible patha: East-East-South, East-South-East, and South-East-East.
Only one of these paths will be chosen between A and H, and that same
path will always be used. For each edge, the corresponding path is not
only fixed in space (i.e. the set of wires is constant), but is also fixed in
time (the initial delay before the message starts down the path is con-
stant). Once the starting time for the path has been fixed, it is never
changed. Paths do not have to start on time 1, but can be scheduled to
start a t some relative offset within the delivery phase. Since there are
no facilities for buffering, a message must proceed continuously along
the specified directions without delay. For instance, if the path is of
length 3 and it starts at time 1, then it will arrive at time 4; if it starts
at time 2, it will be guaranteed to arrive at time 5. Further, it is nec-
essary to place the paths so that no colliiions occur; that is, no two
paths can be at the same processor at the same instant in time. The
rules for paths that fulfill these requirements are listed below.

a At moat one link can enter a processor at a given time, and at
most one link can leave a processor at a given time. It is possible
to have both one coming and one going a t the same time. Note
that this does not mean that a processor can have only one link;
it means that it can have only one link during a particular step in
the delivery phase. It can have as many as T links going through
it (since a delivery phase is length T by definition).

Any path between two processors (u,v) representing an edge must
consist of links at consecutive time stepa. For example, if the path
from processor u to processor v is {~ , f ,~ ,h ,v} , then if the link from
u-f is assigned time 1, f-g must use time 2, g-h time 3, and h-v time
4. Likewise if u-f occurs at time 5, then link h-v will occur at time
8.

When these rules are wed to form paths, the SLOTS structure can be
used to mark the paths. Each path goes through neighboring processors
at successive time steps. For each of these time a k p the DIRECTION
field of the SLOTS structure is marked, telling the processor which
direction it should pass a message if it receives it on that time slot.
SLOTS serves both to instruct the processors how to send messages
and to indicate that a processor is busy at a certain time alot so that
when new paths are constructed it can be guaranteed that they won't
conflict with current ~ a t h s .

Consider the following example. Suppose we are given the directed
graph with vertices A,B,C,D and edges A + C, B C, B -r D, and
D 4 A (Figure 2), and that vertices A,B,C, and D have been assigned
to successive processors in a linear array. (A linear array is not a good
network for this scheme but convenient for demonstration.) Initially
all slots are bee. We proceed to construct a CFST-labeling, placing
each edge in the order it appears in the list above.

Figure 2.

A,B,C,D a r e rucceaaive members i n a l i n e a r a r ray

1. A -r C can be completed with the map East-East, so Slots(A][l]
= E, Slots[B](2]=E, End[C][Z]=TRUE.

2. B + C can be done with the map East; it can start at time 1,
since Sbts[Blll] and End[C][l] are free.

3. B -. D goes through C then to D; its map is East-East. B is
occupied a t time 1 and 2. It is free at time 3, so Slota[BII3]=E,
Sbts[C][4]=E, End[DII4]= TRUE.

4. D --r A must go through C,B,A. using map West-West-West. D is
free on time 1, and C is free on time 2, but B is occupied on time 3.
The path can start from D on time 2. Slots[D][2]=W, Slots[C][S]=
W, Slots[B][4]= W, End[A][4l=TRUE.

Every processor acts as a conduit for its neighbors' messages. No
processor knows any message's source or destination, but each processor
knows what it must do to establish the local connections.

Given that the paths satisfy the CFST-labeling rules, message de-
livery for graph problem is simple. The paths have been constructed
so that there will be no collisions, and each path link uses consecutive
time slots. The end of a path is specified by setting a separate bit that
is tested after each message is received. A separate start bit in SLOT[k]
indicates that a path starts at time k. The start bit is needed because
the SLOTS array just tells the processom where to send a message,
regardless of how that message arrived ". The start array indicates
when a message originates, as opposed to arriving from a neighbor.

The following algorithm is basic to the routing system.

"Both the START and the STOP bits can be ancoded as part of the DIRECTION
Reld in SLOTS, but the pnsented method is simpler to explain and allows for more
efficient execution

PROCEDURE DELIVER PERFORMANCE
f o r i - time 1 t o T

FORALL processors
/* i f an edge s t a r t s o r passes through a t t h i s time */

i f SLOT[i].START - 1 o r a c t i v e - 1
f o r j= l t o neighbor-l imit
begin

i f SLOT[i] .d i rec t ion- j
wr i te message b i t t o

in-box of neighbor j ;
s e t a c t i v e - 0;

end
FORALL processor t h a t j u s t received a message
i f end[i]

move in-box t o message-destination;
e l s e

move in-box t o out-box;
s e t a c t i v e b i t - I ;

This code follows the method described above. The time slots are
looped through, and the messages are passed in the appropriate direc-
tions as specified in the SLOTS array. Two bits, in-box and out-box,
are used for message buffering.

The time complexity of data movement is O(T x neighborlimit).
Since the number of neighbors is assumed to be a small constant for
each network, the complexity is O(T). This suggests that networks
with fewer neighbors have advantages. For instance, the hypercube
network has logN neighbors, and the cube connected cycles network
has 3 neighbors. Empirical results (Ref. 17) shows that while hypercube
uses a smaller T , CCC actually has a faster overall delivery time.

Setting up Message Paths

One of the goals in developing this system was to have a method for
adding new edges quickly. Paths are added so that they don't conflict
with any old path. Once a path is placed it will not be re-routed by
the basic placement algorithm; it will always start at the same spot at
the same time. The basic idea of the method for placing a connection
is to start from the source processor and in parallel examine all poa-
sible paths outward from it that do not conflict with pre-established
paths. As the trial paths are flooding the system, they are recorded
in temporary storage. At the end of this deluge of trial paths, if the
destination processor has been reached, then a real path exists. Using
the stored information a path can be backtraced and recorded. This
is similar to the Lee-Moore routing algorithm (Refs. 6, 8) for finding a
path in a system.

Suppose that the connection (u,v) is to be added. First it is assumed
that processors for u and v have already been determined, otherwise
(for now) assume a random allocation from a pool of free processors.
It is necessary to find a path between u and v that does not conflict
with any of the existing paths. The method for doing this is a type of
flooding. A breadth-first search will be performed in parallel starting
at the source processor. A record is kept of the trial paths resulting
from this search. The paths must adhere to the CFST labeling rules, so
a trial path must not conflict with paths that are already established.
For instance, suppose a trial path starts at time 1 and moves to a
neighboring processor, but that neighbor is already busy at time 1
(as can be seen by examining the DIRECTION-SLOT.) Since a path
that would go through this neighbor at this time is not legal, the trial
path would commit suicide, that is, it stops propagating itself. If the
processor slot for time 2 was free, the trial path would attempt to
propagate itself to that processor's neighbors at time 3.

Trial paths are recorded in a structure called TRIALSLOTS. A trial
path knows if the next time slot is occupied by referring to the SLOTS
data structure. If the destination processor is reached by a path, it
will be a path that does not violate the rules. Therefore we can trace
backwards from the destination processor using the markings in TRI-
ALSLOTS and transfer this good path to the actual SLOTS structure.

Adding an edge (assuming one can be added), deleting any set of
edges, or traversing all the edges in parallel, all have time complexity
O (T x neighborlimit). If it is assumed that neighborlimit is a small
constant then the complexity is O(T). Since T is related both to the
time and space needed, it is a crucial factor in determining the value of
the algorithms presented. Some analytic bounds on T were presented
in (Ref. 16), but it is difficult to get a tight bound on T for general in-
terconnection networks and dynamically changing graphs. For the case
where the graph is known a priori an upper bound of O(log2N) can
be achieved on a hypercube. This is obtained by applying a result by
Nassirni and Sahni (Ref. 10) in which they present a method for data
broadcasting in SIMD computers which conforms to the CFST-labeling
rules.

Of major interest is the on-line case, where edges are added and
deleted dynamically. A simulator was constructed to examine the be-
havior of the algorithms. Besides the simulated data, the algorithms
mentioned were actually implemented for the Connection Machine.
The data presented by the simulator is consistent with that produced
by the real machine. The major result is that the size of T appears
proportional to the average degree of the graph times the average path
length in the embedding.

This is a highly significant result. If it is aasumed that the av-
erage number of connections and the neighbor-limit are bounded by
small constants then the time for a parallel traversal operation, is,
the worst case, O(diamcter). This indicates that the algorithm per-
forms optimally for routing random communication graphs, since a
random graph can have connections between processors that are dia-
metrically opposed. If it assumed that the diameter is O(1ogN) then
CT is O(1ogN).

This bound indicates that the methods presented here are compet-
itive with existing methods for parallel traversal in SIMD architec-
tures. Some methods for SIMD parallel communication were men-
tioned in the introduction. Permutations can be done in O(1ogN) time
(Refs. 9, 10). Sorting can be done in essentially O(logZN) time, us-
ing (Ref. 12) or Batcher (Ref. 1) combined with Thompson (Ref. 15).
These methods are restricted to permutations and sorting. One of
the advantages of the method presented here is the ability to deal
with graphs that are more general. Using the previous methods,
if the connections specified a complete permutation, and addition-
ally some processor also wanted to connect to two other processors,
three entire permutations must be performed because the complexity
is diameter x maz-number-ofxonnections. In our system some items
can have more connections than others without substantially increas-
ing T. This result is achieved because the complexity of this method is
based on the diameter x AVERAGEnurnberaf sonnections, rather
than the maximum number. The method used here also has the ad-
vantage that new connections can be added easily, unlike the other
methods which require the entire set-up to be re-computed.

A further advantage of this method is the ability to exploit locality.
Since the heuristic for T is dependent on the average path length,
situations where the embedding can be arranged so that processors
connect to those in some neighborhood will produce smaller values of
T.

BRANCHING PATHS

There are many variations of this basic method that can be exploited.
Among these are heuristics for picking shortest paths, assignment of
node to processor, and choosing paths so as to avoid congestion. A
discussion of these methods can be found in (Ref. 16).

A significant and important extension of the general CFST label-
ing rules involves a generalisation that we refer to as branching paths.
Branching paths is actually a form of broadcasting. Rather than having
each arc represented by a different path, arcs starting from the same
vertex can be combined for greater efficiency. However, this gain comes
at the loss of two features.

The first is an obscure feature. In the basic CFST method presented,
the system is identically free of conflicts whether it is run forwards or
backwards. That is, rather than have an algorithm that starts at step 1
in the delivery cycle and initiates mesnages with the START bit marked,
it is possible to write a send backwards algorithm which, using the same
SLOTS structure, will start at time T initiating those links that STOP
at the processors, and work backwards to time 1, reversing all the
links, until the values get to the source. If one wished to implement a
bi-directional graph rather than a directed graph, instead of actually
putting in two sets of wires (from each pair u 4 v and then v -+ u),
one could just put in one set of wirea, pass the values in the forward
directions, then reverse it and pass the values back again.

The second and greater issue involves the nature of the messages that
are passed along the arcs. If the application requires that a different
message be passed along each arc, then it will not be possible to use this
combining method. However, if all connecting processors are passed the
same value, or the same value modified by a different constant, then
this variation is viable. Many applications, including circuit simulation
and neural networks fall into this class.

In the standard method, each arc in the original graph becomes a
path in the embedding.

Figure 3.

Figure 6.

More formally, as before, each vertex in the original graph is mapped
to a processor in the network topology. The set of arcs associated
with each vertex will be represented as a set of directed acyclic graphs
(DAG). For each arc (u,v), there must be a DAG, D, whose root is
u which has v as either a leaf node, or an internal node. For any leaf
node w in the graph D with root u, (u, w) must be a an arc in the
original graph. Further, in the family of DAGs which represent the
arcs originating from the root u, each arc in the original graph can be
represented only once. That is, if a graph has root u and leaf w , then
no other graph with root u can have leaf w. Likewise, any internal
node that is a destination must be marked to indicate that it is not
just an intermediate node in the route, but rather a drop-off point. If a
graph with root u has a specially marked internal node v representing
arc (u, v), then no other graph with root u can have v has a specially
marked node, although v can appear without a marking. As in the
original method, each arc is only represented once, although paths can
go through other nodes that are not part of their message destination.
For example, in figure 6, A connects to B and C. Suppose that A
were also connected to W. In this case W would have to be marked to
indicate it not just an intermediate node in the graph. Further, if A
were to connect to Q, this could be represented by a separate graph as
a path going through W. But, W could only be a destination vertex in
one of the two graphs.

Another aspect of this definition involves the nature of the messages.

For example, Figure 3 shows a graph in which one vertex is connected
to all others. Mapped onto a linear arry, each arc becomes a path
(Figure 4).

If all vertices that u connects to receive the same value message then
the delinition mentioned above is fine. If all receive the same value
message multiplied by a different constant, it is also fine, because each
constant can be stored at the destination node, so all connecting arcs

Figure 4.

The branching path method adheres to the CFST labeling rules, but
alters the premise that each arc in the original graph is represented by
a separate path. Instead, the set of arcs associated with each vertex
can be represented by a set of branching paths. A branching path has
two characteristics that differ from a standard path between two nodes.
The first is that a path can 'drop off" values at intermediate nodes in
the path. For example, Figure 5 shows that a single path can be used
to deliver messages to all intermediate vertices. Essentially, processors
along the same route can share the path.

Figure 5.

In addition to path sharing, the other ability is to allow paths to branch
out, or broadcast to their neighbors. For example, Figure 6 shows a
grid in which processor A is connected to B and C. This is represented
with one branching path.

will be passed the same value, and multiplication will occur a t the time
of delivery. However, if connecting values are truly different, then no
two arcs (u,v), (u, w) that have different arc weights can be represented
by the same DAG. Hence, in the original case, where we assumed that
each arc receives a different dynamic value, each arc would have to be
represented by a separate DAG, which would be a DAG with only one
leaf, which is o w definition of a path. So the original method is simply
a subset of this method.

Having defined thii family of graphs that represent the arcs in the
new embedding, we proceed to label them according to an extension to
the CFST labeling rules. The first rule, non-exclusion, originally said
that at mast one connection can enter a processor a t a given time and
at most one can leave. Now we allow more than one to leave provided
that the connection is defined as part of the same DAG. The second
rule, of contiguous time, still holds. When a path splits into two or
more branches, each of the connections proceeds at the same time, as
illustrated previously in Figure 6.

A small clarification: strictly speaking, the branching paths do not
have to be DAGS, that is, they don't have to be acyclic. That is,
when a connection reaches a processor, it does so at some time i , and
it is pcasible for the path to loop back on itself, which will occur at
some later time j. While usually such loops are inefficient, sometimes
they are used to avoid jams in the system, and further, they can occur
naturally as part of the algorithms which finds paths. In terms of the
static algorithm, a way to avoid the conceptual messiness of cycles is

Algorithm Updates

The algorithms change aurprisingly little. The algorithm for delivering
the messages doesn't change at alL The loop which checks for the
marked direction and passes the value in the appropriate direction may

simply see, for instance, t ha t the North bit is on, and so passes it north,
and then checks tha t the West bit is on, and passes likewise within the
same time step. Since, because of the SIMD nature of the machine, it
is already necessary t o loop through the different directions, no extra
work is done.

The algorithm for finding a new path requires a smaU modifica-
tion. In the original method, paths propagate from the source through
neighboring processors which are not already busy. T o encorporate the
branching path method, during the spreading method all connections
which s tar t from the source are activated, as they would be during the
normal delivery cycle, and these active processors are included a s par t
of the path spreading. T h a t is, if a processor would normally be active
a t time i if it were sending a message from the source as part of its
normal delivery cycle, then on time i + 1 i t will a t tempt t o propagate
a new path t o its neighbors. If the shortest path heuristic is used (Ref.
17), so that each trial pa th has a length associated with it, then a new
path that is formed a s a branch or continuation off an old path s tar ts
a t length 0 from tha t branch point, rather than starting a t length 0
from the source. For problems tha t do not require unique values to
be passed and tha t have multiple connections per vertex, these minor
changes allow for a much more efficient message delivery system.

Analysis

The basic comments on analysis are the same as for the original case.
A message delivery cycle stiU takes O(T) , where T is the number of
slots, but by using the branching paths, T can be much smaller. As an
example, we take the case of a fully connected graph embedded in a
linear array. We know tha t t he lower bound on T is the cutwidth of the
resulting embedding (Ref. 17). When embedding the fuUy connected
graph in a line using the original method, the maximum cutwidth is
O(N2) , and in the branching path method it is O (N) . Hence, in this
case the savings between the two methods is substantial. While this is
a n unusual example, it gives an idea of the advantages. Some empirical
results on the on-line random graph examples, of the type done in (Ref.
17), tend to show an improvement of a factor of 2 t o 3 over the original
method. These results are preliminary and haven't been statistically
validated.

CONCLUSION

Some simple algorithms have been presented which allow arbitrary
graphs t o be embedded in SIMD architectures having a variety of
topologies. T h e time for performing a parallel traversal and for adding
a new connection appears t o be proportional t o the average path length
in the embedding, times the average number of arcs in the graph being
embedded. Since the average path length is no more than the diam-
eter of the network, the method is competitive with existing methods
for SIMD routing, with significant advantages for graphs that can ex-
ploit locality. Additional advantages are that there a r e no a prior;
requirements for the form of the data , the topological requirements are
extremely general, and new arcs can be added without reconfiguring
the entire system. The simplicity of the implementation and the flex-
ibility of the method suggest t ha t i t could be an important tool for
using SIMD architectures a s graph processing machines.

REFERENCES
1. K. Batcher, 'Sorting Networks and their Applications,. Proccedinga of

AFIPS 1968 SJCC, pp. 307-314.

2. K. Batcher, UDesign of a Massively Parallel Processor," IEEE Tram on
Computcra, Sept 1980, pp. 836-840.

3. J.E. Dorband, "Sort Computation and Conservative Image Registra-
tion', Ph.D. Thesis, Pennsylvania State University, Dec. 1985.

5. W. Hillia, 'The Connection Machine,. lLUT Press, Cambridge, Mas#.,
1985.

6. C. Lee, 'An algorithm for path connections and its applications,' IRE
7 7 4 ~ . Elec. Comput., Vol. E - 1 0 , Sept. 1961, pp. 346365.

7. T. Leighton, "Parallel Computation Using Meshes of Trees,. Proc. In-
ternational Workshop on Graph Theory Concepts in Computer Science,
1983.

8. E. Moore, 'Shorteat path through a mare," Annals of Computation Lab-
oratory, Vol. 30, Haward Univ. Press, 1959, pp. 285-292.

9. D. Nassimi and S. Sahni, 'Parallel Algorithm8 to Set-up the Benes
Permutation Network," Proc. Worbhop on Interconnection Networks for
Parollel and Diatributtd Processing, April 1980.

10. D. Nassimi and S. Sahni, 'Benea Network and Parallel Permutation
Algorithms," IEEE Tramacfiona on Computera, Vol. C-30, No. 5, May
1981, pp. 332-340.

11. D. Nassimi and S. Sahni, 'Data Broadcasting in SIMD Comput-
era,"lEEE T r o m a c t i o ~ on Computers, Vol. C-30, No. 2, Feb 1981, pp.
101-106.

12. D. Nassimi and S. Sahni, 'Parallel Permutation and Sorting Algorithms
and a New Generalized Connection Network,. JACM, Vol. 29, No. 3,
July 1982, pp. 642-667.

13. F. Preparata and J. Vuillemin, "The Cube Connected Cyclea: a Versatile
Network for Parallel Computation," Comm. ACM, Vol. 2 4 , No. 5, May
1981, pp. 300-309.

14. H. Stone, 'Parallel processing with the perfect shuffle,' IEEE Trans.
Computers, Vol. C-20, No. 2, Feb. 1971, pp. 153-161.

15. C. Thompson, "Generalized Connection Networks for Parallel Processor
Intercommunicati~n,~ IEEE Dan. Computcra Vol. C-27, Dec. 1978, pp.
1119-1125.

16. S. Tomboulian, 'A System for Routing Arbitrary Communication
Graphs on SIMD Archi tect~res ,~ Doctoral Dissertation, 1986,Dept. of
Computer Science, Duke University, Durham, NC.

17. S. Tomboulian, "A System for Routing Directed Grapha on SIMD Ar-
chitectures', ICASE Report No. 87-14, NASA Langley Research Center,
Hampton, VA (updated 1988).

18. R. Wagner, "The Boolean Vector Machine," IEEE 1983 Conference Pro-
ceedings of the 10th Annud International Symposium on Compulcr Archi-
tecture, pp. 59-66.

4. T. Feng, YA Survey of Interconnection Networks," Computer, Dec 1981,
pp.12-27.

AN ANALYSIS OF DISJOINT PATH PROPERTIES IN DATA MANIPULATOR NETWORKS *

Wayne G. Nation Howard Jay Siegel

Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907, USA

ABSTRACT

A critical component of a supercomputer based on mas-
sively parallel processing is the interconnection network
that provides communications among the system's pro-
cessors and memories. The data manipulator network
family is a class of multistage interconnection networks
based on the PM2I interconnection functions. One
interesting property of the data manipulator network
family is the existence of multiple paths through the
network for most source/destination pairs. The condi-
tion which must be present to have disjoint paths
through the network for a given source/destination pair
is shown, where disjoint paths are multiple paths with
no links in common. For source/destination pairs which
have no disjoint paths, a single fault can prevent com-
munication between that source/destination pair. I t is
proven that the maximum number of disjoint paths for
any source/destination pair is two and a method for
finding the routing tags that specify these paths is given.
The effect of a fault in a given stage of the network on
the number of source/destination pairs that can be con-
nected is also discussed.

Keywords: ADM, IADM, gamma network, data mani-
pulator, redundant path networks, interconnection net-
works, parallel processing, supercomputers.

1. INTRODUCTION

Large-scale parallel processing is one approach t o the
design of supercomputers. The interconnection network
in a massively parallel computer system is a critical
component. The network provides communications
among the processors and memories of the system. One
family of networks that has been proposed for use in
such systems is the data manipulator family.

The da ta manipulator network family is a class of mul-
tistage interconnection networks based on the PMZI
interconnection functions [ll j. In some cases, data
manipulator networks have a single path from a source

* This research was supported by the Supercomputing
Research Center, Lanham, MD, where H.J. Siegel was on leave
when most of this research was done.

PRECEDING PAGE BLANK NOT FILMED

S to a destination D while in other cases multiple paths
exist; i.e., the number of paths between a given S and D
may vary from one S/D pair t o the next. Having a vari-
able number of paths impacts the network throughput,
permuting ability, and routing tag control. These issues
are under study (2-7, 9-11, 13-16].

Properties of disjoint paths between a given S and D in
da ta manipulator networks are examined here. Disjoint
paths are multiple paths from a given S to D which have
no links in common. The condition tha t must be
present to have disjoint paths through the network for a
given S and D pair is presented. T o avoid any fault in a
path from S to D there must exist another disjoint path
for the same S and D. If a fault develops in one of these
disjoint paths, it can be avoided by choosing to use the
other disjoint path. It is shown that disjoint paths are
available for only half of the possible S and D pairs.
This indicates the fault tolerance limitations of the data
manipulator network family. Furthermore, it is proven
that the maximum number of disjoint paths for any S/D
pair is two. A method for finding the routing tags that
specify these paths is given. The effect of a fault in a
given stage of the network on the number of S/D pairs
tha t can be connected is also discussed.

Section 2 introduces the data manipulator network and
some of its variations tha t are in the literature. In Sec-
tion 3, two routing tag schemes for specifying paths
through these networks are described. Properties of dis-
joint paths in this network class are presented in Section
4. Finally, Section 5 is a general discussion of these
results.

2. THE DATA MANIPULATOR NETWORK
FAMILY

The data manipulator network family includes the data
manipulator 121, the Augmented Data Manipulator
(ADM) [12], the Inverse Augmented Data Manipulator
(IADM) 161, and the gamma [a] multistage interconnec-
tion networks. The data manipulator (21 (Figure 1) con-
sists of m stages (N = 2m). Each stage is a column of N
switches. There is also an (m+l)-st column of network
output ports. The stages are ordered from m-1 to 0. A t
stage i switch j can pass da ta to switch j + 2i modulo N
of stage i-1 (i.e., PM2+i), switch j of stage i-1 (i.e.,
straight), or j - 2' modulo N of stage i-1 (i.e., PM2-,).

STAGE 2 1 0

Figure 1: The da ta manipulator or Augmented Data
Manipulator (ADM) network for N = 8.

STAGE 0 1 2

Figure 2: The Inverse Augmented Data Manipulator
(IADM) or gamma network for N = 8.

A switch has three input links and three output links.
Each switch can pass data from one of its input links to
any one of its output links for a "one-to-one" setting.
Data can also be passed from one of a switch's input
links t,o two or three of its output links for a "broadcast"
setting.

The Augmented Data Manipulator (ADM) is a data
manipulator network constructed so that each switch
can be set independently. The Inverse Augmented Data
Manipulator (IADM) (Figure 2) is similar to the ADM
except the stage ordering is reversed (stage 0 is the input
stage). It is called the "Inverse" ADM because for any
data permutation the ADM can do in one pass through
the network, the IADM can do the inverse of that per-
mutation [ll]. The gamma network is a data manipula-
tor network which has reverse stage ordering and indivi-
dual switch control. The gamma network uses a 3x3
crossbar in each switch. This allows a gamma switch to
perform several one-to-one settings a t once; i.e., all of
the switch inputs can each be connected to a unique
switch output concurrently.

T o route da ta from an input (source) S to a n output
(destination) D, the da ta must traverse links whose sum
modulo N is (D-S) modulo N. As a n example, for an
ADM network with N = 8, the links traversed for S = 1
and D = 6 are: $2' ($2' link in stage 2), +O (straight
link in stage l) , +2' (+2' link in stage 0). The sum of
the traversed links is +2' + 0 + 2' = 5. Four other
paths exist that route data from 1 to 6: +2', +2', -2';
and straight, -2', -2' (-x = (N-x) modulo N. Assum-
ing that the network is implemented with both +2m-'
and -2m-1 links a t stage m-1 (even though
(+2m-l = -2m-1) modulo N), then two more paths
between 1 and 6 are: -2', straight, $2'; and -2', +2',
-2'. In general, if S # D, there are multiple paths from
S t o D.

The ADM and IADM will be used to represent the da ta
manipulator family. Because the discussion focuses on
disjoint paths for individual S/D pairs, the gamma
network's added capability from the 3x3 crossbar switch
makes no difference. Thus, all properties derived for the
IADM also apply to the gamma network.

The presentation to this point has assumed the networks
to be unidirectionally connecting N processor/memory
pairs, where processor/memory pair i is connected to
both input port i and output port i of the network,
0 5 i < N. However, the results of this paper apply to
bidirectional implementations of the networks as well,
where the networks can connect processors a t the input
side with memory modules a t the output side and mes-
sages are routed in both directions.

3. ROUTING PATHS THROUGH THE ADM
AND IADM

To specify an arbitrary path in an ADM network, a full
routing tag, F = fZm-,...f0, can be used 161. A stage i
switch examines bits f, and f,,,. If f , is zero, that stage
i switch uses the straight link (the value of f,,, is
ignored). If f, is a one then the switch will use the $2'
link if f,,, is a zero and the -2' link if f,,, is a one.
For example, for an N =A6 q M ,network, the tag

F = 00111011 will route from 1 to 6 on the path +Z3,
straight, -2l, -2'. The tag scheme using a full routing
tag requires a 2m bit tag but can be used t o specify any
arbitrary path through the network.

A natural routing tag uses only one bit to specify the
sign of the non-straight links used in the path, thus all
the non-straight links traversed are of the same sign [6] .
An m+1 bit routing tag T is formed by computing the
signed magnitude difference between the destination and
the source: T = t ,... to = D-S. The sign bit is t,,
where t, = 0 indicates positive or zero (i.e., D 2 S),
and t, = 1 indicates negative (i.e., D < S). Bits
t,-l...to equal 6 the absolute value of D-S, the magni-
tude of the difference. The natural routing tag is inter-
preted in the same way as the full routing tag, except t,
is used as the sign bit a t every stage. For any natural
tag T for S to D (S # D) an alternative routing tag from
S to D can be computed tha t uses links of the opposite
sign by taking the two's complement of T [6]. For exam-
ple, for N = 8, S = 1, and D = 6, T = 0101, and the
two's complement of T = T' = 1011. This is shown in
Figure 3.

STAGE 2 1 0

Figure 3: An N = 8 ADM network showing the two
disjoint paths from S = 1 to D = 6. The solid
line shows the positive dominant path
specified by T = 0101. The dashed line shows
the negative dominant path specified by
T' = 1011.

A positive dominant routing tag is a natural routing tag
with t, = 0, while a negative dominant tag has t, = 1.
The positive dominant path is the path specified by the
positive dominant tag and the negative dominant path is
specified by the negative dominant tag. The two's com-
plement of one sign dominant tag from S t o D produces
the sign dominant tag from S to D of opposite domi-
nance.

A typical assumption made when studying the fault
tolerance of multistage networks is that the network
input switches and network output switches are not

faulty (so that da ta can enter and leave the network),
and the rt.st of the network is what must be made fault
tolerant ill. This simplifying, although somewhat
unrealistic, assumption is adopted here also. It is shown
that even with this assumption, the data manipulator
has very limited fault tolerance.

4. DISJOINT PATH PROPERTIES OF THE
DATA MANIPULATOR FAMILY

This section presents certain disjoint path properties of
the da ta manipulator network family. In stage m-1,
the +2,-' and -2,-' links from each switch are
equivalent; i.e., +2,-' = -2,-' modulo N. Thus, a
Data Manipulator network could be implemented with a
single link for each ?2,-' connection or separate links
for each +2,-' and -2,-' connection. The results pro-
ven here are valid in either situation unless specified oth-
erwise.

Theorem 1 and Corollary 1 show that, for any combina-
tion of S and D, 6 (p-SD is odd if and only if the two
paths formed by the sign dominant routing tags are dis-
joint. Theorem 2 and Corollary 2 show that all paths
for a given S/D pair pass through no more than two
switches in each stage (excluding I/O ports). While this
has been conjectured before, it is formally proven here.
It is stated in Theorem 3 that for j > 0, 2' is the highest
power of two for which 6 is a multiple if and only if the
sign dominant paths share straight links and switches in
stages 0 to j-1. Theorem 4 proves tha t if there exists a
path from S to D tha t uses straight links in stages 0 to j,
then all paths from S to D use straight links in stages 0
to j. Corollary 3 (a generalization of Theorem 3) states
that for j > 0, 2' is the highest power of two for which h
is a multiple if and only if all paths from S to D share
straight links in stages 0 to j-1. The results of the
above are combined in Corollary 4 to prove that exactly
two disjoint paths exist for S/D pairs if and only i f (5 is
odd, while no disjoint paths exist if f i is even. The sec-
tion concludes with the derivation of an expression for
the number of S/D connections that are not possible
given a straight link fault in any of the network stages
(Theorem 5). The notation tx/y will be used to represent
the string of bits t,tX-' ... ty+' t y , x 2 y.

T h e o r e m 1: Consider an ADM network for arbitrary
N. S is odd for a given S/D pair if and only if the two
sign dominant tags form two link-disjoint as well as
switch-disjoint paths through the network (excluding
input and output switches).

Proof :
Part 1: 6 odd + disjoint paths.
It is sufficient to prove that the two paths are switch-
disjoint, for if the two paths do not share a switch in
stage i then they cannot share a link leaving tha t stage.
Without loss of generality, assume D 2 S. Consider the
positive dominant routing tag T from source S to desti-

nation D. Because 6 is odd, T has the form T = tmIll.
The negative dominant tag (T' =two's complement of
T) is therefore T' = t,/l 1. Because of this relationship,
when the negative dominant path takes the -2' link in
stage i (1 4 i S m-1), the positive dominant path will
take the straight link in stage i. Likewise, when the
positive dominant path takes the +2' link in stage i
(1 S i 5 m-l), the negative dominant path will take
the straight link in stage i. Consider the ADM for arbi-
trary N. Because to = 1, the switch Pi that the positive
dominant path passes through in stage i
(0 5 i S m-2), where the path is followed from the
destination D to the source, is given by:

P i = D - C tj(SJ) = D - 1 - Ctj(ZJ) modulo N. [,:] [' 1]
(When i =-0, Po = D-1.) Similarly, because t'o = 1
and t fk = tk, 1 2 k 5 m-1, the switch Ni that the
negative dominant path passes through in stage i
(0 S i 25 m-2) is given by:

N, = D + Ctrj(2 ') = D + 1 + [,Io .] [j-1

(When i = 0, No = D+l.) If the paths ever meet a t a
switch in stage i, then the distance (difference) between
P i and Ni will be zero a t that stage. This part of the
proof is completed if

modulo N # 0 for all i 0 5 i 5 m-2.

Using the above equations;

= 2 + 2J modulo N
j-1

= (2"') modulo N # 0

for 0 5 i 4 m-2.

Thus, the paths never meet a t a switch (excluding the
input switch (stage m-1) and output port), and this
part of the proof is complete.
Part 2: disjoint paths -+ 6 odd.
Due to the two's complement property of T and T',
to = t'o. If to = t', = 0 then the paths would not be
disjoint (both would go straight in stage 0, connecting to
the same network port). Therefore, if the paths are dis-
joint to = t'o = 1, with the positive dominant path tak-
ing the +2O link in stage 0 and the negative dominant
path taking the -2' link in stage 0. In order for
to = t'o = 1, 6 = tm-l/o must be odd. Thus, if T and T'
specify disjoint paths, 6 must be odd.

Corollary 1: Theorem 1 is true for the IADM network.

Proof:
Part 1: 6 odd -+ disjoint paths.
The proof for the IADM is similar to the proof for the
ADM with some factors that account for the different
stage ordering. In particular, for the IADM, the paths
meet a t the stage 0 switch (the input switch) and the
output port. To calculate Pi and N, (for
1 S i 5 m-1), the paths are followed from the source
S to the destination, where:

Therefore,

Pi - N - (2') modulo N # 0 for 1 5 i 5 m-1. [1 1 -

Thus, the paths never meet a t a switch (excluding the
input switch (stage 0) and the output port).
Part 2: disjoint paths -+ 6 odd.
The proof follows from Theorem 1, proof of Part 2.

Theorem 2: In the ADM network, all paths for a given
S/D pair pass through no more than two switches in
each stage.

Proof: All possible paths emanating from the destina-
tion D back through stages 0, 1, ..., j pass through the
set of stage j switches A,, where:

AJ = D i k modulo N : 0 S k 5 (2'"-1) t
An example of A, for an N = 16 ADM network with
j = 1 and D = 1 is shown in Figure 4. All elements of
Aj represent 2'''-1 consecutive switches modulo N in
stage j (i.e., switches 0 and N-1 are consecutive). All
possible paths emanating from the source S through
stages m-1, m-2, ..., j+l enter a set of stage j switches
Bj, where:

S i kx2J" modulo : 0 k 5 Zrn-'-J

An example of Bj for an N = 16 ADM network with
j = 1 and S = 10 is shown in Figure 5. Due to the
modulo N arithmetic, S + kx2J" = S - kx2j+' for
k = 2m-2-J. Each element of B, is at least 2''' switches
apart from any other switch of B ~ . A distance measure,
d(x,y), is defined as the shortest distance between two
switching elements x and y of a stage; i.e.,

An example of the disjoint paths for an N = 8 ADM for
S = 1 and D = 6 is shown in Figure 3.

STAGE 3 2 1 0

Figure 4: An N = 16 ADM network showing links used
by all possible paths from stage 1 to D = 1.
All stage 1 switches not in A1 are blacked out.

Similarly for elements of Aj, V x, y (x # y) E A,,
d(x,y) 5 2J+'-2. By definition, a stage j switch is on the
path from S to D if and only if it is an element of both
Aj and Bj. The intersection of Aj and Bj (A; 0 Bj)
must contain a t least one element; otherwise, the net-
work could not make a connection between S and D
(which is known to be possible). It is a direct result of
Theorem 1 that 3 S,D such that Aj n Bj = 2 for
0 2 j 5 m-2.

Proof by contradiction is used to show that it is not pos-
sible for A, n Bj to contain three or more elements
(i.e., the size of A, n Bj is either one or two). Assume
3 x,y,z E Aj n Bj such that x # y + z. Consider the
elements x and y. 2J" S d(x,y) S 2'+'-2. Also,
because x,y E Bj, d(x,y) = k x 2)" modulo N, for some
k in the range 0 5 k 5 2m-2-J. Hence, to obey the
bounds constraints on d(x,y), k must equal 1, which
implies d(x,yj = 2'". Because z E A, f) B,, 2"' S
d(x,z) % 2'' -2 and 2j+' 6 d(y,z) d 2~+'-2. Simi-
larly, d(x,z) = d(y,z) = 2,". This leads to a contradic-
tion since d(x,z) = d(y,z) = d(x,y) = 2''' only if x = z or
y = z. Thus, the proof is complete.

STAGE 3 2 1 0

Figure 5: An N = 16 ADM network showing links used
by all possible paths from S = 10 to stage 1.
All stage 1 switches not in B1 are blacked out.

Corollary 2: Theorem 2 is true for the IADM network.

Proof: The proof for the IADM is similar to the proof
for the ADM with some factors that account for the
different stage ordering. In particular, for the IADM, all
paths emanating from the source S through stages 0, 1,
..., j pass through the set of stage j switches Aj, where:

S i k modulo N : 0 I k 5 (2'-1)
I

Elements of Aj represent 2J+'-1 consecutive switches
modulo N in stage j. Thus,

V x, y (x # y) E Aj, d(x,y) S 2~+'-2.
All possible paths emanating from the destination D
back through stages m-1, m-2, ..., j+l enter a set of
stage j switches Bj , where:

D f kx2J modulo N : O 5 k 5 zm-'-J

Each element of Bj is at least 2J switches apart from any
other switch of Bj. Thus,

v X,Y (X # y) E Bj, d(x,y) I 2'.
Proof by contradiction is used to show that it is not pos-
sible for A, n Bj to contain three or more elements
(i.e., the size of Aj n Bj is either one or two). Assume

3 x,y,z E Aj n Bi such that x # y # z. Consider the
elements x and y. 2J 2 d(x,y) S 2"'-2. Also, because
x,y E Bj, d(x,y) = k x 2J modulo N, for some k in the
range 0 5 k S 2m-'-J. Hence, to obey the bounds con-
straints on d(x,y), k must equal 1, which implies d(x,y)
= 2'. Because z € AJ n Bj , 2' 5 d(x,z) 5 2'+'-2 and
2J S d(y,z) 2 2J1'-2. Similarly, d(x,z) = d(y,z) = 2'.
This leads to a contradiction since d(x,z) = d(y,z) =

d(x,y) = 2' only if x = z or y = z. Thus, the proof is
complete.

As long as 6 is odd for a given S/D pair there are always
two disjoint paths where the two paths are specified by
the two sign dominant tags for that 6. When 6 is even, it
can be shown that the paths formed by the sign dom-
inant tags share a link in stage 0 and are thus non-
disjoint. This fact can be extended to state that if 6 is a
multiple of 2' the paths formed by the sign dominant
routing tags will share links in stages 0, 1, ..., j-1 (i.e.,
the two sign dominant paths follow the same path in j
of the m stages). A proof of this statement follows in
Theorem 3.

Theorem 3: In a data manipulator class network, for
j > 0, 2J is the highest power of two for which 6 is a
multiple if and only if the two sign dominant paths
formed for S/D pairs with the given 6 share straight
links (and switches) in stages 0 through j-1 and are dis-
joint in stages j to m-1.

Proof: In the special case of j = m-1, it is necessary to
assume that the +2m-' and -2m-1 links are distinct in
order t o have disjoint paths in stage m-1.

Part 1: 6 multiple of 2J -+ sign dominant paths share
straight links in stages 0 t o j-1.

If 2' is the highest power of two for which 6 is a multi-
ple, then the j+I lower order bits of 6 can be written as
hJI0 = I@, where OJ means a string of j '0's. Next con-
sider the tags T and T' for the given 6. From Section 3,
tm-l/o = 6 Because the j+ l lower bits of T are
tjIo = I @ , the j+1 lower bits of T' are also 10' (a pro-
perty of two's complement numbers). In this case both
sign dominant paths use straight links in stages 0, 1, ...,
j-1 and i 2 J links in stage j. Depending on the stage
ordering of the network under consideration, stage 0 is
either a t the input of the network (for the IADM) or a t
the output of the network (for the ADM). In either
case, the sign dominant paths must meet a t the input
and output ports of the networks considered. For the
ADM, because the two sign dominant paths meet a t the
network output ports and use straight links in the last j
stages, the two paths must share links (and switches) in
those j stages of the network. For the IADM, because
the two sign dominant paths meet a t the network input
switches and use straight links in the first j stages, the

stages of the network. If 6 = 0, tm-l/o = Om and thus
only straight links are used in traversing the network,
forcing the two sign dominant paths to share links and
switches in every stage of the network.

Due to the properties of tyvo's complement numbers, if
T = t , ~ ~ + ~ l @ , then T' = tm/j+l 10'. Therefore, _as was
shown in the proof of Theorem 1, when t'k = t k , the
two sign dominant paths do not share a link in stage k,
j 5 k 5 m-1.

Part 2 sign dominant paths share straight links in
stages O t o j-1 -+ 6 is a multiple of 2'.

Because both sign dominant paths use straight links in
stages 0 to j-1, and are disjoint, in stages j to m-1,
tjlo = tIjlo = 10'. Thus, 6jIo = 10', and 2J is the highest
power of two for which 6 = xm-(J+')ld is a multiple.

An example of this theorem for an N = 16 ADM net-
work with S = 7 and D = 11 (6 = 4) is given in Figure 6.

STAGE 3 2 1 0

Figure 6: An N = 16 ADM showing the sign dominant
paths for S = 7 and D = 11 (6 = 4). The
highest power of two for which 6 is a multiple
is j = 2. Thus, the sign dominant paths share
links in two stages (stages 0 and 1).

two paths must share links (and switches) in those j

T h e o r e m 4: For the da ta manipulator network family,
if there exists a path from S to D tha t uses straight links
in stages j t o 0, all paths from S t o D use straight links
in stages j to 0.

Proof: In general,
m-1 .

D = S + C fi2' where f, E { -1,0,+l) .
i-0

Because there exists a path from S to D with stages j to
0 set to straight, fi = 0 for 0 6 i 5 j. Thus,

This implies s, = di for 0 6 i 5 j. If it can be shown
that si = dl for 0 5 i 2 j implies the switches on all
paths from S to D must be set to straight in stages j to
0, then the proof is complete.

This will be proven by contradiction. Assume that for
0 6 k S j, stage k is the lowest numbered stage with a
switch on a path from S to D which is set to a non-
straight state. Because stages 0 to k-1 are set to
straight, they cannot affect dk , and stages k + l to m-1
affect bits dk+l to dm-', but cannot affect d k . Therefore,
the non-straight state of the switch in stage k forces -
dk = sk. Thus, the assumption that stage k ,
0 5 k S j, is set to a non-straight state implies
sk # d k , which contradicts si = di for 0 5 i 2 j.
Therefore, the assumption is false and the proof is com-
plete.

C o r o l l a r y 3: In da ta manipulator class networks, for
j > 0, 2' is the highest power of two for which 6 is a
multiple if and only if all paths from S to D share
straight links (and switches) in stages 0 through j-1 and
there exist disjoint paths in stages j to m-1.

Proof : The proof follows from Theorems 3 and 4.

C o r o l l a r y 4: For the da ta manipulator family of net-
works: (1) there are exactly two disjoint paths between a
given S/D pair if and only if 6 is odd, and (2) for 6 even,
there are no disjoint paths.

Proof :
Proof o f (1): Theorem 1 and associated Corollary 1
prove tha t the 6 for S/D pairs is odd if and only if dis-
joint paths exist for those S/D pairs. Theorem 2 and
associated Corollary 2 state tha t no more than two
switching elements are used in any stage for paths
between S and D. Therefore, there are exactly two dis-
joint paths between a given S/D pair if and only if 6 is
odd.
Proof of (2): Follows from Theorem 3.

It has been shown previously [6] that any faulty non-
straight link can be avoided by a reroute technique

involving the two sign dominant paths. It is possible
now t o derive an expression for the number of S/D pairs
in a da ta manipulator network tha t are blocked given a
straight link fault in stage j. A faulty straight link can-
not be avoided by any reroute technique if both sign
dominant paths must both use tha t link (or switch).
Theorem 5 presents a way of calculating the number of
S/D pairs that cannot communicate given a straight link
fault a t switch P in stage j of an ADM network. Furth-
ermore, Theorem 5 goes on t o show a way of enumerat-
ing these S/D pairs that cannot communicate due t o
that fault.

T h e o r e m 6 : For the data manipulator network family,
a straight link fault in stage j a t switch P = prn-l/o will
prevent 2m- (~* ') S/D pairs from communicating. The
S/D pairs that are blockcd are of the form
S = s m _ l , l p l ~ l / o (i.e., all inputs which agree with P in
the lower order j bit positions) and D = P.

P r o o f :
Case 1: S/D pairs where the faulty straight link is not
used by either the positive or negative dominant path
(or both). These S/D pairs can still communicate.
Case 2: S/D pairs where both the positive and negative
dominant paths share the faulty straight link a t stage j.
This implies t, = t', = 0, which implies
tjlo = t'jlo = 0'" due to the properties of two's comple-
ment numbers. Thus, the positive and negative dom-
inant paths share straight links in stages j to 0. Because
there exists a path that uses straight links in stages 0 to
j, all paths must use the same straight links in stages 0
to j (Theorem 4). Thus, if a faulty straight link is found
in stage j then all S/D pairs whose sign dominant paths
share this link cannot communicate. Consider the ADM
network. If the faulty straight link is a t switch P , then
the destination of all S/D pairs that are blocked is also
P. For these S/D pairs, 8110 = 0'". The set of possible
sources is all sources which agree with P in the low order
j+ l bit positions; i.e., D = P , 6 = ID-SL and Sl/o = 0"'
imply pjlo = s l / o This set of sources takes the form
~ ~ - ~ ~ j + ~ p ~ / ~ where s,-~/,+~ can take on any of 2rn-(J+')
values. Therefore, the S/D pairs that are blocked by the
fault are the ~ ~ ~ (j ") pairs of the form S = s,-l/j+lpj/o
and D = P. The proof for the IADM network is similar
with the result that 2m-(j+1) S/D pairs of the form
S = P and D = d,_ll,+lp,/o (where drn-llj+l can take
on any value) are blocked by a straight link fault in
stage j a t switch P.

6. SUMMARY

Several important properties of the data manipulator
family of networks have been presented. Specifically,
the difference 1) (ID-sC) between the source port number
S and the destination port number D is odd if and only
if there exist two disjoint paths from S to D (Theorem 1
with associated Corollary 1). These two paths are the

sign dominant paths specified by the sign dominant
routing tags. Using this, a fault in one of the disjoint
paths can be avoided by choosing the other sign dom-
inant path. Theorem 2 (with associated Corollary 2)
states tha t no more than two switching elements are
used in each stage for all paths between a given S and
D. For j > 0, the sign dominant paths share straight
links and switches in stages 0 to j-1 and are disjoint in
stages j t o m-1 if and only if 2' is the highest power of
two for which 6 is a multiple (Theorem 3). Theorem 4
proves that if there exists a path from S t o D that uses
straight links in stages 0 to j, then all paths from S to D
must use those same straight links in stages 0 to j.
Corollary 3 generalizes Theorem 3 by showing that for
j > 0 all paths from S t o D share straight links in stages
0 t o j-1 if and only if 6 is a multiple of 2'. The above
results are combined to prove that exactly two disjoint
paths exist for S/D pairs if and only if b is odd, while no
disjoint paths exist if b is even (Corollary 4). This pro-
perty limits the data manipulator family when consider-
ing their use as fault tolerant networks. 1,astl , given a
straight link fault in stage j, there are 2"-['+'i enumer-
able S /D pairs tha t are blocked due to that fault
(Theorem 5).

Thus, various properties of disjoint paths for the data
manipulator family have been shown. Studies of net-
work characteristics, such as this, should aid system
designers in choosing networks appropriate for their
needs.

6. REFERENCES

1. G. B. Adams 111, D. P. Agrawal, and H. J. Siegel,
'Fault-tolerant multistage interconnection net-
works," Computer, Vol. 20, No. 6, June 1987, pp.
14-27.

2. T. Y. Feng, "Data manipulating functions in paral-
lel processors and their implementations," IEEE
Transactions on Computers, Vol. C-23, No. 3,
March 1974, pp. 309-318.

3. M. D. P. Leland, "On the power of the augmented
data manipulator network," 1985 International
Conference on Parallel Processing, -4ugust 1985,
pp. 74-78.

4. D. Lee and K.Y. Lee, "Control algorithms for the
augmented data manipulator network," 1986 Inter-
national Conference on Parallel Processing,
August 1986, pp. 123-130.

R. J. McMillen and H. J. Siegel, "Routing schemes
for the augmented da ta manipulator network in an
MIMD system," IEEE Transactions on Computers,
Vol. C-31, No. 12, December 1982, pp. 1202-1214.

D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection network
with redundant paths," Ninth Annual Symposium
on Computer Architecture, April 1982, pp. 73-80.

D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection network
with redundant paths," IEEE Transactions on
Computers, Vol. C-33, No. 4, April 1984, pp. 367-
373.

D. Rau, J. Fortes, and H. J. Siegel, 'Bestination
Tag Routing Techniques Based on a State Model
for the IADM Network," Fifteenth Annual Sympo-
sium on Computer Architecture, May 1988, pp.
318-324.

S. M. Reddy and V. P. Kumar, "On multipath
multistage interconnection networks," 1985 Inter-
national Conference on Distributed Computing Sys-
tems, May 1985, pp. 210-217.

H. J. Siegel, Interconnection Networks for Large-
Scale Parallel Processing: Theory and Case Stu-
dies, Lexington Books, D . C. Heath and Co., Lex-
ington, MA, 1985.

H. J. Siegel and S. D. Smith, "Study of multistage
SIMD interconnection networks," Fifth Annual
Symposium on Computer Architecture, April 1978,
pp. 223-229.

A. Varma and C. S. Raghavendra, "Performance
analysis of a redundant-path interconnection net-
work," 1985 International Conference on Parallel
Processing, August 1985, pp. 474-479.

A. Varma and C. S. Raghavendra, "On permuta-
tions passable by the gamma network," Journal of
Parallel and Distributed Computing, Vol. 3, No. 3,
March 1986, pp. 72-91.

H. Yoon, K. Y. Lee, and M. T. Liu, 'Performance
analysis and comparison of packet switching inter-
connection networks," 1987 International Confer-
ence on Parallel Processing, August 1987, pp.
542-545.

H. Yoon, K. Y. Lee, and M. T . Liu, "A new
approach to internetworking of integrated services
local networks," 1987 International Conference on
Distributed Computing Systems, September 1987,
pp. 390-397.

5. K. Y. Lee and W. Hegazy, "The extra stage gamma
network," Thirteenth Annual International Sympo-
sium on Computer Architecture, June 1986, pp.
175-182.

J. L. Potter

Kent State University
Kent, Ohio 44242

ABSTRACT

The parallel associative supercomputer model
uses associative data structures and
parallel associative searches to eliminate
the need for complex address computation.
This paper describes the simplicity of
programming associative supercomputers and
expands conventional associative data
references into a generalized associative
data structure reference mechanism which
encompasses the arrays, data structures and
data typing constructs of conventional
languages.

Keywords: Associative computing, Massive
Parallelism, Parallel Data Structures

INTRODUCTION

Associative Supercomputing

sharing a single central processing unit
with a multitude of data elements thus
avoiding the classic memory - CPU
bottleneck. Associative computing uses
massive parallel searching in place of
address calculation, reducing programming
complexity. This paper describes a method
for implementing data structures in the ASP
language based on the associative computing
model. See Potter [1987].

Background

The concept of associativity has been
present in computer science for many years.
For example, Jacks [I9711 and Findler
[1979]. The most prevalent realization is
associative triples in AI. The standard
definition of an association is an ordered
triple of object, attribute and value. Many
similar definitions for associations have
been formulated. See, for example, Simon
[I9701 and Savitt [1967]. The association

Associative supercomputing is a model of list and ASSOC function in the LISP language
computation, where each datum has its own are of course associative conce~ts simulated
dedicated Processor. It is a single in software on conventionai sequential
instruction, multiple data (SIMD) model with hardware.
a cellular memory, an exclusive read/write
and a restricted concurrent read capability.
In a cellular memory each cell contains
memory, a dedicated processor and at most
one association of data. Only one word in
a cell may be accessed at a time. All
cells may be accessed concurrently. The
exclusive read/write capability means that
each memory cell can be accessed by only
one processor at a time. The concurrent
read restriction means that only one memory
word from a single memory cell may be read
concurrently by all processors. The
restricted concurrent read capability is
equivalent to a global broadcast capability.

Associative computing exploits massive fine
grain parallelism in a natural way.
Massively parallel associative computers
such as the MPP' with 16k processors and the
Connection ~achine' have been built. These
computers eliminate the need for time

Kohonen [I9781 rejected the standard
definitions of associativity as needing to
be defined in a more general fashion (p.

5) : He proposed a model of association in
which a collection of triples forms an
associative memory and an entire triple is
retrieved when any portion of it is used to
query the memory.

Kohonen's model is expanded in associative
computing. Triples of data are replaced by
associations of any number of items. An
arbitrary number of different kinds of
associations may be stored in memory. Thus
in associative programming, sets of
collections of items form an associative
memory and an entire record of items (i.e.
an association) is selected when any subset

'~anufactured by Loral Aerospace
Division, Akron, Ohio.

 his research was supported in part 3~anufactured by Thinking Machines
by ONR grant N00014-85-k0010. Inc., Cambridge, Mass.

of its items are used to query the memory.
When an association in memory is so
selected, it is not moved to a central
processor, but is processed in situ.

Associative computers were first developed
at Goodyear Aerospace in the early
1970s. See Batcher [1977]. Foster's book
[I9761 describes the basic components of
elementary associative computers.
Associative computers should not be confused
with content addressable (associative)
memories (CAMs). CAMs do not have in situ
processing. They retrieve data for delivery
to a cpu just as conventional memories do.
They are limited in use due to their
relatively high cost.

Inherent in associative programming is the
concept that each association has its own
dedicated processor and that computation is
effected by repeatedly selecting
associations to be processed and retrieved.
To date, no formal mechanism has been
developed for associative languages to
enable the specification of the equivalent
o f data structures in conventional
languages. In the past data structures had
to be implemented at the assembly language
level. For example, Potter [1983], Reed
[I9851 and Potter [1985]. This paper
expands on the concepts used for assembly
languaqe data structures, buildinq a
completely general hierarchy of data
structures which can be used in any higher
order language.

ASSOCIATIVE PROGRAMMING

Background

The impact of associative programming can be
best explained by
a n a l y z i n g t h e
fundamental components ,
of a program. A program
contains two major
types of information,
t h e p r o c e d u r a l
component and the
i d e n t i f i c a t i o n
component. The
p r o c e d u r a l p a r t
s p e c i f i e s t h e
operations to be
performed and the order
in which they are to be
executed. The
i d e n t i f i c a t i o n
component of a program
selects the data to be
operated on by the
procedural component.
The identification
component uses the
data's address within a

memory (i.e. its position in the program's
data structure) to select it.

The positional information content of a
program's data structure is established by
two mappings. The first mapping is between
the problem data and the logical data
structure used by the algorithm. The
second mapping is between the logical data
structure and the physical organization of
the computer's memory. A third mapping is
required to map the physical organization
into a time sliced sequence of scalar data
elements. These mappings are established
by the programmer and are often the most
c r u c i a l a s p e c t o f p r o g r a m
development. Figure 1 illustrates the
mapping sequence which is incorporated into
the addressing function component of
conventional programs.

In the simplest conceptualization, a
different addressing function is required
for fetching each individual piece of data
required by an algorithm. However, these
simple addressing functions are combined
into larger more comprehensive and complex
functions using looping and address
modification (indexing) techniques. The
loop construct, for example, is used
extensively to time share the CPU among the
many identical records of a file. An
important aspect of selecting a data
structure for a sequential computer is to
pick one which allows the addressing
functions to be efficiently folded so that
the loop construct can be used.

Associative computers reduce the complexity
of addressing functions without recursion
and without limiting the logical data
structure, thus they are easier to program

PROBLEM logical LOGICAL physical PHYSICAL time CPU
DATA - - - - - - - - >DATA - - -- - - -- - >DATA ------- >DATA

mapping STRUCTURE mapping STRUCTURE sharing STRUCTURE

MATRIX

Figure 1 - A Conventional Program Message

TWO ONE SEQUENTIA
DIMENSIONAL DIMENSIONAL SCALARS ------------- -----

I -:-I-+;- 1

1 ---
5 ---
3 ---
4 ---

1,513,4,2,

ASSOCIATIVE DATA STRUCTURES

The data structures, arrays and data types
of conventional languages can all be mapped
onto the general concept of associations.
In data structures, the address function is
a constant consisting of a path name. The
path name is constant because of the
requirement in conventional computers that
the address be determined at compile time.
Unlike data structures, variables can be
used in the address function of arrays
because the declared regular structure
allows run time address calculation. Run
time calculation requires that indices be
numerical. However, certain languages such

as PASCAL use data typing to map
non-numerical address values into
numerical ones at compile time.
The association data structure in
associative programming handles
all three types of data
organizations.

When the implicit address
functions of conventional
languages are stated explicitly in
a content addressable computer,
the explicit address function
values state specifically the
positions of the object in the
data structure space generated by
the address function. For this
reason, the individual explicit
address function values are
referred to as structure codes.
Thus in Figure 3, llagew and "sizeN

PROBLEM logical LOGICAL
DATA ---------- >DATA

mapping STRUCTURE

MATRIX TWO STRUCTURE PROBLEM
DIMENSIONAL CODE DATA ------------- - - - - - - - - -

On the other hand, a "data structure, " as
shown in Figure 5, is an attribute value

are the structure codes for "5011
and lllargew respectively. The

than conventional computers. First, structure codes are discussed as if they
every data record has its own dedicated were a unique type of data item. In
processor. Thus, the need for a "time reality they are not. The) are just like
sharingw factor in the address function is the other data items in an associative
eliminated. Second, the physical mapping object in that they can be searched for
component of the address function is and manipulated by all ASP associative
replaced by parallel (associative) programming statements. Structure codes are
searching. Finally, as described later, unique only in that they contain structural
the logical mapping relationship is stored information on how one problem data element
associatively as Structure Codes with the relates logically to the other problem data
data elements eliminating the need for run elements.
time address calculations.

Data Structures as Extended Associations
For example, in Figure 2, the logical
portion ofthe address function consisting The associative concept is most commonly
of the matrix row and column indices are introduced in terms of attribute value
stored with the data elements as structure pairs. Ail conventional data organizations
codes. Since the data structure codes are techniques can be viewed as extensions of
dependent only on the logical mapping, the the attribute value pair concept.
programming task is reduced to 1) directing Specifically, an array can be thought of as
the computer in the sequential execution of an attribute value pair with a compound
the fundamental steps of the algorithm and attribute consisting of a constant portion,
2) the manipulation of the logical data the array name, with variable modifiers, the
structure codes. The artifacts of time indices, as shown in Figure 4. The
sharing the CPU and the physical sequential lfdimensionll of the array determines the
organization of memory are eliminated. number of modifiers.

(1 5 3)
(1 +---+--- I-:-! : ; : I (4 2 6) -------------

structure data
code element

attributelvalue
---------+-------

age 5 0
1 a rge

color blue

Figure 2 - Associative Data Mapping

1,l ---
1,2 ---
1,3 ---
2,l ---
2,2 ---
2,3 ---

patient 1 jones I
Figure 3 - A Simple Scalar Structure

1

5 ---
3 ---
4 ---
2 ---
6

I attribute 1 modifier1 lmodif ier2 1 value I

I I
Figure 4 - Compound Attribute

pair with a compound value. The fields of
the data structure constitute the multiple
values. Thus arrays and data structures can
both be viewed as generalizations of
attribute value pairs. In fact, all multi-
attribute, multi-valued data objects can be
viewed as extended associations.

Simultaneous nultiple Data Organizations

In an associative memory there is no hard
distinction between the attribute and the
value portion of an attribute value pair.
That is, the same datum can be retrieved by
searching for the matching attribute or the
matching value. For example (color $) and
($ blue) would both select (color blue).

Thus in effect, either the attribute portion
or the value portion can be defined as the
constant portion of an address function.
It is only by convention that the attribute
portion is considered the address function.

By extension to associative triples, any
one component of the triple can be
considered to be the address function with
the other two components being the compound
value, as shown in Figure 6. Moreover, any
combination of two components can be
considered to be a compound address function
with the third component a simple value.
In general, if there are n components in an
object there are:

n-1 ---
\ n
/ c --- k
k= 1

sets of address functions.

In an associative computer, all of these
address functions are available to the
programmer simultaneously. There is no a
priori reason to select one set of address
functions and its inherent data
organization over any other. Therefore, all
can be used at the programmers discretion,
intermingled in any way without any need
for reordering. Multiple simultaneous data
organizations are impossible in conventional
and parallel sequential computers, since
the data structures must be sorted to be

struct emp (
int emp# ;
int birthjear;
int birth-day;

attribute~subvaluel~subvalue2 Isubvalue3
---------+---------+----------+---------

emp I emp# Ibirth-yearlbirth-day

I t

Figure 5 - An Associative Data Structure

efficiently accessed and they can be
organized only one way at a time.
Frequently auxiliary data structures such as
linked lists are employed to overcome this
limitation of conventional computers.

Structure Codes for Generalized Array Data
Structures

Arrays are the canonical forms of data
structures. As shown in Figure 7 , their
address functions form a natural hierarchy
of complexity. Scalars are zero dimensional
arrays. They are represented by the class
of address functions consisting only of
constants. The class of address functions
for one dimensional arrays consist of
constants plus one variable. Two
dimensional arrays have two-variable
address functions, etc. The most common
example of address functions for arrays, are
the row-major and column-major ordering
functions generated automatically for
indexed arrays by most high order languages
such as FORTRAN, PASCAL and C.

One dimensional arrays can be stored using
a straight forward extension of scalar
structure codes. The structure code
consists of the object name (the constant
portion of the address function) and the
position of the value in the construct (the
variable portion of the address function).
The variable component for one dimensional
arrays is simply the ordinal position of
the data element in the array. Thus, for
example, the one dimensions object A = (1 5
4 3 2) would have the structure code shown
in Figure 8 .

The structure code for two dimensional
arrays is a natural extension of one
dimensional arrays as shown in Figure 9 .
The extension of structure codes to higher
dimensional arrays is obvious. The
composition and manipulation of these
canonical array structure codes to make
structure codes for complex compound data
structures is considered next.

compound value compound function value

sofa color red sofa

laddress I
------+---------+----- ------+---------+-----

color red
table / size /big table I size lbiq
chair weight heavy chair weight heavy

a - Object b - Attribute
Address Function Address Function

Figure 6 - Multiple Data Orginazation

compound value I addres functi
------+--------+-----
sofa color red
table I size lbig
chair weight heavy

c. - Value
Address Function

s h o w n
in Figure 9
is modified
to include
I 1 r o w
position. It
The constant
address "B 1"
is shared by
two values
representing
the vector
(5 3) and IIB
2 I1

I .. .
Figure 7 - A Hierarchy of Addrer.5 Functions

represents (7
6 1

One dimensional arrays are logical data
structures which are natural for use with
several common problem data structures such
as vectors, lists and strings. Two
dimensional arrays are logical data

ADDRESS FUN TYPE 1 EXAMPLE DATA STRUCTURE
------------------+------------+--------------

constant I a I scalar
constant+x, la(x1) 11 dimensional
constant+x,+x2 a (xl t x2) 2 dimensional
c~n~tant+x,+. . +Xn 1 a (X , . . X) 1 n dimensional

structures which are natural for dealing
with matrices and imagery. The mapping
from these problem data structures to the
logical data structure is the identity
mapping. Consequently, for ease of reading,
where no confusion can arise, the terms
vector and matrix will be used
interchangeably for one dimensional and two
dimensional arrays respectively.

Similarly, if the constant portion
is modified to include Ncolumn
position1' instead of "row position,11
I1B 1" represents (5 7)-l and IIB 2"
represents (3 6) - 1 .

An important property of structure
codes is the ability to reorganize
them as illustrated above. The I1.l1

Associative Data Structure References

It is not uncommon to consider matrices as
collections of vectors. Thus if the
constant portion of the structure code

I
Figure 8 - A One Dimensional Array

structure code ------------------
constant variable
part 1 part

1 operator will be used to indicate
the basic code grouping and can be
thought of as a concatenation

operator. The symbol, 11$", is used as a
place holder. Thus the code B.1.S
represents the vector (5 3), B.S.2
represents (3 6) ' , etc.

data
element

DATA STRUCTURE CODE MANIPULATION

The concept of combining data structures to
form new data structures at run time is
common in some languages such a LISP. For
example, lists can be grouped together to
form lists of lists, etc. This can be done
because of the generalized method of data
storage for lists. However, in conventional
languages, this capability is not easily
extended to other types of data structures
such as arrays. In associative computing,
it is possible to create new data
structures from existing data structures at
run time for all types of data
organizations. That is, structures such as

--------+---------+-----
object lelement lvalue
name position
--------+---------+-----

A
A
A
A
A

1
2
3
4
5 2

data
element

value

3 B=(5 3)
1 7 (7 6)

6

structure code ------------------
constant variable
part 1 part
--------+----+----+-------

row lcol
name Object I position
--------+----+----+-------

'igure 9 - A Two Dimensional Array

B
B
B
B

2
2

1 1 5
1 2

2

arrays of arrays of lists of arrays can be
generated, decomposed and manipulated with
ease.

In order to describe how the structure codes
for two arbitrary data structures can be
combined to generate the structure codes
for a combined data structure, several
definitions are necessary. Let DSj be a
data structure of dimension r with address
function Aj. Then Aj = ajO.ajl..ajr are
the r+l components of the structure code.
By convention, the 0th component is the
constant portion which is the name of the
data structure. Let Aj(m) stand for the
structure code of Aj for the mth element of
DS.. Let 0' denote the constant value 0,
0' 'denote 0.0, 0) denote 0.0.0, etc. Then 0"
denotes the constant zero structure code
for a function with n components.
Similarly, let ~"(x) denote the first (left
most) n components of a structure code. The
depth of a component is equivalent to the
number of components to its left.

Then if DSl is the complex data structure
obtained by inserting data structure DSk
with dimension s, as the mth element of DSj
with dimension r, at depth dl the address
function A, for DS, has dimension d+s, and
is given by

A, (x) = A~ (x) . o * ~ - ~ for x != m

d
A, (XI = Aj (x) -A,(Y) for x = m,

for all y in 3Sk

The data structure insertion operation is
denoted by:

If a complex structure is to be built by a
number of insertions, they may occur in any
order, i. e. if m, ! = m,, then

Figure 10 gives an example. DS, is an
"emptyw vector with address function A, =
(1 2). DS, and DS, are both matrices with
the same address function A,=A,= (1.1, 1.2,
2.1, 2.2). The composition A=(A, I I[1,1]
A,) 11[2,1] A, is shown. Clearly,
arbitrarily complex hierarchical data
structures can be composed from the basic
canonical f oms.

Figure 12 shows the conventional nested loop
statements required by a conventional
language (C, Fortran, Pascal, etc.) to
perform the same operation. Note that the
data must be physically moved (resorted)so
that the physical memory layout maps

1 ~a 1 value
---+--+---
DSa 1 nil DSa=(nil nil)
DSal2 lnil

I A ~ l~alue
---+---+-----

I I
Figure 10 - A Vector of Matrices

DSb
DSb
DSb
DSb

I A C IValue
---+---+-----

OBJECT VECTOR VECTOR VECTOR
NAME POSITION POSITION POSITION VALUE
------+--------+--------+--------+-----
LIST 1 0 0 THIS
LIST 2 1 0 IS
LIST 2 2 1 A
LIST 2 2 2 LIST

I LIST = (THIS (IS (A LIST))) I

1.1
1.2
2.1
2.2

9
15 DSc=(9 15)
6 (6 2)
2

DSc
DSc
DSc
DSc

1

Figure 11 - A List

7
14 DSb=(7 14)
3 (3 8)
8

1.1
1.2
2.1
2.2

correctly onto the logical layout. This
requires that the number of items in all
arrays be known at run time. In
associative programming languages which use
structure codes, the address function is
modified as specified by the address
composition function above. The number of
data items is immaterial and the intent of
the data reorganization is clear. The new
address function is not hidden inside a
number of loops which need to be untangled.

The structure code mechanism is completely
general. Lists, for example, are simply a
special case of data structures. They are
wvectorsll whose elements are atoms or other
lists. Address function composition can be
applied to list structure codes to generate
the structure codes for any complex nested

for (i=l, i<2, i++)
for (j=l, j<2, j++)

(a[2,i1jl = b[f,jl;
a[l,i,~I = c[1,11;

I

above, arrays and data structures are both
just generalizations of associations, the
application of this technique to data
structures is straight forward although not
as intuitive.

I I Svnonvmous Data Structures
Figure 12 - Conventional Data
~eorganization In some applications, it is desirable to

view data structures in two or more ways.

list. Figure 11 illustrates the structure
codes for a list. Since as described

S = "A STRING"

OBJECT

-------+--------+------
S 1 A
S 2
S 3 S
S 4 T
S 5 R

Figure 13 - A String

For example, a string can be thought of-as
a single variable containing a list of
characters or as an array of characters. As
can be seen in Figure 13, this dual approach
to referencing strings is a natural artifact
of using associative addressing techniques.
The string as a whole can be accessed by
the structure code S.$ while the nth
character in the string can be accessed by
S.n. Note that this capability is due to
the parallel associative implementation of
structure codes and does not require
multiple variable declarations or
equivalences.

Associative stack and Queues

Other commonly used data structures, such
as, stacks, queues, and linked storage can
also be handled in the associative model.
Stacks and queues are simply variable length
vectors. A stack push is accomplished by
adding a new (larger) ordinal position to

before

TIME

----+-----
0
not
2
4
3
1

after
push 17

TIME
TAG IVALUE
----+-----

10
used
15
2 0
3 5
100

0
5
2
4
3
1

after
pop->20

TIME
TAG I VALUE
----+-----

10
17
15
20
3 5
100

before after after
push 17 pop->2

0
not
2
not
3
1

associative stack conventional stack

10
used
15

used
35
100

TIME
TAG (VALUE

TIME
TAG IYALUE
----+-----
0
not
2
4
3
1

before after after before after after
queue 17 next->l0 queue 17 next->l0

TIME
TAG (VALUE
----+-----

10
used
15
2 0
3 5
100

ve
Figure 14 - Associativ%acks and Queues

not
not
2
4
3
1

the vector. A pop
is simply the
selection of the
largest ordinal
position of the
vector and the
return of its
associated value.
Queues and linked
lists can likewise
b e e a s i l y
implemented. See
Figure 14.

used 17
used 2 0 2 0
15 3 5 3 5 2 0
20 15 15 3 5
35 100 100 15
100 10 10 100

The time tag
column is shown
intentionally out
of order to
illustrate that
o r d e r i n g i s
immaterial. 1n
reality the nature
of stack and queue
operation is to
o r d e r i t e m s
naturally and as a
result, the time
t a g s w o u l d
normally be in
sequential order.
In addition, the
time tags are
shown to be

sequential integers, in reality, they may
be any ordered sequence of unique values -
numeric, alphabetic or alphanumeric
(Alphabetic and alphanumeric codes would be
retrieved in ASCII sorted order).

It should be emphasized that lists, queues
and stacks are artifacts of conventional
sequential programming, and that in an
associative programming environment the need
for these structures is eliminated.

CONCLUSIONS

This paper has presented a unified approach
for representing arbitrarily complex data
structures in content addressable memories
and associative computers. This approach to
data structures in associative computers
has the advantages of 1) automatically
extracting fine grain parallelism, 2)
eliminating much of the complexity of the
non-algorithmic address computation in
program development, 3) allowing multiple
data structures to be associated with each
datum, 4) allowing the data structures
themselves to be modified, and 5) allowing
information exchange between vastly
different program languages such as LISP,
PROLOG, OPS5, FORTRAN and PASCAL.

Some areas for future research are:
1) defining arithmetic operations on complex
data structures as a natural extension of
element by element arithmetic of vectors
and matrices, 2) the utilization of multiple
distinct structure codes in the same datum.
In general, there can be a different
structure code for every logical
hierarchical data structure to which the
datum belongs. This aspect may be
particularly useful for semantic networks
and frames in A1 applications, 3) the
development of universal operators for the
manipulations of structure codes. For
example, the operator "rootpp will generate
the structure code for the root of a tree
from the structure code of any of its nodes
(See Potter, 1985) . and 4) the
investigation of mathematical properties of
addressing functions and structures codes.

REFERENCES

1. Batcher, K. E., Multidimensional Access
Memory in STARANInin IEEE COMPUTER,
February, 1977, pp. 174-177.

2. Findler, N. V. (ed.), uAssociative
Networks - Representation and Use of
Knowledge by Computers,## Academic Press,
New York,1979.

Use of Knowledge by computer^,^^ Academic
Press, New York,1979.

4. Jacks, E. L. (ed.), ppAssociative
Information technique^,^' Elsevies, New York,
1971.

5. Kohonen, T., Associative Memory: A
system-theoretical approach,#@
Springer-Verlag, Berlin, 1977.

6. Potter, Jerry L., "Alternative Data
Structures for Lists in Parallel
Associative Computers," in THE PROCEEDINGS
OF THE 1983 ICPP, Bellaire, Michigan,
August 23-26, 1983, pp.486-491.

7. Potter, Jerry L., plSpecialized SIMD
Instructions for Associative Pro~essing,~~ in
PROCEEDINGS ON THE 1985 INTERNATIONAL
CONFERENCE ON CIRCUIT DESIGN, Port Chester,
New York, October 7-10, 1985, pp. 490-493.

8. Potter, Jerry L., "An Associative Model
of Computation,p* The Second International
Conference on Super-Computing, May 4-7,
1987, San Francisco, Ca.

9. Reed, B. Jr., "An Implementation of Lisp
on a SIMD Parallel ProcessorIpp in AEROSPACE
APPLICATIONS OF AI, Dayton, Ohio, September
16-19, 1985.

10. savitt, D. A . , H. H. Love, Jr. and R. E.
Troop, 1967 Sprint Joint Computer
Conference, p. 87.

11. Simon, H. A. and A. Newell,
'Information-Processing in Computers and
ManItp in PERSPECTIVES ON THE COMPUTER
REVOLUTION, 2. W. Pylyshyn, ed.,
Prentice-Hall, Englewood Cliff, N.J., 1970.

3. Foster, C. C., Content Addressable
"Associative Networks - Representation and

Parallel Implementations of the Simplex Algorithm

Richard Marciano, Teodor Rus

Depar tment of Computer Science
T h e University of Iowa
Iowa City, IA 52242

A b s t r a c t

Three parallel implementations of the simplex algorithm on three quence of iterations that for a given solution X0 = (zf , z;, ..., z:)
different parallel architectures, are presented and compared. Each of the linear programming problem improves f until the opti-
machine is the representative of one class of parallel computers. mum solution is obtained (if one exists, otherwise the absence of
Performance comparisons and the major difficulties encountered a solution is specified). Let Xi be the solution before iteration i.
by the user of these machines are given. A new solution Xi+' is constructed a t iteration i from Xi with

The potential for parallel programming of the array proces- the property that /(xi+') 2 f (Xi) . The ~ ~ n s t r u c t i o n of xi+'
sors is investigated with the MPP machine. The multiprocessor from xi is performed by the following sequence of operations:

systems with asynchronous shared memory are studied by imple-
menting the simplex algorithm on the Encore machine in both 1. Find the variable z, which generates the best contribution

the process creation by fork() and tasking environment. The t o the value of f if introduced in the solution. The index c

class of supercomputers represented by the Alliant FX-8 "mini- of this variable is given by the maximum coefficient of the

supercomputer" where a Fortran compiler can parallelize and function f a t this iteration.

vectorize DO loops is considered. 2. Find the variable of X' that needs to be replaced by z,.

Keywords: array processor, parallel programming, performance, The index of this variable is given by the smallest number

simplex algorithm, multiprocessor, vectorization. bj/aj,, j = 1,2, . . . ,m, for aj, > 0. Let it be b,/a,,.

1 The Simplex Algorithm
3. Transform the matrix of the initial problem by a Gaussian

elimination using element a,, as a pivot, i.e., perform the
operation V j , i, j # r,i # c, a,; := aj; - a,;aj,/a,,.

The simplex algorithm was developed by DantzigPANT631 for
~ ~ ~ ~ ~ t ~ t i ~ ~ ~ l l ~ the algorithm can be presented as in figure

finding the solution of a linear programming problem. Its sim-
plicity and elegance made it the essential numeric tool for solving
optimizing linear problems. Therefore, it was (and still is) the
object of intense study [VAJDGO], [FICKGl], [BORGBO]. Our
paper is a contribution toward efficient implementations of the
simplex algorithm on parallel processors available today. The
general form of a linear programming problem can be expressed
as follows:

Mazimize the linear function f = clz l + czzz + . . . +
cnzn where cl, ~ 2 , . . . C, are given real numbers called
costs and z l , 22,. . . , z, are unknowns subject to the
linear restrictions

Start

Set the initial solution

Vi, ci 2 O?

The standard simplex algorithm [BUND84] consists of a se- Figure 1: Flow of control

In order to use this algorithm to solve a linear programming
problem the set of m linear inequalities defining the problem is
first converted into a set of m linear equations by introducing
a t most m slack variables and by changing the sign of all free
terms such that b, > 0, j = 1,2 , m. The optimizing function
f is then added as line 0 of the linear system of equations thus
obtained in the form C - f = 0 where C is its optimal value
(originally 0), i.e., - c l z l - czz2 - . . . - cnzn = 0. The initial
feasible solution is then obtained by introducing m new variables
whose coelficierlts in the function f are set to zero. The matrix
of this system with the free terms in column 0 is organized as the
two dimensional array called simplez tableau:

.
ajo a l l . . . a,; . . . ajn ajn+l . . . ajn+m
.

. am0 am1 . . . am, amn amn+l Qmn+m

The simplex tableau is automatically constructed by the proce-
dure reading the simplex matrix.

Using the simplex tableau defined above, the simplex algc-
rithm can be formulated as the following sequence of steps:

1. Find the pivot column, i.e., perform the computation:

. -1, i fT[O, i]> O f o r i = 1 , 2 n + m ;
c 2 1, if T[O, c] = min(T[O,i]), T[O, i] < 0,

i = 1 , 2 n + m .

If C = -1, the optimum solution was found. Otherwise
step 2 follows.

2. Find the pivot line, i.e., perform the computation:

..... -1, i f T [j , C] < O f o r j = 1 , 2 m;
r L 1 , ifT[r,C]=min(T[j,O]/T[j,C]),

. T[j ,C] > 0 , j = 1,2 , . . , m .

If L = -1 there is no solution. Otherwise step 3 follows.

3. Transform the simplex tableau by the formula:

Clearly parallelism can only be found within each of these
three steps. In order to obtain maximum speed, the granularity
of parallelization needs to be controlled by the user according to
the architecture of the machine. This is done by allowing the user
to define the unit of parallelization as being a contiguous block
of H lines and K columns of the simplex tableau. The number
N of contiguous blocks T[H,K] (i.e., parallel jobs) in which the
simplex tableau T can be partitioned is determined by:

The constants H and K that determine p,q are dependent on the
type of hardware and its computation power.

2 Implementation on the MPP

The MPP machine[NASA88] is an array processor that operates
under the control of a conventional VAX-111780 front-end (figure

2) and consists of three main units:

1. Array Processing Unit, APU, a two dimensional 128 x 128
mesh with wrap around connections between processing
elements in the same row or column denoted by PE(ij) ,

.. i , j = 0,1,. ,127. Each PE(i j) is 1-bit processor contain-
ing 1,024 bits of random access memory denoted here by
PEM(i j) [O.. 10231.

2. Array Control Unit, ACU, which executes scalar operations
and controls the operations performed by the APU. The
ACU, figure 2, is actually composed of three units:

Main Control Unit, MCU, which is the local memory
of the MPP used to store an MPP program and its
scalar data.

I/O Control Unit, IOCU, which controls the flow of
data in and out of the APU, in particular data trans-
fers between the APU and STM.

Processing Element Control Unit, PECU, which con-
trols the execution of the array operations in the MPP
program.

3. Staging Memory, STM, which is a large storage unit of 32
megabytes connected to the APU via a fast 128 bit data
path. I t is used to buffer data due to limited memory ca-
pacity of the APU.

ACU U

Figure 2: MPP Diagram

An MPP program is a sequential program which contains ar-
ray operations, 110 operations and scalar operations. The special
feature of the ACU is that all of its three control units can op-
erate simultaneously to allow overlapping of the three types of
operations found in an MPP application program.

The software support for parallel processing implemented on
the MPP allows a user to develop a program using parallel ar-
rays and operations on parallel arrays as computation units. A
parallel array is an abstraction for the APU, i.e., an array of
size 128 x 128 of a given type (integer, real, or boolean). An ar-
ray operation (i.e., having parallel arrays as operands) is simul-
taneously performed by every PE(i j) of the APU, each PE(i j) ,
i, j = 0,1,. . . ,127 acting in a lock step fashion on the correspond-
ing memory components of the parallel array operands stored in
its memory area.

The Pascal language has been extended with new constructs
supporting array processing and implemented on the MPP under
the name MPP Pascal.

MPP Pascal supports all the Pascal data types. In addi-
tion it has been extended with the parallel array as a predefined
data type supporting arithmetical and logical operations and the
stager array as a predefined data type supporting information ex-
change between APU and STM. Additional language constructs

operating on parallel arrays are provided in MPP Pascal allowing
parallel array management in a high level fashion such as: maz,
min, sum, prod, shift, rotate, transpose, rowbroad, colbroad, in-
sert, eztract.

A parallel array may not be indexed directly. This ie why
to perform an array operation using selected P E s of the APU,
MPP Pascal provides the special where masking statement:

where <mask > d o < S1 > otherwise < S2 >.

The mask is a boolean expression that evaluates to a parallel
array of type boolean mapped on a bibplane. Each element (i j)
in this bit-plane specifies a processor PE(i j) of the APU enabling
(mask(i j)= l) or disabling (mask(i j)=O) its execution.

The operations of information exchange between front-end,
array memory and stager memory are shown on figure 3.

The stager memory is treated as an extended array memory
of 512 parallel arrays of reals or integers. The unit of transfer is
a parallel array.

The synchronization operations waitq, which idles the MCU
until the PECU has finished, waitio which idles the MCU until
the completion of the I/O transfer initiated by the IOCU occurs,
allow the three components of the MPP to operate concurrently.

~ a l a r upanlion
extract r -&-j,- 1

iK: memory ,?
L - - - - J r ~A-x~lil~8i, i a r -M-C-&- 1

' memory memory f tnnlfer I
L - - - - J

Figure 3: MPP Data flow

A typical MPP application program consists of two parts: an
MPP part that runs in the MPP control unit (MPP Pascal), and
a host part (Fortran, C, Pascal) that runs on the host. The MPP
part is usually the "main" program consisting of data transfers
and large scale array computations. The host part generates
data files to be read in by the MPP main program and serves
as a driver for the MPP program. The communication between
MPP part and host part is performed by a tool called CAD.
Each part is compiled separately on the host and resulting object
modules are linked together to produce a program image that can
be directly loaded into the MPP for execution. This discussion
will be illustrated further with the MPP simplex implementation.

In order to execute a program the user invokes its executable
image through the CAD user interface. Access to the MPP is
done on a first come first served basis. Thus, the interaction
between the host part and the main part of an MPP program
during its execution observes a master-slave relationship.

2.1 Simplex Algorithm on MPP

The structure of array memory and stager memory determines
the parallelization strategy of the simplex algorithm. It con-
sists of splitting the simplex tableau in as many contiguous sub-
tableaux T[128,128] as possible.

The implementation of the simplex algorithm on the MPP
consists of two programs, a program running on VAX called Pre-
pare-data and a program running on the MPP called Simplez.
The program Preparcdata written in Fortran perform as fol-
lows.

1. Read the dimensions m,n of the simplex tableau main-
tained as a VAX file and determine constants p,q by the
rules:

p = [(n + m)/l28] + sg(rcst((n + m)/128))

2. Reorganize the simplex tableau T[O..m,O..n+m] as an array
of parallel arrays stored on VAX file F2 in the following
format:

P(1,l) P(1,2) . ., P (~ , P)
P(2 , l) P(2,2) . . . P (~ , P)

3. Use CAD to invoke Simplez, and to wait for its execution.

The program Simplez ie an MPP Pascal program. It uses the
following type declarations:

t r p e
ParAr23 = parallel array[1..23,0..127,0..127] of real;
ParArl = parallel array[0..127,0..127] of real;
ParArInt = parallel array[0..127,0..127] of integer;
ParArBol= parallel array[0..127,0..127] of boolean;
StArl = stager array[0..127,0..127] of real;
StAr512 = stager array[1..512,0..127,0..127] of real;

p rogram Simplet(input,output,rowindex,colindex,Tl,T2);
%include 'type.dat9
%include 'procedures.dat'
var

T 1 : text; T2 : file of StArl; A : ParAr23;
T : StAr512; Cind , Rind, Pivcol, Pivrow : integer;
K1, K2, Flag : integer; DONE, lMPOSSIBLE : boolean;

begin
zcroarr;
DONE := fabe;
IMPOSSIBLE := fabe;
Load(Tl,T2,T,A,Flag);
if(F1ag <> 0) t h e n

repeat
if (Flag = 23) t h e n

begin
PivCol(A,Cind,Pivcol,K2);
if (Cind <> -1) t h e n

begin
~iv~ow(~,~ind,~ivrow,~ind,~ivcol,K1,K2);
if (Rind <> -1) t h e n
Update(A,Rind,Pivrow,Cind,Pivcol,K1 ,K2);

else NoSolution := true;
end

else Done := true;
end

if (Flag = 512) t h e n
beg in

StPivCol(T,Cind,Pivcol,K2);
if (C i n d <> -1) t h e n

begin
StPivRow(T,Rind,Pivrow,Cind,Pivcol,K1,K2);
if (R i n d <> -1) t h e n
StUpdate(T,Rind,Pivrow,Cind,Pivcol,Kl,K2);

else NoSolution := true;
e n d

else Done := true;
e n d

u n t i l (Done or NoSolution)
end.

The Load procedure recomputes the constants K1 and K2
by the rules shown above and reads the file F2 into the array
memory or stager memory depending upon its size. Therefore,
the simplex on the MPP operates in two modes distinguished by
the variable Flag. When Flag 5 13 the entire simplex tableau is
stored in the array memory and PivCol, PivRow, Update are then
used. When 13 < Flag 5 511 the simplex tableau is stored in
the stager memory and parallel arrays need to be swapped-in and
swapped-out in order to be processed and updated. The proce-
dures StPivCol, StPivRow, St Update similar to PivCol, PivRo w,

Update need to be used in that case.

Let us suppose for sake of clarity that the simplex tableau
is small enough to be entirely mapped onto one parallel array
All, ,]. Each entry (i, j) in the tableau is thus mapped onto its
own processor PE(i j) . Once pivot column and row have been de-
termined, the tableau updating can be carried out simultaneously
by all PE-s in one array operation. To perform this updating each
PE(i j) needs to access three tableau items, (i, j) , (pivyow, j)
and (i,pivxol). The last two tableau items are not accessible
by PE(i j) and data communication and exchange between pro-
cessors PE(i j) , PE(piv_row, j) and PE(i, pivrol) is necessary.
This is performed by creating two new parallel arrays (BrPC and
BrPR) both constructed by using shift and broadcast array func-

tions as carried out by the Update procedure. PE(i j) now has
access to the three corresponding tableau items and the tableau
updating is performed by A[l, ,] := All , ,] - B r P R x B r P C , fig-
ure 4. When the tableau maps over more than one parallel array
in the array memory, this data broadcasting scheme is applied
iteratively to each parallel array.

ARRAY

< c : <
0 0 0
I I

BrPC

BrPR

Figure 4: Simplex tableau updating operation

2.2 Performance Measurements

Performance measurements of the simplex implementation dis-
cussed above are given in the table 1. The lines of the table are
labeled by the number of iterations required to find the solution
while the columns are labeled by the number of parallel arrays
required to store the simplex tableau. The time in seconds taken
by the MPP to solve a problem of the size the number of parallel
arrays recorded in the column j and performing the number of
iterations recorded in the line i is recorded in the table entry (i j) .

Table 1: Performance measurements on MPP

3 Implementation on Multimax

A new class of computers (GORD87j called Multimaz emerges
as multiprocessor computers using as components microproces-
sors that have the speed and functionality of mid-range super-
computers. The Encore Multimax is a modular system designed
as a component of the Encore Computing Continuum[ENCO87],
which provides a true multiprocessing and distributed environ-
ment. The Encore Continuum uses tightly coupled multipr*
cessing, distributed, and intelligent control of 1 / 0 devices and
clustering of Multimax systems. A multimax cluster incorpo-
rates from 2 to 20 32-bit processors each provided with 32K byte
cache of fast static RAM, 4 to 32 Mbytes of fast shared memory
and configurable I/O devices.

The Multimax support for parallel program development and
execution consists of a library of functions that extend the col-
lection of system calls supported by Unixl and allow the user to
create parallel processes in a program, schedule them for execu-
tion while sharing resources, and control their interaction. A user
can take advantage of these functions creating and managing a
process environment or a tasking environment.

3.1 Simplex with Process Environment

The process environment is provided by the fork() system call
that allows a program to create processes in the user program.
The function MakeProcs was designed by us in order to allow the
simplex user to create a variable number of processes.

Process interaction is done by all processes having access a t
the variable declared shared. There are two classes of system
calls in the parallel library allowing the user to declare shared
objects:

1. When shared memory is statically managed the user pro-
ceeds as follows:

Declare a C-language data structure, say data and/or
a pointer t o it, say datapt.

Call the function share() in the parallel library to
make data, datapt shared under the form

datapt = share(0, sizeof(data));

'Unix is a trademark of BeU Labs

2. When shared memory is dynamically managed then the
user proceeds as follows:

Provides the memory area to be manipulated dynam-
ically by the program using the call

alloc = sharemallocinit(size);

which returns a pointer to an area of memory of size
U . slzen .
Manage dynamically the memory pointed to by alloc
using calls of the form

datapt = sharemalloc(sizeof(data));
sharefree(datapt);

Process synchronization is done by using the lock data types
supported by the Encore Multimax[RUS88]:

Lock: is a binary semaphore supporting the operations
spin-init(lock, Jag), spin-create(fiag), spin-unlock(lock),
spin-condlock(lock), where flag shows the state of the lock.

Barr ier : allows a fixed number of processes to synchronize
a t a given point in a program. It supports the operations
barrier-create(count, state), barrier-init(lock, count, state),
barrier(1ock) where count is the number of processes that
need to arrive a t the barrier before it opens.

Semaphore : is general semaphore supporting the opera-
tions semaphore-init(lock, state), semaphore-create(state),
semaphore-wait(lock), eemaphore_signal(lock).

Event: provides a barrier a t which a variable number
of processes can wait having two states, event-posted and
event-cleared. I t supports the functions event-create(atate),
event-init(lock, state), event-post(lock), event-clear(lock),
event-wait(1ock).

The lock parameter is a pointer to an object of type the type
supporting the function using it, state is S P I N E L O C K , P R O -
C E S S B L O C K , T A S K - B L O C K , showing the mechanism imple-

int IdProc = 0;
main (int argc, char *argv[])

{
int i, State = SPINBLOCK;
glob = share (0, sizeof(*glob));
/* Read matrix, parameters, and initialize data */
spininit(&glob- >lock, PAR-UNLOCKED);
barrierinit(&glob- >barr, &glob- >Procs, State);
IdProc = MakeProcs(&glob- >Procs-1);

Start: PivCol(&glob- >K,&glob- >C);
barrier(&glob- > barr);
if (&glob- > C < 0) { PrintSolution(); exit())
PivRow(&glob- >H,&glob- >L);
if (IdProc == 0)

kglob- >Jobcount = 0;
barrier(&glob- > barr);
TransformL(&glob- >L, &glob- >K);
barrier(&glob- > barr);
if (&glob- >L < 0) { NoSolution(); exit())
i = Monitor(&glob- > JobCount);
while (i < &glob- >Jobs)

{
Update(i/p, i%p, &glob- >H, &glob- >K);
i = monitor(&glob- >Jobcount);

1
barrier(&glob- > barr);
TransformC(kglob- >C, kglob- >H);
barrier(&glob- > barr);
goto Start;

1

The functions PivCol(), PivRow(), Update(), TransformL(),
TransformC(), and Monitor() implement the three steps of the
simplex algorithm, perform matrix transformations and ensure
computation consistency, respectively.

3.2 Simplex with Tasking Environment
meriting wait, is an integer and fiag is Or Since process creation is a very costly operation, the tasking
PAR-UNLOCKED. mechanism was developed to support parallel program develop

The lock variables used in a program need to be created in merit on the E~~~~~ ~ ~ l t i ~ ~ ~ . A task is a function
shared memory. All operations supported by the lock data types with its own stack and thus capable of being executed in parallel
specified above are atomic. In addition, the parallel library pro- with other tasks. A parallel program using the tasking
vides the function timer-init() and timer-get() which allow the of a collection of tasks that can be executed in
timing of the program execution.

The structure of a parallel program under process environ-
ment is illustrated by the following sketch of the simplex imple-
mentation.

#include <stdio.h>
#include <parallel. h>
#define cols 1200
#define lines 1200
struct sharedarea

{
double pivot, a[lines] [lines+cols];
int m, n, H, K, Procs, Jobs, JobCount;
int C, L, p, q, ColCount, Rowcount;
BARRIER barr;
LOCK lock;
) *glob;

parallel. There is a special task called master tha t starts the ex-
ecution of the program initiating other tasks. Each task in turn
can start other tasks. The tasking environment of a program is
thus defined by the memory size M e m used to allocate stacks for
the tasks, the number of processes Procs that run tasks in par-
allel and the master task, Master. The tasking environment of a
program and the start of the master task are set up with a call
t o the function task-init

taskinit(Mem, Procs, Master, Stack, Argc, ArgO, ... ,Argn);

The starting of a task specified by a function Func in the tasking
environment (by master task and/or by other tasks) is performed
by the call

taskstart(Func, Stack, Argc, ArgO, ..., Argm);

which allocates Stack bytes as the stack of this task from Mern,

transmits arguments on the stack and starts a process to execute
the code of Func on this stack, if there exists a processor available
for this purpose.

The tasking environment is controlled by the program using
the following tasking primitives: task-suspend() that suspends its
caller; task-resurne(namc) makes the task name reschedulable;
task-stop() terminates its caller; task join() waits for all tasks
initiated by its caller t o terminate; task-self() returns the task
identification number of its caller.

There are two restrictions imposed on parallel program devel-
opment by the tasking approach: the code of a function designed
as a task needs to be provided in the program text before the
invocation of that task and the locks need to be created and ini-
tialized in the main program. The consequence is a bottom-up
approach for program development. The structure of a parallel
C language program using the tasking environment is illustrated
by the following sketch of the tasking version of the simplex al-
gorithm.

#include < stdi0.h >
#include < paral1el.h >
#define Stacks 20000
#define Stack 500
#define cola 1200
#define lines 1200
double pivot, a[lines][lines+cols];
int m, n, Procs, JobCount, Jobs, H, K;
int answer, ColCount, RowCount, C , L, p, q;
LOCK *lock;
transform()

{
int i;
i = Monitor(JobCount);
while (i < Jobs)

{
Update(i/p, i % p, H, K);
i = Monitor(JobCount);

}
1

master ()
{

int i;
Start: ColCount = 0;
for (i = 0, i < Procs, i++)

task~tar t (Stack, PivCol, 1, C);
task join(); - ..
if (C < 0) { answer = 1; return)
RowCount = 0;
for (i = 0, i < Procs, i++)

taskstart(Stack, PivRow, 1, L);
tcrsk join();
if (L < 0) { answer = -1; return)
JobCount = 0;
for (i = 0; i < Procs; i++)

taskstart(Stack, transform, 0);
task join();
goto Start;

}

main (int argc, char *argv[])
i
/* Read matrix, parameters and initialize data */
lock = share (0, sizeof(L0CK));
spininit(lock, PAR-UNLOCKED);
Set-timers();
taskini t (Stacks, Procs, master, Stack, 0);
Get-timers();
if (answer == 1) Printsolution();
else PrintNoSolution();

1

3.3 Performance Measurements

The performance measurements of the simplex implementation
on the Multimax using the process environment and the task-
ing environment closely follow the same pattern. Therefore in
tables 2 and 3 we only present the performance of the program
implemented in the process environment which is slightly better
than for the tasking environment. Table 2 illustrates the varia-
tion of the time to solve a problem whose simplex tableau was
512 x 512 (i.e., 256 x K elements), with the number of processes
running in parallel and the granularity of their interaction. The
lines of this table are labeled by the number of processes running
in parallel and the columns are labeled by the granularity of the
process interaction. The granularity is expressed by the size of
the contiguous subtableaux of the simplex tableau transformed
by a process independently of the other processes. This is given
in the number of parts in which the lines and columns of the
simplex tableau are divided. The time in seconds needed by the
Encore parallel processor to solve the problem is recorded in the
entry (i j). However, examining the behavior of the algorithm on
a large number of problems we observed that the best time was
provided by job size (16, 260) with 12 processors. Therefore, the
last column of table 2 records the behavior of the algorithm for
this process interaction granularity.

Table 2: Granularity study

Table 3: Encore performance measurements

4 Implementation on Alliant

The Alliant FX8 is a register to register machine equipped with 8
MC68000 compatible vector processors, 11 interactive processors
for input and output, and a 64 megabyte memory subsystem
[ARGOBG]. Parallel processing on the Alliant is performed by

pipelining vector operations and by parallel processing of the 8
vector processors.

Parallel programming support is provided by the Concen-
trix operating system (Unix-based) and the FX/Fortran lan-
guage which supports the array data type. Like MPP Pascal,
FX/Fortran has been extended with a set of intrinsic array func-
tions : min(Ar), maz(Ar), sire(Ar), etc ..., as well as a very sim-
ilar conditional array assignment statement allowing masking on
an array assignment:

w h e r e < cond > i st1 > o the rwise < st2 > e n d w h e r e

A Fortran optimizing compiler generates parallel streams of
control and vector operations unfolding DO loop operations un-
der programmer control.

Four modes of program execution are available on the Alliant
FX8, concurrent execution, vector execution, vector-concurrent
execution, and concurrent-outer vector-inner execution. Typi-
cally a programmer tunes the program execution by inserting
compiler directives in the Fortran code. These directives might
for example either turn off vectorization for a specific loop or
rather force concurrency specifying that there are no data de-
pendencies in a loop. The information allowing the programmer
to inject compiler directives in his program is provided by the
compiler itself. There are only 7 groups of possible directives.
The syntax of a compiler directive is CVD$[s] directive where:

G , directive applies globally (i.e., to the end of file);
s = { R, directive applies to end of the current routine;

L, directive applies to end of the current loop (default).
The available directives are (* indicates the default value): AS-
SOC, NOASSOC*, telling the compiler to perform the optimiza-
tion of the associative operations; CNCALL, NOCNCALL*, al-
lowing subroutine and function references in loops optimized for
parallel execution; CONCUR *, NOCONCUR, forcing (or inhibit-
ing) the optimization for concurrency irrespective of data depen-
dency; DEPCHK*, NODEPCHK, telling the compiler to check
(or to inhibit the checking) for data dependencies between loop
iterations; LSTVA L*, NOLASTVAL, telling the compiler t o gen-
erate code to save last values of original indexes and promoted
scalars of optimized loops and arrays; SYNC*, NOSYNC, telling
the compiler to check for synchronization problems between loop
iterations; VECTOR*, NOVECTOR, telling the compiler to op-
timize (or to inhibit the optimization) for vectorization.

4.1 Simplex on Alliant FX8

In the Alliant FX8 simplex implementation through compiler di-
rectives, we inhibited vectorization of certain loops and strategi-
cally forced concurrency by inhibiting data dependency checks.
A sketch of the Fortran version of the simplex algorithm fully
tuned and optimized and running on all eight processors follows:

program simplex
integer L, C, m, n
real mat(1200, 1200)

CVD$R NOLSTVAL
C Read matrix and initialize data

SetTimer
99
C Find Pivot col and find Pivot row
C Divide Pivot row
CVD$L NOSY NC

do 80 j = 1, m

if(j.ne.L) then
CVD$L NOSYNC

do 40 k = 1, n+m
if(k .ne. C) then
mat(j,k)=mat(j,k)-mat(~,k)*mat(j,C)

endif
40 continue

endif
80 continue
C Divide Pivot col

got0 99
C GetTimer
C Print solution or lack of solution

stop
end

In this implementation all the code is brought in the main
program to avoid subroutine calls.

4.2 Performance Measurements

In order to compare the performance of the simplex algorithm
implemented on the three machines, MPP, Encore Multimax, and
Alliant FX8, we run the program on the same set of problems
and organize the results in the same way. The behavior of the
algorithm on the Alliant FX8 is given in table 4.

Table 4: Alliant performance measurements

5 Instead of Conclusion
The conclusions of the experiments we performed with the sim-
plex algorithm implemented on the three different computers are
twofold. On the one hand they regard the efficiency of the algo-
rithms implemented on the new parallel processing architectures
measured by the speed-up obtained by their parallelization and
on the other hand they regard the user convenience of the vari-
ous parallel processing architectures measured by the difficulties
implied in their programming.

The speed-up of Mnrhinel versus Machinee, (Machine 1, Ma-
chine & are A for Alliant, E for Encore, and M for MPPj while
solving a problem requiring a given number of iteraticns for vari-
ous sizes of the simplex tableau is recoded in a line of a speed-up
tableau labeled by Machinel:Machine2 in table 5 . The size of the
simplex tableau used in our experiments is measured in number
of parallel arrays required to accommodate it.

Table 5: Speed-up for 3, 6 and 44 iterations

The simplex problems for these sizes were actually automat-
ically generated from smaller problems. Therefore, instead of
definitive conclusions we present our findings as the following
three observations:

The simplex algorithm provides a natural application in
which operations on matrices are used. Therefore, array
and vector processors should perform better than the gen-
eral multiprocessor machines. This was confirmed by the
speed-up of the algorithm implemented on the three ma-
chines.

The second conclusion shows that even for problems that
are naturally suited for array and vector operations, the
control of the granularity of process interaction allows the
shared memory multiprocessor to become comparable in
efficiency to the vector processor in the case of large size
problems.

The third conclusion shows that the performance of the
vector processor provided with parallel execution becomes
comparable with that of the array processor when the the
size of the problem is large. This is due to the cost of array
transfer between array memory and stager memory.

Parallel processors clearly allow the simplex algorithm to become
an efficient tool in solving linear programming problems. There-
fore, comparing the standard version of the simplex algorithm

[TARJ83],[DANT79] with the newly discovered polynomial time
algorithms [ASPV79], [BORGBO](pp. 18-22) may provide differ-
ent data when executed in parallel environments. So, further
study of the parallel implementations of the simplex algorithm
and its comparison with the parallel implementations of these
newer methods are necessary.

Each of the three different philosophies of handling parallel
processing has its specific type of user difficulties. The major
difficulties in programming an array processor result from the
promotion of the array (which is a defined type in most pro-
gramming languages) to a predefined data type. However, the
predefined type "arrayn does not coincide with the array type
existing in most languages nor with the matrix type existing in
mathematics. Therefore, in order to take advantage of the ma-
chine's potential for parallel processing both experience and the
language support developed in this respect provide the necessary
help. The major difficulties in developing parallel programs for a
multiprocessor machine result from the requirement to explicitly
manage the implicit process type in the program. This task is
performed by the multiprogramming (multiprocessing) operating
system operating on a sequential program. Again, experience,
the development of concepts and their encapsulation in appro-
priate data types in the language seem to provide the real help.
As for developing parallel programs through the compiler the
major difficulties result from the compiler-programmer-processor
interaction which requires the programmer to have knowledge
of architecture, compilers, and the behavior of the algorithm.
Therefore, this could be only a temporary solution used to suc-
cessfully parallelize existing code that would otherwise be too
expensive to redesign.

6 Acknowledgments

We would like to express our acknowledgments to Prof. G .
Carmichael who provided us with the possibility to learn and use
the MPP machine, t o Prof. E. Haug and D. Golden, for allowing
us to use the Alliant FX8 and Encore Multirnax in the HSCF of
the University of Iowa, Iowa City, and to Daniela Rus, for the
valuable observations and suggestions leading to improvements
of our work.

References

[ARGO86] Argonne National Laboratory, Using the Alliant
FX/8, ANLIMCS-TM-69, Rev. 1, Mathematics and
Computer Science Division, September 1986.

[ARG087] Argonne National Laboratory, Using the Encore Mul-
timaz, ANLIMCS-TM-65, Rev. l , Mathematics and
Computer Science Division, February 1987.

[ASPV79] Aspval, B., Stone, R. E., "K hachian's linear program-
ming algorithm", J. Algorithms, 1 (1980) pp 1-13

[BORGSO] Borgwardt, K. H., The Simplez Method, A Proba-
bilistic Analysis, Springer-Verlag, New York 1988.

[BUND84] Bunday, B. D., Basic Linear Programming, Edward
Arnold, London 1984.

IDANT631 Dantzig, G. B., Linear Programming and Eztensions,
Princeton Univ Press, Princeton, NJ 1963

IDANT791 Dantzig, G. B., "Comments on Khachian's Algorithm
for linear programmingn, Tech. Report SOR 79-22,
Dept. Operations Research, Stanford Univ, Stanford,
CA, 1979

[ENCO87] Encore Multimax, Using the Encore Multixnz Ar-
gonne National Laboratory, MCS-TM-65, pp. 1-1,
1987.

IFICK611 Ficken, F. A,, The Simplez Method of Linear Pro-
gramming, Holt, Rinehart and Winston, New York,
1961.

[GORD87] Gordon, Bell, "The Multi - A New Computer Class",
Using The Encore Multimaz, Argonne National Lab-
oratory, MCS-TM-65, pp. 5-8, 1987.

(NASA881 NASA Goddard Space Flight Center, Greenbelt,
Maryland, MPP Pascal Programmer's Guide, March
1988.

[RUSE81 Rus, T., "Language Support for Parallel Program-
ming", Proceedings of Computer Standards Confer-
ence, pp. 21-23, March 21-23, Washingtoi:, D.C.,
1988.

[TARJ83] Tarjan, R. E., Data Structures and Network Algo-
rithms, Society for Industrial and Applied Mathemat-
ics Philadelphia, Pennsylvania 1983.

[VAJDGO] Vajda, S., Linear Programming and the Th5ory of
Game, John Wiley and Sons, New York, 1960.

REGION GROWING ON A HIGHLY PARALLEL
MESH-CONNECTED SIMD COMPUTER

Marc Willebeek-LeMair
School of Electrical Engineering

Comell University
New York. USA

Anthony P. Reeves
Department of Computer Science

University of Illinois at Urbana-Champaign
Illinois. USA

ABSTRACT
The region growing paradigm for image segmentation groups neighbor-
ing pixcls into regions depending upon a predctcrmined homogeneity
criteria. A parallcl method for region growing on a highly parallcl SIMD
mesh computer is presented. The approach is based upon a parallcl
merging paradigm, which involves the selection of the best of all mergc
possibilities for all regions concurrently. A key requirement of any
parallel region growing scheme is the ability to concurrently compute
functions on irregular shaped regions. A set of general primitive func-
tions for region growing have been defined and techniques to implement
these functions on an SIMD processor have been developed. These
techniques make use of an embedded tree data structure to represent
regions. The results of implementing a parallel split and merge region
growing algorithm on the Massively Parallel Processor are discussed.
The approach is shown to be efficient primarily for images involving
large numbers of regions.

Keywords: Non-uniform load disnibution, Parallel processing, SIMD,
Segmentation and 2-D description, Parallel rcgion growing, and Split
and merge.

INTRODUCTION
Region growing is a general technique for image scgmcntation. Fre-
quently, the basic scheme is to combine pixcls with adjacent pixels to
form rcgions; regions are thcn merged with other regions to "grow"
larger rcgions. The association of neighboring pixels and neighboring
regions in the region growing process is often governed by a homo-
geneity criterion that must be satisficd in ordcr for the pixcls and regions
to combine. The homogeneity criteria arc application dependent and
may bc dynamic within a given application.

In addition to Ihc homogeneity criterion the order in which regions are
mcrgcd can have an important effect on the final result; many sequential
region growing algorithms ignore this fact. We introduce a parallel
mcrging paradigm in which a merge decision is based upon the best of
all alternatives for all regions sirn~rlr:~nro~~slv
Highly parallel SIMD processors have been shown to be very effective
for regular algorithms such as image filtering and the FFT. This work
extends the domain of the SIMD processor to the irregular processing
characteristics of region growing algorithms which exhibit non-uniform
and unpredictable load distibutions. Our results indicate that, especially
for the case of a very largc number of small objects, powerful parallel
region growing techniques can be implemented in a reasonable amount
of time. Section two of this paper outlines the principles of region
growing with emphasis on the split and merge algorithm. Section thrce
discusses the ch&actcristics of the SIMD architecturc and section four
introduces a parallel merging paradigm and considers the parallcl imple-
mentation of a region growing techniquc on an SIMD architecturc. The
algorithm complexity is discussed in section five. An example of the
parallel rcgion growing techniquc is presented through a split and mergc
implcmcntzation on the Massively Parallel Processor (MPP) in section
six.

REGION GROWING
Region growing is a technique for partitioning an image by linking indi-
vidual plxels into groups of pixels called regions. The mcrging of pixels

or regions to form larger regions is usually governed by a pre-defined
homogeneity criterion that must be satisfied. In this section we first
define a region and discuss its properties, next, we review the concept of
homogeneity criteria, and finally, we present a split and merge algorithm
as an example of a region growing technique.

Regions
A region might correspond to a world object or part of one. As defined
by [I] . a region is a four-connected, two-dimensional area that is
allowed to be non-simply connected (contain holes). A single pixel can-
not belong to more than one region. These properties stated more for-
mally are as follows.

A region R is considered to be a set of points with the following proper-
ties:

(I) x, in a region R is connected to x, iff thcre is a sequence
[x i , . . . ~ ,] such that xk and xk+, are connected and all the points
arc in R.

(2) R is a connected region if the set of poinlF x in R has the pro-
perty that every pair of points is connected.

(3) I, the entire image = u R k
k = i

(4) R, n R, = 0, i # j.

Homogeneity Criteria
Whcn grouping pixels into regions it is usually necessary that the groups
satisfy some sort of homogeneity criteria. Therefore, the grouping of
ncighboring pixels into regions is dependent on the characteristics of the
individual pixels. Once pixels have been combined to form a rcgion,
the region assumes certain properties based on the combined characteris-
tics of the pixels a? a group (e.g. area or texture). A homogeneity cri-
teria can be designed to specify such things as the maximum range or
gradient allow~abic within a region, etc. This criteria will thcn be used
as a test to determine whether or not a given group of pixels can be
classified as a region.
As an example, the pixel range homogeneity criteria H(R) is defined as
follows:

if for all point pairs x and y in R,
I I (R) = f (x)-f b)<T. (1)

This particular criterion requires that the range between the minimum
and maximum values within a region R, not exceed a threshold T.

A variety of homogeneity criteria have been invcs~igated for rcgion
growing, ranging from statistical techniques, which involve the distribu-
tion of pixel grcy levels, to state-space approaches, which represent
regions by their boundaries [1,2,31.

A problem with many region growing schemes is that large regions
require an excessive number of merge steps. A computationally
cxpedient techniquc called split and merge [4] addresses the large rcgion
problem with a preprocessing split phase.

The Split and Merge Approach
The split and merge technique requires two types of operations; in our
algorithm a fast split phase is followed by one or more merge phases.
The split stage rapidly partitions an image into square regions which
conform to a first homogeneity criterion; then a region growing tech-
nique is used to merge these square regions into larger regions which
conform to a second homogeneity criterion. High speed is achieved by
the top down approach that rapidly deals with very large regions. Such
regions rcquirc many iterations to achieve with just a region growing
paradigm.

Splitting--The first phase of the algorithm is concerned with dividing the
image up into homogeneous, square regions of varying dimensions.
Beginning with the entire image as the area in question. an area is
checked for homogeneity. Should the homogeneity check fail, the area is
split into four quadrants. Each of the quadrants is then checked the
same way and recursively split until the homogeneity requirement is
satisfied. If an area passes the homogeneity test then it is considered a
region and left alone until the merge stage of the algorithm. The
scheme is illustrated in Figure 1. For this case the homogeneity criterion
requires that tile range of the pixel values in a region must not be
greater than 2. Initially each pixel is labeled with a unique idcntifier
number (ID). While splitting, pixels are assigned a region ID number
corresponding to the pixel ID of the pixel located in the upper left hand
comer of the quadrant to which they are associated.

Figure 1. Split and Mcrge splitting phase. (a) Pixel ID numbers. (b)
Pixel values. (c) Region ID's after first split. (d) Region ID's after
sccond and final split.

Figure 2. Split and Merge merging phase. (a) Region ID'S after split-
ting phase. (b) Region ID'S after first merge. (c) Region ID's after
second merge. (d) Region ID'S after third and final merge.

Merging--In the merge phase, adjacent regions are merged to form
non-square regions. Region pairs that satisfy the homogeneity criterion
are allowcd to merge. Figure 2 presents an example of the merging
stage for the regions split in Figure 1. In this case, the same homo-
gcneity critcrion as for the split phase is used again. Now. however,
merged region pairs assume the smaller ID of the two regions.

For rrlany mcrging criteria, including the one used in the example, the
ordcr of mcrging is ~mportant and this affects both the execution time
and thc final result. An approach which involves increasing the threshold
value, in stages, in the mcrgc phase, has been found to improve the
quality (i.e., produce less regions) in the final result for region growing
using both range images [I31 as well as grey level images [51. Certain
constraints imposed on the mcrging order, as mentioned above, help to
improve on the final results, other constraints, however, are imposed in
thc parallel mcrging strategy to avoid violating the homogeneity criteria.
These constraints will be addressed later in the section on parallel region
growing.

THE MESH-CONNECTED SIMD ARCHITECTURE
Many highly parallel computer architectures designed for low level
image processing applications have been proposed and implemented

[6.7,8]. These designs exhibit a variety of interconnection schemes
between processors and the processors themselves range from simple
processing elements in the SIMD arrangements to much more sophisti-
cated processors in the MIMD systems. The architecture of interest in
lhis paper is the highly parallel (tens of thousands of binary processors)
mesh-connecled SIMD processor array. The SIMD mesh consists of an
array of identical processing elements (PE's) with near-neighbor connec-
tions. We will be considering the 4connected case in which processors
are connected to their neighbors to the north, east, south, and west The
architecture we are considering is illustrated in Figure 3. The array of
PE's is controlled by a host computer that issues it instructions when a
parallel array computation needs to be performed and is linked to
memory via a bi-directional VO path. Each PE contains an ALU with a
limited amount of local memory.

Figure 3. General organization for a mesh-connected SIMD architec-
ture.

The SIMD-mesh architecture is particularly well suited for low-level
image processing. The physical layout of the processor array allows for
a direct mapping of pixels to PE's. Furthermore, the type of computa-
tions inherent in low-level processing, such as image filtering and edge
detection, involve the analysis of a pixels local neighborhood.

The Massively Parallel Processor Architecture
The Massively Parallel Processor [I l l is a SIMD mesh-connected com-
puter arranged in a two-dimensional 128x128 array of PE's. The PE's
are bit-serial, allowing for a flexible data format and efficient utilization
of resources. Each PE can perform high speed arithmetic and implement
all sixtecn possible boolean functions. In addition, each processor con-
tains a mask register that can be set to inhibit execution of an instruc-
tion. PE's are connected to their near-neighbors to the north. east,
south, and west. For data to be transmitted from one point of the array
to another. it must bc routed via a path linking both points through adja-
cent processors. The MPP is equipped with a built-in sum-OR tree
which combines the output from all PE's in a tree of OR elements. This
can be used to check for termination or convergence of a repeated
sequence of instructions.

PARALLEL REGION GROWING

Parallel Merging Paradigm

When merging regions in parallel, in order to obtain a correct result, it
is necessary that the merge sequence be ordered. Sequential region
growing algorithms are most often based on a "first merge" paradigm.
In this approach pixels are scanned one at a time, left to right, top to
bottom, and combined so long as they meet the homogeneity require-
ments. The "best merge" paradigm requires that regions only merge
with the neighboring region that best satisfies the homogeneity require-
ments. This not only imposes an ordering to the merge sequence, but
lends to yield better results by minimizing the increase in range with
each merge. The best merge paradigm is based on the following rules:

(1) Each region can only merge with one other region at a time; that
being the neighbor which best satisfies the homogeneity criteria.

(2) A tie is broken, arbitrarily, by selccdng the neighbor with thc
larger ID.

(3) A merge choice must be mutual for two regions to merge.

The parallel region merging paradigm can be modeled using an
undirected graph.

Let G = (V.E) be an undirected graph with weighred edges. The
verrices. V , of the graph correspond to the regionr in rhe image.

homogeneity criterion (range)
\

Figure 4. Parallel merging gcaph model. In the example shown the homogeneity range hreslmld has
been set at 6. Pixel values are given in (a), and the result of the split phase is represented in (b).
Edges exceeding the allowable range are deleted from the graph. Merges are performed by combining
vertices that share an edge ha t is of lowest value for both vertices. After combining the vertices all
edges touching the newly formed vertices are updated with the new range values. Merging terminates
when there are no edges left in the graph. The result is shown in 01).

The set of edges, E, is comprised of the edges (v,w) such that the
regions corresponding to vertices v and w share a common boun-
dary. The edge weight, given by

e,,, = h (v .w),
equals the value of the homogeneity criterion evaluated for the
regions represented by v and w.

Using the model described above, the process of merging regions in
parallel is performed as follows:

For all edges E , in graph G , merge those vertices, v and w, for
which e,,, is the edge of minimum weight for both verdces v and
w. For vertices with more than one edge having the same
minimum weight, the edge connecting with the vertice of highest
value is selected. Only edges weighted within the homogeneity
threshold are considered.

Two vertices, v and w, are merged by deleting edge (v,w) and
relabeling all edges (i,w), connecting to w , as (i.v). All edges
connected to v must (hen be updated with the new values for e; ,".

The process continues unfil there are no edges weighted below the
homogeneity threshold remaining in G .

The parallel merge process is illustrated in Figure 4. In this example we
make use of the range homogeneity criterion with a threshold, T = 7.
Figure 4(a) gives the pixel values of a 4x4 image. The result of the
split phase of a split and merge region growing process is presented in
Figure 4@). At this point each region is represented by a unique
identification number (ID) and the values of the minimum and maximum
pixels within the region. Using this initial partitioning, the regions are
represented in rhe form of a graph (Fig 4(c)).

In the case of the range homogeneity criterion, the homogeneity value
h (v , w) for two regions can never decrease. Hence, edges weighted with
a value greater than the allowed threshold can be deleted from the
graph. A new region assumes the smaller region ID of the two regions
being merged.
In a single merge step multiple region pairs can merge without
conflicting with each other (Fig 4(d)). This illustrates the degree of
pal lel ism inherent in the merging paradigm. After each merge step,
once all edge weights have been updated (Fig 4(e)), those edges exceed-
ing the criterion threshold can once again be removed (Fig 4(f)). The
merge process is terminated when there are no edges left in the graph
(Fig 4(h)). The final result is illustrated in Fig 4(i).

Parallel Region Growing Implementation
A parallel region growing strategy is affected by both the form of the
homogeneity criteria and the consvaints of the parallel processor archi-
tecture. In this section a set of representative local processing functions
which can be used to realize a large number of homogeneity criteria are
defined. Their implementation on the mesh-connected SIMD architcc-
ture, outlined in the previous section, is considered.

Parallel Region Growing Primitives-. A general set of primitive opera-
tions, which can be used on a multi-processor system to implement
parallel region growing algorithms, is described in this section. The
strategy for mapping image points onto processors in a multi-processor
system may vary from one architecture to another. Conceptually, a
region is characterized by the values and spatial locations of its indivi-
dual points, as well as the properties of all individual points combined.
Therefore, a suitable representation of a region would be: a unique

region ID number assigned to all points in the region in conjunction
with a region descriptor that contains all relevant global information
needed to describe the region. Figure 5(a) illustrates the partition of an
image, where each region in the partition is described using the
representation suggested above. We assume that the region descriptor
information is located within a given processor. However, there is no
guarantee or constraint that confines all image points within a region to
a single processor.

Figure 5. Region representation. (a) A generalized representation of a
region consists of a spatial distribution of the region points relative to
their locations in the image, along with a corresponding region descrip-
tor for each rcgion. @) A region representation on a mesh of processing
elements consists of each region pixel mapped to its own PE and a
designated PE to serve as the rcgion's descriptor.

The primitive operations required by a parallel rcgion growing algorithm
are as follows. First. in order to adequately characterize a region, a
method to accumulate information from all region points to the region
descriptor is needed. Second, in ordcr to update region points concern-
ing changes in status (i.e. region ID due to merging), information held at
the dcscriptor must be distributed out to all region points, particularly
boundary points. Third, in order to interact wilh all neighboring regions
in parallel, a method for exchanging information between all neighbor-
ing regions sharing a common boundary is needed. These tasks are fun-
damenral in a parallel region growing process and can be accomplished
using the following set of primitives.

(I) Reduction primitive: reduces information from many points in a
region to a single value and records it at the region descriptor.
Typical reduction functions used are minimum, maximum, and
sum.

(2) Distribution primitive: distributes a value from the region
dcscriptor to all points in the rcgion.

(3) Exchange primitive: exchanges information between points
across a common boundary shared by neighboring regions.

Having defined a set of gneral parallel region growing primitives, we
now consider their implementation on a mesh-connected SIMD
architecture. When processing images on a highly parallel array of pro-
cessors each pixel in the image can be directly mapped to a processor in
the a n y . Initially each processor will only have information about a
pixel's value and its spatial location in the image (this is straight for-
ward with this architecture since a pixel's location in the processor array
is a direct spatial mapping of its location in the image). To adhere to the
region represenlation outlined above, as pixels are joined to form
regions, a given PE within each region is designated to be the region
dcscriptor (Fig 513)). What we require is a systematic way of choosing
the dcscriptor PE and a method to efficiently implement the primitives
described above. The nature of the primitives, particularly the reduction
and distribution functions, suggest that a tree structure could be an
efficient mechanism to incorporate into the region representation out-
lined thus far. This reasoning helped us arrive at the embedded tree
data structure described in the following section.

The Embedded Tree Data Structure-- An embedded tree structure is
used to represent a region in an image. The tree structure is embedded
within a region's boundaries on the PE array. Each region PE is
assigned to a vertex in that region's embedded tree. A natural choice of
PE to be designated as region descriptor is the PE located at the
corresponding location of the tree root.

A tree is defined in [9] as a directed acyclic graph containing exactly
one vertex, called the root, which no edgcs enter. Every other vertex has
exactly one entering edge and there is a path (which is easily shown
unique) from the root to each venex. A sample tree structure is
presented in Figwe qa). The arrows indicate the edge directions. Furth-
ermore, if (v.w) is a directed edge of the tree, then v is called the parent
of w and w the child of v. A vertex with no children is called a leaf.
The depth of a tree is the length of the longest palh from the root to a
leaf. For example, in Figure 6, vertex a is the parent of vertices b, c,
and d, and conversely vertices b, c, and d are children of venex a. Ver-
tices e, f, i, j, k, and 1 are all leaves, and the depth of the tree is 3.

An embedded tree is a tree confined within a specified boundary, and
linked in such a way that all points within the boundary correspond to a
unique vertex in the tree. An example of an embedded tree is shown in
Figure 6(b). Since each point in the image, or a region for that matter,
is mapped to its own processor, we can think of the processors thcm-
selves as the tree vertices. Furthermore, edgcs of the tree correspond to
interconnections between adjacent processors.

We chose the tree data structure because of its fan-in, fan-out nature and
because it is easily extended to cover a two-dimensional arbiwary shaped
rcgion. The tree's fan-in and fan-out qualities make it very efficient for
implementing the reduction and distribution primitives. By using a tree
to link together the various pixels in a region, whcrc the pixels form the
vertices of the tree and the region descriptor is located at the tree root, it
becomes possible to broadcast inlormation from the region descriptors to
other region pixels, or conversely, to accumulate rcgion information at
the descriptor PE's, within all regions simultaneously. What is impor-
lant, however, is the way the trcc is constructcd. The primitives'
efficiency is directly dcpendent on the depth of the tree. When proccss-
ing regions of an image in parallel, the complexity of the functions
employing the tree structure is bounded by the maximum trce depth of
all regions in the image. Therefore, it is essential that the trees be con-
structed in such a way so as to minimize h c trcc depth of all regions.

Figure 6. (a) Tree data structure. (b) Embedded tree data structure

Embedded Tree Generation- An iterative shrinking algorithm is used
to create an efficient tree structure. This technique systcmatically
removes pixels around a region's border and creates pointers linking the
removed pixels to still existing neighboring pixels. The shrinking pro-
cess continues until only a single pixel of each rcgion remains. This
remaining pixel is defined as the tree root or rcgion dcscriptor. This sua-
tegy will centralize a tree root within a region.

The shrinking algorithm makes use of the near-neighbor connection
scheme existing in the mesh. A pixel can be removed in the shrinking
process only if certain conditions regarding its neighbors are true. This
requires that each PE investigate its neighbors' values in ordcr to make
a decision on whether or not to "shrink". Initially all PE's in the array
contain a binary one. As pixels are removed in the shrinking process
these ones are changed to zeroes. Two things about a PE's neighbors
need be known in order to determine whether or not the conditions
required for shrinking exist, (1) their region ID number and (2) their
binary value. The set of conditions shown in Figure 7 pertain to the
shrinking of the central pixel into its neighbor to the south. Shrinking
may occur into any one of a pixels four near-neighbors. To determine
whether a pixel may shrink to the west, north, or east, the conditions
need to be adjusted accordingly. In one iteration of the shrinking algo-
rithm the conditions arc checked for each of the four neighbor directions

S- pixel of same region and 0- pixel of differenl region or pixel
of binaty value one of binary value zero

Figure 7. Shrinking Algorithm. In order for pixel X to shrink to the
south one of the near-neighbor arrangements shown must exist.

in turn. Should a pixel satisfy the conditions in any one of these direc-
tions, its binary value is set to zero and a set of pointers are created.
Each processor contains a pointer set which is encoded in four bits; one
bit for each possible direction. The resulting embedded tree is
represented by a double-linked set of parent and child pointers. For
example, if parent-poinrer[d] is true for PE(i j) then the pixel at (ij) is
linked to its parent in the direction corresponding to d. We can ascer-
tain that at the parent node, child-pointer[d] will be true for the value of
d corresponding to the opposite direction. The region PE with no
parent-poinrers is the root of the region tree, and those PE's with no
child-pointers are designated as the tree leaves. The result of applying
the tree generating algorithm is illustrated in Figure 8. The region pix-
els are linked together by the parenl-poinrers, shown in 8(c), created
during the shrinking process. A corresponding set of child-pointers exist.

root

Figure 8. Embedded tree data structure. (a) Regions are represented by
a unique ID number. (b) Embedded trees are created by the shrinking
algorithm. (c) Parent-pointers are assigned according to the following
encoding: I=N, 2=E, 3=S, 4=W.

Regions with Holes-- The algorithm just described cannot generate
embedded trees for non-simply connected regions (i.e. regions with
holes). Rather than converging to a single point, the algorithm converges
to a single element wide, ring of region pixels which surround the
enclosed region. This ring is similar to a medial axis of the region to
which it belongs. The result of applying the shrinking algorithm to a
region with a hole is shown in Figure 9(a). Since a root node must be
chosen from the remaining pixels contained in the ring, it is most
efficient to choose that pixel with maximum distance to the region boun-
dary. This would help to minimize the height of the region's tree.
Should two or more pixels possess the same height, the pixel with the
highest ID is selected, arbitrarily, to be the region root. The remaining
pixels in the ring are then, systematically, linked to each other in the
direction of the chosen root. The ring uncoupling is illustrated in Figure
9(b). Pixels neighboring the root are uncoupled from the ring and
linked to the root first. Their neighbors in the ring are removed next,
and so on, until all ring pixels have a linked path to the root. This solu-
tion will also work for regions with more than one hole. Unfortunately,
however, the presence of holes can lead to rather inefficient (deep) tree
structures.

General Parallel Region Growing Algorithm
Region growing, as mentioned earlier, is achieved by merging regions to
form larger regions that conform to a pre-defined homogeneity criterion.
Using the embedded tree structure, two regions can be merged together
by discarding the embedded mes of the individual regions and re-
generating a single more efficient tree for the combined regions. Merg-
ing is performed in iterations and terminates when no more regions are

able to merge without violating the homogeneity criterion. The parallel
merging is accomplished by regions exchanging information with their
neighbors and accumulating this information at the region descriptors for
evaluation. Regions can then select a merge partner based on the homo-
geneity criterion being used. Following the parallel region growing para-
digm proposed earlier, although more than one neighbor may be suitable
for merging, merging is performed in a hierarchical fashion giving
preference to those regions that best satisfy the criterion by allowing
them to merge first.

The order of merging and a solution to the merge contention problem
are important aspects in the parallel approach. Both aspects are
addressed by the "best merge" paradigm which states that it is not possi-
ble for a region to merge with more than one other region during a sin-
gle merging iteration. The resulting region could otherwise be in viola-
tion of the homogeneity requirements. Two common merge contention
situations are illustrated in Figure 10. Furlhermore, merging is not per-
formed unless both regions select each other as merge partners. A region
that was unable to merge during a given iteration because its selection
was not mutual, may succeed in a subsequent iteration.

Figure 9(a). The result of the shrinking algorithm performed on a
region with a hole is a ring in the shape of a medial axis.

'OC - nod

Figure 9(b). The ring is uncoupled in such a way that the region root is
located at the point on the ring that is furthest from the boundary.

ALGORITHM COMPLEXITY
The region growing algorithm complexity depends upon both the imple-
mentation of the region growing primitives and the number of iterations
required to arrive at the dcsircd rcsult. The cost of implementing a
region growing primitive, Embed, Dist, or a reduction, is O(d) where d
is the maximum distance across any region. The Exchange primitive is
implemented in constant time.

The speed of the primitives also depends on the region shape and topol-
ogy. Convex blob-like regions containing 0 (d 2) elements are processed
in O(d) time. Non-simply connected regions require slightly more time
than simple regions due to the addit~onal time taken to compute the
embedded tree. The complexity for these regions is still O(d) and, in
general, the cost increase will be less than 2. Strange concave shapes,

such as spirals, require the most time. Here d is the longest path
between two pixels in a region which does not go outside the region.
Howcvcr, these regions rarely occur in practice. The ideal cost com-
plexity is Ollog d l but, this cannot be achieved bccause of routing limi-
kitions on a mesh-connected architecture.

The number of itcrations also dcpcnds upon [he rcgion dimension d. In
an ideal situation, merging of a two-dimensional region can be achieved
in O(hg d) parr\llcl rncrgcs starting with cach pixcl as a region; how-
cvcr, ~f only one merge occurs during cach iteration thcn the worst casc
comnlexitv is O(d).
Thcrc are t\vo heuristics which can greatly reduce the number of merge
itcrations. The first is the split phasc which was mentioned earlier. The
split algorithm only requires U(log ri) computations for region grow-
ir~g primitives (although routing is still O(dj) and O(log d) itcrations to
complctc. Scconcl, in many practical applications there is a "back-
gruund" behind a collcction of objects. This background, being a singlc
rcgion, could dominaltc the algorithm cost. However, in most cases it is
possible to remove the background from consideration by a fairly simple
thrcsholding technique. The algorithm cost thcn dcpcnds on the span of
tIic hrgcst objcct which remains.

Figure 10. hlcrpng order. Conlention for ~ncrging is indicated by the
itrrows in the diagram. (a) and (h) rcprcscnt tuo dilfcrcnt situations that
may develop. In both cases regions lirst choose a neighbor based on thc
11or110gc111'1ty criterion 2nd rc'.oIvc t ~ c s by selecting the neighbor with the
higher 11). Two rcglonq nloy only mcrgc if tl!c choice is mutual.

PARAI,LEI, SPLIT AND MERGE ON THE MAS-
SIVELY PARALLEL PROCESSOR
A pilrallcl split and merge algorithm has been implemented on the hlas-
siv'ly Parallel Processor (MPP), using the parallcl rcgion growing Lcch-
n~cl~ic outlined in the previous sections.

'The Parallel Split and Merge Algorithm
111 ordcr to implement the parallel region growing algorithm, a procedure
for gcnCmtlng the embeddcd trce d a u structures and a set of primitives
closcly rcscrr~bling those outlincd ~ u l i c r , were dcsigncd. These primi-
tivcs ~ u c as follows:

EXCHANGE(ridm, pixval, direction, neighbval):

This proccdure receives as input the region ID matrix (ridrn) and
the pixcl values (pixval) to be exchanged across the region border.
The parameter direction is needed to discriminate between neigh-
boring regions bordering in different directions. The pixcl values
of neighboring regions arc returned in neighbval.

S~ncc all rcgions are square in the split phase of the algorithm, it is not
necessary to create embeddcd trws to represent the rcgions. On the
h P P the regions in f ie split phase will have dimcnsions mxm where m
is a power of 2. Hence, the upper-left comer PE of each region can be
designated as the region root. Then, by initially treating cach pixcl in
the image as an independent rcgion, an iterative ti~crging technique can
bc used to create larger square regions comprised of fow subrcgions
(one in each quadrant). This has the same effect as a top-down split but
is more efficient. Using the homogeneity criterion suggcslcd earlier, eqn
(I), all iniormation needed to dcscritx a region can be accumulatcd at
the root during the region growing prmess. In effect. a larger region's
properties (e.g. minimum and maximum values) are obtllined from the
properties of its four subrcgions. Thcrc is no nced to re-evaluate the
minimum or maximum values of all pixels in a region, but simply to
calculate the minimum and maximum of thc values held at the roots of
the four subrcgions. A larger rcgion is created by merging its four qua-
drants only if all four quadrants are ho~nogencous rcgions and the com-
bincd propcrties of the subregions satisfy the homogeneity criterion.
Hcncc, reduction operations only require a constant number of stcps to
perform and the distribution operation can be pcrfornlcd in O(log(m)j
stcps. Howcvcr, since the MPP only has near-neighbor connections the
cost of routing is still O(m). This could be reduced if a more complex
interconnection network between PE's were available (e.g. O(log(m))
given a hypercube interconnection). In any casc, this is much more
efficient than using the embeddcd trees, and only requires a slight
modification of the parallel primitives described above. The modified
primitives for square rcgions are described below.

These procedures rcccivc as input the splitting iteration rluiirbcr lo
determine the dimensions of the rcgions k i n g processed and the
localions of the rcgion roots. A region's minimum and maximum
arc computcd by shifting the minimum and maximum values of its
subrcgions to the region root. Thc resul~? arc rcturncd in rootval.

The parameter dimensions is an array containing the dimensions
of each region. This information is used to broadcast the root
valuc to all PE's within the rcgion. The result is returned in pix-
val.

Both phases of the split and merge algorithnt arc tlcscribcd bclow. Each
phasc of the algorithm is first outlined by div~ding it into a scrics of
stcps. The corresponding pseudo-code for cach phase is thcn broken
down into the same steps. The WHERE (condition) conswuct is a
nlaisk that only cnablcs those PE's for which condition is true. The

E:3II%ED(ridm, pptrs, cptrs, mautd): ANY (condition) construct returns a value of true i f condition holds

~ t , , ~ proccdurc rccelvcs as input region ID matrix, and true for any PE in the system. The homogeneity criterion suggcstcd car-
performs the rcgion shrinking and embeddcd trcc generation. It lie', eqn.('), 's used.

rctums a matrix of parent and child pointers (pptrs,cptrs), and a
value proport~oni~l to the lnaxitnum tree dcplh, maxtd. Region ID S p l i t ~ h a s c algorithm

lrro is rcscrvcd to mask out regions that need not be processed.

hlIN(pptrs, maxtd, pixral, rootval):

hlAX(pptrs, maxtd, pixval, rootval):

These procedures receive as input h e trec parent pointcrs, pptrs,
the rnzximum Vcc dcpth, milxtd, and the pixel values, pixval. and
perform reduction functions. Thcy deliver the region minimum
and maximum, respccti\'ely, to thc region roots (rootval).

DIST(cptrs, maxtd, rtwtval, pixval):

This pnxcdurc receives as input h e trce child pointcrs (cptrs), the
maximurn tree dcpth (maxtd), and the values contained at the
rcgion root.; (rootval) and distr~butcs them throughout the rcgions
(piuv;tl).

1. Since initially all pixels are Lreated as independent rcglons, the
region minimums and maximums are set to cqual the pixcl valucs
and the split iteration is set to onc.

2. Each region's maximum and minimum values are computcd.

3. The region ranges are calculated at the roots.

4. I f any rcgions display a range within the allowcd tt~rcshold, the
new region dimensions are set at thc mou.

5. The itcration value is ~ncrementcd and, unless either the itcration
value exceeds log(n) (n is the Image dimension) or no rnsrges
occurred during the laxt iteration, control is returned to step 2.

6. The regions' root PE ID's are distributed to all region PE's using
the region dimensions contained at the region roots.

The Sulit ~ h a s e pseudo-code

/* Variable declarations *I
idm, pid, roornode : PARALLEL ARRAY [1..128,1..128]
O F [0..16383];
pixval, regmin, regmax, T , range : PARALLEL
ARRAY [1..128,1..128] O F [0..255];
dimension : PARALLEL ARRAY [1..128,1..128] O F [1..128];
irerarion : [1..71;
merge : BOOLEAN;

1. /* Initializations *I
regmin t pixval;
regmax t pixval;
iteration t 1;

2. REPEAT
/* Compute the rcgion minima and maxima. * I
SQRhllN(iteration, regmin, regmin);
SQRMAX(iteration, regmax, regmax);

3. /* Calculate the new region ranges. */
rootnnde t f(pid,iteration);
FT'HERE rootnode

range t regmax- regmin;

4. /* Calculate new dimension for homogeneous regions. */
merge t ANY(range < T);
I F (merge) (

WHKRE ((range < T) AND rootnode)
dimension t 2"'"""" ;

5 . /* Terminate when cithcr no merges occurrcd in the prcvious
ltcration or the enure image has bccn spanned. *I
iteration t iteration + 1;

UNTIL ((iteration > log(n)) OR NOT merge);

6. /* Broadcast the reglon ID'S to all PE's conlaincd within
their boundaries. */
SQRDIST(dimension, pid, idm);

The Mcrne uhase algorithm

1. Embedded trees for all rcgions are constructed using the rcgion
ID's.

2. Minimum and maximum values and region ID'S are exchanged
between ncighboring rcgions, to determine the rangc of combined
rcgions, and posslblc mcrgcs.

3. Lowcst merge nngcs are accumulated at the rcgion roots and dis-
tributcd to all rcgion PE's.

4. In case more than onc neighboring reglon yields the same "lowest
mcrge range", the region with the higher ID IS selected.

5. Choices of merge selection are exchanged with neighbors. If two
rcgions sclcct each other, both regions merge by assuming the
smaller ID of the two.

6. Unless no mcrgcs occurred during the last iteration, control returns
to step 1.

The Merne phase nscudo-code

/*
Variablc declarations.
*I
ndm, regmins, regmaxs, mergeneigkbid, mergeckoices, mcrgechoice,
neighbmerge~.hoice : PARALLEL ARRAY [1..128,1..128]
O F [0..16383];
pi.r~,ai, mintoroor. muxtorool, mergerange, neiglibmin, neighbmax,

newmergerange, besrrangeval : PARALLEL ARRAY [1..128,1..128]
O F [0..255];
c p v , pptr : PARALLEL ARRAY [0..5,1..128,1..128] O F BOOLEAN;
merger : PARALLEL ARRAY [1..128,1..128] O F BOOLEAN;
maxtd, i : INTEGER;

1. /* Create embedded trees for all regions and calculate
the region minima and maxima. */
EMBED(ridm, pptrs, cptrs, maxtd);
hlIN(pptrs, maxtd, pixval, mintoroot);
MAX(pptrs, maxtd, pixval, maxtoroot);
~ ~ ~ ~ (c p t r s , maxtd, mintoroot, regmins);
DIST(cptrs, maxtd, maxtoroot, regmaxs);

2. /* Initialize h e merge range to the threshold value. */
mergerange t T;

/* Exchange ID, minima, and maxima information
w ~ t h all neighbors. */
FOR (i t 1 T O 4) (

EXCHANGE(ridm, regmin, i, neigbmin);
EXCHANGE(ridm, regmax, i, neigbmax);
EXCHANCE(ridm, ridm, i, neighbid);
/* Dctcrmine the homogeneity rangc valuc of each neighbor. */
WHERE (neighbmax < regmax)

neighbmax t regmax;
WHERE (neighbmin > regmin)

neighbmin t regmin;
newmergerange t neighbmax-neighbmin;
/* Record the range and ID of the region
yielding the best rangc. */
WHERE ((newmergerange < mergerange) AND

(ridm <> neighbid))(
mergerange t neamergrange;
mergeneighbid t neighbid

1;
1;

3. /* Accumulate the best merge range at the root. */
MIN(pptrs, maxtd, mergerange, mintoroot);
DIST(cptrs, maxtd, mintoroot, bestrangeval);

4. /* Select the neighbor yielding the bcst rangc value and arbimte
ties by selecting the neighbor with the largcst ID. */
WHERE (bestrangeval = mergerange)

mergechoices t mergeneighbid;
MAX(pptrs, maxtd, mergechoices, maxtoroot);
DIST(cptrs, maxtd, maxtoroot, mergechoice);

5. /* Exchange mcrge choice information with neighbors.
Choices must be mutual for a mcrge to occur. */
FOR (i t 1 T O 4) (

EXCHAN(;E(ridm, mergechoice, i, neighbmergechoice);
EXCHANGE(ridm, ridm, i, neighbid);
FYHERE ((ridm = neighbmergechoice) AND

(mergechoice = neighbid))
merger t true;

haveamerge t ANY(merger);
/* For mcrglng rcgions, arbiuarily, select thc smaller
of both ID'S as the new region's ID. *I
I F (haveamerge) (

WHERE (merger AND (neighbid < ridm))
ridm t neighbid;

MIN(pptrs, maxtd, ridm, mintoroot);
DIST(cptrs, maxtd, mintoroot, ridm);

1;
1;

Results
A high-lcvcl language (Parallel Pascal 1121) implcmcnlation of thc
region growing primitives was run on the hfPP. A series of timing tcsts
wcrc conducted using images of square NxN regions with thc set of

dimensions: N = 8, 16, 32, and 64 (Table I). These test sets were
representative of blob-like regions with d=N.

Table 1. Measured Timing Results for Primitives.
- --

Dimension Time ms
embed min max dist exchan e

22.2983 3.5137 2.7260
41.8582 6.6043 5.1177 0.0660

64 80.9739 12.7876 9.9032 0.0660

The following set of dming expressions, given in milliseconds, were
derived from these results.

T,,,(N) = 1 . 2 2 ~ + 2.741 (2a)

The measured valucs do not deviate from the above equations by more
than 2 percent.

An estimated performance analysis was conducted assuming an optimal
machine-level encoding of the primitives. The clock cycle time for the
MPP is 100 nanoseconds. Furthermore, it was assumed that Imp set-up
in the host could be overlapped with array computations. This is possi-
ble on the MPP since a FlFO buffer exists between the host and the PE
array which allows the host to perform serial calculations while the
m y is busy processing instructions in the buffer. The analysis yielded
the following expressions.

fdirt (N) = 0.0104N + 0.0034 (3 ~)

Tex,,lm8, (N) = 0.0358 (3d)

The estimated results range between 2 to 15 times faster than the m a s -
urcd results. This is probably due to two main reasons. Fist, the Paral-
Iel Pascal code generator produces inefficient code since it currently
does not perform any code optimi~ations; second, the host may not be
able to generate instructions fast enough to keep the processor array
busy; especially for boolean data operations. (Conditional branches
which are dependent on processor array valucs cause the FlFO buffer to
empty. however no such branches occur in the implementation of the
primitives).

A similar comparison analysis was conducted for the split and merge
phases of the algorithm. The measured results for the blob-like regions
arc summarized in Table 2.

Table 2. Measured Timing Results for Split and Merge Phases.

L~imension I Time (ms) 1
N - . 1 Split / Merge
8 1 2.7276 1 38.1 122 1 :l "329 1 67,1308 1

4.2128 125.1579
64 5.2824 241.2121

Thcsc results yielded the following expressions.

The first term in the split p h w expression represents the cost due to the
shift operations needed to route information through an NxN mesh con-
nected region. This could be reduced to O(1ogN) given a hypercube
interconnection scheme. The second term in the expression is related to
the number of arithmctic operations performed to create an NxN region.

The third term includes the overhead operations that arc independent of
N. The merge phase results are primarily a product of the primitive
operations and therefore yield an expression of O(N). The estimated per-
formance using an optimal encoding is as follows.

For the split phase the estimated performance was three to five times
faster than the measured results. Since the merge phase of the algorithm
is highly dependent on the parallel primitive implementation, we could
predict that the estimated performance will be approximately ten times
faster than measured results. This is in fact the case as demonsuatcd by
the expression above.

A technique for region growing on a highly parallel SIMD computer has
bcen described. This technique is based on a "best merge" paradigm
which imposes an ordering to the parallel merge sequence. Three funda-
mental primitives for region growing have bccn defined: reduction, dis-
tribution, and neighbor exchange. Furthermore, it has been shown that
the split algorithm on the target architecture is efficiently implemented
by region growing using special primitives for processing square regions.

A simple homogeneity criteria, pixel range, has been used to demon-
smte the basic parallel techniques. However, arbitrary complex homo-
geneity functions can be computed with this scheme. Additional reduc-
tion functions such as PRODUCT and MEAN may bc implemented with
a similar efficiency tothe primitives MAX and MIN. An embedded tree
structure has bccn introduced to implement the region growing primi-
tives on a mesh-connected SIMD system.

REFERENCES
[I] D. H. Ballard and C. M. Brown, Compurer Vision, hentice-Hall,

Englewood Cliffs, New Jerscy, (1982).

LLj A. Rosenfeld and A. Kak, Digital Picture Processing. Academic
Press, New York, New York. (1982).

131 S. W. Zucker, "Survey, region growing: childhood and adoles-
cencc," Computer Graphics and Image Processing 5 , pp. 382-399,
(1976).

[4] S. L. Horowitz and T. Pavlidis, "Picture segmentation by a
directed split-and-merge procedure," Proceedings 2nd IJCPR, pp.
424-433, (August 1974).

[5] J. P. Gambotto and 0. Monga. "A parallel and hierarchical algo-
rithm for region growing," Proceedings of rhe 1985 IEEE Confer-
ence on Compuler Vision and Pallern Recognition pp. 649-652
(1985).

161 A. P. Reeves, "Survey, parallel computer architectures for image
processing," Computer Vision Graphics and Image Processing
25, 68-88 (1984).

[7] A. P. Reeves, "Highly parallel computer architectures for scientific
applications,"

[81 J. Kitller and M. J. B. Duff, lmage Proce.s.ring Sysrem Architec-
lures , Research Studies Press, Letchworth, England, (1985).

191 A. V. Aho, I. E. Hopcroft, and J. D. Ullman, The Desian and
Analysis of ~ompute ; Algorithms , Addison-Wesley, ~ i a d i n ~ ,
Mass., (1974).

[lo] A. P. Reeves. "A systematically designed binary array processor."
IEEE fiansactions on Con~purers C-29, pp 278-287 (1980).

[I l l K. E. Batcher, "Design of a massively parallel processor." IEEE
Transactions on Computers C-29(9) pp.836-840 (September 1981).

1121 A. P. Reeves, "Parallel Pascal: an extended Pascal for parallel
computers," Journal of Parallel and Disrribured ~ o m ~ u t i n g 1 pp.
64-80 (1984).

[I31 R. W. Taylor, M. Savini, A. P. Reeves, "A fast algorithm for
range image segmentation," I987 IEEE Systems Man and Cyber-
nerics Annuai Conference (October 1987).

HYPERCUBE ALGORITHMS SUITABLE FOR IMAGE UNDERSTANDING
IN UNCERTAIN ENVIRONMENTS

T L . Huntsberger, A. Sengupta

Intelligent Systems Laboratory
Depanment of Computer Science

University of South Carolina
Columbia, SC 29208

ABSTRACT
implemented on a hypercube architecture indicate the flexibility inherent

Computer vision in a dynamic environment needs to be fast and in the design [BOND88, JONE88, WILL881.
able to tolerate incomplete or uncertain intermediate results. An
appropriately chosen representation coupled with a parallel architecture IMAGE SEGMENTATION ALGORITHM
addresses both concerns. The wide range of numerical and symbolic pro-

An iterative algorithm which performs clustering in an image color
cessing needed for robust computer vision can only be achieved brough
a blend of SIMD and MUID processing techniques, 1024 element Space is used for image segmentation LHUNT85aI. This clustering in

color space is done with the fuzzy c-means algorithm generalized by
architecture manufactured NCUBE Beaverton, Oregon Bezdek [BEZD81], The perfomance of this algorithm on a Single

has these capabilities, and was chosen as the test-bed hardware for Instruction Single Data (SISD) machine has been a
development of highly parallel computer vision algorilhms. typical runtime of from hundreds of minutes to 40 plus hours depending

This Paper Presenb and analyzes parallel algorithms for color on the hardware used. A recently devclopcd integer version of the algo-
image segmentation and edge detection. l k s e algorithms are Part of a rithm coupled with lookup tables for the distance metric and exponentia-
recently developed computer vision system which uses multiple valued tion gives an order of magnitude increase in perfomance on a SISD
logic to represent uncertainty in the imaging Process and in intermediate machine, with the tradeoff of increased storage requirements [CANN86].
results [HUNT86]. Algorithms for the extraction of three dimensional upon investigation, it was found that paions of the algorithm
~ r o ~ d e s of objects using dynamic scene analysis techniques within the we, highly parallel in nature and that a significant performance bencfit
same computer vision system framework [HUNT873 HUNT881 are briefly can be achieved by exploiting this inherent parallelism [HUNT85b].
examined. Results from experimental studies using a 1024 element
hypercube implementation of h e algorithms as applied to a series of The clustering procedure has two phases: cluster center generation

and membership value determination from these cluster centers. This
natural scenes will also be reported. means that there is an inherent sequential limitation to the algorithm,

INTRODUCTION
since each phase relies on the output of the other. Expressions for the
cluster centers and membership values are givcn below:

Several supercomputers such as the NEC SX-2, the Cray Research
CRAY-2, and the ETA-I0 offer the possibility of extremely high speed
execution of various computer vision algorithms. However, the syn-

i o l , k) m x k

v, = k = l

chronization of numerical processing and symbolic manipulations of (la)

higher level vision information has been proven to be a difficult problem.
k=1

The massively parallel architecture of the conncction machine addresses
some of the underlying problems witll processing for image understand- for the cluster center v~ and
ing [BALL83, HARR861. The large number of processors needed for
such a machine for computer vision would dictate a possibly prohibitive
cost. A modular pipeline architecture such as the PIPE design allows
computer vision tasks to be partitioned [KENT85].

The low level operations of computer vision such as edge detection
and component labeling are efficiently accomplished on parallel arrays of for the membership value h. where c is the number of clusters, d,k is a
processors such as the ZMOB [BANE81, KUSH81, R[EG81], the homo- distance metric, m is a weighting exponent and n is the total number of

geneous multipmessor [DIMOSl, RAM.4861 and systolic arrays points being analyzed. The values used in the segmentation ~ h a s e of the
[K U N G ~ ~] among R~~~~ a review OF the current designs Computer vision system are n = 9, m = 2.0 and c = 2 with a Euclidean

for parallel architectures for image processing [REEV84]. The develop distance in RGB 'pace.
men1 of reconfigurable architectures like the PASM design [SIEG8I] has The scheduling table for the parallel implementation of the cluster
led to more flexibility in the range of tasks possible on a givcn architcc- generation phase of the segmentation algorithm indicates that generation
ture of this type, Since the nature of image understanding is more of cluster centers can be accomplished in 13 machine cycles using a 16
abstract at higher levels, vastly different tools are needed to perform node hypercube configuration, as opposed to 177 operations on a scqucn-
higher level operations such as object identification. Putting more intelli- tial machine. Partitioning the tasks along these lines differs from the
gence into the operating system for c~~ntrol in image understanding tasks multistage pipeline, which was the tjriginal application-specific design
was recently suggested in [DELP85]. [HUNT85b]. Anafysis of the membcr ;hip value determination portion of

~h~ large bandwidths (100 MFLOPS) for feature the algorithm indicates that 16 cycles will be required on thc same hypcr-

exuaction algorithms has severely limited response times in most vision cube configuration, as opposed to 212 operations on a sequential architec-

systems. Many architectures are capable of local image operations, but ture.

become very inefficient for higher order symbolic processing. This is The implementation of the clustering algorithm discussed above has
due not only to the architecture design itself, but also to the utilization of been designed to only allow interprocessor communication between
algoribms and pmessing techniques not optimized for parallelism. nearest neighbor nodcs in thc hypercube network. This will greatly cut
Recent results Tor a number of both low and high level vision algorithms down on communication ovcrhcad timcs and should allow accurate

reports of running times, since the direct peak interprocessor communica-
tion speed on the NCUBE/IO is 180 Megabytedsec. Each run of the
clustering algorithm will typically take 5 iterations to converge. Thus,
there are typically about 1945 floating point operations involved in the
production of the membership values and cluster centers for each pixel
for a sequential analysis, or put another way, 11.7M floating point opera-
tions for each frame of size 240x256 full color pixel dam Recent results
of parallel algorithm development on the NCUBE/lO have indicated a
relatively slow sustained processor floating point performance of 0.14 to
0.26 single precision MFLOPS [GUST88]. Allocation of the full 1024
nodes as 16 element sub-cubes gave a near real-time segmentation rate of
1.2 seconds per frame.

Although the MIMD algorithm just discussed exhibirci a possible
parallel speed-up of about 82 percent, message buffering for interproces-
sor communication within the AXIS operating System on the NCUBE/IO
hypercube totally negates this speed-up. As observed by the Sandia
group, unless overlapped communication cycles can be built into the
algorithm, interprocessor transfers typically take about 365 microseconds
per four byte transfer [GUST88]. As the operating systems on hypercube
axhitectures evolve, this speed bouleneck will be eliminated with
unbuffered nearest neighbor communication protocols included at the
algorithm level.

The hypercube architecture is flexible to allow a l m t e mappings
of algorithms. The possible parallel implementations of the segmentation
algorithm for the hypercube would be decomposition of the image data
with very little interprocessor communication needed, or a 5 stage pipe-
line. Both of these approaches were investigated, with the expected
results. If the image data set is decomposed into windows of size 9 X 6
pixels, with a single window on each of 1024 processors, the segmenta-
tion time is reduced to 40 milliseconds per 240 X 256 full color frame.
Another version of the data set decomposition technique would assign
two processors to each window, with each processor computing a single
cluster center and then exchanging the results. Despite the simultaneous
calculation. the communication overhead drove the segmentation time up
to 67 milliseconds per frame.

The five stage pipeline design allows each iteration of the algo-
rithm to be compuwl in one stage of the pipe. For five processors
arranged in a ring pipeline the number of interprocessor communication
cycles is 35 with overlapping and a segmentation rate of 54 milliseconds
per frame. This time is about of factor of 1.4 times slower than the
image data decomposition method. If a five stage pipeline with two pro-
cessors in each stage is constructed for the segmentation process, the time
increases to 92 milliseconds due to 11% extra interprocessor communica-
tion cycles.

PARALLEL EDGE DETECTION ALGORITHM

Once the membership values to the color cluster centers are deter-
mined, the process of edge detection is done using these membership
values. Local homogeneity properties of a color image are evaluated
with set operations. An edge operator has been developed that is
independent of thresholds and that mats the pixel color characteristics as
a vector [HUNT85b]. The information for the location and strength of
color edges is resident in the hypercube processors after the image

segmentation process. This leads to efficient edge detection for input to
higher level processes, such as shape representation lJWNT861. due to
the elimination of reloading time for b e membership values.

Ambiguities in edge strength and location can arise from many fac-
tors. Among these are noise in the sensors and motion blur of region
boundaries. Membership values are close to one within a homogenews
color region, and drop close lo zero after crossing the boundary of the
region. The corresponding change from one to zem will occur in the
membership values of the adjacent region. If regions are treated as
image subsets, the spatial intersection between these subsets can be
defined as an edge.

As such, we defined an edge operator based on local pixel charac-
teristics obtained from the cluster analysis. This operator has the form

and computes the relative homogeneity of pixel i with respect to its adja-
cent pixel. Here, pb and pa are the membership values associated with
pixel i to the image subsets a and b . The location of an interclass edge
is the point at which the operator

EDGELOCfi = HOMOC, - IIOMOGt. (3)

experiences a zem-crossing, where j and k are labels for two adjacent
pixels. Both operators are only defined for two adjacent pixels, where
the index a in (2) is the set label corresponding to the maximum
membership value for pixel j and index b is the set label corresponding
to the maximum membership value in pixel k .

From the homogeniety information derived in equation (2). it is
possible to express the svength of the edge in terms of a membership
value to the set of ideal step edges. This edge strength is defined as

where i and j are two adjacent pixels, and 2 is a normalization factor.
A diffuse edge is chara~terized by values of LEDGE:^ intermediate
between zero and one, being closer to one as the interface between two
adjacent color regions becomes more distinguishable. This operator is
computed only at the zero crossings of operator (3). i.e. where evidence
for an edge exists.

Determination of edge location and strength was only implemented
in the data decomposition hypercube mapping scheme used in the seg-
mentation phase of processing. The edge location using equations (2)
and (3) and the same size windows as in the segmentation step took 9.7
milliseconds per frame. It is anticipated that this step can be interleaved
with the segmentation phase. Determination of edge strength varied
depending on the edge frequency found in the previous slcp. Typical
times on our full color natural images ran on the order of 2 to 4 mil-
liseconds per frame.

DYNAMIC SCENE ANALYSIS
In this section we analyze a possible parallel technique for the

determination of the optic flow field in a sequence of images. This tech-
nique exploits the link between contour and region deformations that is
inherent in (he behavior of moving objects as viewed by a monocular
o b w e r . The segmentation method mentioned in a previous section is
extended to deal with dynamic sceres. We consider a packet of k
framcs at a time for analysis, k normally being four or five. The cluster-
ing analysis is done for the first frame of this k frame sequence. The
color clustw centers obtained are used as reference centers for the calcu-
lation of the region characteristics for subsequent frames.

These centers allow a connected components analysis to be per-
formed using the technique discussed in Jones [JONE88]. The typical
case timing on a 256x256 image was 636 milliseconds on a 6 dimen-
sional 7 MegaHertz NCUBE system. After the connected components
calculation is performed, funher calculation of principal components can
be done using the buuerfly accumulation algorithm [JONE88].

Changes in these principal components are used as features ior spa-
tiotemporal deformation studies. A series of simultaneous lincar qua-
tions is derived from the deformation of four of the low order principal
components. Sequential versions of these algorithms are discussed in
[HUNT87, HUNT881.

DISCUSSION
The 1024 element hypercube ar-hilecture allows the integration of

image precessing and computer vision modules under a single sfructure.
Studies of the parallel implementation of some recent dynamic scene
analysis work is also under way [HUNT87, HUNT881. The performance
improvement over the sequential algorithms just in the segmentation

phase of the system indicate that close to real-time three dimensional
analysis of moving objects can be accomplished on this type. of architec-
ture. We are presently implementing these algorithms on a 1024 element
hypercube (NCUBE/IO). In addition, parallel algorithms are being
developed for the higher level operations such as model base matching
[HUNT%].

ACKNOWLEDGEMENTS

One of the authors (TLH) would like to express his thanks to Judson
Jones of the Oak Ridge National Laboratory for his helpful comments
and software assistance.

REFERENCES

[BALL831
D.H. Ballard, G.E. Hinton and T.J. Sejnowski. "Parallel visual com-
putation," Nature, Vol. 306, pp. 21-26, Nov. 1983.

[BEZD81 I
J.C. Bezdek, Pattern Recognition with Furry Objective Function
Algorithms, Plenum Press, New York, 1981.

[BOND881
A.H. Bond and D. Fashena, "Parallel vision techniques on the
hypercube computer," Proc. Third Conf. ffypercube Concurrent
Computers and Applications, Pasadena, CA, Jan 1988, pp. 1007-
1010.

[CANN86]
R.L. Cannon, J.V. Dave and J.C. Bezdek, "Efficient implementation
of the fuzzy c-means clustering algorithms," IEEE Trans. PAMI,
Vol. PAMI-8, pp. 248-255, March 1986.

[DELP85]
E.J. Delp, HJ . Siegel, A. Whinston and L.H. lamieson, "An intelli-
gent operating system for executing image understanding tasks on a
reconfigurable parallel architecture," in Proc. CAPAIDM, Miami
Beach, FLA, Nov. 18-20 1985, ~ p . 217-224.

[DIM08 I]
N.J. Dimopoulos. "On the structure of the homogeneous multipro-
cessor," IEEE Trans. Computers, Vol. C-34, pp. 141-150, 1981.

[GUST881
J.L. Gustafson, G.R. Montry and R.E. Benner, "Development of
parallel methods for a 1024-processor hypercube." to appear in
SIAM Journ. Scientific and Stat. Computing, Vol. 9, No. 4. July
1988.

rHARR861
J.G. Harris and A.M. Flynn, "Object recognition using the connec-
tion machine's router," in Proc. IEEE Conf. Comp. Vis. and Part.
Recogn., Miami Beach, FLA, June 22-26, 1986, pp.134-139.

tHLJNT85al
T.L. Huntsberger, C.L. Jacobs and R.L. Cannon, "Iterative fuzzy
image segmentation," Pattern fiecognition. Vol. 18, pp. 131-138,
Apr. 1985.

[HUNT85bl
TL. Huntsberger and W.R. Wocd. "FLASH. A parallel architecture
for computer vision in uncertain environments," in Proc.
CAPAIDM, Miami Beach, FLA, Nov. 18-20 1985, pp. 280-283.

[HUNT861
T.L. Huntsberger, C. Rangarajan and S.N. Jayaramamurthy,
"Representation of uncertainty in computer vision using fuzzy sets,"
IEEE Trans. Computers, Special Issue on Multiple Valued Logic.
Vol. C-35, pp. 145-156, Feb. 1986.

[HUNT871
T.L. Huntsberger and S.N. Jayaramamurthy, "Determination of the
optic flow field from deformations of region properties," Part.
Recogn. Letters, Vol. 6, pp. 169-177, 1987.

[HUNT881
T.L. Huntsberger and S.N. Jayaramamurthy, "Determination of the
optic flow field in the presence of occlusion, Patt. Recogn. Letters,
in press.

[JONE88]
J.P. Jones, "A concurrent on-board vision system for a mobile
robot," Proc. Third C o g . Hypercube Concurrent Computers and
Applications, Pasadena, CA, Jan 1988, pp. 1022-1032.

[KENT851
E.W. Kent and S.L. Tanimoto. "Hierarchical cellular logic and the
PIPE processor: Structural and functional correspondence," in Proc.
IEEE Workshop Comp. Arch. P a t . A ~ l y s . Image Databare
Management, Miami Beach, lLA, Nov. 18-20, 1985, pp. 311-319.

[KUNG83]
H.T. Kung and M.S. Lam, "Real time signal processing VI," Proc.
Soc. POIE, San Diego, CA (Aug. 1983). pp. 143-158.

[KUSH8 11
T. Kushner, A.Y. Wu and A. Rosenfeld, "Image processing on
ZMOB," in Proc. IEEE Workrhop CAPAIDM, Hot Springs, Va.
(Nov 11-13, 1981), pp. 88-95.

IRAMA861
D.V. Rarnanamurthy, N.J. Dimopoulos. K.F. Li. R.V. Pate1 and
Al-Khalili, "Parallel algorithms for low level vision on the homo-
geneous multiprocessor." in Proc. IEEE Conf CVPR, Miami
Beach. FLA, June 22-26, 1986, pp. 421-423.

N E W 4 1
A.P. Reeves, "Parallel computer architectures for image process-
ing," CVGIP, Vol. 25, pp. 68-88, Jan. 1984.

[RIEG81]
C. Rieger, "ZMOB: Doing it in parallel," in Proc. IEEE Workrhop
CAPAIDM, Hot Srings, Va., Nov 11-13 1981, pp. 119-124.

[ROSE841
A. Rosenfeld, "The fuzzy geomeq of image subsets," Part.
Recogn. Letters. Vol. 2, pp. 311-317, 1984.

[SIEG8I]
H.J. Siegel. L.J. Siegel. F.C. Kemmerer, P.T. Mueller, Jr, H.E.
Smalley and Smith, S.D., "PASM: A partitionable SIMD/MIMD
system for image processing and pattern recognition," IEEE Trans.
Computers, Vol. C-30, pp. 934-947, Dec. 1981.

[WILL881
M. WiUebeek and A.P. Reeves, "Region growing on a hypercube
multiprocessor." Proc. Third C o g . Hypercube Concurrent Comput-
ers and Applications, Pasadena, CA. Jan 1988, pp. 1033-1042.

PRECEDING PAGE BUNK NOT FILMED

Efficient Scan Operators for Bit-Serial Processor Arrays

C. M. Fiduccia and R. &I. Mattheyscs
General Electric R & D Cc11tc.r

Schenectacly, NY 12301

R. E. Stearns
SUNY at All~any

Albany, NY 12222

Abstract
A fast algorithm is presented for broadcasting a word
of length w , on an n x n SIhlD array of bit-serial
processing elements, in time O(II + w). Data-skewing
problems caused by SIhlD restrictions are solved by
assuming that each processirlg element contains a shift
register and an activity Jag that allows each pro-
cessing element to conditionally ignore instrnctior~s.
The broadcasting algorithm is then extended to a
fast segmented-scan (prefix) algorithm that runs in
time O(n + (w + t) log n), where t is the time nrcded
to perform the arbitrary, user-defined, operatio11 on
which the scan is based. Because of the versatility
of scan operations, many algorithms written for rnore
powerful SILID computers, such as the Connection
Machine, can easily be adapted to bit-serial arrays.
Slightly less efficient algoritl~ms are also presented for
processing elements that lack shift registers

Keywords: Broadcast, parallel prefix, scan, S I l l D arrays,
bit-serial algorithms, meshes.

I. Introduction
The Connection Machine is a powerf111 Single Instructioli
htultiple Data (SILID) romputer cor15isting of 63Ii bit-
serial processi~ig elements (PEs) conliected by a global
router 111 addition t o providing grnrral i ~ ~ t r r c o ~ ~ ~ ~ r c t i o ~ i s
among the PEs, much like a telephol~e system, the router
can be used to implement sorting arld various segmer~ted-
scan (prefix) opclatiorls [Hil, Ble]. Due t o the relative cffi-
cicncy of scan%, nlariy Connection hIachi11e algorithms use
them heavily in conjunction with some sorting and a niin-
irilal number of general p~rn i i~ ta t ions . Algori thr~i~ w ~ i t t m
in this style can often be ported d i r ~ c t l y to bit-serial pro-
cessor arrays for which efficient scan inlplcrnentations exist.

In this paper u-e present a fast parallcl algorithm for
computing segrnrrited scans on a two-dimensional n x n
SILID array of bit-serial processors T h r ;llgoritlim takrs
O (n + (u ~ + t) log n) time to perform a scan on 12' data items,
~ c h c ~ e ui is tlie word lriigtll and t is the time to pc~fo1111
the binary operation on which the scan is based.

The scan algorith~n is adapted fro111 a novel SIbID
broadcasting technique that takrs O(r1 + t i t) tinir on a n

11 x n bit-serial array ill wliicli each P E has a n activity Jag,
that cleterniil~es whether tliat PE will execute or ignore the
current instructmion, plus a ~ h i j t register that is used t,o solve
dat,a-skewing problems. Machines such as the MPP [Bur]
and the G E Cross-Omcga chip [GE] have both of these fa-
cilities. In practice, our bit-serial technique is considerably
faster than tlir straigl~tbfor\vard word-level method. which
requircs O(trln) tiinr, and ha? the desirable property that it
is essentially i~ idrprndrn t of ~vortl l r~igt l i , for a large array,
since n + t o % n .

A sliglitly l f~ss rfficicrit broatlcasting techrliciue is also
prrsc~ntcd for P E s without shift rcgistcrs. However, the al-
gorithm is sufficiently Inorr complex that it makes a good
case for incl l~cl i~~g shift rrgisters in future drsigns of bit-
serial SIhfD arrays. Indeed, it r an be argued that , in ad-
dition to incl~~tl ing shift registers. the dath pntlis within a
P E can I)r rasily desig~ird so tliiit 1)roadca.sting takes place
at clock speeds; i.e., ill nlmut 7 1 + ur cycles. Such lliesh ar-
rays wollld t11r11 ~IC(.OIIIC co~ripc.tit,ive with rnachiries, s11c11
as t11r D.AP [Flan etal], \vhicli resort to glolx~l Ijllsses for
I)so;~tlcnsting.

For applicatio~ls, sucll as linrxr programming or Gaus-
sian elimination, iri wtiich I ~ r o a d c a s t i ~ ~ g is an esseritial part
of the pivoting operation. our fast bit-srrial algorithm
speeds up broadcasting by 11c:arly a fa.ctor of ur. This re-
d ~ ~ c e s t l ~ e l~roadci~sting timr to a sr l~i~l l fraction o f tlir piv-
oting ti~nc,, r;~tlic.r t11;1l1 dominatirig it.

11. Fast Broadcast
Co1i51cIri tlic ~) r o l) l ~ ~ ~ i i of h~ontlcasting tllr \,alucs in a given
ro\lr, of a L)it-scl~al SIXID array, to the 7n rows below it.
If the v;~lues a le mordi of lcrlgth ti-, the obvious word-level
row-at-a-time algolithm takrs O(~r*irz) time. Given tlie re-
strictions of tlita SIRlD niodel. it is not clear that a sig-
nificantly fastcr algoritl~m rxists. In tlii5 paper are show
how the inclu5ion of a shift rcgister it1 each P E , together
with t h r exploitation of the bit-serial nature of the array,
can be usrtl to rrtllire this time to O(171 + w). If shift reg-
isters are not ;~vail;~ljlc, we 5liaw hobv it can he tlone in
tirrir O (r r 1 + ~ i ~ l o g t ~) using a Inor(, cor~iplicatcd algorithm.
\Vr xiotc tliat lmth of these rrs~l l tc givr speedups on the
ordrr of r c . , 1v11r11 1)) 15 ~ i ~ f f i ~ i r ~ l t l y l a ~ g (~ . This i~ ~liiite sig-

nificant in practice. For example, consider the problem of
performing a pivoting operation on a 512 x 512 array using
32-bit words. If the bit-serial arithmetic in a P E takes time
O(w2), then the broadcast time (using our algorithms) is
on the same order a s the time t o do arithmetic, whereas
with the word-level O(u1m) algorithm, comniunicatio~l time
would completely dominate the pivoting operation.

Implicit in our algorithms is the ability of each P E to
conditionally ignore the current instruction. This is done
via a n ac t iv i t y flag. We also assume that each P E has
its own shift register, and that the PE's activity flag also
controls the shift register. This means that , i11 an inac-
tive P E , the contents of the shift register do not change.
011 the other hand, we view the bit-serial mesh as being
a global connection network that is e x t e r ~ ~ a l to the PEs
and is thus influenced only by the global controller. Thus,
the movement of bits along the mesh, into and out of the
one-bit mesh registers located "under" the PEs, is uncon-
ditional. An alternative view is that every PE, active or
not, must participate in moving mesh data , although an
inactive P E can neither read nor write its mesh register.
The major SIMD restriction is that all PEs must use the
s a m e address whenever a reference is made to a bit in the
local memory of a PE. No indexing is allowed within a PE.

Since the broadcasting of each word in the source row
is confined to one c o l ~ ~ n ~ l i , we confinr our attention to a
single column of the P E array. The bit-level algorithms in
the sequel may best be understood by referring to Figure
1, where a typical column of the array is depicted. The
basic idea is t o exploit the bit-serial nature of the mesh by
allowing each sending P E to s t r e a m its u? bits down the
bit-serial mtsh, while each receiving P E copies the bits as
they go by.

Note that there is no word-level description of this
bit-streaming process. If we can make it work in a SI5ID
environment, the broadcast will clearly take only O (m + t o)

time. The major p rob l r~n is that a given bit, of the word
being broadcast, arrives a t different PEs a t different times.
This causes skewing problems. 1)ecause all active PEs must
use the sanie lrlelnory address to store each i~lco~rling bit.
In this section, we sltow how t o solve the skewing problem
by assuming that each P E has a shift register. \Vc then
show how this proble~n can also be solved, without shift
registers, by accepting the fact that bits arc. first stored in
a skewed fashion, and then using a n O(ur log to) algorithm
to align them.

A. With a shift register
Assume that each P E has a bit-array B[O : w - I] in its
memory, serving as a u*-bit buffer. Initially, a sender has a
word in its buffer; eventually, every receiver will also have
a copy of this word 111 its buffer. In addition. each P E
has two one-bit flag registers S and R to indicate various
conditions. If a P E is a sender then S = 1 otherwise S = 0.
The value of S is assumed to be given as part of the input to
the broadcasting routine and is not nlodified by the routine.
The R flag is ustd to indicate that a P E has received its

copy of the word; a t that point. R = 1. To (leal wit11
the SIhID restrictions. we find it useful to ;rlso t r c ~ t cx;~cli
sender as a receiver. Thus, when R = 1 in all PEs, a c.01)).
of the word exists in every PE. The subtleties involvrd with
detecting this global condition are disc~~ssccl l)c,lo~v

Assoclatcd wlth each PE. there 1s also a one-l>lt meih-
register M whlch the P E can rcad ox tvrltc wllcn rt 1s : ~ c t ~ v c
The global instruction a d v a n c e m e s h causes the 1)it con-
tents of all mesh register to u~ico~lditionally "shift down"
one row. That is to say, each PE. active or ~ i o t . silr111ltarlc.-
ously sends the bit in its 11 rrgistcr to the, P E l)c*lovv ant1
replaces it with the bit in the, hl rc7gistc.r of thc P E a1)ove.
It goes without saying that the " d o w ~ ~ " dirr>rtio~i is 11sc.d
only for illustrative purposes and that any iii(.hl~ ~liov(~xii(~rlt
could be used in its place. Intlecd. it s l ~ o ~ ~ l (l I)(% (.1c,a1. t,liat
the entirc broadcast process ran bc. (.a111(~1 oiit 110t 0111~
along any direction of a P E array of any d i n i c r l \ ~ o ~ ~ rl > 1,
but also along any set of norle-disjoint paths of ally grir1111.

Finally, urc assurile that each PE has a shift rc'gistcr
SHR of length 1 > ul, where 1'= O(rc3). Tlic. i~~strr~ct ioxi
SHR(X. Y) s i m u l t a ~ ~ r o ~ ~ s l y stlifts the, rc*gistc.r's coxlt(.lit$ to
the right, reads a new bit from bit-rrgihtor S i l l t o tli(3 I(.ft
end, and writts the old right bit into 1,it-x.t.gistc~r Y. The.
purpose of the shift register is t o c.:~pt:~rc' t l l v 1)its strc-irrll-
ing down the mesh and shift thclrl 1111til t l~ (>y o(.(.i111y tllc*
rightmost ur bits of the register. This solvcs thc. skr~vi~ lg
problem, provided each P E can he niatle to coriditio~~ally
stop once the try bits are right justified in its shift regi5tt.r.
Corlditional stopping is acco~n~)lislic~tl ly l)rc>ccdili,g tl~ca 71'

bits in the t)roadcast strealri wit11 an cxtra h e a d e r bit.
Being up front. it is the first to eriiergc fro111 tlir. riglit (~1111

of the shift register, ant1 serves t o dt~activatc thr PE. Tllis
event can he drtectcd by. htry, rxsillg the valilr 1 for t11c.
header in conjunction with an i11iti;rlly (.11~ ;111~1 ~liift ic,gis
ter. Cartfrll allalysis rc~c.i~ls that it siifficc~s t o c.1(*;11. only
t,he lcft,most 1 - us hits of tht, shift rc,gisrc~. h i ~ ~ c . c - tli(. riglit-
most w bits are slliftetl out 1,rforc the‘ lialt i i ~ g c.oil(lit i o ~ i is
tested. It follows that no c l e (~ ~ . i r ~ g is ~ l (~ . (~ s s a r y \vli(>~i 1 = 1 0 .

The parallel SIhlD psc.ndo-coclv for tlic. c.rltil.l. 1,roc.t.s~
is given helow.

clear leftmost 1 - u1 blt5 of shift reqlstet
hI t S
SHR(XI,R)
for k +- 0 to rc. - 1 do

advance nlesli
when S do 11 e B[h] endwhen
s a n (a 1 , n)

endfor
whlle not all R d o

advance ~ n e s h
when not R do SHR(?LI,R) end\ \hcr~

endwhlle
shift ~lghtmost lo blts Into buffex B[0 u 3 - l]

The line h'l t S prrfor~ris two f i l ~ i (. t i o ~ ~ . Sill(.(' S = l for
a sencler and S=0 for a rcrrivc,r. t hcs c .o~inl la~~tl c~fli~crivc~ly
clears the 111esh and then writes the, hc*;rdrr \) i t S= 1 011 tlic.

mesh iff the P E is a sender.

The line SHR(M,R) immediately reads the header bit
into the shift register. The second argument R serves no
logical purpose a t this point; however, the fact that it can
be chosen as R is of considerable importance. It should
be noted that all instances of the SHR command use only
the arguments M and R, in that order. This means that
the data-path connecting M, R, and the shift register is
never changed. This implies that it can be efficiently imple-
mented in hardware. Such a concurrent data-path would
allow the algorithm to stream bits a t the clock rate. In
such a n iniplemcntation, the bit registcar R could be essen-
tially identified with the (complement of) the PE's activity
flag.

The for loop also serves two purposes. It is used, by
a sender, to iriovr its 111 bits B[O], B[u> - 11 onto to the
mesh. This portion of the code is factored out of the while
loop, below it, because the first ur steps of the algorithm
are the only ones that need to make memory references.
During this time, the initial rightmost tiT bits of the shift
register, assumed to be garbage, are shifted out by all P Es
and ignored Again, the argument R serves no logical pur-
pose, until t = ui - l , when (if l = 11,) the header bit
emerges from the shift register into R. Because the left-
most I - ul bits were cleared (set t o 0), it follows that the
first 1 to eventually emerge from the right end of a shift
register must be the header bit. Its recognition is therefore
a s s ~ ~ r e d . When this event occurs, the shift register has the
desired w bits right-justified and the P E deactivate3 itself.
If 1 > ti3, the leftmost 1 - u! bits are considered to be junk.

The whale loop keeps the bit-stream going, until each
receiver has a right-justified copy of the desired w bits in
its shift register. Of course, during this time, any P E that
has alrr,ady receiveti its copy (R=l=t rue) r ~ m a i n s inactive.
Xote that a when s taten~ent activates only those PEs that
satisfy its predicate; only those PEs execute the en,tire body
of the when statement.

The predicat,e not all R that cor.trols the while loop
needs some disrussion. It should be viewed inore as a spec-
ification than an actual evaluation of a predicate. Its real
intent is t o keep the bit-stream going until every P E has
received the ut bits and has deactivated itself. IVe note
that there is no harm in letting the loop continue past this
point, and that being able to do so offers a flexibility that
allows the algorithm t o be used on various P E arrays and
under various circumstances. Certainly, if the P E array has
a global flag [GE, Hill, so that each P E has an input to a
global AND gate, say, then the loop condition can actually
be evaluated as needed. Since such a massive gate u~ould
likely be pipelined, the termination condition would be de-
tected after the event actually occurred. As pointed out
above, this will cause no harm. A more likely situation is
that the distance m , that a word needs to be broadcast, or
a n upper bound for m , is known in advance or can be pre-
co~nputcd. In such a case, the while loop can be replaced
wit11 a for loop (counter). One need only guarantee that
the number of iterations is sufficiently large so as to allow

all P E s to deactivate themselves; such a scheme needs no
global gate

The clearing step, the for loop, and the final shifting
step can all be done in O(u1) time. The while loop takes
O(m) time since the last bit sent must be streamed down
into tlie shift register of the farthest receiver. The entire
process thus takes O(m + 111) time.

It is worth noting that , if the R register is identified
\vith the PE'I activity flag. t h r when statement, in the
while loop. can be rel,laccd 11y the unconditional instruc-
tion SHR(hI,R). Thls is possil)le b c ~ a u s e the condition not
R is then rcjui~alel~t to zf fhr PE I S acfzve, ant1 hmce only
active PEs wo~iltl pa~t ic i~) i \ t e . T11r 1)011lt is that. if P E s
11;ive the data I) n t l ~ tlt'p~rtc,tl 111 Figtire 1. t h r 1)otly of the
while loop call l)e I) c ~ ~ f o i ~ ~ i r d at clock spc-edi

B. Without a shift register
If the PEs do not coiitain sliift registers, the streaming idea
still works: however tlle svlrltion to tlie skewing problern is
a hit rnore co~~lpl icated. Tlie SIhID restriction that all PEs
use the same memory address, together with the fact that
a givrn bit of the wort1 1,eing hroadcast reaches different
PEs at different ti~rles, means that the bit will b e stored at
different ad(1resscs in diffcront PEs. However, the pattern
is rcgular c>no~lgh to I)(, ~nanagc,d hy a SIMD algoritlim.

During the first stagc. as tlie bits are streaming by, the
global controller generates a sccluence of addresses that cy-
cle through the u* locatio~ls of tlir I,r~ffcr B[O : tc - 11. This
cyclic addressing procrss collti1111c.s until every P E has a
(cyclically skewed) copy of tlir t i3 hits. Each P E is respon-
sible for deactivating itsc,lf. once, it has stored ut 1)its in
its buffer. to l) rrvr~i t the hits from being overwritten with -
garbage Each P E r~lust i115o maintain an offset c o u n t e r
that kcrps tracli of 11om n ~ ~ i c l i that PEs biiffer needs t o be
cyclically shiftcttl to correct its skc*w. This is done with an
ntltiitional log u3-Lit co~in t r r C in each PE. Once all PEs
have received copies of the I r l hits, a secorid stage of tlie al-
gorithnl is prrformrd. in order t o correct the skew in each
buffer, by cyclically shifting its contents as specified by that
PE's offset value.

There ar? two 11i1rric.r~ to this approach in a bit-
serial SIhlD rnvironmc~nt. Althol~gh C is a counter, we
d o not want to siinply increme~lt it in tlie obvious way.
In the worst case, carry pro1)agation would take O(logu1)
time, r e s ~ ~ l t i n g ill at1 O(n-r log 111)-ti11ie 1)roatlcastillg algo-
rithm. A more cfficicnt coliriting scheme is discussed be-
low. Once t lle offsets 11;ivr 1)ecn determined, the straight-
forward method of correcting t11c cyclic ske~vs of the buffers
is t o allow each P E that has a given skew s, 1 I: s < u1,

t o correct it by cyclically shift,ing the conteilts of its buffer
s units. Since any such a shift nrcds to move all u3 bits
of the buffer, it takes O(t1,) time for any value of s. Do-
ing this, lvitll a S I l l D algorit,llnl. for all u3 - 1 val~les of s

takrs O(U:') time. slio~v helow llow it can be done in
O(711 log I (>) tirnc..

In addition to t l i ~ s r complications. \Ire ~xlust still deal
witli th r problem of drtectiilg ~ v h c ~ i ;I give11 P E should

deactivate itself, so as not to overwrite the w bits in its
buffer BIO : w - 11. For this purpose, we again resort to
the use of a header bit. We essentially clear the buffer and
begin to cyclically store the incoming bit stream. Before
storing a bit, we check the bit already there. The first time
a value of 1 is seen, we are assured that it is the header
bit, and can thus deactivate the PE.

The parallel SIMD pseudo-code for the entire process
is very similar to the previous code.

M t S
for k t 0 to w - 1 do

advance mesh
when S do M t B[k] endwhen
B[k] t M

endfor
R t S
k t 0
c t o
while not all R do

advance mesh
when not R do

R t B[k]
B[k] t M
increment C from global k

endwhen
k t k+l (mod w)

endwhile
align the circular buffer B[O:w-l]

Note that there is no need to initially clear the buffers.
Since the instruction M t S overwrites the garbage in the
mesh, the for statement will store UI of these "clean" mesh
bits into the buffers, before the testing of register R begins.
This effectively overwrites and ignores the initial contents
of the buffers.

The global counter k serves two purposes. It specifies
the single (SIMD) memory location B[k], where each P E
stores the bit copied from the mesh, and it is also used
to update each of the offset counters C. After reaching lo-
cation B[w - 11, k returns to location B[O] and continues
in this cyclic fashion until all PEs are deactivated. Each
counter C simply tracks k until its PE deactivates itself; its
sole function is to remember the last value of k. When a PE
deactivates itself, its C points to the buffer location where
the broadcast word starts. Rather than letting each PE -
cyclically increment its own C register, in a bit-serial fash-
ion, the global controller need only broadcast the bits of C
that need to be modified to keep it current. This can be
done in a SIMD manner since all active PEJ have the same
value of C , and hence need the same update. Although as
many as log w bits of C may need updating, to increment
C, the total number of bits that need to be changed, to
perform w increments of C, is at most 2w [FidMat], rather
than w logw. Thus, on average, an update modifies only
two bits, and the streaming process, although not progress-
ing a t a constant rate, is slowed down by a factor two.

When the streaming process finally stops, each P E

has a copy of the w broadcast bits in its circular buffer
BIO : w - 11, together with a pointer C to the location
B[C] of the first bit. Again, there is no harm in letting
the loop go past the point when all PEs have been deac-
tivated. The contents of all buffers can then be aligned,
in d = log w iterations, by stepping through the d bits
C[d - I] , . . . ,C[O] of C. At the ith iteration, any PE that
has bit C[i]=l cyclically shifts its entire buffer an amount
2'. After d iterations, taking dw = w logw time, all PEs
have their buffers aligned and the broadcast is complete.

The entire process takes O(2m + w + ui log w) time.

C. Segmented broadcasting

The above descriptions of the two broadcasting algorithms
were given as if only one PE per column were sending a
word of length w to the m PEs below it. In fact, both algo-
rithms work for any number of senders. The real meaning
of register S is that any P E with S= l will send its word to
all PEs (if any) between itself and the next PE, below it,
that also has S=l. The crucial step that makes this work
is that every advance of the mesh is followed by a write
to the mesh. As a consequence, every sender overwrites
the bits coming from above and substitutes its own. This
effectively cuts the mesh into segments, at the will of the
user, according to the values given to S in each PE. The
term m should then be interpreted as the length of the
longest segment. Moreover, the values of S in one column
of the PE array can be chosen completely independently of
those in other columns. Any assignment to S is valid, no
matter what the dimension of the P E array. This means
that we are not restricted to simply broadcasting rows, in
two-dimensional array, or planes, in three-dimensional ar-
rays.

The only uncertainty in this description is how the
boundary PEs are connected. If the mesh wraps around,
the top P E in a column may be naturally viewed as being
below the bottom PE in that column. Since this interpre-
tation gives a potentially infinite column, there should be
at least one sender per column to guarantee that the PEs
in that column will eventually be deactivated. If the mesh
does not wrap around, any P E above the topmost sender
will receive garbage from the boundary of the mesh; how-
ever, because of the segmentation, all other PEs receive
well- defined values.

As an important example of segmentation, consider
a column with n = 2' PEs, numbered 0 through 2' - 1,
say. If we choose those PEs whose indices are multiples of
2' as senders, we effectively segment the column into 2'-'
segments, each of length 2', and can concurrently broadcast
a different value in each segment. Thus, for z = 1, each of
the n/2 PEs an even index will send its value to the P E
immediately below it. This idea is used in the next section
to build a broadcasting tree that serves as the skeleton of
the scan algorithm.

111. Fast scan
In this section, we first describe how one-dimensional
broadcasting can be made into a fast bit-serial scan algo-
rithm. We then show how to extend the scan algorithm to
two dimensions. The generalization to higher-dimensional
arrays is immediate.

Let X = (11, . . . , IN) be a list (vector) whose elements
are from some domain D. Assume that D has an associa-
tive operation on it, which may be though of as multipli-
cation. The product of two elements x and y is denoted,
as usual, by xy. Multiplication need not be commutative.

Given an input list X = (XI , . . . , xN) , the scan op-

erator a produces the list o (X) = (a l l (X) , . . . , alN(X)) ,
whose zth element is the prefix product xl,(X), where,
in general, T,, denotes the interval product x,,(X) =
x,x,+l . . . x,. \Ve also use the notation a (X) to denote the
product x I N (X) of the entire list. Note that a (X) is a list,
whereas x (X) is a scalar.

By appropriate choice of the multiplication operation,
the scan operator can be made to perform a variety of
useful functions. Its versatility may be further enhanced
when a bit-vector B = (bl , . . . , bN) is associated with the
input X. The vector B is used to segment X , by inter-
preting each 1 in B as the beginning of a new segment,
going from left to right. The scan function can then be
extended to a list of pairs, over {O,1) x D, by restricting
each prefix product that represents the zth output element
to the segment that contains the zth input element x,. That
is to say, if B segments X into X I , X2 , . . . , X,, say, then
U B (- ~) = (u (-Y~) , 0(-y2), . . . ,U(-y3))

The recursion .rrl,(lY) = TI, ,- l(X)x, makes it clear
that a scan can he performed sequentially in time O(N) ;
however, the computation is noi inherently sequential. In
[LadFish] it is shown that there exists a parallel prefix
circuit of size O (N) and depth O(1og N). A simpler ap-
proach easily yields a circuit of size O(N log N) and depth
O(1og ,V). \Ve now use this simpler approach to derive a
scan algorithm for a one-dimensional bit-serial array. The
algorithm is then extended to two-dimensional arrays.

Let m, 1 5 m 5 N , be a "midpoint" that parti-
tions the input .Y into two lists X1 = (x i , . . . ,x,) and
.Ti2 = (x , + ~ , . . . ,xN). Note that for every a > m, we have
xl , (X) = T ~ , , (X) ~ , + ~ , , (X) . This suggests that to com-
pute a(.Y), we concurrently compute the scans o (Xl) and
a (Xz) , and then simply "lift" every element of u(X2) by
premultiplying it by the last element xl,,(S1) = x(X1) of
o (S 1) . This gives the r~cursion

where a(bl , . . . , b,) z (ahl , . . . ,ah,).
For our purposes, the main observation is that the

last element xl,(X1) = *(XI) of o (Xl) needs to be broad-
cast to all the elements of a (Xz) . This three-step pro-
cess of computing u(X1) and o(X2), broadcasting x(X1)
to a(,Yz), and multiplying a(X1) by the elements of o (S 2) ,
is depicted in Figure 2. Although the technique is recur-
sively defined, it can be easily expressed as a log N-stage

iterative SIMD algorithm. The main problem is to deter-
mine, at each stage, which PEs need to broadcast. This
can be decided on the fly, assuming that each P E knows
its own index, or that each P E can precompute a logN-
bit value that specifies at which stages that P E should be
broadcasting.

Using our fast bit-serial broadcasting algorithm, and
assuming that multiplying two words of length w takes
time t = t(w), the time T(N) to perform a scan, on a list
of length N , satisfies the recursion: T(1) = 0,

Assuming N = 2k, and that at each stage of the re-
cursion we cut each sublist in half, the time to perform a
scan on a list X , of length N , whose elements are placed
one per PE, on a one-dimensional mesh, is

Thus, the use of our fast streaming broadcast method
gives an O(N) scan algorithm, rather than O((w + t)N),
for values of w, t; and N that are likely to be encountered
in practice.

A. Segmented scan
In this section, we consider how to perform the scan opera-
tion on a list X when we are also given a bit-vector B that
specifies a segmentation of X [Ble]. Rather than giving a
new scan algorithm, we simply show how to define a new
multiplication operation that yields the desired result.

We first take the bit-vector B , with elements in {0, I) ,
and the list X, with elements in D, and combine then into
a single list of pairs X ' = ((b l ,x l) , . . . , (b ~ , xr))) , with
elements in the cartesian product D' = {0,1) x D. We
now define the product of any two pairs (a, x) and (b, y),
in Dl. as

(a, x)(b, y) if (b = 1) then (b, y) else (a, xy).

If D has has a unit element I, the new product is
equivalent to (a + b, xby) , where xO = I for all x E D,
+ stands for boolean OR, and the bar denotes boolean
negation. Note that when b = l , meaning that y is at the
beginning of a new segment, we have xly = xoy = Iy =
y. If, on the other hand, b=O, we get xby = xly = xy.
Thus, b = l causes a segmentation, while b=O does not.
This means that by doing a conventional scan a (X r) on
the list of pairs (using the new multiplication), and then
projecting out the boolean component in the resulting list
of pairs, we get the desired segmented scan a e (X) of the
original list X. By case analysis, one can easily verify that
the new multiplication is associative.

B. Two-dimensional scan
In this section, we consider the problem of doing a scan
on a list X of length N = mn, whose elements are placed,

one per PE, in raster-scan fashion, on a two-dimensional
m x n bit-serial array. Thus, t h ~ first n elements of X are
in the first row, the next n elements are in the second row,
. . . , arid the last n elements are the last row. Note that in
this section, the row and column indices of the P E array
go from 1 to m and from 1 to n, respectively.

Although the P E array is two-dimensional, we wish to
treat .Y as a one-dimensional list and perform a scan oper-
ation on it, such that the result a (X) has its ith element in
the same PE that holds x,. The algorithm has five steps.

Step l(horizonta1 scan]: In parallel, for i = 1 to m, per-
form a left-to-right scan ~ (x (, - ~) , + ~ , . . . , x,,) of each row
I .

After this step, the (z,j)th PE contains the interval
product K (, - ~) , + ~ , (, - ~) , + , (? (') . In particular, the last col-
umn of the array contains the products

Note that the interval products in the first row are the
desired prefix products, those in the second row need to be
lifted by ql = pl, those in the third row by (12 = plp2, and
that, in general, those in the (z + 1)th row need to be lifted
by the factor q, = n l , (p l , p,). Clearly, (ql , . . . , q,) =
a (p l , . . . ,p,), so that a vertical top-to-bottom scan of the
last column of the PE array is required.

Step 2[vertical scan]: Perform a top-to-bottom scan of
the values in the last column of the array to compute the
"lifting factors" q l , . . . , q,.

Since q, is needed in row a + 1, we need to do:

Step 3[vertical shift]: In parallel, shift ql, . . . , q,-1, in the
last column of the array, down one row: q, + q,-1.

Since each interval product in row z, 2 5 z < m. needs
to be premultiplied by (the new value of) q, = xl,(,_l),(X),
which is now at the right end of row z, we need to do:

Step I[horizontal broadcast]: In parallel, for z = 2 to m,
broadcast the lifting factor q, to every element in row z .

There are two ways to perform this step. UTe can
simply do a right-to-left broadcast, or, if the mesh wraps
around horizontally, we can fixst shift the last column to
the right, into the first column, and then do a left-to-rpght
1)roadcast. The advantage of the second method is that
i t uses the same left-to-right h~oadcasting direction as the
scali in strp 1.

Now that each PE has the approlniate lifting factor,
we car] do.

Step Sllift]: In parallel, in every PE, in rows 2 through m,
riiultiply the lifting factor by t lie iriterval product computed
in step 1.

The product computed in the (z , j) th PE will then
be the prefix product ~1~(z -1)n(-y)~(z - l)n+ l , (t -1)n+) (X) =
K ~ , (, - ~) , + ~ (X) , as desired.

The times taken by the five steps are: TI = O(n +
(w + t)logn)), Tz = O(m + (w + t)logm), T3 = O(w),
T4 = O(n + w), and Ts = O(t). The total time to perform
the entire scan on the list .Y, of length N = mn, is thus
0 (m + n + (w + t) log(mn)). If m = n = n, the time is
0 (2 n + (w + t) log N).

Its clear that the technique used above for a two-
dimensional mesh can be easily extended to a multi-
dimensional mesh. Thus, if N = nd, the scan time,
or1 a d-dimensional mesh, for a list X of length N , is
O(dn + (w + t) log N).

A final observation is in order, for the realistic situ-
ation in which the length N of the list X is larger than
the number of PEs in the array. Suppose that the array is
m x n and that N < smn. for some integer s > 1. Assum-
ing each PE has sufficient memory to hold s elements, we
can again distribute ,Y in a raster-scan fashion, putting s
adjacent elements of X per PE. Each PE can then perform
a scan on its s elements, in time O(st), using the obvious
sequential algorithm. The sth result, in each PE, is then
used by the above scan algorithm, to compute the neces-
sary mn lifting factors. Since all s elements in a given PE
need to be lifted by the same factor, an additional O(st)
time is needed to compute the final results. The total par-
allel time is thus O(m + n + (w + t) log(mn) + 2st) . When
m = n, this is 0(2& + 2 s t) , for realistic values of t and
to, showing that s can be O(n/t) without increasing the
time by more than a factor of two.

References
[Ble] Blelloch, G., "Scans as Primitive Parallel Op-

erations," Proc. 1987 Internatzonal Conference
on Parallel Processang, 1987.

[Bur] Burkley. J.T., "MPP I'LSI Multiprocessor inte-
grated circuit design," in The Masscvely Parallel
Processor, J. L. Potter (Ed.), The MIT Press,
Cambridge , hfassachusetts, 1985.

[Fidhfat] Fiduccia, C.M. and hfattheyses, R.M., ''Bit-
Serial Counting in Linear-Time," in prepara-
tion.

[GE] General Electric Company, "The Cross-Omega
Machine," DARPA proposal, November 1984.

[Flan etal] Flanders,P.hl., Hunt ,D. J . , Reddaway, S.F., and
Parkinson, D., "Efficient High Speed Comput-
ing With the Distributed Array Processor," in
Hzgh Speed Computer and Algorzthm Organr-
zataon, I<uck, D.J. , Lawrie, D.H., and Sameh,
A.H., Academic Press, New York, 1977.

[Hill Hillis, W.D.. The Connectzon Machine, The
hIIT Press, Cambridge, hlassachusetts, 1985.

[LadFish] Ladner, R.E. and Fisher, M.J., "Parallel Pre-
fix Computation." JACM, 27(4), 1980, pp. 831-
838.

- - - ~ ~ ~ - ~ PEl
inactive +SH_R(M,N+- R - - -

~ w M active

Figure 2.
Scan Us~ng Broadcast

3. Figure 1.
Segmented Broadcast

SECTION I: ALGORITHMS

Part 2: Poster Presentations

PRECEDlNG PACX BLANK NOT FILMED

PRECEDING PAGE BLANK NOT FILMED

AN EFFICIENT METHOD FOR THE REPRESENTATION
.4ND TRANSMISSION OF MESSAGE PATTERNS

(summary)

P. J. Bernhard D. J. Rosenk7vlntz
Department of Computer Science Department of Computer Science

Clemson University SUNY .4lbany
Clemson. S.C. 29634 Albany, N.Y. 12222

Abstract

In this paper we describe a formalism for the
compact representation of message patterns for
multistage interconnection networks. In this for-
n~alisrn a descriptor called an (s,d)-mask is used
to represent a message pattern, or rather, a set
of messages. \Ye show that when message pat-
tc,rrls are represer~ted in this way a number of
their properties ran be determined in polynomial
time. This inclndes determining if a message pat-
tern creates conflicts or congestion. In addition,
we show that the minimum round partitioning
prot)lem, which in general is NP-complete, can
be solved in polynomial time for any message
pattern which cam be represented by a single
(s.d)-mask. This generalizes a known result to
a more geueral class of message patterns and a
more general class of ncturorks.

I<ryuords: Omega network, routing, computa
tional complexity, SISID, parallel processing.

1 Introduction

111 [La731 Lawrie proposed the Omega network as an in-
tercoliriection network for a multiprocessor system. For
this net\rork a particular message can be represented by a
source-address. destination-address pair, abbreviated as
an (s ,d) pair, where s is the binary address of the source
of the lilmsage and d is the hinary address of t,hc desti-
nation of tlie message. IIence, a nlrssage pattern can be
represented by a set of (s,d) pairs, where each (s,d) pair
corresponds to one message.

I n this paper we develop a formalism, called the mask
l a n g u a g e , for the representation and transmission of mes-
sage patterns on Omega networks. In this formalism a
message pattern call be represented by a single descriptor
called a (s,d)-mask. This representation has a number of
ad\-antages. For example, a single (s,d)-mask can rcpre-
sent a nrimber of (s,tl) pairs which is exponential in the
size of the (s,d)-rrtask. IIence, it saves space and, in the

context of multiprocessor communication, a single (s,d)-
mask can be broadcast to all processors rather then send-
ing the entire set of (s,d) pairs to their respective proces-
sors. In addition, we show that when a message pattern
is represented by an (s,d)-mask, a number of properties
of the message pattern can be determined in polynomial
time simply by examining the (s,d)-mask rather than the
entire corresponding message pattern. Since a message
pattern can be exponentially large compared to its corre-
sponding (s,d)-mask, this fact illustrates one of the main
advantages of representing message patterns in the mask
language. In addition. we show that the mask language
defines a class of message patterns for which the mini-
mum round partitioning problem can be solved in poly-
nomial time for a general class of networks called bundled
Onzega networks .

2 The Omega Net work

Following Lawrie [La75], an N-input N-output Omega
network (also called a n N x N Omega network), where
N= 2"', consists of m identical stages. Each stage consists
of a perfect shufle wire interconnection [St711 followed
by N/2 switching elements. In Figure l (a) we show an
8 x 8 Omega network, and in Figures l (b) - l (g) we show
the possible states for each of the switches. Figure I (b)
shows the "straight through" s tate where the input sig-
nals are sent directly to the corresponding outputs, l (c)
shows the "interchange" s tate where the input signals
are first interchanged before being sent to the outputs
and Figures l (d) - l (g) show "incomplete" states. For ex-
ample, in Figure l (d) a signal is passed from the upper
input to the upper output while nothing is on the lower
input or lower output. Note how the model here differs
from the one in (La751 since switches are not allowed to
"broadcast" messages. In Figure l (a) we have labeled the
interconnection links for each stage, from the top down,
with a logzN bit binary address. We have also numbered
the stages and shown a path through the network from
input 000 to output 011.

A particular path through the network can be rep-
resented by a source-destination pair, abbreviated as an

(s,d) pair, where the source s = sos I... s,-~ is the bi-
nary address of the input a t the first stage, the destina-
tion d= dodl ... d,,-1 is the binary address of the out-
put a t the last stage and rn= log2N . Careful exami-
nation of the network shows that the path code sasl ...
sm-ldodl... completely determines a unique pat,h
through the network. Specifically, if we define an m bit
window W, as the bit pattern beginning t bit ~ o s i t i o n
i of the path code, we see that a t stagt i in the net-
work, where 0 < i < m, the path which goes from sosl ...
s,-1 to dod dm-1 makes use of the link with address
kt/,= s,si+l ... sm-ldod d,-l [RVS6]. For example, Fig-
ure l (a) shows a path from 000 to 011. For this path
W2=001 and a t stage 2 the path makes use of the link
with address 001.

The fact that a path code uniquely determines a path
through the network enables communication conflicts in
the network t o be detected easily. Two messages that are
being transmitted through the network will conflict if and
only if they require use of a common link in the network.
Hence, in light of the window property mentioned above,
two (s,d) pairs are said to conflict if and only if there
exists a n a such that the two (s,d) pairs have the same bit
pattern on window W,. For example, Figure l (a) shows
the paths (000.01 1) and (100,000). Both (s,d) pairs have
W1=OOO, accordingly a t stage 1 both pass through the
link with address 000.

This concept of a n Omega network can be generalized
by the addition of a new parameter b called the b u n d l e
s ize of the network. Specifically, we define a (b)N x (b)N
Omega network, where N=2", to have bundle size b i f
each switch in the network has two bundles of inputs
and two bundles of outputs, each of size 6. For example,
in Figure 2 we show a (3) 4 ~ (3) 4 Ornega network. Each
bundle in the network may carry b or fewer signals into
a switch. Hence, a total of a t most 2b signals may be
input to a switch a t any given t,ime. Similarly, each out-
put bundle may carry b or fewer signals out of a switch.
For each input bundle, the incoming signals may be sent
to the upper or lower output bundle. However, all the
signals on a given input bundle don't necessarily have
to go to the same output bundle. Some may go to the
upper output bundle, while others may go to the lower.
Similarly, two signals on different input bundles may go
to the same output bundle. The only constraint is that
a t most b signals can use a particular output bundle a t
any given time. If more than b require use of the same
output bundle then we say that congest ion occurs. The
definition of the standard Omega network is a special
case of the generalized definition, where b=l. Similarly
"conflictn is just a special case of "congestion". Bundled
networks have also been considered in [SHS7], where a
bundled network was referred to as a dilated network.

Recall that two (s,d) pairs are said to conflict a t stage
i in the network if and only if they have the same bit
pattern on window M,,. However, when b > 1 the fact

that two pairs have the same bit pattern on window W,
doesn't necessarily imply that congedon occurs. In or-
der for congestion to occur a t stage i, a t least b+l pairs
must have the same bit pattern on window W,. For ex-
ample, consider the paths (0000,1000) and (1 100,1001)
on a (2)16 x (2)16 Omega network. These pairs have the
same bit pattern 0010 on W2 and, hence, the bundle a t
stage 2 with address 0010 is full because the two paths
are in use a t the same time. If we now consider the path
(0100,1010) we see that a t stage 2 this also requires use of
the bundle 0010. Hence, if all three paths were required
to be in use a t the same time, congestion would occur.
An example of a bundled Omega network with b=16 is
in the proposed G.E. Cross Omega machine [fIS6].

Finally, define a message p a t t e r n to be a set of (s,d)
pairs. Each (s,d) pair in the set represents the fact that
a message is t o be sent from input s to output d of the
network. Note that this definition imposes no restrictions
on what type of message pattern the set represents. For
example, many pairs may have the same source or the
same destination. Furthermore, any number of conflicts
may exist in the set.

3 Definition of the Mask
Language

Define the mask language as follows. S y m b o l s used in
the language will include constants and literals. Con-
s t a n t s are 0 and 1, l i terals include variables " xo" ,
'' xl" ," xZn , etc. and their complements. A m a s k is
any sequence of symbols such as 0001, 1, 11, xolOxl 1,
x O x 1 ~ 2 , etc. The length of a mask M is the number of
symbol occurrences in the mask. Each mask has an im-
plicit universal quantifier to the left of the mask for each
variable in the mask, where the variables are quantified
over the set (0 , l) . Hence, a mask containing the vari-
ables xo, x1 ,..., x , - ~ is said to r e p r e s e n t the set S of
2' addresses, each specified by one of the 2' functions
from the variables xo, XI ,..., 1,-1 to the set (0 , l) . For
example, the mask xO1x10 represents the set of addresses
(0100, 0110, 1100, 1110) . Furthermore, each address in
the set is said to be covered by the corresponding mask.
In the case where a mask contains no variables, such as
the mask 101, then the mask represents the set which
contains only itself (101).

An (s,d)-mask consists of a left hand side and a right
hand side, where each is a mask of the same length.
Examples of (s,d)-masks are (001,010), (lxo, 01) and
(xo10xlx2, xllOxzxo). As with masks, an (s,d)-mask
has a n implicit universal quantifier to the left of the
(s,d)-mask for each variable contained within. Hence,
the (s,d)-mask is said to represent the corresponding set
of (s,d) pairs. For example, the (s,d)-mask M=(xolO,
~ 0 1 x 1) represents theset S={(010, 110), (010, I l l) , (110,
OlO), (110,011)}.

4 (s,d)-Masks and Detecting
Congestion

In this section we describe a structure called a conflict-
cube[RVS6]. Each (s,d)-mask has a conflict-cube associ-
ated with each window of the (s,d)-mask. As we shall
show, the conflict-cubes associated with a given (s,d)-
mask can be used to determine a number of properties of
the corresponding message pattern.

Suppose that hl is an (s,d)-mask and let V be the
set of variables which occur or whose complements occur
in M. Furthermore, let V, be the set of variables which
occur or whose complements occur in window W, of the
(s,d)-mask, where 0 < j 5 m. The conflict-cube SM,,
of hl corresponding to window W, is the set Shf,,= 1'-V,.
Note that this definition is a slight variation of the one
given in [RV86].

Now let S be the message pattern corresponding to
hi. Then the following property of S holds[RV86].
Fact 1.Consider an Omega network with bundle size
b=l . Then the number of messages which conflict on a
particular link at stage j is given by 2k, where k is the car-
dinality of the corresponding conflict-cube S M , , Hence,
a message pattern represented by a single (s,d)-mask will
contain conflicts i f and only if it has a nonempty conflict-
cube.

In following sections we will show how conflict-cubes
can be used to determine a number of properties of (s,d)-
masks and their corresponding message patterns. Fur-
thermore, conflict-cubes can be exploited in the solution
to the minimum round partitioning problem for any mes-
sage pattern which can be represented by a single (s,d)-
mask.

5 Detecting Conflicts in an
(s,d)- mask

The Omega network is a blocking network and, as such,
does not allow the transmission of arbitrary message pat-
terns. Specifically, it does not allow the transmission of
message patterns which give rise to communication con-
flicts. Hence, algorithms for detecting communication
conflicts and strategies for dealing with communication
conflicts have become the focus of numerous researchers.
As stated in Section 1. one of theadvantages of the mask
language is that many properties of message patterns can
be determined simply by examining (s,d)-masks rather
than the entire corresponding message pattern. The fol-
lowing lemmas illustrate this for the detection of conflicts
and congestion in a message pattern represented by one
or more (s,d)-masks. It should be noted that for the lem-
mas and theorems in this paper we give short sketches of
the proofs. \Ve refer the interested reader to [BSS] for
the detailed versions.

L e m m a 2. Let M be an (s,d)-mask of length m. Then
determining if the message pattern corresponding to M
contains communication conflicts can be done in O(m)
time.
Proof . (sketch) By Fact 1 in Section 4, a given (s,d)-
mask will contain conflicts if and only if it has a nonempty
conflict-cube. Hence, a n algorithm for detecting conflicts
would operate by scanning the (s,d)-mask from left t o
right checking for a nonempty conflict-cube. The key to
the algorithm lies in the fact that each window is exam-
ined using only a constant amount of time, thus ensuring
that the algorithm operates in linear time.D

In [BR87] an algorithm is discussed which will deter-
mine if a given set S of (s,d) pairs contains communica-
tion conflicts. The algorithm operates in time O(mZp),
where p =(S I . Given that p could be exponential in m,
the length of a corresponding mask pair, Lemma 2 illus-
trates one of the main advantages of using (s,d)-masks
for representing message patterns. We now consider the
more general case of detecting congestion in a n Omega
network with bundle size b 2 1.
L e m m a 3. Let M be an (s,d)-mask of length m and
b 2 1 be a bundle size. Then determining if the mes-
sage pattern corresponding to M is congestion-free for
an Omega network with bundle size b can be done in
O(m) time.
Proof.(sketch) As in the proof of Lemma 2, an algorithm
for detecting congestion would scan the (s,d)-mask from
left to right examining the conflict cubes a t each win-
dow. However, it follows from Fact 1 in Section 4, that
in order for congestion t o occur on an Omega network
with bundle size b > 1, the (s,d)-mask must contain a
conflict-cube of size k, where 2'(> b.

In addition to message patterns representable by a
single (s,d)-mask, we consider message patterns which
require more than one (s,d)-mask for their representa-
tion. Hence, it becomes important to be able to detect
communication conflicts and congestion in a se t of (s,d)-
masks. In the following, a set of (s,d)-masks is said to be
disjoint if no (s,d) pair is covered by two different (s,d)-
masks in the set.
T h e o r e m 4. Let S be a set of disjoint (s,d)-masks where
n = I S I and m is the length of each (s,d)-mask in S. Then
determining if S is conflict-free can be done in O(m2n2)
time.
P r o o f . (sketch) An algorithm for detecting if a set of
(s,d)-masks contains conflicts would operate by scanning
all of the (s,d)-masks, a t the same time, from left to right.
As it scans it would examine the set of (s,d)-masks on
each window. For each window it would compare each
pair of (s,d)-masks to see if they conflict on that window.
This can be determined by a reduction t o an instance of
2-SAT, which can be solved in O(m) time[GJ79]. Since
each pair of (s,d)-masks must b e compared on each win-
dow, a total of O(n2) 2-SAT instances must be solved for
each window. Hence, each window requires an O(mn2)

operation. Since there are a total of m + 1 windows t o be
examined, this gives a total running time of O(m2n2).0
T h e o r e m 5. Let b 2 1 b e a bundle size and S a set of
n disjoint (s,d)-masks, where n is fixed and each (s,d)-
mask in S is of length m. Then determining if the set S
is congestion-free for a n Omega network with bundle size
b can be done in O(mZ) time.
Proof . (sketch) As in Theorem 4 an algorithm for test-
ing for congestion will check each of the m+1 windows.
In addition, for each window each of the 2" subsets of the
n masks must be checked to see if a subset of the (s,d)-
masks covers a set of conflicting (s,d)-pairs, a t least one
(s,d)-pair per mask. The test of each such subset requires
that a n instance of 2-SATISFIABILITY be solved, which
requires O(m) time. However, since the bundle size of the
network may be greater than 1, an additional counting
step must be performed. Since there are m + 1 windows
and since n is fixed the running time of the algorithm is
O(m2). It should be noted that since each window re-
quires 2" 2-SATISFIABILITY instances to be solved the
constant on the running time is exponential in n.

As with Lemma 2, the above results illustrate one of
the main advantages of using (s,d)-masks. Specifically,

the corresponding algorithms which operate on sets of
(s,d) pairs, instead of (s,d)-masks, may require a n expo-
nential increase in time.

6 Minimum Round Partitioning
for (S,D) Masks

Suppose that a message pattern is to be transmitted on
an Omega network. In addition, suppose that it has been
determined that the message pattern creates congestion.
One strategy for dealing with this situation is to par-
tition the corresponding set of messages into disjoint,
congestion-free subsets, called rounds , and then trans-
mitting the set of messages by successively transmitting
the messages in each round. Clearly, in order to minimize
the total time for message transmission, it is important
to minimize the total number of rounds.

The problem of partitioning a set of (s,d) pairs into
a minimum number of rounds is referred to as the min-
i m u m r o u n d par t i t ion ing prob lem. This problem
has previously been considered by a number of authors.
For example, in [A831 upper and lower bounds for the
problem have been established. In [WF8O] and [DF87]
heuristics for the problem are given. An algorithm is
given in [RV86] which will construct a Upartitioning func-
tion" for a set of messages when the message pattern is
represented as a "bit permute complement" permutation.
And in [BR87] the computational complexity of the prob-
lem was considered. For a number of special cases the
problem was shown to be solvable in polynomial time,
however, it was shown in general to be NP-hard. Here,
we show that the problem can be solved in polynomial

time when the message pattern can be represented by a
single (s,d)-mask.
T h e o r e m 6. Let S be a message pattern which can be
represented by a single (s,d)-mask. Then S can be parti-
tioned into a minimum number of congestion-free rounds
for a n Omega network with bundle size b 2 1 in linear
time.
Proof . The algorithm for performing the partitioning
exploits two facts related to message patterns which can

be represented by a single (s,d)-mask. T h e first is that
for any such message pattern the (s,d)-mask can be com-
puted from the set S in linear time[B88]. And the second
is that the minimum number of rounds required by the
message pattern is equivalent to 2k, where k is the cardi-
nality of the largest conflict cube for the corresponding
(s,d)-mask. Given the message pattern as input, the al-
gorithm will compute the (s,d)-mask and then determine
how many rounds are required by examining the associ-
ated conflict-cubes. Using this information it will then
partition the message pattern. Each of these steps can
be performed in linear time. Hence, the result follows.

7 Conclusion
In this paper we have described a formalism for the com-
pact representation of message patterns. We have shown
that when message patterns are represented in this for-
malism a number of their properties can be determined in
polynomial time, simply by examing representative (s,d)-
masks rather than the message patterns themselves. This
fact is important since a message pattern may be expo-
nentially large compared with its corresponding
(s,d)-mask. In addition, we have shown that the min-
imum round partitioning problem, which in general is
NP-complete, can be solved in polynomial time for any
message pattern that is representable by a single (s,d)-
mask. This generalizes a known result [RVSG] to a more
general class of message patterns and a more general class
of networks.

References

[A831 Agrawal, D.P., 'Graph Theoretical Analysis and
Design of Multistate Interconnection Networks,"
IEEE Trans. Comput., vol. C-32, no. 7,July 1983,
pp. 637-648.

[B88] Bernhard,P.J., "Algorithmic Aspects of Message
Transmission Strategies for Multistage Intercon-
nection Networks," Comput. Sci. Dept., SUNY
Albany, Albany, N.Y.

[BR87] Bernhard,P.J. and Rosenkrantz,D.J., "The Com-
plexity of Routing Through an Omega Network,"
Proc. Twenty-Fiflh Annual Allerton Conf . o n

Communication, Control and Computing, Sept.
1987. Also appears as a technical report: Com-
put. Sci. Dept., SUNY Albany, Albany, N.Y., TR
87-12, 1987.

[DF87] Deogun,J.S. and Fang,Z., "A Heuristic Algo-
rithm for Conflict Resolution Problem in Mul-
tistage Interconnection Networks," Proc. of the
1987 International Conf. on Parallel Processing,
Aug. 1987. pp.475-478.

[GJ79] Garey,M.R. and Johnson,D.S., "Computers and
Intractability: A Guide t o the Theory of NP-
Completeness," W.H. Freeman and Co., 1979.

[H86] Hardy,R.M., personal communication.

[La731 Lawrie,D.H., "Memory-processor connection net-
works," Univ. Illinois, Urbana-Champaign, Dep.
Comput. Sci., Rep. 557, Feb. 1973.

[La751 Lawrie,D.H., "Access and Alignment of Data in
an Array Processor," IEEE Trans. Comput., Vol.
c-21, no. 12, Dec. 1975, pp. 1145-1155.

[RVSG] Raghavendra,C.S. and Varma,A.,"Fault-Tolerant
hlultiprocessors with k d u n d a n t - P a t h Intercon-
nection Networks," IEEE Trans. Cornput., Vol.
C-35, No. 4, April 1986, pp. 307-316.

[SH67] Szyrnanski, T.H. and Hamacher, V.C., "On the
Permutation Capability of Multistage Intercon-
nection Networks," IEEE Trans. Comput., Vol.
C-36, July 1987, pp. 810-822.

[St711 Stone,H.S., "Parallel processing with the perfect
shuffle," IEEE Trans. Comput., vol. C-20, Feb.
1971, pp. 153-161.

[WF80] Wu,C.L., Feng,T.Y., "On a Class of Multistage
Interconnection Networks," IEEE Trans. Com-
put., vol. C-29, no. 8, August 1980, pp.694-702.

Figure I(.): An Omega network.

Figure l(b)-(g): Possible switch states

PRECEOiNG PAOE gANK NOT FILMED

MINIMUM SPANNING TREE O N T H E HMESH ARCHITECTURE*

R. V. Boppana C. S. Raghavendra
Dept. of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract
A fast algorithm to compute minimum spanning tree of a given
undirected graph on Hierarchical MESH connected computer
(HMESH) is presented. The time complexity of the algorithm is
O(log2 n), where n is the number of nodes in the graph. HMESH
is a broadcast bus VLSI architecture which consists of n x n
processing elements (PE's) in a mesh connected structure and a
hierarchy of broadcast buses in each row and column of the mesh
structure such that each broadcast bus is connected to exactly k
PE's, where k is a small constant. Later, we will show that with
simple modifications to the algorithm, MST of n node graph can
be found on HMESH of size p x p in O(b / p 1 log n logp) time.
It is also shown how to compute connected components and tran-
sitive closure of a given undirected graph in O(log2 n) with a few
modifications to the algorithm presented for computing minimum
spanning tree.

1 Introduction
The minimum spannzng tree of a given undirected, connected
graph G = (V, E), where V is a non-empty set of n nodes and
E is a set of e unordered pairs of nodes called edges, with cost
or weight assigned to each edge in the graph, is the connected
subgraph of G whose total edge cost is minimum. The problem of
finding minimum spanning tree has some practical applications
e.g., the problem of connecting various cities by high ways so
that each city has a path to other cities, directly or through
another city, with minimum cost, routing a common signal to
different points in a VLSI chip efficiently, efficient broadcasting in
networks etc. The problem of finding the connected components
of a given undirected graph is to color all the vertices in the
same component of G, with some unique color. So, the problem
of finding the connected components of a given undirected graph
G can be seen as the problem of finding the spanning forest of
G with weights of all edges being equal. The proble~n of finding
connected components has some applications in areas like pattern
recognition etc.
The classical methods of finding, sequentially, the minimum
spanning tree of a given undirected graph are Prim-Dijkstra's
[1,2] method, Kruskal's [3] method, and Sollin's [4] method. Of
these three, Sollin's method is most suitable for parallel compu-
tation of the minimum spanning tree of a graph. The problem of
obtaining a parallel solution to compute the minimum spanning
tree and the connected components of a given undirected graph
G with n nodes and e edges, has been studied extensively in the

'This research is supported by the NSF Presidential Young Investigator
Award No. MIP 8452003, a grant from ATkT Information System, and a
grant from TRW Inc.

literature [5,6,7,8,9,10,11,12,13].
Some fast and efficient parallel algorithms are proposed in
[8,7,9,10,11]. In [8] an O(log2n) parallel algorithm to com-
pute the connected components is presented. They use PRAM
model with CREW (Concurrent Read, Exclusive Write) capa-
bility. Modifications to the algorithm in [8] resulted in faster
algorithms with time complexity O(1og n) to compute minimum
spanning tree [9,10], and connected components [ll]. However,
they all use PRAM model with CRCW (Concurrent Read, Con-
current Write) capability. The algorithm proposed in [l l] uses
O(log(n + 2e)) processors, and computes the connected compo-
nents of G. The algorithm proposed in [9] uses n3 processors,
and computes minimum spanning tree of G.
Many researchers use PRAM models to evaluate t,he time com-
plexity of their parallel algorithms. However these PRAM
models are not realizable in practice with the current technol-
ogy. So, some researchers have proposed various VLSI architec-
tures as practical models for synchronized parallel computation
[29,25,26,27,28]. In particular linear array and two dimensional
array processor architectures are given considerable attention
[30], [18],[17],[16],[14], [6]; because, the regularity of the archi-
tectures makes t h e ~ n suitable for VLSI implementation. One dis-
advantage of these architectures is that they have large diameter
(i.e. worst case conlmunication delay between any two process-
ing elements in the architecture). Attempts to overcome this, in
particular for two dimensional mesh connected computers, are
met with some success [15,23,19,20,32]. However, mapping algo-
rithms to these architectures is non-trivial and, in solne cases,
is highly complex (19,151. Moreover, the resultant architecutes
are not practical for VLSI implementation. As a solution to
these problems the Hierarchical Mesh structure (IlhlESH) was
proposed 1211. HMESH is a highly nodular architecture, which
allows easy mapping of algorithms [24]. In this paper we will
present an algorithm to compute the minimum spanning tree us-
ing HMESH (described later) in O(log2 n) time. With simple
modifications the same algorithm can be used to find connected
components and transitive closure of G.

2 Architecture of the HMESH
In mesh connected computers, the solution time complexities are
dominated by the interprocessor co~nlnunication times. In a 2-
dimensional MCC with n2 PE's, time required for movement of
data between two farthest PE's is O(n) . Therefore, many prob-
lems on the MCC will have O (n) complexity, e.g., finding maxi-
mum of n numbers. Since the hlCC is a well suited structure for
various problems, attempts are made to reduce the delay involved
with long data movements, by adding broadcast buses [15,22,19].
In [21] the hierarchical mesh connected computer (HMESII) has

been proposed by generalizing the idea of multiple broadcast
buses with a view to certain practical aspects, such as limiting
the number of PE's that can be connected to a bus. The main
idea is to provide multiple buses in each row and column of a 2-
MCC such that there are some finite number of PE's connected

I'iglirr 1: The II~riesh architecture with rt = 16 and k = 4.(0nly
f i r \ [t i \o ant1 laat c o l u x ~ ~ r ~ huses are shown for clarity)

The hierarchiral mesh is an SIhlD architecture consisting of
n x n processing elements with four nearest neighbor connec-
tions. Each P E consists of a few registers and is capable of per-
forming arithmetic and logic computations. For routing data to
long distances, the array of PE's are interconnected by a system
of hierarchical broadcast buses. The PE's are numbered as (2 , j)
where 1 5 a , j 5 n. In each row and column PE's are grouped
and each group of size k share a common bus. The least index
nrmibered PE's are again grouped in the next level, and again
groups of k PE's share a bus. This construction is repeated until
the top level is reached with one group < k PE's which would
require only one bus. There will be [logk n] levels of buses in
each row and column. The architecture for 16x16 PE's is shown
in figtire 1.
The hierarchy of multiple buses allow fast data transfer between a
pair of PE's. It takes a t most O(log n) bus transfers for data to be
routed from a source P E to a destination PE. Of course multiple
PE's can be transferring data to other PE's simultaneously as
long as different buses are used. However, there is potentially
high parallelism in transfer of data between PE's. Also, a single
1'1.: can broadcast its data to all other PE's in O(1og n) time. This
can be acconlplished by first broadcasting to local PE's, then to
subsequent level of PE's, and after logn steps to the entire row
of PE's. Then the same procedure can be repeated in all the
colurnn of PE's. In the algorithm for MST we repeatedly use te
row or column broadcast operation (contents of the register z of
PE,, will be sent to all the PE's in row i,) and min operation
(~ninimum of the contents of register(s) of PE's in a column or row

is found) repeatedly. The time taken by either of these operations
is O(log n) (here k is treated as a constant.) These two operations
are discussed in detail in [31,5].
Many parallel algorithms use divide and conquer technique which
maps naturally to this architecture. Therefore, we can expect
algorithms for this architecture to be much simpler and yet very
efficient.

3 Minimum Spanning Tree

In this section we present the algorithm LIST to compute the
nlininmm spanning tree of a given graph G. We will also show
that with simple modifications to the algorithm, MST's of graphs
larger than HMESH can be found with correspondingly larger
time complexity.

3.1 Discussion
The algorithm uses the well known Sollin's technique to compute
the minimum spanning tree in parallel [4]. The basic idea is
to group nodes in the same component using the edge weight
information, and to make all the nodes in a group to have one
identification number (also called color of the group, but it is
really the node number of one of the nodes in the group) so that
any two nodes can immediately identify whether they are in the
same group or not. A group in which all the nodes have one color
is called a super vertex.
At the beginning of the algorithm, each node is a super vertex by
itself, and its color is same as its node number. Each node tries to
hook to a node, to which it is connected by the xninirnu~n weight
edge. This is called hook operation. As a result of hook operation
there could exist a long chain of nodes in which a node is trying to
another node and one or more nodes are trying hook to this node.
Cycles between twonodes are avoided by making one of the nodes
to point it to itself and the other to point t o i t . This chain is
condensed into a star shape format so that all the nodes point to a
single node, called the leader of the super vertex which also gives
the color of the super vertex. This condensing operation is called
shortcut operation. In case of long chains it may take several
steps before they are condensed into one supervertex. In the
meanwhile, a supervertex is free to hook to another supervertex
or to a chain of nodes that is being condensed. It should be noted
that a chain of nodes will never participate in a hook operation
until it is condensed into a supervertex. This process is repeated
until no supervertex changes and there exists no chains of nodes.

3.2 The algorithm MST

We shall now present the algorithm to compute minimum-cost
spanning tree of an undirected graph G (see figure 2.) The initial
conditions and terminating conditions are as given below.
In i t i a l Cond i t ions

Each PEij for 1 5 i, j 5 n has the following registers: (a) A
register Cij to keep the color of the node j. C,c,, indicates
the color of the node C.,. (b) register w, to keep the cost of
the edge connecting the new neigh1,or vertex. (c) A register
Cij to keep the color of the new neighbor vertrx.
Each non diagonal PE,, for 1 5 z , j < n and z # 1 has the
following registers/flags in addition to the above mentioned
ones: (a) A flag E,I to indicate whether there is an edge
(I , j) present in the given graph. i.e. adjacency riiatrix is
assumed to be the input t o the algorithm. (h) A register
1V,, to keep the cost of edge (z ,]) . (c) A flag S,, to indicate
whether the edge (z , ~) is present in the spanning tree.

Each PE,; for 1 < i < n has the following registerslflags in
addition to those mentioned above: (a) A flag Q, to indicate
whether the vertex z has participated in the present iteration
or not. This is useful in testing for the completion fo the
algorithm. (b) Two registers 51, and S2, to keep the index
information of the P E that supplied the most min. cost
edge to connect super vertex i to a neighbor super vertex
in the present iteration.

Terminating Conditions
All diagonal PE's in the same component will have the same
color. i.e. , C,, = C,, iff vertices i and j are in the same
connected component.

All the edges in the spanning tree are indicated by setting
the corresponding '5" flag true. i.e. , S,, = true if edge (i, j)
is in the spanning tree.

Time complexity of the algorithm is, shown in 1311, 0(log2 n).
Proof of correctness also is given in [31].

3.3 Finding MST with Smaller HMESH

In this section we will show that hlST of a given graph G(V,E)
can be found on HMESH of size snlaller than n, the number of
nodes in G.
Let the number of rows and columns in the HMESH be p w h ~ r e
p > 1. With simple modifications to the algorithm MST given
earlier it is possible to find MST of G. Now each P E in the
HMESH will have r = rn/pl times the original number of regis-
ters, and will keep the information about r node?. Information
about node i will be kept in PE's in row i mod p and column
i mod p. Each step in the algorithm is modified to execute the
same operation for all the nodes having the same index (given as
x mod p where x is the node number) and hence are taken care
of by PE's in the row or column given by the index number. All
the subscripts appearing in the algorithm are now their actual
value modulo p so that correct PE's are accessed.
It is shown in [31] that the resulting time complexity is

O (r n l ~ 1 ~ logn logp).

4 Related Problems
In this section we will show how to compute connected contpo-
nents and transitive closure of a given graph G using the algo-
rithm MST.
By taking the adjacency matrix as the weight matrix, the al-
gorithm MST can be used to compute connected components of

the given graph G. However, to compute transititre closure of
G we first compute the connected components of G and then
step 3 given below is perfornled. The transitzzre closure of the
graph is given by the boolean matrix formed by falgs S,j for all
l < i , j < n ,

3 foreach t do
if C,, = C,, then S,J = true

Algorithm 1 MST

/* The follow~ng terminology IS used in the algorlthn~
forall indicates that all the PE's are act~ve in the computation fore-
ach t lnd~cates that all the PE's In a row are act~ve foreach1 indicates
that all the PE's In a column are active broadcast 1s done along that
column The broadcast value IS given by the diagonal PE */
1 /* Necessary parameters are ~n~tlallzed now * /
1.1 forall PE,, do { C,, = z, }
1.2 forall PE,J # t do S,] = false,
2 repeat
2.1 forall PE,, do { Q, = false,}
2.2 column-broadcast Cll ,
2.3 /* Thls is a shortcutting operation * /
2.3a foreach t do {
2.3al c,, = Gc,.,
2.3a2 if C,, # C,c.. t hen Q c ,,,, = true,)
2.3b column-broadcast C,,,
2.4 /* Thls is a hooklng operat~on */
2.4a foreach t do
2.4al if C,. = C,c,. A-Qc.. then do {
2.4a2 S2, = mrnl {jl W,, is min AC,, IS min

AEty A Ctj # Ct,,)
2.4a3 w,'~.. = W,sz.,
2.4a4 C,',-,, = C,sz, and mark PF (I , C,,) actlvc }
2.4a5 else C:, = 0 ,
2.4b foreach 3 do
2.4bl if therc ex~sts an active PE ~n the colnnin do {
2.4b2 Q, - t rue ,
2.4b3 S1, - mzn,{alC(, 1s min AFT',', is ruin)
2.4h4 Ss~,sz,,, = t r u e ,

2.4b5 Ssz5,, SI, -- t r 7 1 ~ ,

2.4b6 C : ~ = C k ~ , l 1
2 . 4 ~ column-broadcast Cil
2.4d foreach I do {
2.4dl if (Cl, # 0) (t = C:,,) then
2.4d2 C,', = mtn{t, c:,)
2.4d3 else if C:, # 0 then C,, = C,',, }

until (-Q, for all t)

Figure 2: Algorithm to co~llpute n~zrzzmun~ spanntrzg tree

References
[I] R. C. Prim, ,'?/tortest Connectzon h'eturorks (rnd .Some Gcn-

eraltzatzons. Bell Systems Technical Journal 36, Nov. 1957,
pp 1389-1401.

[2] E. W. Dijkstra, A note on tuto problems zrl conncctzon ~r-ztl?
graphs. Numerisch hlath, Vol. 1, No. 5, pp 260-271.

[3] J . B. Kruskal, On the shortest spanntng subtrtc of n graph
and the tarvelltng salesman problem. Proc. A~ner . Math. So-
ciety, 1956, Vol. 7, No. l, 48-50.

[4] Sollin, An algorithm attributed to Sollin in Prograrnnttng,
Games and Transportatzon hTetuqorks. by Berge, C., ant1
Choulia-Houri, A. Wiley, NY 1965.

[5] D. Nath, S. N. Maheshwari and P. C. P. Bhat t , Efliczent
VLSI Networks for Parallel Processzng Based on Orthogonal
Trees. IEEE Trans. on Comput. Vol C-32. No. 6. June 1983.

[6] M. J. Atallah and S. R. Kosaraju, Graph Problems on a
Mesh-Connected Processor Array. JAChI Vol. 31, No. 3,
July 1984.

[7] F . Y . Chin, J. Lam and I. Chen, Eficient Parallel Algorithms
for Some Graph Problems. Communications o f ACM, Vol.
25, No. 9, Sept. 1982.

[8] D. S. Hirschberg, A . K . Chandra and D. V . Sarwate, Com-
puting Connected Components on Parallel Computers. Com-
munications o f A C M , Vol. 22, No. 8, August 1979.

[9] D. S. Hirscberg and D. J . Volper, A Parallel Solution for the
Minimum Spanning Tree Problem. Proceedings o f the 1983
Johns Hopkins Conference on Info. Science and Systems, pp
680-684.

[l o] F. T . Leighton, Parallel Computation Using Meshes of Trees.
Proceedings o f t he Workshop on Graphtheoretic Concepts in
Computer Science, July, 1983.

[l l] Y . Shiloach and U . Vishkin, A n O(1ogn) Parallel Connec-
tivity Algorithm. Journal o f Algorithms 3 , 1982, pp 57-67.

[12] D. Nath and S. N. Maheshwari, Parallel Algorithms for the
Connected Components and Minimal Spanning Tree Prob-
lems. Information Processing Letters, Vol. 14, No. 1, March
1982.

(131 J . L. Bentley, A parallel Algoritm for Constructang Minimum
Spanning Trees. Tech. Report, Deptt. o f Computer Sci. and
Mathematics, C M U , August 1979.

(141 S. H . Bokhari, M A X : A n Algorithm for Finding Maximum
in an Array Processor with a Global Bus. Proc. 1981 Inter-
national Parallel Processing Conference, pp 302-303.

[15] S. H. Bokhari, Finding Maximum on an Array Processor
with a Global Bus. IEEE Transactions on Computers, Vol.
(2-33, No. 2, February 1984, pp 133.139.

(161 D. A . Carlson, Performing Tree and Prefix Computations
on Modified Mesh-Connected Parallel Computers. Proc. 1985
Int. Conf. on Parallel Processing, August 1985, pp 715-718.

1171 P. S . Gopalakrishnan, I. V . Ramakrishnan, L. N . Kanal,
A n Eficient Connected Components Algorithm on a Mesh-
Connected Computer. Proc. 1985 Int. Conf. Parallel Process-
ing, August 1985, pp 711-714.

[18] H. T . Kung, C . D. Thompson, Sorting on a Mesh Connected
Computer. Communications o f t he ACM, 1977.

[19] V . K . Prasanna Kumar, C . S. Raghavendra, Array Processor
with hfultiple Broadcasting,. Proc. 12th Annual Symposium
on Computer Architecture, June 1985, pp 2-10.

[20] V . K . Prasanna Kurnar, C . S. Raghavendra, Image Process-
ang o n an Enhanced Mesh Connected Computer. Proc. IEEE
Workshop on Computer Architecture for Pattern Analysis
and Image Database Management, November 1985, pp 243-
247.

[21] C . S. Raghavendra, HMESH:A VLSI Architecture for Par-
allel Processing. C O N P A R 86, Lecture Notes i n Computer
Science, Springer-Verlag.

1221 Q. F. Stout, Broadcasting on hfesh Connected Computers.
1982 Conference on Information Sciences and Systems, pp.
?5-90.

[23] Q. F. Stout, Mesh Connected Computers with Broadcasting.
IEEE Trans. on Computers, pp. 826-830, 1983.

[25] Bentley, J. L. and H. T . Kung, A tree machine for searchrng
problems. Proceedings o f the 1979 Intl. Conf. on Parallel
Proc., Aug. '79, p p 257-266.

[26] H. T . Kung and C. E. Leiserson, Systolic Arrays (for VLSI).
In Sparse Matrix Proc. 1978, Society for Industrial and Ap-
plied Mathematics, 1979, pp 256-282.

[27] F. P. Preparata and J . E. Vuillernin, The cube-connected
cycles: a versatile network for parallel compualion. Proc.
12th Annual IEEE symposium on Foundatioins o f Computer
Sciencs, 1979.

1281 G. Barnes et.al., The nliac I V computer. IEEE Trans. on
Comput., Vol. c-17, No. 8, pp 746-757, Aug. 1968.

(291 H. Stone, Parallel Processing with Perfect Shuffle. IEEE
Trans. on Comput., Vol. C-20, No. 2, Feb. 1971.

[30] V . C. Hamacher, Machine Complezity Versus Interconnec-
tion Complezity i n Iterative Arrays. IEEE Trans. on Com-
put., Vol. C-20, 1971, pp 321-323.

[31] R. V . Boppana and C. S. Raghavendra, Minimum Spanning
tree on the HMESH architecture. Tech. report CRI-88-20,
Computer Research Institute, Univ. o f Southern California,
Los Angeles.

[32] R. Miller and Q. F. Stout, The Pyramid Computer for Image
Processing. Proc. 7 t h International Conf. on Pattern Recog.,
1984.

(241 Swesh B. C . and C . S. Raghavendra, Geometric Algorithms
on HMESH Architecture. 1987 Workshop on Pattern Anal-
ysis and Image Processing (t o appear).

Optimal Mesh Algorithms For VLSI Routing'
(E x t e n d e d A b s t r a c t)

Shing-Chong Chang
Department of Electrical Engineering

Systelns Rescarch Center
University of hlaryland

College Park, hlD. 20742

Abs t rac t

l\'e develop optimal mesh algoritllrns for several VLSI
rout~ng problems, such as river routing between rectan-
gles, routing within a rectilinear polygon and wiring mod-
ule pins to frame pads. We assume that tlie mesh consists
of a f i x fi procesors, where n is the input size. Each
processor has a constant amount of memory. All our al-
gorithms run in time O(&).

1 Introduction

The recent advances in the VLSI technology allow the fabrica-
tion of highly conlplex systems on single chips. Sopllisticated
software tools are needed t o successfully design such systelns.
In particular, the routing pliase is a critical and time-consuniing
part of the overall design process. Unfortunately, it turns ou t
that most routing problcrns are NP-cornplete a~ t t l Ilcnce no cf-
ficient solutions seem to be likely. T l ~ c r c are feiv exceptions,
llowevcr. For e s a ~ n p l e , various river routing (one-layer) proll-
l e n s , the two-layer c l l a ~ ~ n e l routing with no constraints, and few
r o ~ i t i ~ ~ g prol~icrns in the knock-knee model are k~iown t o have
efficient solutions ([D et al].[hlP],[O],[P],[I'L]). Our goal is t o
develop a good set of techniques to obtain fast and efficient par-
allel routil1g algori t l~ms.

111 this paper. we consider several basic problems in \'LSI
routiilg such as river routing between rectangles, routing within
a rectilinear polygon, and rviring ~ r ~ o d u l c pins t,o frame patls.
The hnowl~ strategies t o liandle these problems seem t o be in-
l~erently sccluential. \\'e develop new techniques that lead to
optintal parallel algorithms. Our basic model of parallel pro-
cessing is the two dinrensional array.

Some of the well-known parallel tecl~niqi~es, such as pat11
doul)ling, prefix romputat ion, list ranliirig and sorting, are used
exte~lsively in our parallel routing algorithms. All of these tech-
niques have efficient mesh impleniel~tations. b\'c will briefly in-
troduce tlrese techniques below. Pat11 d o ~ t b l i ~ l g is a basic tecll-
niqne usetl to solve many proble~ns il~volving lists and graphs.
For cxa~nl)le , given a set of linkcd lists, \ve can determine the
sink ~.cacllable from e a c l ~ node by iterating the process of cltang-
ing tlie successor of a node to the successor of the successor
(effectively doubling the length of the pat11 from the node t o i ts

lSi~pImrted 111 p u t by NSA Col~tract KO >IDA-301-8511-0015, A'SF
G r n ~ ~ t Yo UCll-86-00378 and by the Sys ten~s Rcsearcl~ Celllet Contract
No OIR-85-00108

Joseph JdJd
Department of Electrical Enginrering

Institute for Advanced Computer Studies
Systcrns Rescarcli Center
University of ?I'IarylantI

College Park , hlD. 20742

successor after each iteration). Given n elements ao, [I , , . . . ,
and an associative operation *, the prefix conlputation co~tsjsts
of evaluating t l ~ e n partial products s, = no nl * . . . a , , for
0 5 i 5 11 - 1. Finally, sorting is thc process of ~earrarlgirig
a sequence of values in ascending or descending order. .411 the
techniques mentioned above call be imple~nented in O (6) tillre
on a J;E x fi mesh.

2 Definitions

U'e assume tha t the reader is familiar with the basic definitions
rclated t o river routing, routing rvitliin a rectilinear polygon (See
for example [D e t al],[LP],[P],[SD],[T]), and wiring module pins
to frame pads (See [BPI). Here we will introduce these problen~s
briefly. The class of general river routing problems involves rout-
ing between ordered sequences of ternlinals s u c l ~ t h a t tile fill31
layout is planar. Figure 1 shows an exan~ple of a river routing
problem and a wiring achieving the minimurn sepsration bt:-
t a e e l ~ the two boundaries. A more general version of the river
routing problem is t o perform planar routing where the ports lie
on tile boundary of a simple rectilinear polygon. Figure 2 shoivs
an example of this routing problem.

Figure 1: Uasic river routing problc~n between t\vo parallel
boundaries.

Figure 2: Routing within a rectilinear polygon.

'Tl~e problen~ of wiring niodule pins to frame pads is give11 Let A' =< X, Y > be a net in a group whose representative

a, triplet < ,M, F,,< >, where ,,U is an arbitrary rectilinear is N T . With the number of nets between N and N, , we can de-

~ ' o lYgo l~ I.cpreserlting a nodule, 7 is a rectangle representing a termine a bounding perimeter such that the wiring of N , cannot
fralllc. allil .%'is a set of two- t e r~~~ i l l a l nets s11c1r that one terniinal lie illside it. We claim that the following lemma is true.

Is ,M and tile o t l ~ e ~ IS on F. \.Ye dssunie that 3 contains .v
t11;~t eacI1 boundary seglnent of .bl is parallel to a frame

Lemma 3: ([CJl]) The union of all the bounding perimeters of
all the nets within a group determines the contour of the group

cltlgc,. \\'r are supposed to dcter~nine a one-layer routing of .tLr
and hence determines the wiring of the representative net. If

\vl~enever ~t exists. Figure 3 is an instance of a such problem the of nets in the group is n, then the union can be
and its final w~ring. deter~nined in time O(,,hi) on the mesh.

Theorem 2: ([CJl]) Detailed routing of n nets within a sinlple
In this abstract, we will concentrate on the one-layer model. rectilinear polygon can be done in time O(fi) on a JiT x Jii

Section 3 presents a summary of the river routing algorithms
nresli of processors.

and section 4 addresses the problem of wiring module pins t o
frame pads.

Figure 3: Roi~ting between nlodule pins and frame pads.

River Routing

can partition the nets into blocks such that the wiring prob-
lt.111 is rethiced to wiring each block si~nnlta~~eously. For any
riql~l I)loc.k, such as < .V,5.A\,. . . , iYI1 > in Figure 1, we have
follo\ving l e~uma .

L e m m a 1: ([C'Jl]) Let .hr, be a net in a right block and let j
1) t s t l i ? n~ in imu~n j 5 i sucl~ that t , t (i - j - 1) 2 6 , . Tl~cn
tl~c, cuortl i~~ates of the characteristic bend points of ,lr, (bend
p o i ~ ~ t s closest to the bot to~n roiv) art. = (6 , , i - j + 1) slid
l i , , = (t ; + i - j . i - 3 + 1) . '1.11~ cl~aracteristic bend p o i ~ ~ t s
uniill~cly t l r l i~~c t11c ovcrall \v i r i~~g.

Theorem 1: ([CJ l]) The rharactcristic belid ~)oints of tllc i z

inlu~t nets ;is ivrll a? t l ~ c I I I ~ I I ~ I ~ I I I I I I C ~ I ~ I L I I C I separation can I J ~
tlctcr~liinvtl on a f i x fi mesh ill O(f i) time.

111 t l ~ r routing problt31n of nets ~vitliin a simple rectili~iear
pol,vgon, otlr strategy for t l ~ e r o u t i ~ ~ g pro1)lrin will consist of
itlrntifying a set of nct grolips n i ~ t l t l ~ e r c p r ~ s c n t n t i r c rlct of e;~c.li
grolll) (1 1 i s 1 1 ~) t ~ r f o r n ~ i ~ r g t l ~ c \ \ , i r i~~g of c ; ~ c l ~ ~ I I C ~ I I I C ~ tvitl~ the I I C I S

"c'iivc1~c~1" by i t separately.

I , e m l ~ ~ n 2: (((' . I I]) 'l'l~r tot ;\I ~ I I I I I ~ ~ ~ of l)e11(1 poi~lts of all 111'
r o l) ~ t w ~ ~ t ; ~ t i v e I I C ~ ~ is O (t t) , ivhere 11 is the 1rrr11111er of ncts. \\'c

can identify the proper grol~ps a ~ ~ d find the representative nets
i l l t i w ~ O (f i) on a L/;; x fi n1<,41 of ~)roccssors.

The problem may be unroutable if (I) The graph determined
by the nets when restricted to lie within the rectangle is non- -
planar. (Figure 4-1) (2) The wiring of all the nets requires riiore
area. (Figure 4-2) Case (1) can be detected easily by the tecll-
~iiques such as path doubling , prefix coln~)ntation and sorting.
Our approach t o case (2) is to partition nets into blocks, then
determine the wiring capacity and the toiring density between
blocks. Based on this information, we can detect the routabil-
ity ([CJl]) . Below we give tlre algorithm to determine wllether
or not there is enough space between the blocks t o wire the
reniaining nets.

(1) (2)

Figure 4: Routability testing: (1) Planarity tesating (2) Area
testing.

..llyoi,lth~n Dcnsily and Capaczty

Il~~,211: Tlre Lviring of cover nets of the blocks and the tern~inals
of the remaining nets.

Ontl~ilt: Dcterlnine whether or not there is c11oug11 space be-
tiveen tlle blocks to \\.ire the remaining ncts

1. C'i~t the rectilinear polygon boundary a t some fixed point and
straighten it into a horizontal line ([CJl]) .

2. Assign weights to the terminals of each remaining nets outside
the blocks as follows: +1 t o the ternlinal with s~naller coordi~~ate
in the line, -1 otherwise. Order these tc~,~ninals according to their
l i l~c coordinates and compute the r c ~ n k (su~~ l rna t io~ l of all the
weights proceed i t , including itself) of each terminal. Each block
is assignctl tlic ~ r ~ n k of terminal adjacet~t to the left teru~inal (ill
the I~o r i zo~~ ta l line) of its cover net. The density between two
blocks is equal to the difference in their ranks.

3. Conipute tlre intersection point of each 45 degree line seg-
ment emitting from the convex corllers of each block and the
block contour or the original boundary of the rectilinear poly-
gon ([CJI]) . The capacity between blocks can then be calculated
easily.

-1. 'l'est \vl~ether the capacity is at least as large as the corre-
sl)ol~tling density. Otherwise the proble~n is unroutable.

T h e o r e m 3: Testing the routability of n nets within a simple
rectilinear polygon could be done in time O(Jii) on a f i x Jii
mesli of processors.

4 Wiring Module Pins to Frame Pads

For any routing problem < M,+,hi >, we partition the nets
into groups such the nets in the same group share a 45 degree
diagonal. For example, the groups of Figure 5 are given by:
GI = { N I , N ~ , N ~ , N ~ , N ~ , N ~) , Gz = {N7), G3 = INS), G4 =
{NIO), Gs = {Ni1,Ni-2), G6 = { N I ~ , N I ~ , N I ~) , G7 = (N9) and
Gs = {N13, N14) For each net, we call the intersection point of
tlle routing with the diagonal as the intermediate terminal.

3. For each net N , determine tlie closest convex corner Q witli
bounding value less than or equal its sequence number. Q is
called the boundir~g point of N . From this information, deter-
mine the intermediate terminals of all the nets in the group.

Figure 6 sllows the lists obtained by the above algorithm for
group G I .

L e m m a 4: ([C,J2]) The intertncdiale terini7acils of all tlie nets
can be tletcrmined in time O (6) wit11 an array of fi x fi
PEs.

The wiring of each net consists of two parts. The first one Srpucnrc N u r n b ~ r a 5 4 3 z 1

starts from the module terminal and routes as close to the mod-
ule boundaries as possible until i t reach the intermediate termi- , , .
nal. The other part is between the intermediate terminal and
the frarne terminal and stays as close t o the frame edges as pos-
sible. The first part can be determined by the techniques of N l .N? ~ N3 N I N? NB

u . r n A r
determining the union of rectilinear polygons. For tlie second
part, we move the intermediate points vertically to a I~orizontal
line L such tha t the separation distance is enougll to solve tlie
corresponding river routing problein. With the al~ove ~uctliods, Fig~lre 6: Determination of Intermediate Terminals.
we can determine the wiring of each net.

T h e o r e m 4: Given an instance of above routing prol)lrrr~, rve The following is an algorjtl~m to t l e t c r ~ n i ~ ~ e the interilrrdiate
terminals of those group such as GI,G3 and Gs in Figure 5 . Ob- can tleter~ninr the routing in time O (6) wit11 an arra?; of f i x

fi I'Es, where 11 is the input length. vioi~s clianges can be made to get other intermediate tpr~~iirials.

Figure 5: Example of routing problem with frame terminals on
the bottom frame edge.

Input: Corners of module boundary, module terminals of a group
of nets, and the corner and the diagonal of the group.

Output: The intermediate terminal of each net in tlie group.

1. 1La11k each terminal of the group according to its order coun-
tcrclockwise around the boundary. Call the correspondillg rank
of a net sequence number.

2. Calculate tlie distance between each convex coruer and 111e
diagonal of the group. For each convex corner C, detel.~ninr an
integer k such that each net witli sequence number 2 k intrrsrcts
the diagonal ucar C. rl. will be called the bonnrli7~g unlue of C'.

For tlie routability testing, we ca.rl lincl out the rorr t i~~g or tllc
or~tcrrnost uet in each groul) tllen dclcct l l ~ e j11tel.scc-lio11 l)t.t\vcen
these nets, module and frarne b o u ~ ~ d a r y by the niethods of [hIS].
Tlie follo~ving is the algorithm for the set of nets \vlrose frame
ter~~l inals arc. on tlre bottom fra~nc edge. Obvious cliangcs ran
be made for n o r e general nets.

iilgorithr~~ Routability Testirlg

1. Partition the nets with one terminal on the bottom frame
edge into groups and identify t l ~ c corresponding corners and di-
agonals.

2. D c t e r ~ ~ i i ~ i e the outer contour of each group as well as the
intersection points (in termediol~ terrnir~als) of the routing with
the corresl)onding diagonal assu~ning a greedy strategy as close
t o tlre lnodule as possible (greedy-in).

3. hIove the intermediate points vertically to a Irorizolital line
L sucli that the separation distance is enough to solve tlie cor-
responding river routing problem. Fintl the cliaracteristic bend
~ x ~ i n t s of]lets corrcspo~itling to i~itliicc(l rivcr routing p1.01)-
1~111.

4. Determine if there is any intersection 1)etwcen the Ivirings or
any two differei~t nets or between the wiring of any net and the
nlod~ilc or frame boundary.

Step 4 involves a set of cases. Each of these cases ir'ill be
reduced to testing the intersectio~i betat.cn two sets of line seg-
l l i e ~ ~ t s ((CJ21).

T l t eo rem 5: <:ivt.n an instance of tlie ro~~tal)i l i ly trsti11,q p1.01)-
lciii, \vc call test \vlietller a solutioii csists in t i n~n O(\/;;) t r r i t 1 1

a11 array of f i x fi PEs, u.1rel.e 11 is t l ~ c i11p11t 1~11jit11.

Figure 7: Transfortnation of U-wires with on obstacles.

Suppose that in addition to the input < M,.F,N >, awiring
of all the nets in A' is also provided. Our next subproblcill is to
~notlify the given wiring in such a way that the total wire let~gth
is niini~uized. il C'- IViw is a sequence of three successive seg-
inelits resulting from two successive 90 degree turn clockwise or
coul~terclockwise. A U-wire is reducible if the line segment one
unit froin the base is not occupied by another wire or module
ctlge, or is occupied by the base of a reducible U-wire. It is clear
t l ~ a t ~1~a1wmmot.e colnplicated than reducible U's have to be COII-

si(1er~'d if a f s t parallel algoritlr~n is desired. We can slirink U-
wir,, ~vlienever possible as follows. Lct It' be a U-mire \ i i t l~ ini-
tial seglnciit € 1 = (B1, A ,) and last seg~nent e . ~ = (&,.'IZ) wit11
(s i ~ y) the s-coordinate of B1 less than or equal the s-coordinatc~
of U 2 . 111 addition, suppose there is no obstacle inside II ' . Tltelr
\ce can apply the transformation sl~own in Figure 7 to shorten
If ' . If \Ir has an obstacle inside i t , tlten we find a maximal set
of Ir-wi~.es wit11 the same obstacle and apply the t~.ansforn~atiol~
S~IO\C.I I it1 Figure 8. 'The algorithrlt consists of identifying 11-wires
;~ncl r c d ~ r c i ~ ~ g them wlienever possible. This process has to br
rclwated O(10g 71) tirl~es to remove all the reducible U- wires such
that the resulting wiring is of ~niltimurn length. We can use the
tlivitlc. a11c1 cotlqrler technique. After the first iteration, the prob-
1 ~ ~ 1 1 1 i h t l i v i ~ l (~ t t illto two subproblclns of llalf the size. Ilrprat this
s t r n t ~ ~ g y rvcurii~cly for each subprobleru for at n~os t O(lop1~)
til~~c,s. \ \ c Iiave follo\ci~~g result ([CJ2]).

Tl~eore~n 6: Give11 all initial \vil.i~~g, we call cl~allgr this wiring
so Illat the resul t i~~g rviring is of I I I ~ ~ ~ I I I I I I ~ I total Ic1rgt11 in time
O(J;;) \vitI~ ;In array of J;; x fi PEs, \vhc.rc 71 is the iul~ut
lc~llgtll.

I'ig~~rcl S: ~I ' r aus fo r~~~a t io l~ of U-\vircs \vitll an obstacles.

5 References

[UP] B. Balier and R. I'inter, "An Algoritllnl for the Opti-
mal Placement and R o u t i ~ ~ g of a Circuit Within a. Ring
of I'ads," Proceedings of the 23th Sy111posia111 on FOUII-
tlations of Computer Science, Fov. 1983, pp. 3GO-370,
Tucson, Az.

[CJ l] S. C. Chang and J . JaJa. '.l'arallcl i \ lgorit l~n~s l:or River
Itouting," Proc. Internatiolial C o ~ ~ f e r e ~ ~ c e on l'arallcl I'ro-
cessing, 1968, pp. 9-13.

[CJ2] S. C. Chang and J. JQJd, "Parallel hlgorit l~ms for
\\'iring Module Pins to Franle Patls", Tcclinical Repo1.t
UhllACS-TR-68-2, CS-TR-1970, Ui~iversity of XI;il.yla~itl.
College Park, Jan. 1988.

[CS] It. Cole and A. Siege]. "River routing every \vhiclt way,
but loosc," 25th FOCS, Oct. 19S1, 1)p 6.5 73.

[D ct a11 D. Dolev, I<. I<arplus, .A. Scigel. A . Strong i~lid J .
l J l l~nan , "Optilnal wiring l)ehwucn rrct;inglcs." Proc. 13tl1
A ~ ~ n u a l i\CM Syrnposiuni SC1'0(', hIay 1981, 111). 312-317.

[1,.\1] C'. F:. I,eisersol~ i~nd 1.'. hI. l l a l ~ y , ";\Igorithii~s Tor ~.outilig
a11t1 tc,ati~~g rdutat~ility of 11la11a1 VI.SI layouts." I7tl1 AC'li
STO(', RIay IDS$, pp. 6 9 - 3 .

[LI'] C : . Lcieserso~r and R . I'illtrr. "Opti111al p l a c e ~ l ~ c ~ ~ t for
river routiug," SICOhlP 12(3), ,lugust 1983. pp. '1 17-462.

[XI] F. h1. hialey, "Toward a ~nab l~ r~~~ ; i t i c . a l t11eor.y of single-
layer ivire rout i~~g," 5th bll'l' roiifc.rc11cr on i\clvanrck(i It<.-
sea~.cl~ i n VLSI, hlarcl~ 1'388. pp. 277-2913.

[hli] r\. h l i r ~ t ~ i a ~ ~ , L . (' l ~ ; ~ ~ ~ ~ ~ (~ l ro l i (i~~g i l i lr1.SI," Sill0(+. \l;iy
19X.l,1)1). 101-107.

[US] I{. Slillcr ;ind (2. Stout, "Ales11 C 'o l~~ l~u tc r Algorit l~l~ii for
C o n ~ ~) ~ ~ t a t i o l ~ a l (:cwliir>t ry." ' I ; ~ l ~ ~ ~ i c . ; i l Itcl~ort S(j-I S . 1)cl)t.
Cu~i~l)u ter Scic?nrr, Statr, University o f Nr!w l u rk ;it Ilr~f-
fnlo, July 1986.

[O] Ol~lsr~lt i , 'r., "Layout Uesigt~ i~ud Vcrificatior~," r\~l\.anc.<~s
i t 1 CAD for VLSI, vol. 4, North-llolland, 1946.

[I'] 11. I'inter, "llivcr routing: ~lrett~odology and a~ialysis."
I'rocecdings of tlic tl~irtl C:\I,TI;CII Conference 011 \'cry
1,arge Scalc It~tcgration, SIarcli l9s3, 141-163.

[I'I.] l 'rrl):~r;~ta~ I>. arid \Ir. I,il)ski, '.O11ti111;il r I ' l ~ ~ ' ~ ~ - l . ~ ~ y ~ ~ r
Cliaiii~cl Ituutilig,'' IEEE Trans. O I L Co1111)11tcrs. C-33, 1'1).
,127-437, 198.1.

[SD] A . Scigcl and D. Dolev, "T l~c srparatioti for ~clrcr.al 5i11gl1.
la)-er wiri~ig barriers," Proceetli~~gs of the CX1 I: (,'onf~,~(,lice
on \'I,SI Systems ;tr~tl (' o ~ ~ ~ p u t a t i o ~ ~ s . 0ctol)cr I!)Sl. 111).

1.13-152.

[?'I 11. T o ~ ~ l p a , "All optirn;~l so l~~ t ion to a \vile routi~ig 11ro1)-
ICIII." I'rorc~ctlii~gs of t l ~ r 12th .\iinual Syniposium oil 'Tltc-
or?. of ('o~nputing, X[~ril 19SO. I)]). 161-176.

A UNIFORM AND RECONFIGURABLE FRAMEWORK
FOR THE MULTIDIMENSIONAL FOURIER TRANSFORM

Ron Coleman and Michael Post
Department of Electrical Engineering and Computer Scicncc

Polytechnic University
Brooklyn, New York 11201

(718) 260 - 3440

Alan Waksman
Plex Systems Research, Incorporated

New York City, NY 10016
(212) 686- 9600

ABSTRACT

The computational demands and real-time constraints of the multidimen-
sional Fourier transform (IT) make it an ideal candidate for attack by
massive parallelism. The appeal of parallelism has lead to the considera-
tion of a variety of architectures including systolic arrays, data flow ar-
chitectures, arrays of digital signal microprocessors and so-called hybrid
architectures. These designs have been advance for d s 2 dimensions or
rely complex and inflexible hardware such as array transposers and
peripheral rotation networks. Moreover, they include specific optimiza-
tions for the FT or assume the need for course-grain, high-speed wm-
putational resources. The Hypenomputer supercomputer is a
reconfigurable, massively parallel architecture, a 9,072 processor
prototype currently planned. The hypercomputer architecture family is
based on arrays of a simple and autonomous unit logic entity, the univer-
sal cell. Physically wired in a uniform, eight-degree mesh, the universal
cell is a pipelined, 8-bit microarchitecture. The mesh array is supported
by a separate 3D, parallel 1 0 network. The surprising conclusion we
demonstrate in this paper is that simulated d-dim FT algorithms on the
hypercomputer are fast and achieve optimal area and time complexity
even though the approach is uniform and does not incorporate any
specific architectural optimizations for the FT. For an N-cube signal
space of d dimensions, we derive detailed performance models for the k
cell hypercomputer where d i; k and N s k < Nd. We also present numeri-
cal results comparing a simulated hypercomputer and the AT&T Signal
Processing Ensemble Parallel Computer Architecture.

INTRODUCTION

The application of the Fourier transform (FT) has undergone explosive
growth aided primarily by the discovery of more efficient algorithmic im-
plementations like the fast Fourier transform (FFT) (Ref. 1,2) and more
recently, by advances in Very Large Scale Integration (VLSI). As such,
the FT has emerged as one of the most widely studied, computationally in-
tensive algorithms in the literature. Much of this interest has focused on
accelerating its performance in a unidimensional and multidimensional
signal space. Several special-purpose and parallel architectures have been
suggested including systolic arrays (Ref. 3), data flow architectures (Ref.
4), digital signal processors as well as arrays of digital signal processors
(Ref. 5,7,8), and so-called hybrid VLSl architectures (Ref. 9). In all, the
above proposals have been advanced for d s 2 dimensions, or rely on
complex and inflexible hardware such as array transposers and peripheral
rotation networks. Moreover, these architectures include specific op-
timizations for the FT or assume the necessity of course-grain, high-speed
computational resources.

In contrast, we present an alternative, general design based instead on
recontiguration and massive parallelism; that is, in the context of the Hy-
percomputer supercomputer (Ref. 6), a 9,072 processor prototype cur-

rently planned at Plex Systems Research, Inc. in New York City. The
surprising conclusion we show is that simulated multidimensional FT algo-
rithms on the hypercomputer are fast, achieve optimal space and time
complexity even though the approach is uniform and docs not incor-
porate any specific architectural optimizations for the FT. Furthermore,
each cell in our design is simple and fine grain (8-bits), and is to be imple-
mented with high latency circuits (r 200 ns). We exploit these hardware
limitations through massive parallelism at the instruction level and the al-
gorithm level. Through the reconfiguration, we address specialized com-
putation and communication, tailoring the degree of both to accomodate
each other as well as the FT of different problem sims and with different
space-time constraints.

HYPERCOMPUTERS

The hardware foundation of the hypercomputer family centers on a
uniform, eight-degree mesh of universal cells. This mesh array is sup-
ported by a three dimensional, global I 0 network which provides real-
time 1 0 in the planar dimension and distributed configuration and
synchronization along the polar dimension. Physically, each ccll is an
autonomous, 8-bit microarchitecture with a four stage, pipelined data
path and a 128%32-bit control store, general purpose registers, control
registers and flags, and an interface to its neighbors through locally
shared regions collectively called the synapse. These simple hardware Tea-
tures is the physical basis of low level reconfiguration which captures the
functionality of processor elements, switch lattices, adjunct memory, etc.
in a single conceptual entity. These attributes also serve a much more
powerf;~ abstration conceit we call compututional holisrll in which o b
jects or actors (Ref. 10) pool their limited resources functionally and
hierarchically, forming cooperative associations of cell ensembles or
"chunks" that behave as a single, continuous whole. The software counter-
part of this model is embodied in an object-oriented, visually interactive
environment, called hypeware which composes arbitrarily abstract and
complex actors.

ALGORITHM

The discrete Fourier transform (D m) for the N-cube signal space o f d
dimensions is computed by Equation 1 where S(n],n2, ...m) is a datum in

the signal space, N = N1= Nz = ... Nd, N is a power of 2 and
WN =exp(j2nnlkJNi) for ni,ki =O,l, ...N. 1. Equation 1 can bc re-written in

a form which is more suitable for direct implementation (Ref. 9) as Equa-
tions 2-4 where R is a cyclic permutation function: that is,
R(S(al,az, ... an)) = S(az,a~, ...rh, al). Functionally, R is apefeet shufle rout-
ing map. Physically, R is a rotation of the signal cube through one dimen-

sion of the d dimensional signal space. For d = 2, this is the simple matrix
transposition. Thus, computing the 2-dim FT using cyclic rotations is
cquivalcnt to the row-column method which computes the 1-dim Dm on
all the rows then computcs another 1-dim DFT on the columns of the row
results. We note, in the general case, the d-dim FT is computable solely in
terms of I-dim DFTs, each interlaced by rotating the signal cube. Since
the 1-dim DFT rcquircs o (N ~) multiplications, the d-dim I T (from Equa-
tions 2-4) has requires O(dbJd+') multiplications. It can be seen, then,
that a successful real-time implementation of thc FT (following Equations
2-4) will depcnd on fast multiplication. In many of the designs listed
above, the nccd for fast multiplication is the justification for low latency
circuits.

To achieve thc thcorctical lower bound complexity, O(d log N) (Ref. 12),
Equations 2-4 arc implemented to take h l l advantage of the inherent op-
portunities for parallclism: first, the parallel, fast Fouricr transform
(pFFT) is used instead of the serial D m and second, in the (d-1)-dim
plane, N ~ . ' pFFTs arc computed in parallel. However, in practice, this
lower bound cannot be achicvcd without communication ovcrhead costs
since thc speedup gained through parallelism is obtaincd at the expcnse
incrcascd data movement in the pFFT and the cube rotation. The cost of
this ovcrhead is architccture dependent. For our implcmcntation, we
present overhead results in thc "Performance" section.

In vicw ofthc above algorithm (Equations 2-4), the d-dim FT on the hy-
pcrcomputcr presents a challenge, enough to easily ovcrwhclm any single
cell. However, when local groups of cclls chunks pool their limited resour-
ces through ccx>perativc computation, complicated tasks like the d-dim
F T can bc viewed as various levels of abstraction which as a whole,
simplifies thc task enormously. At the highest level, we analyse the d-dim
FT problcm as two smaller cooperative subproblems in computation and
communication which map to two tightly coupled, complex actors: the FT
actor and the sh~rlrle actor See Figure 1. These complex actors are hicrar-

Frprc 2. N = 8 purall~I FFT.

hically intcgratcd as a composition of progrcssivcly simpler, morc fun.

damental actors which "bottom-out" at the level of primitive actors: i.c.,
actors whose behavior is derived directly from a single universal cell.

Actor

The FT actor is composed of Nd-' 1-dim pFFT actors. A multistage ver-
sion of the pFFT actor for N = 8 is shown in Figure 2. The p F m version

Figure 3. Butte$y operation

we implemenl is recirculating: that is, there is one stage which behaves
like multiple stages by way of an interconnection nctwork to "circulate"
the data flow. In our case, this recirculation is carried out by the shuttle
actor. We prefer the recirculating network of actors because of its sig-

Fiprre 4. Burterfiy actor.
nificant area advantage compared to the multistagc version: that is, for
the p m , O(N) vs. O(N log (NIZ). The pFFT actor is composcd of Nl2
bumerjly actors (c.g., thc black objects in Figure 2) cach of which computc
log N output pairs, (A + B) and (A-B)wk (sec Figure 3). A, B arc inputs
and wk is a "twiddle factor" constant which corresponds to the Qh root of
unity for the complex number (x + iy lN.

A buttcrfly actor is composcd of thrce primitive actors: i , 111, and I . See
Figure 4. The main task for the i-actor is to provide a control interface be-
tween the rest of the butterfly actor and its counterparts in the shuttle
actor. As a secondary task, the i-actor computes (A +B) of the buficrfly
output aftcr forwardingA,B to the m-actor. Since the IT-shuttlc network
is rccirculating, the i-actor also retains one of the outputs, either (A + B)
or (A-l?)wk depending upon its logical address in the buttcrfly nctwork.
The t-primitive actor provides an active storc for the twiddle factors and
forwards to the m-actor one constant for cach of the Iog(N12) outputs.
The twiddle factors are stored in a register clrubl table using the general
purposc registers and arc retrieved using rJerylo,tgslli/ls. Although very
long shifts are slow (2-bits pcr cycle), the computations of wk in the t-
actor and (A + B) in thc i-actor are completely overlapped by ~ h c com-
putation of (A - B) ~ ~ in the m-actor. The impact of this bottleneck in the
buttcrfly can be reduced ifparollel arithmetic (Ref. 11) is employcd to ac-
celerate the multiplication slep. In this schcmc, the buttcrfly actor is
rcconfigured to perform two 16x32-bit or four 8x32-bit partial multiplica-
tions in parallel, then intcgratc the partial results.

Shuttle Actor

The shuttle actor is a general purposc, message-processing asscmbly of
simpler, S and N actors which allow parallel data flow from one input to
another output. On bchalf of the FT actor, the shuttle actor rccirculatcs
the data flow for both butterfly and perfect shufflc rotation nctworks: the
actor reconligurcs itself as ncccssary. The S actor pipcline?, data gcnerally
"southbound" and the N actor pipelines data generally "northbound,"
Variations on these thcmcs allow data to bc transferred in lock-stcp
fashions that are function routing dependent. For examplc, Figure 5
shows the step-wise data flow for the N = I6 butterfly nctwork. A ~imilar
data flow is used for the perfcct shuffle rotation nctwork.

4 5 6
Figire 5. Dataflow for N = 16 butterf7y.

32 x 32 Fourier transform

We now present a detailed example of the FT and shuttlc actors com-
posed for the two dimensional, 32 x 32 Fourier transform. The actor ar-
chitecture is presented in Figure 6 which shows the two dimensional
signal input of 32 rows to each of 32 pFFT actors. These pFFT actors are
16 butterfly actors wide. Figure 6 also shows the rotation of the signal
space for only one row output: namely, the worst-case sccnario in which
the points (0,31) and (31,O) are transposed. This corresponds to a move-
ment of 4-30 cells.

Figire 6. 3 2 x 32 two db?~e~~sional Fo~irier trar~sfon~~

PERFORMANCE

In this section, we dcrive the area and time pcrformancc of the multi-
dimensional FT on the hypcrcomputcr and compare thcsc data with exist-
ing production systems: specifically, commercial DSP mieroproccssors
and the ATRrT Signal Processing Ensemble or ASPEN architecture.
Area, Time

The area pcrformancc for the N-cube signal spacc is dctcrmincd by the
butterfly actor type (i.e., the configurahlc degrce of parallelism, q, used by
thc built-in subactor multiplicr), the shuttle actor area and the d dimen-
sional cube volume. These relationships are exprcsscd in Equation 5. This

area complexity, o(#) is optimal (Ref. 12). The run-time pcrformancc
for the N-cube signal space is dctcrmincd by the pipclincd computation
timc for the I-dim pFFT (TIT) along each dimcnsion and the communica-
tion delay in the 1-dim pFFTs (D n) and thc rotation (D,,,). (All times
are reported in system clock cycles exccpt where noted otherwise.) The
pipelined computation time is given in Equation 6 (where measured

T, = t,(d d log(N/Z) (6)

empirically, is the butterfly stage computation time for the q version of
the butterfly actor). The values far 4(s) are given in Table 1. The total

Table I . Empirical values for tc(s)

1 77

delay, TI , = d D ~ r + (d-ljDrot, is elaborated in Equation 7 (whcre 11) = 6
is the cell-to-cell routing delay).

logE(N/2)
TD=t.(d

N ~ - Z N + (d-1)- 2 1 (71

The above performance model assumes a k cell hypercomputcr such that
lVd/2 I k. Howcvcr, !his number of cells may be impractical for the
problem size such that only N/2 5 k < bId/2 cells are available. To il-
lustrate our principle for dealing with this problem we suggest a model
for the simpler case of k = (q +2)N/2 where k is now just largc cnough to
compute the I-dim F T directly. We employ the global 1 0 network which
is able to input data through the planar dimension or the polar dimension
in parallel. See Ref. 6 for details. We use this network to pump inputs into
the mcsh array and carry outputs (e.g., temporary results) away from the
mesh array. So, unlike the case where ?'Jd/2 5 k, the data flow now rccir-
culates between the 1-dim FT actor to the global I 0 nctwork. For
k = (q+ 2)N/2 , we cycle a single dimension through the k ccll array at a
time. The ncw computation timc is now given hy Equation 8 and thc

delay, Equation 9 where t~ is the delay steps Lo input or output a single

datum items and tmt is the dclay steps to rotate the signal cube. The final
performance of this system will depend upon the architccturc of the
global 1 0 network.

Camparisions

We usc thc above modcls to compute the pcrformancc of our prototypc
machine with a 20011s clock for the 1-dim 1024 point IT and the 2-dim
32x32 point FT. Note, the 1-dim 1024 point FT is unaffected by
N/2 5 k < ~ ~ 1 2 . We compare these results with availablc data in the
literature for commercial 32-bit digital signal proccssors (Rcf. 7) and the
prototypc AT&T Signal Processing Ensemble or ASPEN computer (Ref.
5) with 25 32-bit AT&T DSP32 microprocessors. As can he secn in
Tahlcs 2 and 3, the Hypercomputer would excel in the 1-dim FT com-
pared with uniprocessor signal processors and would deliver ncarly
equivalent pcrformancc for the 2-dim I T (for q =4) compared with the
Aspen Processor. This example would easily fit into our machine. Table 3
further shows the effects of serially computing thc 1-dim FTs over the two
dimensional signal spacc for "reasonable" values of tc,: we assume that the
1 0 and rotation arc pipelined so that the rotation is overlapped. Thus,
1 rot = 0.

CONCLUSIONS

Wc have considcred a complete analysis of the d-dim FT on the hypcr-
computcr architecture. Our main goal has bccn to highlight implementa-

tion and performance and demonstrate that inspite of the machine's 8. Andrews, W., "DSP Applications Ride the Wave of Floating Point
proposed simplicity and generality, it delivers competitive response. Processing", Computer Design, Sept 1988
Thcse results are surprising and may be even counterintuitive yet it under- 9. Gertner, I., Shamash, M., "VLSI Architectures for Multidimensional
scores what we believe are the delightful possibilities when reconfigura- Fourier Transform Processing", IEEE Transactions On Conrpilters,
tion and massivc parallelism are married. Nov 1987

10. Agha, G.,Aclors, A Model of Cotrcurrent Computatiotr itr Distributed

Table 2. Hyp~rco~?tpi~ter 1's. irrtiproce~~or DSPs. Systems, MIT Press, 1986
11. Lee, C., "Primary Computational Agents for Parallel Arithmetic",

Depatiment of Electrical Engineering and Contptrler Science Project
Report, May 1988

12. Hwang, K., Briggs, F., Contpuier Archiiecrure mrd Parallel Processir~g,
McCraw Hill, 1984

Tuble 3. Hyprcot?lputer errs. Aspen Parallel Processor.

DSP
Microprocessor

DSP5600
TMSXBJC25

ADSP21M)
TMS3210

hypercomputer

q = 1
q = 2
q = 4

ACKNOWDLEGEMENTS

Clock
(ns)

50
40

31

50

200

Architecture

ASPEN

hypercomputer

q = 1
q = 2
q = 4

- - ---. ~

q = l . t ~ =32
q = l , & =10
q = l . = 1

This work has been funded in part by Applied Concepts, Inc.: we ap-
preciate its generosity in supporting our work. We also thank the staff

T

(ms)

5.0
7.1

72

m.0

0.96
0.60
0.37

members o f ~ ~ ~ l i e d ~ o n c c $ t s , lnc;, Sally Huns and Maria Gonzalez-
Coleman for their snirit of encouranement and assistance. and Haldun

PEs

25

2,560
3,072

4,096
~~~ --.. ~ ~~ 

2D560 

Hadimioglu and thd Polytechnic ~ayallel Processing Cro& for providing 
insightful technical criticisms and invaluable feedback throughout the 

T 
(ms) 

0.80 

1.40 
1.09 
0-88 

..-..-... 

9.37 
7.68 
6.99 

evolution of many of thc ideas embodied in hypercomputers: 

REFERENCES 

1 .  Cooley, P.M., Tikey, J.M., "An Algorithm for the Machine Computa- 
tion of Complex Fourier Series", Mathentotical Cortrpi~tation, April 
196.5 

2. Brigham, E.O., 7he Fast Fourier Trarrsfon~t Atrd Its Applicatiorts, 
Prentice Hall, 1988 

3. Chowdary, N., et al, "A High Speed Two Dimensional FFT Proccs- 
sor", Proceedings of the lrttenrational Cottference on Accoustical, 
Speech and Signal Processing, 1984 

4. Seales, J., Shively, R., "EMSP: A Data Flow Computer For Signal 
Processing Applications", X S I  Signal Processing, IEEE 

5. Gorin, A., et al, "Computing the 2D DFT On The Aspen Parallel 
Computer Architecture", Proceedings of the Intentatiortal Cortferertce 
ort Parallel Processirrg, 1987 

6 .  Colcman, R., Post, M., Waksman, A,, "Hypercomputers: Design And 
Architecturc", Second Syntpsiunr on the Frontiers of Massierrlq' Paral- 
lel Processirrg, Oct 1988 (companion paper) 

7. "Digital Signal Processors", IEEE Micro, Dec 1986 



PARALLEL ALGORITHMS 
FOR INTERACTIVE MANIPULATION OF 

DIGITAL TERRAIN MODELS* 

E. W. Davis, D. F. McAllister, and V. Nagaraj 

Department of Computer Science 
North Carolina State University 

Raleigh, North Carolina 27695-8206 

ABSTRACT 

Interactive three dimensional graphics applications, such as 
terrain data representation and manipulation, require 
extensive arithmetic processing. Massively parallel machines 
are attractive for this application since they offer high 
computational rates, and grid connected architectures provide 
a natural mapping for grid based terrain models. This paper 
presents algorithms for data movement on the MPP in support 
of pan and zoom functions over large data grids. It is an 
extension of earlier work that demonstrated real-time 
performance of graphics functions on grids that were equal in 
size to the physical dimensions of the MPP. When the 
dimensions of a data grid exceed the processing array size, data 
is packed in the array memory. Windows of the total data grid 
are interactively selected for processing. Movement of packed 
data is needed to distribute items across the array for efficient 
parallel processing. Execution time for data movement was  
found to exceed that for arithmetic aspects of graphics 
functions. Performance figures are given for routines written 
in MPP Pascal. 

Keywords: interactive graphics, parallel algorithms, MPP, 
terrain models 

INTRODUCTION 

Multiprocessor architectures have been used for several years 
to meet the demanding computational requirements o f  
interactive, 3D graphics. The computing resources may take 
the form of specialized hardware thal exploits the vector and 
pipeline suitability of graphics problems.(Refs. 4,  5, 7, 9 ,  
and 13). However, there are several architectures which were 
not designed specifically with graphics applications in mind, 
but are versatile enough to be used advantageously on the 
vectorizable nature of the computations (Refs. 1, 2, 3, 6, and 
11). This paper focuses on the use of one such machine, the 
MPP, for a specific graphics problem: representation of 
digital terrain data and interactive manipulation of 
corresponding terrain images. 

Prior work has shown the feasibility of interact ive 
manipulation of stereo pair images of small terrain models on 
the MPP (Ref. 10). In the prior work grids of terrain data 
were 128 by 128 points, exactly matching the dimensions of 
the MPP and leading to a natural mapping of terrain data to the 
processing grid. In order to increase the possible applications, 
it is necessary to implement interactive graphics operations 

' This work was partially supported by NASA Goddard Space 
Flight Center through the MPP Working Group. 

on much larger databases of terrain points. Data structures 
and algorithms reported in this paper are for pan and zoom 
functions on larger databases. The work is more completely 
described in Ref. 8. 

PARALLEL ALGORITHMS 

Data Representat ion 

Grid-based digital terrain models contain an m by n 
rectangular grid of points (xi, yj), l s i sm,  15jl.n. which 
correspond to longitude and latitude values on the earth's 
surface. Each grid point has an associated value zi,j which is 
the elevation above sea level at the point (xi, yj). 

Typically, a 128 by 128 grid of elevation points is considered 
to match the MPP's architecture. Elevation points are assigned 
to processing elements (PEs) in a straightforward way with 
PEi,j containing the grid points (xi, Yj, zi,j). A grid that just 
matches the PE array size constitutes a small terrain model 
and a limited display. In order to examine a different part of 
the terrain, it is necessary to input a new set of coordinates 
with elevation points from the host or staging memory. We 
wish to make a large database available within the array unit 
at the outset, and be able to display arbitrary parts of the 
terrain in real-time, under interactive selection control. 

The methods described in this paper can handle a terrain 
database up to size 512 by 512 in the limited 1K per PE 
memory of the MPP. However, for purposes of illustration, we 
consider a model with a 4 by 4 array of PEs and an 8 by 8 
array of terrain data. That is, there are four data points per 
PE. 

In order to exploit the full parallel capabilities of the MPP it 
is necessary that terrain data points to be processed be spread 
across the available PEs. This will require some movement of 
data within the processing array. A particular storage 
mapping, shown in figures 1 and 2, is chosen because it 
supports the movements used in pan and zoom functions. The 
original 8 by 8 data array, I in figure 1, is reformatted into 
four 4 by 4 subarrays, A, B, C, and D in figure 2. Data 
elements are mapped as follows: 

A = {ai,j] where ai,j = 12i, 2j; 
B = {bi,j} where bi,j = Izi, 2 j + l ;  
C = {ci,j} where Ci,j = 12i+l, 2,; 
D = {di,j} where di,j = I2 i+ l ,  2 j+ l ;  
where Osi13 and OSjs3. 



Figure 1. Terrain data in scan line order. Array I. 

Figure 3. Packed data with a window selected. 

After reformatting, PEi,j will contain data points from the 
same position in each of the four data arrays. That is, the 
terrain data points shown in figure 2 as aid, bl,j, Ci,j, and 
di,j, collectively called tid, are mapped onto PEi,j. 

- 

00 02  04 06 

40 4 2  44 46 

6 0  6 2  64  66 
Array A 

61 6 3  65  67 

Array B 

a00 bOO 

COO do0 

a10 b10 

2 7 6  
I 
I 

a20; b20 
I 

c20: d20 
I 

a30j  P30 
c30 d30 

5 3  55 

71 73 75 77 

Array D 

Figure 2. Reformatted data, as stored in a 4 by 4 PE array. 

Windows 

a03 b03 

c03 do3 

a13 b13 

~ 1 3  613  

a23 b23 

c23 d23 

a33 b33 

c33 d33 

a01 bO1 

cOl do1 

a l l  b l l  

-<ii-iii- 

a21 b21 

c21 d21 

-p3J- !?I- 

c31 d31 

A subset of terrain points that exactly conforms to the 
dimensions of the MPP is called a window. Figure 3, where a 
square corresponds to a single PE, shows that a window only 
includes data points that are localized to part of the PE array. 
To exploit the parallelism of the machine, it is necessary to 
spread the subset of points over Ihe entire PE array such that 
each PE has one data point from the window. Figure 4 shows 
the distributed data produced by the "spread" function, 
described below. 

a02 b02 

c02 do2 

a12 b12 

-cis ; a t 2  
I 
I 

a22 :b22 
I 

c22 :d22 
1 

-a2?; b32 

c32 d32 

Figure 4. Distribution of the selected window over the array. 

The "Spread" Function 

Thls function consists of a series of bit plane data movement 
operations. All statements in this routine are executed 
simultaneously on all PEs. Two data movement masks NSMASK 
and EWMASK are created. MPP Pascal (Ref. 12) primitives 
such as "rotate" and "any" are used in conjunction with these 
data planes to route the selected data to the target PE. The 
"spread" routine is invoked four times so that elements of A, 
B, C, and D enclosed by the window can be moved to their target 
positlons, one array at a time. Parameter SOURCE is the 
particular source array; either A, B, C, or D. Parameter 
INDEX is the position of the upper left corner of the window 
when it is packed in the array. 

K(A, 8, C, D, SOURCE, INDEX, NSMASK. 

MASK and SOURCE to positions 

RCE to position indicated by 



Routine SPREAD calls the following routine, MAKEMASK. 

Es outside the selected window 

EWMASK = 0; 
SOURCE = 0; 

for PEs inside the selected window 
depending on INDEX 

SOURCE = A or B or C or D; 
COMPUTEMASK (NSMASK, EWMASK); 

Routine MAKEMASK calls routine COMPUTEMASK. 

Once data has been spread over the entire array, further 
functions such as intensity calculations, hidden surface 
removal, and rendering, can be executed in parallel with each 
PE handling one data point as in Ref. 10. 

Pan and Zoom Functions 

We are interested in the ability to move the window about in 
the array of terrain point sets. This process of moving a 
window in object space is called "panning". The routine that 
follows provides the pan function as simply a selection of the 
window to be spread. This routine is used prior to computation 
of intensities and image rendering. 

Another means of examining the entire database is to sacrifice 
resolution for extent of coverage. By choosing representative 
data points from the database it is possible to zoom-in or 
zoom-out using the routine below. The spacing between 
adjacent chosen points determines the resolution or extent of 
zoom. For our small example there are only two zoom settings. 
Maximum resolution is achieved by choosing a window and 
carrying out a SPREAD. For minimum resolution, it is 
possible to simply select one of the four arrays A, 6, C, or D. 
With greater terrain data packing factors, intermediate levels 
of resolution,, involving different extents of data movement, 
are possible. 

We note again that once data has been spread over the entire 
array, further functions such as intensity calculations, hidden 
surface removal, and rendering, can be executed in parallel. 

based on user-defined ORIGIN; 

if RESOLUTION = MIN 
depending on INDEX 
FINAL = A, or 6, or C, or D; 

TIMING ANALYSIS 

Graphics programs were written in MPP Pascal (Ref. 11) for 
a database of 256 by 256 terrain points. Execution time can be 
determined using system provided timing routines. The 
structure of a typical graphics program loop with pan and 
zoom operations is to distribute the data points from the 
selected window over the entire array, then compute 
intensities of all pixels in parallel, then render the image. 
Table 1 gives actual timing measurements 

Table 1. Measured timing for a 256 by 256 database. 

The time taken to distribute data is almost entirely accounted 
for by 28 calls to the SPREAD routine. It is invoked seven 
times for each of the four arrays A, B, C, and D discussed 
earlier. Moreover, the time taken to execute SPREAD once is 
almost entirely accounted for by an inner loop which uses the 
MPP Pascal "rotate" function extensively. The measured time 
for one "rotate" is 204 microseconds. The time taken just for 
executing "rotate" functions while distributing data is 2172 
milliseconds. SPREAD is also used in rendering an image and 
contributes greatly to its execution time. 

An equivalent to the "rotate" function can be achieved in lower 
level languages of the MPP in 3.3 microseconds, rather than 
the 204. Table 2 is derived from the measured timing b y  
substituting the much lower rotate time. 

Table 2. Expected timing with efficient "rotate". 

A necessary condition for real-time graphics image generation 
is that one pass through the .loop of the program must take no 
more than 33 milliseconds. Even with the expected time table, 
each pass takes 200 milliseconds, yielding only five frames 
per second. 

An alternative approach is to bypass data distribution in favor 
of iteratively using a smaller portion of the processing array. 



lmage generation time using this approach, for the same 
database as above, was measured at 73 milliseconds. Execution 
time is reduced but full parallelism of the array is not used. As 
the number of data points in the database is increased by a 
factor of K, the number of active PEs in the array unit is 
decreased by K. This will result in a factor of K increase in 
time for the intensity computation alone. 

A third approach is to maintain the database in the staging 
memory and bring in only the data points needed for each 
computation. lmage generation time reduces to 59 
milliseconds. However, data in the staging memory is only 
accessible alona certain   redefined boundaries. This 
complicates pan a i d  zoom tuniions. 

CONCLUSION 

Prior work has shown massive parallelism to be suitable for 
graphics applications on data arrays which fit the processing 
array size. When larger arrays must be handled, the time 
involved in moving data becomes the dominant part of the 
problem and can take the performance out of the real-time 
realm. 

REFERENCES 

1 . Batcher, K. E., "Design of a Massively Parallel 
Processor", IEEE Trans. on Computers, Vol. C-29, No. 
9, Sept. 1980, pp. 836-840. 

2. Davis, E. W., and J. H. Reif, "Architecture and 
Operation of the BLITZEN Processing Element", Proc. of 
the Third Int. Conf. on Supercomputing, Boston. MA, 
May 1988. 

3. Blevins, D. W., E. W. Davis, R. A. Heaton, and J. H. 
Reif, "BLITZEN: A Highly Integrated Massively Parallel 
Machine", Proc. of the Second Symposium. on the 
Frontiers of Massively Parallel Computing (this 
proceedings), Fairfax, VA, October 1988. 

4. Fuchs, H., et al. "Fast Spheres, Shadows, Textures, 
Transparencies and lmage Enhancements in Pixel- 
Planes", SIGGRAPH, Vol. 19, No. 3, July 1985, pp. 
111-120.  

5. Glassner, H., and H. Fuchs, "Hardware Enhancements 
for Computer Graphics", Fundamental Algorithms in 
Computer Graphics, R .  A. Earnshaw (Ed.), 1985, pp. 
631 -658.  

6. Hillis, D. W., The Connection Machine, The MIT Press, 
Cambridge, MA, 1986. 

7.  Levinthal, A., and T. Porter, "CHAP - A SlMD Graphics 
Processor", ACM Computer Graphics, Vol. 18, No. 3, 
July 1984. 

8. Nagaraj, V., Graphics Algorithms for Parallel 
Architectures, M.S.Thesis, Dept. of Electrical and 
Computer Engineering, North Carolina S t a t e  
University. 1988. 

10. Pol, S., D. F. McAllister, and E. W. Davis, "An 
Application of the MPP to the Interactive Manipulation 
of Stereo Images of Digital Terrain Models", Proc. of 
the First Symposium on the Frontiers of Massively 
Parallel Scientific Computing, NASAIGSFC, October 
1986. 

11 . Potter, J., Editor, The Massively Parallel Processor, 
The MIT Press, 1985. 

12. Science Applications Research, MPP P a s c a l  
Programmer's Guide, March 1988. 

13. Stellar Computer, Inc., Stel lar  Graphics  
Supercomputer Model GS 1000 System Overview, 
1987. 

9. Niimi, H., Y. lmai, M. Murakami, S. Tomita, and H. 
Hagiwara, "A Parallel Processor System for Three 
Dimensional Color Graphics", ACM Computer Graphics, 
Vol. 18, No. 3, July 1984. 



SORT COMPUTATION 

John E. Dorband 

NASAfGoddard Space Flight Center1635 
Greenbelt, MD 2077 1 

ABSTRACT 

Sorting has long been used to organize data in preparation for 
further computation, but son computation allows some types of 
computation to be performed during the sort. Sort aggregation 
and sort distribution are the two basic formsof sort computation. 
Sort aggregation generates an accumulative or aggregate result 
for each group of records and places this result in one of the 
records. An aggregate operation can be any operation that is both 
associative and commutative, i.e. any operation whose result 
does not depend on theorder of the operandsor the order in which 
the operations are performed. Son distribution copies the value 
from a field of a specific record in a group into that field in every 
record of that group. 

Keywords: Sorting, Aggregation, Distribution, SIMD, Mas- 
sively Parallel, Data Parallel, MPP, Routing. 

INTRODUCTION 

Sort computation uses sorting as a control mechanism to support 
interspersed routing and data manipulation. Sort computation is 
performed on sets of records, grouped according to a key con- 
tained in each record. Groups of recordscontain only records that 
have been determined to be equal by some function. The son 
computation technique which has been developed here is simple. 
View a sorting algorithm as having two parts - the comparison 
of records and the routing of records. The comparison deter- 
mines if the two records are in the correct order. Routing takes 
this result and determines where each of the records is to go next. 
Thus, the sort contains a routing and a comparison routine, where 
the routing routine calls the comparison routine when necessary. 
All sort algorithms, such as merge sort, bubble sort, and bitonic 
sort, consist of these two parts. Sort computation can use the 
routing part of any sort algorithm. The routing routine only 
determines the order in which the records finally line up after the 
sort is through - not how they are modified. The comparison 
routine, on the other hand, is replaced with a comparison routine 
whose nature depends on the type of sort computation it is to 
perform. The comparison routine contains the code that deter- 
mines how the contents of therecordsarechanged. The compari- 
son routine has twofunctions. One function is to determine if the 

two records being compared are in the same group (generally 
whether or not their keys are equal), whether a record from one 
group will come before or after a record from another group, and 
in some cases if the sort is complete. The other function is to 
modify the records if they both belong to the same group. 

e-K)-i-t AGXEGAIE DISTRIBUTE 

Figure 1. Conventional use of sorting to organize data 
in preparation for computation. 

Sorting has long been used to organize data in preparation for 
further computation (Figure l), but sort computation allows 
some types of computation to be performed during the sort 
(Figure 2). Sort aggregation and sort distribution are the two 
basic forms of sort computation. Sort aggregation generates an 
accumulative or aggregate result for each group of records and 
places this result in one of the records. Usually, it is placed in the 

SORT SORT 
AGGREGATE DISTRIBUTE 

Figure 2. Soncomputation allows some types of com- 
putation to be performed during the sort. 

last record or the one with the largest key value. An aggregate 
operation can be any operation that is both associative and 
commutative, i.e. any operation whose result does not depend on 
the order of the operands or the order in which the operations are 
performed. Addition, multiplication, AND, OR, and EXCLU- 
SIVE-OR are examples of valid operations. Sort distribution 
copies the value from a field of a specific record in a group into 
that field in every record of that group. The record that contains 
the value to be distributed contains a flag that is set to true. Note 

U.S. Cio~ernment  Work. Not protected by 
U.S. copyright. 



that there may be more than one record in a group in which the 
flag is set, as long as all such records contain the same value. 

SORT AGGREGATION 

Sort aggregation is described here with pseudo code and a proof 
is given to show that sort aggregation computes the aggregate 
result for each group of records within the set of records being 
sorted. The expression "A[S].(B,C,D)" defines an array of 5 
records, where each record has 3 fields, B, C ,  and D. The terms, 
sum or summing, are used as the generic terms for finding the 
result of a valid aggregation operation. Thus, the command 
"SORT(SUM,A)" performs the son sum over the array A de- 
fined by "A[n].(K,V)". Note that the sum operation can be 
replaced by any other valid aggregate operation. 

SUM (Figure 3) is the comparison routine that will, when used 
in conjunction with a sort routine, sum all the values in field V of 
the records for which the K fields are equal. SUM retums a value 
of true if therecords A 1 andA2 are in the correct order, and false 
if they are not. SUM puts the sum of all the V fields of records 
of the same group in the last (or largest) record in the group. 

boolean function SUM(Al,A2) 
given A1 .(K,V) 
given A2.(K,V) 
if A1.K = A2.K then 

A1.V = 0 
A2.V = A1.V + A2.V 
retum(tme) 
end if 

if A 1.K < A2.K then 
retum(tme) 
end if 

if A1.K > A2.K then 
retum(fa1se) 
end if 

end function 

Figure 3. SUM routine. 

The proof that aggregation works as described goes as follows. 
Even though the keys of the records being compared may be 
equal, SUM can affect their ordering by returning the response to 
the routing routine that the records are in the correct order (true) 
or not (false). This in effect gives order within a group. SUM 
always designates the record that contains the result of the sum 
as the larger of the tworecords, thelargercontains avalueof zero. 
This means that the sum of the value fields of the group's records 
will be contained in the record that was designated larger than all 
others. Assume, however, that not all values of records in a 
specific group were summed into the same record. This means 
that at least two records contain only part of the result for that 
group. Each one of these records would have been designated 
greater than all records of that group. Yet, the records that 
contained partial results must not have been compared to any 
others or the partial results would have been summed into it. 

Thus, each record would have been designated the largest in the 
group. Because only one record is the largest of a group, there can 
only be one record that contains the result for any group. 

A comparison routine such as SUM can be written for any 
operation that is both associative and commutative, as described 
previously. 

SORT DISTRIBUTION 

Sort distribution is slightly more complex than sort aggregation 
and is constrained somewhat compared to sort aggregation. The 
constraint stemsfrom the fact theresultofa sort distribution must 
be migrated to all the members of a group of records while the 
result of a sort aggregation only needs to migrate to one record 
of a group of records. This constraint will be clarified further 
after the proof. 

boolean function COPY (A1 ,A2) 
given Al.(K,F,V) 
given A2.(K,F,V) 
if A1.K = A2.K then 

if A2.F then 
A1 .V = A2.V 
A1.V = true 
retum(true) 
end if 

if A 1 .F then 
A2.V = A1 .V 
A2.V = true 
return(true) 
end if 

else 
retum(true) 
end if 

if A1.K < A2.K then 
retum(true) 
end if 

if A1.K > A2.K then 
return(fa1se) 
end if 

end function 

Figure 3. COPY routine. 

The idea in sort distribution is to copy the value of a record in a 
group of records, which has been flagged as having a valid value 
for that group, to all records that do not already have that value. 
The command to perform this is "SORT(COPY,A)", where 
SORT is a routing routine, COPY is a comparison routine, and A 
is an array of records. This array of n records is of the form 
"A[n].(K,F,V)", where K is the key, F is the valid value flag, and 
V is the value field. COPY used in conjunction with SORT 
distributes the flagged value in each group to all members of the 
group (see Figure 4). Like SUM, COPY returns a value of true 
if the records A 1 and A2 are in the correct order, and false if they 
are not. COPY puts the same value in all records of the same 



group, or no value at all if no record of the group had its valid 
value flag set prior to performing the dismbution. 

GENERALIZATION O F  SORT COMPUTATION 

The proof that distribution can be accomplished during a sort is 
similar to that of aggregation. Note that when two records are 
determined to be in the same group, and one of the records 
contains a valid value, it is copied to the other record and its valid 
value flag is set. This, in effect, causes the record with a valid 
value to be considered both larger and smaller than a record that 
does not have a valid value. Thus, at the completion of the son 
computation, at least the largest and smallest record of each 
group that had a record with a valid value will contain a valid 
value. Assume that a record without a validvalue remained after 
the sort was completed. If it waseither the largest or the smallest 
record of the group, then noother record in the group had a valid 
value. If it was not the smallest or the largest value of the group, 
either there was norecord in the group with a valid value, or it was 
not compared to a record in the group with a valid value. If there 
is a record without a valid value and one with a valid value in the 
same group, such apairexists logically next toeach other and has 
never been compared. If such a pair exists, there is no way of 
knowing which one is larger, since they have never been com- 
pared. Thus, the sort must not have been completed. Therefore, 
a record can only be left without a valid value if there are no 
records in its group with a valid value when the sort is complete. 

( c )  
Figure 5. (a) Record A is smaller than B. 

(b) Record A is larger than B. 
(c) Record A is both larger and smaller than 

The statement in the proof written in italics is the key to whether 
a son algorithm can be used to perform son distribution. The 
distribution record must be seen as being both larger and smaller 
than the replaced record. Figure 5(a) shows the order of records 
A and B if A is smaller than B, 5(b) shows the order if A is larger 
than B, but in 5(c) A appears to be both larger and smaller than 
B by replacing B with A. If the solution to the fact that two 
records are out of order is simply that they need to be swapped, 
then A may be made to appear to be both larger and smaller than 
B by simply replacing B with A. This is the case with merge, 
bubble, and bitonic sorts, for example. But this is not the case 
however with insertion sorts that use a log n time insertion. In 
an insertion sort, one of the records being compared has already 
found its position in the list. Therefore, it is not the case that if 
the records being compared are out of order, they are simply 
swapped. Such a sort may be extensively modified to suppon 
sort distribution, but it might be more effective to just use a son 
that needs no modification. 

Sort computation requires that records of data be grouped ac- 
cording to some criterion. Order merely forces this grouping to 
occur. Thus, any function that causes the desired grouping may 
be used to perform the comparison part of the sort. The function 
used for comparison must evaluate to one of three results, less 
than, greater than, or equal to, depending on the two records that 
are being compared. The data values need not literally be less 
than, greater than, or equal to, as long as the end result is an 
unambiguous ordering that causes the desired grouping of rec- 
ords that are designated as equal. 

Records can be grouped, for instance, as a set of non-overlapping 
ranges. In this case, the conditions of the comparison function 
would be lower than the minimum of the range, higher than the 
maximum of the range, or within the range. Range ordering uses 
two types of records - records whose keys are ranges and 
records whose keys are single values. Note that in the case of in- 
range ordering, once a record is determined to be in-range, not 
only must the appropriate action be performed on its aggregation 
or distribution fields, but the key field of the in-range recordmust 
be modified so that it becomes a range key rather than a single- 
value key record. 

AGGREGATE DISTRIBUTION 

Aggregate distributiondiffersfrom aggregation in that all member 
recordsof a group obtain the results of the aggregation instead of 
just onemember. It uses a sort algorithm that is made upof merge 
steps, because the flag field must be set between each merge step. 
I t  is not known if aggregate distribution will work for sons that 
are not made of merge steps. The following describes how a 
merge aggregate distribution is performed. 

Start with two sorted lists of records A, and B,, where i=l ... n and 
j=l ... m. Each record contains a 2-bit flag. The flags of records 
in list A are set to 1 and the flags of records in list B are set to 2. 
During the merge, if two records are determined to be in the same 
group and one record's flag is 1 and the other's is 2, then the 
aggregate function is performed, both records are given the 
result, and their flags are set to 3. If one record's flag is 3 and the 
other's is not, then the aggregate result contained in the record 
with the flag value of 3 is copied to the other record. Otherwise, 
if both records' flags are the same, nothing is done to either 
record. When the merge is done, all records within a group have 
the same aggregate results. 

OPTIMIZATION O F  SORT COMPUTATION 

Sorting is generally a very time consuming function, particularly 
ona single processormachine. However, on amultiple processor 
machine such as the Massively Parallel Processor1 (MPP), a son 
of 65536recordsof 32 bits each takes about 29 milliseconds, and 
a sort of 5 12K records of 32 bits each takes about 1 second. This 
is very fast but still time-consuming if it is meant to be used very 
often, as may be the case with son computation. The time needed 
to perform the necessary sort computation can be minimized in 



several ways-in eitherhardwareorsoftware. Hardwarecan be 
improved by decreasing the interprocessor communication time 
or using a more far-reaching or elaborate processor interconnec- 
tion scheme such as a complete hypercube. Hardware improve- 
ments to sorting or sort computation will not be discussed here. 
However, methods to improve sort computation performance 
through the use of prudent software design and programming 
techniques have been developed by the author and are discussed 
next. 

A bitonic sort has been implemented by the author on the MPP. 
This sort and most other sorts, require log n merge steps, each 
merging two sorted lists into one sorted list. Time can be saved 
during sort computation by performing a merge only if certain 
conditions are met: the records in each list must be in an order and 
have values consistent with the result of a sort computation 
perfomred on each list. An example of this is the use of sort 
computation for table look-up. The table can be sorted once 
before it is used. Therefore, it need only be merged with sorted 
data records when its values are to be distributed to the data 
records, rather than having to be sorted into the data records. 

If it is necessary to extract table records out from among the data 
records to complete a table look-up, the table records could be 
sorted using a major key that distinguishes them from data 
records. This, however, defeats the use of the merge to combine 
the two record types because the sort takes so much longer than 
the merge. The records can be unmerged in no more time than 
it takes to merge them by leaving a "trail of corn", so to speak. 
During the merge, a set of log n bits in each processor is used to 
record whether or not the pair of records in that processor are 
exchanged during each of the log n comparison steps of the 
merge. This set of bits is then used during the unmerge operation 
to route the words back to their original locations. 

Another means of reducing the time spent in sort computation is 
to, at times,perform only partial or local sorting of thedata. This 
has shown to be useful during image registration2 when records 
are being generated whose values need to be accumulated. Each 
original pixel in the image is divided into much smaller subpix- 
els. These subpixels cany a fraction of the original pixel's value 
and a calculated new position. The subpixel values are then 
summed into their new pixel's value using sort summing. Since 
the subpixels are likely to be summed with nearby subpixels. 
many small local sort sums are performed to accumulate as much 
as possible locally before sort summing across the entire image. 
This saves space in the processor memory, as well as saving time. 

Partial sorting can also be used when a table look-up needs to be 
performed and the size of the table is much smaller than the 
number of data records to which the table information is to be 
distributed. In this case, multiple copies of the table are dismb- 
utcd across the processors, allowing the use of smaller son 
distribution operations confined to local areas of the array of 
processors. 

Sort wmputation can be made faster simply by using a faster sort 
algorithm. This is interesting because where the records were 

before the sort and where the records end up after the sort is 
irrelevant. This allows sorts to be used that leave the records in 
unusual orders, such as snake row major or shuffle row major, if 
they are faster. 

In thecase of sort distribution, if it is known that all records either 
contain a value or will obtain a valid value during the sort 
operation, a check can be performed after every comparison step 
to see if the sort distribution has been completed. Thus, the sort 
distribution may be terminated before the sort is actually com- 
plete. 

To extend this concept one step further, it may not be necessary 
for any arbitrary record to obtain the value it is looking for in any 
given invocation of the sort computation. Therefore, many local 
sort operations may be performed to get some local sort compu- 
tation done quickly between successive complete sort opera- 
tions. This brings up an issue for further study: can the keys used 
in the sort operations be generated for records that are created 
between son wmputation operations, so as to minimize the 
number of complete sort computation operations that need to be 
performed. 

AN EXAMPLE OF SORT COMPUTATION 

Multiplication of a sparse mamx times a vector is now presented 
as an example of sort computation. This is presented as an 
iterative refinement of the vector V ( Vi+, = M*V, ). The form of 
the record used is 'T.(R,C,M,V)", where T has four fields: the 
row R, the column C, the matrix coefficient at row R and column 
C, and the vector coefficient at position C of the vector. To 
perform a matrix multiply, first multiply M times C in each 
record, giving new record values "T.(R,C,M,V=M*V)". A son 
sum operation is performed using R as the key and summing over 
M*V. This leaves one record for each R which contains the value 
of the new vector at position R. At this point the matrix multiply 
is complete, but if further iterations must be perform the new 
vector coefficients must be distributed so the value of V corre- 
sponds tothevalueof C, not of R. This isdone by making another 
set of records "T,.(R,=C,C,=R,M,=M,V,)" which contains a 
record for every record in "T'. V, has been given no value yet. 
Then form a set of records that is ihe union of T and T,. A &-t 

dismbution is performed using R as the key and distrib;ting the 
values of V from T to TI. All record of T are deleted and a new 
set of records for T are created of the form 
'T.(R=C,,C=R,,M=M,,V=V,)" from the records of TI. Another 
matrix multiply may now be performed since the values of V 
correspond to the columns of M. 

VIRTUAL LOCALITY 

Virtual memory and virtual processors have become common 
concepts. The concept of virtual memory allows the programmer 
to imagine that there is as much memory as needed, alleviating 
the need to account for physical memory constraints in designing 
a program. It also allows him to imagine that he has complete 
control of all physical memory. This concept is used in most 
large computers, minicomputers, and the newest 32-bit micro- 



computers. The concept of virtual processors allows the pro- 
grammer to view a problem as though it was executing on as 
many processors as needed, yet it may be using fewer proces- 
sors3. 

The key point here is that virtual memory addresses are not 
physical addresses, but appear to be, and virtual processors are 
not real processors, but also appear to be. The programmer must 
still deal with addresses and fixed locations of data and the 
knowledge that he is using one or several processors. The 
programmer still has to deal with a hardware view of his compu- 
tational environment, that of memory and processing units, in 
spite of the fact that it is a virtual hardware view. The author has 
developed the concept of virtual locality to move the program- 
mer further away from hardware architecture concerns and 
closer to the perception of a computationally pure environment. 
This is especially important, as well as particularly feasible, 
when it comes to massively parallel architectures, such as the 
MPP. 

Virtual locality views data in computational units of records. 
Computations are carriedout on thedata of these records accord- 
ing to the groups to which the records belong (their locality). 
These records contain fields, as in any traditional view of data 
records. Groups can contain any number of records. Records are 
grouped according to any number of schemes, based on field 
values. Because all computation isdependentonly on the values 
within the records and the interrelationship of those values, the 
computation is independent of the record's location in the com- 
putation environment before, during, and after the computation 
and, it is also independent of the number of processors used to 
accomplish the computation. This differs from the view of 
computation in other massively parallel architectures that use 
more traditional routing schemes, or, for that matter, any com- 
puter architecture that depends on pointers or fixed addresses to 
direct data to and from specific locations in the environment. 
Virtual locality facilitates position-independent computation. It 
only matters that the appropriate data comes together sometime 
during thecomputational step. Generalized routing schemes and 
traditional memory addressing schemes require that data is 
placed where it can later be found. Therefore, it has to be 
allocated space and can only be moved after all places that refer 
to it have been changed. This makes dynamic allocation, re- 
allocation, de-allocation and garbage collection difficult, if not 
impossible in some circumstances. Position dependent compu- 
tation is used in the implementation of virtual locality, but is not 
seen by the programmer. With virtual locality, records of data 
may be created and deleted at will without allocating them to 
specific locations in the environment. Virtual locality is possible 
through the use of the son computation conceptz. Sort computa- 
tion defines the types of operations supported under virtual 
locality and describes how they are implemented. 

APPLICATION OF SORT COMPUTATION 

Currently, image rotation, image registration, and computer 
graphic generation by ray tracing have been implemented by the 
author on the MPP using son computation techniques. Three- 

dimensional rendering of elevation maps has also been imple- 
mented on the MPP using these techniques by a NASA summer 
student, Jennifer Trainer, under the direction of the author. 
However other applications exist that require the processing of 
irregulararrangementsof data. Forexample, the implementation 
of pure LISP, which was designed and implemented by Tim 
Busse of Science Applications Research and the author, requires 
this capability. 

The pure LISP is implemented by dismbuting the pointer pairs 
that make up the LISPdata structure across the processors of the 
MPP. Sort computation is used to bring the pointer pairs together 
according to the functions that must be performed on them, such 
as thecreation of a new pointer. The basic functionsof pure LISP 
wereimplemented (i.e.,CAR,CDR, CONS, EQ, ATOM, COND, 
APPLY,EVAL, EVLIST, andLAMBDA). The MPPray tracing 
approach4 is based on an algorithm that finds the intersections of 
light rays and objects in a 3dimensional space. It is done by 
recursively subdividing space. Records are created that keep 
track of whether a specific ray or object intersects a subdivision 
of space. If a subdivision of space is not intersected by both a ray 
and an object, all records associated with it are deleted. Son 
computation is used to determine where this condition is true. 
These two applications have been implemented on the MPP 
using MPP Parallel FORTH. 

CONCLUSION 

Future plans in the area of application of sort computation 
include the study of its use on data bases and for implementation 
of acompiler inside the MPP array. Virtual locality is worthy of 
further study also because it allows the simultaneous develop- 
ment of parallel algorithms and hardware architectures, requir- 
ing only a minimal amount of effort to port and test previously 
developed algorithms on new architectures. Sort computation is 
a feasible means of facilitating virtual locality. As with other 
virtual concepts, care must be taken, while knowledge about it's 
effective use and implementation in both software and hardware 
develops. 

REFERENCES 

(1) The Massively Parallel Processor, J.L. Potter, ed., ISBN: 
0-262-16100, The MIT Press, Cambridge, MA, 1985. 

(2) Dorband, John E., Sort Computation and Conservative 
Image Registrarion, Ph.D. thesis, Pennsylvania State 
Univ.. December 1985. 

(3)  Hillis, W. Daniel, The Connection Machine, ISBN: O- 
262-08 157-1, The MIT Press, Cambridge, MA, 1985, p. 
135. 

(4) Dorband, John E., 3 - 0  Graphic Generation on the MPP, 
Proceedings of the 2nd International Conference on 
Supercomputing, Vol. 11, pg 305-309, 1987. 



PRECEDING PAGE BUNK NOT FILMED 

PARALLEL FREQUENCY DOMAIN ADAPTIVE LINE ENHANCER 

Mohamed El-Sharkawy Maur i ce  Aburdene 
E l e c t r i c a l  Eng inee r i ng  Department 

Bucknel  1  U n i v e r s i t y  
Lewisburg ,  PA 17837 

Space Systems Technology Department 
Naval Research Lab 

Washington D.C. 20375-5000 

ABSTRACT 

T h i s  paper  p r e s e n t s  a  comparat ive  s tudy  o f  t h r e e  
p a r a l l e l  imp lemen ta t i ons  o f  f requency domain l e a s t  
mean square a d a p t i v e  1  i n e  enhancement a l g o r i t h m s  
u s i n g  p a r a l l e l  computers.  Two models o f  t h e  
Connect ion  Machine+ (CM-1) and (CM-2) and one 
model o f  t h e  Ba lance Machine++ (Balance 8000) were 
used i n  t h i s  s tudy.  S i m u l a t i o n  r e s u l t s ,  speedup 
f a c t o r s  and e s t i m a t e d  s p e c t r a  f o r  a l g o r i t h m s  based 
on c i r c u l a r  and l i n e a r  c o n v o l u t i o n  a r e  presented.  

INTRODUCTION 

Recen t l y  c o n s i d e r a b l e  i n t e r e s t  has focused on 
a d a p t i v e  l i n e  enhancement a p p l i c a t i o n s  i n  comnuni- 
c a t i o n s ,  r a d a r ,  sonar and c o n t r o l .  The a d a p t i v e  
l i n e  enhancer i s  an a l g o r i t h m  t h a t  d e t e c t s  and 
t r a c k s  a  mov ing s p e c t r a l  l i n e  i n  broadband n o i s e  
w h i l e  enhanc ing t h e  s i g n a l  t o  n o i s e  r a t i o  [7]. 
The a l g o r i t h m s  can be implemented i n  b o t h  t i m e  
[ I - 2 1  and f requency  [3-61 domains. Frequency 
Domain Adap t i ve  L i n e  Enhancers (FDALEs) a r e  used 
f o r  t h r e e  i m p o r t a n t  reasons. F i r s t ,  t h e  s t r u c t u r e  
o f  f r equency  domain imp lemen ta t i on  i s  more s u i t a b l e  
f o r  p a r a l l e l  p r o c e s s i n g  than t ime  domain implemen- 
t a t i o n .  Second, t h e  amount o f  computa t ion  r e q u i r e d  
t o  p rocess  a  f i x e d  amount o f  d a t a  can be g r e a t l y  
reduced compared t o  t i m e  domain implementa t ion .  
T h i r d ,  t h e  convergence p r o p e r t i e s  o f  t h e  f requency 
domain p rocess  can be g r e a t l y  improved compared t o  
t i m e  domain process.  Fur thermore,  w i t h  t h e  c o n t i n -  
u i n g  development o f  p a r a l l e l  p rocess ing  a r c h i t e c -  
t u r e s  and l ow-cos t  l a r g e  s c a l e  i n t e g r a t e d  c i r c u i t s ,  
t h e  FDALE w i l l  become i n c r e a s i n g l y  a t t r a c t i v e .  

T h i s  paper  p r e s e n t s  para1 l e l  imp lementa t ions  o f  
t h r e e  l e a s t  mean square FDALE a l g o r i t h m s  based on 
c i r c u l a r  [3] and /o r  l i n e a r  c o n v o l u t i o n  [5 -61 o f  
t h e  f i l t e r  de layed  i n p u t  and i t s  impulse response. 
The f i r s t  a l g o r i t h m  i s  based on c i r c u l a r  convo lu-  
t i o n  o n l y .  The second a l g o r i t h m  i s  a  c o n s t r a i n e d  
l e a s t  mean square a l g o r i t h m  t h a t  per forms s t r i c t l y  
l i n e a r  c o n v o l u t i o n .  The t h i r d  a l g o r i t h m  i s  an 
uncons t ra ined  l e a s t  mean square a l g o r i t h m  t h a t  
a l l o w s  e i t h e r  l i n e a r  o r  c i r c u l a r  c o n v o l u t i o n ,  
wh ichever  b e s t  m in im izes  t h e  mean square e r r o r .  

The Connect ion  and Ba lance Machines were used t o  
s i m u l a t e  t hese  FDALEs. The Connect ion  Machine 
(CM) i s  an a r r a y  o f  p rocesso rs  a r ranged  i n  a  
hypercube network  [9], [14]. T h i s  machine i s  
c l a s s i f i e d  as a  s i n g l e - i n s t r u c t i o n  m u l t i p l e - d a t a  
machine (SIMD) u s i n g  F l y n n ' s  c l a s s i f i c a t i o n  [12]. 
A  t y p i c a l  CM i s  composed o f  16K t o  64K processors .  
I n  d a t a  p a r a l l e l  a p p l i c a t i o n s ,  each d a t a  element 
i s  ass igned  t o  an i n d i v i d u a l  p rocessor .  I n  cases 
where t h e  a p p l i c a t i o n  r e q u i r e s  more p rocesso rs  
t h a n  a r e  a v a i l a b l e ,  a  v i r t u a l  p rocesso r  mechanism 
i s  used t o  s i m u l a t e  a d d i t i o n a l  p rocessors .  The CM 
i s  used i n  c o n j u n c t i o n  w i t h  a  s e r i a l  computer such 
as a  Symbol ics  L i s p  Machine o r  a  D i g i t a l  Equipment 
C o r p o r a t i o n  Vax. The s e r i a l  computer i s  t h e  f r o n t  
end f o r  t h e  CM. The f r o n t  end computer sends 
i n s t r u c t i o n s  t o  t h e  CM. CM programs r u n  on t h e  
f r o n t  end machine i n  d i a l e c t s  o f  C, L i s p  and 
F o r t r a n  EX. T y p i c a l l y ,  a  p rog ram 's  d a t a  r e s i d e s  
on b o t h  t h e  CM ( p a r a l l e l  d a t a )  and on t h e  f r o n t  
end ( s e r i a l  d a t a ) .  A l l  code r e s i d e s  on t h e  f r o n t  
end. The r e s u l t s  p resen ted  i n  t h i s  paper  were 
o b t a i n e d  u s i n g  t h e  *LISP. *LISP i s  a d i a l e c t  o f  
Comnon LISP w i t h  e x t e n s i o n s  f o r  p a r a l l e l  d a t a  and 
f u n c t i o n s .  

The Ba lance Machine, a  m u l t i p l e - i n s t r u c t i o n  
m u l t i p l e - d a t a  machine (MIMD), can be c o n f i g u r e d  
w i t h  as many as t h i r t y  3 2 - b i t  I n t e l  80386 m i c r o -  
p rocesso rs  and takes  advantages o f  up t o  1-M b i t  
dynamic random access memories, seve ra l  custom 
VLSI c h i p s ,  and a  p a r t i c u l a r l y  cach ing  scheme t o  
execute  up t o  8 1  m i l l i o n s  i n s t r u c t i o n  p e r  second 
w i t h  a  r e l a t i v e l y  l ow  c o s t  [Ill. The use r  s p e c i -  
f i e s  t h e  number o f  p rocesso rs  used t o  implement 
h i s  a l g o r i t h m .  The r e s u l t s  p resen ted  i n  t h i s  
paper were o b t a i n e d  u s i n g  Ba lance 8000/21000 
F o r t r a n .  

I n  t h e  r e s t  o f  t h i s  paper ,  t h e  t h r e e  FDALE a l g o r i -  
thms a r e  d e s c r i b e d  and comparat ive  s tudy ,  s imu la -  
t i o n  r e s u l t s ,  speedup f a c t o r s  and e s t i m a t e d  s p e c t r a  
u s i n g  t h e  Connect ion  and Balance Machines a r e  p r e -  
sented. 

FDALE ALGORITHMS 

A l g o r i t h m  1: 

+ Connect ion  Machine i s  a  t rademark o f  t h e  Th ink-  T h i s  a l g o r i t h m  pe r fo rms  c i r c u l a r  c o n v o l u t i o n  o f  
i n g  Machine Corpo ra t i on .  t h e  de layed  v e r s i o n  o f  t h e  i n p u t  s i g n a l  and t h e  

++ Balance Machine i s  a  t rademark o f  t h e  Sequent a d a p t i v e  f i l t e r  impu lse response 133. The i n p u t  
Computer Systems. s i g n a l  d ( n )  and t h e  de layed  v e r s i o n  o f  t h e  i n p u t  

CH2649-2/89/0000/0143$0 1 .OO O 1 988 l EEE 



s igna l  x(n)  a re  accumulated t o  form N-point data 
b locks  (F igure  1).  where 

where A i s  chosen so t h a t  d(n)  and x(n)  a r e  
uncorre la ted.  These N-point  data b locks o f  x(n) 
and d(n)  a re  then transformed by N-point Fast 
F o u r i e r  Transforms (FFTs) t o  o b t a i n  X(k) and D(k) 
r e s p e c t i v e l y ,  where 

and T  i n d i c a t e s  transpose. 

The i n p u t  response t ransform values Di(k) 

a re  subtracted from the  values o f  the product  o f  
the  delayed i n p u t  response t ransform Xi(k) and the  

weights a t  corresponding frequencies Hi(k) t o  form 

N e r r o r  s i g n a l s  El(k). Each weight  i s  independ- 

d e n t l y  updated once f o r  each data b lock  accord ing 
t o  the f o l l o w i n g  complex LMS a l g o r i t h m  in t roduced 
by Wldrow e t  a l .  [4]: 

where p i s  a  constant  t h a t  determines the r a t e  o f  
convergence and the  s t a b i l i t y  o f  t h i s  adapt ive 
process and X.*(k)  i s  the conjugate o f  X.(k).  

J J 
The weighted ou tpu ts  a re  fed  t o  an inverse FFT 
t ransform t o  produce the output  s igna l  y (n ) .  The 
f i r s t  a l g o r i t h m  i s  the  s implest  one. Un fo r tuna te ly ,  
the use o f  c i r c u l a r  convolut ion transforms a  
l i n e a r  t ime i n v a r i a n t  f i l t e r  i n t o  a  p e r i o d i c  t ime 
vary ing  f i l t e r  whose output  i s  p e r i o d i c a l l y  
nons ta t ionary  f o r  a  s t a t i o n a r y  i n p u t  [8]. 

'1 / FFT I : 1 : I  F F ~  

Figure 1. F i r s t  A lgor i thm Block Diagram 

A lgor i thm 2: 

This a l g o r i t h m  produces s t r i c t l y  l i n e a r  convo lu t ion  
o f  the  delayed i n p u t  s igna l  x(n)  and the adapt ive 
f i l e r  impulse response h (n )  [5] (F igure 2).  This  
a l g o r i t h m  uses the  overlap-save method w i t h  50% 
over lap [ lo ] .  Thus, the weights a re  padded w i t h  N  
zeroes and bo th  the  (k -1 ) th  and k t h  N-point  delayed 
i n p u t  b locks  a r e  used. These 2N-point data b locks 
are then transformed by EN-point FFTs, where 

T  H ( k )  = frequency domain weight vec to r  

X(k) = d i a g  {FFT[(k-1)th and k t h  delayed i n p u t  

b locks] }  

= d i a g  {FFT[x(kN-N) ... x(kN-1) x(kN) ... 

The frequency domain weight vector  update equat ion 
i s  

H(k+l )  = H(k) + p FFT [ V ( k )  0 ... D l T  (5) 

where 

V(k) = f i r s t  N  terms o f  FFT-I [X*(k) E(k ) ]  (6) 

2N P o i n t  

Zero l a s t  

N P o i n t  

2N P o i n t  

Figure 2. Second A lgor i thm Block Diagram 



Algor i thm 3: 

This  a l g o r i t h m  performs e i t h e r  l i n e a r  o r  c i r c u l a r  
convolut ion,  whichever minimizes the mean-square 
e r r o r  [6] (F igure  3). Th is  a l g o r i t h m  reduces the 
number o f  FFTs per  processed b lock  from f i v e  t o  
three. The e x t r a  two FFTs a r e  needed f o r  the 
second a l g o r i t h m  t o  impose a  time-domain c o n s t r a i n t  
i n  which the  l a s t  h a l f  o f  t h e  t ime domain weights 
are fo rced  t o  zero t o  implement s t r i c t l y  l i n e a r  
convo lu t ion  between t h e  delayed f i l t e r  i n p u t  and 
the f i l t e r  impul se response. A l low ing  the f i l t e r  
the freedom t o  implement c i r c u l a r  o r  l i n e a r  con- 
v o l u t i o n  cou ld  reduce the  mean square e r r o r  i n  
cases o f  l a r g e  A [8]. The frequency-domain 
weight vec to r  update equat ion i s :  

H(k+l )  = H(k) + p X* (k) E(k) (9) 

I t  has been shown [3-61 t h a t  when implementing 
the t ime and frequency domain a lgor i thms f o r  
s i n g l e - i n s t r u c t i o n  s ing le -da ta  (SISD) machines, 
the r a t i o s  o f  the  r e a l  m u l t i p l i e r s  o f  the f i r s t ,  
second and t h i r d  FDLMS a lqor i thms t o  the r e a l  
m u l t i p l i e r s  o f  the  t ime domain LMS are  
(3Nlog2(N/2)+4N)/2N2, (5( log2N)+4)/N and 

(3( log2N)+4)/N respec t i ve ly .  For N.1024, These 

r a t i o s  a r e  0.015, 0.053 and 0.033 respec t i ve ly .  
This  i n d i c a t e s  t h a t  the  FDLMS a lgor i thms execute 
much f a s t e r  than t ime domain LMS algor i thm. I n  
a d d i t i o n ,  the  independent updates o f  the weights 
Hi(k) o f  the  FDALE make i t  more s u i t a b l e  f o r  

p a r a l l e l  process ing than the t ime domain adapt ive 
l i n e  enhancer (TDALE). As a  r e s u l t ,  the FDALE has 
a  b e t t e r  performance than t h a t  o f  the  TDALE. 

Sample s imu la t ion  r e s u l t s  f o r  the  th ree  a lgor i thms 
us ing the Connection Machines a re  presented i n  
F igures 4 and 5. F igure  4  i s  a  p l o t  o f  t h e  execu- 

I Sample S i z e  = 2**N 

Figure 4. Execution Time o f  the  Connection 
Machine Versus I n p u t  Data S ize  

Ma - 

I "- 
2 200- 

0.00 0.01 0.10 0.U 0.10 0.2s 
SNR n 0.0 dB NORMAUZCD fRCQUD(C.7 

F i r s t  algori thm 

F igure  3. T h i r d  A lgor i thm Block Diagram 

SIMULATION RESULTS 

The th ree  a lgor i thms were employed i n  the  detec- 
t i o n  and spec t ra l  es t imat ion  o f  a  narrowband 
s igna l  co r rpu ted  w i t h  wh i te  a d d i t i v e  noise. The Third a lgor i thm 
i n p u t  s igna l  y ( k )  w i t h  normalized f requencies 
0.033 and 0.156 HZ Is generated by adding a sinu- F igure 5. Est imated Spectra f o r  16K Data Samples 
so ida l  i n p u t  s (k )  t o  a  w h i t e  Guassian noise n(k) .  and Zero SNR. 

u***- 

I****- 

".... 

1 ***.. 
n b * .  

.+ ;. L h  1.. , 
0.66 0.05 0.80 0.U 0.10 0.11 

SNR = 0.0 dB NORMAUZCO FREQUWO 



t i o n  t i m e  o f  t h e  t h r e e  a l g o r i t h m s  i n  seconds v e r -  
sus t h e  i n p u t  d a t a  s i z e  u s i n g  t h e  CM-1 and CM-2 
machines. F i g u r e  4  i n d i c a t e s  t h a t  t h e  execu t i on  
t i m e  i s  a  l i n e a r  f u n c t i o n  o f  t h e  i n p u t  d a t a  S ize  
when u s i n g  a  CM d a t a  p a r a l l e l  computer and t h e  
f i r s t  a l g o r i t h m  i s  t h e  f a s t e s t  a l g o r i t h m  f o l l o w e d  
by t h e  t h i r d  a l g o r i t h m  and t h e  second a l g o r i t h m  
r e s p e c t i v e l y .  T h i s  l i n e a r  speed up i s  due t o  
" s c a l i n g  up" t h e  prob lem [13]. F i g u r e  5  shows t h e  
es t ima ted  s p e c t r a  f o r  16K d a t a  samples and ze ro  dB 
s i g n a l  t o  n o i s e  r a t i o .  F i g u r e  5  demonstrates t h e  
c l o s e  match between t h e  es t ima ted  f requenc ies  and 
t h e  a c t u a l  f r e q u e n c i e s  and t h e  t h i r d  a l g o r i t h m  has 
t h e  b e s t  performance, e s p e c i a l l y  f o r  lower  s i g n a l  
t o  n o i s e  r a t i o s ,  f o l l o w e d  by  t h e  second and f i r s t  
a l g o r i t h m s  r e s p e c t i v e l y .  

The speed up f a c t o r  f o r  t h e  Balance 8000 machine 
i s  d e f i n e d  as t h e  r a t i o  between t h e  t i m e  needed 
f o r  one p rocesso r  t o  implement t h e  a l g o r i t h m  and 
t h e  t i m e  needed f o r  n-processors  t o  implement t h e  
same a l g o r i t h m .  T h i s  speed up approaches t h e  
l i m i t  p r e d i c t e d  by  Amdahl 's [15]. F i g u r e  6  shows 
t h e  speed-up f a c t o r s  o f  t h e  f i r s t  a l g o r i t h m  u s i n g  
t h e  Balance 8000 f o r  d i f f e r e n t  number o f  p rocesso rs  
and N  = 512 and 1024. A  comparison between t h e  
a c t u a l  per formance and t h e  l i n e a r  one i s  a l s o  
shown i n  F i g u r e  6. 

1 Balance 8 0 0 0  I 

-- - 

P .... Llri-ar Speedup 
Ti12 P o i n t s  F P r  ):::: 1 0 2 4  P c i i n t s  F b T  

L -. - - - - -- - - - - 

F i g u r e  b. Speed Up F a c t o r  For  t h e  Balance 8000. 

REFERENCES 

1. El-Sharkawy M., e t .  a l . ,  "Adap t i ve  S t o c h a s t i c  
F i l t e r  w i t h  no S t r i c t  P o s i t i v e  Real Condi-  
t i o n " ,  IEEE T ransac t i ons  on ASSP, Vol .  35, 
No. 11, pp. 1547-1556, November 1987. 

2. El-Sharkawy M., e t .  a l . ,  " M u l t i s t a g e  Adap t i ve  
S t o c h a s t i c  F i l t e r s , "  IEEE T r a n s a c t i o n s  on 
C i r c u i t s  and Systems. Vol .  35, No. 8, August 
1988. 

3. Den t i no ,  M., e t .  a l . ,  "Adap t i ve  F i l t e r i n g  i n  
t h e  Frequency Domain," Proc.  IEEE, Vol. 66, 
No. 12, December 1978. 

4. Widrow. B., e t .  a l . ,  "The Complex LMS 
A lgo r i t hm, "  Proc. IEEE, Vol. 63, No. 4  A p r i l  
1975. 

5. F e r r a r a ,  E. R., "Fas t  Imp lemen ta t i on  o f  LMS 
Adap t i ve  F i l t e r s ,  "IEEE Trans. ASSP, Vol .  
ASSP-28, NO. 4 ,  August 1980. 

6. Mansour, O., e t .  a l . ,  "Unconst ra ined Frequency 
Doman A d a p t i v e  F i l t e r , "  IEEE Trans. Vol. 
ASSP-30, No. 5 ,  pp. 726-734, October  1982. 

7. Dav id ,  R. A., e t  a l . ,  " I I R  A l g o r i t h m s  f o r  
Adap t i ve  L i n e  Enhancement," Proc.  ICASSP-83. 
A p r i l  1983. 

8. Cowan, C. F. N., e t  a l . ,  "Adap t i ve  F i l t e r " ,  
P r e n t i c e  H a l l  S i g n a l  P rocess ing  S e r i e s ,  1985. 

9. H i 1  l i s ,  W. D., "The Connect ion  Machine," 
Cambridge, MS. MIT Press,  1986. 

10. Oppenheim, A. V., e t  a l . ,  " D i g i t a l  S i g n a l  
P rocess ing " ,  P r e n t i c e - H a l l ,  1975. 

11. Mauel, T.,  "How's Sequent 's  New Model Outruns 
Most Mainframes1' ,  E l e c t r o n i c s ,  pp. 76-79, May 
1987. 

12. F l ynn ,  M. J., "Very  H igh  Speed Computing 
Systems," Proc.  IEEE, Vol. 54, pp. 1901-1909, 
December 1966. 

13. Gustavson, I., e t  a l . ,  "Development o f  
Para1 l e l  Methods f o r  a  1024-Processor 
Hypercube",  SIAM J. Sc i .  S t a t .  Comp., Vol. 9, 
NO. 9, pp. 1-32, 1988. 

14. Tucker,  L. W., e t  a l . ,  " A r c h i t e c t u r e  and 
A p p l i c a t i o n s  o f  t h e  Connect ion  Machine".  
Computer, Vol. 21, No. 8 ,  pp. 26-38, ~ u ~ u s t  
1988. 

15. Amdahl, G . ,  " V a l i d i t y  o f  t h e  S i n g l e  Processor  
Approach t o  Ach iev ing  Large Sca le  Computer, 
C a p a b i l i t i e s , "  AFIPS Conf. Proc.  30 91967), 
pp. 483-485. 

ACKNOWLEDGEMENT 
SUMMARY 

I n  t h i s  paper ,  t h e  fundamental  concepts o f  t h r e e  
p a r a l l e l  f r equency  domain a d a p t i v e  l i n e  enhancers 
were presented.  Fur thermore,  t h e  Connect ion  
Machines and t h e  Balance Machine were used t o  
s i m u l a t e  these t h r e e  p a r a l l e l  imp lemen ta t i on  o f  
t h e  f r equency  domain a d a p t i v e  l i n e  enhancers. 
Us ing t h e  Connect ion  Machines, a  l i n e a r  speed up 
was obta ined.  The number o f  p a r a l l e l  p rocesso r  
a r e  p r o p o r t i o n a l  t o  t h e  s i z e  o f  t h e  data .  W i th  
t h e  Balance Machine, Amdahl ls l i m i t  i s  reached 
s i n c e  a  f i x e d  s i z e  prob lem i s  so l ved  u s i n g  more 
processors .  

The a u t h o r s  w i s h  t o  thank Paul  Anderson, John 
Church o f  t h e  Connect ion  Machine F a c i l i t y  a t  t h e  
Naval Research Labo ra to ry ,  Washington D.C. and 
A r v i n d  B e t r a b e t  o f  t h e  E l e c t r i c a l  Eng inee r i ng  
Department a t  Southern  Me thod i s t  U n i v e r s i t y  f o r  
t h e i r  v a l u a b l e  he lp .  



Optimal Geometric Algorithms for Digitized Pictures 

on an Optical Mesh * 

Mehrnoosh Mary Eshaghian and V. K. Prasanna Kumar 
Department of Electrical Engineering-Systems, SAL 344 

University of Southern California 
Los Angeles, CA 90089-0781 

Tel: (213)-743-5236 

ABSTRACT 

111 this  paper .  we present opt,imal parallel algorithms for 
fir~tling geometric properties of digitized images on an opt ical  
nicsh. 'Ilirse include O(logN ) t ime solutions for identifying 
and  labeling figures, computing convexity properties, determin-  
111g disttlnccs, c tc .  'l'lie ~ ~ r o l ~ o s e ~ i  opt ical  mesh consists of a two  
tlirne~lsior~al a r ray  of processors which are  interconnected 
through an ophicnl rr~cdiurn. Using free space optical beams, 
the interconnection lopology can be reconfigured dynamically. 
'I'he corr~l)utational loivrr bounds of a generic rnodel reflecting 
sucll an orga11i~:ilion is shown.  I:nlike the  \'LSI models, there 
arr. no planarity c ,onstr ;~ints ,  since the optical beams can cross 
c3acll o t l ~ ~ r  witllout ;in!. ~~i tcr l 'erence.  \C'e also st,rldy the  rela- 
t~c? l~sh ip>  l)ct\\(.(,n t11e shared memory models and t,he pro- 
posed o p t ~ x l  rnodcl of c o r i i p ~ ~ r : ~ t i o n  ant1 i ts  possible physical 
irr11)ltsrnrnt:~tio1is. 

Ont. of tlir \ \~ t l c l )  useti rrlotlcls of parallel computation IS the  
1':11allel Ir',xntlo~r~ akccrss h l a c h ~ n e  (PIl..\hI) T h e  b a s ~ c  assump- 
tion in thi> inotlel is tl1:~t in unit time each of h' processors 
can s i rn r i l t an t~o~~a ly  ncccss a shared memory (Ref. 20). T h e  
unit time s i ~ n ~ i l n t i o n  of a I\' processor PRAhf using elect,ronic 
i ~ l t ~ r ( . o ~ l i l t ~ ( ~ t i n i i s  t;lkrs O(.V4) area on a V1,SI model in which 
p ~ c ~ c ( ~ ~ m r . :  ;ire ;iIloivc~d t o  have unbounded degree. h lower 
I ~ o u n d  or1 tile t i ~ r i i '  t o  ~ i r n ~ ~ l a t c  onc s tep  of a P R A h l  on any 
I)orintlcd degree network of  .V nodes using electrical intercon- 
nccts is R(log.V) . 'I 'l~e crossbar net,\vork is an architecture 
th:~t si1r1111:ttcs one  s tep  of P R i i h I  in O(logilr) t ime,  and  can be 
laid c ~ u t  in O(.V2) a r r a .  Even tliough several networks have 
I,c>en tlrsignrtl (Ref 8 ) .  many issues limit their potential appli- 
( . ~ l ( i o ~ ~  in I~igli ~>erforrr~; lnce parallcl systems. Finding a switch 
w t t i ~ i g  t o  realizcx R pcrnlutat io~r  on a rearrangeable O(log22') 
delay netivork such as the Dcncs t ,akrs  as  much as  O(log4iV) 
tirnr r~s ing  a cube connected cornp l~ tc r  or  a perfect shuffle corn- 
p u t r r  1 ~ 1 t l 1  ;V ~xoccssors  (Re f .  1-1) .+\IQO, the  layout area, of a 
I$c.r~rs nctn.ork is not superior con~pnred  t o  the area reqliirc- 
rircl~t of 1 1 1 ~  .2; i;rput crossl)nr nct\vork. 

- - 
Till< r ~ w n r r h  xn* *ul , l~ortr t l  111 pa r t  I,y tile Nnt lonnl  Sclcnce Fonn- 

rlntl011 ~ ln~ le r  ginl i t  1111-8710830 :tnrl bq  n ~ r : l n t  froln TII\V. 

In t h ~ s  paper ,  we s tudy  parallel archi tectures  t h a t  use free 
space opt ics  as a means  of ~nterprocessor  c o m m u n ~ c a t ~ o n s  
T h e  replacement of the  e lec t r~ca l  ~ n t e r r o n n e c t s  w ~ t h  o p t ~ c a l  
beams has  a slgnlficant ~ m p a c t  o n  the  performance of a VLSI 
a r c h ~ t e c t u r e  (Refs  9,lO) T h i s  IS due  t o  the fo l low~ng  two  
~ m p o r t a n t  properties of free space opt lcs  Flrs t ,  free space o p t  
leal beams can cross each o ther  w ~ t h  o u t  any ~nterference 
Also, the  c o n n e c t ~ o n s  need not be fixed and  can be redirected 
(Ref 3) T h ~ s  l m p l ~ e s  t h a t  uslng o p t ~ c a l  ~n te rconnec t s ,  one can 
d e s ~ g n  a rea  e f f ~ c ~ e n t  bounded degree VLSI a r c h ~ t e c t u r e s  t h a t  
can s ~ m u l a t e  a unlt delay ~ n t e ~ c o n n e c t ~ o n  network 

\Ye present e f f ~ c ~ e n t  parallel a l g o r ~ t h m s  for f i n d ~ n g  
geometric proper tles of d l g ~ t ~ z e d  Images on an o p t ~ c a l  mesh 
Thebe ~ n c l u d e  O ( l o g N )  a lgor~ thrns  for p ~ o b l e m s  such as f i n d ~ n g  
connected components ,  d c t e r r n ~ n ~ n g  the  corirex hull of all 
figures and nearest n c ~ g l i b o ~ ~ n g  I l g u ~ e  t o  all figures O u r  algo- 
r ~ t h m s  requlrc a fact01 of O ( l o g ~ V )  fewer processors compared 
to  the t r a d ~ t ~ o n a l  r l e c t ~ o n ~ c  mesh based a r c h ~ t e c t u ~ e s  (Refs 
13,151 An o p t ~ c a l  mesh ran  I)e looked upon as a t u o  d ~ m e n -  
s ~ o n a l  mesh connected c o m [ ~ u t e r  n h ~ c h  1s enhanced w ~ t h  a 
reconfigurahle o p t ~ c a l  ~nterconnect ton netbvork 

T h e  rest of the  paper  IS o ~ g a n ~ z e d  as follows In the  nevt  
sectlori n e  s tudy  an o p t ~ c a l  model of compu t a t ~ o n ,  and then 
show a class of rcconfigurable o l ~ t ~ c s l  ~ n t e ~ c o n n e c t ~ o n  n e t u o r k s  
In the  t h ~ r d  s e c t ~ o n  In the last sectlon, u e  propose a se t  of 
parallel grometrlc a l g o r ~ t h m s  for d l g ~ t ~ z e d  p l r tu les  using the  
o p t ~ c a l  mesh O u r  results subs tan t l a te  tlie preference of optr- 
cal ~nterconnect lons o l e r  e l e r t r o n ~ c  m e d ~ u m  a s  a means  of 
In tcrprocessor communlcatlon 

AN OPTICAL MODEL O F  COMPUTATION 

In this sect ion,  we introduce an abstract  optical model of com- 
putat ion (OXIC) t o  explore speed size relationship in using free 
space optical beams,  as opposed t o  wires in traditional elec- 
tronics (Ref. 18), for means of intercommunications. T h i s  
model closely captures  a currently iml)lernentable optical net- 
work of processors. IIence, t h e  derived lo\ver bounds  o n  i t s  
computat ional  efficiency gives us a tool t o  analyze the  
opt'imality of various 1111ysical i rnl~lcmentnt ions of OhlC in 
solving prol~lenls .  

Def i~~i t ion :  An optical model of computat ion represents a 
network of N processors each associated wit,h a memory 
module, and a deflecting uni t  capable of establishing direct  
optical connection t o  another  processor. T h e  interproces- 
sor cornmr~nicat ion is [~erformed through a message  a as sing 
nc t~vork  satisfying the follolving rules similar t,o (Ref. 1): 



PARALLEL ARCHITECTURES 
1) A t  any time a processor can send a t  most one 

message. Its destination is another processor. 

2) T h e  message will succeed in reaching the  pro- 
cessor if it  is the  only message with t h a t  pro- 
cessor a s  its destination, a t  t h a t  time step.  

3) All messages succeed or  fail (and thus  are dis- 
carded) in unit time. 

T o  insure t h a t  every processor knows when its message 
succeeds we assume t h a t  the O M C  is run in two phases. In 
the  first phase, read/write messages are sent ,  and in the 
second, values are returned t o  successful readers and 
acknowledgements are returned to  successful writers. We 
assume t h a t  the  operation mode is synchronous, and tha t  all 
processors are connected to  a central control unit. In (Ref. 5), 
the  above definition is supplemented with a complete set  of 
assumptions for accurate analysis. T h e  following are some of 
the main ones. 

1 )  T h e  intercommunication is done through free 
space optical beams. 

2) A processor can perform a simple 
arithmetic/logic operation in one unit of time. 

3) A deflector is capable of redirecting an 
incident beam in one unit of time. 

4) An optical beam carries a constant amount  of 
information in one unit  of time, independent 
of the distance t o  be covered. 

In (Ref. 5), using the above assumptions the following relation- 
ship can be derived: 

AT = R ( I  ), ( 1 )  
where T is the time required to  solve a problem given I a s  
the  minimum required information to  be transferred, and A is 
the  area occupied by the processing layer. 

A related model is VLSIO (Ref. a), which is a three 
dimensional generalization of the  wire model of t h e  two dimen- 
sional VLSI with optical beams replacing the wires as com- 
munication channels. Compared t o  the three dimensional 
VLSI model of computation (Ref. 16), our model is more com- 
putationally resource eficient. T h e  simulation of many paral- 
lel organizat,ions using the Oh4C requires considerably less 
amount  of volume than i ts  layout in a three dimensional V1,SI 
model. For example, the layout volume of a N  processor 
hypercube can be reduced from O ( N ~ / ' )  t o  O(N logN)  when 
using OMC with mirrors as deflectors [next section], instead of 
using a three dimensional VLSI model of computation Hence, 
the following result can be stated;  

P r o p o s i t i o n :  Any computa t~on  performed by a three d ~ m e n -  
s ~ o n a l  VLSI organlzatlon h a v ~ n g  N processors w ~ t h  degree d ,  
In t ~ m e  T ,  and volume 1' t a n  be performed on O M C  In 
to lume v , and t ~ n i c ~  I where ( l? ' /N < t  5 T , and Ard < v  

A lunction / ( 1 1  ) is s a d  to be O(g ( 7 1  )) i l  there exist positive constants 
C and 11 sucl, l l ln t  / ( 1 1  )< c.g (11 ). for all 11 >_n 0. 

In this  section, we present a class of optical interconnect~on 
networks as a realization of the O M C  presented in the previ- 
ous  section. Each of the  proposed designs uses a different opti- 
cal device technology for redirection or the optical beams t o  
establish a new topology a t  any clock cycle, and represents an 
upper bound on the volume requirement of O M C  

O p t i c a l  M e s h  u s i n g  M i r r o r s  

In this design, there are N processors on the processing layer 
of area N .  Similarly, the deflecting layer has area N and 
holds N mirrors. These layers are aligned so t h a t  each of the 
mirrors is located directly above i ts  associated processor. Each 
processor has two lasers. One of these is directed up towards 
the arithmetic unit of the mirror and the  other  is directed 
towards the  mirror's surface. For a pictorial illustration see 
(Ref. 6). A connection phase would consist of two cycles. In 
the first cycle, each processor sends the address of i ts  desired 
destination processor t o  the  arithmetic unit of its associated 
mirror using its dedicated laser. T h e  arithmetic unit of the  
mirror computes a rotation degree such tha t  both the origin 
and destination processors have equal angle with the line per- 
p n d i c u l a r  t o  the surface of tlie mirror in the plane formed by 
the  mirror, the  source processor, and the destination processor. 
Once the angle is computed, the mirror is rotated to  point t o  
the  desired destination. In tlie second cycle, connection is 
established by the  laser beam carrying the d a t a  from the 
source to  the  mirror and from the mirror being reflected 
towards the  destination. Since the connection is done tllror~gh 
a mechanical movement or the rr~irror, with the current  tech- 
nology this  leads to  an order of millisecond reconfiguration 
time. Therefore this archit,ect,ure is suitable for applications 
where the  interconnection topology does not  have t o  be 
changed frequently. In (Iief. I?), the  design of various topolo- 
gies have been studied to  minimize the time complexit,y of 
several problems for fixed period of computation. 

R e c o n f i g u r a t i o n  u s i n g  A c o u s t o  O p t i c  Devices  

In this  organization, N processors are arranged to  form a one- 
dimensional processing layer arid the corresponding acousto 
optics devices are similarly located on a one-dimensional 
deflecting layer. T h e  size of each of the acousto optic devices 
is proportional to  the size of the processing array,  leading to  
an O(N2) area deflection layer. Similar t o  the design using the 
mirrors, every processor has two lasers, and each connection 
phase is made up of two cycles. For a pictorial illustration see 
(Ref. 6). In the first cycle, each processor sends the address of 
i ts  desired destination processor to  the arithmetic unit of its 
associated acousto optic unit using its dedicated laser beam. 
Tlie acousto optic cell's arithmetic unit computes the fre- 
quency of the wave to he applied to  the crystal for redirection 
of the  incoming optical beam to  t,he destination processor. T h e  
acousto optic device then redirects the incident beam frorrt the  
source t o  the destir~ation processor. One  of the advantages of 
this architecture over the previous design is its order of 
microseconds reconfigurat,ion time, which is dominat,ed by t,he 
speed of sound waves. T h e  ot , l~er  advantage is its broadcasting 
capability, which is due to  tlie possibility of generating rnult,i- 
ple waves th rougl~  a crystal a t  a given time Furthermore, the 



a l jo \c  call bt extended t o  Interconnect a ti40 d l m e n s ~ o ~ r a l  grid 
of  processors as follows 

Proposition: U s ~ n g  a ( N ' ~ ' x N " ~ )  proresslng layer, and 
( N " ? x N '  ?) ar ray  of acousto o p t ~ c  d e v ~ c e s  as the deflecting 
Iavcr, one s t e p  of O h I C  can be reallzed In q l o g N )  t ~ m e  and 
0 ( , v 2 )  area 

T h e  area 1s obtalned wltli sunllar arguments  as  In the  one 
tl~lrlcrrs~onal case T h e  tlme cornplex~ty IS due  t o  the  move- 
rncllt ol t la ta  uslng s stsntlartl d~v l t l e  and  conquer technique as  
I I I  (Ref 10)  A t  the  zlll s tcp  a block s u e  9' IS d ~ v i d e d  ~ n t o  
t ~ o  blochs of half the  size Each subblock only con tams  the  
d a t a  elements  tlcstlnetl t o  ~ t s  mcmor) locations 

Electro Optical Crossbar 

T l r ~ s  design uses a hybrid reconfiguration technique for inter- 
connecting processors. There  are  N processors each located in 
a d ~ s t ~ n c t  row and column of the  N X N processing layer For  
each processor t l ~ e r e  IS a hologram module h a v ~ n g  ilr u n ~ t s ,  
such t h a t  the  z t h  u n ~ t  has a grat lng plate wlth a frequency 
leading to  a deflection angle correspondlng t o  the processor 
located a t  t h e  g r ~ d  p o ~ n t  ( t  , z )  In a d d ~ t ~ o n ,  each u n ~ t  has  a 
s ~ m p l e  controller, and  laser beam For  a p lc to r~a l  l l lus t ra t~on  
5ee (Ref 6)  T o  es tab l~sh  or  reconfigure t o  a new connec t~on  
pa t t e rn ,  each processor broadcasts  the  address of the deslred 
d e s t l n a t ~ o n  processor t o  the  controller of each of N unlt  of ~ t s  
hologram module uslng an electr~cal  bus T h e  controller 
a c t ~ k a t e s  a laser (lor conversion of the  electrical tnput  to  optl- 
cal s ~ g n a l )  ~f ~ t s  ID matches the  broadcast  address  of the destl- 
natron processor T h e  connec t~on  IS made when t h e  laser 
I)earns are  passed through the  predefined gratlngs Therefore, 
slncc tlre grat ing angles are  predefined, the  reconfiguratlon 
t ime of t h ~ s  deslgn IS bounded b j  the laser s n l t c h ~ n g  tlme 
~ \ l i ~ c h  1s In the  order  of nano-seconds uslng G a l l ~ u m  A r s e n ~ d e  
tecl~nology T h l s  architecture IS faster than  the  prevlous 
t l c s~gns  and further  ~t compares well w ~ t h  the clock cycle of 
the  current  supercomputers .  One  of the  advantages of this 
s i ~ n p l c  design is in i ts  implementability in VLSI, using GaAs  
technology. Unlike the  previous designs, this can be fabricated 
~ v i t h  very low cost a n d  is highly suitable for applications where 
full connectivity is required. In such applications, the proces- 
sor  layer area can be fully utilized by placing N optical beam 
receivers in each of the  vacant  areas  t o  simult~aneously int,er- 
connect ~ l t h  all the  o ther  processors Th ls  d e s ~ g n  can be 
casrly adopted t o  Implement a neural network of process a ~ t h  
optlcal ~n te rconncc t s  [Ref 1) 

IMPLEMENTATION OF PARALLEL ALGORITHMS 

:Is tlcscribctl ill the previous section. O h l C  alloivs unit cost 
comniullications but  assumes t h a t  the  shared memory is 
tlivitletl in to  motlules. An O h I C  with N processors can s imu- 
Inte, in real t,imc, an Exclusive Read Exclusive \Vrite PRAM 
Ilaving P processors and  ,\I rncmory locations, where A' = 

m a s i m u n ~  {P ,,\/}. On the  o ther  hand,  a P processor EREW 
I'ItAhl can s imulate  in real t ime any P processor OhI('. 
Ilcncc, ~t is easy t o  see t h a t  using !V processor OhIC In 

O(log:V) tirrle, the F F T  or  h points, and in O(log2h') tinre 
t l ~ c  Ijitonic sort of N clcrncnts can I)e pt~rformed 

111 (Ref 7 ) ,  slmple efl'lc~ent algorithms for s ~ m u l a t ~ l l g  an 

1V processor PRAhl on O h l C  using lll/log.\' processors are  
presented. Each s t e p  of the  EREbIr PRAM is simulated in 
O ( l o g N )  tlme with a high p r o b a b i l i t , ~ ,  and  in 0 ( l o g 2 ~ )  time 
deterministically. In this  paper ,  we present opt imal  algorit,hms 
for solving problcnis ill nledium level image processing. An 
opt imal  parallel algorithm 1s defined as  one which i ts  processor 
time product  is equivalent t o  the  running time of the  sequen- 
tial solut,io~l. Due t o  space limitations only the  proof sketchs 
explaining the  main ideas are  presented. T h e  details appear  in 
(Rcf .  6), Also for an introduction t o  the  basic techniques used 
in the clcsign of the  following algorithms refer t o  a simple 
opt imal  template  mat,ching algorithm shown in (Ref .  6). 

Optimal Geometric Algorithms 

In t h ~ s  s e c t ~ o n  are present eITlc1ent O(1og.V) algorithms for 
problems such as f i n d ~ n g  connected components ,  d e t e r m l n ~ n g  
the conkex hull of all figures and nearest n e ~ g h b o r ~ n g  figure t o  
all figures T h e  lnput t o  o u r  a l g o r ~ t h m s  IS an (N x N )  lmage 
where each of .Y2 p o ~ n t s  1s called a plvel and  can be e ~ t h e r  a 0 
or 1 T w o  adjacent  p11~1s are  connected ~f t h e j  both hold a 1 
T h e  connected 1's form a figure \Ve define the  following 

Optzcal Mesh An optlcal mesh of slze N X N  has  a 
plocessor layer w ~ t h  3 - d ~ m e n s ~ o n a l  array of processors 
nh1c11 ran  ~ n t c r c o m m u n ~ c a t e  In u n ~ t - t ~ m e  uslng thelr 
correspondlng opttcal d e v ~ c e  resldlng on t11p detlectlon 
I ~ ) e r  of same slze A s ~ n i p l e  ~ n l p l r m e n t a t ~ o n  of t h ~ s  1s 

possible uslng mirrors a h ~ c h  mas discussed In the  pre\ I- 

ous  s e c t ~ o n  

G n e n  a 0,'l Image a fundamenta l  task IS t o  ~ d e n t ~ f y  figures In 
the  Image F ~ g u r e s  correspond t o  connected 1's In the Image 
(see (Ref 17)) T h e  l a b e l ~ n g  problem'ls t o  ldentlfy and assocl- 
a t e  an unique ID with the  connected 1's in the  image 

Lemma 1: Given a N XIV 011 image, all figures can be 
labeletl in O(logiCr) time using an (A' ~ . h ' ) - o p t i c a l  mesh. 

Theorem 1: G n c n  a n' XiV 0, 1 image, all figures can be 
labeled in q l o g h ' )  tlrne using an (,I' log1 ?.v x A' log1 " v ) -  
optical mesh.  

Proof sketch: In this. we assign a log'"iCr X I O ~ ' ~ ' , V  block of 
image t o  each processor, ant1 sequentially label the figures 
~vitlrin these regions. For  each ol' these blocks, we cont inue 

tvit.11 its 1,ountlary informat ion which lias O(log1i2A') pixels. In 
the  next s t ep ,  we merge these blocks together until the block 
size becomes logix' X l o g ~ V .  Since the input size is larger than 
the  processor count by O(logl",h'), we s imulate  the  loglog.2' 
divitlc and  conquer merging in the following manner .  In each 
r ~ g l o n  of size 1og.Y X logll' there are log3 ',V boundary points. 
At tlie i l l ,  iterat,iou of rncrging, this reduces t o  ( 1 o ~ ~ ~ ' n ' ) , ~ 9 '  
Tllerefore the total  boundary points  t o  be merged over the  
loglogi2' iterations 1s O ( I O ~ ~ " ~ Y ) .  Using Lemma 1 ,  we label 
O(log,Cr) I~ountlsry points ol' each rtcration at  a t lme,  using 
1og.Y processors. Hence, the number of it,erations t o  sinrulat,e 
loglogh' merging is O ( l o g l ) .  Th i s  leads t o  
O ( l o g l ' ? ~ ' l o g l o g i V )  tirne complexity t o  reduce the image size 
to  match tlre processor count .  I'sing 1,clnma 1, the  remaining 
.2: x!Y pixels are labeled with a ,V X X  optical mesh in 
O(log,Z') tirne. 

Convexity is an impor tan t  a t t r ibu te  in image processing and 
vision: many other  problems can be sol\~etl once the  convex 
hull of figures is obtained.  \Ye use the  following definition of 



convexity (Ref. 13) : A set of PEs is said t o  be convex if and 
only if the corresponding se t  of integer lattice points is convex. 
Civen a set. S of I'Es, t.he convex hull of S ,  denoted HuII(S), is 
the  sn~allest  convex set  of PEs containing S .  

Theorem 2: Given a N x N 011 image, the extreme points of 
all the figures can be enumerated in O(loghr)  time using an 
(A7 /log"'hr x N l l o g l / ' ~  )-optical mesh. 

Proof sketch: For each logN XlogN portion of the given 0/1 
image, it is easy to  enurnelate the convex hull of all its figures 
in O(logN) time, using a (logN X 1)-optical mesh. After this 
retll~ction step,  the basic idea of the algorithm is to  construct a 
list for each of the figures simultaneously, and while construct- 
ing it., delete those boundary points which are not extreme 
points. Once the extreme points are found, they can be 
enumerated using the  standard all parallel prefix sum in 
O(1ogN ) time. 

Another interesting problem is to  compute the distances 
bct\veen all figures in a digitized image. In the following we 
use the l I  rnetric However, it can be modified to  operate for 
any lI .  rnet,ric. 

Theorem 3: Given a hr x N 0/1 image, T h e  nearest figure to  
all figures can be enumerated in q l o g N )  time using an 
(A' i ~ o g ' " ~ \ ~  x N ' I O ~ ' ~ " ~  )-optical mesh. 

Constant Time Geometric Algorithms 

Onc ol' t,he most attractive properties of optics is superposi- 
tion This  property suggests t h a t  the resultant disturbance a t  
;my point in a rnediuni is the algebraic sum of the separate 
constituent waves. lience, it enables many optical signals t o  
pass through the same point in space a t  the same time without 
causing mutual  interference or  crosstalk. Using this property 
in (Ref, l l ) ,  they showed how a single memory element can be 
read by r ~ ~ a n y  processors a t  the same time. In t,llis paper we 
employ this charact,eristic to  allow concurrent writes if all the  
requesting processors want  to  write a "1". This  leads to  the 
constant  running time of the following geometric algorithms, 
under the assumption t h a t  broadcasting can be done in con- 
s tan t  time: 

Corollary: Given a ( I V ' I ~ X N ' I ~ )  image, using an ( N  x N )  
optical mesh, in O(1) time, 

1 .  For a single figure, i t s  convex hull and the smallest 
enclos~ng box can be found 

2 For eaclt figure, the nearest ne~gl ibor~ng figure can be 
~ d r n  t~fietl 

CONCLUSION 

111 this paper, we studied the computational limits in using 
optical intriconnects under a proposed optical model of com- 
putation. hlotivated by this model, we presented three possi- 
ble physical architectures t,o realize the unit time intercom- 
munication delay assumed in PRAM. A direct simulation is 
possible using the proposed optical mesh using mirrors. A fas- 
ter architecture is the optical array using acoustic opt,ic devices 
\ v ~ t h  broadcasting capability. A considerably less expensive 
clcsign which is current,ly implementable with VI,SI technology 
is the electro optical crossbar. This  is an optimal design for 
fully ronnectetl networks with a reconfiguration time in the  
order of n;~noseconds. \Ye showed the superiority of using opt- 
i r ; ~ l  intrrconnc~cts by presenting efficient algorithms for finding 
the geometric prol~rrt ies  of digitized pictures. 

REFERENCES 

1 .  R .  Anderson, and G I, hlillcr. " O p t i ~ n a l  I ' :I~:IIII~I :\I:o- 
rit111~1s for 1,ist I< ; I I I !~~IIX" ,  ' ~ e c I ~ n i ( ~ a l  l<(,11ort I ) ( ~ I ) I  ot' ('(1111- 
puter Science, I!SC. 1087 

2. R. Barakat  and J .  Iteil'. "Loivcr I,our~ds on t I I V  1 ' i ~ r l l ~ ) I l  l :I- 
tional efliciency of opt,ical ci)n~[)ut ing syst,rrrls". . l o ~ ~ r r ~ : ~ l  of 
Applied Optics,  Vol. 26, No. 6 ,  hlarch 15, 10R7. 

3. L. A. Bergman, W. 11. \Vu.  A .  R. J o l l n s o ~ ~ ,  I <  S i s o ~ i ,  5 C ' .  
Esener, S. C. C;ucst. 1'. \'a, T. . J .  Ilrahik. 1 1  I ~ ' c 1 ~ l n 1 ~ 1 1 ~ .  5 .  
1.1. Lee, "Hologra.phic optical I ~ ~ t r r c o n n e c t s  for \'I,SI1'. Optl- 
cal Engineering, O c t o l ~ e r  I9X(i. 

4 .  M. M. Eshaghian, and \!. I<. I 'rasanna-liurr~ar. "!in 1111l)lc- 
mentation of Neural Net works using Ol,t icnl Intercon- 
nects", IEEE International Confcrcncc of Ncuri11 Srt \vorl is ,  
1Q88. 

5 .  hl. M.  Eshaghian, [lo-In Jeon,  and 1'. I < .  I ' ~ . ; ~ . s a ~ ~ ~ ~ a - l < r i n ~ a i . .  
"Massively Parallel .4rchitectures with Optical Interconnec- 
tion Networks", Optical (:orr~puting 88. To111o1l. I . ' r a~~cr .  

6. M. M .  Eshaghian, and \'. I i .  Prasanna-1 iur11a~ "Optinlal 
Parallel Algorithms for lrnage Prorrssing on an Optical 
h?esh", Technical Report ,  Dept ,  of EE-sys t rn i s . l~SC.  

7 .  h4. M.  &haghian, "Parallel Con~pubing  with Optiral  Intcr- 
connects", Ph .D.  thrsis, in p r c p a r a t i o ~ ~ ,  USC. 

8. T .  Y. Feng, "A Survey of Interconnection Nr)t\vorks". 
IEEE Computer  magazine. Decrrnl~er 1081 

'3. D. 11. I Ia r tmsn ,  "Digital l : ig l~  specd i r ~ t e r c u ~ i ~ ~ c v . ~ ~  : I  s111tly 
of the  optical alternnt,ivr". Optical Er~ginec . r~~ig ,  Oct I98fi. 

10 P. R. Naugen, S .  Ryc . l~r io~~zky.  :\ I lnsxil~,  1, I ) .  l i r l t ( ~ l ~ c . ~ o ~ ~ .  
"Optical Intercor~nects  for l ~ i g l ~  sl)c~s(l c , o r ~ ~ l ) ~ r t i i ~ g " .  01)11c:11 
Engineering, October 19Sli. 

11. I3. I<. Jenkins, and C + .  I , .  C;ilcs, ~ ' S I I I I ~ ~ ~ ~ ) O ~ I I I ~ ~ I I  111 01)11(,:11 
Computing",  Optical Computing 88 .  T o u l c ) ~ ~ ,  I-r;:ncc 

I%.  I. Lee, S. Goldwnssrr, antl D. Snritc~ly. " S y n i l l r i ~ s  ant1 nl;tj)- 
ping algorithms for a rrco~lfigurablr optic:>\ ~~rtc%rconncc,tiol~ 
network", I C P P ,  1'386. 

13, R. Miller and Q. F Stout ,  "Crometric  :\lg(>rll 11rr1h l'(,r Digi- 
tized Pictures on a hlesh ('onncctetl ( ' ~ I I I ~ ~ I I I c I . ~ ' ,  Ii*;I<l: 
PAMI, h h r c h  1085. 

14. D. Nassimi and S. Sahni. "Paralicl a lgor i t l~r i~s  to scat 111) ~ I I V  
Benes per rnuta t~on  net,workm, lEl.;l< 'l'~.ans;~ctic,i~s O I I  ( 'OIII-  
puters ,  Vol. C-31, No. 2 .  17el) 1982. 

15. V. I<. Prasann;]. ~ < ~ ~ I I I ; L I .  : I I I ( ~  11 h'l. I < ~ ~ I : I & ~ I I : I I I .  . ~ ' : I I ~ ! I ~ ~ ~ ~ ~  
Gcon~et r ic  .4lgoritl1nls for 1)1g1t ~zr ( I  I ' i c , t  r~ ~rc. 0 1 1  J I C ~ I I  of 
Trees", l 'ror, of I C ' I ' I ' ,  LORG 

16. A .  L.  IXoscnl~crg, " ' ~ ' ~ I ~ v v - ~ ~ ~ I I ~ ~ ~ I I s I ~ ~ I I ~ I ~  I I I ~ Y ~ I , I I ~ , ( I  C ' I ~ ( , I I I ~ . * '  
\'LSI Syst>cms antl C ' u ~ l ~ l , ~ ~ t ; l t i o ~ ~ .  I I  l iung .  11 .*1)1x)ul, :III(I 
G. Steel, Eds. ,  CIS I'rcss, IOXI. pl) (i0-;!I 

17. .4. Rosenfeld, "Parallel I'roccssocs I'c~r 1111;1g(, I'r( I ( . ( . S S I I I ~  2- 
D arrays and extensions", 1E151:' C:ornputc.r. . J ; I I I I I : L I \  I!lX:i 

18. C. D.  Thompson,  "..Z (:orr~y)les~ty T l ~ c o r y  I'(.>r \'I,C;IV, 1'11 1 )  
Thesis ,  C.M.U., 1980. 

19 J .  D. Ullman, "Con~l )u ta t ,~ona l  .Asl~c.r t~ of' \'I.S1". ('0111- 
puter  Science Press, 1983. 

20. J .  C. Mryllie, "Th? C'on~plrxity of I';~rall(~l ( ' O I I I I I I I I ~ I ~ I O I I * ' .  
Ph .D.  thesis, Cjorr~c.ll ITnivrrsity, Itl~;~c.;r, N l  . le17!l 



AN SIMD PARALLEL &-APPROXIMATION SCHEME FOR On KNAPSACK 

ABSTRACT 

Thomas E. Gerasch 
SPARTA, Inc. 

7926 Jones Branch Drive 
Suite 1070 

McLean, Virginia 22102 

A parallel version of a well-known &-approximation scheme for 0/1 
knapsack problems is presented. The model of computation for the 
parallelization is a shared memory machine in which processors 
have exclusive read, exclusive write access to memory (an EREW 
PRAM). The scheme separates the knapsack items into two sets, 
one of which is used in a dynamic programming-based optimization 
procedure, and the other of which is used in a greedy selection 
process. A dominance relation exists for the knapsack problem 
which is used to limit the growth of feasible solutions during the 
dynamic programming procedure. The dominance relation permits a 
simple representation of the feasible solutions which aids in the 
parallelization of the dynamic programming procedure across all 
feasible solutions in parallel during the process of considering a new 
item. The algorithm uses max(n,32/$-8/&] processors and takes 
O(n) time. For moderate values of E and values of n which are quite 
large (tens of thousands of items), the algorithm is realizable on 
currently available, massively parallel computer systems, such as 
the Connection Machine System. 

Keywords: knapsack, approximation, SIMD, shared memory, 
dynamic programming. 

1. INTRODUCT'ION 
The 0/1 integer knapsack problem is defined by a set of n 

objects having positive integer profits pi and weights wi, and a 
positive integer knapsack capacity M. The problem is concerned 
with maximizing the profit P=& x g i  subject to a weight constraint 
Xi xjwi SM, where xi in {0,1] for i=O,l, ..., n.  An instance of the 
knapsack problem consists of an assignment of values for the profits, 
weights and the capacity. A feasible solution to a problem instance 
is a set of xi  values which satisfy the capacity constraint by 
indicating whether an item is to be included in the knapsack. This 
well-known optimization problem is NP-complete IGJ791, and 
consequently, considerable interest has been generated in 
developing algorithms which obtain approximate solutions lLE79; 
HS78; IK75; SS751. 

An &-approximate solution 10 < E < 1 )  for an instance of the 
0/1 knapsack problem is a feasible solution whose profit P satisfies 
P*-P S EP*, where P* is the maximum profit attainable for the 
problem instance. An approximation scheme for the knapsack 
problem is one which takes an E as a parameter and for each 
instance of the knapsack problem finds an &-approximate solution. 
lbarra and Kim IIK751 presented an approximation scheme for the 
knapsack problem which has both time and space complexities 
that are polynomial in n and I /&,  i.e. which is a fully-polynomial 
approximation scheme [HS781. Lawler [LE79] presented 
modifications to the ideas of Ibarra and Kim that improved the 
time and space bounds. 

There has been a growing interest in parallel computation 
and in the parallelization of optimization techniques and 
algorithms. This interest has extended to the adaptation of 
knapsack approximation algorithms to parallel models of 
computation [GRK86; GW88; LSS871. These parallelizations have 
been for MIMD [LSS87l as well as SIMD IGRK86; GW881 models of 
computation 

The algorithm to be presented here, like that in IGRK861, is 
an SIMD parallelization of the e-approximation scheme of lbarra 
and Kim. Although both algorithms are SIMD parallelizations of 
the same basic strategy, their approaches and actual parallel 
models of computations differ. The algorithm in (GRK861 is a 
recursive implementation of a dynamic programming technique 
applied to a scaled profit version of the entire problem instance. 
The algorithm presented here is a more direct implementation of 
the original dominance-based dynamic programming approach of 
Ibarra and Kim, using scaling of the profit values as well as an item 
separation technique. The item separation partitions the knapsack 
items into two dispint sets of relatively large and small items, 
with set membership determined relative to a suitably chosen 
threshold value. The dominance-based dynamic programming 
technique is applied to a scaled problem in;olving ihe Lrge items 
Feasible solutions from the large item optimization arc augmented 
with small items, with the small items selected to augment a 
feasible solution using a greedy approach. 

The SIMD model which is used assumes that processors have 
exclusive-read, exclusive-write access to a common memory (i.e. an 
EREW PRAM model). (The model used in IGRK861 allows 
concurrent reading of memory by processors, but exclusive writing, 
i.e. a CREW PRAM model.) Processors are assigned to manipulate 
data in a data-parallel fashion using one processor per array index. 
To insure that data is accessed in an EREW fashion, processors 
which are actively participating in a computation step will 
reference the data in a uniform addressing fashion. For example, 
each active processor i will reference data item i+k, where the 
offset k is the same for all processors. 

The analysis of the algorithm will be similar to that 
typically given for serial algorithms in that arithmetic 
operations, comparisons, and memory references are counted as unit 
time operations. However, the same operation performed in 
parallel by many processors will only be counted as a single 
(parallel) instruction execution. The assumption that all of the 
operations mentioned take unit time is not strictly true in actual 
machines, but has been adopted to simplify the analysis of 
algorithms. It has recently been argued by Blelloch 119871 that 
since memory references in the shared memory models are taken as 
unit time operations, other useful primitive operations should also 
be allowed as unit time operations. Scan, or parallel prefix 
operations [KRS85; BG871, are among the candidates as useful 
primitive operations, since they can be implemented with less 
circuit depth and in comparable circuit area than a general shared 
memory circuit [FF83; LT841. A scan operator takes an associative 
operator $ and a sequence of elements 1 ~ 1 ~ 2 ,  ... Pnl, and returns the 



sequence l a l , ( a l Q a 2 )  ,..., ( ( a ~ Q a ~ Q 8 . . Q a n . ~ ) @ a n ) l  The scan  
operations used in the algorithms will be plus-scan, which uses 
addition to obtain the sequence of partial sums, copy-scan to 
replicate a data item a specified numbcr of times (a plus-scan with 
all items but the first contributing O ) ,  and ma%-scan to find the 
maximum of n items. A scan operation can also be run in parallel on 
subscquenccs of an array, and will be called a segmented scan 
opcration. 

Scan operations are logarithmic time operations in the usual 
EREW PRAM modcl. Taking the scan operations to be unit time 
operations yields a parallel model of computation which will be 
callcd the scan model. The algorithm will be analyzed in both the 
EREW and scan models. 

The EREW PRAM, and scan model, knapsack approximation 
scheme to be presented requires O ( n )  time and max{n,32/$-8/f1 
processors. This time requirement is greater than that of the CREW 
PRAM algorithm of [GRK86], which is 0(log3n + lo$nlog(l/e)). 
However, this O ( n )  time requirement is not unreasonable. A more 
interesting measure is the number of processors required by these 
two algorithms. The CREW model algorithm requires n2 ,5 / f1 ,5  
processors, in its worst case. For n=1000 and t=1/10, the EREW and 
scan algorithms require 31920 processors, while the CREW 
algorithm may require u p  to 109 processors. For ~ = 1 / 1 0  and a 
number of processors equal to 216, the CREW algorithm of LGRK861 
can only be guaranteed to handle instances of knapsack problems 
with fewer than 350 items, while the EREW and scan algorithms 
could handle problem instances of size 2 1 6 .  The processor 
requirement for the algorithm of jGRK861 can quickly exceed the 
capability of current technology. However, the processor 
requirement for the algorithm presented here is within the realm 
of current technology, and allows for problems of considerable size 
to be realistically attacked, assuming moderate values of f .  The 
Connection Machine System of Thinking Machines Corporation has 

up to 216 processors, and supports virtual processors into the 
millions. Although the memory in the Connection Machine is local 
to each processor, one can program it in the EREW memory reference 
paradigm by using interprocessor fetch and send operations to 
simulate the shared memory read and write operations, and by 
designing algorithms to not have collisions at any processor during 
the memory reference operations. It was with the Connection 
Machine in mind that the EREW PRAM parallelization of the E- 
approximation scheme was initially designed. 

2. &-APPROXIMATION SCHEME 
The approximation algorithm to be parallelized is the E- 

approximation scheme of Tbarra and Kim [19751, using the scaling 
refinements due to Lawlcr fLE791. The E-approximate solution to a 
knapsack problem instancc is obtained by first separating the items 
into two sets of relatively large items and relatively small items. 
The item separation is performed using scaling and threshold 
factors which cnsurc that one-half of the relative approximate 
error is allocated to each of the two calculation stages. These 
stages correspond to computations involving each of the two sets of 
items (LE791. The threshold and scale factors are determined by 
using an estimate Po of the optimal profit value for the knapsack 
instance. This estimate satisfies Po 5 P' -<?PO where P* denotes the 
optimal profit value for the problem instance. 

The large item computation uses a dynamic programming 
approach to find an optimal solution to a knapsack instance that 
consists of the items with scaled large profit values and has 
capacity equal to the orignal capacity. To restrict the growth of 
the numbcr of fcasible solutions during the large item computation, 
thc following dominance relation is used. Let S ]  and S2 be two 
feasible solutions (i.e. sets of elements whose weight sums do not 
excecd the knapsack capacity). The feasible solution S2 dominates 
S 7 ,  written S 2 2 S 7  if P ( S 1  )<P(S2)  and W(S]  ) > W ( S 2 ) ,  where 

P(S)=ZiEs  pi, and W ( S )  =Xi, s w i  I t  should be noted that i f  S j  > 
Si and if Sk is a set of indices disjoint from both Si and Sj, then Sj  u 
Sk > Si u Sk. 

During the large item computation, a sequence of fcasible 
solutions is maintained whose profit and weight sums are in 
increasing order and for which no solution is dominated by any 
other in the sequence. As each item is considered, the dominance 
rule is applied to preserve the propcrtics of the sequence of feasible 
solutions. The last solution in the scquence is actually the optimal 
solution to the scaled large item problem instancc. At the end of 
the large item computation, the entire scquence of fcasiblc. solutions 
is retained, not just the last in the sequence. 

Each of the feasible solutions from the large item 
computation has its remaining capacity augmented by small items. 
This augmentation of the solutions is done using a ~ e e d y  approach. 
The E-approximate solution to the problem instance is the one with 
greatest profit value after the large and small item computation 
stages. 

The algorithm for the &-approximation schemc is . . 

summarized in the following steps: 
1.) Find PO such that Po<P*<2Po, set the scale factor 

K = ( E / ~ ) ~ P ~ ,  and the threshold factor T=(E/~)PO.  
2.) (item separation) Separate the items into large and small 
sets, the large items being those for which pj>T. Arrange the 
items so that the large item set precedes the small item sct. For 
the large items set qi=rpi /~I  the scaled profit values. 

3.) (Select a minimal set of large items to consider) Arrange the 
large item set in nonincreasing order of qi, and within each qi 
group in nondecreasing w i  order. Select the first i 8 / ~ ~ ) / ~ i  
items of each qi group as candidates. 
4.) [large item optimization) Perform the dominance-based 
optimization of Ibarra and Kim on the minimal sct of large 
item candidates, producing a sequence of fcasible solutions 
whose profit and weight sums are nondecreasing (and 
consequently for which no solution dominates another). 
5.) [Augment fcasible solutions with small items] Arrange the 
small items in nonincreasing order of pi/wi ratios; add a small 
item to a feasible solution if there is suff~cicnt capacity 
remaining the feasible solution. Select the feasible solution 
with the greatest profit value. 

Theorem 1. The algorithm outlined is an E-approximation schcmc 
for the 0/1 knapsack problem. 

That the process outlined above is an E-approximation 
scheme was shown by Ibarra and Kim lIK751. The particular 
scaling and threshold values used in step I )  are du r  to I>awler 
ILE791. Additional details concerning the stcps of the algor~thm 
will be presented in the following section, whcrc the 
parallelization strategy is presented. 

3. PARALLELIZATION OF THE E-APPROXIMATION SCHEME 

The first step in the parallel algorithm can be accomplished 
by sorting the items into nonincreasing profit/weight ratios so that 
P ] / w I + ~ / w ~ >  ...+n /wn ,  and next determining the largest tn such 
that pl +...+ pm S C  but PI+ ...+pm+Pm+l > C. PO is then taken to be 
m a x ( p l + .  .. + p m ,  madpi:  m<iSn)) lLE791. An EREW sor t~ng 
algorithm using n processors, such as an adaptation of the bitonic 
merge sort LQM871, will be assumcd for this and for subsequent 
sorting stcps. The time to sort n items using n processors in the 
EREW model is taken to be 0(log2n). The CREW model algorithm 
from IGRK861 uses a time estimate of Oflog n) for sorting n itcms 
using n processors, and is based on the algorithm in IAKS831. As 
pointed out by Leighton ILT841, the limit obtained in lAKS8Ol is arl 
asymptotic limit and the constant of proportionalitv is so largc 



that this sorting strategy becomes infeasible from a technological 
standpoint. For this reason, the more realistic time estimate for 
sorting of o ( l o 2 n )  using n processors is used here. 

In the scan model of computation, a sorting algorithm can be 
used that is a parallel version of the radix exchange sort [KD73]. If 
the sort keys are m bits long and m is of the same relative order of 
magnitude as log n,  then a radix exchange sort can be implemented 
in the scan model which uses O(m)  = O(log n )  operations [BG871. In 
this case, the constant of proportionality is reasonably small. 
Further, this sorting strategy is also applicable when floating 
point representations of numbers is used. This parallel radix sort is 
the sorting algorithm assumed in the scan model analysis. 

The rearrangement of the items in step 2, the item separation 
phase, can be accomplished by first using n processors to enumerate 
the items in each set. This requires parallel prefix summation 
(plus-scan) operations in which each of the items in the set being 
enumerated contributes a I while the other set's items each 
contribute a 0. The rearrangement can then be easily accomplished 
by adding the number of elements in one set to the other's 
enumeration values and using these values to indicate the new 
positions for the items. The enumeration steps require O(1og n )  time 
in the EREW model and O ( 1 )  time in the scan model. The 
rearrangement step and its preliminary calculations take O(1)  time 
in both models of computation. 

The large items are those whose profit values satisfy pi>T. 
Consequently, the minimum scaled profit value, and the minimum 
scaled profit of any feasible solution in step 4, satisfies 

qi = r p i / ~ 7 > r ~ / ~ 1 =  f 2 / ~ 7 .  
The largest possible scaled profit obtainable is determined by 
P * / K ~ / $ .  Hence, no more than (8/$)/qi  items with scaled profit 
value qi can fit in any feasible, large item solution. This justifies 
the selection of the large item candidates in step 3. 

The rearrangement of the large items for the purpose of 
selecting a minimal set of large item candidates can be performed 
by first sorting the Iarge items using the values ( ( 8 / E 2 ) - 9 i l ~ + ~ i  as 
the sort keys. Here, W is the maximum of the weights wi of the 
large items. This will arrange the large items into decreasing order 
of qi, and within each segment of items having the same scaled 
profit qi, the items will be in nondecreasing order of wi .  A 
segmented plus-scan of 1's is used to obtain an enumeration of the 
numbers of elements in the qi segments in parallel. Next, a simple 
comparison of each item's segment index with the number of items 
allowed to be in the segment is performed to determine the items in 
each segment which should remain active for the large item 
optimization. The time requirements for step 3 are 0(log2n + log n )  
in the EREW model, owing to the sort and the segmented plus-scan 
operation, and O(1og n )  in the scan model. 

The feasible solutions in the dominance-based optimization 
on the large items are indexed by the possible profit values in the 
scaled problem. These index values are, in addition to 0 ,  between 
2/& and 812 .  It can be shown that the maximum number of items in 
any of the scalcd large item solutions is bounded above by 4/&. 
Consequently, the feasible solutions in the large item computation 
can be maintained in 8 1 2 - 2 / &  sections of arrays with each section 
being of length 41.5. A group of similarly indexed array sections is 
used to maintain the list of indices of the large items placed into 
the feasible solution. In addition to the indices of large items 
placed into a solution, there must also be a flag to indicate which 
is the next available position for an index, and the capacity 
remaining for a particular feasible solution. Each feasible solution 
will be managed by 4/e processors. To insure EREW memory access, 
each processor assigned to manage an array section (i.e. a scalcd 
feasible solution) will have its own copy of the capacity remaining 
in the knapsack for its feasible solution, as well as its own copy of 
the actual, non-scaled profit for its feasible solution. 

The general form of the large item computation is as follows: 
for each large item candidate do 
let i' denote the item's index 

for all s such that 0 % 4 8 / E 2 ) - ~ ~ '  and F(s)+0 
and Wfs)+wi'- do 

if Ffs+qif)=O or W(s+qir)> W ~ S ) + W ~ '  then 
replace Ffs+qi8) by F(s), add index i' to F(s+qiS), 
add wi' to Wfs+9it)  

This algorithm is a direct parallelization of the dominance-based 
optimization originally given by Ibarra and Kim IIK751. For 
convenience, a feasible solution is denoted by F(s) and its weight by 
W(s) ,  where the scaled profit of the feasible solution s is its index. 
Any test involving a feasible solution indexed by s is performed by 
all 4/e  processors which manage the feasible solution, and is done 
in parallel. This is possible since the necessary flags and weight 
sums are replicated so that each processor has exclusivc access to its 
own copy. The key to the SlMD parallelization is this data 
replication together with the fact that the feasible solutions can be 
checked for the addition of the next Iarge item independently; this 
is the conditional in the if statement. When an item can be added 
to a feasible solution and the resulting new solution dominates 
another in the list, the dominated solution is replaced in a single 
step by using 4/& processors. The dominance relation guarantees 
that all of the necessary updates can also be done in parallel and in 
an EREW memory reference fashion. 

The number -of processors needed for the Iarge item 
computation is (4/&)(8/$-21~).  There are max(n, f8/e2)  [og(4/&)] 
large item candidates, and hence this determines the time 
requirement for step 4. 

The implementation of the small item augmentation of the 
feasible solutions in step 5 of the approximation scheme is carried 
out in two stages. In the first stage, the process for obtaining the 
final collection of feasible solutions docs not attempt to remember 
the indices of any small itcms which iYould have fit into the 
remaining capacities of the solutions. In this way, all of the 
feasible solutions can test the same small item simultaneously for 
inclusion, by having the profit and weight of the item broadcast to 
all feasible solutions in parallel. After the feasible solution with 
the largest profit over both the large and small items is selected, a 
greedy algorithm is again performed on the small itcms. However, 
on this second execution of the greedy algorithm, the indices of the 
small items which augment the large item solution arc saved. 

Step 5 iterates over the small items. It can be seen that steps 
4 and 5 together can iterate over all of the items, and hence the 
time requirement for these two steps together is O ( n ) .  The 
following theorem summarizes the time and processor requirements 
for the parallel E-approximation scheme. 

Theorem 2. The parallel &-approximation scheme takes 
0(n+log2n+log n )  time in the EREW modcl and O(n+log n )  time in 
the scan modcl. The scheme requires max(n, (4/&)(8/&*-2/&)1 
processors in both parallel models of computation. 

4. CONCLUSIONS 
An SlMD algorithm has been presented which is a parallel 

e-approximaiton scheme for the 0/1 knapsack problem. The 
algorithm implements a dominance-based dynamic programming 
technique in an exclusivc read, exclusivc write shared memory 
model of SIMD programming. The number of processors needed by 
the algorithm is within current technological bounds for moderate 
values of E and for problem instances into the tens of thousamds of 
itcms. 



REFERENCES 
(AKS831 Atjai, M., Komlos, J., and Szcmeredi, E. (1983). "An 

OiNlogN) Sorting Network," In Proceedings of the 15th ACM 
Symposium on the Theory of Computing (Boston, Mass., Apr.), 
ACM, N.Y.C., pp. 1-9. 

IBG871 Blelloch, G.  (1987), "Scans as  Primitive Parallel 
Operations," In Proceedings of the 1987 International 
Conference on Parallel Processing (St. Charles, Ill., Aug. 17-21), 
Penn State Press, University Park, Penn., pp. 355-362. 

IFF831 Fich, F. (1983), "New Bounds for Parallel Prefix Circuits,'' In 
Proceedings of the 15th ACM Symposium on the Theory of 
Computing (Boston, Mass., Apr.), ACM, N.Y.C., pp. 100-109. 

IGJ791 Garcy, M., and Johnson, D. (1979), Computers and 
lntractability: A Guide to the Theory of NP-Completeness, W. 
H. Freeman, San Francisco, Calif. 

IGW881 Gcrasch, T., and Weidman, S. (1988), "Massively Parallel 
Computing Applied to 0/1 Knapsack Problcms," In Proceedings 
of the Third international Conference on Supercomputing, 
Volume I1 (Boston, Mass., May), International Supercomputing 
Institute, St. Petersburg, Fla., pp. 448-451. 

ICRK861 Gopalkrishnan, P., Ramakrishnan, I., and Kanal, L (1986), 
"Pardllel Approximate Algorithms for the 011 Knapsack 
Problem," In Proceedings of the 1986 International Conference on 
Parallel Processing (St. Charles, Ill., Aug. 19-22), IEEE, 
Washington, D.C., pp. 444-451. 

IHS781 Horowitz, E., and Sahni, S. (1978), Fundamentals of 
Computer Algorithms, Computer Science Press, Potomac, Md. 

IIK751 Ibarra. O.,  and Kim, C. (1975), "Fast Approximation 
Algorithms for the Knapsack and Sum of Subsets Problems," 
/ourmi of the ACM 22, 4 (Oct.), pp. 463-468. 

1KD731 Knuth, D. (1973), The Art of Computer Programming, 
Volun~e 3: Sorting and Searching, Addison-Wesley, Reading, 
Mass. 

IKRS851 Kruskal, C., Rudolf, L., and Snir, M. (1985). "The Power of 
Parallel Prefix," In Proceedings of the 1985 International 
Conference on Parallel Processing (St. Charles, Ill., Aug. 20-23), 
IEEE, Washington, D.C., pp. 180-185. 

[I.E79] Lawler, E. (1979), "Fast Approximation Algorithms for 
Knapsack Problems," Mathematics of Operations Research 4.4 
(Nov.), pp. 339-356. 

ILSS871 Lee, J., Shragowitz, E., and Sahni, S. (1987), "A Hypercube 
Algorithm for the 0/1 Knapsack Problem," In Proceedings of the 
1987 International Conference on Parallel Processing (ST. 
Charles, Ill., Aug. 17-21), Penn State Press, University Park, 
Penn., pp. 699-706. 

[LT84] Leighton, T. (1984), "Tight Bounds on the Complexity of 
Parallel Sorting," In Proceedings of the 16th Annual 
Syn~posium on the Theory of Computing (Washington, D.C., 
April 30 - May 2), ACM, N.Y.C., pp. 71-80. 

ISS751 Sahni, S. (1975), "Approximate Algorithms for the 0/1 
Knapsack Problem," Journal of the ACM 22, 1 (Jan.), pp. 115- 
124. 

IQM871 Quinn, M. (1987), Designing Efficient Algorithms for 
Parallel Computers, McGraw-Hill, Inc., N.Y.C. 



Fault Tolerant Message Routing on Large Parallel Systems 

Jesse M. Gordon' and Quentin F. Stoutt 

Department of Elecmcal Engineering and Computer Science 
The University of Michigan 

Ann Arbor, MI 48109-2122 USA 

Abslracl 

We consider the problem of designing massively fault tolerant 
message routing schemes for large parallel systems. Our notion 
of faults is extremely flexible and applies to all situations where a 
component is unavailable to parlicipate in messagc communications. 
We focus our attention on the performance of schemes which use 
only local information to make local decisions. A franiework for the 
analysis of fault tolerant muting schemes is presented and is used 
first to analyze the efficacy of minimal path routing methods. 

We derive fault tolerant routing schemcs by application of a 
technique called sidetracking. Viewed as making local decisions, a 
sidetracking scheme attempts to decrease the distance to the desti- 
nation; if this is not possible, then the packet is routed randomly 
so as to increase the distance as little as possible. For single mes- 
sage routing on a hypercube, we show that the pcrformancc of a 
sidetracking scheme is near optimal, successfully routing with high 
probability and low average excess delay. We also present applica- 
tions of the sidetracking technique to single messagc routing on a 
two dimensional mesh, and to multiple message permutation muting 
on a hypercube. 

Keywords: Fault tolerant routing, distributed memory 
multiprocessors, hypercube computer, mesh computer, oblivious 
routing 

As the size of parallel computer systems grows larger, so does 
the probability of component failure. Since the corresponding mean 
time to failure is likely to be shon, off-line fault diagnosis and the 
subsequent replacement of failed units is not an attractive alternative 
for dealing with the problem. Rather, we would like to be able to 
continue system operation in h e  presence of such failures. To do 
this, we must identify the failed components and then avoid their 
usage. In this paper, we examine the fundamental problem of mes- 
sage communications, studying it in the context of faulty parallel 
systems. 

A basic choice in a (message) muting algorithm is the amount 
of information about the system that each processor must possess. 
In a large parallel system, methods which require each processor 
to have global knowledge of the system incur massive overhead, 
both in the space required to store such information and in the time 

'Supported in pan by NSF Grant No. DCR-85077851 and a Fellowship horn 
the Unisys Corporation. 

f ~ u ~ ~ o r l o d  in pan by NSF Grant No. DCR-85077851 and a DEC Incentives in 
Excellence Award. 

required to update the information to reflect changes in system status. 
Hence, we examine local m u h g  methods, which require processors 
to have knowledge only of the status of neighboring processors and 
communication links. We are motivated by the belief that simple 
algorithms, operating under simple assumptions, can ensure high 
probabilities of successful message routing in the prescnce of faults. 

1 Preliminaries 

We study two specific parallel systems in this paper: hypercubes 
and two-dimemom1 meshes. A hypercubc contains 2" pmcessors 
addressed by n-bit strings, and any two processors are connected 
by a (bi-directional) communication link if their addresses differ 
in exactly one bit position. A two-dimensional mesh contains n 2  
processors addressed by integer pairs (T, y )  with 0 5 s. y < r~ - 1, 
arrangcd so that the processor with address (s,, yl ) is connected to 
the processor labcled ( x 2 , y z )  if either = x 2  and / y l  - y2 /  = 
1 or if Ixl - 221 = 1 and yl = y . ~  Both systems arc regular 
(lixed degree) networks and can be viewed as special cascs of a 
product graph known as the k-ary n-cube. Viewed in this manner the 
hypercube is a 2-ary (or binary) n-cube and the mesh is an n-ary 2- 
cube. Both of these systems are distributed memory, packet switched 
systems in which communication time is assumed to predominate, 
and local processing time can be ignored. In a packet switched 
system, messages are transmitted in units called packets; packets 
bcing muted from one processor to another are temporarily stored 
in the memory of intermediate processors and are later forwarded 
to their destinations. In this paper, we will concern ourselves solely 
with short messages, i.e. those which are no longer than one packet 
in length. 

To keep the routing decisions simple, we concentrate our analysis 
on oblivious routing schemes. In an oblivious scheme, the path 
takcn by a message depends only upon its source and destination. 
Such routing schemes are also called non-adaptive as the path taken 
by a given message is not responsive to other message trafic in 
the system. One such routing scheme is deterministic routing in 
which obliviousness means that for each source-destination pair there 
is a unique route which any message with that source-destination 
specification must take. Another routing scheme is random muting 
and is bawd on Phase B of Valiant's probabilistic routing scheme 
131. In this case, obliviousness means that for each source-destination 
pair there is a fixed probability distribution (independent of any other 
pair) that specifics for each path from the source to the destination 
the pmbability that the path will be taken. For these routing schemes, 
we consider initially the case of minimal lcngth paths. 



In both hypercubes and meshes, local routing decisions are made 
based on the status of all neighbors which lie on minimal paths 
between the current location and the message destination. On the 
hypercube, deterministic routing chooses to traverse the lowest num- 
bered available dimension while random routing selects uniformly 
among the available dimensions. On a mesh, there are two basic 
classes of muting algorithms: direction uniform and path uniform. 
Using a direction uniform approach, deterministic routing always fa- 
vors the x-direction (if it is available), while random routing chooses 
uniformly between the x-direction and the ydirection. Using a path 
uniform approach, deterministic routing favors the direction with the 
largest distance to go, breaking ties in favor of the x-direction. while 
rapdom routing chooses between the directions in proportion to the 
distance remaining to route in each. 

We consider two basic routing problems. The first problem is 
routing a single message from an arbitrary source to an arbitrary 
destination. At the other extreme, we consider the problem of full 
permutation routing. Initially, there is a message at each processor, 
each with a distinct destination address; the task is to route every 
message to its destination simultanwusly. 

We model the amount of fault information available to proces- 
sors in two ways. Model 0 (respectively. Model 1) assumes that 
individual processors do not know (respectively, do know) which. 
if any, of their immediate neighbors (processors and/or communi- 
cation links) are faulty. In our study, a fault is assumed to render 
the processor or link non-functional for purposes of communicating 
messages. As such, we may also consider communications hot spots 
as processor faults, and our results also apply to routing in congested 
parallel systems. In this paper, we consider only processor faults, 
but our results may be extended easily to apply to systems with 
communication link faults. 

The final component of our framework for the analysis of fault 
tolerant routing schemes is the modeling of fault distributions. In 
this model, faults are distributed independently and binomially, with 
each processor having a fixed probability, p, of failure. We assume 
that the distribution of faults is chosen before any routing occurs and 
that this fault pattern remains fixed for the duration of the routing 
attempt. While this assumption is useful in our analyses, it is not re- 
quired by the routing algorithms themselves. We start by analyzing 
the a priori probabilities of successful routing of a single, indivisible 
message under each of our possible sets of assumptions. We obtain 
results which depend upon the size of the system (number of proces- 
sors) as a parameter. We then derive asymptotic results by allowing 
system size to grow arbitrarily large. In most of these cases, the 
asymptotic bounds are achieved by the time system size is one thou- 
sand processors. Following this, we introduce our technique called 
sidetracking and analyze the behavior of routing schemes obtained 
by its application. 

2 Single Message Routing 

The single message muting problem is to deliver a message sent 
from a non-faulty source to a non-faulty destination. Under the 
assumptions of Model 0. our first routing information model, indi- 
vidual processors have no knowledge of the fault status of any other 
processors in the system. Hence, minimal path message routing 
succeeds if and only if all processors on the chosen path fmm the 
source to the destination are non-faulty. If the source and destination 
are d steps away, then the probability of successful message routing 
is (1 - P ) ~ - ' .  This result holds for both deterministic and random 

routing. On the hypercube, for antipodal source and destination pro- 
cessor, we denote this probability as 

Since lim,,,pO(n,p) = 0, we see that the no-information model 
is not a useful one for deriving massively fault tolerant routing 
schemes. 

The second routing information model, Model 1, assumes that 
processors know the fault status of their immediate neighbors. Rout- 
ing schemes using this assumption make their local decisions from 
the set of all nun-faulty neighbors of the processor. On the hyper- 
cube, routing using one-step local information yields a great im- 
provement over routing methods which have no fault knowledge. 
The corresponding probability of successful message routing for an- 
tipodal source and destination processors is 

Using real analysis, we can show that limn,, pl(n,p) converges. 
By computing the values (which are shown in Table 1) we see that 
the probability of successful message delivery is high even for an 
exceedingly large number of faults. In particular, with 50% of the 
processors faulty ( p  = 0.5). a single message successfully reaches 
its antipodal destination 57.76% of the time. We note that these 
asymptotic values are attained in all cases before n = 10. In other 
words, for hypercubes with more than one thousand processors, the 
probability of successful single message minimal path routing is es- 
sentially independent of system size. A derivation of these results 
and a more detailed discussion of fault tolerant single message mut- 
ing on a hypercube is contained in [2]. 

For single message routing on the mesh, we have presented four 
basic minimal path routing strategies: deterministic direction uni- 
form (denoted DD). random direction uniform (RD), deterministic 
path uniform (DP) and random path uniform (RP). As was the case 
for the hypercube, we can derive closed form solutions for the proba- 
bility of successful message routing using each of these schemes. For 
maximally distant source and destination processors, using Model 1, 
the direction uniform solutions are: 

and 

Unfortunately, because of the fixed degree of the processors, we are 
able to show that all four muting algorithms have an asymptotic 
success probability of zero. In fact, most of the probabilities are 
nearly zero by the time n = 32, or by time mesh size is about one 
thousand processors. 

We next analyze the behavior of sidetracking, an oblivious rout- 
ing method which combines the concepts of local information and 
randomization. Using sidetracking, and in the one-step local in- 
formation routing model, a message will be routed forward using 
random routing. If the message reaches a blocked processor (no non- 
faulty neighbors along a minimal path to the destination) it will be 
sent to a non-faulty neighbor, chosen uniformly at random from the 



set of non-faulty neighbors. We contrast the sidetracking approach 
with the scheme known as dejection routing. While both schemes 
are non-minimal path schemes, deflection routing is an adaptive rout- 
ing method whose goal is to ensure that messages are not delayed 
by waiting in queues. To this end, a message will be routed along a 
forward edge if one is available; if not, the packet will be sent along 
a backward edge. We use simulation experiments to determine the 
performance of sidetracking schemes, analyzing the probability of 
successful routing and the expected path length of a routed message. 

The empirical performance of the sidetracking algorithm demon- 
strates convincingly its efFicacy as a fault-tolerant routing scheme. 
On the hypercube, for the case of single message message routing. 
we find that, in the limit as the cube dimension grows larger and 
for a fixed probability of processor failure, the probability of suc- 
cessful message routing, S(n,p), tends to 100%. In addition, the 
delay incurred by routing along non-minimal paths is small; with 
one-half of the processors faulty (p = 0.5), the average excess path 
length for a cube of dimension n = 20 is less than 4 steps. On the 
mesh, for single message routing, sidetracking is unable to provide 
any asymptotic performance improvement as, in the limit, its suc- 
cess probability also tends to zero. Howcver, in meshes of small 
size, where successful routing is possible, sidetracking results in a 
substantial performance improvement. The results discussed in this 
section are summarized in two tables: hypercube results in Table 1 
and mesh results in Table 2. For sidetracking, the maximum path 
length is the number of routing steps allowed before a message will 
be declared not routed. The respective minimum path lengths are 20 
steps for the 20-dimensional hypercube, and 62 steps for the 32 x 32 
mesh. Note that the cube results are for a hypercube of over a million 
processors and the mesh results are for meshes of over a thousand 
processors (using random path uniform routing). 

3 Multiple Message Routing 

For multiple messages, the worst case delay incurred by using obliv- 
ious routing schemes is high. For both hypercubes and meshes, the 
worst case time required to route any permutation is on the order 
of the square mot of the number of processors in the network [I]. 
This worst case occurs since bad bottlenecking can be forced at a 
single processor. However, the use of randomization helps us to 
achieve better average case routing time. It does this by spreading 
out the message congestion. In particular, on a hypercubc, routing 
a full permutation in a system with no faults, empirical studies (see 
[4]) show that minimal path random routing achicves near optimal 
results. 

On the hypercube, we extended our simulation program to han- 
dle the case of multiple message routing. We studied the problem of 
routing a full permutation of the non-faulty processors of the system. 
Note here that, even though we have assured that all of our sources 
and destinations are non-faulty, they are no longer necessarily an- 
tipodal. The results of our experiments, this time for hypercube 
of about one thousand processors, are prcsented in Table 3. The 

values presented arc averages over 100 iterations of each experi- 
ment. A routable message is one whose source and destination are 
in the same connected component. The values for the percentages 
of mutable and routed messages are out of the percent of non-faulty 
processors (for the particular value of p). The rcsults obtained show 
that the strong fault tolerant properties observed in the single mes- 
sage case have largely been carried over to the multiple message 
case. In particular, the average message delay for individual mes- 
sages due to either time spent waiting in message queues or the use 
of non-minimal paths are impressively small. For instance, when 
p = 0.4, 99.9% of the messages are routed and the average message 
waits only 0.3 steps in queues and is routed only 1.8 extra steps. 
The only drawback is that time to complete the routing of all of the 
messages has increased greatly to 81.2 steps. Overall, these results 
show the viability of the sidetracking scheme as a massively fault 
tolerant multiple message muting scheme. 

4 Summary 

The basic conclusion to be drawn from our study is that the combina- 
tion of randomization and local information is an effective one when 
it is applied to routing. For routing a single message on a hypercube 
in the presence of faults, we have shown the following asymptotic 
behavior. Using minimal path random routing with no local infor- 
mation, the probability of successful message routing (po(n,p)) is 
0%. Using minimal path random muting with one-step local infor- 
mation, the probability of successful message routing (pl(it,p)) is 
quite good, but tails off rapidly for a high probability of processor 
failure. Finally, using sidetracking (or non-minimal path random 
muting with one-step local information), the probability of success- 
ful message routing (S(n,p)) is 100%. For single message routing 
on a two-dimensional mesh, because of the fixed degree of the pro- 
cessors, the asymptotic routing success probabilities all tend to 0%. 
Lastly, we presented results that showed the efficacy and viability 
of sidetracking as a massively fault tolerant scheme on a hypercube. 

References 

[ I ]  A. Borodin and 1. E. Hopcroft, "Routing, merging and sorting 
on parallel models of computation." Journal of Computer and 
System Sciences, vol. 30, pp. 130-145, 1985. 

[2] J. M. Gordon and Q. F. Stout. "Hypercube message routing in 
the presence of faults," in Proceedings of the 3rd Conference on 
Hypercube Concurrent Computers and Applications, pp. 3 18- 
327, January 1988. 

[3] L. G. Valiant, "A scheme for fast parallel communication," SlAM 
Journal of Computing, vol. 11, no. 2, pp. 350-361, May 1982. 

141 L. G. Valiant, "Optimality of a two-phase strategy for routing 
in interconnection networks," IEEE Transactiom on Compurers, 
vol. C-32, pp. 861-863, September 1983. 



Table 1: Hypercube Single Message Routing Success Probabilities 

' Dim. 
n  
20 
20 
20 
20 
20 
20 
20 
20 
20 

Table 2: n x n Mesh Random Path Uniform Routing Success Probabilitics 

Failure 
p  

.I0 

.20 

.30 

.40 

.SO 
,150 
.70 
.80 
.90 

n  
32 
32 
32 
32 
32 

Table 3: Hypercube Multiple Message Simulation Results ( n  = 10) 

No lnfo. 
p O ( n , p ) %  

13.5 
1.4 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Failure 
11 

.I0 

.20 

.30 

.40 

.50 

C/o Routable Messages 
% Routed Messagcs 
Total Time Stcps 
Excess Path Length: 

Average 
Standard Deviation 

Message Queue Delay: 
Average 
StandardDeviation 

No Info. 
R p O ( n , p )  % 

0.0 
0.0 
0.0 
0.0 
0.0 

Processor Failure Probability, p  

Avg. Path Length 
(Maxirnum=400) 

20.04 
20.20 
20.65 
21.62 
23.99 
30.48 
5 1.29 
82.99 
86.44 

1-Step lnfo. 
~ ' ( n , p ) %  

98.9 
94.9 
87.3 
75.6 
58.0 
35.8 
14.0 
1.8 
0.01 

0.0 
100.0 
100.0 

9.6 

0.0 
0.0 

0.1 
0.4 

Sidetracking 
S ( n , p ) %  

100.0 
100.0 
100.0 
100.0 
100.0 
99.8 
95 .O 
50.0 
0.3 

I-Step Info. 
R P ' ( n , p )  % 

48.1 
6.1 
0.3 
0.0 
0.0 

0.1 
100.0 
100.0 
12.0 

0.1 
0.5 

0.1 
0.4 

Sidetracking 
R P ( n , p )  % 

89.8 
44.2 
5.8 
0. I 
0.0 

Avg. Path Length 
(Maximum = 186) 

66.81 
78.45 
89.96 
87.78 
0.00 

0.2 
100.0 
100.0 
20.9 

0.2 
1.1 

0.2 
0.4 

0.3 
100.0 
99.9 
42.2 

0.7 
2.7 

0.2 
0.5 

0.4 
99.9 
99.9 
81.2 

1.8 
5.6 

0.3 
0.5 

0.5 
99.8 
98.6 

102.6 

4.3 
10.2 

0.4 
1.4 

0.6 
98.8 
90.7 

114.0 

8.1 
15.0 

0.7 
3.1 

0.7 
92.9 
61.7 

123.2 

11.8 
18.2 

1.9 
7.6 

0.8 
60.9 
22.1 

108.9 

9.6 
16.4 

3.0 
10.3 

0.9 
5.5 
4.7 

32.3 

1.5 
6.0 

0.9 
3.7 



LOAD BALANCING FOR MASSIVELY-PARALLEL 
SOFT-REAL-TIME SYSTEMS 

Max Hailperin* 

Knowledge Systems Laboratory, Computer Science Department 
Stanford University, Stanford, CA 94305 

ABSTRACT 

Global load balancing, if practical, would allow the effective 
use of massively-parallel ensemble architectures for large soft- 
real-time problems. The challenge is to replace quick global 
communications, which is impractical in a massively-parallel 
system, with statistical techniques. In this vein, we propose a 
novel approach to decentralized load balancing based on statis- 
tical time-series analysis. Each site estimates the system-wide 
average load using information about past loads of individual 
sites and attempts to equal that average. This estimation pro- 
cess is practical because the soft-real-time systems we are in- 
terested in naturally exhibit loads that are periodic, in a statisti- 
cal sense akin to seasonality in econometrics. We show how 
this load-characterization technique can be the foundation for a 
load-balancing system in an architecture employing cut- 
through routing and an efficient multicast protocol. 

KeywordF: load balancing, real-time, time-series analysis. 

INTRODUCTION 

Our research group, the Stanford Knowledge Systems Labora- 
tory Advanced Architectures Project, is exploring the construc- 
tion of massively-parallel, object-oriented, knowledge-based, 
soft-real-time signal-interpretation systems. It seemed clear 
early on that some sort of adaptive load-distribution scheme 
would be necessary to allocate resources to such dynamic sys- 
tems. Otherwise, in order to assure acceptable real-time perfor- 
mance, the system could only be lightly loaded, and the large- 
scale signal-interpretation problems the massive parallelism 
was intended to allow would not be possible. The remainder of 
this section explains why we desire a scheme which globally 
balances loads by migrating objects, and how we can exploit 
the somewhat periodic nature of our systems' loads to do global 
balancing in a manner appropriate to thousands of processing 
elements. 

Much discussion in the load-distribution literature recently has 
centered on the choice of load balancing vs. load sharing (Ref. 
12). While load balancing strives to keep all sites equally load- 
ed, load sharing merely tries to prevent unnecessary idleness. 

*An expanded version of this paper was published as Stanford Computer Science 
Department Technical Report STAN-CS-88-1222. This material is based upon work 
supported under a National Science Foundation Graduate Fellowship. Any opinions. 
findings. conclusions or recommendations expressed in this publication are those of 
the author and do not necessarily reflect the views of the National Science Founda- 
tion. This work was also supported by DARPA Contracu F30602-85-C-0012 and 
MDA903-83C-0335. NASA Ames Connxt NCC 2-220-S1. Boeing Contract 
W266875. and Digital Equipment Corparation. I thank Anoop Gupta. Bruce Dela i. 
Harold Brown, John Hennessy. and the entire Advanced Architectures Roject t%r 
their assistance. 

Load balancing is appropriate to object-oriented real-time sys- 
tems because 

real-time systems need to prevent long waits for process- 
ing-load balancing, by reducing the variance as well as 
the average of waiting times better achieves this; also, 

migrating objects to balance current load tends to also bal- 
ance the future arrival of additional work at sites. 

Traditionally, decentralized adaptive load-balancing systems 
have been local: they balance loads in small neighborhoods 
(the neighborhoods may be logical, rather than physical), and 
rely on repeated local adjustments to achieve global balance. 
(For example, see the diffusion scheme in Ref. 11.) We find 
this inappropriate to our circumstances because 

modem interconnection networks employing cut-through or 
wormhole routing reduce the importance of locality (Ref. 7), 

local techniques can fall prey to oscillation and wave-front- 
like propagation in the face of non-ideal conditions, and 

local techniques have difficulty responding quickly enough 
for dynamic and time-critical systems. 

A global load-balancing system must somehow allow each site 
to estimate the current (or near-future) system-wide total load, 
in order that it may acquire or jettison sufficient work to bring 
its own load to the system-wide average. This seems incom- 
patible with the constraints of a massively-parallel system: a 
site in a massively-parallel system must wait a considerable 
time to acquire global knowledge. 

This apparent contradiction can be reconciled by using a sto- 
chastic time-series model to use prior load information to pre- 
dict current loads. However, this approach is useless in most 
computer systems, as their loads are not very predictable. 

Luckily, the real-time systems we are interested in (and many 
others) exhibit a different behavior. Their loads are periodic- 
not rigidly so, but rather in the same loose, statistical sense as 
many economic variables are seasonal. This periodicity is in- 
duced by sampled or scanned inputs and by sample-to-sample 
or scan-to-scan consistency in the outside world. Periodicity 
makes the loads more predictable, at least for lead times not 
greater than the period. As the period is generally relatively 
long, each site can have complete knowledge of loads at least 
through one period ago. This allows reasonably accurate pre- 
diction of current (or near-future) system-wide loads. 



Notice that the statistical nature of this approach makes it ap- evident when written using the backwards shift operator B: 
propriate to massively-parallel systems with thousands of pro- 
cessing elements: ( 1  - B ) ( 1  - B'"):l = ( 1  - OB)(1 - 6 B 1 0 ) a t .  (2) 

The large number of sites makes more straightforward Adding the constraint that loads must be non-negative improves 
methods employing global communications impractical. this basic model. 

On the other hand, the large number of sites is necessary to 
make the statistical methods valid. 

We are not suggesting this approach for real-time systems 
which are rigidly periodic; more direct use can be made of their 
periodicity. 

AN EXAMPLE TIME SERIES 

In this section we examine the evolution over time of the sys- 
tem-wide load in one of our real-time systems-an aircraft 
tracking and classification system (Ref. 14). We show that a 
simple stochastic model reasonably approximates this time se- 
ries, that it is consistent with a common-sense understanding of 
the system, and that it allows moderately accurate prediction 
without recent complete information. 

The solid line in Figure 1 shows the load over a ten-period in- 
terval out of the larger time series which was analyzed. Each 
period is ten time quanta long, and the load value for each 
quantum is an average total of task queue lengths over that 
quantum. 

u r n  (msl 

Figure I .  Example Time Series. A sample of a load time 
series, withforecast from data through one period earlier. 

Notice that the pattern gradually shifts from period to period. 
Also, notice that as the observed activity diminishes, the sys- 
tem's performance varies from not quite keeping up with the in- 
put to having a relatively long period of quiescence between 
cycles. It is characteristic of real-time systems that they are 
sized so as to perform acceptably during peak periods, even if 
this means idleness at other times; this allows the periodicity of 
the input to show through as a periodicity of the load. 

Stochastic Model 

We analyzed this series using the methods of Box and Jenkins 
(Ref. 3). and identified as a suitable first-cut model for it a mul- 
tiplicative integrated moving average (IMA) process of orders 
(O,l,l) x (0,1,1),,. This model has the form: 

This model, while suggested by statistical evidence, is also plau- 
sible in terms of the mechanism of the system. The non-periodic 
component of the model essentially states that the load persists, 
except that it is subject to random perturbations. Some fraction 
(8) of each random perturbation is of short-term effect only, 
while the remainder lasts until counteracted; this fits well with a 
birth-death view of processes. The periodic component of the 
model is identical in form, and can be similarly justified: the air- 
craft under observation (and thus the load pattern) remain con- 
stant except for random perturbations, some fraction (1-0) of 
which are long-lasting entries or departures from the field of ob- 
servation. 

This model belongs to the broad class of stochastic processes 
known as ARMA (autoregressive-moving average) processes. It 
is interesting to ask why this particular ARMA process should be 
chosen-might others not fit as well? The answer is partially that 
this is the simplest periodic ARMA process whose periodic and 
non-periodic components are both: 

non-stationary (i.e., they have no fixed level), 
stable (i.e., they don't grow explosively), and 
homogeneous (i.e., everywhere self-similar except for level). 

Forecasting 

The non-periodic component of the model is that which is con- 
ventionally used for aperiodic computer systems; it gives rise to 
the familiar exponentially-weighted average forecast function. 
The periodic component in effect adds an exponentially-weighted 
average of corrections to this forecast, derived from the experi- 
ence at corresponding points in earlier periods. 

Depending on the relationship between 8 and 0, the heaviest 
weight in the forecast may either be on the most recent value, or 
on the one a period ago. In the aircraft tracking case (and many 
others, we speculate), there is more consistency from period to 
period than from instant to instant (as aircraft are more inertial 
than processes). 

Forecasts can also be computed directly from the difference equa- 
tion we used to define the model. In either case, forecasts for 
greater lead times can be calculated by repeated use of the step- 
ahead formula. (By lead time we mean the time from when the 
total load is last known to when the forecast is for.) 

Since the period (in this case, the scan time of a radar) is long rel- 
ative to the communication latencies of the system, it is reasona- 
ble to suppose that each site can have complete knowledge of all 
other sites' loads at least up until one period earlier, with dimin- 
ishing knowledge thereafter. It should be possible in principle to 
make some use of the more recent, incomplete, information to 
improve the forecast, given a model of the load distribution with 
load balancing. In the next section we address this problem and 
show a heuristic solution. However, Figure 1 shows that even 
forecasts made using only data up through one period in ad- 
vance are usually moderately accurate. 

:t = 21-1 + :t-10 - - 1 - 1 1  + a t  - Bat-: - B a t - l o + 8 0 a t - l ~ ,  ( 1 )  How Typical Is This Example? 

where z, is the system-wide load, a, is a white-noise series, and ~ h ~ ~ ~ h  this section presented a case study of a single time se- 
f3 and 8 are parameters. The structure of this process is more ries taken from a single application, we believe the basic fea- 



tures are common to other systems as well. Preliminary results 
from experimentation with a passive radar interpretation sys- 
tem (Ref. 4) confirm this belief. The IMA (O,1,1) x (O,l,l)p 
model used here may well suit many such systems, though its 
suitability should of course be tested in each case. As well as 
testing the suitability of the model to a particular application, it 
is necessary to tune the parameters using sample time series. 
Systems with more than one period, for example from hetero- 
geneous sensors, would necessitate a straightforward extension 
of the model. 

One potential stumbling block in generalizing this technique to 
more realistic systems is that higher-level processing tends to 
be triggered by significant changes in the input (or by the lack 
of expected changes), rather than by the input itself. For exam- 
ple, a system that not merely tracks aircraft, but also attempts 
to deduce possible objectives, would reconsider the objective 
of an aircraft that sharply turned, or that failed to turn when it 
was expected to. This reduces the scan-to-scan consistency of 
the load. It remains to be seen how troublesome this is; clearly 
this depends on how much of the processing is special-case. 
When this issue came up in a discussion with a group familiar 
with actual systems, the consensus was that the load on 
present-day systems is indeed quite periodic (Ref. 13). 

INCOMPLETE INFORMATION 

The simple stochastic model presented in the preceding section 
only allows load information old enough to be complete (i.e. 
available from all sites) to be used. In this section we refine 
our model to allow incomplete information (i.e., more recent 
loads from some sites) to be employed. We formulate the 
problem, show an exact but impractical solution, and then 
present provably good practical heuristic approximations. 

The Problem 

In order to understand what use a site can make of recent but 
incomplete information, we must refine our model to include 
how the system-wide total load is divided among the N sites. A 
simple, plausible version of this is to assume that the sites are 
independent instantaneously, but in the longer-term are suc- 
cessfully balanced. Formally, the model we have in mind is 

where we use zip, for the load of site i at time t (with z, = X i  zi,,) 
and similarly for ai,, and a, (the air, are independently normally 
distributed, with variance 4). 
As long as all zi,, are known, the ai,, can be calculated, and thus 
used for forecasting. When the information is incomplete, the 
deviation of the known z , , ~  from the step-ahead forecasts can no 
longer be attributed solely to their corresponding ai,, but rather 
will also include the persistent fraction of earlier unknown per- 
turbations. The problem is to find the expected division be- 
tween these two sources of perturbation, as the expected value 
of each ai,, should be incorporated into the forecast in its own 
way. 

Exact Solution 

This problem can be solved by applying Bayes's theorem: 

We are given as a prior distribution for the a,,, that they are 
independently normally distributed with some variance 4. 

We make observations which imply ajoint likelihood for 
the a i ,  that is uniform where certain linear combinations of 
them (given below) equal the known zit and zero else- 
where. 

We would like to find the posterior joint distribution of the 
a,,, , specifically its expected value, for use in forecasting. 

The non-zero regions of the likelihood function can be found 
by rewriting the equation for zi,, in terms of the a,,, alone, us- 
ing the summation operators S = (1+ SB) and S l o  = (I+ SloBIO): 

The posterior distribution can readily be written using Bayes's 
theorem, provided one is willing to leave some messy integrals 
in it. Unfortunately, this leaves numerical integration as the 
only way to find the needed expected value. This seems to be 
too much work to expect a load-balancing system to perform 
each time interval. What is needed is a pre-posterior analy- 
sis-a general analysis done in advance, into which specific 
numbers can be plugged at run time. Unfortunately, we know 
of no such approach to this problem in the general case. In the 
next subsection we consider heuristic approximations appropri- 
ate to our intended.implementation. The analysis above serves 
as the standard by which the heuristics are judged, as well as 
suggesting them. 

Heuristic Approximations 

The simplest heuristic is to simply assume that the full devia- 
tion of each known load z,,, from its step-ahead forecast is 
purely its corresponding ai,,. This heuristic is actually the truth 
(given our model) for the first time-quantum with incomplete 
information, and can be shown to be a conservative approxima- 
tion provided there is less than a period of incomplete informa- 
tion. By a conservative approximation, we mean that this heur- 
istic is guaranteed to be more accurate than simply ignoring the 
incomplete information. This is because mistaking the retained 
portion of prior perturbations for current perturbation leads to 
it's being erroneously re-multiplied by (1 - 8), i.e. underesti- 
mated. 

We can improve this approximation by taking advantage of one 
feature of our intended implementation. We suggest a random- 
ized style of information spreading known as "rumor monger- 
ing" which spreads each site's load information to an exponen- 
tially widening fraction of the other sites. Thus the amount of 
load information a site has drops off exponentially with recen- 
cy, and only the earliest incomplete load information is of any 
real significance. 

In particular, for realistic parameters (e.g. a spreading factor of 
eight) the only significant improvement that could be made in 
the above simple heuristic would be to better account for the 
deviations observed in the second incomplete-information 
time-quantum. Moreover, this division between the first two 
incomplete-information time-quanta need not make use of in- 
formation from later time-quanta, as such information would 
be very weak under these assumptions. This leaves a tractable 
two-quanta version of the general problem of the preceding 
subsection. 

The ai, from the N,, non-reporting sites of the first quantum can 
be lumped together, as can those from the N ,  reporting sites of 



the second quantum. This is because of the symmetry amongst 
them. We will call the contribution of the former to the second- 
quanta deviations X and that of the latter Y. Our prior dismbu- 
tions for them are independent, normal, both have mean zero, 
and (by elementary probability theory) have the variances 

We know that X and Y sum to the observed deviation, 6, of the 
second-quanta loads from their step-ahead forecasts. Therefore, 
the posterior distribution from Bayes's theorem gives us the fol- 
lowing posterior expected values: 

Thus we can readily at run time use the observed values of 6, 
N,, , and N, to calculate a very good approximation to the best 
forecast possible with the available information. 

PRECISION OF FORECASTS 

In this section we analyze the potential for practical utility of 
our load-characterization scheme. We show that for the large 
numbers of sites characteristic of massively-parallel architec- 
tures, our scheme provides load estimates which are accurate 
enough to be useful for load balancing. 

We can use the model of Equation 1 to calculate probability 
limits of forecasts-that is, the region around the forecast in 
which the actual system-wide load will lie some specified frac- 
tion of the time. Additionally, the more detailed model of 
Equation 3 specifies how the individual sites' loads can be ex- 
pected to be distributed about the system-wide average load. 
What is most interesting is combining these two, in order to de- 
termine 

what fraction of the sites can be expected to be over- or un- 
der-loaded at some significance level, and 

how much relative error can be expected in the amount of 
work transferred between sites, due to erroneous forecasts. 

Happily, we show that the accuracy of the forecasts relative to 
the standard-deviation of the site loads goes up with the square- 
root of the number of sites, so that for massively-parallel sys- 
tems the uncertainty in the forecasts is unproblematic (assum- 
irig the validity of the model). 

Probability Limits of Forecasts 

The conditional probability distribution of the system-wide 
load about its forecast value is simply the sum of those of the a, 
not included in the forecast. The error in the forecast will thus 
be nonnally distributed with mean zero and variance increasing 
with lead-time. For the IMA (O,1,1) x (O,l,l)p model, if the 
forecast is made using complete information only, with lead 
time 1 < p, the variance is 

We can use the above formula to calculate approximate proba- 
bility limits for the forecasts by substituting an estimate for a,. 
If the system-wide load sample standard deviation is s, then we 
can estimate that with probability E the actual load differs from 

the lead 1 forecast by more than udzs.\ll+ (I- 1)(1 - @2, where 
U E / ~  is the E/2-tail-area point of the unit normal distribution. No- 
tice that these bounds &e for the total load---the standard devi- 
ation, and hence probability limits, for the average load are 
smaller by a factor of N. 

Comparison with the Distribution of Site Loads 

Our model asserts that the loads of the individual sites at any 
time are normally distributed about the system-wide average 
load with standard deviation a,. We can compare this with the 
standard deviation of the lead I conditional probability dismbu- 
tion of the average load, which we derived in the previous sub- 
section. The latter islarger by a factor of 41 + (1 - 1)(1 - @*/ 
4 ~ ;  the factor of 4~ results from averaging N independent de- 
viates. 

This implies that for large systems the forecasts will be accu- 
rate enough to be useful. For example, our example system 
could be spread among 1024 sites, even one-period-ahead fore- 
casts would have a factor of 27 lower standard deviation than 
the site loads. Thus virtually all apparent over- or under-loads 
would be statistically significant, and the relative error in the 
amount of work transferred would be small (roughly 1/27). 

LOAD-BALANCING MECHANISM 

In this section we outline a load-balancing scheme employing 
the load-characterization methodology of the preceding sec- 
tions. Our scheme relies on a "rumor mongering" style of in- 
formation spreading (Ref. 9), which is appropriate to our archi- 
tecture. We show that the mechanism not only allows sites to 
assess their load with respect to the system-wide average, but 
also allows overloaded sites to reliably find sufficiently under- 
loaded sites to which objects can be migrated. 

If each site stores its knowledge of all sites' load histories, then 
they can spread their information around by a process of "ru- 
mor mongeringv-that is, by randomly sharing information 
(Refs. 10, 1, 2, 9). Naturally, the histories can be compressed 
by discarding information old enough to be scarcely relevant 
and by combining together loads from all sites where they all 
are known. Some information may be young enough to rele- 
vant to forecasting, but old enough to be well-known. This in- 
formation can be retained but not passed on; (Ref. 9) has a 
good discussion of such issues. 

Our CARE ensemble architecture (Ref. 8) uses a cut-through 
interconnection network, so latency is not proportional to dis- 
tance (in the absence of contention). Additionally, it supports 
an efficient multicast protocol (Ref. 5). Therefore, we suggest 
that the information spreading be achieved by each site periodi- 
cally multicasting its information to a random sample of the 
other sites. While the number of sites that each site will hear 
from in any given period varies, it can be shown that the distri- 
bution (a binomial dismbution, rapidly approaching a Poisson 
distribution) is such that a paucity of information will be rare, 
even with a quite moderate sample size, e.g. eight. 



Upon receiving a load-information message, a site should inte- 
grate the information into its own knowledge, and then use the 
time-series model (provided a priori based on experiments 
with the particular system) to estimate the current system-wide 
average load with probability limits. It should then compare 
this predicted average with its own current load, and with the 
load of the sender at the time of the sending. If the recipient 
appears significantly underloaded and the sender appears sig- 
nificantly overloaded, a request for work should be sent back. 

This is a combination of random gossiping to distribute the in- 
formation needed to decide whether and how much work to 
transfer, together with polling/bidding to match up the partici- 
pating sites. As with all bidding schemes, some precautions 
are needed to avoid races. The underloaded site should not 
place any other requests for work until it receives work or an 
apology from the overloaded site. As the inter-arrival time for 
messages from overloaded sites should be high relative to the 
round-trip message time, few conflicts should occur. 

It should be rare that an overloaded site cannot find enough to- 
tal underload among the sites it  samples to match its own over- 
load. For example, suppose that the loads are normally distrib- 
uted (as they are in the model of Equation 3), and that the 
sample size is eight. Of the eight sites sampled, it can be ex- 
pected that four will be underloaded. The expected value of 
the absolute value of a normal deviate is 2142713, or about .8 
standard deviations, so the four underloaded sites will on the 
average have approximately 3.2 standard deviations worth of 
underload. But the originating site must really be far out on the 
tail of the distribution to have more than 3.2 standard devia- 
tions worth of overload. 

The only aspect of load balancing not addressed by this niecha- 
nism is the choice of which objects to migrate. Here again the 
real-time nature of the system must be addressed. In general 
neither the highest- nor lowest-priority objects are best migrat- 
ed, so as to neither unfairly advance a low-priority object nor 
hold up (due to migration time) a high-priority object. Chang 
addresses these issues in (Ref. 6). 

REFERENCES 

1. Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel. 
Processes migrate in Charlotte. Technical Report 655, 
Computer Sciences Department, University of Wisconsin- 
Madison, August 1986. 

2. Amnon Barak and Amnon Shiloh. A distributed load-balan- 
cing policy for a multicomputer. Software--Practice and 
Experience, 15(9):901-913, September 1985. 

3. George E. P. Box and Gwilym M. Jenkins. Time Series 
Analysis: Forecasting and Control. Holden-Day Inc., 1976. 

4. Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An 
experiment in knowledge-based signal understanding using 
parallel architectures. Technical Report STAN-CS-86- 
1136, Department of Computer Science, Stanford Universi- 
ty, October 1986. 

6. Hung-Yang Chang. Dynamic scheduling algorithms for dis- 
tributed soft real-time systems. Technical Report 728, 
Computer Sciences Department, University of Wisconsin- 
Madison, 1987. 

7. William J. Dally. Wire-efficient VLSI multiprocessor com- 
munications networks. In Advanced Research in VLSI: Pro- 
ceedings of the 1987 Stanford Conference, pages 391-415. 
The MIT Press, 1987. 

8. Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and 
Greg Byrd. An instrumented architectural simulation sys- 
tem. In Artificial Intelligence and Simulation: The Diversity 
of Applications. The Society for Computer Simulation In- 
ternational, February 1988. 

9. Alan Demers, Dan Greene, Carl Hauser, Wes Lrish, John 
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, 
and Doug Terry. Epidemic algorithms for replicated data- 
base maintenance. In Proceedings of the Sixth Annual ACM 
Symposium on Principles of Distributed Computing, pages 
1-12, August 1987. 

10. Zvi Drezner and Amnon Barak. A probabilistic algorithm 
for scattering information in a multicomputer system. Tech- 
nical Report CRL-TR- 15-84, Computing Research Labora- 
tory, University of Michigan, March 1984. 

11. Robert H. Halstead, Jr. and Stephen A. Ward. The MuNet: 
A scalable decentralized architecture for parallel computa- 
tion. In Proc. 7th Annual Symposium on Computer Archi- 
tecture, pages 139-145, May 1980. 

12. Phillip Krueger and Miron Livny. Load balancing, load 
sharing and performance in distributed systems. Technical 
Report 700, Computer Sciences Department, University of 
Wisconsin-Madison, August 1987. 

13. Personal communication, September 10, 1987. Discussion 
with members of MIT Lincoln Laboratories Machine Intel- 
ligence Group. 

14. Russell Nakano and Masafumi Minami. Experiments with a 
knowledge-based system on a multiprocessor. Technical 
Report STAN-CS-87-1188, Department of Computer Sci- 
ence, Stanford University, October 1987. 

5. Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A 
dynamic, cut-through communications protocol with multi- 
cast. Technical Report STAN-CS-87.1178, Department of 
Computer Science, Stanford University, September 1987. 



EFFICIENT ALGORITHMS FOR MASSIVELY PARALLEL COMPUTERS 
I. DESIGN O F  STABLE COMPUTATIONAL SYSTEMS 

USING LINEAR SYSTEMS MODELS 

Harold M. Hastings 
Department of Mathematics 

Hofstra University 
Hempstead, NY 11550 

ABSTRACT 

The authors investigate the stability of massively parallel com- 
putations using a linear systems approach. Stability is impor- 
tant for several reasons. These include bounding the response 
of the algorithm to numerical noise so that the typically small 
amount of local memory can be used efficiently, as well as de- 
signing algorithms and even hardware to be fault tolerant. Both 
Lyapunov stability (insensitivity to small changes in data and 
to noise) and structural stability (fault tolerance in hardware 
and software) are studied. The methodology is motivated by 
neural network modeling but may have larger applications. 

Keywords: Lyupunov stability, srrrcctural stability, massively 
parullel cornpliting. 

INTRODUCTION 

Approach 

We chose to study the stability of massively parallel computa- 
tion using linear systems for several reasons. Here and below, a 
linear system is a vector equation of the form 

where x(t) and x(t+l) are column vectors of length n and M is a 
square matrix of size n x n. An iterated linear system or nonau- 
tonomous linear system is specified by a sequence of matrices 
M(t), and vector equations of the form 

Our rnodel for the stability of computation consists of random 
linear systems of the form (I)  or random iterated linear systems 
of the form (2). Such systems are described by the following 
parameters of the matrices M or M(t): 

size n 
connectance C of the associated digraph of interac- 

tions-this digraph contains an edge 
from j to i whenever M(i J )  is nonzero, 
and 

distribution of nonzero entries of M, frequently in par- 
ticular 
its mean P 
and variance a2. 

Ivan Kadar 
Grumman Corporation 

Mail Stop B35-35 
Bethpage, NY 11714 

See References 1-6. The role of connectance is frequently to 
specify that there is one system and not two or more disjoint 
systems (Ref. 7). 

Foremost among our reasons for this approach is that the stabil- 
ity of large systems has historically been studied with linear 
systems (Refs. 1-5). Many systems can be approximated by 
linear systems near equilibria. In particular, many algorithms 
(Gauss-Siedel iteration, finite element techniques, etc.) involve 
iterated linear maps. Much of neural network algorithms also 
involves linear maps (Refs. 8-9). 

The response of an algorithm to a small amount of noise in- 
volves a small perturbation to the algorithm. Such perturba- 
tions are frequently studied via linear approximations. 

The limits of cellular automaton models are partial differential 
equations, and frequently diffusion equations-which are line- 
ar. Thus, linear systems arguments may also be useful in study- 
ing massively parallel hardware. The particular relevance of 
the linear systems approach may easily be seen in the following 
representation of the graph associated with a linear system (1) 
and an iterated linear system (2), Figures 1 and 2, respectively. 
Figure 2 accurately represents data flow in a parallel computa- 
tion with processing elements (PE's) 1, 2, ..., n using the vertex 
(j,t) to represent PE j at time t and an edge from (j,t) to (i,t+l) 
for each nonzero entry in M(t) representing the flow of data 
from PE j at time t to PE i at time t+l. 

PREC€DtNG : PAGE BLANK NOT FILMED 

FIGURE 1 .  Part of the digraph of a linear system 
with M(ij), MQj), M0.k). and (M(k j) nonzero. 

Also, MQ,i) = M(i,k) = M(k,i) = 0. 



FIGURE 2. Part of the digraph of an iterated linear 
system, illustrating sheets for times t, t+l. and t+2. 

Here M(t) (i.i) and M(t+l) (k j) are nonzero. 

Theoretical results for linear systems are available, and may 
suggest the local behavior of nonlinear systems. 

We shall investigate Lyapunov and structural stability of large, 
random linear systems, as neutral starting points for this type of 
modeling. 

Stability Definitions 

We informally review the definitions of Lyapunov and structu- 
ral stability and refer the reader to Reference 10 or a similar 
text for precise definitions. 

An equilibrium of a system is (Lyapunov) stable if the system 
returns to that equilibrium when started from nearby points. 

A system is structurally stable if nearby systems display the 
same dynamics (have similar stable equilibria, etc.). Bifurca- 
tions are the opposite of structural stability. 

STABILITY O F  RANDOM LINEAR SYSTEMS: 
A REVIEW 

Historically, the first result was due to Gardner and Ashby 
(Ref. 1) who studied the behavior of fully connected systems 
with fixed distributions as a function of size. They found that 
Lyapunov stability decreases with increasing size. Their results 
are in qualitative agreement with a standard stability bound, 
which follows from the Gerschgorin Circle Theorem that states 
that the size of the eigenvalues of a matrix M is bounded by its 
maximum row sum, where a row sum is the sum of absolute 
values of entries in a row. Consequently, systems (1) and (2) 
are Lyapunov stable if all row sums are less than 1. 

The maximal row sum of M is also its L1 matrix norm. A simi- 
lar result holds for other matrix norms, but these are much 
harder to compute or estimate. However, the Gerschgorin 
bound overestimates eigenvalues of typical random matrices 
wherein the nonzero entries have mean 0. The Gerschgorin 
bound does yield a useful asymptotic bound for suitably con- 
nected systems with nonzero mean (Ref. 4); the criterion is 

May (Ref. 2) conjectured a more useful criterion for random 
linear systems of mean 0, following results of Wigner (Ref. 6). 

In this case, the conjectured asymptotic stability criterion is 

This bound is much more delicate, and requires suitable techni- 
cal hypotheses (Refs. 4-5) due to Cohen and Newman and Ge- 
man. Cohen and Newman showed that bound (4) also holds for 
iterated linear systems. Their argument also extends to bound 
(3) for iterated linear systems. 

These results may be summarized loosely in the statement that 
with fixed interaction rules, Lyapunov stability decreases with 
increasing complexity (nC). 

However, if interaction strength decreases sufficiently fast with 
increasing complexity, for example in the mean 0 case, if 

then Lyapunov stability increases with increasing complexity 
(Ref. 3, see also Ref. 11 for background). 

Structural stability behaves in a more complex manner. In par- 
ticular, one needs the mean interaction to decrease faster than 
linearly with increasing complexity: 

Criterion (5) holds for many highly distributed representations 
(neural networks) and interactions. Therefore, Lyapunov stabil- 
ity typically increases with complexity in such systems. Struc- 
tural stability, however, requires careful design considerations 
because for random systems one usually only obtains 

a weaker condition than condition (6) faster than linearly with 
increasing complexity. 

It is thus a key requirement that design translate fault tolerance 
questions into Lyapunov stability questions by designing large 
parallelism and redundancy. 

EXAMPLES 

We describe several examples and interpretations (possible ap- 
plications) of the above results. 

Large Parallel Computers 

In this case, Lyapunov stability may be interpreted as response 
to noise, which may typically be increased by a highly distrib- 
uted representation and many weak interactions. Structural sta- 
bility (including fault tolerance) is more difficult to handle, and 
requires careful limitations of complexity or built-in redundan- 
cy, which implies scaling rule (6). 

Neural Networks (highly distributed representations) 

As explained above, Lyapunov stability may be interpreted in 
terms of stable responses to small changes in inputs, and the 
above calculations provide a theoretical basis for the empirical 
fact that highly distributed* systems provide such stable re- 
sponses. In addition, adaptive programming as in neural nets 
can provide structural stability with respect to hardware and 
software problems. 



Stable Algorithms 

We simply remark that many computation schemes such as 
Gauss-Seidel iteration and finite element methods for diffusion 
equations are probably both Lyapunov and structurally stable. 

CONCLUSIONS 

One can begin to usefully investigate stability of large compu- 
tational systems using approaches from the study of other large 
systems. This idea begins with Gardner and Ashby (Ref. 1). 
Highly distributed interactions and representations can increase 
stability. 

REFERENCES 

1. Gardner, M.R. and W.R. Ashby. Connectance of large dy- 
namic (cybernetic) systems: critical values for stability. Nature 
228, p. 784. 

2. May, R.M. Will a large complex system ever be stable? Na- 
ture 238, pp. 413414 .  

3. Hastings, H.M. Stability of large systems. In Proceedings, 
International Conference of Qualitative Theory of Differential 
Equations. Eds. W. Allegro and G.J. Butler, University of Al- 
berta, Canada, 1985, pp. 203-209. 

4. Cohen, J.E. and C. Newman. The stability of random matric- 
es and their products. Annals of Probability, 1985. 

5. Geman, S. The spectral radius of large random matrices. Pre- 
print, Brown University, 1984. 

6. Wigner, B. Statistical properties of real symmemc matrices 
with many dimensions. In Proceedings, Fourth Canadian 
Mathematical Congress. Ed. M.S. MacPhail, University of To- 
ronto Press, 1959, pp. 174-1 84. 

7. Bollobas, B. Graph Theory. Graduate Texts in Mathematics 
63, New York: Springer-Verlag, 1979. 

8. Rumelhart, D.E. and J.L. McClelland (eds.). Parallel Dis- 
tributed Processing, Cambridge, MA: MIT Press, 1986. 

9. Kadar, I. Robust tracking novelty filters based on linear 
models. Proceedings, IEEE First International Conference on 
Neural Networks 1987, pp. IV-611-IV-617. 

10. Hirsch, M. and S. Smale. D~ferenrial Equations, Dynarni- 
cal Systems, and Linear Algebra. New York: Academic Press, 
1974. 

11. Harrison, G .  Stability under environmental stress: resis- 
tance, resilience, persistence and variability. Amer. Natur. 1 13, 
pp. 659-669. 



APPLIED GEOMETRIC ALGORITHMS ON BOOLEAN N-CUBE 
COMPUTERS 

Wen-Jing Hsut, Xiaola Lint, and Kuan-Tsae HuangS 

f 
Department of Computer Science Michigan State University Lansing, MI 48824 hsu@cpswh.rnu.edu 

$ IBM T. J. Watson Research Center Yorktown Heights, NY 10598 (914)789-7742 kth@ibm.com 

(Extended Abstract) 

Due to the polymorphism of the N-Cube intercon- 

nections, the N-Cube Computers have applications in 

numerous applications. The computer architecture is also 

one of the most promising for massively parallel process- 

ing in the future. Both algorithms and software tools for 

these parallel computers are in demand. To investigate 

techniques of designing parallel algorithms for this type of 

machines, we studied solutions for a class of geometric 

problems on the N-Cube parallel computers. The 

geometric problems are the Convex Hull Problem, the 

Line Intersecrion Problem, and the Nearest Neighbors 

Problem. These problems have found applications in 

VLSI design, Computer Graphics, Image 

Processing/Pattern Recognition. and Robotics. The 

selected problems are also known to be related to many 

other problems of theoretical as well as practical impor- 

tance. Effrient solutions of these. key problems have 

immediate applications and can lead to solutions of other 
problems. 

Key words: Parallel Algorithms, Hypercube, Geometric 

Problems, Divide-and-Conquer. 

1. Introduction 

The Boolean N-Cubes, (or. N-Cubes. Hypercubes, 

for short) are parallel computers with the hypercube inter- 

connection between the processors (Ref. 3). These parat- 

lel computers are becoming popular due to their relatively 

low costs (compared to other supercomputers like Crays) 

and vast potential. It is believed that this potential is 

derived from the following two structural advantages: 

i) The computer is polymorphic: 

It has been demonsealed that the Boolean N-Cubes 

can be programmed to simulate many other parallel archi- 

tectures: linear arrays (for systolic, pipelined operations), 

meshes, trees, Pyramids, etc., where each of the architec- 

tures has identified application areas. Thus, the cube archi- 

tecture is open to many applications, which is a great 

advantage over many other parallel architectures. 

ii) The Boolean N-Cubes have a recursive structure: 

An N-cube can be recursively divided into two iso- 

morphic subcubes. This property matches very well with 

the recursive programming techniques ( e.g. Divide-and- 

Conquer (Ref. 1 )  ). Thus the N-Cube computers are a 

natural choice for designing recursive algorithms. Further- 

more, the experience gained with the N-Cube computers 

should be of value to future system architects as well as 

programmers of current parallel computers. 

2. The Geometric Problems 

The problems studied fall in the domain of Compu- 

tational Geomerry (Refs. 4-9 ,  arecent branch of Analysis 

of Algorithm (Ref. 3). Each of the problems (Convex 

Hull, Line Intersection, and Nearest Neighbor) actually 

has a cluster of related problems. 

(1) the Intersection Problem is to determine whether two 

geometric objects (paints, lines, polygons, etc.) share a 
common point. For example, the Line-Intersection Prob- 

lem is to determine intersections of a set of lines segments. 

This problem has many variations, by specializing on the 

typc of queries (e.g. reporting all instances or detecting 

one instance of intersections), or the type of objects 

involved (e.g. vertical/horizontal lines, half-planes, 

polygons. etc.). 

PRECEDING PAGE BLANK NOT FILMED 



The problem of detecting intersections in a set of N 

line segments arises naturally in many applications. The 

solution can be applied to an important problem in graph- 

ics known as hidden line elimination when using a 2-D 
device to display 3-D objects. Also, an algorithm for 

finding intersection of vertical and horizontal line seg- 

ments obviously can be used in design rule checking of 

VLSI layout. The problem also has application in pattern 

recognition and robotics where geometry is involved. 

(2) the Convexity Problem is to determine properties 

related to convexity. For example, the Convex tiull Prob- 

lem is to determine the convex hull for a set of points. 

There are many variations to this particular problem, 

where either the points may be dynamically or statically 

specified, or the point set may have some special proper- 

ties ( e.g. the points lie on a simply connected polygon). 

The Convexity Problems, especially the problems related 

to computing convex hulls. have applications in Pattern 

Recognition and Statistics (Ref. 5). Thus, efficient algo- 

rithms for these abstrxt problems have immediate uses in 

the applications mentioned above. 

(3) the Proximity Problem is to determine the neighbor- 

hood of given objects, based on the specified mebics. For 
example, the Nearest-Neighbor Problem, the Euclidean 

Minimum Spanning Tree Problem, and the Triangulation 

Problem, and the computation of the Voronoi Diagram 

are in this category. The Proximity problems can be 

applied to Pattern Recognition, Finite Element Analysis, 

and path planning of robots (Ref. 5). 

3. Existing Results 

The geometric problems have received considerable 

attention, and many results have appeared recently. (For 
instance, there have been several conferences devoted 

entirely to Computational Gecmeuy.) However. mosl of 

the results are geared toward sequential processing only. 

Comparatively, still very few upper bounds and virtually 

no lower bounds exist for parallel algorithms. We confine 

our survey to the parallel algorithms which are available 

in the more recent literature. Reparata and Lee (Ref. 4) 

give an excellent survey on the sequential algorithms. 

(1) Convex Hull Algorithms 

Chow (Ref. 13) was among the first to develop 

parallel algorithms for the geometric problems. Using a 
shared memory model, she showed that the convex hull of 

a planar point set can be determined in O(1og2N) time. 

The number of processors is bounded by N. In (Ref. 19), 

Miller and Stout showed that h e  convex hull of a digi- 

Lized picture input can be found in 0 (N'I2) time on an N- 

node mesh. In (Ref. 20), Miller and Miller presented a 

Hypercube algorithm for computing Convex Hulls for an 

M x M digitized picture input. Using N processors, the 

algorithm has a worst-case complexity of 

0 (M21Nt, +p2 + ~ ~ ~ t , , ~ + M ~ ~ t , ) ,  where P denotes the 

number of "candidates" for the vertices on the convex hull; 

t, and I,,, denote, respectively, the time required for a 

computation step on the individual processor and the time 

required for sending (or receiving) a unit-length message. 

Note that, in both cases, the input points are rcprescnted 

by finite integer coordinates, which is a valid assumplion 

in the applications they are concerned. However, it is a 

relatively strong assumption, and must be considered 
when doing comparisons. 

(2) Intersection Algorithms 

In (Ref. 18). Miller and Stout give asymptotically 

optimal (O(N1'2)-time) algorithms for using mesh com- 

pulers to determine intersections among line segments and 

among polygons. Using a different approach, Jcong and 

Lee (Ref. 15) also give optimal results on mesh computcrs 

for the same problem. No N-Cube algorithm IS currcntly 

available. 

(3) Parallel Algorithms for Roximity Roblcms 

Using the shared-memory model, Chow (Ref. 13) 

showed that the Voronoi diagram can be computed in 

0 ( 1 0 ~ ' ~ l o g l o g ~ )  time using N processors, where N 

denotes the number of input points. Aggrawal et al. (Ref. 

11) presented an O(log3N) time parallel algorithm to 

solve the same problem with 0 (NlogN) total space. Chow 

also presented an O(log4N) algorithm on the Cube- 

Connected-Cycles using O(1ogN) storage space per pro- 

cessor. Lu (Ref. 16) showed that O ( N " ~ / O ~ N )  time is 

sufiient to compute Voronoi diagrams on an N''' x N1'* 

mesh computer, with constant space requirement on each 

processor. Recently, in (Ref. 15). Jeong and Lee improved 

the time bound to O(N"2), which is already optimal for 

the mesh computers. Currently no N-Cube algorithm for 

the Proximity problems is published. 

The development of Pyramid computers, originally 

intended for image processing, pattern recognition, and 

computer vision applications, also led to the discovery of a 

cluster of geometric algorithms (Refs. 21-23). A pyramitl 

of size N is defined to have an N ' ' ~  x N L 2  mesh connected 

computer as its base, and lo&N levels of mesh connected 

computers above (Ref. 21). Assuming the input to be an 



N"' x N"' digitized picture, Miller and Stout (Ref. 22) 

showed that the nearest neighbor problem can be solved in 

0 (N I f ' )  steps. 

4. New Results 

We will present new algorithms for the following 

three problems on the hypercubes: 

(I). Convex Hull Problem: specify the convex hull for a 

set of N points. 

(2). Nearest Neighbor Problem: Find a nearest neighbor 

for each of the N planar points. 

(3). Line Intersection Problem: Detect intersection for a 

set of N input lines. 

For input of our algorithms, it is assumed that the N 

data points have been evenly distributed on the M proces- 

sors, where M = 2" for some integer k ,  and the output me 

also represented in the distributive manner. Our algo- 

rithms are based on the divide-and-conquer approach 

(Ref. 1). Specifically, a problem is solved recursively by 

subdividing the input data into two subsets which are allo- 

cated on two subcubes until a primitive case is encoun- 

tered, then combining (again recursively) the two partial 

results by using the communication links betwccn the two 

subcubes. 

(I). new Convex Ilull A/goriihm 

The algorithm is based on a new set of decision 

rules which enable us to determine, in a distributive 

manner, the common tangents between two convex hulls. 

The total lime complexity of the new algorithm is 

O(logZN) in the worst case, where N, the number of of 

input data points, is equal to M, the number of processors 

available. In the case M<N, we also present a generalircd 

algorithm which achieves 0 (Nlog (NIM)) timc complex- 

ity. 

(2). new Nearesi Neighbors Algoriihrn 

We present a new 0  log'^) time algorithm for 

finding the nearest neighbor for each of the N points on 

the plane. In the k-dimensional case, the algorithm has a 

time complexily of 0(logk?V) for k > 2. Since it rakes 

only O(1ogN) time to find a minimum on thc hypercube, 

the Closesl-Pair Problem can also be solved in the same 

time complexity. 

Assuming there are N planar line segments, the 

worst-case time complexity of our new algorithm for 

vcrtical/horizon~al lines is O(log3N). For input lines of 

general orientations, it lakes 0 ( l o g 4 ~ )  amount of time in 

the worst case. 

Compared to thc previous results, the improvements 

achieved in the new algorithms are significant. The tech- 

niques developed here may also he applicd to solving 

oficr problems of similar character. We will also discuss 

possible extensions to these results. In particular, two key 

issues will be addressed: 

i). How to distributively represent and manipulate 

diKcrent data types on the hypercube architecture, and 

ii). How to synchronirc the processors so that maximal 

parallelism can be achievcd. 

11. REFERENCES AND BIBLIOGRAPHY 

1. General References 

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "The 
Design and Analysis of Computer Algorihms," 
Addision-Wesley, Reading. MA, 1974. 

2. K. E. Batcher, Design of Massively Parallel Processor, 
IEEE Trans. on Computers, C-29, pp. 836-830, 1980. 

3. C. Scitz, The Cosmic Cube, Comm. ACM 29,8, Aug., 
1978. pp. 666-677. 

4. F. P. Preparata and D. T. Lce, Computatronal geomeuy 
- A Survey, IEEE Trans. on Computers, Vol. c-33, no. 12, 
pp 1072-1 100, Dec. 1984. 

5. F. P. Prenarata and M. I. Shamos, Computational 
Gcoinetry: A; Introduction, Springer-Verlag, New York, 
NY, 1985. 

6. S. L. Johnsson, Combining Parallel and Sequential 
Sorling on a Boolean N-Cuk,  Int'l Conf. on Parallel Pro- 
cessing, 198.1. 

7. D. Nassimi and S. Sahni, Data Broadcasting in SlMD 
Computers, IEEE Trans. Computers. Vol. c-30, no. 2, pp. 
101-106, Dec. 1981. 

8. F. P. Preparata, and J. Vuillemin, The Cube- 
Connccred-Cycles: A Versatile Network for Parallel Com- 
putllion, Comm. ACM, Vol. 23, pp. 300-309, 1981. 

9. X.  Lin and W. J. Hsu, A Parallel Algorithm for Con- 
structing Convex Hulls on Hypercube Computers, Submit- 
ted 

10. W. J. Hsu. K. T. Huang, and J. S. Liu, Parallel Alyo- 
rithms for Detecting Line Interseclions on Hypercube 
Co~nputcrs, Submiucd to HICSS-22, March 1988. 

(3). new Line Interseciion Algoriihm 



i). Shared Memory model: 

11. A. Aggarwal, a al.. Parallel Computational Geomeuy, 
Proc. IEEE FOCS. 1985, pp.468477. 

12. M. J. Atallah and M. T. Goodrich, Efficient Plane 
Sweeping in Parallel. Purdue Univ. CSD-TR-563,1986. 

13. A. L. Chow. Parallel Algorithms for Geometric Rob- 
lems. Ph.D. Disserliltion. Dept. of Computer Sci.. Univ. of 
Illinois. Urbana. IL. 1980. 

ii). Linear Arrays (Systolic Algorithms) 

14. B. Chazelle, Computational Geometry on a Systolic 
Chip, IEEE Trans. on Computers, vol. c-33, no. 9. Sepl. 
1984. pp. 774-785. 

iii). Mesh: 

15. C. S. Jeong and D. T. Lee. Parallel Geomelric Algo- 
rithms on Mesh-Connected Computers. ACM/IEEE FJCC. 
1987. pp. 31 1-318. 

16. M. Lu, Constructing the Vomnoi Diagram on a 
Mesh-Connected Computer Proc. Inl'l. Conf. on Parallel 
Processing. pp. 8W810.1986. 

17. M. Lu and P. Varman. Solving Geometric Proximity 
Problems on Mesh-Connected Computers, Proc. of IEEE 
Computer Society Workshop on Computer Architecture 
for Pattern Analysis and Image Database Management, 
1985, pp. 248-255. 

18. R. Miller and Q. F. Stout. Mesh Computer Algorithms 
for Line Segments and Simple Polygons, Pmc. of Int'l 
Conf. on Parallel Recessing, 1987, pp. 282-285. 

19. R. Miller and Q. F. Stout, Computational Geometry on 
a Mesh-Connected Computer. Pmc. Int'l. Conf. on Parallel 
Processing, pp. 66-73. Aug. 1984. 

iv). Cubes: 

20. R. Miller and S. E. Miller, Using Hypercube Multipro- 
cessors to Determine Geometric Properties of Digitized 

Pictures. Prcc. Int'l. Conf, on Parallel Recessing. pp. 
638-640. 1987. 

v). Pyramids 

21. R. Milla and Q. F. Stout, Convexity Algorithms for 
Pyramid Computers, Proc. Int'l Conf. on F'arallel Rocess- 
ing, 1984. 

22. R. Miller and Q. F. Stout, Pyramid Computer Algo- 
rithms for Determining Geometric Properties, Roc. ACM 
Symp. on Computational Geomeuy, 1985, pp. 263-277. 



A FAST ALGORITHM FOR VORONOI DIAGRAM CALCULATION BASED ON 
DISTANCE DOUBLING 

David Iuaelevitz 

The Analytic Sciences Corporation (TASC) 
Reading, MA 01 8G7 

ABSTRACT 

Many problems involving distances between points have natural 
solutions in terms of the Voronoi diagram. In this paper, we 
describe an efficient algorithm for calculation of the Voronoi 
diagram over one and two-dimensional lattices. The algorithm 
proceeds by propagating the location of Voronoi points through 
the lattice using a distance doubling strategy. This algorithm is 
designed for implementation on a fine-grain parallel computer 
such as the Connection Machine. We show how the algorithm 
is extended to calculation of distance-from-region computations 
and the use of nonstandard metrics. 

Keywords: Voronoi Diagram, Distance Doubling, Parallel 
Algorithms, Computational Geometry. 

B A C K G R O U N D  

Consider a finite subset of the points on a lattice, to be called the 
Voronoi point set. We are interested in dividing the lattice into 
sets of points which are closer to a common Voronoi point than 
to any other. Each set is called a Voronoi and the 
corresponding Voronoi point is its Dolygon center. The 
tesselation of the lattice into Voronoi polygons the Voronoi 
d ia~ram.  Our task is to associate with each point on the lattice a 
label which denotes the point as a member of a specific Voronoi 
polygon. The Voronoi diagram plays a central role in many 
aspects of computational geometry (Ref. l ) ,  and two- 
dimensional distance problems (Ref. 2). In this paper we 
consider the calculation of the Voronoi diagram for one and two- 
dimensional lattices only. 

The computational model we follow is based on the Connection 
Machine (CM). We assume a fine-grained SIMD parallel 
machine implementation with a hypercube connectivity 
architecture incorporating very efficient communication among 
adjacent processors. By fine-grained parallelism we assume that 
a single processor (physical or virtual) is associated with each 
point in the lattice. 

Define the processor address of a point as the address of the 
processor associated with this point. The lattice address of a 
point is its cartesian coordinate representation on this lattice. A 
natural processor to lattice mapping for one-dimensional lattices 
is to use a gray-code mapping so that adjacent points in the 
lattice correspond to adjacent processors. For the two- 
dimensional lattice case, we use a coordinate-wise gray-code. 
The gray-code representations just described are standard 
representations on the CM, and address conversion between 
representations is supported in hardware. 

Iayer by layer manner. The algorithm begins by setting the 
distance estimate to infinity except at the location of the Voronoi 
points where it is zero. Processors retrieve the distance of their 
left neighbor D(left), and compare D(1eft) + 1 with their present 
distance estimate. If lower, then D(left)+l becomes the new 
distance estimate. The right, top, and bottom neighbor is 
queried and the distance similarly updated. A more accurate 
estimation procedure ueries in addition diagonal neighbors and 
compares D(diag) + 7 2 to the present distance estimate. This 
query sequence is continued until the distance estimates for the 
whole lattice do not change over a full cycle. We will denote 
this procedure as the classical brush-fire algorithm. 

VORONOI POINT ADDRESS PROPAGATION 

The first improvement we propose is based on propagating the 
processor address of Voronoi points rather than the distance to 
this point. Suppose that each processor contains a parallel 
variable (pvar in CM nomenclature) called addr . The contents 
of this pvar at each iteration is the processor address of what is 
estimated as being the closest Voronoi point. The variable addr 
is initialized to the processor address for all Voronoi points and 
some special value such as "nil" everywhere else. At the end of 
processing, the value of addr will be the processor address of 
the nearest Voronoi point at each point in the lattice. 

The propagation sequence is the same as in the previous 
algorithm except that neighbors are queried as to their value of 
addr rather than the distance to the Voronoi point. Each 
processor then converts processor addresses to lattice addresses, 
compares the distance to this new Voronoi point and decides if 
this distance is smaller than the distance to the present Voronoi 
point estimate, and updates addr accordingly. In our later 
discussion we will refer to this algorithm as the updated brush- 
fire algorithm. 

Since this algorithm calculates the Euclidean distance, or in fact 
any other metric, to a Voronoi point, the resulting tesselation of 
the plane does not have the distortions due to the distance 
approximations required by the earlier algorithm. Also, 
propagation of the Voronoi point location tesselates the lattice 
directly, since the processor address of each Voronoi point can 
be used as a unique label for the corresponding Voronoi 
polygon. 

In Figure 1 we show two typical images, which present the 
lattice tesselation after classical brush-fire propagation and the 
updated brush-fire algorithm. This example points out the 
distortions from Euclidean distance generated by the classical 
algorithm. 

The convergence properties of either algorithm can be studied 
The traditional strategy for computation of the Voronoi diagram via the analysis of the Voronoi polygon radius under a certain 
over a two-dimensional lattice on the CM is based on a "brush- metric. The 4 - d i s t a m  of a point A to its polygon center P is 
fire" algorithm (Ref. 3) where the distance of each point on the found by considering all paths connecting A and P which reside 
lattice to its nearest Voronoi point is iterativelv improved in a wholly inside the Voronoi polygon. The minimum under the 



Figure 1 - (a) Voronoi tesselation using classical brush-fire algorithm. (b) Tesselation using 
new algorithms. 

Manhattan metric we define as the 4-distance of A to P. Finally reason that we can guarantee convergence of the one- 
the -of a Voronoi polygon is the maximum 4-distance dimensional algorithm after log2m iterations is that the Voronoi 
over all points A in the polygon to the center P. "polygons" are line segments, and therefore the distance 

doubling strategy is bound to "visit" every point on this polygon 
It is clear that after N full cycles all points at a 4-distance of N in less than 1og2N iterations where N is the length of the 
will have received the final distance for the classical brush-fie voronoi polygon, and N must be less than m. 
algorithm or the correct Voronoi mint processor address in the 
$dated brush-fire algorithm.  heri if ore the convergence ~h~ strategy of distance doubling is an emerging standard ~ r o ~ e r t i e s  of the two algorithms is governed the VOronOi approach to achieving speedups in hypercube-connected 
polygon with the largest 4-radius. In the number of massively parallel computers (Ref. 3,5,6) and is closely related iterations is essentially this radius. to the primitive scan operators introduced by Blelloch (Ref. 4). 

The brush-fire propagation strategy just described will be 
sufficient in situations where the distribution of Voronoi points 
yields uniformly small Voronoi polygons. However, the case 
where the diameter of any one Voronoi polygon is large will 
result in most processors becoming idle for large periods of 
time in the later iterations of the algorithm as the propagation 
reaches the outer boundaries of this largest polygon. 

In the next section we discuss a new algorithm which again 
propagates the processor addresses rather than the distance itself 
so it maintains the accuracy of the updated brush-fire algorithm. 
The main advantage of the new algorithm is that it propagates the 
processor address of Voronoi points using a doubling strategy to 
speed up the propagation process in situations unfavorable to 
brush-fire algorithms. The distance doubling strategy is well 
suited for implementation on the CM. 

DISTANCE DOUBLING FOR VORONOI DIAGRAM 
COMPUTATIONS 

We discuss f ist  the one-dimensional problem since it shows the 
basic ideas of the algorithm and is actually used as a component 
of the two-dimensional case. 

One-Dimensional Voronoi Diagram Extraction 

The first step of the algorithm is identical to the updated brush- 
fire algorithm in one-dimension. Initially each processor queries 
the value of addr of its left neighbor and deposits it in pvar 
candidate. Each processor then compares the distance to the 
point represented by its own value of addr vs the point 
represented by candidate. If the distance is lower then candidate 
becomes a better estimate of the nearest Voronoi point. The 
query is now performed of the right neighbor. The speedup 
occurs in the subsequent iterations. The algorithm transmits addr 
to processors at a distance of 2, then 4, etc., at each stage 
doubling the distance of transmission. The algorithm ends after 
log2m where nx is the number of points in the lattice. The 

Since processors at a distance 2" are neighbors on the 
hypercube, this transmission can occur very quickly. After n 
iterations, all points at a distance 2" or less from the 
corresponding Voronoi point have been correctly labeled. The 
formal algorithm is described below (we use the notation 
introduced in Ref. 5): 

m :  number of points in lattice 
k: address of each processor 
m a s k [ k ] :  TRUE if a Voronoi point is located at address k ,  
FALSE elsewhere 
addr [ k ] :  address of nearest Voronoi point to lattice point 
associated with processor k. 

for all k in parallel do 
addr [k] = nil 
if mask[k] = TRUE then 

addr [k ]  = k 
f i 

o d 
for j = O  to log2m do 

for all k in parallel do 
candidate [k]  = addr [k - 2 J ] 
if distance to candidate [k l  < distance to addr l k ]  then 

addr [k] = candidate l k l  
f i  
candidate [k] = addr [k + 2 J ] 
if distance to candidate [k]  < distance to addr [ k l  then 

addr [k] = candidate lk ]  
fi 

od  
o d 
Two-Dimensional Voronoi Diagram Extraction 

In the case of two-dimensional lattices, the associated Voronoi 
polygons are no longer line segments; informing each point in 
the polygon of the location of the polygon center is more 

174 aRlGlNAL PAGE 
BLACK AND WHITE PHOTOORAPH 



involved. The issue is how to perfom this information 
transmittal efficiently. The ease or difficulty of this transmittal 
depends on the shape of the Voronoi polygons involved. We 
consider first the case of scattered Voronoi ~ o i n t s  where the 
associated polygons are 4-connected. 

If a polygon is 4-connected then there must be a 4-connected 
path between the polygon center and every point in the polygon. 
Again, we use a pvar addr which at convergence contains the 
address of the nearest Voronoi point. After applying the one- 
dimensional algorithm along each row which contains a Voronoi 
point, all points in each Voronoi polygon which are connected 
horizontally with the polygon center will have the correct center 
location in addr .  The second step is to apply the one- 
dimensional algorithm on each column. After this point, all 
points which are connected to the polygon center by a path in the 
polygon consisting of one horizontal leg followed by a vertical 
leg will have the correct value of addr. We see that alternating 
horizontal and vertical iterations will update those points with 
successively more complicated paths leading to the Voronoi 
polygon center. 

In the previous section we used the 4-distance metric to analyze 
the convergence property of the brush-fire algorithms. We can 
define a steo distance which similarly controls the convergence 
of the distance-doubling algorithm. Define the steu length of a 
4-connected path as the number of horizontal plus vertical runs 
in a path. The steD distance of a point A in the Voronoi polygon 
centered at P is the minimum step length over all paths 
connecting A and P which reside wholly in the Voronoi 
polygon. Thus in Figure 2, the step distance from A, B, and C 
to P is 1, 2, and 4 respectively. Finally the step radius of a 
Voronoi polygon is the maximum step distance over all points in 
the polygon to the center P. 

Figure 2 - Voronoi Polygon with Center at P. 

It is clear from our earlier discussion that after N iterations, all 
Voronoi polygons of step radius less than N will have been 
correctly updated. The reason for the expectation of faster 
convergence is that for large Voronoi polygons, the step distance 
between two points is much smaller than the 4-distance, while 
the distance doubling paradigm updates points along each row or 
column quicker than brush-fire propagation. 

PERFORMANCE COMPARISONS 

We considered several test cases in order to evaluate the 
performance of the new algorithm via comparisons to the 
classical and updated brush-fire algorithms. The results are 
summarized below. Images were generated with Voronoi points 
distributed randomly over a 512 by 512 lattice. Five trials were 
generated for each Voronoi point density and the computation 
time averaged. All experiments were performed on a CM-2 with 
8k processors. Similar results were observed for 128 by 128 
and 256 by 256 lattices. 

Figure 3 - Computation time for Voronoi diagram calculation as 
a function of the number of Voronoi points. 

From the above figure, we can see that the distance doubling 
algorithm is substantially faster than either brush-fire technique 
as the number of Voronoi points decreases. As the number of 
points increases, the size of the largest Voronoi polygon 
decreases, so  that the brush-fire techniques require fewer 
iterations. Therefore, for dense Voronoi diagrams, the brush- 
fire techniques are preferable. Note that the updated brush-fire 
algorithm is comparable to the classical algorithm even though it 
provides better accuracy. 

GENERALIZATIONS 

Distance-from-Region Computations 

In our earlier discussion, we considered the Voronoi diagram 
problem of finding distances to scattered points. In many cases 
of interest, it is necessary to calculate the minimum distance not 
to a set of points but to a set of regions or more specifically the 
minimum distance to the boundary of a set of regions. Such a 
computation can be performed in our formulation by considering 
each point on the boundary of each region as an Voronoi point. 
Thus after convergence each lattice point will know the location 
of the nearest boundary point. 

In some situations, it is also necessary to know to which region 
a given point is closest. Given that a point knows the processor 
address of the nearest boundary point, a common label needs to 
be provided to all boundary points of the same region and that 
label propagated along with the address location. 

For this application, we encounter the situation that a Voronoi 
polygon may not be 4-connected. This occurs if three Voronoi 
points are aligned diagonally, resulting in a Voronoi polygon 
consisting of a diagonal line. Such a configuration is likely to 
occur in the distance-from-region case. In this situation, we 
have found it adequate to first perform a propagation be 
performed in each diagonal direction to accommodate those 
polygons and then continue with alternating horizontal and 
vertical propagations. 

In Figure 4, we show a distance-to-nearest-region computation 
using the new algorithms. 

Voronoi Diagram Computation Under Non-Standard 
Metrics  

The fact that the location of the Voronoi point rather than the 
distance to this point is the information propagated allows for the 
application of either the updated brush-fire or distance-doubling 
algorithms to a variety of distance functions. In fact we can 
associate a different distance function with each Voronoi point. 
For example, there could be associated with each Voronoi point 
a weighing factor such that the "distance" to this Voronoi point 
is first weighed prior to comparison with the distance to another 
Voronoi point. We have generated some experiments with non- 
standard metrics in order to understand the possible 



Figure 4 - (a) Three regions for distance computation.b) Euclidean distance to nearest 
region. 

Figure 5 - Voronoi tesselations of the same point set under different m e ~ c s  - 
generalizations of the procedure developed here. As an example REFERENCES of the possible generalizations, we generated the Voronoi 
diagram under two different distance functions for the same 

[ I ]  D. T. Lee and F. P. Prepwata, Computational Geometry - Voronoi point set as in Figure 1. Figure 5a shows the use the A Survey, IEEE Transactions on Conlpurers, Val, C-33, no, distance metric D = max(ldxl,ldyl). Figure 5b shows the use of 
the weighed Euclidean metric. 12, December 1984. 

S U M M A R Y  

In this paper we introduce two new algorithms for the 
calculation of the Voronoi diagram over one and two- 
dimensional lattices. Both new algorithms propagate the explicit 
location of the newest Voronoi point rather than the distance to 
the point and so are more accurate than traditional methods. The 
first algorithm is based on brush-fire propagation while the 
second algorithm relies on distance-doubling. We find that the 
distance-doubling algorithm is more efficient than the classical 
algorithm for the case when at least one Voronoi polygon is 
large. It was found that there is little penalty in using the the 
updated brush-fire algorithm over the traditional algorithm. 
Generalizations of the algorithm to distance from region 
computations and non-standard rnetrics are also presented. 

[ 2 ]  Robert Sedgewick, Algoritlinzs, Addison-Wesley, 
Reading, MA. 

[3] J. J. Little, Parallel Algorirlzms for Conzpurer Vision on the 
Connection Machine, A. I .  Menlo 928, MIT Artificial 
Intelligence Laboratory, November 1986. 

[41 G. E. Blelloch, Scans as Primitive Parallel Operations, 
Proceedings Inr. Cot$ on Parallel Processing, August 1987. 

[ 5 ]  W. Daniel Hillis and Guy L. Steele, Jr., Data Parallel 
Algorithms, Communications of the ACM, Vol. 29, no. 12, 
December 1986. 

161 W. Lim, A. Agrawal, and L. Nekludo\,a, A Fust Purullel 
Algorithm for Labeling Contzected Cornponc,nrs in l n i ~ g e  
Arrays. Technical Report NA86-2, Thinking Machines 
Corporation, 1986. 

176 
ORIGINAL PAGE 

BLACK AND WHITE PI-$TOGRAPH 



Provably Good Parallel Algorithms For Channel Routing of 

Sridhar Krishnamurthy Joseph J i JB  
Department of Electrical Engineering Department of Electrical Engineering 

Systems Research Center Institute for Advanced Computer Studies 
University of Maryland Systems Research Center 

College Park, MD. 20742 University of Maryland 
College Park, MD. 20742 

Abstract 

We consider the channel routing problem of a 
set of multi-terminal nets in the knock-knee model. 
M'e develop a new approach t o  route all the nets 
within d + a tracks, where d is the channel density, 
and 0 5 a 5 d ,  such that  the corresponding layout 
can be realized with three layers. Both tile rout- 
ing and the layer assignment algorithms have linear 
time sequential implementations. In addition both 
can be implemented on the CREW-PRAM model 
in O(: + logn) time, with p processors, 1 5 p 5 n, 
where n is the size of the input. 

1. Introduction 
Routing plays a central role in automated VLSI layout sys- 

terns. This problem has been intensively studied in literature 
(e.g. [CJ],[XIP],[P],[PL],[O],[RF]). Because of the combinatorial 
nature of routing, most of the corresponding optimization prob- 
lems turn out t o  be NP-complete (for example see [S]). IIowever 
good heuristics have been used effectively t o  generate good lay- 
outs. In this paper, we continue our research efforts in devel- 
oping eficient parallel programming techniques to  handle var- 
ious routing problems. Our goal is t o  develop routing strate- 
gies that  will result in parallel algorithms whose running time is 
O ( F  +f(p)) ,  where t (n)  is the best known sequential time, y is 
the number of processors, and f (p) is a non decreasing function 
that  reflects the routing cost on the given parallel model. The 
routing produced by these algorithms is expected to  be as good 
as the best known sequential algorithms. 

\lie consider the channel routing of multi-terminal nets in 
the knock-knee model. Provably good approximation algorithms 
(sequential) have been reported in [MPS],[SP] and more recently 
in [GI<]. The basic strategy used is the well known greedy strat-  
egy applied either one column or one row a t  a time. IIowever, 
it has been shown recently ([delaT]) that the routing produced 
by several variations of this strategy are P-complete, and hence 
there is little hope for parallelizing these strategies eff~ciently. 
M'e provide a new strategy which obtains provably good routing 
(which is in general different from those obtained in [SP],[hIPS] 

'Supported in part by NSA Contract No. hIDA-904-8511-0015, 
NSF Grant No. DCR-86-00378 and by the Systems Research Center 
Contract No. OIR-85-00108 

and [GI(] methods), such that  the routing algorithms has a lin- 
ear time sequential implementation. Moreover, the algorithm 
is fully parallelizable in the sense that  it can be implemented 
on a Concurrent Read, Exclusive Write (CREW) PRAh4 model 
in O(" + logn)  time with p processors, 1 5 p 5 n, where n 
is the\ize of the input. We are assuming tha t  all terminals lie 
in the range [ l ,  N ] ,  where N = O(12). A modified version of 
the algorithm will guarantee that the number of tracks is d + a ,  
0 5 a 5 d ,  where d is the density of the channel. In particular, 
for two terminal nets the modified version provides an optimal 
solution. 

All our results are stated for the shared memory model. 
IIowever, our algorithms have fast ilnplemel~tations on fixed- 
interconnection networks such as  the mesh or the Iiypercube. 
For example, all the algorithms stated in this paper can be im- 
plemented on a fi x fi mesh in time O(fi)  where n is the 
input length. 

2. Definitions 
We borrow some of the basic definitions of channel routing 

from [SP],[PL]. A net N is an ordered pair of integer sequences 
((pI,p2, .  . .pk),  (qlr  q2, .  . .qh)) where the p,'s are the lower tcr- 
minals and the q,'s are the uppcr terminals. Without loss of 
generality, we assume that  k + h 2 2.  If k + h > 2, then the 
net N is said to  be a multiterminal net, otherwise N is a two- 
terminal net. An instance of a general channel routing problem 
(GCRP) is a channel consisting of rectangular grid, and a set of 
nets, each of which specifies a subset of terminals which lie on 
the grid points of the (horizontal) parallel boundaries. The goal 
is t o  route the wires such tha t  the channel width is as small as 
possible. 

Let N, = ((pi, .  . . , p i , ) ,  (q;, . . ., q i , ) )  be a set of nets. Let 
I, = min(pj,qi)  and r,  = m a ~ ( ~ ~ , , q ~ , ) .  The interval [ l i , r ; ]  is 
a lower bound to  the horizontal track demand of N,. We can 
transform the GCRP into a fictitious two-terminal net channel 
routing problem, where each net N; is replaced by Nf and I ;  and 
ri are referred to as the left and right terminals of this fictitious 
net respectively. The local density d ,  a t  x is defined to  be the 
number of nets [ I ; ,  T , ]  such that 1 ,  5 x < r ; .  The density d 
is given by d = mur, (d , ) .  It is clear that d is a lower bound 
for the l~ l in in~um number of horizontal tracks and we call d the 
essential density of the GCRP. The type of terminals within a 
column (entry, exit or continuing terminals) define the state of 



the  column. ill1 the  possiblc s tates of  a roli~rnn a r r  shown in 
Figure 1. 

Figure 1: States of a colu~llll 

3. Channel Routing 
Give11 a n  instance of a GCRP of essential density d ,  our 

goal is t o  deterlrline a wiri~lg of all tlie nets wit l~in 2d tracks. 

In addition, the resi~lt ing layout sl~oul(l be re;tlizable in three 
layers. 

T h e  a lgor i th~n  developed in [SP] produces t11r layout colnnln- 
by-column. T h e  overall strategy is similar to  the approacl~ of the 
'greedy router'  of [RF]. Unfortunately this approach seerrls t o  be 
inherently sequential. Our  rnet l~od is quite different and consists 
of the  following main steps: 

1. Create two sets of chains S, ancl . T I .  Each set consists 
of a partition of the  nets into d c l ~ a i i ~ s  satisfying certain 
propertics to  be or~tlinetl later. 111 part icl~lar ,  the nets in 
each cl~airt define a set of nonoverlnpl)ing intcrrrals. Ini- 
tially a nct  has two symmetric. s o g ~ n c ~ ~ t s  above and below 
the track y = 0. 

2 .  Assign a track nurnber Cronl t l ~ e  i~plrcr (1 tracks in the 
cl~annel  t o  each c l~a in  irt .S,, anil ;t tr;ic.k 1ru1111)rr fro111 t l ~ c  
lower 11 tracks t o  each cliai~i in Si. ' I ' l re~~ \\.ire all the nets 
for all the r o l u ~ n ~ ~ s  siruultn~rc~o~~sly.  

Tlie algorithm produres a layout \vliicl~ i l ~ a i i r t a i ~ ~ s  the follolving 
property: 

Property 1.  Any net ,V, wl~ic-11 is active i l l  c o l u ~ r ~ n  c has two 
strands y = t l ( i )  > 0 and y = t 2 ( i )  < 0. 

\ire s l~a l l  s u ~ n n ~ a r i z e  the algoritl~rn ('r,tnte ('hazns devclol~etl in 
[('.I] wl1ic.11 partitions a set of ncth i r ~ t o  il c.l~aina, ivlrere rl is the 
density of the  cvrrespontling C'Itk'. Tlris algori th~n ivill l ~ e  I I S C ~  

later on to  obtain tlie iliitial sets of cl~nins. 

.Jlourilh~n CIT(I~C Chains 

I n l ~ i l :  terminals 1,'s and r,'s of all t11e nets ,YI. .Y2.. . . , S,,. 

Oull~ld: (1 chaiirs of nets, where d is the  density of the CRl'. 

1. hIark all tlir t r r~nina ls .  For t~acli I ~ f t  terininal I, of a net 
:Y,, set p(1,) = T ,  s11c11 that r, is tlie nearest right terminal 
of sonic ot11c~- net to t l ~ r  riglit of .V,. If t\vo slic.11 t~>l.n~in;tls 
exist. tllrn !tick t l ~ c  onr n.liosc cor rcspo~i t l i~~g  11c.t is of the 
same type a b N , .  Ilowcvcr if no s11c.11 r j  exists. th rn  set 
I > ( / , )  = 8. Similarly define I J ( T , )  for r a c l ~  right t c r l ~ ~ i n a l .  

2. I f  I,(/,) = rJ ant1 l ) ( r J )  = 1, t l ~ c ~ n  set . i ~ t c c ( ~ l ; , )  = iY, a i ~ d  
url~nark r j  ;lntl I,. C r e ; ~ t r  ;I ~ . r f t ~ ~ c ~ ~ ~ c e  poi~rt k bct\vccn r1 
2lll(l 1,. 

3.  Lct R1. R z ,  . . . . It,,, I)(, 111t~ i~~tc,rvals tlrtc~r~ninc~d by tlie ref- 
erence p o i ~ ~ t s .  1.i1r clacl~ / I ,  cl.c.;~tc~ lists / , ( k t , )  a t ~ d  /{(/{,) 
consisting of all t l ~ r  n~arkctl Icft ;rntl right t r r ~ r i i ~ ~ a l s  ill II,. 

.I. Create links 1)etwc~c.n corrc~sj~orrt l i~~g ter111i11;rI pairs i l l  I<( I t , )  
a11i1 L( / t ,+ l  ). L ~ I I I I I ~ ~ ~  all ~ I I O S P  tcr111i11;11h t1111h l i ~ t k ( ~ l  2nd 

merge intervals 112,-1 and R z ,  Itcpeat this step until only 
one interval is left. 

Leinma 1 [CJ]. T h e  number of chains created by the  above 
a lgor i thn~ is exactly (1, where d is the channel density. This  al- 
gorithm call be implemented on a CRELif-PRAM in time O ( ;  + 
log 1 1 )  wit11 p processors, 1 < p 5 n. 

The above chains are then modified in Algorithm 'Modify Chains' 
[CJ] so tha t  they have the following property. Let c be any col- 
iirnn. The11 either 

1. c is empty, or 

2. c contains only onc entry terminal, o r  

3 .  c contains two entry terminals of nets N, and A'). Let 
N,  =< c, b, >and AT, =< t , ,c >. The following two cases 
can then arise: 

If IV, has an exit terminal and N ,  has a n  entry ter- 
minal in c ,  then they both belong to  the  same chains 
and one is a successor of the other. 

Suppose both N ,  and N, exit a t  c. The  other  case 
is dealt with similarly. Let PJ: = succ(N,) and = 
aucc(N,). Then they citller have lheir entry t c ~ m i n a l s  
on the same column or the column of N,' or  Ni which 
is closer t o  c has only one entry terminal. 

\ \ c  will now outline each of the maill steps of our algorithm. 
'I'lie algoritlrlr~ Lelow rrrates initial chains of nets in sets S, 
and S1 wl~ich will be motlilied later to satisfy certain desired 
p r o p ~ ~ r l  it's. 

, ~ t l ~ ~ ~ ~ ~ ~ ~ l l ~ r t i  Iriitirll Cl~riining 

17~111~t: tcr~niiials 1,'s and r,'s of all the fictitious nets N ; ,  N ; ,  
. . . , A';. 

Oilfp~lt: ttvo sets S, and Sf wit11 each set containing a partition of 
the fictitious nets into d chains, wl~ere  d is the  esse~itial density. 

1. C'si~ig algorit11111 C:rcwte-Chains outlil~cd above, obtain d 
c.l~;ii~is w l ~ r r e  d is t l ~ c  esscl~tial c h a n ~ ~ e l  density. 

2. 1)uplicate the d chains thus obtained into two sets S, and 
,Sf each of rvhich c o r r e s p o ~ ~ d  t o  the upper and lower halfs 
of the channel. The  chains in the two sets will be modified 
indeper~dently later on to  satisfy certain properties. 

As an csaniplc consider the general cliannel routing illstance 
s l~own ill Figure 2. The  chains produced are shown in Figure 3.  

Figure 2: An i r~s tanre  of a GCRP 



Algorztlrrn Chain blodificalion 

Input: s ta te  of columns and initial chai~r set S,. 
O u t ~ ~ u t :  new set of chains S,,,, satisfying Property 2.  

N3 4 N,-+ Ng 1. If a colunln has a n  upper exit terminal of a net N , ,  and 

N., - N6 
is also tlre first upper terminal of the net ,  then delete A',, 
from i ts  chain in S,, ullless the column is of 
s tate = A N i  . 

Figure 3: Chains created by Algorithm Initial Chaining 1 1- 2. Rlark all colurnns of s fa te (c )  = - . 
I 

3.  Now consider all columns of sfatr(c)  = i . T ~ O  cases 
L e m m a  2 .  If there exists acolulnll c c o ~ ~ t a i n i n g a n  esit-terminal arise for such colurnns. l N l  

!Y, and an elltry-terminal N J .  tlrell hrJ is tlre successor of h', in 
ollc of tllc chains. Property 1 will also be satisfied. 0 a .  C o l ~ ~ m ~ r  contains an 11pl)cr terminal labeled N , ,  wlliclr 

is both the first a s  well as  the  last upper terminal. 
Tlrc above chains can he usetl to  wire all the nets in 2d tracks but  Let Ar, = pred(N,)  in S,. hfodify S, by setting t h e  
t11c corresI)ontling layout may not be rca.lizable ill three layers. succ(N,) = N, and succ(:q,) = old~ucc(~V,) .  Lct c, 
So tve have to  nlodify the  chains i l l  both the sets S ,  and S I .  be tile column to  the  right of c such tha t  c, contains 

.A cc~lr~lnn c, is said to  be a tcrmir~c~ting c o l ~ ~ m n ,  if the closest entry terminal of succ(il',) among i ts  trvo 

1 .  c 1l;ls an exit termillal of St, 01 

2 .  c is t l ~ c  closcst sllccc.ssor entry cola in^^ of net N , ,  and I\', 

vxit l c~r~nina ls  in a ~ ~ ~ I I I I I I I  i. w~lose stnte = (see 

f i ~ 1 1  1.r l)c11o\v). 
1 

.All other r o l ~ i m ~ r s  a re  said to  I)c non-trt.rrzirz(~tirzg. iVe associate 
tlic. 1);1ir < c. .Y, > f o  encl~ t t>rn~i~ra t ing  colnmn, and 1.cfc.r to  i l  
as  a /cr.~nirrrrtzr~!l pcrir.. 11 tcrmirr;ttir~g pair < r ,  .2', >, is said t o  
bc ;III  n1)1xSr (lo\\.rr) t c r n ~ i r ~ a t i ~ ~ g  1);tir if 

Kc.1 .\', ltns art exit ternrinal 011 tltr upper (loiver) boul rda~y 
in c 01 

successors. M a ~ k  c, only if the  entry terminal is a 
lower terminal. 

AN,  b. For the remaining columns of s tute(c)  = -,N not 
considered in the  previous step, we process as' follows. 
Let c, and cJ be the  n e a ~ e s t  columns to  the right of 
c, such t h a t  they contain the  entry termil~als  of the 
successors of A', and ,VJ. Mark these colulnns ~f the 
ently ternlinals a re  the  lower terminals. 

4 For each marked r o l u n ~ n  clrate all o ~ d r r e d  pair < c,c1 > 
wlrc~c  c' contains the first upprr  t e r~nina l  of h',' = succ(S , )  
an11 N ,  is the  net whicl~ tc rn~ina tcs  in colulnn c. 

5. Group the  pairs < c,cl > into maximal groups < co, r l  >, 
< e l ,  r2 >. . . . , < c k ,  rk+l >. Let ,V, denote the net w l ~ i c l ~  
terminates in column c,. Update tlre successors of these 
nets by setting the  new stlcressor of A', t o  be tlie previous 
successor of N,-l for all 0 < i 5 k. In addition, set tlre 
new successor of No t o  he the previorls s ~ ~ c c e s s o r  of Mk. 

,V, tcrmi~rates in c, and the successor of N ,  is S, ( S r )  has 
it.< first upper (lower) trrrniltal in c. As an example consider the  chains in Figure 3. The new set of 

cllains created by the above algorithm arc shown in Figure -1. 
To satisfy the t hrer layer wirahilify, the rhains in the sets S ,  

a i ~ ~ l  .Si are 11rndific.tf so as to  satisfy tlrcs following property: 

Property 2. I x t  c, I)e any co lu~nn.  'Tlwn citlrer - - 
N4--+ N 3 4  N7--+ Ng-+ NIO 

I .  r ,  is l i o ~ ~ - t < . r ~ ~ r i ~ ~ a t i r ~ g .  or N 4 - 4  N1 0 

2. i f  c ,  is nssociatcvl will1 a lotver ( ~ ~ p p e r )  t r r m i ~ ~ a t i l ~ g  pair 
NZ-- N5 N i  - Ns 

< c,. .Y, >. tl1e11 eit 11c.r Ns4 N: I N2- N5 i 

;I. t l i ( \  C O I U I I I I I  c: c o n t a i ~ ~ i ~ ~ g  t11e f i~bl  uppc,r (lotver) t e r ~ ~ r i -  
I I A I  of .Y: = .s~tcc(,V,), in .7,, (.Ti) is ~ l o ~ r - t e r ~ ~ ~ i ~ ~ a t i ~ r g ,  u 

or Figure 4 :  hlodified sets of chains 
11. ~ ~ I I ~ I I I I I  c: = co11111rn c,. 

'I'ilc f o l l o \ \ i ~ ~ g  algorithm olltlincs I~on. 
i o  tlliit tlic. a l ~ o v r  property Ilol(l3. For 

rhic~nti;illy 11sr- the sarlic aigorit11111 

to  modify the  chains S ,  , L e n l m n  3. ?\lgoritlrru 'Chain Llodification' modifies tlrc cllains 
nrodifyil~g the set SI we , S I I C ~  t l ~ a t  the new set of chains satisfies Property 2. hloreovcr t l ~ c  
wit11 the obvious modifi- ' algoritlrm runs in O(:+logn) time will1 ]I I)roccssors, 1 5 1) 5 11, 

on the C:RE\.i7-PRAR'l model. 

After having obtained the  modified scts of chains we procectl t o  
do the wire layout details of wlricll are left for the  full pape' 
T h e  wire layout for our example is s l~own ill Figure .5. 



1 5 10 1 5  

Figure 5: \\'ire layout for the example 

Theorem 1. Given an irlstance of a GCRP of essential 
density d ,  it is possible to wire all the nets using 2d tracks in 
time O ( ;  + logn) on a CREW-PRAhI rnodel with p processors, 
1 < p 5 n ,  where n is the size of the input. 

The wire layout produced by the above algorithru can be 
laid out in three layers. [PL] provides necessary and sufficieut 
conditions for wiring a layout using three layers. The routing 
produced by our algorithm satisfies the following property: 

Property 3. Any column irrespective of its type will have at  
most two knock-knees, with a diagonal \ on the bottom an11 a 
diagonal / above it. 

Usiug the wiring algorithm given in [CJ], we can realize the wire 
layout produced by onr a lgor i t l~n~ in t l~ree  layers. 

Tlleoreln 2. Given an instance of a GCRP, it is possible 
to tlctermine a three-layer assignment of the routing, in time 
0( ;  + l o g t ~ )  on a CRELV-PRASI motlel using p processors, 
1 5 IJ 5 n, where 11 is the size of the input. 

3. References 

[CJ] Chang, S .  and J .  JaJQ, " Parallel Algorithnls for Clian- 
ncl Routing in the Knock-Knee hloclc4." Proceetlings of 
the I~lternational ('onferrnce on Parallel Processing, 1988, 
pp.18-25. 

[tlrlaT] cle la Torre, l'., "On parallclisl~l and some gcneralisa- 
tions of the lirie packing problcsin," Unpublished rnanusclipt 
1988. 

[GI<] Gao, S. and hl.liaufmann, "Channel Routing of hlr~lti- 
terminal Nets." Proc. of the l9tli Ann. AChl Symposium 
on Theory of Computing, pp.316-325, 1987. 

[hll'] hlc4ltorn. K. and F. Prcparata, "Routirtg Th~ongh  a 
Rectangle," .li\Chl, vol. 33( I ) ,  Jan.  1066, pp. 60-S5. 

[hlPS] Melhorn, I<., Preparata, F., and hl. Salraf~atlcll, '- 
Channel Routing in I<nock-linee hlotle: Si~nl)lificd Algo 
rithms and Proof?." Aigoritl~mica, 1086, pp. 213-221. 

[PI R. Pinter, "River routing: metlrotlology and analysis," 
Proceedings of the third CALTECll Confercllce on Very 
Large Scale Integration, March 1983, pp. 141-163. 

[PI,] Preparata, F. and W. Lipski, "Optimal Three-Layer 
Channel Routing," IEEE Trans. on Computers, C'-33, 
1984, pp. 427-437. 

[RF] Rivest, R., and C. Fiduccia, " A Greedy Chatlnel Router," 
Proceedings of the 19th Design Automation Conference, 
1982, pp. 118-424. 

[S] Sarrafzadeh, M., "Channel-Routing Problem in the I\'nock- 
]\'nee Model is NP-complete," IEEE Transactions on CAI), 
vol. 6, 1987, pp. 503-506. 

[SI'] Sarrafzadeh, M., and F. Preltarata, "Compact Channel 
Routing of Multiterminal Nets," Annals of Discrete Math., 
no. 2.5, April 1987, pp. 255-279. 

[O] Ol~tsuki, T . .  "Layout Design and Verification," Advances 
in CAD for L'LSI, vol. 4 ,  Xorth-IIolland, 1986. 



SPARSE MATRIX VE(3'OR MIIIIFIPI,I(~AI'ION ON POI,YMORPHI<:-I'ORIIS 

Itungwen L,i Ming-Cheng Sheng 
IBM Research IBM Research 
Nmaden Research Center Thomas J .  Watson Research Center 
650 Harry Road, CA 95120 Yorktown Heights, NY 10598 

ABSTRACT 

A sparse matrix is a two-dimensional irregular static data 
structure representing a wide class of physical and engineering 
problems. Its solution for the massively parallel fine-grained 
SIMD computers has not been as satisfactory as desired because 
matching an irregular data stmcture to a fixed architecture 
topology usually results a high percentage of idle processors hence 
low system utilization. This paper describes a two-stage algorithm 
for sparse matrix vector multiplication on  the Polymorphic-toms, 
a reconfigurable massively parallel fine-grain architecture, to dem- 
onstrate how reconfigurability helps to alleviate the matching dif- 
ficulty. 'The first stage of the algorithm is the structured 
condensation which converts the irregular sparse matrix into a 
more uniform and much denser data structure, while the second 
stage demands the architecture to reconfigure itself to fit the con- 
densed data structure. The algorithm highly increases the system 
utilization of the SIMI) machines and has a lower bound in 
arithmetic operation count. 

2. POLYMORPHIC-TORUS ARCHITECTIJRE 

The polymorphic-toms [4, 51 is a VLSI-oriented massively 
parallel fine-grained SIMD architecture with a two-level intercon- 
nection network. In a N2-processor Polymrophic-toms system, 
processors are physically arranged as an NxN two-dimensional 
toms with each processor located in the coordinate [pidx, pidy] 
where Ispidx, pidy<N. Usually, N is taken as a power of 2 for 
the sake of control simplicity. A second level of switches is woven 
intimately with the torus at each node (Figure I) to facilitate effi- 
cient graph matching with very low wiring complexity. 

Such a two-level approach for connecting allows the K phys- 
ical ports of each processor be wired statically by one network 
(e.g. the toms in this case) and dynamically by programming a 
second network (e.g. a crossbar switch in this case). By system- 
atically selecting the active processors and arranging the switches 
of the second network, efficient graph matching can be derived. 
We called this methodology the polymorphic concept. 

I .  1NTRODUC:IION The polymorphic methodology is a form of reconfiguration; 
however, it emphasizes that the switch setting of the second net- 

Sparse matrix solving is an important problem for parallel work is a function of the local condition of each processor. A 
proce~sing because it represents a very large class of problems in conditional short-circuit function is uniformly provided for the 
engineering and physical simulation applications that need tre- switches of the sccond network in each processor. This fnnctir\n 
mendous computing power. is represented as 

As the name implies, the sparse matrix is of irregular 
connectivity and therefore is not well-suited for S lMD parallel 
processors with very regular topology (e.g. mesh and tree) because 
many processors can he idle due to the mismatch of the matrix 
connectivity and the hardware network topology. It is also felt that 
sparsc matrix solving is not suited for fine-grained SIMD parallel 
processors with very simple (e g. bit-serial) AIIJs because floating 
point operations are usually needed to maintain the numerical 
stability and floating-point operations incur high cost for bit-serial 
processors. (:omputers in this category includes DAI' [ I ] ,  MPP 
[21, the Connection Machine [3] and the Polymrophic-toms 
[4-61. 

'There arc, howcvcr, two rnajor reasons to study the sparse 
matrix solving on massively parallel finc-grained SIMO process- 
ors: first, the s i x  of thc matrix is cver increasing, which demands 
parallel processing evcn more, and, second, thc advance of the 
VI  .SI techncilogy allows the integration of several hundreds of 
hit-serial processors in a single chip, which makes fine-graincd 
parallcl processing morc cost-effective. Although the problem slze 
and the integration si/e tend to push toward a direction in favor 
of the fine-grained parallcl processors, they, unfortunately, also 
push the dcgree of the mismatch hetwccn the sparse connectivity 
and the intcrconncrtion network at the same proportion. 'l.he 
mismatch problem rcmains a hurdle. 

If; (condition) TIIEN SHORTPORT ( ports) 

When the condition is met, any arbitrary ports of a processor can 
be logically wired together by the switch as if they are a sit;~lc 
entity at the same logic level. For example, thc processor selrvti:)~ 
and the switch setting shown helow 

11; (pidx- 0) 'I'lllrN SCIOR'I'PORI' {I;, W); 

creates a bus along the 0-th row of proccssors where pidx I i  il;c 
row coordinate of a processor. Thus, a variable in any procrswr, 
say processor [O, 01, can he broadcast to all others in the I!>\\ 

along the bus. 

Each processor of the I'olymorphic-torus is equippcci wit11 a 
large amount of memory not only for data storage but also tor 
extending the connectivity of the architccturc. The memory is 
segmented into layers, each of which is in fact a replication of the 
same processor connectivity as the most front layer. When the 
problem size (e.g. matrix sizc) is larger than the processor array 
sizc, more layers are used to represent the prohlem. Ilsing the 
memory, we can create more virtual processors than N2 and each 
virtual processor camcs a virtual coordinate [laycr numhcr, pidx, 
pidyl. 

In a relatcd prior work on I>AP [7. XI, the worst-case com- 3. SII111<:1'IJRED CONDENSA'I'ION 
plexity of multiplying an nxn matrix with a dense vector of length 
n on  a NxN processor array is O((n/A] ' ) .  I'his result can he im- This section describes a sparsc matrix rcprcscntation in Section 
proved by the rcconfigurahility provided by the Polymorphic- 0.1 and a condensation algorithm in Section 3.2 to convert the 
torus architecture in two approaches: (1) thc connectivity of the representation into a format hetter suited for the I'olymorphic- 
sparse matrix can be converted to fit the architecture, and (2) the toms. 

architecture can reconfigure itself to fit the sparse connectivity. 3.1 Spvse Matrix Representation 
This paper deals with both approaches and atlvocates a combina- 
tion of both to deliver the best result. 'i'raditionally, a sparse matrix is represented hy three arrays: 

( I )  an Element array, E, which holds the values of  the nonzero 



entries of the matrix; (2) a Row Pointer array, RP, and (3) a 
Column Index array, CI; the latter two arrays store the 
connectivity of the sparse matrix. 

The construction of the three arrays can be illustrated in Figure 
2. The element array E is built by scanning in a row-major order 
but only the nonzero entries are recorded. For a matrix with n 
rows, the RP array contains n + I items in which the i-th item 
points to the position of the first nonzero entry of the i-th row in 
the E array. The n +  I-th item which is one greater than the 
number of nonzero entries in the matrix is regarded as a delimiter. 
For example, the thud item in RP (i.e 4) points to the 4-th item 
in array E (i.e. 4.0) which is the first non~aro entry of the third 
row. The CI array has as many items as the E array and each item 
contains the column position of the corresponding element in the 
array E. For example, the column position of 4.0 is 3. 

3.2 Condensation Algorithm 

(I) to assign only the nonzero entires of the matrix to processors 
so that the converted format is denser and the utilization of the 
SIMD system can be increased; 

(2) to preserve the connectivity of the sparse matrix; and 

(3) to related the RP and Cf arrays to the virtual coordinate of the 
processors (i.e. [layer, pidx, pidy]) in the Polymorphc-torus. 

The above algorithm consists of two phases. In the first phase, 
the RP array is checked to determine the lcngth of a logical row 
(i.e. row-size). Due to the sparsity, the number of nonzero entries 
in a row of the sparse matrix is usually small. Therefore, multiple 
matrix rows can be bound to a single processor row, to obtain a 
denser data structure. Furthermore, the length of a logical row is 
always ch0se.n to be a power of 2 to simplify the control. Figure 
3 depicts the multiple-row binding. 

'Ihe purpose of the Condensation algorithm is to convert the 
rcpresentation of the sparse. matrix to a format better suited for the 
Polymorphic-torus. In swc, the goals are 

CONDENSATION(RP, E, N) 
int RR1.N; P N: side size of pmessor array *I 
float En; 
1 

int i=0; p dummy variable *I 
int mw=O; P total no. of rows in the matrix */ 
int max=0; I+ maximum length of row in the matrix *I 
int row-size=l; P sue of a logical row *I 
int pointer=l; P pointex to the beginning of next row *I 
int c o u n e l ;  P counter of elements in array E */ 
int l ayed ,  pidx=O, pidy== P virtual coordinate *I 
struct quadruple ( P data structure of mapping form *I 

float element; /* nonzero value and virtual coordinate */ 
int layer, p i e ,  p~dy; ) 

quadmple map mg[l; 
boolean s m ;  /P flag used to indicate the starting of a logical row *I 
P Phase 1 */ P check RP array to count the no. of rows and 
determine the maximum length of row *I 
while (RP[i]!=Nl+L)( 

if ((RP[i]-W[I-I]) > max) 
( max=RP[i]-RP[i-11; ] 

i=i+l; ) 
row=i; 
if (max > N) exit( I; P row length larger than array size, exception */ 
P Determine the size of a log~cal row */ 
P for mamx side size meater than orocessor array side size: *I 

Try to map multipL matrix rob into a p r o c k  row. *J 
~f (row z MI . - 

while (;&size < max ) [ row-sizerow-size'2;) ] 
P for mamx side size smaller than and equal to processor array side 
size *I 
else ( row-size- N; ] 
P Phase 2 * / P  read Element array and determine the coordinate 
of binding processor */ 
i=O, 
While (E[i]!=NULL)( 

P binding element *I 
mapping[i].element=E[i]; 
mapping[i].layer=layer; 
mapping[i].pidx=pidx; 
mapping[i+ +].pidy=pidy; 
if (+ +counter= =RP[poinler])( /. beginning of a new logical row *I 

start=TRUE; /1 binding a new logical row below *I 
while ( s m  II (RP[pointer]= =RP[pointer+ 11)) ( 
I* while loop also d m t s  em ty rows */ P pidy=((p~dy/row-size)+I) row-size; 

if (pidy > = N) I P jump to a new physical mw *I . . . - 
pidx= idx+l; 
P follng to next layer while fills up a array plane */ 
if (pidx= =N) [ pidx+,layer+ + ; ) 



The second phase of the algorithm calculates the virtual 
processor coordinate for each element in the E array. An example 
of this calculation is shown in Figure 4, which uses the matrix in 
Figure 2 as input. For example, the first element is bound to 
processor [0, 0, 0] (layer= 0, pidx= 0, pidy = 0). A 'counter" is 
increased to check whether the next element belongs to a new 
matrix row. If not (i.e. the case of both 2nd and 3rd elements), 
"pidy" is increased while layer" and "pidx" remain unchanged. 
When a new matrix row begins (i.e. 4th element), decision is made 
whether a new processor row needs to be started. If yes, 'pidx" is 
increased to reflect the binding. This process continues until one 
layer is completely filled then rayer" is increased so that a second 
layer of memory is needed as a virtual processor array. For sim- 
plicity, the algorithm listing handles only the single-layer situation. 

Although simple, the condensation algorithm is powerful and 
delivers denser result than the method in DAP [7]. In compar- 
ison, the condensation algorithm "squeezes" the matrix in the 
"pidy" d i c t ion  while the method in DAP 173 squeezes the matrix 
in the direction of "layer'. The d i r e n c e  in the condensation 
philosophy lies in the difference in the architectural support. For 
DAP, to fully utilize the row/column highway capability, the 
placement of a non-zero element is confined to both row and 
column directions. For the Polymorphic-toms, the "short-circuit' 
capability allows us to move the non-zero elements more freely. 
With more freedom in moving the non-7~ro elements, the 
condensation algorithm yields a denser matrix, which leads to a 
higher utilization of the SIMD system. 

4. CONDENSED MATRIX VECTOR MULTIP1,ICATION 
ALGORITHM 

One advantage of the condensation algorithm is that the non- 
zero entries in the same row of the matrix are bound into the same 
row of the polymorphic-toms. fly embedding a sum tree for each 
matrix row in the Polymorphic-toms [4, 51, the summation of the 
product terms from rowlvector multiplication can be performed 
in an optimal logarithmic time. The other advantage is that a 
global bus can be formed among all processors so that variables 
(e.g., the vector elements) can be broadcasted in a unit time. 

The purpose of this algorithm is to compute X'= AX, where 
A is a condensed nxn sparse matrix with nonzero entries 
tained in the E m y  and column index j in the CI array;%?:' 
nxl vector containing xl and X' is the updated X. Iterative 
methods arc used for aolvlng and the inputs to this algorithm are 
(I) the size of the logical row, 
(2) initial guess of xp with xp located at the first locations of each 
logical row; 
(3) the element array, EL], bound to processor [layer, pidx, pidy] 
accordinn to the condensation alnorithm: and 
(4) the &lumn index array, C I [ ~  distributed in the m e  way as 
the E array. 

Condensed Matrix Vector Multiplkathn(na~i,mw~size~) 
int row-size, n; P s h  of log?cal mw and side size of mauix *I 
int ci; P column index of aij distributed as desaibed *I 
float a, X; P aij and X j  *I 
f 
I 

int i; I* dummy variable *I 
int x-index=O, y-index=O; /" index of processor which broadcasts xi *I 
int distance=l; - relative distance used in logarithm tree sum *I 
boolean btempTRUE; p TRUE while holds a partial sum *I 
float ftemp; 

/, Phase 1: Distribute xj */ 
for(i=l; i < =n; i+ +)( 

SYNC ( /* global synchroni+ion *I 
if (ci= =i) ( P check column ~ndex t determine whetha to receive 
x *I 

/* get x from the first processor in h e  i-th logical mw *I 
ftempx of [x-index, y-index]; ) 

I 
k up to beginning of next logical row */ 
y-index=y-index + row-sizc; 
if (y-index> = N)[y-index=O; x-index=x-index + 1; ) 

1 
p Phase 2: Multiplication *I 
x=a*ftemp; 
p Phase 3: Summation by tree sum *I 
for (i=O; i <log row size; i+ +)( 

SYNC ( P globd synchronization *I 
/" accumulate partial sum by left sibling *I  
if ( btemp && @idy[i]= 4))( /, ccheck the i-th bit of pidy */ 

x=x+x of [pidx, p~dy + &stance]; ) 
1 
klse( 

btemp=FALSE; ) 
distance=distance*2; ) P increase distance for higher level *I 

1 



'The output of the algorithm is the updated x,s for the next it- 
eration in a complete matrix solving. Furthermore, the new x,a are 
in the same place as the old x,s. 

The complexity of the algorithm can be analyzed in accord- 
ance with the three phases of the algorithm as follows. In the first 
phase, the distribution phase, the variables x. in the dense vector, 
are hroadcast in sequence to processors thal hold a,,. This phase 
needs O(n) steps for an nxn matrix. Note that a global bus is 
configured for the broadcasting, and the sender to and the receiv- 
ers from the bus are determined simultaneously and locally in each 
processor by using the Column Index (CI) bound to each 
procesqor at the condcnsation stage. In the second phase, a 
floating-point multiplication is performed locally in every 
processor to produce a product; this takes one floating-point 
multiplication step. Finally, in the third phase, new xla are ob- 
tained by accumulating the corresponding partial products. This 
third phase takes O(log(logical-row-size) ) floating-point addition 
steps hecause all corresponding partial products for each x, ate 
allocated in the same processor row by the condensation algo- 
rithm and furthermore n sum trees (one for each condensed matrix 
row) can be embedded simultaneously in the Polymorphic-toms. 
170r simplicity, only the single-layer case is handled by the above 
algorithm. When multiple layers are presented, the complexity is 
in proportion to the number of layers. 

The speedup of the algorithm is contributed by the capability 
of rcconfiguring a global bus and many sum trees adaptive to the 

s i x  of the matrix row after the condensation. In fact, the recon- 
figuration required in the sparse matrix vector multiplication is 
dynamic and dependent heavily on the local conditions. The 
polymorphic featurr strongly emphasizes such a local and data- 
dependent reconfiguration. It is therefore understood that the 
spccdup is attributed partidly to the dynamic reconfigurability and 
partially to the condensation. 'Ihe merit of this two-stage ap- 
proach is discussed further in the next section. 

The condensation process converts the sparse matrix into a 
dense data structure whose density implies low number of idle 
processors and high system utilization. Furthermore, it allows a 
larger matrix to be solved in a small processor array. 

('ompared with the layer-oriented condcnsation used in DAP 
[7], our condensation method packs matrix along pidy-direction 
(or row direction) and gives higher density. In fact, it is extremely 
difficult, if not impossible, for the layer-oriented condensation to 
yield a full matrix. 'The layer-oriented method used in DAP can 
be used in the Polymrophic-torus hecause the column/row 
broadcasting capability is supported both in DAP and the 
Polymorphic-torus as discussed. Vice versa, our condensation al- 
gorithm is applicahle to the DAP architecture, however the e%- 
ciency will bc lower because the I>AP lacks the capability of 
embedding simultaneous sum trees. In summary, thc 
conticnsation results in higher density hut requircs a corresponding 
rcconfigurahilitv for the hest speerlup. 

'l'hc choice of condcnsiny a sparse matrix along the row di- 
recticw is ctriven by the polymorphic feature of the Polymrophic- 
torus, namely, multiple sum trees can be formed adaptively to the 
condensed matrix rows for a logarithmic-time summation and a 
glohal bus can he formed with a unit hroadcast time. Contrasted 
with bII'P, the polymorphic feature is superior in the following 
aspects: 

(1) thc complexity of the broadcasting phase for MI'I' is O(n+N) 
if thr ncw x s  are circulated within the array and is O(n) + 1' if the 
.Y,.$ are circufatcd via thc central controller, where '1. is the time to 
move the entire matrix through the staging memory. In the lattcr 
case, '1' becomes the dominating factor; 

(2) the complexity of the summation phase of MI'I' is 
O(logca1-row-size) in comparison with O(log(logical-row-size)) 
of the Polymorphic-torus. 

Aspects (I) and (2) also reveal the valuc of the polymorphic fca- 
ture added to  the plain mesh network. 

The algorithm for the I'olymrophic-toms i? a l ~ o  applicable to 
MI'P and can increase its its system utilizatiun due to the high 
density achieved by the condensation. ('om wed with the 
worst-case ruithmetic operation count O((n/M)$ of I M P ,  the 
arithmetic operation count for the polymorphic-torus ( O(l) for 
multiplication and O(log(logical-row-size)) for addition) produce 
a faster solver. tlowever, our O(n) cost in the broadcasting phase 
may be inferior to that of DAP (O((n/N)')) for a large N. Ncv- 
erthcless, considering the relative low broadcasting cost to the cost 

of the floating-point operation (e.g. 1:9 in DAP), our algorithm 
is more suitable for bit-serial S l M n  machines that incur a high 
arithmetic cost. 

5.3 Ideal Architecture 

It is appropriate to ask what is the ideal SIMD architecture 
and algorithm for the sparse matrix vector multiplication. We 
expect the algorithrnlarchitecture mapping to bear the following 
features: 
(I) a matrix row is mapped onto a g o u p  of processors that can 
be structured as a tree; 
(2) a matrix column is mapped onto in a group of processors that 
can be structured as a bus; and 
(3) the condensed structure is full. 
Such a mapping then allows for a O(I) broadcast, a O(1) multi- 
plication and a O(log(row-size)) summation, which is the Iowcst 
complexity of the sparse matrix vector multiplication. Moreover, 
there is no idle processor in the SIMI) system. Such an idcal 
mapping remains as an open research topic. 

We have presented a sparse matrix vector multiplication algo- 
rithm on the Polymorphic-toms, a rcconfigurable massively par- 
allel fine-grained SIMD architecture. We emphasized in the paper 
how reconfigurability, or the polymorphic feature, can help to 
match the sparse connectivity onto a regular network topolow. 
We advocate a two-stage approach. 

The first stage, the condensation proccss, is an algorithm that 
converts the sparse connectivity into a more uniform data struc- 
lure suitable for the topology of the polymrophic-toms. More 
specifically, many matrix rows can be packed into a processor row 
such that there are fewer idle processors and the system utiliaation 
is higher. 

7'he second stage performs the condensed matrix vector mul- 
tiplication. This second stage requires the I'olymrophic-torus to 
reconfigure itself to match the condensed data structurc resulted 
from the first stage. The polymorphic feature allows all multipli- 
cations be done in unit time while the ~ummation is done in log- 
arithmic time, which is optimal. 

The condensation algorithm is applicable to other SIMII ma- 
chines such as DAP or MI'P. When applied to MPP, the utiliza- 
tion of MPP is higher due to the highcr dcnsity achieved hy the 
condensation. For its application to f)Al', there can hr no im- 
provement because the DAP lacks the requircd co~npanion 
rcconfigurability and the condensation algorithm does not cffrc- 
tively use DAP's capability in rowicolumn hroatlcast. 

In a more general view, what has been exploited in this paper 
is a methodology of mapping a static irregular task graph into a 
massively parallel fine-grained SIMD architccturc with rcgular 
network topology. We feel that it is difficult rithcr to dcmand the 
algorithm designer and/or compiler to translate the sparse 
connectivity directly down to the nctwork or to demand the ar- 
chitecture to reconfigure itself to  match thc imcgular task graph 
Rather, we advocate that the mapping process be done in a com- 



promised way, i.e., the irregular task graph is converted to a more 
uniform one while the architecture is given more recontigurability 
to meet the converted task graph. 

Bibliography 

1. S. F. Reddaway. DAP - A flexible number cruncher. 
Proc. LASI, Workshop on Vector and Parallel 
Processors, pages 233-234, 1978. 

2. K. E. Batcher. Design of a Massively Parallel Processor. 
IEEE Trans. on Computer, C-29(9):836-840, September 
1980. 

3. W. D. Hillis. The Connection Machine. The MJT Press, 
Cambridge (MA), 1985. 

4. 11. l i  and M. Maresca. Polymorphic-Torus Network. 
Proc. Int. Conference on Parallel Proce.csing, pages 
411-414, 1987. 

5. 11. I,i and M. Maresca. Polymorphic-Torus : A New 
Architecture for Vision Computation. Proc. IEEE 
Workshop on Computer Architecturesfor Pattern Analysis 
and Machine Intelligence, pages 176- 180, Seattle, 1987. 

6. M. Maresca and )I. U. Toward Connection Autonomy 
of Fine Chin SlMD Parallel Architecture. Int. Cont on 
Parallel Processing for Computer Vision and Display, 
Izeds (IJK), 1988. 

7. M. Motjaria and G. Makinson. Unstructured Sparse 
Matrix Vector Multiplication on the DAP. in D. Paddon, 
editor, Supercomputers and Parallel Computation, pages 
157- 166, Claredon Press, 1984. 

8. R.  Barlow, D. Evans, and J. Shanehchi. Sparse Matrix 
Vector Multiplication on the DAP. in D. Paddon, editor, 
Supercomputers and Parallel Computation, pages 147- 1 55, 
Claredon Press. 1984. 

Figure 1. Two-lcnl lnterconncclion Network of the I'olymrophic-Torus 

0.0 1.0 0.0 0.0 2.0 0.0 0.0 0.0 
3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 4.0 0.0 0.0 5.0 0.0 0.0 
0.0 6.0 0.0 7.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.0 
0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 0.0 2.0 n.o 3.0 

Row poinlrrl Colunin Indcx rrpmcnlatlos: 
Element array: I{[] = 1.0 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 1.0, 2.0, 3.0; 
Row pointer array: R P [ ~  = 1, 3, 4, 6, R, 9, 10, 1 1 ,  13; 
Coloumn index array: CI[]=2. 5, 1, 3, 6, 2, 4, 4, 2. 7. 6, 8; 

Fiyrc A Saprse Matrix Reprcscntation. 



(a) a 8x8 sparsc matrix with maximum row lcngth cqunl to 2  (rnax= 2) .  

(h)  matrix is adjustc[l ill row dircctirln and row-size= 2 i~ (lctcnnincd. 

(c )  rnapprd into a 4x4 army. tivo logical ro\%q arc hti1111tI 10 a array row. 

, I'igurc 3 Ililiding of hltlltiplc l~rgtrnl R(1rrs. 

N = 4 ;  / * 4 ~ 4 a r r a y * /  
man= 2;  1' maximum lcngih of row *I 
row= 8; / *  no. of row */ 

I : iwrc * Eaccutic~n Snapshot o f  Matrix in 1:igurc 2. I 



ALMOST LINEAR SPEED-UP 
OF DISTRIBUTED DISCRETE EVENT SIMULATIONS 

Boris D .  Lubachevsb 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 
As yet the problem of distributed discrete event simulation has 
found no  commonly accepted solution. The  paper presents a 
new distributed simulation algorithm which explores the 
topology of the simulated system using precomputed minimum 
propagation delays between subsystems. T h e  algorithm also 
uses opaque periods which are the delays caused by the non- 
preemptive states these subsystems can enter. The algorithm 
provably achieves O(NI1ogN) speed-up when run on an 
appropriate physically realizable N-processor parallel computer. 
No other algorithm for distributcd discrete event simulation has 
been theoretically shown to achieve this level of efficiency. 
Experiments show speed-ups of greater than 20 on 25 
processors of a shared memory MIMD computer and greater 
than 1900 on  214 processors of a SlMD computer. 

I .  INTRODUCTION 

The goal of simulation is to reconstruct the timc history 
of a svstem under investieation. Efficicncv in a serial discrcte 
event simulation means anefficient  implementation of a priority 
queue, which is a well studied problem. In contrast, it is not 
known how to  design and validate an efficient distributed 
discrete event simulation algorithm in the general case. 

Several a ~ ~ r o a c h e s  have been a r o ~ o s c d  for the ~ r o b l e m  
including ~ i m e '  'warp  [5 ] ,   cadl lock' ~~tcc t ion /Resoluf ion  [ 11. 
Deadlock Avoidance [41 and other techniques [11,10]. 
However not much is proven about these algorithms. The few 
empirical investigations on today's small parallel processors [2, 
3. 12) d o  not unquestionably confirm their efficiency and 
scalability. 

We argue that in order for a distributed discrcte event 
simulation to be efficient, the topology of the simulated system 
should be explored. A new algorithm is presented which 
employs precomputed minimum propagation delays between 
subsystems and the opuque periods which arc the delays caused 
by the non-preemptive states these subsystems can enter. It is 
proven that on an appropriate physically rca1iz;rble parallel 
processor the algorithm achieves almost linear speed-up for a 
large class of simulations. Specifically, it is shown that if N 
processing e len~ents  (PEs) execute the proposed simulation 
algorithm in parallel, and if the simulated systcm exhibits 
sufficiently many events, then, on avcragc, processing one 
event requires the O(logN) instructions of one PE. This implies 
a O(NllogN) speed-up for a stationary event stream. 

The  practical efficiency of  the proposed algorithm is 
shown by simulating several examples, in particular, 
asynchronous multiple-loop queuing networks, a task which is 
usually considered difficult for parallel programming. 
Experiments on  a shared memory MIMD bus computer 
(Sequent's Balance) and on a SlMD computer (Connection 
Machine) show speed-ups of greater than 16 on 25 PEs of a 
Balance, and greater than 1900 on 214 PEs  of a Connection 
Machine. 

In [6, 7. 81 examples of application of an earlier version 
of the algorithm were described. This paper presents new 
examples, a n  improved formulation of the algorithm, and its 
efficiency proof. 

2. EXAMPLES 
Four examples a re  considcrcd: 1) a queuing system, 2) an 

Ising model. 3) a timed lo@c simulation, and 4) billiards. In 
the first three examples, the discrcte events occur in a fixed 
network, which is an n x  n grid on a torus in examples 1 and 2. 
In example 4, events occur in random space locations. 

A queuing system. A node of the network is a server 
with an attached input queue buffer of infinite capacity. An 
idlrng server is constantly trying to changc its status to serving 
by removing a job from the input buffer and starting service. 
The service durations can be deterministic or random. Their 
distributions are arbitrary except that the durations a re  bounded 
from below by a time units, a > 0. When the service is 
completed, the job is either dcletcd from the system or  sent into 
the input queue of one of the four neighboring servers. After a 
job is served, the server assumcs an idllng status if n o  more 
jobs remain in its input queue or ,  if at least one job is left in 
the input queue, the server removes onc job from the queue 
and resumes a sewing status. 

Asynchronous Ising model. Each node hosts a physical 
atom. The atom at node i has a magnctic spin s( i):  s ( i )  = + 1 
or s( i )  = - 1. The  spins attempt to changc at asynchronous, 
discrete, and random times. Attempted spin change arrivals for 
a particular atom form a Poisson point process. Arrivals for 
different atoms a rc  independent, the arrival rate is the same for 
each atom. 

When an attempt arrivcs, thc ncu. spin is dctcrrnincd, 
using the spin values of the givcn atom and the neighboring 
atoms just bcfore the update timc. A random "coin tossing" 
may also be involvcd in the determination. 

Well-known among physicists is thc blontc-Carlo 
algorithm [9] for k i n g  simulations. In this algorithm, spins arc 
chosen for update in a serial order. Algorithm j9] is 
traditionally bclicved to be inherently scrial. Contrary to this 
belief, our  algorithm is an exact and efficient parallel 
counterpart to  191. 

Timed logic simulation. A logic clcment has scvcral 
inputs and several outputs. A network of such clcmcnts is 
considcrcd in which, except for several external inpu[s and 
outputs, each elcmcnt input is an output of anothcr clcrncnt. 
At each time each input o r  output has a signal valuc of 0 or  1 ,  
the signals of all outputs of a givcn elcrncnt are the same and 
way only change simultaneously. The changes, if they occur. 
arc instantaneous and are identified with the discrete events. If 
,he value of an input to an element changes at time t, then the 
values of all outputs at time t + delay may change according to 
a specified law, e.g. according to the logical function the 
element represents. Here delay is a positive value specified for 
each clement before the simulation. A complication of the 
model is that the delays can be different not only for different 
elements, but also for different changes, e.p. the "rise" dclay, 
when output changes from 0 to 1 may be smaller than the "fall" 
dclay whcn the output changcs from I to 0. As  a result, a 
change in an output scheduled by a change in an input may be 
canceled later whcn another input changc arrives. 

Rilliards. identical balls arc moving on a surface of a 
.orus. Ball collisions are the events. The two velocities after a 



collision are easily computed given the two velocities before the nodes, one PE may be assigned several nodes. In this case. 
collision. assuming no change in total momentum and energy. whenever the algorithm prescribes independent actions by 
The billiards simulation is an easily understandable prototype different nodes, a PE takes the nodes it carries in turn and 
for many important simulation problems, e.g. simulation of performs the actions in turn. For example, to process events 
hard-sphere molecular dynamics in statistical physics. (Steps 4. 5, and 6). a PE takes an i, processes events in and 

modifies T, as long as conditions in Step 4 are met; then the PE 
3. ALGORITHM takes next i, etc. When the PE exhausts all i in its subnetwork. 

In a simple form of the algorithm, a server, atom, logic 
element, or square on the billiards space is represented by a 
separate PE. PEi maintains the pool of tentative local events n,. 
Each event e E ni is a pair e = (contents, time). PEi 
processes its events one at  a time, during which it modifies its 
own pool ni. and/or the pools lTI of its neighbors (in the 
simulated network). 

For the queuing network, it can be shown that the 
positive lower bound o on the service times induces the positive 
minimum propagation delays and that opaque periods 
correspond to service periods which can not be preempted by 
other activities. 

In the king model example, the minimum propagation 
delays are zero. However, it has been shown [7] that 
substantial opaque periods do exist and these make possible 
efficient parallel simulations. 

it invokes synchronization, Step 7. Synchronization, 
minimization in Step 8 and some other actions require 
cooperation among the PEs. A way to implement such 
cooperative actions is described in Sec.4. 

We suggest two methods for computing estimates a(i) .  
One method uses formula 

(3.1) a ( i )  = min {d(j.i)+ min(T,, d(i ,  j )  + Ti } }, 
I E S q i : B ) )  

J *  1 

where d(i ,  j) is the minimum propagation delay from node i to 
node j, and Sl(i,B) is the incoming reachability sphere of 
radius B, i.e. the set of nodes j such that d ( j , i )  l B. Note 
that delay d ( i , j )  must be precomputed so that the triangle 
inequality 

holds for any three nodes i, j, and k. 
In the timed logic simulations, the minimum propagation According to (3.11, each node i computes its a ( i )  

delays are well defined, but determining the opaque periods is independently of the other nodes. A different method to 
somewhat different from the previous two cases. For example, compute cr(i), wherein different nodes and the p~~ carrying 
an OR-gate with the signal 1 at  one input is guaranteed lo them cooperate, is presented in Fig.3.2. Here a( i )  are updated remain opaque until this input changes. in several iterations cooperatively by all PEs. 

the simulation is repeated starting with the latest check point. 

. . 
In the billiards simulation, opaque pcriods do not exist 

while the minimum propagation delay requires the assumption Figure 3.2- Dynamic algorithm for computing a( i )  

Figure 3.1. An algorithm for distributed discrete event simulation 

that there is a speed limit for the balls. If v is the average ball 
speed. a n d g  is the number of balls, then the exact upper s ~ e d  
limit is vn . If the number of balls is not specified no fixed 
speed limit can be guaranteed. But because the tail probability 
of large speeds is very small, the algorithm which relies on the 
assumption that speed limit is a constant, say Cv with a suitably 
large C, would be broken rarely. A simple check-point 
techniaue works when it breaks: the speed limit is adjusted, and 

1. while floor < end-time do { 
2. comvute estimate a ( i )  of the earliest time, when the history 

2 . 1  a ( i )  := + Oo ; @(i) := Ti ; 
MIN-P := floor ; a-CHANGED := 1 ; 

2.2. ; 
2.3. while MIN-P 5 floor + B and a-CHANGED= 1 do 
2.4. new-fi(i) := J E neighbors min (if { d G , i )  + D ( J ) ~  ; 

2.5. if(nau-p(i) < a(ij)'{ 

at node i can be affected by the other nodes ; 
3. synchronize ; 
4. while the minimum of event times at node i ,  T i ,  satisfy 

T, l floor + B and T,  < a( i )  do { 
5. process events e with locally minimal time, Ti ; 

if required, schedule new events for rI, or other n, 
and/or delete some events from Q or other HI;  

6. delete the processed events from ll, 
and compute new T, ; 

1 ;  
7. synchronize : 
8. poor  := min T, ; broadcast floor to all nodes ; 

I S i i N  
9. synchronize ; 

-- -- 

A form of a general algorithm which uses both the minimum 
propagation delays and the opaque periods is shown in Fig.3.1. 
Observe that the algorithm is synchronous while the simulated 
system may exhibit events asynchronously. The algorithm uses 
the minimum propagation delays in tandem with the bounded 
lag respiction. The latter means that the difference in the 
simulated time between the events processed concurrently must 
not exceed a predetermined positive constant, say, B. Initially 
floor = 0. Each PEi is supposed to execute the program in 
Fig.3.1 on behalf of its node, i. 

I f  the number of available PEs is less than the number of 

changed-a(i) := 1; 
a(i)  := new P(i); 

} else changed3( i )  := 0 ; 
2.6, synchronize ; 
2.7. P(i) := nav_p(i) ; 
2.8. MIN-P := min P(i) ; 

151SN 
a-CHANGED := max changed-a(i) ; 

I S i < N  
broadcast a-CHANGED and MIN-.3 to all nodes ; 

2.9. synchronize ; 
1 A 

The convention for interpreting the code in Fig.3.2 is the 
same as for the code in Fig.3.1: For each step between 
synchronizations, a PE executes a loop over all nodes i within 
its subnetwork. Auxiliary variables P(i), changed-a(i). and 
new P(i) are employed by the algorithm. After k iterations 
P(iFbecomes an estimate for the earliest time when existing 
events can affect node i after traversing exactly k links in the 
graph. 

4. O(LOG K)-TIME, qK)-SPACE TREE ALGORITHMS 

For synchronization barriers. [6] suggests the use of a 
binary tree implemented in hardware. On a shared-memory 
parallel computer we can implement the barrier using a 
pointer-tree in the shared memory. Fig.4.1 presents the C- 
language code of the barrier routine. 

The idea of the algorithm is simple. Let K be the number 
of PEs. Each PE must have its individual identification pe-id 
in the range 0 to K- 1 and must invoke the routine with this 
identification. Let us first assume that K is a natural power of 
2. The algorithm works in tours. At the first tour the K PEs 
form Kt2 pairs, each pair electing a winner for the second tour. 
At the second tour the Kl2 winners form K l 4  pairs and so on 
until after logzK tours one winner remains. The way of pairing 



PEs is predetermined, and so is the winner in each pair. The 
final winner signals the end of algorithm by changing 
jlag[ROOT][turn]. All the PEs can see this flag changed. If K 

n t u r a l  power of 2,  then the tree has 
?KIA": h K12 5 121 + . . . + 2 + 1 nodes and some PEs at 
some tours are without a companion. Pointer arrays 
companion[ ] and next[ ] reflect the structure of the tree and 
are initialized in the shared memory before the simulation starts 
(the code of initialization routine is omitted). The case K = 9 
is represented in Fig.4.2. 

Figure 4.1. Barrier tree-synchronization 

#define ROOT 19 /* for 9 PEs */ 
shared int flag[ROOT+ 1][2], companion[ROOT+ I], 

next[ROOT+ 11; 
static int turn = 0; 

void sync(pejd) 
int pe-id; /* pe-id is in the range 0 to 8 for 9 PEs *I 
{ 

int index; 
index = pe-id; 
do 

flag[index][turn] = 1 - flag[index][turn] ; 
while 

(flag[companion[index]][turn] != flag[index][turn]); 
I* wait-until 

(flag[companion[index]][turn] = = flag[index][turnj); */ 
index = next[index]; 

} while(index); 
/* index = 0 means the pe looses the tour */ 

while (flag[ROOT][turn] != flag[pe-id][turn]); 
I* wait-until 

(flag[ROOT][turn] = = flag[pe-id][turn]); *I 
turn = 1 - turn; 

Figure 4.2. The tree and the pointer arrays for 9 PEs 

Array f i g  is initially zero. It then alternatively takes oil 
values 1 and 0 to signal arrival of PEs to synchronization point, 
in the same time reinitializing itsclf bcfore next invocation. 
Variable turn also takes on values 0 and 1 pointing alternatively 
to different copies of the array flag. Two copies of this array 
are used instead of one to prevent a dcadlock. 

Note that the presented solution works efficiently for a 
CREW (concurrent-read-exclusive-write) shared memory 
parallel computer. It is easy to modify the code into an 
cfficient EREW version. 

Clearly, this procedure takes time O(1ogK) and requires 
memory space of O(K). These are asymptotically minimal 
values for both parameters. 

For minimization or maximization and broadcasling. [6j 
suggests the use of the same hardware binary tree as for the 
barrier. As for the barrier, the same software pointer-tree in 
the shared memory can be used for these purposes. 
5. EFFICIENCY PROOFS 

It is assumed below that one node is carried by one PE, 
so N = K. Similar argument applies for the cases where there 
are fewer PEs than nodes N. provided that the maximal number 
of nodes per PE is O(1) when N + m. A key property which 
assures the efficiency of the algorithm is: 

(#) sphere S l ( i , B )  contains only a finite number of 
nodes, finitely bounded from above independently of N 

Thus, we can not efficiently simulate, say, a fully connected 
network, with small propagation delays between any pair of 
nodes. On the other hand, the simulations in which events 
occur is a space of a low dimension with substantial propagation 
delays between distant nodes, are feasible. Using ( # )  and 
other mild assumptions, we show that each PE spends O(1) at 
each iteration, not counting synchronizations, computing, and 
broadcasting the minimum in Step 8. The latter requires 
O(logN) instructions per each PE. Enough "distributability" of 
the activity in the simulated system is required for the 
simulation to be efficient. We impose a mild assumption on the 
event density which requires that on average at an iteration 

(# # )  q N )  nodes have events within 
the processing range v o o r ,  floor+ B] 

To violate ( # # )  the system should exhibit a low activity, in 
which case the available parallelism should be small, and no 
parallel algorithm can be efficient. 

Using ( # # )  and some other mild assumptions, it is 
proven that 0(N) nodes are processed at each iteration on 
average. Hence, on average, O(1ogN) instructions of one PE is 
spent for processing one event. 

A disadvantage of the computation by formula (3.1) is 
that it does not involve opaque periods. Another more efficient 
algorithm for computing a(i) which uses both the minimum 
propagation delays and the opaque periods is presented in (81. 

The latter method is used in the Ising model simulations. 
In this example, since the minimum propagation delays are 
zero, the efficiency proof outlined above is not valid. The 
framework for the efficiency evaluation in the Ising model can 
be explained in the form of the following easily understandable 
"salary upgrade" scheme: 

Once a year the employees of a company arc asked to sit 
around a table, each year in the same locations along the table. 
An employee receives a salary raise, if hisher previous salary 
does not exceed the minimum of the previous salaries of hisher 
neighbors at the table. Otherwise, the salary remains the same. 
The amounts of the raises are independent identically 
distributed positive random variables. How many raises will 
there be per year on average? 

The salary represents the simulated time, a raise 
corres~onds to an event ~rocessina and advancement of 
simulited time, and the firm of <he table represents the 
network topology. (A round table corresponds to a cyclic 
network.) Thus, more salary raises mean a more efficient 
algorithm. Spccifically, if for N employees, there are > cN 
raises on average, where c> 0 is independent of N, then 
ignoring the logN degradation caused by synchronization, the 
algorithm exhibits a lincar speed-up with efficiency of at least 
100c%. 

To provc that such a positive c exists appears to be a 
difficult task. Empirical evaluation suggests that c e . 2 5  for 
exponentially distributed raises (the case in the k ing model) if 



the topology is circular and N -t+ 00. It is also known 
empirically that when the dimension of  the graph increases, c 
decreases, roughly in inverse proportion to the dimension. 

Proofs of efficiency for the considered algorithms pose 
several purely mathematical questions, which are as yet without 
answers. 

6. EXPERIMENTS 
We try to keep constant the event density by keeping the same 
density of "sources", and the same parameters of probabilistic 
rules for job movements and eliminations. Specifically, 1 
source is maintained in each 4x 4 square, and,  after the service, 
a job is equiprobably sent in 4 possible directions, unless it 
disappears which happens with probability p = 1/10. This 
rcsults in that the fraction of nodes with events is in the range 
0.51 to 0.59. The  service duration has the exponential 
distribution of mean 1 which is shifted by 1 in the positive 
direction (so its mean value becomes 2 and o, the lower bound 
on the service times, is 1). The lag bound B is 4. We run the 
simulation from 0 until the f loor reaches 200 simulated time 
units. The system reaches an equilibrium during the first 100 
units, and all measurements are taken during the following 
interval from 100 to  200. 

We simulate a P M x  PM queuing networks on  K = p 2  
PEs. Fig.6.1 presents relative completion times for two series 
of runs, with M = 4 in one series, and M = 16 in the other. 
T h e  variable in a series was P, P = 1,2 ,3 ,4 ,  and 5. It is seen, 
that while both curves rise with the problem size, most of the 
increase occurs at  smaller sizes. Fig.6.2 presents number of 
iterations of the algorithm in Fig.3.1. At small sizes, the 
number of iterations increases noticeably (see Fig.6.2), which is 
the largest contributor to the completion time increase. For 
larger sizes, the number of iterations stabilizes. in  theory, the  
number of iterations is 0 ( 1 ) ,  i.e. it should remain roughly 
constant for large sizes, which is exactly what the experiments 
show. After this constant number of iterations is reached, the 
main contributor in the completion time increase becomes the 
execution times of synchronizations. This agrees with the fact 
that the increase in both curves slows down at 16 PEs. 16, 
being a natural power of 2, is a "good" number of participants 
for the synchronization algorithm. One should expect similar 
slow-downs for 64 PEs. 256 PEs etc. 4 is also a "good" 
number, but its "good" influence is seemingly overshot by "bad" 
influence of the small size. 

Figure 6.1. Relative completion times for different simulation si72, 

I K, n u m b e r  o f  P E s  
I I I I I 
1 4 9 I6 25 

1 

Figure 6.2. Numbers of itcrations for different simulation sizes 
n u m b e r  o f  

lo(), i terat ions 

-' 
16 x 16 n o d e s  per  PE 

1 6  x 1 6  n o d e s  per  PE - - - - - - - - - - - - -  ----- 

Fig.6.3 presents the traditional self-speed-up computed a s  

speed-up (K PEs) = execution time for 1 PE 
execution time for K PEs ' 

where the  same code executed with different numbers of PEs  
supplies the numerator and the denominator for the fraction. 
The  side of the simulated network square is 60, which is the 
minimal number divisible by 2,3,4, and 5. 

Figure 6.3. Speed-ups in simulating a 60x 60  network 

speed-up  

K,  n u m b e r  of  PEs 

1 4  9 16 25 

The shape of the graph is almost a straight line. 

REFERENCES 

[I] Chandy, K.M. and Misra. J. Asynchronous distributed 
simulation vla a sequence of parallel computations, 
Communicalions of the ACM. 24, 3 (April 1981). 198-206. 

[21 Fujimoto. R.M. Performance measurements of distributed 
simulation strategies, in Distributed Simulation, B.Unger, and 
D.Jefferson eds., SCS, 1988, Simulation Series, 19, 3, 14-20. 

131 Gafni, A.,  Berry, 0.. Jefferson. D. Optimized virtual 
synchronization. Proc. 2nd In[. Workshop on Applied 
Marhema[ics and PerformanceIReliability Models. Univ. of Rome 
11. 1987, 229-244. 

[41 Holmes, V. Parallel algoriihms on multiple processor 
architecrures, Ph.D, dissertation, Comp. Scicnce Dcpt., Univ. 
Texas at Austin, 1978. 

[51 Jefferson, D.R. Virtual time. ACM Transacrions on 
Programming Languages and Systemr. 7 ,  3 (July 1985). 404- 
425. 

[61 Lubachevsky. B.D. Bounded lag distributed discrete event 
simulation (Extended Abstract), in Distributed Simulation, 
B.Unger, and D.Jefferson eds., SCS, 1988, Simularion Series, 
19, 3. 183-192. 

[71 Lubachevsky. B.D. Efficient parallel simulations of dynamic 
Ising spin systems. Journal of computa~ional physics, 75, 1 
(March 1988). pp. 103-122. 

[81 Lubachevsky. B.D. Efficient distributed event driven 
simulations of multi le loop networks, Proceedings of [he 1988 
ACM SlGMETRICS Ebnference on Measurement and Modeling of 
Computer Systems, May (1988). Santa Fe, New Mexico, pp. 
12-21. 

191 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller. 
A.H., and Teller, E. Equation of state calculations by fast 
computing mach~nes, Journal of Chemical Physics, 21, no.6 
(1953). pp. 1087-1092. 

[lo] Misra, J .  Distributed discrete-event simulation. Computing 
Surveys, 18, 1 (March 1986). 

[I11 Peacock, J.K., Wong. J.W., and Manning, E.G. Distributed 
simulation using a network of processors. Compurer Nerworks, 
3, l(1979). 

[I21 Reed, D.A. Malony, A.D.. and McCredie, B.D. Parallel 
discrete event simulation using shared memory, IEEE Trans. 
Software Eng., 14, 4 (1988). 541-553. 

I I 
K,  n u m b e r  of  P E s  

I 4 9 16 25 



Dynamically allocating sets  of fine-grained processors 
to running computations 

David Middleton 

ICASE,  N A S A  Langley Research Center 
Hampton,  VA 23665. 

Abstract 
We explore an approach to 

pose parallel computers which 
using general pur- 
involves mapping 

hardware resources onto computations instead 
of mapping computations on to hardware. Prob- 
lems such as processor allocation, task schedul- 
ing and load balancing, which have traditionally 
proven to be challenging, change significantly 
under this approach and may become amenable 
to new attacks. We describe the implemen tation 
of this approach used by the FFP Machine whose 
computation and communication resources are 
repeatedly partitioned into disjoint groups that 
match the needs of available tasks from moment 
to moment. Several consequences of this system 
are examined. 

Keywords: reconfigurable wmputers, partitionable computers, 
variable granularity, fine granularity. 

Mapping hardware resources 
onto computation structures 

A standard part of parallel computation is mapping 
the computations onto the  given structure of the hard- 
ware resources. The FFP Machine supports an  alter- 
native approach of mapping hardware resources onto 
the structure of running computations. We describe the 
method it uses and discuss some of the consequences of 
this approach. 

The motivation for this inversion is that ,  although 
computations are more mutable than hardware, they 
are also highly dynamic in their structure. For example, 
an inner product computation begins with many small 
operations, the  individual multiplications, which might 
be performed simultaneously given a fine-grained hard- 
ware structure. This is followed by a single, potentially 
large, summation (which may have a finer structure) 
better suited to more coarsely grained hardware. As a 
result of computations' highly variable structure, a fixed 
hardware structure will likely encounter difficulties im- 
plementing some of their stages efficiently. The philos- 
ophy of mapping hardware onto computations leads to 

a hardware design with a more flexible structure, which 
may reduce mismatches between the structures of the 
hardware and of the various computation stages. 

Operations such as program decomposition, task 
scheduling and load balancing, which have traditionally 
been both essential for good performance and highly 
sensitive to several disparate parameters, heavily reflect 
the "mapping computations onto hardwaren philosophy. 
The "mapping hardware onto computation" view ought 
to recast these problems drastically, opening the way to 
new methods for solving them. 

As part of this approach, the F F P  Machine imple- 
ments the concept of a virtual machine, defined as an 
abstract entity created to perform a single task and 
consisting of many processing elements connected by 
a tightly-coupled message-passing combining network. 
The F F P  Machine partitions its hardware elements into 
disjoint resource groups such that  each virtual machine 
is provided with one entire resource group dedicated to 
its progress. 

Properties of Partitioning 
The FFP Machine is a reconfigurable fine-grained 

MIMD computer consisting of a linearly ordered set 
of processors which communicate through a tree- 
structured network of communication nodes. Each re- 
source groups created by partitioning consists of a con- 
tiguous set of the processors connected by a tree of mes- 
sage processors embedded in the physical communica- 
tion network. The following properties of the partition- 
ing process are noteworthy. 

Partitioning is very fast, yet still provides the flexi- 
bility usually associated with late binding. 

From the innermost reduction rule of Backus's F P  
language [I ] ,  computations are defined as parenthe- 
sized expressions, with innermost parentheses delim- 
iting computations that can proceed immediately. 
The  expressions reside in the processors and resource 
groups are constructed by creating "breaksn where 
parentheses occur. Partitioning involves a single 
wave of messages that  passes up through the tree 
network. The messages contain three bits; one in- 
dicates the presence of parentheses in the subtree 



and is sufficient for partitioning; the other two are 
used to determine which resource groups are delim- 
ited by a balanced pair of parentheses and so con- 
tain a virtual machine that  can immediately proceed 
with its task. Each tree node calculates a logical 
sum, two logical products and sets its three commu- 
nication channel switches. Figure 1 shows the in- 
ternal structure of a communication node with the 
channel switches and the message processor which 
is allocated to one of the resource groups. Figure 2, 
Color Plate I (p. 693), demonstrates the result of par- 
titioning, emphasizing the distinction between the 
physical tree structure and the tree structures of 
the resource groups. Partitioning takes logarithmic 
time, although with additional interlocks, constant 
time can be achieved through pipelining because the 
lower portions of the resource groups can be used 
while their upper portions are still being configured. 
Because of i ts  simplicity, partitioning should add lit- 
tle overhead to machine operation and so may be 
performed frequently. 

Figure 1. Communication node 

Apart from a virtual machine's determination of the 
pattern of parentheses it leaves in its result, no plan- 
ning is required by either compiler or programmer 
to control the creation, activation or deletion of vir- 
tual machines. The size, placement and lifetime of 
the  virtual machines is completely determined by 
the partitioning process, according to the positions 
of parentheses. These arise as the results of immedi- 
ately preceding virtual machines without any prior 
calculation or storage of information. 

There are no size or alignment constraints placed 
on the virtual machines. Most notably, this avoids 
wasting resources through fragmentation, so, for ex- 
ample, a subtree of the physical machine with a 
thousand processors can support without help two 
virtual machines, one needing six hundred proces- 
sors and the other, four hundred. (As a conse- 

quence of the non-alignment, the average depth of 
a virtual machine with n processors is (lg(n) + 2.0) 
rather than [lg(n)l.) Virtual machines are variably- 
grained: their size can be tailored to reflect closely 
their individual needs without regard for other vir- 
tual machines. In particular, the size of a virtual 
machine relates closely to the size of its operands; 
identical functions applied to different data will gen- 
erally be performed by different sized virtual ma- 
chines. 

Resource groups are constrained to contain non- 
overlapping groups of processors. This imposed lo- 
cality provides an upper bound on the number of 
resource groups (three) that  a communication node 
may be  required to support, allowing the design of 
the communication node to provide dedicated hard- 
ware. 

No contention or interference arises between com- 
munication operations occurring in different virtual 
machines; however, no communication can occur ei- 
ther. There does remain a communication bottle- 
neck local to each resource group due to its tree 
structure. A richer interconnection in each resource 
group could be provided were the interconnection 
structure of the FFP Machine similarly enhanced 
13, 51. 

Virtual machines can grow during their operation, 
with the communication network acquiring addi- 
tional processors in a consistent fashion. This 
growth is achieved by shifting the contents of the  
processors so tha t  more of them separate the  pair 
holding the delimiting parentheses. In the current 
design, this storage management takes linear time 
and is the primary situation where one virtual ma- 
chine can affect the operation of others, by poten- 
tially requiring that  the contents of neighboring ma- 
chines' processors also be shifted to make room. 

Multiple levels of parallelism are exploited. Concur- 
rent virtual machines execute simultaneously, each 
internally exploiting fine-grained parallelism. (The 
term MSIMD has been used to describe parallel 
computers in which multiple SIMD machines exe- 
cute simultaneously; by comparison, this might be 
described as an  MMIMD machine). 

The message processor networks in the resource 
groups support combining operations without re- 
quiring costly associative memories in the switch 
nodes (21. Each resource group has a tightly-coupled 
circuit-switched network of ALUs which can perform 
such cumulative operations (possibly within groupa 
[7]) a t  hardware speeds rather than a t  the proces- 
sors' instruction speeds. Cumulative operations pro- 
vide a powerful mechanism capable of performing 
data permutations and parsing operations useful to 
the F F P  Machine, without suffering from the bot- 
tleneck in a resource group. Other implementations 



of combining networks in general purpose machines 
have resulted in switch nodes that  are too costly, 
probably due to the range of possibilities that  the  
nodes must handle. By assuming that  any given 
task involves closely coordinated actions by the  pro- 
cessors, the complexity of the  communication nodes 
is greatly reduced. 

The potentials of flexible virtual 
machines 

These virtual machines as supported by the resource 
groups defined above have a flexibility that  provides op- 
portunities for accomplishing tasks in new ways. Be- 
cause partitioning creates virtual machines so cheaply, 
a task can profitably use many of them. In each of 
i ts  stages, the  resources already allocated to  a task can 
be restructured into a different set of groups, so that ,  
for example, stages tha t  exhibit fine-grained parallelism 
can use many disjoint machines operating simultane- 
ously. The following list demonstrates some of the ways 
that  this flexibility can be  used. 

I t  is possible to alternate between virtual machines 
that  allow long-distance communication within the  
task, with the attendant communication bottleneck, 
and isolated virtual machines performing localized 
operations that  communicate with no or greatly re- 
duced contention. 

The TRAC machine could avoid explicit communi- 
cation by reconnecting memory banks to different 
processors and so transferring data  implicitly [4]. 
In an  analogous fashion, some explicit communica- 
tion in the  F F P  Machine can be avoided by recon- 
figuring the  processors holding data  into different 
resource groups, so tha t  they belong to different vir- 
tual machines a t  different times. This is the stan- 
dard method for passing results between functions 
when executing F F P  programs. 

Computations structured a s  pipelines, or more gen- 
erally, data-flow graphs (possibly with complex com- 
putations a t  the  nodes) can be implemented by al- 
ternating between a set of virtual machines special- 
ized to the  individual nodes, and a set of virtual 
machines that  perform the communication along the 
arcs of the graphs. 

These uses, together with others, can be combined 
freely depending on the  particulars of the task. We 
present one abbreviated example to  show the  possibili- 
ties [8]. 

OPS5 is a Production System language. When spec- 
ified patterns can be found among subsets of known 
facts, corresponding actions are performed. Finding 
such patterns consumes a large majority of the process- 
ing time in OPS programs. The  RETE algorithm, the 
best current technique for matching facts to the rule 
patterns, uses a discrimination network in which the 
nodes store partial matches found so far and compare 

them with new partial matches that  arrive along their 
input arcs. 

The  discrimination network can be  naturally imple- 
mented using virtual machines, as shown in Figure 2. 
A node has four parts including the  local memory for 
storing partial matches and input and output buffer ar- 
eas, each occupying as  many processors a s  necessary. 
Pattern matching in each node uses a three stage cycle. 
With the node organized a s  a single virtual machine, a 
new pattern is broadcast from the  input buffer to  the  
processors holding partial matches. In the  second stage, 
these processors are divided into many small machines 
each of which compares the  new pattern with one pre- 
vious partial match. In the third stage, successful com- 
parisons cause a combined match to be placed in the  
output buffer. 

Interleaved with the operation of virtual machines 
corresponding t o  nodes in the discrimination network is 
a set of machines corresponding the network arcs, which 
transmit successful matches from output areas of some 
nodes to the  input areas of their descendants. 

Figure 2 shows a discrimination network and its 
mapping as a hierarchy onto the  linear array of pro- 
cessors. The graph is laid out as a series of nodes, each 
having four parts; individual processors within those 
parts are too small to be seen. Beneath the  linear ar- 
ray of processors, bars show the groupings of processors 
into virtual machines for different phases in the  match- 
ing operation. The first three rows correspond to the 
stages of the  network node virtual machines and the 
last row corresponds to those for the  arcs. 

The  arcs being able to  send simultaneously relies on 
two facts: the discrimination network was created a s  a 
skew tree, and the input and output buffers could be 
placed within each node so a s  not to interfere. These 
choices display a n  important part of efficiently using vir- 
tual machines. Given the  Y l o g i ~  in memoryn and asso- 
ciative processing style of operation 161, it is less impor- 
tant  that  da ta  be organized with regard to access meth- 
ods that  reflect sequential styles of algorithms. Instead, 
the  data  need to be organized so a s  to provide locality, 
in some sense, a t  appropriate stages in the  tasks. 

The  ability of virtual machines to have different sizes 
depending on the amount of data is particularly impor- 
tant  since the memories in the  discrimination network 
nodes display a high variance with different input val- 
ues. 

Conclusions 
The approach of mapping hardware resources onto 

computation structures, rather than vice versa, provides 
many novel opportunities for performing tasks. The 
implementation of this philosophy embodied in the F F P  
Machine has a significant affect on the way in which 
computations are viewed and organized. 



------- broadcast a new pattern inside each node 

1111111 1111 1111 II 11111 II 1111 compare new pattern with locally stored ones ------- collect successful matches --- transfer results as new tokens to other nodes 

A 
I  I 

Figure 2. Virtual machine implementation of OPS5 discrimination network 

F D G  
1 1 1 1  

Programming effort concentrates on arranging that  
da ta  are organized to be clustered when they are com- 
bined or otherwise manipulated in a task. The "logic in 
memoryn character by which the data reside in proces- 
sors removes the requirement that  the data  be sorted 
and stored in structures that  reflect the physical prob- 
lem. "Associative programmingn techniques allow data  
to be stored "out of ordern, in some sense, but with 
descriptors that  determine when and how the data  par- 
ticipate in operations 161. 

B 
I1 1 1  I  

Tasks are defined syntactically. The programmer's 
control over scheduling concentrates on creating and 
deleting the parentheses that  delimit virtual machines. 
Barrier synchronization derives naturally from the  par- 
titioning mechanism; virtual machines delimited by 
non-innermost parentheses do not begin operation un- 
til those inner computations have completed and the 
parentheses.are removed. Other synchronization and 
scheduling mechanisms can be created with little addi- 
tional effort. 

1 1 1  I  

References 

E C  
I l l l l  

[ I ]  J .  Backus, "Can programming be liberated from the 
von Neumann style? A functional style and its al- 
gebra of programs", Communications of the ACM, 
Volume 21 No. 8, pp. 613-641, August 1978. 

[3] J.N. Kellman "Parallel Execution of Functional Pro- 
grams" Master's Thesis. University of California a t  
Los Angeles. 1983. 

141 G.J. Lipovski and A. Tripathi, "A reconfigurable 
varistructure array processorn, Proceedings of the 
1977 International Conference on Parallel Process- 
ing, pp. 165-174, August 1977. 

(51 D.A. Plaisted (a) "An Architecture for Fast Data 
Movement in the F F P  Machinen Proceedings of 
the  1985 Conference on Functional Programming 
Languages and Computer Architecture. Springer- 
Verlag, LNCS 201. pp. 147-163. September 1985. 
Nancy, France. 

[6] J.L. Potter, "Programming the M P P n ,  pp. 218-229, 
in *The Massively Parallel Processorn, edited by 
J.L. Potter, MIT Press, 1985. 

17) J.T. Schwartz, "Ultracomputersn, ACM Transac- 
tions on Programming Languages and Systems, Vol- 
ume 2 No. 4, pp. 484-521, October 1980. 

[8] B.T. Smith and D. Middleton, "Exploiting fine- 
grained parallelism in Production Systemsn, Pro- 
ceedings of the  7th Biennial Conference of the Cana- 
dian Society for Computational Studies of Intelli- 
gence, pp. 262-270, edited by R. Goebel, Edmon- 
ton, Alberta, Canada, June 6-10 1988. 

121 A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. 
McAuliffe, L. Rudolph and M. Snir, "The NYU U1- 
tracomputer - Designing an  MIMD Shared Memory 
Parallel Computern, IEEE Transactions on Com- 
puters, Volume C32 No. 2, pp. 175-189, February 
1983. 



ORIGINAL PAGE IS 
OF POOR QUALITY 

Portable Parallel Algorithms for Geometric Problems 
(Prrlimninary Version) 

Russ  hliller- Qurn t in  F. Stout '  
Depar tment  of Computer  Science Electrical Engineering a n d  Compute r  Scielice 

S t a t e  University of New k i x k  a t  Buffalo Univrrsity of Michigan 
Buffalo, N Y  14260 USA Ann  Arbor ,  MI 48109-2122 USA 

A b s t r a c t  

Beca~lse the interconnection scheme among processors (or he- 
tween processors and memory) significantly affects the running 
time, efficient parallel algorithms must take the interconnection 
scllelne into account. This in turn entails tradeoffs between ef- 
ficiency and portability among different arcl~itectures. Our goal 
is tv develop algorithms that are portable among ~nassively par- 
allel fine graiu arcl~itectures such as Ilypercitbes, nleshes, m ~ d  
pyranuds, while yielding a fairly efficieut i~nplen~entation on 
each. Our approach is to utilize standardized operations sucll as 
prefix, broadcast, surt, compression, and crossproduct calrula- 
tivns. This paper describes an  approach for designing efficient, 
portable algurithrns and giws sample algorithms to solve some 
fuitdatnental geometric problems. The difficulties of portability 

efficiency for these geometric problems Ilave been redirected 
into sinular difficulties for the standardized operatious. 1 1 0 ~ -  
ever, the cost of developing efficient implernct~tations of t l~ r tn  
011 the various target architectures can be amc~rtized over 1111- 

lnerous algorithms. 

K e y w o r d s  Portable parallel algoritlun~s, cun~putatiunal groul- 
etry, data n~ovenlent operations, dist,ribnted Inenlory par- 
allel computers. 

1 Introduction 

Massively parallel computers collsisting of perhaps millions of 
processors are now becunung available. While sr~cll ~ n a c l ~ i ~ l e s  

offer significantly faster solutiul~s to many prol~leins, they also 
impose severe programnung reqt~irements to utilize their potell- 
tial. Old "dusty decks" do not typically work on such ~nachi t~es ,  
and Ilence new algorithn~s and programs need to  be developed. 
Since each processor contains only a snlall fraction of tlie total 
data, for nlost prublelns there must be extensive corntnunicatiun 
anlung I,rucessors. This c v ~ t u ~ ~ u r ~ i c a t i u ~ ~  often dornin:rtes the to- 
tal rtcnning time of the program, and efficient programs must be 
developed wit11 this ill nund. 

If the inlruduction of massive parallelism only brougllt abuc~t 
a one-time need to reprogram, then the rvprugm~tunit~g costs 
would at  least be fairly well u~tderstoud and f~rr a variety nf appLi- 

'Pnrtinllg s ~ ~ p p o r t e d  by NSF grun t s  DCR-8fiOBfi40 n o d  TR1-8800514 
'Pnrlinlly supported by NSF gronl  DCR-8507851 and  a n  Incentives for 

Excelle~rce Aword f r o n ~  Digitnl Equipment Corporntio~~. 

cations wo111tl 11e affurdable. Ifowever, extensive additional costs 
are i~~trrjduced clue to  the significant differrnces anrnng massively 
parallel architectures. Different massively parallel architectr~res 
11:rve significantly different conl~nltnication cl~aracteristics, and 
Ilc~lcr have significantly differcut running t i~nes on the s anv  pro- 
grams. Fur example, oil a sqrrare tw~~-dinlvnsional n~esh with n 

I)rocessors, it takes O ( 6 )  time on average fix twr] processors to 
exrl~ange information, while on a hyperc11l)e or pyrnnud it takes 
(-)(lug 1 2 ) .  For n processors tct exchange data takes @(,hi) time 
on the mesh and pyranud, or 0(1ogZ n )  time (worst-case) on tlie 
hypercube. Notice that in one case the pyramid is siuular to 
the hypercube, wl~ile ill the other case it is sinular to  the n~esll .  
I)ue to such differences, for a single prl)blem one nlay have two 
programs A and B wit11 the property that on one n~assively par- 
allel n ~ a c l ~ i l ~ e  ,t is significantly faster t1la11 B ,  while on mother 
n~assively parallel macl~itte LI is significanlly faster than il. 

This paper is concerned with developing algorithms whir11 
can I)e ported alnollg different fine grain: ~nassively parallel ar- 
cl~itcrt l~res and yield reasonably g l~od itnple~llentations on each. 
Our approach is to  write algorithms ill terms of general data 
movetnent operations, and the11 implement the data muvenlrnt 
oj~erat  ions on the target architecture. Efficient i~nplen~etltalic~n 
of the data ~ n ~ ~ v e m e ~ ~ t  operatious requires careful programming, 
but since the data movement operations for111 the foundatir>n ctf 
nlany progrants the cost of implementiug then1 call be anortized. 
The use of data ~novenlent operations also helps programmers 
think in terms of higher-level progratnn~ing uuits, in the sarnr 
way tlie use of standard data structures helps progranullers of 
serial c~~mprtters.  

111 Svction 2 we give several data movelnent operations, and 
in Section 3 we illrtstrate our approach by giving sclme geonlctric 
algoritl~ms written ~ I I  l e r~ns  of these data  ~ n o v e n ~ e ~ r t  ope ra t i~~us .  
hlany data  movement operat ic)ns have been prnl)~>sed, and tlle 
list is still grvwing as progranuners acquire experience in parallel 
prugratlu~utlg. Our list is intellded as ark illustrative sample, not 
an exhaustive collection. Further, the types of problems for 
wllicl~ this approach is useful is quite large, aud it1 this s l~or t  
paper we n~ake  no attenlpt to even survey sucl~  problems. 

2 Data Movement Operations 

A variety of rlala u1i)venlrllt o~~rra t io t t s  11:lve 11re11 ~~rc~posed  for 
partdlel cutul)~tlers. Vfi.rn llley origit~aled ;IS steps ill the ~tlitlsl 
of sotue algorithn~, alltl tl~ell later it was realized tllnt, they ~lugllt 
I~ave widespread utility hlore recently thcrr have been a t t r n ~ p t s  
t o  ~ ) r ' ) n ~ i ~ t e  specilic data n~ovcrne~lt opvratiotls as a i ) rng ranu~~ i t~g  



aid [2,3], or to develop a collection of data ~l~ovement operations 
particularly useful for a specific architecture (51. 

Several uf the operations are defined in ternis of some semi- 
group operation @ over a set B ,  and our analyses of runnuig tirue 
will assume that @ can be computed in constant time. Sorting 
is a central operation, with several operatiui~s assuming that the 
data is already in sorted order. For such uperatiuns we assulne 
tllat there is a linear ordering of the prucessors mid a linear or- 
dering uf tlie set from which the itenis are chosen. Sonie opera- 
tions are performed in parallel on disjoint consecutive sequences 
of itenis in sorted order, wluch are called (ordered) intervals. 

Due to space linutations, we can give only a few of the pro- 
posed data movement operations. Two of the operations given 
below, namely, reducing a function and searching, originated 
with geon~etric problems, while the others liave had sornewhat 
wider usage. Interested readers might consult [2,3,5,6,7] fur 
additional operations and extensive uses of the operations dis- 
cussed here ln~plelnentations of these operations for a variety 
of arcl~itectures appear in 17). 

1 .  Sort: Given data distributed arbitrarily one per processor, 
order the data with respect to the processors. 

2 .  Merge: Suppose that a set of data D is chosen from a lin- 
early ordered set. h r t h e r ,  suppose Dl is ordered one i t a n  
per processor with respect to one subset of the processors, 
and D2 is ordered one item per processor with respect to a 
disjoint subset of the processors, where D = Dl u Dz. The 
merge operation combines Dl and D2 to yield D ordered 
with respect to the entire set of processors. 

3. Semigroup Computation: Suppose each processor has a 
recorcl with data from B and a label, acid that the records 
fur111 ordered intervals with respect to  their label. Each 
processor ends up with tlie result of applying @ to all data 
items wit11 its label. 

4. Broadcast/Report: Broadcast and report are often viewed 
mid in~plemented as inverse operations. Both operatiuns 
involve ~nvving data within disjuint ordered intervals. They 
also but11 require a distinct processor, called t l ~ e  leader, of 

operations are extensions of the operations of concurrent 
read and concurrent operations nornially associated with 
parallel random access machines (PRAMS). They model a 
PRAM with associative memory and a powerful combin- 
ing operation for concurrent writes. On most distributed 
memory n~aclunes the time to perform these inore pow- 
erful operations is witl~in a multiplicative constant of the 
time needed to simulate the usual concurrent read and 
concurrent write, and the use of tlie more powerful oper- 
ations can result in significant algoritllmic simplifications 
and speedups. 

6 .  Compression: Compression moves data into a region of 
the machine where optimal interprocessor communication 
is possible. For example, compressing k items in a square 
mesh will move them to a AX 4 subsquare, while com- 
pressing them in a mesh-of-trees with at least kZ base pro- 
cessors moves them to the diagonal of a k x k subsquare. 

7. Searching: Given a set of n processors, suppose every pro- 
cessor Pi contains searching item s,  E S and target item 
ti E T .  Further, suppose there exists a Buvlean relatiun 
R ( s , t ) ,  s E S ,  t E T .  The searching operution requires 
eadl processor Pi to find t11e largest t j  such that R ( s i ,  tj) is 

true. This really should be viewed as a class of data move- 
lilent operations since fur any machine there are signifi- 
cant differences in the times searching takes, based on the 
properties of R.  For our purposes we can make the strong 
assumption that the items and R are such that R(s ,  t )  is 
monotone in each variable, and that S and T are stored 
in sorted order. In this case the searching operation can 
be acco~nplisl~ed through merging and broadcasting within 
intervals (see (7)). 

8 .  Parallel Prefix: If processor Pi initially contains value a; 
fro111 B, Illen the pamllel prefiz computation results in Pi 
containing a1 @a2 @. . . @ a , .  111 121 this operation is called a 
scan. Note that the Ilardware feature known as 'Lfetcll-and- 
up" in~plelnents a variant of parallel prefix, where "op" is 
@ alld the urder i~~g uf the processors is not required to be 
deternu~ustic. 

e a d ~  interval. I11 broadcasting, tlie leader of each ordered 9.  Reducing a Function: Given sets Q and R, let g be a func- 
interval delivers a piece uf data to all other processors in tion mapping Q x R into B .  The map f from Q into B 
its interval. In reporting, all processors within each inter- 

defined by f(q) = @ { g ( q , r )  I r € R )  is tlie reduction of 
val have data from B, and @ is applied to these items, g, and in the reducing a functiun operation each processor 
with the result ending up at the leader. Often broadcast 

starting wit11 an elenlent q of Q ends up wit11 f(q). Fur 
and report involve only a single interval. Some computer exaniple, if Q and R are sels of planar puints, g is dis- 
arcliitects have proposed special I~ardware to implenlent tance, B is tlie reals, and @ is nul~imuin, t l~en f (q) is the 
"op-and-broadcast," which is our broadcast will1 a single nun i~uun~  distance from q to any puint in R. 
iltterval and "op" equal to @. 

5. Concurrent Read/lVnte: In concnrrent read and concur- The reader might note that several of these operations can 

rellt write we aJsume that are nlaster records illdexed be easily obtained from others, sometimes as special cases. How- 

by ulliclue keys. tile collcurrellt read each processor ever, each of these has prove11 useful, sometimes the special 

specifies a key iuld ellds with the data in the master cases can be illlplemented significatltly faster than the general 

record indexed by that key, if such a record exists, or else a 
flag indicating that there is no such record. 111 the concur- 
rent write each processor specifies a key and a value from 
B, and each master record is updated by applying @ to 
d l  values sent to it. (Master records are generated for all 
keys written). These concurrent read and concurrent write 



0 - m a x i m a l  po in t  0 - e x t r e m e  p o i n t  

F igu re  1. h l ax ima l  Po in t s  F i g u r e  2. Ex t r eme  Points  

3 Sample Algorithms 2. Use parallel prefix, with @ representing maxina~m and y, 
as the data,  to  have each processor de ter t iu~~e the largest 
y-coordinate stored in any processur of smallc,r index. Let 
L; denote the value determined by processor Pi. 

Our i l l~~strative algoritl~ms it~vulve f i n d i ~ ~ g  special points from 
a cr)llec-ti(~~i of planar points. Q i v t ? ~ ~  a finite set S of plattar 
p o i ~ ~ t s ,  a p n i ~ ~ t  p - (p,,py) in S is a mazti~tal point uf S if 
p ,  > q, or py > qy for every point q # p ill S. The n~nxinznl 
potni problem is t t ~  deternune all nl~urimal p ~ ~ i n t s  of a given set. 
See T"ig~~rt, 1.  A pcrint p E S is an eztreine potnt of S if it 
is not in the (.OIIVCX l1111l 01 5 - {p}, or, eq~~ivalently, if it is 

corllt,r (vc*rlrx) of t l ~ e  sluallest c ~ ~ t ~ v e x  po lygo~~  ~ o ~ ~ t , a i t ~ i t ~ g  S .  
' 1 ' 1 1 ~  czf r rn~r  p~~i iz l  problenl is t ~ )  ~leteriuune all cxbrclr~c points of 
;I give11 set See 17igllre 2. tleaders ititerestetl in serial alguritllms 
for these ~ ~ I I I ) I P I I I S ,  and iu t l ~ e  nnmrrous applicati~~ns of 1naxi111al 
p o i ~ ~ t s  all11 rx t r rn~e  puiltts, ~il igl~t ~ ( J I I S ~ I ~ ~  191. 

3. Tlte poiut (x i ,  y;) is a11 extretne point if al~rl only if y; > I,,. 

Tlte runtiit~g tinie of this algoritl~m, T ( n ) ,  is given by 

where Sort(n) is the time to sort n itenis al~cl Yrefiz(n) is the 
time to perfort11 parallel prefix. 011 all massively parallel ar- 
cl~itectures kt~owll to  the autliors, Prrfiz(n) - O(Sor l (n)) ,  ant1 
11et1re on s r ~ c l ~  l~lacllilles the tilne of the a l g ~ ) r i t l ~ ~ ~ ~  is O(Sor t (n)) .  
Furll~er,  it is k11owt1 that ,  at least for seri;d algoritl~nls, deter- 
t tu t~i~lg  t~laxilnal poit~ts is as hard as surting 1.11. l'lius it appears 
tlmt this purtable algoritl~tn is w i t l~ i~ l  a n~ultiplicative factor uf 
being optil~tal fur all knuwn r~lassively parallel arcltitectures. 

11, the fr>llowi~~g algoritlims, n will dct~rrte the nr~niber of 
p o i ~ ~ t s  'I~J siinplify discussiot~, we will assllltlr that the ttutnber 
of ~)u~cessors  is alsc~ n .  Extet~sions to cases wlirre t l~ere are a few 
p t ~ i ~ ~ t s  per processor, rather t11a11 a sit~gle point per processor, 
nrr c111ite straiglltforaard. 111 particr~lar, we 1111te that Thinking 
h l ac l~ i~~e ' s  Comlectir>t~ h l a r h i ~ ~ c  cat1 be progranlnled using mclre 
virtual processors tl1a11 real prucessors, attd one is e~~couraged to  
write ;~lgoril l~~trs ~ I S S I I I ~ I ~ I I ~  a sil~gle p11i11t per virtr~al processur. 

3.2 E x t r e m e  P o i n t s  

The filllowit~g algoritl~rn is based on the wel l -~IIOWII  tactic of us- 
ing divide-a11d-ronq~~er. To sinlplify expnsitio~l we asstlnle that 
t112 two points have the same 2-coordinate. 'I'his assun~pt iv~l  can 
easily I)e ren~c~ved by including a few extra sl)ecinl rases ill the 
algori t h a ~ .  

3.1 M n x i t r i ~ l  P o i n t s  

Our first sample algoritl~m determit~es all tilaxima1 points, and 
was apparently first noted by Atallall and Goodrich [ I ] .  

E x t r e x n e  P o i t i t  A l g o r i t l ~ ~ r l  
M n x i r n a l  P o i n t  A l g o r i t l ~ ~ n  

1. Preprocessing: Sort the n planar poiuts of the set S so as 
to order t11et11 by 2-courdit~ate. 

1 Sort. t.he n planar points so as to o r d ~ r  tl1e111 ill reverse 
order by z-coordir~ate, wit11 ties 11rokt.11 I)y reverse order by 
y-cuurdinate. That is, after s~jrtitrg the points, they will 
I)? ordered so that if i < j t l~en  either the x-co~xdi~ta te  of 
the point ill processor P, is greater t11a11 the x-coordinate 
of the p u i ~ ~ t  it1 processor P,, or  else tlie ~ - r ~ > o r d i n ~ t e s  are 
the sanle and t.11~ y-coordinate of the point in processor 1: 
is greater than the y-coordi~late of the 1)i)int in processr)r 

1,et (I,, y,) denote the cuorrli~lates of the puillt et~ding 
I I ~  in processor P,. 

2. If n 5 2 1.11et1 all points are extre~~icl p o i ~ ~ l  s Ot l~era ise ,  

note t l ~ a t  if Sl del~otes tlie points in procc,ss~.~rs 0 .  . . ( 1 1 / 2 ) -  

1, aud S2 deltotes t,l~e 1)11ints it1 proressr~rs ( n / 2 ) .  . . ( n -  I ) ,  
then all p o i ~ ~ t s  i lk  S, have z-coorcli~~ntes less than those 
uf S2 .  (We assrlnle that processnrs 0 . .  . (7112) - 1, and 
processors ( n / 2 ) .  . . ( n  - I ) ,  form subsys t r~l~s  si~nilar t.o the 
urigiual m a r h i ~ ~ e .  'or example, in a I ty~~erc~t l )e  we want 
the subsyste~us to be s~lbc~tbes  01) t~ l ;~ r l~ iues  s ~ ~ c l i  as tw11- 



Figure 3. Common Tangent Lines 

dinielisional n~eslies or pyramids, one would subdivide into 
4 pieces to achieve the y roper aubsyatenls.) 

3. Rect~rsively identify the extreme points of S1 and the ex- 
treme points of S2,  enumerating them in counterclockwise 
fashion. This is a recursive call to step 2, not t o  step 1. 

4. Identify the upper and lower common taugent lines be- 
tween the extreriie points of S1 and tlie exteme points of 
Sz by perforrruttg a seardiing operation. See Figure 3. 
Tlus operation is performed by co~~lpariilg the slopes of 
hull edges. Specifically, suppose m, p; E S1, q j  E Sz, is 
the upper taugent line between convex sets S1 mid S2, as 
i l l  Figure 3. Tlien it can be sliowlt [8] t11at the slope uf 
p,qj is between 

(a)  the slope of pipi_l and the slope of pi+lpi, and 

(13) tlte slope of gj-I9i mid the slope of gjgj+l. 

Therefore, each extreme point sinlply needs to  find the 
edges of the other set with slopes just above a i d  just below 
the slopes of the edges it is incident on. Since the extreme 
points are kept ia sorted order, this can be accomplished 
by merging with respect to  the slopes of the edges and 
then perfornung broadcasts witl~in intervals. 

5. Elilrunate all extrenie points between the common tangent 
lines (i.e., all extreme poults of S1 and Sz that are inside 
the quadrilateral formed by the four endpoints represent- 
ing the conlnioti tangent lines) and renumber the remain- 
ing extreme points. This is accomplished by broadcast- 
ing the inforniation pertaining to tlle four entlpoints to all 
processors maintaining a point of S,  mid then having each 
processor make a constant time decision as to whetl~er or 
riot it remains an extreme point, mid if so, what its tlew 
nunlber is. 

The running time of the algorithni is given by 

where T1(n) is tlre time to perfr~nn all but the first step. T1(n) 
satisfies the recurrence 

wlrere T'(n/2) is tlle time for the recursive call, Search(n) is 
t l ~ e  tilne tu perfr~rtn the gruupi~lg operation to deternh~e the 

upper and lower colnnlon tangent lines, Broad(n) is the tinre 
to perform a broadcast operation on a n~achine of size n ,  and 
Elim(1) is tlie time required for eacl~ proceasor to nlake the Anal 
extreme point decieion. 

On a d-dimensional mesh or a d-dimensional pyramid, tliis 
gives a total running time of @(n'Id), which is easily seen to be 
opiimal. On a hypercube the runuing time is @(lug2 n), since 
the time fur T1(n) is @(logZ n )  mid sorting call be con~pleted in 
the sallle time by using bitonic sort. It is nut known if this is 
worst-case optilnal, since it is an upen quesliu~i as to wliether a 
l~ypercube can sort in o(log2 n)  worst-case time. While we do not 
have apace to explain the details, we uote that one can modify 
the above algorithm so that it subdivides the origi~lal set into nC 
pieces at each stage [6], with 0 < c < 1. On the hypercube the 
n~odified algorithm achieves T' = @(lug n), wl~icli gives a total 
worst-case running time of Q(Swt(n)).  This modified version 
also rmls in O(1ugn) time on an EREW PRAM. 

4 Final Remarks 

Datn movement operations should be thought of as the parallel 
computilig analugue of data structr~res in serial computers. Both 
provide higher level constructs which help progrannlers organize 
their thoughts and programs, and both allow programmers to 
reuae carefully optimized implementations. Initial users of pard-  
lel computers were often willing to spend considernble program- 
nung time to aclueve the performance available through parallel 
processing, but as parallel couipulers lrlove fro111 researcli into 
practice there will be resistance to significant reprogranuning 
fur each new massively parallel architecture. Systenlatic use of 
data movenient operations seems to provide a nleans of achiev- 
ing higli perfornlalce on future arcl~itectures witltuul unending 
reprogriuruiliag. 

References 

[I] M. Atallah and M. Goodrich, "Eficient plane sweeping in 
parallel", ACM Symp. Comp. Geo., 1986, pp. 216-225. 

[2] G. Blrlloch, Uscans as primitive parallel operations", Pm. 
1987 1nt9. Conf. Parallel P m . ,  pp. 355-362. 

13) C. Kruskal, L.  Rudolph, and M. Snir, "The power of parallel 
prefix", Pmc. 1985 Inl'l. Conf. Parallel Proc., pp. 180- 185. 

[4] H.T. Kung, F. Luccio and F.P. Preparata, "OBI finding the 
maxilna of a set of vectors", JACAI 22, py. 469-476. 

(51 R. Miller and Q.F. Stout, "Data movement ted~niques for 
the pyranud computer", SIAM J. Computiitg 16, pp. 38-60. 

16) R. Miller and Q.F. Stout, "Efficient parallel convex lrull al- 
goritl~nls" , IEEE Tran3. Computers 37, 1988, to appear. 

(71 R. Miller and Q.F. Stout, Parallel Algorithms for Regular 
Architectures, The MIT Press, 1988. 

[8] F.P. Preparata slid S.J. IIong, "Convex liulls of finite sets 
~d points in two and three din~ensions", Comm. ACM 2 ,  pp. 
87-93. 

191 F.P. Preparata and M.I. Slianos, Computational Geometry, 
Springer-Verlag, 1985. 



ALGORITHMS FOR LONG FAST FOURIER TRANSFORMS ON A CONNECTION MACHINE 

J. P. Norris, P. Hertz, K. S. Wood 
E. 0. Hulburt Center For Space Research 

Naval Research Laboratory, Washington, DC 

P. Anderson 
Planning Research Corporation, McClean, Virginia 

ABSTRACT 

We have developed several fast algorithms for very 
long 1-D and 2-D fast Fourier transforms (FFT) on 
a C o n n e c t i o n  M a c h i n e  CM-2 .  T h e s e  c o d e s  
maximally exploit the parallelism afforded by single- 
instruction multiple-data (SIMD) machines like the 
CM-2. We take explicit advantage of the  CM-2 
ha rdware  (32-bi t  F P A ,  8k b y t e  m e m o r y  p e r  
processor, programmable hypercube connectivity) and 
software ( P a r i s  - machine  level language)  t o  
simulate the butterfly connectivity required for the 
EFT computation. A CPU benchmark of 4.6 s for 
a complex 221-point FFT has been established and 
an execution time of about 9.5 s is predicted for 
222-point EFTS on a 16k processor CM-2. Longer 
EFTS, of length at  least 224 points, are possible on 
a full 64k processor CM with no increase in CPU 
time. We also describe a lgor i thms for use on 
Connection Machines for achieving coherence recovery 
of frequency-broadened signals. 

Keywords: Fast  Fourier Transforms, Connection 
Machine, Signal Coherence Recovery 

INTRODUCTION 

The two most attractive features of a Connection 
Machine are its very high degree of parallelism, 64k 
simultaneous physical processors (pp) on a full CM, 
and its capability for programmable connectivity 
between these processors. However, with bit serial 
processors and a relatively modest clock speed, the  
current generation of CMs would appear to perform 
rather slowly on classes of problems where solutions 
require a large ratio of inter- t o  intra- processor 
operations. When the memory associated with each 
pp is apportioned to  virtual  processors (vp's) in 
order to tackle problems of larger dimensionality or 
scale, the pp performs as a multiplexer, serving the 
vp's, and the execution time begins to  scale with 
problem size a s  in a n  o r d i n a r y  von  N e u m a n  
machine. The decrease in performance is worse if 
communication between vp's dominates the design of 
the program. For long FFTs (length > pp number) 
this is the case unless interprocessor communication 
time can be significantly reduced. 

We discuss two kinds of algorithms for long FFTs 
which address  t h e  problem of communicat ions  
overhead and which we have successfully run on a 
CM-2 configured with 16k processors (Ref. 1). Our 
f i rs t  a p p r o a c h  a t t e m p t e d  t o  min imize  i n t e r -  

(physical) processor communication by transforming 
a long 1-D FFT into short 2-D FFTs each of which 
fit inside one pp's memory (Optical Analog F F T ) .  
The ability to configure processor connectivity and 
upgrades which commiss ioned t h e  new CM-2, 
including more eficient communication between vp's 
and a 32-bit floating point accelerator, led to  the  
development  of a more  ef f ic ient  a n d  e l e g a n t  
algorithm, the Hypercube Connectivity FFT. 

FFT WITH HYPERCUBE CONNECTIVITY 

The central concept of a hypercube FFT on a CM-2 
is straightforward: a t  each stage of the butterfly 
pattern, arithmetic operations required between two 
associated points (vp's) are performed in one time 
step along an axis of a hypercube of rank m with 
side length 2. This optimum communication pattern 
is realized on a CM-2 by instructing the machine to 
configure its communication grid (NEWS) into a 
h y p e r c u b e  g e o m e t r y .  T h e  C M  h a r d w a r e  
conf igura t ion  is  c o n s t r u c t e d  a s  t w o  n e s t e d  
hypercubes each with side length equal 2; hence 
radix 2 F F T s  are  most na tu ra l .  Nevertheless,  
higher and mixed radix EFTS can be performed on 
a CM-2 by defining "hyper-rectanglesn with longer 
and unequal sides (the execution speed may then be 
slightly less t h a n  op t ima l  since t h e  prescribed 
geometry is not homologous to the hardware). 

The bit reversal operation is also performed using 
the  NEWS gr id  wi th  t h e  specified hypercube  
geometry. The algorithm is similar to a Danielson- 
Lanczos F F T  in that  the trigonometric factors are 
computed for each point  in parallel rather than  
propagating phase offset factors point-to-point as in 
a Cooley-Tukey FFT. 

A documented version of the Paris code for the 1-D 
hypercube F F T  is presented in t h e  Append ix .  
Memory overhead per pp has been optimized for the 
case of 64-bit complex data; 32 bytes/processor (if 
radix 2 is used) are required to represent the data  
(during processing), auxiliary variables, and buffers. 
Thus a quarter CM-2 is limited to  214 pp  X (8k 
byteslpp) / (32 bytes/point) or 222-point FFTs. A 
factor of two in F F T  length may be gained by 
processing the real and imaginary vectors in series 
rather than in parallel. An integer representation 
affords no gain in F F T  length over floating point 
because of increwed demands which would be made 
on memory by additional auxiliary variables. 



If it is necessary to perform several EFTS on the 
same d a t a  in t e rva l  (pe r fo rming  a n  add i t iona l  
transformation before the EFT - see COHERENCE 
RECOVERY ALGORITHMS below), it is desirable 
to maintain a copy of the  original da ta  in CM 
memory and thus eliminate costly 110 calls. In the 
case of sparse data (e.g., byte-sized) this additional 
demand on memory does not affect the size of a 
radix 2 EFT which may be performed. 

On a full 64k processor CM-2, for EFTS wi th  
lengths exceeding a vp-to-pp ratio of one, the factor 
of 4 increase in CPU power means tha t  EFTS 4 
times as long (up to 224 points, perhaps 225, with 
current CM-2 memory) can be performed with no 
increase in execution time. This is illustrated in the 
comparison in Table 1 where the benchmarks for 8k 
and 16k processor runs are listed. 

Hypercube Geometry  for  N-D FFT - F F T s  of 
h i e h e r  d i m e n s i o n  m a y  b e  a c c o m m o d a t e d  b y  
specifying hyperplanes and changing the  axes f& 
subsequent dimensions, thus configuring a CM for 
N-dimensional FFTs.  A c o m m ~ n i c a t i ~ n  efficiency 
similar to the 1-D EFT case may be obtained. 

OPTICAL ANALOG FFT 

As is well known from optical Fourier analysis (Ref. 
2) a long 1-D EFT can be recast into (1) a set of 
short row FFTs, (2) multiplication by phase factors, 
row and column dependent, and (3) a set of short 
column EFTS. For a discrete time series f(n) where 
n = 0, 1, 2 ... N-1, the Fourier transform is 

Using auxiliary variables, the 1-D Fourier transform, 
F(k), may be expressed in 2-D format as 

n = Lny + n, ny = 0, 1, 2 ... M-1 
n, = 0, 1, 2 ... L-1 

k = Mk, + k, k, = 0, 1, 2 ... M-1 
k, = 0, 1, 2 ... L-1 

The salient feature with regard to SIMD machines 
like a CM-1 is that short EFTS can be done inside 
pp 's ,  whereas  l o n g  E F T S  r e q u i r e  e x t e n s i v e  
communication between a much larger number of 
vp's. The optical analog algorithm performs the  
row FFTs within pp's, transposes the square array 
(L = M) containing the intermediate result in order 
to place each column within a processor, applies the 
phase multiplication factors and then performs the 
column EFTS. A final transpose is necessary if the 
frequency components need to be ordered correctly. 
The transposes require inter-processor communication; 
thus for most efficient execution a connectivity 
optimized for this purpose should be specified. 
Current CM-2 memory limits square FFTs to length 

5122. In principle one could string 4 pp's together 
( a t  t h e  c o s t  of a d d i t i o n a l  i n t e r - p r o c e s s o r  
communication) to form longer rows and columns, 
and thus reach 222-point EFTS. 

COHERENCE RECOVERY ALGORITHMS 

Briefly, the  problem of coherence recovery (CR)  
involves searching for an intrinsically weak temporal 
signal which is frequency broadened (and hence the 
Fourier spectral peak decreased), for example, by 
virtue of motion of the source. In such problems 
several long EFTS must be performed on the same 
time series, with an accompanying transformation 
either in the time or frequency domain, in order to 
achieve optimum CR, i.e., approximate coalescence of 
the smeared power into one spectral bin. CR is 
preferred over incoherent summation of the smeared 
signal both for enhancing the chance of detection 
and improving confidence of detection. 

Coherence Recovery in the Time Domain - Applying 
a family of quadratic time transformations to effect 
CR of a frequency-broadened signal is described in 
detail in Ref. 3. A time series is rebinned for 
Ntran, trials according to the formula 

where PCrik is usually the Nyquist period ( l /uNyq)  
and T is the integration time. This algorithm 1s 
shown (Ref. 3) to be the  optimal one-parameter 
transformation for CR of an unknown modulating 
function for sufficiently short integration times (e.g., 
for orbital motion, T 2 4rPorb, where POrb is the 
orbital period). A copy of the original data may be 
maintained in memory and transformed according to 
Equation (3 ) .  The  new t ime a r r a y  a c t s  as a 
pointer to the vp where the data will be sent along 
the communications grid. This realization of CR  
applied in the  temporal  domain requires a time 
transformation and an FFT for each trial. 

Coherence Recovery in the  Frequency Domain - 
Alternatively, CR may be achieved by processing in 
the frequency domain, in which case only one EFT 
of the data is required. This method is similar to 
an analog CR technique in which a modified Fourier 
kernel, containing a quadratic phase, is utilized in 
an acousto-optic Fourier processor (Ref. 4). The 
algorithm implemented digital ly is known as a 
Weiner filter, and requires building a table array, 

where m = a N 8 ,  N(un) is the  E F T  of the  input 
data  and M *  is t h e  E F T  of a quadra t ic  chi rp  
signal, 



For each CR trial, a subarrary of the  product of 
the table and the F F T  of the input is summed over 
a va ry ing  r a n g e  of non-neg l ig ib le  f r equency  
contributions to yield the result. Because the time 
to create the table array is approximately equal to 
the time required to process all of the required time 
transformations and F F T s  as described above, a 
computational advantage is realized only if more 
than one input data set is processed using the same 
CR parameters - the table is then computed just 
once. A disadvantage is tha t  for very long FFTs 
the entire table may not fit into CM memory, in 
which case the relevant subarray must be read from 
external data storage for each CR trial. 

ACKNOWLEDGEMENTS 

We appreciate the advice of the Connection Machine 
staff at NRL. Especially, we thank Robert Whaley 
for programming assistance on numerous occasions. 
This work was sponsored by the Office of Naval 
Research. 

REFERENCES 

1. Hertz,  P . ,  a n d  J . P .  Norris ,  "Fas t  Four i e r  
Transforms on the NRL Connection Machine," 
1988, NRL Report, in preparation. 

4. Norris, J.P., K.S. Wood, and H.W. Smathers, 
"Signal Coherence Recovery Algor i thm for  
Acousto-optic Fourier Transform Architectures 
with High Bandwidth," 1988, Proc. SPIE, 936, 
pp. 213-220. 

TABLE 1 

CM-2 Execution Time in Seconds 
2mpoint Complex (Hypercube Connectivity) FFT 

m (no patch code)* (patch code)$ 
8k 16k 8k 16k -- - - - 

13 .018 .026 

*Provisional times without optimized bit reversal. 

2. Turpin, T.M., "Spectrum Analysis Using Optical $Patch required to  circumvent maximum dimension 
Processing," 1981, Proc. IEEE, 69, pp. 79-92. I 16) hypercube currently possible on CM-2 

maximum dimension of 32 is expected). 
3. Norris, J.P., and K.S. Wood, "Discovery of 5 

Hz Quasi-Periodic Oscillations in Cygnus X-2," 
1987, Astrophys. J., 312, pp. 732-738. 

APPENDIX 

The following code for the Hypercube FFT is written in the C/Paris language and operates 
under Paris version 5.OB. 

/ *  HYPERCUBE-FFT: Implements a 1 dimensional complex FFT. The real and 
t imaginary parts are presented separately in two contiguous member * floats. The length of the data array (which is equal to the number * of virtual processors) is n, and n is 2-p. */  

#include <cm/paris.h> 
void hypercube-fft ( r e a l g a r t ,  i m a g g a r t ,  p, dir) 

unsigned r e a l g a r t ,  i m a g g a r t ,  p; int dir; 
/ *  r e a l g a r t  length 64, i m a g g a r t  subfield length 32 */  
{ static unsigned last-value-ofg = 0; 

static CMdeometry-id-t hypercubedeometry, default2eometry; 
static unsigned dimension_array[32] = { 

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,?,2,2,2,2,2,2,2,2,2 1; 
unsigned n, p l ,  p2, p g h y s ,  axis, spaclng; 
unsigned name, coordinate, real-assoc, imag-assoc, temp, trig-temp; 
unsigned i, j, i-coord, j-coord, news-coordi, news-coord j, active-flag; 
float pi-signed, theta-0, scale-factor; 
n = 1 << p; 
if (dir < 0) pi-signed = -M-PI; else pi-signed = M-PI; 
/ *  store current geometry * /  
default2eometry = CM-vp~set_geometry(CM~current~vpPset); 
/*  skip defining geometry if p = l a s tqa lue -o fg  */ 
if (p != last-value-ofg) { last-value-ofg = p; 
/* create first geometry to be 2^p hypercube using NEWS order by default * /  

hypercubedeometry = CM-create_geometry(dimension array, p); } 
/ *  select vp set and make appropriate processors active *T 



CM-set-vp-set eometry[CM-current-vp-set, hypercubejeometry);  set-contertd 
/ *  bit reversal using hypercube */ 
temp = CM-allocate-stack-field(64 
i-coord = CM-allocate-stack-field 
j-coord = CM-allocate-stack-field 

for (i = 0; i < p p ;  i++) 7 
active-flag = CM allocate stack-field(1); 

CMjet-from-news-lL(temp, r e a l g a r t ,  news-coord j ,  CM-upward, 64); 
CM-send-topews lL( rea lga r t ,  temp, news-coordi, CM-upward, 64); 
CM-set-context(); -) 

CM~deallocate~stack~through(temp); 
/ *  allocate space on stack * /  
pghys = I'+ p; 
name = CM-allocate-stack-field(pghys); 
coordinate = CM-allocate stack field(1); 
C M - ~ ~  -send-address-1~Tnamez 
real-assoc = CM-allocate-stack-field(64); 
imag-assoc = CM-add-offset -to-fieldjd(rea1-assoc, 32) ; 
temp = CM-allocate-stack-fieId(32); 
trig-temp = CM-allocate-stack-field(32); 
/ *  butterfly pattern mapped onto hypercube * /  
for (axis = 0, spacing = 0; axis < p; 

axis++, spacing = spacing + spacing) { 
/* send data to associate processor * /  

et~from~news~always~lL(real~assoc, r e a l g a r t ,  axis, CM-upward, 64); 
secondary processors and swap data with associate data */  

CM-my--news-coordinate-lL(coordinate, axis, 1); 
CM~load~context(coordinate); 
CM-swap-2_lL( r e a l g a r t ,  real-assoc, 64); 
CM-f-negate-1-lL real-assoc, 23, 8); 
CM-f-negate-1 1L imag-assoc, 23, 8); 
CM-set-contextn 

I 
/*  calculate theta and store sign in test-flag */ 
theta-0 = pi-signed / (1 + spacing); 
CM-logand-constant 3_1L(temp, name, spacing, ~ g h y s ) ;  
~~-f-u-float-2-2~~ri~-tem~, temp, p g h y s ,  23, 8); 
CM~f~multiply~const~always~2~1L(trig~ternpl theta-0, 23, 8); 
CM-f-le-zero-1Lg temp, 23, 8); 
/ *  calculate cosine(thetq and use as needed */ 
CM-f-cos-1-lL(trig 

real-assoc, r e a l g a r t ,  23, 8); 

/* use sine as needed * /  
CM-f-mult-subfrom lL( rea lga r t ,  r e a l g a r t ,  trig-temp, imag-assoc, 23, 8); 
~ ~ - f - r n u l t - a d d - l ~ ~ m a ~ g a r t ,  trig-temp, real-assoc, i m a g g a r t ,  23, 8); } 

/* renormalize for inverse transform * /  
if (dir < 0) { 

scale-factor = 1.0 / power-of-two[p]; 
C M ~ f ~ m u l t i p l y ~ c o n s t ~ a l w a y ~ ~ 2 ~ 1 L  r e a l g a r t ,  scale-factor, 23, 8); 
CM-f-multiply-const-always-2-1L i m a g g a r t ,  scale-factor, 23, 8); } 

CM deallocate-stack-through(name); 

t /* restore geometry, release stack space */ 

C ~ ~ s e t ~ v ~ ~ s e t ~ e o m e t r ~ ( ~ M ~ c u r r e n t ~ v ~ ~ s e t ,  - defaultjeometry); ) 



SIMULATING NEURAL NETWORKS USIN(; C* 

Mark J. Norton 
GE Aerospace, Advanced Technology Laboratories, 

Artificial Intelligence Laboratory, 
Moorestown, NJ 08057 

ABSTRACT 

Simulation of two neural network models are used to illus- 
trate the benefits of using C* as a programming language to 
create applications which utilize massive, fine-grained paral- 
lel processing architectures such as the connection machine. 
An overview of the C* language is made and general data 
structures to be used are discussed. Two neural network 
models are presented and contrasted: a relaxation energy 
model (Hopfield), and a forward propagation model 
(Rumelhart and McClelland). A discussion is made of using 
C* for simulation purposes and advantages of simulating 
neural networks on large parallel processors. 

INTRODUCTION 

The simulation of large neural networks is a memory and 
computationally intensive task. Fully connected networks 
require n2 memory locations to store connection weights. 
Evaluation typically includes a dot product, and some non- 
linearity yielding calculations which also growns linearly. 

Fortunately, neural network simulation can be structured to 
take advantage of data parallelism provided by system such 
as The Connection Machine (@Thinking Machines, Inc.). 
Using parallel processing techniques, much of the computa- 
tional load can be distributed increasing system throughput. 

The Connection Machine (CM) was initially configured 
around a Symbolics Lisp Machine as the front end and was 
programmed in *Lisp, a parallel version of Lisp which util- 
izes the capabilities of fine-grained parallelism in a SIMD 
architecture. Initial CM applications were developed in 
*Lisp or in Lisp calling PARIS (PARallel Instruction Set). 

Last year (1987), a new language was introduced by Think- 
ing Machines which capitalizes on the broad knowledge of 
the C programming language in the Software Engineering 
profession. This language, C* [I],  is a set of extensions to 
C which supports parallel programming on massive, fine- 

grained machines. Extensions made are also compatible 
with the C++ object oriented programming language. 

The use of C* to create applications for the Connection 
Machines is examined here using Neural Network simulation 
as an example. Neural networks are well-suited to imple- 
mentation on the CM, and have the advantage of existing on 
other architectures. for comparison [2]. 

AN OVERVIEW OF C* 

The C* programming language was developed as a set of 
extensions to the C programming language developed by 
Bell Laboratories. C has been called an intermediate pro- 
gramming language since it is close the hardware platform 
while retaining some of the structure of higher-level 
languages. 

Several extensions to C have been developed over the years 
to augment the basic language. One of these, C++, was 
used as a model for C*. C++ is an object oriented program- 
ming language which provided support for defining generic 
objects and manipulating instances of them. C* has been 
designed to be compatible with C++ and borrows several 
language concepts from it.. 

The underlying model for the language is an array of proces- 
sors with data memory each executing the same instruction 
at a given time. Data organization is the same in each 
processor's memory. The only thing that differs is the 
values contained in these data structures. This model allows 
developers familiru with C to easily picture the parallel 
operations being performed, since array operations are com- 
mon in C. This visualization ease is a strong feature of the 
language. 

Four basic extensions were made to support parallelism: 
poly data types, the domain concept, processor selection, and 
a few new operations. An effort to stay close to C was 
made bv retaining the existing syntax as much as possible 
while interpreting them in a parallel domain. For example, 
assignment works just like i t  does in C, but also allows 

CH2649-2/89/0000/0203$01 .OO O 1988 l EEE 



parallel assignments to be made. One design goal of C* is 
to allow compilation of pure C code in C* (this would run 
on the front end only). 

RELAXATION MODEL 

The first neural network model simulated on the Connection 
Machine was a relaxation model based on the work of J. 
Hopfield 131. As shown in figure 1, each of the net nodes 
are fully connected to all others in the system, although 
self-connections are suppressed. The output of the jth ele- 
ment is: 

Where W.. is the connection weight from element i to j, and 
'J 

Xi is the output of element i. Ti is a threshold associated 
with the element, and f is a non-linear function such as Sign 
or Sigmoid. 

Because this type of network is fully connected, a connec- 
tion weight mamx must be stored with each network ele- 
ment. The size of this matrix increases as the square of the 
network size. This weight mamx dominates all other data 
structures and makes large networks difficult, since the 
amount of memory per processor element in the CM-2 is 
limited to 64K bits. 

One way around this problem, which was chosen for this 
simulation, is to represent a single network node as an array 
of processors in the Connection Machine. Associated with 
each of these processors is a single connection weight. 
Inner products are summed over the array of processors to 
produce a new Xi in the zeroh element. C* provides all the 
numerical manip;lations needed to calculate these quantities 
in an efficient manner. 

Figure 1: Relaxation Model 

This technique was used to create a relaxation network of 
256 nodes which were fully connected. A variety of graphic 
pattern recognition problems were run, including compensa- 
tion for positional, and rotational shifts in images to be 
recalled. 

FORWARD PROPAGATION MODEL 

The Forward Propagation model differs from the Relaxation 
model by having distinct layers which propagate information 
forward to a single output representing the recognized pat- 
tern. This type of network has been used extensively for 
Neural Network experimentation by researchers such as 
Rumelhart and McLelland [4], Hinton [5], Sejnowski [6] ,  
etc. 

This model has an advantage over the relaxation model in 
that substantially fewer connections are required. In general, 
connections grow linearly with the size of the network. A 
connection weight matrix must be saved in each processor 
element, but the size of mamx is not as large. Furthermore, 
excess processors can be used as additional layers, since the 
forward propagation model does not require a symmetrical 
network. 

In a fully configured CM-2 with 64K processors, 65536 net- 
work nodes could be simulated arranged as 64 layers of up 
to 1024 nodes each assuming 16 bit weight values, as shown 
in figure 2. If learning is added to the system using a rule 
such as back propagation, the number of nodes drops to 
32768, since two copies of the network are needed to imple- 
ment the rule. 

Figure 3 shows how information flows through the network 
in a Connection Machine implementation of the Forward 
Propagation model. At each sample iteration, an input vec- 
tor, Ii is initialized in the left most column of a two dimen- 
sional array of processors. This array can be up to 1024 by 
64 in size. Each value is multiplied by a connection weight 

Figure 2: Forward Propagation Model 



associated with a processor in the next layer, and summed. 
The sum is then thresholded and passed through a non- 
linearity as in the Relaxation model. This value is then 
deposited in the appropriate processor the next layer. 

Layer 
0 1 2 

In general C* provides a powerful, clean syntax and eases 
the visualization of parallel calculations. The domain con- 
cept allows data to be organized and manipulated in a paral- 
lel fashion. By extrapolating existing C syntax to parallel 
behavior, transition from C to C* is a much less painful pro- 
cess than learning the smcture of a new language. 

CURRENT AND FUTURE WORK 

The Relaxation model described has been implemented and 
tested on a series of 8 by 8 images. The system is able to 
recall simple patterns encoded in the network. It has been 
tested up to 25% noise levels. Networks that correct for 
translational and rotational shifts have also been tested. The 
Forward Propagation model exists as a crude prototype. 
Lack of good test cases has made validation difficult. 

The Connection Machine provides a powerful execution 
environment for neural network simulations. Future work 
with it will include development of learning rules, such as 
the Generalized Delta Rule and other neural network models, 
such as Kosko's Bidirectional Associative Memory and 
Hecht-Nielsen's Spatio-temporal Pattern Recognition model. 

Figure 3: Data Flow 

ANALYSIS 

The C* language provides all of the capabilities needed to 
build these simulations. In both cases, values must be com- 
municated between processors to evaluate a new nodal out- 
put. Parallel assignment and looping provide the means to 
accomplish this. Evaluation of the network occurs in paral- 
lel for the most part, although looping does introduce some 
serial operations. 

REFERENCES 

( 1 )  Thinking Machines, Corp.; The C* Reference Manual: 
Version 4.OA Field Test, 1987. 

(2) Norton, Mark J.; "Three Simulations of a Neural Net- 
work," AAAl Spring Symposium on Parallel Models of 
Intelligence , March 1988. 

(3) Hopfield, John J.; "Neurons with Graded Response 
have Collective Computational Properties like those of 
Two-State Neurons," Proc. of Narl. Acad. of Sci., Vol 
81, May 1982. 

(4) Rumelhart, David E. and McLelland, James L.; "Paral- 
lel Distributed Processing," MIT Press, 1986. 

( 5 )  Hinton, Geoffrey F.; "Connectionist Learning Pro- 
cedures," CMU-CS-87-113, June 1987. 

(6) Gorman, R. Paul and Sejnowski, Terrenance J.; 
"Analysis of Hidden Units in a Layered Network 
Trained to Classify Sonar Targets," Neural Network J., 
Vol. I ,  No. 1 ,  1988. 

The ovemding limit on the size of the network which can be 
simulated is dependent on the amount of memory available 
to each processor element. While 64K bits is substantially 
better than the 1K bits available in the CM-1, it is still 
confining. This limit also forces data precisions down from 
an acceptable level of 32 bits to 16 bits (or less). This can 
limit the learning and performance capabilities of the net- 
work. 



V-Trees: A Class of Dense Regular 
Interconnection Topologies 

B. Ramkumar and L.V. KalC 

Dept. of Computer Science, Unive 
Urbana. 

Abstract 
In this paper we propose a class of dense regular hierarchical in- 

terconnection topologies called V-trees. These topologies are denser 
than the  interconnection networks in use today such as  the ring and the 
n-dimensional boolean hypercube, and compare favourably with other 
proposed interconnection schemes like the  s tar  graph and the pancake 
graph. In addition, the  class of topologies proposed by us is more flex- 
ible in that  both the degree and the diameter can be varied in the 
construction of the required topology. These topologies are also incre- 
mentally scalable in the  number of nodes that  can be connected. We 
derive expressions for the  number of nodes that  may be connected in 
this manner and  the  corresponding diameters of such topologies. We 
also compare them with the boolean hypercube and the star graph. 
Keywords: interconnection topologies, dense graphs, regular graphs. 

1 Introduction 
The prospect of solving large problems in parallel using a massive 

number of processors t o  a t ta in  speedup has always been extremely a t -  
tractive. Recent advances in  device technology have now made this fea- 
sible by reducing the cost of individual processors. As a consequence, 
machines comprising several thousands or processors can be built inex- 
pensively and have the  potential t o  outperform the supercomputers of 
today both  in cost and execution time. 

T o  achieve this, however, i t  is necessary to be able to connect a large 
number of processors together in a manner that  keeps the diameter of 
the interconnection topology small, i.e. the topology must be dense. 
In addition, for a uniform treatment of processors, the interconnection 
problem must be restricted to  regular graphs, i.e. graphs in which evrry 
vertex has the same degree. 

The  density of a graph G with degree d and diameter k is n~easured 
by how close / G I (no. of vertices in G )  is to the Moore bound (see later) 
for the given degree and diameter. If the Moore bound is attained, the 
graph is called optimally dense. Using this criterion, topologies like the 
hypercube are not particularly dense. Density is a very desirable prop- 
erty for a topology since the average distance between any two vertices 
in the topology is small. This  means that ,  in routing, the average time 
spent by messages a t  intermediate nodes in  a path  is small. This also 
suggests a n  increase in the computation to communication ratio for the 
topology. Also, if we define a neighbourhood of radius r of a vertex u as  
the  set of all vertices that  are  5 r hops away from u, i t  is easy to see 
that  the denser the  topology, the larger the neighbourhood (of given ra- 
dius) of a vertex. This in turn leads to  better dynamic load distribution 
because a large neighbourhood leads t o  a more uniform distribution of 
work and hence a better utilisation of processors. 

In this paper we propose a class of regular hierarchical graphs which 
are denser than the interconnection networks in use today, and compare 
favourably with other interconnection topologies proposed thus far. In 
addition, they are  highly flexible i n  t ha t  they allow both the  degrre 
and the diameter of the graph t o  be varied, and they are incrementally 
scalable (i.e. allow the number of nodes connected in this manner to 
be varied). We derive expressions for the number of nodes that  can  be 
connected using this class of topologies and their corresponding d ~ a m e -  
ters, and compare it with the n-dimensional Boolean hypercube and the 
star-graph. 

lrsity Of Illinois at Urbana-Champaign 
Illinois 61801 

2 Related Work 
The  problem of constructing dense regular graphs of small diameter 

is well-known, and has been extensively studied. However, computing 
the  maximum number of vertices t ha t  can be connected using a regular 
graph of degree d and diameter k is still a n  open problem [5, page 213, 
problems 7,8]. The  Moore bound has been proven [9] to be attainable 
only for degrees 2, 3 (Peterson graph) and  7 (Singleton graph), and  
possibly 57 since i t  is not known whether there is a Moore graph of 
order 57. However, several relatively dense graphs have been found 
over the years and catalogued by Leland [15], Bermond [4], and others. 
Bermond has subsequently released updates containing more graphs as 
technical reports. Uhr also gives a list of known dense topologies in 
his book 123, pages 136-71. De Bruijn networks [7] are another well 
known class of dense topologies that  have found several applications in 
VLSI implementations and communication networks. In 1981, de Bruijn 
networks were proven to be denser than any other previously discovered 
graphs by lmase and Itoh [lo].  

Other (not so dense) graphs have been proposed as  interconnection 
topologies, notably the n-Cube [19], the Cosmic cube [22], the  s tar  graph 
and the pancake graph [I, 2). T h e  n-Cube and the Cosmic cube are now 
available on several commercial machines. However, these machines con- 
nect a relatively small number of processors and are designed to  support 
global communication. The s t a r  graph is an  attractive alternative; i t  is 
a relatively dense regular topology that  is also symmetric. However, the 
choice of the degree d of each node determines both the diameter and 
the number of processors N that  can be connected. Star  graphs are also 
not incrementally scalable i n  that  fewer than N processors cannot be  
connected for a given d. Thus, the price paid for the symmetry in this 
topology is inflexibility. 

The idea of using treed to design network topologies is not new either. 
Arden and Lee [3] proposed a multi-tree network in 1978. They, however, 
restrict their discussion t o  graphs with degree 3. Also in 1978, Despain 
and Patterson [6] proposed an  augmented binary tree based architecture 
called the X-tree. In  their paper they make a strong case for tree based 
architectures. The  Sneptree, proposed by Li and  Martin [16], is another 
augmented binary tree network like the  X-tree which has been shown 
to  be suitable for VLSI implementations. However, tree-based networks 
have not been proposed as dense topologies although trees have been 
known to  be among the densest known graphs. 

3 D-trees -Trees connected with Dense Graphs 
In this section, we describe the basic construction of the proposed 

class of topologies and their properties. We call these graphs Vr-trees. 
Following that ,  in section 3.2, orthogonal extensions to  the  basic con- 
struction are proposed; we call these graphs Dm-trees. 

The number of nodes tha t  can be connected together with a given 
degree d and a given diameter k is bounded above by 

This buund is called the Moore bound and can be visualised by consider- 
ing a tree of height k with its root having dchildren, a11 nodes except the 
leaves having ( d  - 1) children, and all leaves equidistant from the root. 
The distance from the  root t o  a leaf is clearly the  smallest diameter that  
can be achieved for a Cregular graph. 

207 
PRECEDING PAGE BLANK NOT FlLJNEO 

&,~(!~*IWYWI W W  



Figure 1: A 'Dl-tree with degree 3 and diameter 5. 

3.1 C o n s t r u c t i o n  o f  'Dk-trees 

A few definitions are necessary to make the constructions easier to 
follow. 

Defini t ion 1 A single-rooted maximal tree with degree d and height h is 
a tree in which the root has d children, and all other nodea ezcept the 
leaves have (d - 1) children. All leaves are at distance h from the root 
and have degree 1. 

Defini t ion 2 A two-rooted maximal tree with degree d and height h is a 
conrtruction where two identical trees connected are by an edge at their 
rootr. All noder ezcepf fhe leaves hove (d - 1) children; all leaves are at 
a distance h from their respective roots and have degree 1. 

In the construction of Vi-trees, we use mazimal trees as building blocks 
to  construct dense graphs. These graphs are based on constructions by 
Korn [14] except that the leaves are not shared in our construction. We 
construct a Dl-tree with degree d and height h as follows: 

C o n ~ t r u c t i o n  1 Take d copies of a maximal tree T having degree d and 
height h. For each tree, label the leaves from left to right as 1 . .  . L where 
L ir the number of leaves in the maximal tree. For each i, connect all 
leaves labelled i in the d copies of T with a Kd graph (the complete graph 
on  d vertices). 

This construction produces the same graph as one proposed by Memmi 
and Raillard in [17] if single-rooted mazimal trees are used. If single- 
rooted mazimal trees are used, this construction will give us ?)-trees with 
odd diameter. Graphs with even diameter can be constructed using two- 
rooted mazimal trees in Construction 1, but are not as dense. Fig. 1 

shows a Dl-tree with degree 3 and diameter 5. 
The diameter of the dense regular graph used to connect the mazi- 

ma1 trees is used to  classify the topology. Thus, if a dense graph with 
diameter k is used, we get a 'DL-tree. It is easy to see that every leaf 
in the mazimal trees used will have degree d i n  the 'DL-tree. To obtain 
the densest 'D-trees possible, we are interested in optimal, or close to 
optimal, dense regular graphs with small diameter. 

It is possible to  extend this idea by using regular graphs having 
diameter 2 to connect mazimd trees a t  their leaves to  get 'D2-trees. 
However, unlike in Construction 1, there is no known expression for the 
densest regular graph having degree (d - 1) and diameter 2. Therefore, 
we propose that the densest known regular graphs with degree (d - 1) 
and diameter 2 be used to  construct V2-trees having degree d. One 
can construct relatively dense ?)*-trees by using, for example, the opti- 
mally dense graphs with diameter 2, namely the Peterson graph and the 
Singleton graph. For Dl-trees, single-rooted mazimal trees need to hr 
used in the construction to produce graphs with even diameter, whereas 
two-rooted mazimal trees yield graphs with odd diameter. 

In general, 731-trees cue denser than 'Dl-trees. A simple example can 
illustrate this point. If we wish to  construct a 'Dl-tree with degree 8 
and diameter 6, we can do so by connecting 8 two-rooted mazimal trees 
of height 2 as described in Construction 1. This will give us a graph 
with 912 nodes (see Theorem 2 for a general expression). However, we 
can construct &'Dl-tree with degree 8 and diameter 6, then by using thc 
Singleton graph, we can connect 50 single-rooted mazimal trees with 
degree 8 and height 2. The number of nodes that can be connected in 
this manner is 3250. 

Using the same idea, we can construct Vs-trees, Dr-trees and so 
on. Singleton graph with diameter 3 are known to exist if (d - 1 )  is 

a power of a prime number [21]. They have order and can 
be used to  construct dense 'Ds-trees. However, only a small number of 
such graphs can be connected. De Bruijn graphs are among the densest 
known graphs for larger values of k and can also be used to construct 
higher order 'D-trees. In general, less is known about dense regular 
graphs with diameter 3, 4 and higher. However, for practical purposes 
this is not serious, since i t  can be argued that a very large number of 
nodes can be connected using 731-trees and Vz-trees since they permit 
both the diameter and the degree to be varied. 

We now analyse DL-trees and derive expressions for the diameter 
and maximum number of nodes that can be connected using this topol- 
ogy. The prooEs of the lemmas and theorems that follow are quite simple 
and can be found in 1201. 

L e m m a  1 A 731-tree of height h has diameter (2h + 1) if single-rooted 
maximal trees are used in the construction and (2h + 2) if two-rooted 
maximal trees a n  uses in the construction. 

Lemma 1 can be generalised for a 'DL-tree of height h: 

T h e o r e m  1 A Dr-tree of height h has diameter (2h f k )  if single-rooted 
maximal trees are used and and (2h + k + 1) if two-rooted maximal freea 
are used. 

L e m m a  2 The mazimum number of nodea that can be connected using 
a 'Dl-tree topology with degree d and height h is gioen by 

if single rooted maximal trees are uaed in the constructton. If two-rooted 
maximal trees are uaed in the construction of 'Dl-frees, the rzpression 
for the mazimum number of nodes is 

This result too can be generalised for 'DL-trees: 

T h e o r e m  2 Let p be the number of nodes in the dense regular graph 
with degree (d - 1) uaed to connect the maximal trees rn the V-tree. 
The mazimum number of nodes that can be connected using a 'Dr-tree 
topology with degree d and height h is given by 

if singlcrooted maximal trees are used in the construction. If two-rooted 
maximal trees are used, the ezpresaion for the mozimum number of nodes 
is 

The number of nodes for 'Dr-trees depends upon the dense graph 
used for the interconnection of the leaves. Since Moore graphs with 
degrees 2, 3 and 7 are optimally dense, they are the best graphs that 
can be used for V2-trees with degrees 3, 4 and 8. 

Construction 1 restricts neither the height nor the degree of the 
mazimal tree used. It is therefore possible to construct 'DL-trees for any 
given degree and diameter. 



the diameter and the maximum number of nodes that can be connected 
together using Dm-trees. Once again, the proofs can be found in [20]. 

Figure !: A D: tree having degree 3 and height 1. Leaf nodes are shown 
as disc: and non-leaf nodes as circles. The two copies of the tree mesh 
are connected together at  the leaves. 

3.2 Construct ion of  Dm-trees 

One disadvantage of tree-based topologies in general is traffic con- 
gestion that tends to develop axound the root(s) of the tree making it a 
potential bottleneck. This is not a serious problem if a communication 
within a neighbourhood strategy is used, but for global communication 
it can prove to be serious. To reduce traffic flowing through the roots, we 
propose an orthogonal extension to the basic scheme described above. 
We call these trees Dm-trees. The Dr-trees constructed in section 3.1 
can be thought of as Dl-trees. Before we describe the Dm-tree topology, 
we first need to define the tree mesh which forms the building block for 
their construction. 

Definition 3 Consider a mazimal tree with degree d and height h and 
let L be the number of leaves in this tree. Lay out L' 'leaves" in a L 
by L grid. Construct 2L mazimal trees using each row and each column 
of the grid as leaves. A construction of this form is defined to be a tree 
mesh. 

Tree meshes have also been known under different names, for exam- 
ple, orthogonal treea in [la]. 

We now show how 'Dttrees can be constructed. 

Construct ion 2 Let D be the densest known regular graph with degree 
(d - 2), diameter k and order p. Take p copies of a tree mesh having 
degree d and height h. Label the leaves on the grid uniquely as 1 . . . L a ,  
where L is the number of leaves in the mazimal tree used to construct 
the tree mesh. For each i, connect the leaves labelledi in the p copies of 
the tree mesh using a copy of D. 

This construction increases the number of roots in the D-tree at  the 
cost of increasing the diameter. Also, only graphs with either odd or 
even diameter can be constructed, depending on whether the diameter 
of graph D in Construction 2 is odd or even. Fig. 2 shows a @-tree 
having degree 3 and height 1. 

In general, as m increases, the density of the 2);"- trees decrease. It 
can be argued that the loss in density is the price that must to  be paid 
to support global communication more efficiently. 

In the same manner we can define D3-trees, 2)'-trees and so on. The 
choice of the Dm-tree will then depend on the level of global communi- 
cation that needs to be supported. In the limit, the multi-dimensional 
grid of nodes dominates the construction. Also, with higher order Dm 
trees, constructions for all diameters are no longer possible, although 
the set of diameters for which each Dm tree can be constructed remains 
countably infinite. 

The construction of Dm-trees results in a rapid increase in the diam- 
eter of the topology a~ m increases. We now derive the expressions for 

L e m m a  3 The diameter of a 2):-tree of height h ir given by (4h + k )  
if single-rooted maximal trees are used in the construction; if two-rooted 
maximal treea are used the diameter is (4h + k + 2). 

This result can be generalised for Dl-tree of height h: 

T h e o r e m  3 The diameter of a D;"-tree of height h is given by (2mh+k) 
if singlerooted maximal trees are ured in the consiruction and (m[2h + 
11 + k )  if two-rooted maximal treea are uaed. 

L e m m a  4 Let the order of the dense gmph used to connect the maximal 
trees in the V-tree be p. The mazimum number of nodes that can be 
connected using a D:-tree with degree d and height h is giuen by 

if single-rooted maximal treea are uaed in the construction. If two-rooted 
maximal trees ore used, the mazimum number of nodes is given by 

The following theorem is a generalisation of this lemma: 

Theorem 4 Let the order of the den#e graph used to connect the leaver 
of the maximal trees in the V-tree be p. The mazimum number of noder 
that can be connected using a D r  -tree with degree d and height h ia given 
by 

{[d(d - l)h-l]m + (m[d(d - l)h-l]m-i)---- 
d - 2  

if single-rooted maximal treea are used in the construction. If two-rooted 
maximal trees are uaed, the mazimum number of nodes is given by 

The number of roots in Dy-trees are greater than the number of 
roots in Di-trees by a factor of [m {d(d - I ) ~ - ' ) ~ - ~ ]  (for single-mted 
mazimal trees). This reduces the load per root in the D-tree consider- 
ably. 

The routing algorithms for Dk-trees and Dm-trees are quite simple. 
A simple tree traversal algorithm can be adapted to handle "jumpsn 
between multiple copies of mazimal trees. In the interests of brevity, 
routing is not discussed in this paper. An outline of simple shortest 
path routing algorithms for these trees can be found in [20]. 

3.3 Enhancing Incrementa l  Scalability 

So far, the constructions described used only mazimal graphs in the 
construction of D-trees. However, there is no reason to constrain our- 
selves to the use of mazimal graphs. It is possible to use any trees 
which possess two properties: all non leaf nodes have degree d, and all 
leaf nodes have degree 1. These trees can be used as building blocks 
for the construction of D-trees instead. These graphs will clearly not 
be as dense as those constructed in the previous sections, but should 
there be some constraint requiring this restriction (for example, cost or 
layout area) they can be used. If h is the height of this "non-maximal" 
tree, the diameter of these constructions will stilt be the same as stated 
in Theorems 1 and 3. However, the average distance between any two 
nodes in the D-tree may decrease somewhat. 

It is also possible to extend the scalability argument to  the dense 
graph used to interconnect the leaves of the trees used in the construc- 
tion. Any regular graph can be used, for example a ring (although one 
may fail to see why). From a more practical viewpoint, the densest 
known regular graph(s), albeit suboptimal, can be used. In Table 1, 
some of the densest known graphs with diameter 2 have been used to 
construct the V-trees. The order of these graphs have been stated in 
parentheses. These values were obtained from 141. The values marked 
with an asterisk are those which are provably optimal. 



I 1 
size k sire 

4 8 

ing the traffic curtailed, thereby reducing the  communication overhead 
on each processor. 

References 
[I] S.B. Akers, B. Krishnamurthy, "A group theoretic model for Sj.n- 

metric Interconnection Networks", Proceedings of ICPP 1986. 

[2] S.B. Akers, D. Harel, B. Krishnamurthy, "The Star Graph: An 
Attractive Alternative to  the n-Cube", Proceedings of ICPP 1987. 

[3] B. Arden, H. Lee "A multi-tree structured network", Proceedings 
17th COMPCON,  Sept. 1978, pp.201-210. 

[4] J.C. Bermond, C. Delorme, J.J. Quisquater "Tables of large graphs 
with given degree and diameter" Info. Proc. Let. 1 5 ,  1982. 

[5] B .  Bollobas Eztremal Graph Theory, Academic Press, 1978. 

Ialtle 1: A comparison of some of the topolog~es. The numbers III [6] A.M. Despain, D.A. Patterson 'X-tree: A Tree Structured Multi- 
prenthesis  in columns 9 and 10 give the size of thr  regular graph u-rti Processor Computer Architecture" Proceedings of SigARCH 1978. 
t o  interconnect the leaves. 

[7] N.F. de  Bruijn, "A combinatorial problem" Koninklilke Nederlands, 
Academe van Wetenschappen, Proceedings Vol. 49 part 20 1946. 

4 Comparison with Other Topologies [8] H.D. Friedman, "A design for (d,k) graphs", IEEE n u n s .  on Elec. 
Table 1 tabulates the diameter and the number of nodes that  can Comp. (Short Notes), Vol. EC-15,  April 1966. 

be interconnected for a few values of the degree for the n-Cube, the star 
graph and three different types of V-trees. For D-trees, only construc- 

[9] A.J. Hoffman, R.R. Singleton "On Moore Graphs with diameter 2 

tions with comparable d i a m e t e ~  are tabulated. As can be seen, D-trees 
and 3" IBM Journal of  Research and Development., Vol. 4 1960. 

can interconnect a far greater number of nodes than both the star graph [ lo ]  112, lmase, M, ltoh, - ~ ~ ~ i ~ ~  to ~ i ~ i ~ i ~ ~  diameter on ~ ~ i l d i ~ ~ .  
&. 4 the n-Cube. In every case, i ts diameter exceeds that  of the star Block Network", IEEE Trans. on Comp. Vol. C-30, No. 6 ,  June 
grap!r by no more than one. Asymptotically, t h r  nuniber of nodes that 1081. 
can be connected using a star graph with degree d and diameter k ran 
be shown to  have the same order of corr~plcxity as  a Di-tree with the [ l l ]  L .V.  Kale "A comparison of two Dynamic Load Distribution Mod- 
same degree and diameter. Like the atar-graph, D-trees are also highly elsn Proceedtngs of ICPP September 1987. 
fault tolerant since their connectivity is ( d  - 1) where d is the degree of 
the D-tree. 

The  D-trees, however, do  not have the sy~nmetric and recursively 
decomposable properties of the n-Cube and the star graph. IIowever, 
the symmetry in these topologies makes them inflexible in that  both 
the diameter and the number of nodes that  can br interconnected using 
these topologies are fixed upon choosing the dcgree. 'D-trees provide the 
freedom to choose both the degree and the diarnrlrr of the topology. In 
addition, V-trees are also incrementally scalable in the nuxnber of nudrs 
that  can be connrcted for a given degrer 211111 d l n n l ~ t r r  SO, if desired, 
~t is possible t o  construct sub-optin~al toy)olog~cs as  described in the 
previous section. 

5 Discussion 

In the construction of V k  trees, the lack of many known dense reg- 
ular graphs with diameter 2 and greater may appear to be a problem. 
However, it can be argued that  this is not a problenl in practice. First, 
? large number of dense graphs are known for small degrees (i.e. less 
tha, 10). Second, i t  is possible t o  connect a very large number of nodes 
with t~ ?ologies having degree 10 or less, and dense graphs with higher 
degrees are therefore of less practical interest. 

Also, the flexibility offered by the D-tree allows us to constrain our- 
selves t o  a known dense configuration, for example, one which uses Sin- 
gleton graphs to  interconnect the leaves of the marimal graphs. It is 
still possible to construct increasing n u r ~ ~ b e r s  of  odes together with this 
fixed configuration alone, with a corresponding increase in the diarne- 
ter. With a degree of 8 and a diameter as small as  12,  i t  is possible to 
connect over 8 million processors using a Di-tree. 

The  other issue that  needs to be addrcssed is global comn~unication 
(or rather, the lack of it). Global communication is counter-productive 
for massively parallel systems since the cost incurred by every proces- 
sor for supporting it is very high. We argue that  very dense topolo- 
gies having small diameter are best exploited by restricted comrniinira- 
tion schemes like contract-within-neighbourhood (C'WN) [ l l j  proposed 
hy KYIC and the gradient model [13] proposed by Lin and Keller. Fol 

[12] L.V. Kale, W. Shu " l h e  Chare-Kernel Language for Parallel Pro- 
g r a n ~ n ~ i n g :  A Perspective" Tech. Report no. UIUCDCS-R-88-1/51 
August 1988. 

[13] R. Keller, F.C. Lin "Simulated Performance of a Reduction Based 
Multiprocessor" Computer, Vol. 17, No. 7 July 1984. 

[14] I. Korn, "On (d ,k)  graphs", IEEE Transactions on Electromc Com- 
puters, Vol. EC-16,  Feb. 1967, pp.90. 

[15]  W.E. Leland et al, "High Density graphs for Processor Intercon- 
nection", Information Processing Letters 12, 1981, pp. 117-120. 

[16] P.P. Li, A.J.  Martin, "The Sneptree- A versatile interconnection 
network" Proceedings of ICPP 1986, pp. 20-27. 

j17j G. Memmi, Y. Raillard "Some new results about  the (d,k) graph 
problem", IEEE Dans .  on Comp. ,  C-31 1982, pp.784-791. 

!18] D. Nath, S.N. Maheshwari and P.C.P. Bhatt,  "Efficient VLSI Net- 
works for Parallel Processing based on Orthogonal Trees" IEEE 
naris on Comp , C-32 1983. 

:19j M.C. Pease "The Indirect Binary n-Cube Microprocessor Array", 
IEEE Transactions on Computers, 1977, pp. 458-473. 

120) B.  Ramkumar, L.V. Kale "D-Trees: A Class of Dense Regular In- 
terconnection Topologiesn Tech. Report in prep., UIUC 1988. 

[21] 11. Sachs, "On regular graphs with given girth" Theory of Graphs 
and its Applications 1964. 

[22] C.L. Seitz, "The Cosmic Cuben C A C M ,  1985 

(231 L . M .  Uhr, Multicomputer Archrtectures for Artificial Intelligence, 
John Wiley and Sons, 1987. 

[24j L.D. Wittie, "Communication Structures for Large Networks of 
Microcomputersn IEEE Trans. on Comp. ,  C-30, 4,  April 1981. 

such schemes, symmetry is not a necessary feature, "local symmetry' 
i e. regularity, is sufficient. These schemes are far more effectiv~ in keep- 



A MODEL OF TASK MIGRATION IN PARTITIONABLE 
PARALLEL PROCESSING SYSTEMS 

Thomas schwederski1, Howard Jay siege12, and Thomas L. casavant3 
Parallel Processing Laboratory, Electrical Engineering School 

Purdue University, West Lafayette, IN 47907, USA 

ABSTRACT 

Many parallel machines can be partitioned into indepen- 
dent submachines based on rules that depend on the 
interconnection network used. Here, the effects of task 
migration (i.e., movement of a task from one partition to 
another) in systems employing multistage cube or hyper- 
cube networks are studied. Direct overhead encompasses 
the cost of moving the task when no other tasks affect the 
migration, while indirect overhead is the additional time 
needed for migration that is due to influences of other 
tasks. The sum of direct and indirect overhead is the 
time needed to migrate a task. In addition, the migration 
may affect other tasks, and thus can incur a migration 
penalty. The indirect overhead and migration penalty 
represent the interference that may occur in the intercon- 
nection network between the migrating task and other 
tasks attempting to use the network simultaneously. A 
model for parameterizing migration costs is given. This 
research is part of the PASM Parallel Processing Project. 

Keywords: task migration, load balancing, partitioning, 
PASM, multiple-SIMD, MIMD, partitionable 
SIMD/MIMD, parallel processing. 

1 INTRODUCTION 

Many current commercial and research parallel machines 
are partitionable; i.e., they can be subdivided into 
independent machines, and each of these machines can 
perform a separate task. Examples of such commercial 
machines are the Intel Hypercube [6], the NCube system 
151, the Connection Machine [12], and the BBN Butterfly 
[I]. Examples of partitionable research machines are RP3 
[2] and PASM [Ill. In all of these machines, memory is 
physically divided and a module is connected to each pro- 
cessor (although in some cases the memory may be 
addressed as one global address space). Also, all of these 
machines employ cube interconnection networks. The 
Intel Hypercube, NCube, and Connection Machine sys- 
tems use single-stage cube (hypercube) networks, while 
the Butterfly, RP3, and PASM use multistage cube net- 
works. The ways in which single-stage and multistage 
cube networks can be partitioned into independent sub- 
networks, creating independent submachines, is described 
in [lo]. 

'Supported by the Air Force Office of Scientific Research under 
grant number F49620-86-K-0006. Currently with the Institute 
for Microelectronics Stuttgart, Allmandring 30a, 7000 Stuttgart 
80, West Germany. 

2 ~ a r t  of this work was done while on leave at the 
Supercomputing Research Center, Lanham, MD, and part at 
Purdue supported by the above grant. 

'supported by the Supercomputing Research Center, Lanham, 
MD, under contract number 6925. 

Much research has been performed in the area of load 
balancing and process migration in distributed systems 
[e.g. 2, 91. In these studies, a process that executes or 
awaits execution on single processor is moved to a 
different processor so that a more balanced load distribu- 
tion in the system is achieved. However, the area of task 
migration in partitionable systems (i.e., moving a task 
executing on a group of processors) has received little 
attention. Here, a model for parameterizing task migrs, 
tion costs is given. 

One motivation for task migration is partition restructur- 
ing; i.e., the movement of small tasks to make larger par- 
titions available. In parallel processing systems with cube 
interconnection networks, the ways in which processors 
can be combined into independent submachines obey cer- 
tain restrictions. As a consequence, tasks that use small 
partitions can prohibit larger partitions from being 
formed. Consider a hypercube network with eight nodes 
as illustrated in Fig. 1. If an independent hypercube neb 
work with four nodes is desired, all four nodes must lie on 
one of the six surfaces of the cube. For example, nodes 1, 
3, 5, and 7 can form a partition of size four, because these 
four nodes can communicate among themselves using a 
size four hypercube topology without going through any 
of the other nodes. However, if two small tasks occupy 
nodes 0 and 7, each of the six surfaces contains one of the 
small tasks. No size four partition can be formed, even 
though six nodes are available. That is, without using 
nodes 0 and 7, no four node hypercube can be formed. 
By moving one task, e.g., by moving the task in node 0 to 
node 4, a size four partition becomes possible, consisting 
of nodes 0, 1, 2, and 3, where these nodes form a size four 
hypercube. This migration can result in an increase of 
overall machine performance, or it can be used to meet 
real-time constraints that apply to incoming tasks. 

Fault tolerance is a second motivation for task migration. 
Assume that node 7 in the hypercube system in Fig. 1 is 
faulty, and node 0 contains a task. Then no partition of 
size four is possible. Migrating the task in node 0 to node 
1 will make possible the use of nodes 0, 2, 4, and 6 to par- 
tition the network to form an independent size four 
hypercube. 

As a third motivation, consider a parallel program that 
currently occupies a partition, where each processor con- 
tains one process. Now assume that each process executes 
a fork system call, i.e., generates an identical copy of 
itself in a different processor. In a non-shared memory 
environment, this implies copying all relevant process 
information to a new set of processors. If multiple choices 
for selecting a partition for the newly forked processes 
exist, the model presented here provides one criterion for 
making a choice that minimizes the time to copy the 
required information to the new partition. 

A fourth motivation is load balancing. Consider a paral- 



lel processing system that permits multiprocessing in its 
processors. For example, if a partition A shares its time 
between five tasks, while another partition B of the same 
size has only three tasks, migration of one task from A to 
B may represent a more favorable distribution of system 
load. 

PASM is a partitionable g I M D / m  parallel processing 
system (where each partition can independently switch 
between the SIMD and MIMD modes of parallelism a t  the 
instruction level), a prototype of which is in operation a t  
Purdue University [ll]. Currently, the idea of an Image 
Understanding System (IUS) that automatically 
conflgures and reconfigures the system is being studied 
141. The IUS can change the resource allocation to sub- 
tasks of a given task, often as a result of data dependent 
decisions a t  execution time. This involves dynamic 
changea in the number of resources (processors) allocated 
to each subtask (subtask shrinking or expansion). The 
work here provides a framework for some of the basic 
knowledge about the PASM system that is required for 
the IUS. Thus, in general, this research can be used to 
support task/data dependent run-time system 
reconfiguration for optimizing resource utilization. 

by a system controller, which can be a dedicated proces- 
sor (e.g., the System Control Unit in PASM [Ill), or a 
program distributed among the system processors. 
Among other duties, this system controller is responsible 
for allocating and deallocating partitions, and for assign- 
ing tasks to partitions. The activities in each partition 
are supervised by a partition controller. Similar to the 
system controller, it could be one or more designated pro- 
cessors (e.g., the Micro Controllers in PASM [ l l ] )  which 
also act as SIMD control units (CUs), or it could be a 
program distributed among the processors of the parti- 
tion. 

In this paper, a task is the execution of a parallel pro- 
gram on a partition. An SIMD process is the execution of 
an SIMD procedure on a partition. An MIMD process is 
the execution of an MIMD procedure on a P E  that is part 
of the partition. A task can be composed of one or more 
SIMD and/or MIMD processes. Associated with each pro- 
cess are data, program code, stack, etc. Suspension of a 
process implies halting the process execution and saving 
the state of the process (e.g., values of the CPU registers) 
such that the process can be resumed as if no interruption 
had occurred. Transfer of a process implies allocation of 
appropriate resources a t  the destination, and transfer of 
all information associated with the process. For example, 
if a process has b bytes of stack space available but uses 
only part of it, b bytes of stack must be allocated at  the 
destination, the currently used part of the stack must be 
moved, and stack pointers must be set appropriately. 

3 QUALITATIVE VIEW OF MIGRATION 

Fig. 1. Three-dimensional cube structure. 

The system model that is used to analyze task migration 
is described in Section 2. Section 3 discusses the parame- 
ters of task migration qualitatively. Section 4 examines 
the task migration parameters in a quantitative way. 

The analyses are applicable to multiple-SIMD*, MIMD, 
and partitionable SIMD/MIMD* parallel machines utiliz- 
ing hypercube or multistage cube interconnection net- 
works and enforcing partitioning (i.e., each subnetwork of 
size S must have the properties, including topology, of a 
hypercube or a multistage cube built to be of size S). The 
architectures under consideration are physically organized 
such that each processor is paired with a memory module, 
forming a Processing Element (PE). Each P E  contains 
programs and data if in MIMD mode, and data only if in 
SIMD mode. If the task is to be moved to a different par- 
tition, all local components must be relocated. 

It is assumed that overall system activities are supervised - 
In multiple-SIMD machines, the system can be partitioned 

into independent SIMD subsystems, each with i b  own control 
unit for instruction broadcasting [7]. Similarly, in partitionable 
SIMD/MIMD machines, each partition must have s control unit 
available for it for SIMD processing. 

Direct overhead encompasses the time to move the task 
when no other tasks affect the migration, while indirect 
overhead is the additional time needed for migration that 
is due to influences of other tasks. The sum of direct and 
indirect overhead is the time needed to migrate a task. In 
addition, the migration may delay other tasks, and thus 
can cause a migration penalty. 

Consider direct overhead. First, the system controller 
must make a decision whether to migrate a task, and to 
which destination to migrate [a]. I t  then instructs the 
partition controller of the source partition P, to suspend 
the currently active task, and allocates the destination 
partition Pd. The partition controller in Ps stops the 
current task, saves all state information necessary to res- 
tart the task a t  Pd (e.g., CPU registers), and determines 
all information that must be transmitted. If the partition 
runs in MIMD mode, only information from the proces- 
sors and memories in the partition must be moved. If the 
partition is in SIMD mode, information resident in the 
CU of P, must also be moved to the CU of Pd. The 
amount of information to be transferred is dependent on 
the size of the program, on the size of the data set, and 
on the number of temporary variables currently in use. 

The physical data paths used for data transmission are 
the interconnection network for the PEs. and an inter-CU 
communication link (e.g., a shared bus or shared memory) 
for transfers between CUs. The time to accomplish the 
data transfer depends on the amount of data to be 
transmitted, the location of P, and Pd,  the tasks 
influenced by the migration, the type of interconnection 
network, and system implementation. 



After the data transfer has been completed, the system nation when a PE  tries to read them. Therefore some of 
controller can reassign P, to a new task, usually as part the PEs might read old data, and the computations 
of a larger partition. At P d ,  the partition controller would be incorrect. For MIMD tasks, both (a) and (b) are 
resumes the migrated task, and the migration process is feasible, and the method resulting in better system perfor- 
completed. mance should be chosen. 

Now consider indirect overhead and network conflicts 
(i.e., two PEs wanting to send data over the same net- 
work link simultaneously). Each partition of a Cube net- 
work (either single-stage or multistage), has a complete 
subnetwork to itself. In such a subnetwork, conflicts in 
the subnetwork can only be caused by transfers between 
the PEs of a partition. Assume P, and Pd  are such that 
they can be combined to form a single larger partition PC. 
For example, in a 16-PE system, if P, = {0,4,8,12) and 
Pd = {2,6,10,14), then they can be combined to form a 
single partition PC = {0,2,4,6,8,10,12,14). Then transfers 
from any P E  in P, to any P E  in P d  are inside P C ,  and no 
other partition in the system is affected. However, in gen- 
eral, this combination is not always possible; thus, 
transfers from PEs in P, to PEs in Pd  can violate parti- 
tion boundaries. Thus, the transfer of task information 
from P, to Pd can cause interconnection network conflicts 
in other partitions of the system. These conflicts interfere 
with both the migration of the task and the tasks running 
in partitions affected by the migration. As an example, 
consider a 16-PE system, where PEs 0 to 3 form P,, PEs 
12 to 15 form P d ,  and PEs 4 to 7 and 8 to 11 form two 
more partitions. Then, to transfer information from PEs 
in P, to PEs in Pd  will require using subnetworks associ- 
ated with either PEs 4 to 7 and/or PEs 8 to 11. 

Assume the migration influences a sequence of partitions 
Qk, 1 2 k 2 R. If partition Qk delays the migration by 
the indirect overhead time TI ,k ,  the total indirect over- 
head time is given by 

R 

TI = C T1,k 
k = l  

If partition Qk utilizes Sk PEs and is delayed by the 
migration by time TPjk ,  the migration penalty MP is 
defined as 

MI' is a resource-time product. If any influenced parti- 
tion has a strict time constraint (e.g., real-time process) 
and the migration would violate the constraint, an infinite 
migration penalty is incurred (MP=m), which effectively 
prohibits the migration from being performed. TI,K and 
TP,K are functions of the influenced partitions' network 
usage and the network implementation. 

Two migration methods are (a) passing the migrating 
task through the affected partition without halting the 
task in the affected partition, and (b) halting all intercon- 
nection network use of the task in the affected partition 
while the migration is performed. If the affected task is 
running in SIMD mode, only (b) avoids possible erroneous 
computations. In SIMD mode, PEs send messages into 
the network, and, generally, in the next step read the 
messages. Because the PEs are implicitly synchronized 
via hardware, no check is required whether a message 
arrived before readine from the network. However. if a 
migrating task delaysusome of the messages in the parti- 
tion, these messages might not have arrived a t  their desti- 

4 PARAMETERIZATION OF OVERHEAD 

Assume that the overhead caused by dattransfers is 
known, and that a task in P, is to be transferred to Pd.  
Then the time required to transmit all necessary informa- 
tion from the kth source PE  to the kt' destination P E  is 
given by TTRPE,k (it is assumed size P, = size Pd). 

Assume a t  t=O,  a new task has entered the system, or a 
need for possible reconfiguration of a task has arisen. The 
system controller determines which migration is to be per- 
formed, if any, using time TDEC. Once the decision to  
migrate has been made, the system controller must allo- 
cate a Pd,  which requires time Tpa. It must then 
instruct the P, controller to migrate its current task to 
P d ,  and instruct the Pd controller to accept the migrated 
task. This migration initiation takes time TMI. 

The P, controller now suspends the task, then the task is 
transferred and resumed. Because these procedures differ 
for multiple-SIMD, MIMD, and partitionable 
SIMD/MIMD machines, the machine types will be dis- 
cussed separately. 

The PEs in a multiple-SIMD machine execute only 
instructions broadcast to them by a CU. Therefore the 
instructions that save the PE  state (e.g., CPU registers) 
and move the task must be broadcast by the CU. Thus, 
the user task in the CU (i.e., the process that broadcasts 
the user program PE instructions to the PEs) must be 
stopped first, and then the CU must broadcast instruc- 
tions to the PEs that save the PE state. The CU also 
determines which information from both the PEs and CU 
must be moved in order to migrate the task. The overall 
time to  save the SIMD state of the task is denoted Tsss. 

Then all necessary information in the CU in P, must be 
moved to the CU in Pd,  and the information in the PEs 
of P, must be moved to  the PEs  of Pd. The movement of 
the CU information takes TTRCU. Some machines permit 
an arbitrary assignment of CUs to PEs (e.g., MAP [7]), so 
the CU can be reassigned to Pd ,  and TTRCU is zero. 
Because all PEs execute the same program in SIMD 
mode, the amount of data to be transferred is the same 
for all PEs, and thus TTRPE,k=TTRPE V k. All SIMD 
instructions are broadcast to the PEs by the CU. If no 
overlap between CU and PE  operations exists, the CU 
will be busy broadcasting SIMD instructions for time 
TTRPE, resulting in a maximum task transfer time of 
TTRCU + TTRPE. Some systems, e.g., PASM Ill], have 
the capability to overlap CU and PE  operations, and thus 
a lower bound for the total time to move the CU and PE  
information is given by max(TTRCU, TTRPE). If the PEs 
contain a DMA controller, the CU must first initialize the 
PE  DMA controllers (which takes TDMA) and can then 
move its own state (which takes TTRCU), while the PEs' 
DMA controllers move the PE  state simultaneously. In 
this case, the total time to move the PE  and CU informa- 
tion is given by TDMA + max(TTRpE, TTRCU). 

After the necessary information is moved, the CU in Pd  



restores the SIMD state of the task, which requires time 
TRss. Included in this time is the time needed to restore 
the CU and the P E  state. 

A worst case estimate of the migration time of a SIMD 
task in a multiple-SIMD machine is therefore given by 

Assume that in an MIMD partition containing R PEs, 
each P E  executes one MIMD process. Consider the pro- 
cessor that executes process k. After the partition con- 
troller informs the P E  of the migration, the P E  suspends 
its process (using time TSPE,k) and moves all necessary 
information to the appropriate destination P E  (using time 
TTRPE k). The destination PE resumes the process (using 
time kRPE,k). Therefore the overall time to suspend, 
transfer, and resume process k is TsP:3,k + TTRPE,k + 
TRPE,k. Because all PEs can operate individually, the 
maximum over all k is the time when all PEs have 
resumed execution. A migration time in an MIMD 
machine is therefore given by 

In a partitionable SIMD/MIMD machine, capable of 
dynamically switching between MIMD and SIMD modes, 
three cases have to be distinguished: the task to be 
migrated is (a) purely MIMD, (b) purely SIMD, and (c) 
use both modes of parallelism. Case (c) encompasses both 
(a) and (b), and is discussed first. 

The SIMD state may have components in the CU and the 
PEs, and saving this state requires time Tsss. Both PEs 
and CU will be involved in saving the SIMD state, but 
they may operate concurrently, and there may be overlap 
with other migration steps (e.g., saving of CU information 
might proceed concurrently with saving the PEs' MIMD 
state). Once the SIMD state has been saved, the CU can 
transfer its information (using time TTRCU), while the 
PEs suspend their MIMD state, transfer their memory 
and register contents (SIMD and MIMD), and restore 
their MIMD state, using time 

R 
~ ~ x ( T s P E , ~  +TTRPE,~ +TRPE,~ . 
k=l 

Finally, the SIMD state in PEs and CU can be restored, 
using time TRSS. Therefore an upper bound for the 
migration time of an SIMD/MIMD task is: 

TSMJMD = TDEC + TPAL + TMI + TSSS + 

In all cases above, TI  is part of TTRPE,)(. MP is an addi- 
tional factor that must be considered. 

migration, was studied. Several motivations for task 
migration were discussed. The task migration cost was 
classified into direct and indirect overhead, and migration 
penalty. The parameters for task migration cost were 
examined for multiple-SIMD, MIMD, and partitionable 
SIMD/MIMD machines. The results here can be extended 
to the cases where size P, # size Pd and where processors 
are not paired with memories. For these extensions and 
further information see [8]. 

Acknowledgment-- We thank J. Armstrong for his 
comments and help in preparing the final version of this 
paper. 

REFERENCES 

BBN, Inside the Butterfly Plus, BBN Inc., 1987. 
W. C. Brantley, K. P .  McAuliffe, J. Weiss,. 11RP3 
processor-memory element," 1985 Int'l Conf. Paral- 
lel Processing, Aug. 1985, pp. 782-789. 
'1'. L. Casavant, J. G. Kuhl, "A taxonomy of 
scheduling in general-purpose distributed computing 
systems," IEEE Tram.  Software Engg., Vol. SE-14, 
Feb. 1988, pp. 141-154. 
E. J. Delp, H. J. Siegel, A. Whinston, L. H. Jamie- 
son, "An intelligent operating system for executing 
image understanding tasks on a reconfigurable 
parallel architecture," IEEE Computer Society 
Workshop on Computer Arch. for Pattern Analysis 
and Image Database Management, Nov. 1985, pp. 
217-224. 

J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, 
"Architecture of a hypercube supercomputer," 1986 
IntJl Conf. Parallel Processing, Aug. 1986, pp. 653- 
660. 
Intel Corp., A New Direction in Scientific Comput- 
ing, Intel Corp., 1985. 
G. J. Nutt, "Microprocessor implementation of a 
parallel processor," 4th Ann. Symp. Computer 
Arch., Mar. 1977, pp. 147-152. 
T. Schwederski, H. J. Siegel, The PASM Parallel 
Processing System: Hardware Design and Operating 
System Concepts, Purdue Univ. Tech. Rep. in prep. 
E. Shamir, E. Upfal, "A probabilistic approach to 
the load-sharing problem in distributed systems," J. 
Parallel and Distrbuted Computing, Vol. 4, Oct. 
1987, pp. 521-530. 
H. J. Siegel, Interconnection Networb for Large- 
Scale Parallel Processing: Theory and Case Studies, 
Lexington Books, D. C. Heath and Co., Lexington, 
MA, 1985. 
H. J. Siegel, T. Schwederski, J. T. Kuehn, N. J. 
Davis IV, "An overview of the PASM parallel pro- 
cessing system," in Computer Arch., D. D. Gajski, 
V. M. Milutinovic, H. J. Siegel, B. P .  Furht, eds., 
IEEE Computer Society Press, Washington, D.C., 
1987, pp. 387-407. 
L. W. Tucker, G. G. Robertson, ''Architecture and 
application of the Connection Machine," Computer, 
Vol. 21, Aug. 1988, pp. 26-38. 

One important aspect of system reconfiguration, task 



Abstract 

Sparse Matrix Computations on an FFP Machine* 
(Preliminary Version) 

B.T. Smith, R.K. Singh and G.A. Magb 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 27599-3175 

We describe and analyze an algorithm for performing Gaussian elim- 
ination on sparse linear systems with an FFP Machine, a small-grain 
parallel computer. Given an equation Az = 6, where A is an n x n ma- 
trix, our algorithm yields a permuted upper-triangular system, from 
which we obtain t by back-substitution. If A has e non-zero entries 
and iff fill-ins are created during elimination, then our algorithm solves 
the system in O(h x ( e  + f))  time, using O ( e  + f )  processing elements. 
(The parameter h is the height of the FFP Machine's connection net- 
work, which is O(log(e + f)).) The algorithm makes no assumptions 
about the structure of A and requires no pre-processing. The pivot 
order may be given in advance, or it may be chosen at run-time by 
the Markowitz heuristic with only a linear increase in cost. We also 
present results of simulations on sample problems, both randomly gen- 
erated and from the Boeing-Harwell set. The results of the simulations, 
in operation counts, are used to estimate the performance of an FFP 
Machine hardware prototype. 

The Problem 

FFP Machines 
FFP Machines are a family of small-grain, parallel computers [7] 

designed to execute the FFP languages of Backus [l]. An FFPXI, as 
shown in Figure 1, consists of a linear array of PEs, called the L-array 
of L-ce lb ,  connected to each other and to an interconnection network 
of T-cells .  Each L-cell is a small, programmable computer with an 
ALU and a very small memory. There is also a front-end machine that 
handles 1/0, but for the most part FFP execution takes place in the 
L-cells and T-cells. In a simple FFPM, as shown in Figure 2, the T- 
cells are organized as a binary tree with an L-cell at  each leaf and the 
front-end machine above the root. A useful FFPM would contain at  
least a few thousand L-cells. 

FFP's primary datastructure is the sequence, and the FFPM treats 
sequences as dynamic  arrays  [6]. That is, it is possible to randomly ac- 
cess the elements of a sequence, and at the same time easy to add or 
delete elements at arbitrary positions. Moreover, elementsof asequence 
may be accessed either by relative position in the sequence or by con- 
tent, as in associative memory(51. Many of these operations correspond 
to FFP's primitive functions, but an FFPM can s u p ~ o r t  functions not . . 

Matrix problems are encountered in such disciplines as physics, en- in ~acku*'s  original language [8,9].   his paper shows how an FFPM 

gineering, econometrics and operations research. Common to many of 
can provide operations on sequences that are well suited to sparse ma- 

these problems is the occurrence of matrices that are sparse, i.e., many 
trix computation. Such operations may be added as new FFP primitive 

elements of the matrices are zero. 
functions to be used in Gaussian elimination and other computations. 

The matrices associated with problems from physical sciences and An FFP expression is placed in the L-array, each symbol in a differ- 

engineering, in addition to being large and sparse, are frequently strut. ent L-cell, and the FFPM evaluates the expression by rewriting inner- 

tured. For example, they may be symmetric, diagonally dominant, most function applications, known as reduc~ble  appltcairons or RAs, un- 

positive definite or banded. Hence, they lend themselves to an efficient til no more applications remain. The FFPM operates in machine cycles 
. -  

solution by a variety of special techniques 
In contrast, problems in such areas as operations research, non- 

linear optimization or management can yield unstructured sparse ma- 
trices. As a consequence, more general sparse matrix techniques have 
been developed for less structured problems [3]. Such techniques are 
characterized by relatively few operations per data element and an un- 
predictable, dynamic growth of data structures. These issues, as sum- 
marized in [2], necessitate dynamic storage management and efficient 
data structure handling methods. 

In the prevailing paradigm of parallel computation, we address these 
issues by considering a parallel form of the direct Gaussian elimination 
method, augmented by the Markowitz heuristic to  establish pivot or- 
dering, for the solution of systems of linear equations. The parallel 
approach we take is based on a computational model of a fine-grain, 
distributed-memory, network-based MIMD computer called the F F P  
Machrne (FFPM). In keeping with our interest in less structured prob- 
lems, we make no assumptions about the structure of the coeflicient 
matrices. We give a brief description of the FFPM architecture in the 
next section. The algorithm and results of its theoretical and experi- 
mental analyses are presented in the following sections. 

'This work WM supported in part by NSF g s n t  MP-8702277, and by the Office 
of Naval Raearch. Contract N00014-86K-0680. 

Figure 1: The components of an FFP hlacliine. 

- 
A 
U 
X 
I 
L 
I 
A 
R 
Y Y 

M Interconnection a n d  processing network M 
E E 
M - M 
0 ... 0 
R R 
Y Y 

Front-end rnclchlne 

- 
A 
U 
X 
I 
L 
I 
A 
R 



Figure 2: Partitioning creates a submachine for each RA 

of partitioning, execution and storage management. Porittiontng cre- 
ates an  independent sub-machine for each RA, consisting of the L-cells 
holding the  RA and a binary tree of T-cells, as shown in Figure 2. Dur- 
ing ezeculton, the  sub-machine's Gcells rewrite their RA by performing 
local computations and exchanging messages. Message packets are sent 
from the L-cells and contain instructions on how the T-cells shall treat 
them. T h e  sub-machine's T-cell network can select or sort messages, 
broadcasting the result t o  all L-cells in the sub-machine. The  T-cell 
network can also perform parallel prefix operations. A sub-machine 
might request extra space and suspend execution, as  occurs when an 
F F P  expression grows during evaluation. During storage managemeni, 
the contents of the L-cells. the L-cell images, are shifted through the  
L-array, retaining their l e f t -b r igh t  order, t o  make empty L-cells avail- 
able where needed, as  shown in Figure 3. The  shifted L-cell images 
obtain a new T-cell network in the  next partitioning stage, and execu- 
tion continues 

The Algorithm 
The  system of equat,ions Ax = b is given rorv-wise, as  an F F P  

sequence 

arid each row, 1s of the  fornr 

where the  i ih  row of .4 contains k, nonzero entries in colr~nlns j ( i ,  1). 
. . j ( i ,  k,).  'The r-ntrlrs b l .  . ., b ,  arc from the vector b. Each aiSj,,,,) 

con ta~ns  the correspor~ding coeficient in A along with its row and col- 
Illnrr ~iumhcrs .  and it has space for some additional values used during 
tllc conlputation. (For exar~iple. values used in choosing pivot elerncnts 
1)y the  hlarkowitz Iieuristic.) T h e  I I I I I I I ~ ~ ~  of values required per entry 
is inclt~pendent of the  matrrs  size, and for this reason, an entry might 
I)r an F F P  atom and r e s~de  in one I,-ccll. In that  case, new primitive 
1:FP functions would be required t o  operate on its components. Or ,  
11 could be a a~nal l  F F P  sequerlce, manipulated by the standard FFI' 
f ~ ~ n c t i o n s  'I'he choice would infltlence tlme and space performance on a 
particular FFPSI ,  but it 11% no effect on the algorithm or its analysis. 

\Vr will describe tht. algori~lrm in tllrre parts.  First, and in the  
greatest iletail, we present the hrrsir Gaussian elimination algorithn~. 
Second, we ~ I ~ s c r i l w  how the solut~on is obtained via back-substitution. 
Finally, w r  discuss how to  motiify the basic nlgorittrnr t o  choose pivots 
;st runt rnie, uslng the  hlarkow~tz het~ristic. 

(;ousstan ~ l tmtna l to r~ :  In~lially all rows are "active". \Ve cltoosr a 
( I I O ~ I - z r r o )  pivot element in all active row and subtract tlie appropr~ate  
rrr~lltiple of that row f r o ~ r ~  the other active rows, so that afterwards 
t l~cy  h;%vr 0s in thr. pivot t~lrmcnt 's column. Then we mark the pivot 

1:igure 3: During storage I I I ~ ~ I I ~ ~ I . I I I ~ ' I I ~ .  li-rel1 imilgrs arc s111ftc~l t o  
provide empty I,-cells where r~(1~1est1'd 

element's row as inactive and repeat the process. \\'hen there are no 
non-zero elements in active rows after n steps, if A is non-singular - 
we have the system in (permuted) upper triangular form, and we can 
find the solution easily by back-substitution. 

The algorithm proceeds by two types of operations: global opera- 
ttons, where the  whole matrix is contained in one RA, and row opero- 
ttons, where each row is contained in its own RA. The global operations 
choose the  pivot, broadcast the pivot row and update the values for tlie 
Slarkowitz heuristic. The row operations subtract the appropriate mul- 
tiple of the pivot row, and create fillins. Since Gaussian elimination is 
sofamiliar,  it suffices t o  describe in detail the "inner loop", as it applies 
t o  one active, non-pivot row. 

Suppose we have a 5 x 5 system of equations (neithrr large nor 
sparse) that  contains the following: 

321 +z3 -415 = 3 (row 2 = pivot row) 
Xz +213 = 5 (row 3 )  

and that  0 2 , 3  has been chosen as the  pivot. We will trace the effect of a 
single step on the third row. Figure 4 ( a )  shows row 3 a t  the beginning 
of the  st,ep. The  column numbers of the entries in the  pivot row are 
broadcast t o  the entire matrix in a global operation. and each active 
element counts those less than or equal t o  its own, shown as temp in 
Figure 4 (h) .  Each element also records whether one of these matchcs 
its own column number, shown as htl. Nest,  each entry ronlputes 
the number of elements in the  pivot row hettrfeen ~tself and its left 
neighbor. (This is done separately in each active row. by a parallel 
prefix computation.) This value, minus 1 if h l f  is lr-ue (temp in Figure 
4 (c)) gives the nuniher of fillins to be created to  the left of tlic entry 
'Slle fillin entries are created after an I.'TI'\l storage managcment r y c l ~ .  
'Tlic elements who are going to  bc " l ~ ~ t "  OII  this 5tc.p compute their 
relative order within the row. temp irr Figure 1 ( d )  (This is anot l~er  
parallel prefix computation, done separately in r-ach active row.) Now, 
in another global operation, the values in tlte 1)ivot row are broadcast 
once again, sorted I)y column nuniher in tlre T-crll network, and each 
entry t o  be hit receives the column nunrhrr and pivot row coefficient 
indicated by its index from the previous s t rp .  'I'his is s11otv11 i r i  Figure 
4 ( e ) ,  where frrnp now is the value from the pivot rmv. Finall!, i l l  

another row operation, the element ill t111, pivot colnnin 1)roadcasts the, 
quotient rtalue +temp arid every "hit" entr) prrforms  he nrultipl~cation 
and subtraction 

A subtle point of the algorithm is worth mentioning I ' l~r ,  newly cre- 
ated fillins do  not have column n~tnrhers until tllr p ~ v o t  row i s  hroatlcast 
the second time. (Shown by "-" ill Figurv 4 ( d ) . )  I%~.forc tlre pivot row 
IS broadcast the first tinie, there is no way. ln grn,,ral, for anotller row 
to  know how many fillins it will need. Nor IS thrr r  ally way to  know 
irliere they will he rreatrtl .  As wr rc~nnrkid  earlirr. all I,-c19ll i:. fairly 
small. It is rrasonahlr to iti;su~ne tli ;~t ~t rarr store scvcral small i ~ ~ l  l9gl,rs 
but it is not rea5onahle to .assume that i t  call storr, arbitrarily many 

c o l ~ ~ r ~ ~ r r  r~urrrbers. So,  t11e r e a s o ~ ~  for thr sccon(l I>~o;~dcast  of the 111vot 
row is sitnply that  we want, 1.0 create all fillills fol. ur~c. step of tile Galls- 
sian elim~nation in one E'FPhl storage rrrarrage~rr-nt cycle, rather tliarr 
deciding as each pivot row entry arrivcs \vhcther it requires a lillir~. 

\Ve analyze the Gaussian eli~ninatio~r ;iIgorithn~ as  follows. A n  L- 
cell does a I>ounded ~ r r ~ r ~ ~ h e r  of aritl1111~.1ir opcrn(lons for each valur 



col 
active T T T 
p-row F F F 
p-col F T F 

htl 
temp 

( c )  

value 
row 
col 

actzve 
p-row 
p-col 

hit 
temp 

(e) 

T T T 

F T F  
F T T  

value 
ro w 
col 

acttve 
p-row 
p-col 

hit 
femp 

mi 5 

T T T T T  
F F F F F  
F F T F  
T F T T T  
3 -  1 - 4 3  

value 
row 
col 

ac t~ve  
p-row 
p- col 

htt 
temp 

value 
row 
col 

acfive 

value 

actzve T T T 
p-row F F F 
p-col F T F 

htt F T T 
temp mi - 2 3  

T T T T T  
F F F F F  

' F F T F F  
T F T T T  

2 3 

T T T T T  

Figure 4: 
Snapshots of one row of a system of equations during one step 
of Gaussian elimination. Each column shows the contents of 
one entry  (one L-cell). The  coefficient, row and column num- 
ber are shown as  value, row and col, respectively. ("col = b" 
identifies elements of vector 6.) Booleans actrve, p-row and p- 
col show tha t  this is an  active row, not the  pivot row, with 
an entry in the  pivot column. The Boolean hit shows which 
entries correspond to  (non-zero) entries in the  pivot row. The 
values in temp are used for creating fillins in ( b ) ~ ( d ) ,  and are 
the pivot row entries in (e).  

it receives, so  we may restrict our attention to the  time required for 
communication. Suppose there are e entries in the original system and 
tha t ,  for t he  sequence of pivots we choose, f fillins are created. (For 
convenience we assume A is non-singular, so  that  e 2 n and so that  
Gaussian elimination will take n steps.) Clearly, we need O(e + f )  L- 
cells, and the  height h of the  binary tree of T-cells needed t o  connect 
them is O(log(e + f ) ) .  The  cost of shifting in the  original problem and 
of making room for fillins (over all n steps) is O(e+ f ) ,  since the  amount 
of space requested bounds the  cost of storage movement. Each entry 
or fillin is in a pivot row exactly once, so it is broadcast twice for t ha t  
purpose. Thus  O(e + f )  messages go through the root of a submachine 
of height O(h)  in n message waves. T h a t  requires O ( n  x h)  time t o  fill 
the  T-cell pipeline n times, plus O(e+ f )  time for the messages t o  arrive 
in sequence. Thus  there is a total of O ( h  x (e+ f ) )  t ime for broadcasting 
the  pivot rows. There are a fixed number of row operations for each 
step, and these only broadcast single values and perform parallel prefix 
computations. Each of these requires time O(h), so over n steps this is 
also O ( h  x (e + f ) ) .  We conclude tha t  the  entire Gaussian elimination, 
then, requires O ( h  x (e + f ) )  time. 

Back-substztutzon: Once we have the system in permuted upper-triangular 
form, it is easy to  finish solving the system by back-substitution. Each 
row (in an independent row operation) determines if i t  has the value 

for a variable by seeing if it has exactly one non-zero a,,, entry. (One 
parallel prefix operation can count the  number of entries.) If so, it 
computes the value of zj (by one division) and broadcasts i t  on the  
next global operation and becomes inactive. Rows tha t  remain active 
receive the  E values and eliminate those variables from their equation. 
Eventually, assuming the  system has a unlque solution, every row will 
have found the  value of one variable. The  time for this is O(h  x n ) ,  
which is again O(h x (e + f ) ) .  

Choostng pivots: We modify the Gaussian elimination algorithm t o  
choose pivots a t  runtime by the Markowitz heuristic, as  follows. Let 
each entry keep two additional values, n r  and nc. T h e  number of other 
non-zero elements in an entry's row will be  nr ,  and the number of other 
non-zero elements in its column will be tic. We can initialize the  n r  and 
nc values by broadcasting the  row and column numbers of the  original 
matrix entries, and letting each entry count the  number of matches. 
Every time an  entry becomes inactive (or zero), it globally broadcasts 
its row and column numbers, and other (active) entries decrement their 
n r  and nc values, respectively, if the  row or column numbers match. 
Every time a fillin is created, it globally broadcasts its row and column 
numbers, and other (active) entries increment their n r  and nc values, 
respectively. T o  choose a pivot, each active entry computes the product 
of i ts n r  and nc values, and the  T-cell network chooses a minimal one. 
T h e  additional t ime required for this is O(h x (e+ f ) ) ,  with the  analysis 
much like that  for the  basic algorithm. 

The Simulations 
Our simulations supplement the  analysis presented in the  previous 

section. T h e  set of sample problelns contains both randomly generated 
matrices and matrices from various real-life applications (obtained from 
the Boeing-IIarwell sparse matrix collection[4]). The  silnulator was 
written in C and run on a Convex C-220 system (two processors), with 
an implicit vectorizing/parallelizirrg compiler. 

The  simulator is in two parts.  The  first part is used t o  study fillin 
behavior and to  count the number of floating point operations in tri- 
angularizing a coefficient matrix. I t  omits the  back-substitution com- 
putation, but  it does count the  work required to  choose pivots by the  
hlarkowitz heuristic. T h e  output  of the  first part of the sitnulator is in- 
put t o  the second par t ,  which uses parameters for an  FFPM hardware 
prototype t o  provide performance estimates. In the remainder of this 
section, we describe the  two parts of the simulator and summarize its 
results. 

The  coefficient matrices are transformed into a 0 /1  representation, 
i.e., non-zero entries are replaced by 1s and zero ent,ries by 0s. Due 
to the  relatively small size of our sample problems and the  simplicity 
of programming, we use dense matrix representations for storing the  
011 matrices. We note, however, t ha t  the  sparse nature of the problem 
is maintained in t ha t  only operations for non-zero entries are counted. 
The  simulator follows the  basic Gaussian elimination technique. T h e  
hlarkowitz heuristic, used to  choose pivots, t,ends to  minimize the  num- 
ber of fillins, retaining the  sparsity of a matrix. Numerical stability 
issues were not taken into account,  but  one can add a threshold based 
criterion for selecting a numerically stable pivot without changing the 
complexity of the algorithm. 

The  results of the first part of our simulations on randomly gen- 
erated matrices and matrices from the  Boeing-Ifarwell collect.ion are 
presented in Tables 1 and 2, respectively. T h e  n u n i h ~ r  "entries" is the 

Table 1: Randomly generated matrices 



Table 2: Matrices from the  Boeing-Harwell collection. 

iitlrr~her of non-zero entries in the  initial coefficient matrix, '%llins" is 
the number of entries created during Gaussian elimination, and "se- 
quential operations" is the sum of divisions, multiplications, and sub- 
tractioris performed. T h e  results presented in Table 1 were obtained 
by averaging the  results of 5 separate trials on random matrices wit11 
an average density of 5% 

Next we present the  performance estimates produced by the second 
part, of the s i~nulator .  Due to  the pipelined nature of t,he FFPhf ar- 
ch~tecture ,  there is a considerahlr overlap between useful computation 
and conrn~unication. Therefore, it is most meaningful t o  account for 
the  net solution tirnc, for a problem hfessages a re  typically made up 

sequential 
operations 

30628 
5003 

301068 
2060332 

15132 

of several packets, based on d a t a  size and the format requ~ted by the  
'r-cells The  speed of ope ra t~on  is directly governed by the parameters 
of hardware enlployed The  parameters used in t h ~ s  model were derned 
froin the  specificat~ons of a transputer (20 hIIPS) operating a t  the clock 
rate of 20 MHz T h e  commun~catron channels In the tree-network were 
modeled t o  be b ~ t - s e r ~ a l  with peak throughput of 10 hlbps T h e  com- 
rriunication channels among cells :n the L-array were cons~dered to  be 
I)) te wide wtth a peak da t a  rate of 10 MBps 

order 

180 
199 
54 1 
600 
822 

Conclusions 

entries 

2659 
70 1 

4285 
13760 
4790 

discipline 

astrophysics 
stress analysis 

chemical kinetics 
oil recovery 

linear programming 

We have described and analyzed an  algorithm for performing Gaus- 
sian elimination on sparse matrices with an FFPM.  This work is rele- 
vant t o  F F P M  development in two ways. First ,  it demonstrates how 
the basic FFP language can be extended with new primitive operations, 
to better suppor t  operations on sparse matrices. Secondly, i t  provides 
performance estimates for an F F P M  hardware prototype on a real-life 
problem. 

Acknowledgements 

fillins 

145 
703 

11442 
30304 

1701 

We would like t o  thank Dr. A.M. Erisman and Dr. R.G. Grimes of 
Boeing Computer Services, Seattle, Washington, for providing us with 
Boeing-Harwell collection of sparse matrices. Mr. Mike Padrick and 
hfr. Larry Mason, of Academic Computing Services a t  U N C ,  provided 
assistance with systems related issues on  the  Convex computer.  In the 
Department of Computer Science, Vernon Chi,  William Partain and 
Ilonald Stanat  provided encouragement and valuable suggestions, and 
rL,L --.. h C*,.-..-- ..-,.A......A +Ln C 

mean size of 
pivot row 

7 
4 
14 
37 
5 

~ , ~ . t r v ~ a l ~  o r u 6 ~ 1 r r  p ~ u u u ~ c u  b r l c  nl(;urca. 

The  results are shown in Tables 3 and 4, corresponding to  the entries 
ti1 'Sables I and 2. tiere "parallel operations" is the  sum of all divisions, 
rnultiplicabions, and subtraction operations performed in each disjoint References 
sub-machine, and corresponds t o  the  operations performed on the last 
Inessage received by an  L-cell. W'e have presented the  results of total [I] 3 .  Backus. Can  programming be liberated from the  von Neumann 
solt~tiorr timc for the problems under two distinct situations, the  first style'? A functional style and its algebra of programs. Communica-  
wlrr.re the pivoting sequence was defined before elirni~iation, and the tzons of the A C M ,  21(8):613-641, 1978. 
st~cond where hlarkowitz heuristic was employed to  determine the piv- [2] I.S. Duff. Tlie use of vector and parallel computers in the solution of 
oting seqiiriice during the  computation. (Both use the same ordering 1 - - - A -  ----" I ;  ---. ..-..-, :--- T- r c..,.I- c S:C- P ,.-- 
for r a rh  matrix.) T h e  cost of choosing pivots a t  runtime is surprisingly 
I~iglr, hut this is due, in par t ,  t o  the size of the  message packets required 
I I I  thr. design being sinrt~latt.d. 

order parallel t ~ m e  (msec) 1 
operatlolls given order ] runtlrne pivoting 

2675 
2108 

511 12078 161 693 
1500 25682 394 1861 
822 X I 5 1  128 352 

order 

a p n l a c  u l r c a l  C ~ U ~ ~ ~ U L I J .  111 OIIYC ~ L U L C  I_~LCCI&LIJ&L ~ U I I I ~ U L I I I ~ ,  

Birkhauser, 1986. 

[3] I.S.  Duff, A.M. Erisman, and J .K. b i d .  Dtrect Methods for Sparse 
Matr tces .  Clarendon Press, 1986. 

1338 
7084 

300 19989 293 1497 
400 41042 3172 
500 -, - -  1 1 3 1 9  lOKl 5708 

parallel 
operattons 

[A] I.S. Duff. R.G. Grimes, and J .G .  Lewis. Sparse M a f r t z  Test  Prob- 
l ems .  Technical Report.  Computer Science and Syst,ems Division, 
Ilarwell Laboratory, 1887. time (msec) 

glven order 1 runtlme pivoting 
[5] G . A .  Mag6. Data  sharing in an F F P  Machine. In Conference 

Record o f  the 1982  A C M  Sympos tum on L I S P  and Funcltonal Pro- 
gramming ,  pages 201-207, 1982. 

[6] G.A.  Mag6 and W. Partain. Implementing dynamic arrays: a chal- 
lenge for high-performance machines. In Proceed~ngs of the Second 
Internattonal  Conference o n  Supercomput~ng ,  pages 491-493, 1987. 

[i] G.A. hlag6 and D.F. Stanat .  The F F P  Machine. In Htgh-Leuel 
Language C o m p u t e r  Archttectum, Computer Science Press, 1988. 

[dl D Mlddleton and B T Smlth F F P  Machine support for language 
extensions In Proceed~ngs  of the 19th Hawanan I n i f m a t t o n a l  Con-  
ference on  S y s t e m s  Sctences,  pages 59-65, 1986 

['J] B.T.  Smith and D. Middleton. Exploiting fine-grained parallelism 
in production systems. In Proceedtngs o f  the Seventh Blenniol  C o n -  
ference of  the Canadtan  Socteiy for Computational  Studtes of Intel- 
/ tgence,  pages 262-270, 1988. 

, . lahle  ~'rrfr~rinarirc estimates ( Roeing-Haraell matrices) 



A PARALLEL ALGORITHM FOR F I N I T E  ELEMENT COMPUTATION 

ABSTRACT 

P. Subramaniam N. Ida 

Picker International Electrical Engineering Department 
595 Miner rd. The University of Akron 
Highland Hights, OH. 44143 Akron, OH. 44325 

The work presented here deals with the 
parallel implementation of finite element analysis 
algorithms for computation of electromagnetic 
fields. The methods apply equally well to other 
areas. The choice of a parallel implementation is 
based on the fact that many of the operations and 
algorithms used for finite element analysis (FEM) 
are essentially parallel or can be parallelized 
with a moderate level of effort. The solution of 
electromagnetic field problems is particularly 
appropriate into the context of parallel machines 
because of the open boundary nature of the problem 
and the size of the finite element matrices. 

INTRODUCTION 

The basic stages of the finite element method 
have been parallelized and a working implementation 
has been tested. The first stage in the solution is 
the definition of elemental matrices. The sizes of 
these matrices range from as little as 3x3 for a 
simple 2-D element to 60x60  or more for 3-D 
elements. The solution of the system of equations 
is handled by a parallelized Gaussian elimination 
algorithm. Postprocessing consists essentially of 
calculating field intensities and flux densities as 
well as coil impedances. 

The essential steps in FEM analysis are: 
1. Discretization of the solution domain 
2. Calculation of elemental matrices 
3. Assembly of a global matrix 
4. Solution of the system of equations 
5. Post-processing of the results 

This work concentrates on steps 2 and 3. Step 1 
is a geometrical problem that includes definition 
of a geometry, decision on a discretization level, 
input of a variety of geometrical data, material 
properties etc. This is usually handled through a 
graphics preprocessor and is not suited for 
parallel machines. The interaction of the designer 
with the computer at this stage is essential and 
therefore, the best approach is to use a graphics 
workstation. The input for the FEM program is a 
geometric and problem dependent data file. This is 
assumed to have been generated for the purpose of 
this work 

The solution of the system of equations 
generated in the FEM process has been treated 
elsewhere [ 2 ] .  The parallel solution routines 

developed are used in conjunction with the programs 
described here. 

Finally, the postprocessing step has been left 
out because of its highly specialized nature. This 
may include calculation of electromagnetic fields 
everywhere or, perhaps a single scalar value like 
the total energy in the system or the impedance of 
a coil. 

THE F I N I T E  ELEMENT METHOD 

A brief outline of the FEM is given below with 
special reference to the following boundary-value 
problem: 

A-A, on boundaries of G (lb) 

where v , ,  w y  are material properties associated 
with the solution domain and J is the current in 
the domain. In the solution domain, G, the magnetic 
vector potential (MVP) A satisfies Poisson's 
equation, while on the boundary B of the solution 
region, the MVP or its first derivatives are known. 
Here, and throughout this work, reference is made 
to the magnetic vector potential. Equation 1 
however, applies to a variety of physical 
quantities, vector or scalar. Time dependent 
problems may also be considered but for simplicity, 
these are not discussed here. Also, a 2-D equation 
is used. 3-D equations are treated similarly with a 
somewhat lengthier process and with larger arrays. 

The boundary-value problem in Eq. (1) can be 
stated by the following variational problem: 

A-A, on boundaries of G (2b) 

Minimization of F(A) yields the "best solution" 
to the original equation. 

The case of known normal derivatives is not 
included in Eq. (2). This is a natural boundary 
conditions for the functional and need not be 
specified. 

The solution region is divided into a number of 
"finite elements". Here, each element is a 
rectangle or a triangle. The elements are assumed 
to be interconnected at a number of nodal points 



situated on their boundaries. The MVPs at these 
nodal points are the unknowns. 

The MVP within each element can be defined 
using various approximations. There are two basic 
methods of defining these approximations. One is 
based on products of polynomials in a local system 
of coordinates while the other is based on a 
polynomial over the element, defined in the system 
of coordinates in which the problem is solved [I]. 

The two methods are quite different and will be 
outlined briefly below as this is necessary for 
their implementation. To illustrate the process we 
use the two simple elements in Fig. 1. 

ISOPARAMETRIC FINITE ELEMENTS 

The approximation used for the function A in 
the interior of the finite element in Fig. la is: 

where N1 are a set of shape functions defined at 
the four nodes of the elemet and Al are the values 
of the unknown function at the same nodes. 
Similarly, the derivatives of A can be taken as: 

aA(x,y) 2 aN1 - ~A(x,Y) 2 % 
ax i-1 ax Ai ay i-1 ay ( 4 )  

The functions N1 as well as their derivatives 
aNl/ax, aNl/ay need to be known. The standard 
method for their calculation is to find them in a 
local system of coordinates where they are 
extremely simple and then to map them into the 
global system of coordinates. The derivatives with 
respect to x and y are calculated as: 

where [J] is the Jacobian matrix. 

These are now substituted in Eq. (2). In order 
to find a solution to the problem, the functional 
in (2) is minimized by setting it's first 
derivatives with respect to each unknown to zero. 
This produces an algebraic equation for each 
unknown. Rather than doing this for the whole 
solution domain, it is done for each element 
separately and the contributions from separate 
elements are summed up in a global system of 
equations. 

To produce the elemental contributions, the 
terms in Eq. (2) need to be evaluated. This is done 
numerically by Gaussian quadrature. 

where Wt,WJ are weights and ( I , ~ J  are quadrature 
points. This integration is done locally and then, 
using the shape functions, mapped to the global 
system of coordinates. For a simple element like 

this two points in each spatial direction are 
sufficient. For more complex elements, more points 
may be required. 

Implementation on the MPP 

Implementation begins by creating three arrays: 
SFl,SF2 and SF3 where SF1 holds the shape functions 
of the four nodes as four rows of four entries 
each. Each column holds the shape function for one 
quadrature point. Similarly, SF2 holds aNf/af in 
four columns, each column corresponding to a 
quadrature point and each row to a nodal point of 
the element. SF3 has the same structure for aNJ/av 

The first step in the computation of the 
elemental matrices is the calculation of the 
Jacobian (Eq. 5). It is stored in four arrays: 
RJAC1, RJAC2, RJAC3 and RJAC4. RJACl holds the 
first coefficient (RJAC(1.1) for 128 elements 
calculated in parallel. RJAC2 contains the second 
coefficient (RJAC(1,2)), RJAC3 contains RJAC(2,l) 
and RJAC4 contains RJAC(2,2). The determinant of 
the Jacobian is calculated and stored in array DETJ 
for all elements in parallel. The inverse of the 
Jacobian needed in Eq. (5) is now found for all 128 
elements by a single divide of the RJAC arrays by 
the DETJ array. The results are placed back into 
the RJAC(i) arrays. 

The derivatives of the shape functions with 
respect to x (Eq. (5)) are calculated by 
multiplying RJACl by the SF2 array, RJAC2 by the 
SF3 array and adding the results together. The 
calculation of the derivatives with respect to Y is 
found as the sum of RJAC3*SF3 and RJAC4*SF3. 

The contributions to the elemental matrix in 
Eq. (6) are found by parallel array multiplication 
of each of the four DNDX(i) array by DNDX(j), 
including itself and adding these to the product of 
the DNDY(i)*DNDY(j) arrays. The material 
properties RXI ( v , ) ,  RYI ( v y )  are taken from array 
MAT by shifting operations. From this, the 16 
contributions to the elemental matrices are found 
and entered in a single array (RRR). Each element 
takes the first 16 rows on a single column. 

The global equation assembly proceeds by moving 
each value in the elemental matrix into the global 
matrix. 

To create the right hand side (RHS) of the 
system of equations, the same process is used. As 
is clear from Eq. ( 2 ) ,  The current density J is 
multiplied by the shape functions in SF1 and 
integrated using Eq. (6). An elemental column 
vector is created and this is later put in a global 
RHS vector. 

The method outlined can handle up to 128 
elements in parallel. It is possible to extend this 
to any number but it requires handling multiple 
arrays. Since in a FEM analysis, most of the time 
is spent in the solution process this was not 
considered worth while. There are two problems 
associated with this method. One is the need for 
sequential insertion in the global matrix. The 



second, is in the number of arrays required. Since 
the number of arrays is relatively large (about 20 
for a four node element), the only elements that 
can be handled in this fashion are elements with a 
small number of nodes (3 to 6 nodes). Other types 
of elements need special considerations. This may 
seem limiting but most FEM programs use these 
elements. For more complex elements, elemental 
matrices can be combined in arrays, with fewer 
parallel matrices at each step. Alternatively, the 
method of storage in the following section is used. 

DIRECT DEFINITION OF ELEMENTAL MATRICES 

Another method for the definition of the elemental 
contributions is to assume that the distribution 
within the finite element is of the following 
form [ll 

If this polynomial is written at the three 
nodes of the element in Fig. lb, we get three 
equations in the unknowns a, b and c. By solving 
these equations we get: 

where N I ,  Nj, N, are the shape functions given by 

where : 

and xk, ye are the x and y coordinates of node k ,  
k-i,j,m. D is the area of element ijm. 

The expressions in Eq.(9) are substituted into 
the functional F(A). Minimization of F(A) yields 
a characteristic equation for triangle ijm: 

where : 

A global equation in the form [K]IA)-IF) is 
assembled by accumulating the contributions of all 
elemental matrices (Eq. (11). 

Implementation o n  the MPP 

The parallelization process can be divided into 
two phases. In the first phase, the elemental 
matrix is computed where the 9 coefficients are 

calculated in parallel. In the second phase, a 
number of elemental matrices are placed in the 
global matrix concurrently. 

First, the elemental matrix [K], in Eq.(ll) 
is rearranged into the following form: 

where 

alaj atam] rib{ b,bj 
[Klel- ajal ajaj ajam [kIe2- bJbl bjbj bjbm (14) 

amai amaj amam bmbi bmbJ bmbm 

The two matrices in (14) can be further 
represented as 

where 

Based on the expression in Eq.(lO), [PI and [Q] 
are now represented as: 

where [PI], [PZ], [Ql] and [Q2] are the two parts 
of the expressions in Eq. 10a and lob. 

Special consideration is given to the 
calculation of D, the area of triangle ijm. In 
order to perform the divide operation in Eq. (13), 
an array, [Dl is created 

where 

These two arrays can be further represented in 
terms of the coordinates of the three nodal points: 

where [Sl] has xi propagated in all nine locations 
and [Rl] has y l  propagated throughout. Similarly, 
[S2] and [R2] contain xj and yj respectively and 
[S3] and [R3] contain xm and y, propagated 
throughout. 

Finally, the elemental matrix of triangle ijm 
is obtained by performing one array divide 
operation: 

At this point, the calculation of the elemental 
matrix has been parallelized. However, for the 
element used here, each array operation involves 
only 9 coefficients. A number of elemental matrices 



can be computed concurrently by creating a whole 
plane or nearly a whole plane of data before any 
array operation is carried out. As an example a 
rectangular mesh with 210 triangular elements is 
used (Fig. 2). The mesh can be partitioned into 8 
sets of elements that have mutually exclusive nodes 
as shown. All nodal coordinates of elements in this 
set are placed in [PI], [P2], [Ql], [Q2] in 
Eq.(17), and [Sl], IS21, IS31, [Rlj, [R21, [R3] in 
Eq.(20) to form nearly a whole plane of data. These 
elements can be assembled in parallel. Once the 
elements in a set have been assembled, a new set is 
treated until all elements have been assembled. 

A Parallel Pascal code has been developed based 
on the above parallel algorithm and applied to 
perform global equation assembly on the MPP for the 
finite element mesh shown in Fig. 2. The total 
processing time is 114.47 ms including the time 
needed for local nodal numbering. A larger portion 
of the total processing time has been spent on 
forming whole planes of data. Since the x and y 
coordinates are stored in two arrays, considerable 
use of fast row and column propagation routines has 
been made. Thus, the assembly routines are not 
particularly efficient for elements with few nodal 
points. 

There are some important elements, such as 3D 
solid and shell elements, etc., which are extremely 

Figure 1. Two finite elements, a. Isoparametric 
element defined in a local system. b. Triangular 
element defined in a global system of coordinates. 

Table 1. Processing time on the MPP for matrix 
assembly for different finite element meshes. Time 
is in seconds 

No. of No. of Band - I Equat. I Elements I width Time on 
the MPP 

complex and require considerable computer 
resources. For these elements, parallel assembly of 
the equations is a significant step towards 
improving solution times and, in some cases 
(boundary integral elements) may be more 
significant than the solution of the system of 
equations. For these elements, the method outlined 
becomes more efficient as the number of nodes per 
element approaches 128. 

CONCLUSIONS 

Two methods for assembly of systems of equations 
arising from finite element analysis have been 
presented. One is particularly suited for elements 
with few nodal points while the other is for 
directly defined finite elements. The time involved 
in assembly is not considered to be significant 
compared with the time needed for solution. 

REFERENCEB 

[I] 0. C. Zienkiewicz, The Finite Element Method in 
Engineering, third edition, McGraw-Hill Book 
Co., London, 1977. 

[2] J. S. Wang and N. Ida, "Parallel algorithms for 
direct solution of large systems of equations", 
these proceedings. 

Figure 2. Elements in a mesh with 
mutually exclussive nodes. 



THE FAST FOURIER TRANSFORM AS A TEST CASE FOR 
A SYSTOLIC DATA FLOW MACHINE 

Doron Tal, John Comfort, Maria Martinez 
School of Computer Science 

Florida International University- 
The State University of Florida at Miami 

University Park, Miami, Florida 33199 

ABSTRACT 

The Systolic Data Flow Machine (SDFM) is a new hybrid 
architecture concept that provides a new pattern for paral- 
lel processing. It is a two level architecture that combines 
the efficiency of systolic arrays with the elegance of a data  
flow architecture. The SDFM is based on the partitioning of 
da ta  flow programs (graphs) into subgraphs of sufficiently 
small size so that they may be loaded into programmable 
systolic arrays, called processing elements. In this paper, 
we map a F F T  algorithm onto a suggested processing el- 
ement topology in order to demonstrate the utility of this 
approach, and to investigate the exploitation of the natural 
concurrency of this algorithm. This paper should be con- 
sidered as an interim report from a major project to design 
and implement a SDFM computer system. 

Keywords: F F T ,  Data Flow, Systolic Arrays, Parallel Pro- 
cessing, Mapability. 

INTRODUCTION 

Recent trends in computer systems are the distribution of 
computation among physical processors, and the search for 
alternatives to  the classical sequential (von Neumann) ma- 
chine. Data flow machines [8,2,6,7,11], and systolic array 
processors [10,9,1]. are such alternatives. 

The prime features which make the Data Flow model so 
promising are its capabilities to automatically distribute 
control down to the level r,f operations on scalar opirands, 
and efficiently to  exploit, on a large scale, an algorithm's 
inherent parallelism. Unfortunately, experience with Data 
Flow machines has revealed several serious problems. The 
absence of explicit storage, operand accumulation, the law 
of granularity, and the need to control and support large 
amount of interprocessor communications impose serious 
overhead problems. 

Systolic arrays - large regular arrays composed of identi- 
cal processors interconnected in a regular pattern - can 
efficiently support parallelism at  an extremely fine level of 
granularity with no overhead. Systolic architecture is very 
attractive from the hardware viewpoint, for many proces- 

sors interconnected by short cornmunication paths could 
be effected by an economical VLSI design and implementa- 
tion. It is also extremely attractive for the implementation 
of algorithms composed of a large number of similar com- 
putational cells. It does not seem to be directly applicable 
to  support a general computing environment. Thus, it ap- 
pears unlikely that computers based exclusively on either 
architecture will be able to  compete with von Neumann 
based machines for general purpose compntation. 

These shortcomings have motivated the proposal of a new 
hybrid architectural concept - the Systolic Data Flow Ma- 
chine (SDFM), which will provide a new pattern for parallel 
processing. It employs two levels, combining the efficicr~cy 
of systolic arrays at  the lower level with the elegance of a 
data  flow architecture at  the higher. 

In this paper, we investigate the utility of this approach, 
and discuss the optimal exploitation of the natural concur- 
rency of this application algorithm. To do this, we have 
mapped several F F T  algorithm fragments onto a few sys- 
tolic elements with a suggested topology. Then, we suggest 
mapability and performance criterions such as the number 
of allocated primitive processors (in a systolic array), and 
the number of active primitive processors and systolic ar- 
rays a t  a time. 

THE SDFM OPERATION 

Conceptually, the SDFhl is based on the partitioning of 
data  flow programs (graphs) into subgraphs of sufficiently 
small size so that they may be loaded into programmable 
systolic arrays, called Processing Elements (PE's),  each 
with local common memory. This memory may be used 
to contain structures accessible to  all the processors in the 
PE.  As the number of subgraphs required for the execution 
of a set of multiprogrammed processes will likely exceed 
the available number of PEs, P E  faults - that is, input to- 
kens appearing for which the designated subgraph is not 
presently assigned to a P E  - will cause replacement of in- 
active resident P E  subgraphs in the manner of a page fault. 
Figure 1 illustrates a set of physical PEs and a data  flow 
program graph ~ar t i t ioned  into a few blocks, some of which 



THE MAPPING OF A FFT ALGORITHM 

The FFT Algorithm 

PROGRAM A's PROCESSING 
CODE BLOCKS ELEMENTS 

Figure 1: Data flow program graph blocks mapped to sev- 
eral processing elements. 

are currently mapped to PEs (note the block marked by the 
thick frame). This approach is particularly attractive, since 
frequently invoked operating system procedures can reside 
permanently in PEs, eliminating the artificial temporal lin- 
earization of resident routines of an operating system used 
in a conventional machine. 

The Processing Element 

The Processing Element ( P E )  implements the lowest gran- 
ularity level of the SDFM. Each P E  is a systolic array com- 
posed of a few Primitive Processors (PPs)  connected in a 
regular geometry. This processors operate concurrently, 
passing scalar operands between them continuously. The 
topolgy being selected is a planar graph, where each node 
represents a PP, and has a connectivity with indegree 2 
and outdegree 2 '. In order to  support iteration the array is 
jconceptually) mapped onto a cylinder. Since only a subset 
of the hard-wired connections between PPs are (software) 
selected, many different configurations can be mapped to 
this physical pattern. 

Further discussion of the SDFhl architecture and its P E  
topolgy is given in 14,121. 

'Optimal choice ofarray geometry and the associated mapping prob- 
lems are discussed in [3,14,13,15]. 

The  Fast Fourier Transform is an algorithm that rapidly 
computes the discrete Fourier Transform. The algorithm is 
described by 151: 

where Xo(k) are the original (complex) data  points in 
time or space domain, and X ( n )  are the transformed points 
in the frequency domain. 

For N - 2' the FFT algorithm is a procednre for factoring 
an N x N matrix into 7 matrices. For example, i f  N=4, and 
w = e - 1 2 - / N .  

T h e  FFT algorithm factors the W matrix into the following 
submatrices: 

Signal Flow Graph 

A signal flow graph ([5]) can be constructed to represent 
the above matrix multiplication as shown in Figure 2. 

Figure 2: Signal flow graph for the matrix multiplication. 



Each node is entered by two paths. A quantity from one Generalization 
array travels along a path, is multiplied by WP, and pro- 
ceeds into next array (no w shown implies I.liP = 1). The While the P E  has been shown as optimal for processing the 
inputs are added at  each node. Each column of the graph F F T  algorithm with a N=4, problems in the real world in- 

corresponds to  a factored matrix, of which there are y.  variably involve handling FFT algorithms with much larger 
N. 

The Mapping of the FFT For j= l  to y 
For i = O  to N/2-1 

As an example, we map the F F T  algorithm with N=4 onto Xj(i) := X ( i )  t X( i  -t- (N/2 - 1)) * IVP 
a single P E  as shown in Figure 3. X,(i + (N/2 - 1)) := X ( i )  - X(i + (N/2 - 1)) * !lip 

The  mapping is performed by insertion of additional "trans- 
mission" modes, and labeling (associating nodes with oper- 
ators and/or  routing functions.) At each point of insertion 
we use a routing node (e.g. a "crossover" node is inserted a t  
each point where two edges cross.) Note, that the routing 
processors contribute to  computation, since they are the 
analoe of the data  movement instructions in a conventional " 
machine, or of the crowded communication buses in a data  
flow machine. The rest of the allocated PPs  take on the 
dual functions of performing operations and transmitting 
data. The execution of such a data  flow graph proceeds like 
a wavefront through the graph. We expect the PPs  on each 
row to execute concurrently, as well as yielding operands to 
trigger P P s  on the following row. Operands generated by 
P P s  which reside on the last row are used as inputs to P P s  
comprising the first row (the cylinder structure facilitates 
iteration.) When all the iterations are completed, the re- 
sults are the outputs of the PE.  Let 1, which will serve as  
a n  iteration counter, be initially set to  y where N = 2?. 

For i = O  to N/2-1 
X(i  * 2) := Xj(i) 
X(i + 2 + 1) := X,(i t N/2 - 1)) 

End 

Since the destinations of all the operands inside an itera- 
tion are local, we can partition the computation graph to 
N/4 sub-graphs, each of which will be mapped to a single 
PE.  Some of the outputs of a subgraph may be destined 
to subgraphs mapped to other PE's (external communica- 
tion). This is accomplished by placing the PE's ou tp t~ ts  
on the ring bus, and transmitting them to the inputs of 
other PEs. For very large N (where the number of F F T  
subgraphs is larger then the number of physical PEs) we 
use virtualization. This elimination of the "residency re- 
quirement" facilitates the provision of many virtual P E s  to 
accommodate the totality of the F F T  data  flow graphs. 

RESULTS 

From studying the mapping of the F F T  algorithm , con- 
clusions can be obtain about systern attributes such as: 
the ratio of local to global communication, granularity, in- 
struction execution and communication time, parallelism 
and processor utilization. For this purpose, we suggest two 
mapability criteria: the processor allocation density (the 
ratio of allocated P P s  t o  (allocated + free) PPs  ratio) and 
the systolic efficiency (the ratio of local communication to 
(local + distant) communication ratio). All the P P s  are 
being allocated if N mod 4 is 0 - otherwise, only one P E  
will have a lower density. Consrq~~ently,  for large N the 
density will go to 1. Approximately, 53 percent of the PP's 
are  utilized for communication purposes (routing, duplica- 
tion, or crossing over). The rest of the PP's are used for 
simple instruction execution (multiplication, addition, and 
subtraction of scalar operands). A small fraction is also 
used for control instructions. The systolic efficiency is a bit 
lower then the results we got in other programs, and is 12 
for N=4, and converges to  6 for large N. 

~ ~ 1 2 )   SO(^) 
The  parallelism obtained by computing the F F T  using the 
SDFM varies a t  the different architecture levels. The map- 

Figure 3: Mappine; of a FFT algorithm onto a single PE. ping shows that for N = 21 there will be 2' inputs and 7 it- 
erations of the systolic array. Each iteration is mapped onto 
a few P P s  allowing for a simultaneous execution of scalar 
operators. Moreover, for large N the input can be parti- 
tioned in such a way that the iteration bodies are mapped, 
each t o  its own PE,  allowing still further parallelism . Note 



tha t  in this way, we achieve linear throughput and the  de- 
gree of parallelism cornparable with the  number of available 
PEs. Thus ,  the  parallelisnl achieved a t  the  d a t a  flow level is 
optimal,  a s  all the  P E s  are  executing simultaneously, while 
a t  the  PE level, 8 P P s  ( a  single row) are  active a t  a time. 

T h e  granule size tha t  is, the complexity of the tasks as- 
signed to  each processor - is one "butterfly" per processor. 
T h e  granule size rffects the  complexity of the  Individual 
I'P's. If the  granule size is increased by assigning multiple 
butterflies to  each processor, the  complexity of the  PP ' s  
increasrs. I f  the  granule size is decreased the PP ' s  do  only 
primitive f loa t~ng  point operations.  

FUTURE DEVELOPMENTS 

We are  investigating the  performance of such a system by 
const ruct i r~g a sitnulation model of a SDFhl  executing the 
mapped FFT algorithm. 

To verify the  correctness of the  algorithm, and  to  validate 
p a r t ~ a l l p  the  results of t he  simulation, t he  algorithm will 
he implemented on  a small  network. Each node in the net- 
work  \rill tle construed as a Transputer2 connected to  a 

nn~ l t i -po r t  link snitc h3. The  action of each processor dur- 
ing each c o r ~ ~ p ~ i t a t i ~ ~ n a l  phase will require several steps: the  
d a t a  points must be input ,  tht. butterfly computation(s) 
rrlust be performtd. t h r  destination Transputers must be  
selected, arid the  da ta  points must be t ransmit ted .  Note 
t h a t  the  first and last steps are  performed concurrently, 
and that  the final permutation of the d a t a  points into re- 
verse binary order is done by the  output  selection s tep  of 
this a lgo r i th~n .  

Th i s  research is a part of a three year project whose goals 
are  the  design of the  systolic chip to  use in the  SDFhI, t he  
development of a language to docu~neni. da t a  flow programs, 
a n d  t h e  creation of a simulationirmulation environment to  
be  usrci in vcsrifying d a t a  flow programs, and in project- 
ing the  performance a t t r ibutes  of d a t a  flow systems not yet 
i~nplemented.  T h r  language is being created as a superset 
of OCCAM, and  the  environment will be implemented us- 
ing a nrtwork of  Transputers.  The  project's ult imate goal 
is the  drvelopmrr~t  of a massively parallel general purpose 
computer system based upon the  the  SDFhl concept. 

~ 

'A 'Transputrr(traden1ark of INhIOS, Inc.) is a rplnlively fnst re- 
duced instruction set l~rachine designed lo  function a s  n node in a net- 
work. Cornrnur~ication is ucconlplished through four 20 M H z  bidirec- 
tional l inks.  

3Thr INhlOS <'OO#\ switch is a 32 wide link ~nultiplexer, I t  is con- 
trolled through an ndditional link port. To connect any of the 32 
link pvrts anv other r~quirqs 4 byte transmission times (about 1.2 
microseconds) 

References 
[I] M. Annaratone, E. Arnould, H.T. Kung, M. Lam, 0. Men- 

zilcioglu, and J.A. Webb. Tlte wrap computer: architecture, 
implementation, and performance. IEEE Transacltons On 
Computer, C-36(12):1523-1538,1987. 

12) Arvind and D.E. Culler. Why dataflow architectures. In 
The 4th Jerusalem Conference on Information Technology, 
pages 27-32, 1984. 

(31 R. Asbury, S.G. Frison, and T. Roth. Concurrent computers 
idtal for inherently parallel problems. Computer Design, 
9:99-107, 1985. 

14) S. Bergman and D. Tal. Dedicated systolic arrays as nodes 
in a data flow machine. In W.R. Moore, editor, Systolic 
Arrays, pages 321-330, Adam Hilger, Bristol, 1987. 

[5] 0. E. Brigham. The Fast Founer Tmnsform. Prentice-Hall, 
Inc., Englewood Cliffs, New Jersy, 1974. 

(61 A.L. Davis and R.hl. Keller. Data flow program graphs. 
IEEE Computer, 15(2):26-41, 1982. 

171 J.B. Dennis. Data flow supercomputers. IEEE Computer, 
13(11):48-56, 1980. 

(81 A. Dubielewiez, A. Kalis, J .  Kwiatkowski, and J .  Ratajczak. 
An architecture of stand-alone multiprogramming data flow 
system. In Eummicro Symposium, pages 603 -61 1, Brussels, 
September 1985. 

(91 Special issue un systolic arrays. IE'EE Cornpuler, 20(7). 
1987. 

[ lo ]  H.T. Kung. Why systolic arcliitecturcs? IEEE Comyuler, 
15(1):37-46, 1982. 

[ l l ]  W.G.  Paseman. Applying data flow in the real world. 
BYTE, 10(5):201-214, 1985. 

112) D. Tal and S. Bergman. The SDFAi Architecture. Com- 
puter Science Technical Report h1268, Ben-Gurion Univer- 
sity, Beer Sheva, July 1986. 

1131 D.R. Wiilson. S.C. Winter, J.P. Gupta, and P. Espinasse. 
The execution of functional programs on the ctd multipro- 
cessor. In Euromicro Symposium, pages 587-595, Brussels, 
September 1985. 

1141 S.C. Winter. A cube type distrihuted interconnection 
of microcomputing elements. In Euromicm Symposium, 
pages 301-310, Madrid, September 1983. 

1151 S. Yalama~icl~ill and J.K. Aggarwal. Recor~figuration strate- 
gies for parallel architectures. IEEE Computer, 18(12):44- 
61, 1985. 



OPTIMAL TILINGS FOR ITERATIVE PDE SOLVERS ' 

Anthony E. Terrano 
Department of Electrical and Computer Engineering 

Rutgers University 
Piscataway, NJ 08855 

'This research supported in  part by the National Science Foundation under grant 

MIP87-10829. 

ABSTRACT 

The efliciency of a parallel algorithm for solving a partial 
differential equation on a multiprocessor computer is deter- 
mined by the ~nanner  in which the problc~in is partitioned 
among the processors. Previous analyses have focussed on 
the relationship bct\reen the shape of the partition tile and 
the connectivity of the int,erconnection net\vork, and have 
concluded that  there is no simple rule governing the efii- 
ciency of a mapping. By e x t e n d i ~ ~ g  the analysis to include 
geometrical considerations, in particular, tlie relative orien- 
tation of the update stencil and the partition tile, we have 
discovered a simple, ~univcrsal ~)rocetlurc For tlcri\ring tlic 01)- 
timal partition for a given iterative PDE algorithm. Dasetl 
on t,his procetlure. we derive two new pal.titionings for spe- 
cific PDE algorithnis ~vllich are more efficient than any pre- 
viously kno~vn. Tlie choice of partition is indel)cntlrnt of t11r 
details of the nnulti~)rocessor architecture for a wide range of 
operating parameters. 

I<eywords: partial cliferential equations, co~nmlinication de- 
niand, distributetl memory multiprocessor. proljlen~ tlt~com- 
position. 

INTRODUCTION 
Rlultiprocessor computer architectures pronlisr botll great 
improvements in the amount of cornputatio~~al power ~vhich 
can he  brought to bear on a given prol~lcm as \\ell as sig- 
nificant reductions in tllc cost of a given antount of power. 
IIolvever, the efficient use of a parallel connputrr reqr~irrs that 
each calculation I)c dc~conil,osetl into intlepentlent 
pieces \vhich call he solved concurrently. M'llile a general so- 
lution to this problrm has proven elusive. rfficicnt algorith~ns 
and heuristics have been tlcviscd for a nu~llI)cr of particular 
prol~lenis. 
l h e  efficiency of an implcmrntation of a parallcl algoritl~m 
can be determinetl by rncasuring the esect~tion lime as a 
function of tlie 11r11nl)er of ~)rocessors, IV. The efficiency E. 
is then tlefinctl as t,l~c ratio of the ol)srrvrtl speedup to the 
theoretical m a s i ~ n l ~ m :  

.I x ( c r c c ~ i l i o t ~  t i m c  ,for. otzc 1)rocc .~sor)  
E(i\') = 

c . ~ r r t l l i o i ~  t i tnr for !\' 1~1.occ.5.qors (1) 

For distributeel nlclnory arcltitcct~lrcs. t lies li~nit iilg factor is 
the amorlnt of t1at.a wl~ich 111ust O C  ~ x c l l a n g ~ d  I)( ' t \vcr~~ differ- 
elit processors for racll ol)cratio~t. 'I'l~e I)cst (I(-col11l)osition 

of a problem will minimize, tlie ratio of co~nnn~unicat.ion to 
cornl)utation, H,,, allowing t 11r Ijcst posiil,l~ approacl~ 1.0 a 
linear speedup in thc nr~nll)rr of processors. 
In tlie grncral case, all possil)lr part,itionings of tllc prol)irln 
must Ile esaminccl to  fintl th r  one wllicl~ ~ninintizrs R,,. For 
specific classcs of problems, a nnorc detailctl a ~ ~ a l y s i s  can be 
performecl. In this paper, n.cs  consitler t l l r  itrrativc solutiol~ 
of the sparse li~rear equations \vl~icl~ arise frotn tliscrctizing a 
continuous PDE. l h r s e  algorith~us typically in\~olvc, r~ptlat- 
ing the current value of the solut,ion at  each gritl ~ ,oint  I)y 
means of a simple calculatiol~ iitvolving tlle vali~rs at ~lrigh- 
boring points. l'lte collectio~l uf neiglll~ors \vhosr valucss are 
required for the uptlate d rpc ,~~ds  upon tltr prrcisr nlgu~,itltrn. 
and is referred to as t l ~ r  s t e ~ ~ c i l .  \\'it11 tllrsr algoritlims many 
grid points may be ul~datctl s i~~~ul tancous ly  '1'11(~ oitly con- 
straint is that,  for cach point Ijeing ~~j)clatrd, I I O I ~ C  of tllr 
othrr points in its stencil arc' also Ijcing ~~l)clatrd at t l ~ c  same 
time. 

MAPPING 
The bcst ~napl)ing of this ~)r.oblrnl onto a dis t r i l )~~lr( l  111cn1- 
ory architf.cturc clcpcntls oil t l ~ e  11uunl)c-r of grid ~)oints  n$ 
versus tlle numl)cr of processors I\'~. If \VC ~ S S I I I I I ~  that  typi- 
cal prol,le~n sizes range upwarcl fro111 Iiundrrtls of grid ~)oiuts  
11cr sitlc, with tl~ousantls of poi~tts ljri~ig rnorr ~ t r a r l  itlral, 
then a generous lower I,ou~ltl for i\lg \ \ . i l l  I)c lo4 fou ttvo~ 
dimensional prol~lc~ns,  ancl lo6 for tl1rc.r-tlimrilsio~l;rl ones. 
RIost tlistriI)utecl-1nr111ory co~upr~tcrs  tvhicll havr 1wc.n I ~ r ~ i l t  
havr I\\ r a n g i ~ ~ g  up to lo4: I hr Iargcst valr~cs arc. still  1c.s.: 
t,lla~l lo5.  l h r  the ~)urposcs of this pilpcr. \vr 11lalic the rea- 
sonable assurnption that r  = 2 > l .  
Under this assuml)tior~, the 111ost 11atural mapping of t h r  
problem into the architccturr can Ijr construct.ctl as follo~vs: 
first, cml)etl a plant into 1 1 1 ~  1111ilt il)ro(.cssor t -o~~l ln~~~l ica t io i l  
nct\rork. tl~erl tilr tllc tlo~nain ol'tltc. 1'1)11 p~.ol) l rn~ ~ v i t l ~  R:, 
identical polygo~li, i l ~ t c l  fillall!. assig11 o i ~ c  tilr to c.aclr puocrs- 
sor. with neigI~l)orii~g tilts aisig~letl to ~rcigl~l jo~, i~lg ~~rocc~ssors 



under the cnlbrtldirig i l l  definecl in t,he first step. With this 
mapping, each processor \ \ r i l l  be solvi~lg a smaller, equiva- 
lent PDE bountlnry-val~~e problen~, with the boundary colt- 
dit.ions a t  each stage cleter~~li~icd by the solutions obtained 
thus far on the neighboring tiles. T l ~ e  interprocessor cornmu- 
nication loatl is tleternri~~ed by the neetl to keep the boundary 
conditiolls currer~t, 011 each tile. 
With this mapping. tlla eficie~lcy of an iml)lrntent.ation will 
be d e t e r ~ n i ~ ~ e d  by the connectivity of the com1i1unication net- 
work, by the particular polygo~ial used for the tile, by the 

update stencil, ant1 by the relative orientation of the tile and 
the stencil. Previous analyses of this problem have analyzed 
the effects of the only first two of these considerations [I ]  r2]. 
In particular, R c ~ t l ,  Atlams and Patrick [2], have computed 
R, for several different conlbinations of stencils and regular 
tilings of the plane. 'They fountl that, for sorne stencils a 
square tiling nti~lintized tile conin~unicat io~~ demands, while 
for others, the a hesagonl tile was better. They concluded 
t,hat no sirr~ple relatio~lsllip bet,\veen a stencil and the pre- 
ferred tiling exists. and that the Iwst architecture for a given 
algoritlun could only be deter~nir~ed by rneans of a detailed 
calculation of tllc communication demantl for all possible 
stencils. 
In this paper, we present an analysis whicl~ includes the ef- 
fects of the relative orientation of the stencil ant1 the tiling. 
I3y consititzring tilings which are oricntetl a t  an angle with 
respect to the coorclinate axes, we reacli qualitatively differ- 
ent conclusions froni those in reference [2]. For any stencil, 
there exists an optintal tiling of the  lane and this tiling can 
be easily derivetl from the sha1)e of the stencil alone. By 
applying t,his construction to commonly occuring stencils, 
we have tliscoveretl two novel tilings of the p l a ~ ~ e :  the dia- 
mond tiling and the oblique hexagon tiling. Furthermore, 
the construction is completely n~cchar~ical ant1 thus can be 
performctl automatically by a computer program. 
7 7 l l ie  opt in~al  decomposition of t l ~ e  plane for a given sten- 
cil is the one in wlticl~ the tiles best approximate the sha.pe 
and orientation of the stencils. By "best approxi~nation", 
we mean the following: Given a stencil, iclentify the points 
which are the furthest from the center. Connect the points 
in clock\vise ortlrr with line segments. The resulting shape 
will be a convex polygon. wit11 a specific orientation relative 
to  tlie st,encil mtd to  the coordinate axes. Such a polygon is 
called the convex I~ull of tlie stencil. If the polygon can be 
used to tile tllc plarle, while preserving the required orienta- 
tion, tlien it \\.ill be optinlal tile for the s t r ~ ~ c i l .  

TILING 
111 figure 1 ,  Itre apply this coilstruction to several common 
stencils. The convex 111111 for the five point, nine point cross 
and the t,l~irteen point stencils is a diamontl, for the seven 
point stencil, it is an ol~lique I~exagon, and for the nine point 
star,  it is a square. 111 figure 2, we present the resulting tilings 
of the plane. For co~nplctelless, we also show the hesagonal 
tiling analyzed in reference 121. 
The diamortd tiling consists of squares orient,cacl a t  1.5' with 
respect to the c.ool.tlinat~ asrs.  The tile ntay be para- 

Table 1: Comn~unication demand lor each pair of stencils 
and tiles. 

Stencil 

metrized by the length, k ,  of its diagonal. The condition 
that all tiles be equivalent requires that k by an even divsior 
of n. The number of points enclosed by a tile is $ and the 
perimeter is 21; - 2. Finally, for comparison to tlte other 
tilings, it is useful to esprcss k in terms of r :  % = N, 2 Or 

k =  f i r .  
The ohliq~re hexagon tiling is constructed in two stages. First, 
for a given 1, construct a hexagon with 1 + 1 grid points on 
each side and with the principal diameter making an angle 
of -45' relative to the x-axis. In figure 2, tlie resulting 
hexagons are indicated with dotted lines. In order to form 
a partition of the problem, we must assign the grid points 
which lie on the dotted lines to a single tile. M7c accomplish 
this by moving the dotted lines down or to tlie left, or both, 
as appropriate. The solid lines in figure 2 indicate the result- 
ing partition. The area of the I-hexagon, is 312, giving I = 5. 

Tile Shape 
I oblioue I I 

CONCLUSION 
For each of the stencils we have calculated the number of grid 
points whose values must be con~municated to  neighboring 
tiles, for both the dian~ond and oblique hexagon tilings. The 
results are summarized ill table 1, along with the results ob- 
tained in reference [2] for the square and hexagonal tilings. 
As stressed in the introduction, the correct measure of com- 
niunication denland is the a~nount  of computation per word 
transferred. For this problem decomposition, tlie amount of 
computation is proportional to  the number of grid points per 
tile, or ra ,  with an additiortal dependency on the stencil size 
which is irrelevant for our purposes. Thus, tlte results pre- 
sented in each column of the table are for identical amounts 
of computation. 

REFERENCES 

[I] D. Vrsolovic, E. F. Gehringer, 2. Z. Segall, and D. P. 

Siewiorek. The influence of parallel deomposition strate- 
gies on the performance of ntultiprocessor systems. In 
Proceedings of the 13th ilnnuul International Symposium 
on Conlputcr A r c h t t e c f u r ~ ,  pages 396 -405, AChf, 1985. 

[2] D. A. Recd, L. M. Adams, and hI. L. Patrick. Stencils 
ant1 problem partitionir~gs: their i~ifluence on the perfor- 
mance of ~nulitple processor systems. IEEE Tmnsuctions 
on Computers, C-3G:S15-S5S, 1987. 



Five point star 

O 3 C C O  

Nine point star 

Seven point stencil 

r , g o ; o  

13: 
3 C L c 

3 0 3 C C  

Nine point cross 

C O O 0 0  

C t f - - . C  

I 
C b . * "  

c - 3  

r c O P O  

Thirteen point star 

Common stencils for iterative PDE solvers. 

Convex hulls of each stencil type. 

Construction of the oblique hexagon tiling. 

Transfers needed with five point stencil and diamond tiling. 

Decomposition into diamonds. 



P R E D I N G  PAGE BLANK NOT F l W  

PARALLEL ALGORITHMS FOR DIRECT SOLUTION OF 
LARGE SYSTEMS OF EQUATIONS 

Jian-She Wang Nathan Ida 

Electrical Engineering Department 
The University of Akron 

Akron, Ohio 44325 

ABSTRACT 

A number of direct solution algorithms have 
been parallelized for use in conjunction with 
finite element analysis of large engineering 
problems. Parallel solution nlgoritt~ms based on the 
Gauss-Jordan and Gauss elimination were implemented 
and compared. These parallel solvers are applied to 
large, dense or banded systerns of equation arising 
from finite element analysis of 2-D and 3-D 
electromagnetic field problems. Both real and 
complex matrices are considered with emphasis on 
very large systems. The speedup obtained by 
parallelization on the MPP compared to sequential 
computers is almost three orders of magnitude. 
Although the MPP is used for implementation, most 
aspects of parallclization are general. 

arrays. Parallel Pascal callable 1/0 procedures can 
transfer only one 128*128 array in or out of the 
ARU at any one time. This makes it necessary for 
any array larger than 128*128 to be blocked into 
sub-arrays of 118*128. Thus, the smallest system 
c :c ) r l s i t l i .~e t i  is a 128"12R system of equations. 

A PARALLEL GAUSS-JORDAN ALGORITHM 

For a system of equations of the form 
[A]lX)=lB), the parallel implementation of the 
Gauss-Jordan algorithm begins by loading [ A ]  into 
orie array and the right hand side (RHS) (BI into 
the first column of a second array. Assuming that 
the first column in !A] has been eliminated, these 
arrays look as: 

INTRODUCTION 

In engineering applications i t  is often 
necessary to solve large systems of cquntions that 
are either too large 01- require too much computer - 
resources to be economically feasible on standard 
computers. For this type of problem a parallel 
machine is very attractive. The type of systems 
considered are those arising from the application 
of the finite element method (FEM) to engineering 
applications. The FEM is particularly 
computationally intcnsivr, yet its vai-ious parts 
are either intrinsically parallel or can be 
parallelized. By using a parallel processor, 
considerably faster solution times can be achieved 
or, alternatively, larger problems can be solved. 

The Gauss elimination and the Gauss -Jordan 
methods have been chosen for this work because of 
their extensive use in finite element applications. 
In most cases, dense, nonsymmetric, real systems 
are solved but similar methods for banded and 
complex systems are presented. Sparse systeins are 
not considered here although, these can obviously 
be handled. 

The MPP has been described elsewhere [1,2] in 
detail. For the purpose of this work, the MPP is 
configured as an 128*128 array with a 32 bit word 
length. For the solution of linear systerns, the two 
most important aspects related to the MPP are the 
number of memory planes in the ARray Unit (ARU) and 
the size of the staging memory. The ARU contains 
900 usable bit planes of memorv. This limits the 
number of real arrays (l28*128, 32 bit) in the ARU 
to 28. The staging memory is limiter1 to 512 real 

where n=128. The prime indicates that the 
corresporidirig coef f icients have been modified 
during elimination of the first column. To 
rli~ninntc the second column, a pivot row array and 
a pivot rlcmcnt array are created using row and 
column broadcasting routines. 

A pivot column array is created from (la) as 

E q .  (3) is divided by Eq. (2b) and multiplied 
by Eq. (2a) to create a modifier array 

This array, with the exception of the pivot 



row, is subtracted from the original arrayln (la). 
The result is a new coefficient array 

The modification of the RHS during elimination 
is similar. Eq. (3) is divided by Eq. (la) and 
multiplied by Eq. (lb) to generate an RHS modifier 
array This is subtracted from Eq. (lb) to obtain 
the new RHS array. 

After n elimination steps, the original 
coefficient matrix is reduced to a diagonal system. 
To obtain the solution, an array of the diagonals 
is constructed 

Eq. (6) is divided by Eq. ( 7 ) ,  to obtain the 
unknowns xl through x128: 

A PARALLEL GAUSS ELIMINATION ALGORITHM 

The Gauss elimination algorithm follows similar 
steps. The steps in Eq. (1) through (4) are 
identical. In subtracting the modifier array in Eq. 
(4) from Eq. (la), only the rows below the pivot 
row are modified. After (n-1) elimination steps, 
the original system (la) is reduced to an 
equivalent upper triangular system: The right hand 
side is similarly modified. 

The solution of the system in Eq. (8) is performed 
using the following algorithm 

where i-n,n-1, . . . ,  1 and k-i-1,i-2, . . . ,  1. In this 
algorithm, once an unknown is backsubstituted, the 
upper triangular system is reduced in order by one 
and then the RHS is modified. 

A pivot column and a pivot element array are 
created as 

The RHS is divided by the pivot element array 
(masked operation) to solve for the ith unknown. 
From this, an RHS pivot array is generated. These 
arrays are: 

a.. 
11 

a.. 
11 

aii 

Multiplication of Eq. (llb) by Eq. (lob) 
results in a modifier array: 

lob 

The modifier array in Eq. (12) is now 
subtracted from the RHS. After n=128 steps, the 
RHS array contains the n unknowns in its first 
column. 

BLOCK GAUSS-JORDAN AND GAUSS ELIMINATION 

For the solution of any system with order 
larger than 128, the coefficient matrix is blocked 
in subarrays of 128"128. For each subarray the 
algorithm described in Eq. (1) through (7) is 
applied. A 512"512 system is chosen as an example 
since this is the largest array the ARU can handle. 
Any larger matrices will have to utilize the 
stager. In Fig. 1, the 512"512 coefficient matrix 
is blocked into 4*4 subarrnys, while the RHS vector 
is stored in the first column of 4 corresponding 
subarrays or in the first four columns of one sub- 
array. 

The Gauss elimination solution for a 512*512 
system is similar to that of the Gauss-Jordan 
method described above other than the obvious 
changes described in Eq. (8) through (12). 

Table 1 summarizes the number of operations 
required for solution on a sequential machine and 
on the MPP. Table 2 summarizes the solution times 
for a 128"128 and a 512"512 system of linear 
equations using the Gauss-Jordan and Gauss 
elimination methods on the MPP. The results are 
compared with those obtained for the same systems 
on a MicroVaxII computer. The highest speedup is 
achieved for a 512*512 system (largest problem that 
can reside in the ARU). The backsubstitution is the 
slowest of the two parts (essentially a sequential 
operation). 



SOLUTION OF BANDED SYSTEMS OF EQUATIONS 

Fig. 2 shows the coefficient data structure of 
a 512*512 system of equations arising from finite 
element analysis, where only the shaded area has 
non-zero terms (semi-bandwidth less than or equal 
to 128). In Fig. 2a, 37.5% of the memory storage 
can be saved by considering only the non-zero 
blocks. In fig. 2b, 65.6% of the memory can be 
saved. With this storage scheme, a 1024*1024 matrix 
with a semi-bandwidth of 128 can reside in the ARU. 

The solution times for a parallel, banded 
elimination algorithm are summarized in Table 3 and 
compared with those for full coefficient matrix of 
the same order (512*512). 

SOLUTION OF SYSTEMS WITH COMPLEX 
COEFFICIENTS 

Application of the finite element method to the 
solution of eddy current problems in 
electromagnetic fields results in the following 
system of complex linear equations: 

On the MPP, complex data is stored in two sets 
of arrays. Complex calculations are resolved into 
two or more real parallel array operations. The 
basic operations required are implemented as: 

For the solution of a system of complex linear 
equations with order higher than 128, the complex 
coefficient matrix is blocked into subarrays of 
128*128. 

The solution times for a 128*128 and a 256*256 
system of complex linear equations by the Gauss- 
Jordan and Gauss elimination methods are summarized 
and compared with those for solution of the same 
order system of real equations on the MPP. The 
results are shown in Table 4. 

The solution time for a system of complex 
linear equations by Gauss' and Jordan's methods is 
about 4 to 5 times that needed to solve the same 
order system of real equations. 

Figure 1 Blocking of a 512*512 system. 

SOLUTION OF LARGE SYSTEMS OF EQUATIONS 

For problems of size larger than the capacity 
of the ARU, the stager must be used. The matrix is 
again subdivided into blocks of 128*128. Once all 
subarrays in the matrix are in correct stager 
addresses, part of the arrays are sent to the ARU 
for processing. The results are returned to the 
same stager addresses. This is repeated until the 
system is solved. 

The division into subarrays is the same as in 
Fig. 2b for banded systems and as in Fig. 1 for 
dense systems except for the larger number of 
subarrays required. The RHS is placed in columns of 
a single array to save space. 

Several banded systems with bandwidths128 of 
selected order ranging from 1024 to 16,384 have 
been solved on the MPP using the stager. The 
solution time (including data transfer between 
stager and ARU) is shown in Table 5. Table 6 gives 
the largest banded systems with different bandwidth 
that can be solved on the MPP under the limit of 
the stager size (32 Mb). Table 7 summarizes the 
solution times for two large, dense systems of 
equations (nonsymmetric). 

CONCLUSIONS 

The implementation of solution algorithms on a 
massively parallel processor is quite efficient as 
long as the system fits in the ARU. Larger systems 
can also be solved with reduced efficiency. Even 
so, the solution is as fast or faster than on 
vector machines. An increase in size of the array 
and local memory could significantly improve 
performance. 

REFERENCES 

[l] K.E. Batcher, "Design of a massively parallel 
processor " ,  IEEE Transactions on Com~uters, 
Vol. C-29, No.9, pp. 837-840, September 1980. 

[2] K. E. Batcher, "Architecture of the MPP" 
IEEE Computer Society on Computer Architecture 
for Pattern Analysis and Image Database 
Management Proceedings, pp. 170-174, October 
1983. 

Figure 2. Two methods of blocking a 512*512 system 
with semi-bandwidth of 128 or smaller 



Table 1. Number of operations needed for sequential and parallel 
solution with the Gauss-Jordan and Gauss elimination algorithms. 

A-add, M-multiply, D-divide, a-128, m-n/128, n-8 of equations in the system. 

Table 2. Comparison of solution times for the Gauss- Table 5. Solution times on the MPP for banded 
Jordan and Gauss elimination methods on the Microvax systems of different sizes. Semi-bandwidth is 128. 
I 1  and the MPP. (Times in seconds). (Time is in seconds). 

Method 

Gauss 
Jordan 

Gauss 
Elim. 

7 

Total 

amm(m+3) + a/2 
m(am+l) 

am(m+l)(m+2)/3-1 
am(m+3)/2-1 

Parallel Solution Sequential solution 

Oper. 

A/M 
D 

A/M 
D 

Size 

1024 
2048 
3072 
4096 
8192 
12288 
16384 

Diag./Triag. 

amm(m+3)/2 
amn 

am(m+1)(2m+1)/6-1 
am(m+l)/2-1 

Diag./Triag. 

n(n-l)(n+3)/2 
n(n-1) 

n(nn-1)/3 
n(n-1)/2 

Solution 

m 

am(m+l)/2-1 
am 

Elimination 

1.556 
3.300 
5.015 
6.731 
13.594 
20.458 
27.321 

Solution 

0 
n 

n(n-1)/2 
n 

3 
Solution Total 

0.651 2.206 
1.371 4.671 
2.077 7.093 
2.784 9.515 
5.611 19.205 
8.43P 28.896 
11.26L 38.264 

Table 6. Largest systems solvable on the MPP 

Total 

n(n-1) (n+3)/2 
nZ 

n(n-1)(2n+5)/6 
n(n+1)/2 

Table 3 Banded and full matrix solution times using 
Gauss elimination on the MPP. (in miliseconds). 

Semi-bandwidth 

128 
256 

Size of Systems 

21888 
13184 

384 
512 

1024 
2048 

Solution 356.15 277.44 1.284 2816 
1001.71 1.584 

9472 
7552 
4352 
2944 
2816 

Table 7. Solution of large, dense, nonsymmetric 
Table 4. Comparison of solutions in real and systems on the MPP. Time is in seconds. 
complex variables on the MPP. (miliseconds). 

Order 

128: 
Elim. 
Sol. 
Total 

256: 
Elim. 
Sol. 
Total 

Gauss Jordan 

Real 

77.88 
6.43 
84.31 

343.68 
12.28 

355.96 

Gauss Elimination 

Real 

77.95 
49.30 
128.27 

277.76 
125.61 
403.37 

Complex 

334.89 
12.43 

347.32 

1513.80 
24.88 

1538.68 

Ratio 

4.3 
1.9 
4.1 

4.4 
2.0 
4.3 

Complex 

334.96 
244.58 
579.55 

1196.30 
576.48 
1772.77 

Ratio 

4.3 
4.96 
4.52 

4.3 
4.59 
4.4 



SECTION 11: APPLICATIONS 

Part 1 : Oral Presentations 



PRECEDING PAGE BLANK NOT FILMED 

STOCHASTIC SIMULATION OF CHARGED PARTICLE TRANSPORT ON 
THE MASSIVELY PARALLEL PROCESSOR 

James A. Earl 

Department of Physics and Astronomy 
University of Maryland, College Park MD 20742 

ABSTRACT 

Computa t ions  o f  cosmic - ray  t r anspor t  based upon  
f in i te-di ference  me thods  a r e  af f l ic ted  by  ins tabi l i t ies ,  
inaccuracies, and artifacts. To avoid these problems, we have 
developed a Monte Carlo formulation which is closely related not 
only to the finite-difference formulation, but also to the 
underlying physics of transport phenomena. Implementations of 
this approach are currently running on the Massively Parallel 
Processor at Goddard Space Flight Center, whose enormous 
computing power overcomes the poor statistical accuracy that 
usually limits the use of stochastic methods. These simulations 
have progressed to a stage where they provide a useful and 
realistic picture of  solar energetic particle propagation in 
interplanetary space. 

Keywords: Cosmic-rays, Particle Transport, Interplanetary 
Medium. 

INTRODUCTION 

The diffusion ideali~ation, which has been almost universally 
invoked in discussions of cosmic-ray transport is easy to treat 
analytically. However, many observed phenomena give clear 
evidence for non-diffusive effects. One example is the so-called 
"scatter free" propagation of kilovolt solar electrons (Ref. I), 
which is inconsistent with diffusion, but which can readily be 
interpreted in terms of a coherent mode of propagation. This 
mode is novel, but it is just a manifestatation in a dynamic 
situation of non-diffusive effects similar to those considered in 
the steady-state by classical transport theory (Ref. 2). Although 
these effects have been described analytically in References 3 and 
4, the theory is very complicated. Consequently, there is a need 
for reliable numerical computations which bypass these 
complexities and yield concreie results suitable fo; comparison 
with observations. This Dauer describes com~utat ions  of charged 
particle transport aloniaLlarge-scale guidiig magnetic fieldv B 
whose spatial variations are characterized by the focusing length 
L, which is defined by 

Over the past three years the computations have evolved through 
simulations of rectilinear transport along a constant guiding field, 
which were presented at the First Symposium on  Massively 
Parallel Scientific Computation (Ref. 5 ) ,  and of  focused 
transport with constant focusing length and mean free path (Ref. 
6), to the present simulations, which allow arbitrary variations of 
the focusing length and mean free path. In the interplanetary 
context, this formulation includes all important effects except 
those of convective motion of the background medium, which 
significantly affect the slow variations of cosmic-ray modulation, 
but which play a minor role during the rapid evolution of solar 
particle events. It includes the two essential aspects of charged 
particle transport. These are a strong inhibition of transport 
perpendicular to the guiding field and a strong anisotropy of the 
pitch-angle scattering by random fields. 

TRANSPORT EQUATIONS 

Under the circumstances outlined above, particle transport is 
described by 

in which h is the number of particles per unit distance parallel to 
the guiding field, p is the cosine of the pitch-angle. The 
parameter s = Vt, where V is particle velocity. plays the role of a 
temporal variable. The Fokker-Planck coefficient of pitch-angle 
scattering is given by 

where q is an index that measures the anisotropy of scattering 
(Ref. 7). The function G that appears in Equation 2 is defined in 
terms of q~ by 

where z is distance parallel to the guiding field. Particle trajec- 
tories are scattered by small-scale random magnetic fields whose 
effect is described by the mean free path h.  Note that the d v =  -- (4  - q, ~ p I p I ' - q .  (4) 3 
magnetic fields are visualized as static and that there is no 
interaction among particles in an extremely tenuous distribution 
of charged particles. This situation differs from those considered 
by plasma physics, but it is closely analogous to those treated by 
classical transport theory. 



In the discrete formulation, the continuous variables are replaced 
by a three-dimensional grid whose spacings are Az, Ay, and As, 
and the derivatives appearing in equation (1) are replaced by their 
finite-difference analogs. The effect of these replacemenls is best 
described in terms of the particles flowing in and out of a cell, 
whose dimensions are Ay and Az, during a temporal increment 

As. These flows are illustrated in Figure 1, where the integer M 
refers to the pitch angle, and the integer Z refers to the distance z. 
Here, particles passing through the top and bottom of the box are 
those whose pitch angle changes because of scattering, and 
particles passing through the sides are those whose distance 
changes as a result of their motion parallel to the guiding field. 
The flows due to scattering can be described in terms o f  
coefficients p~ and q ~ ,  which characterize the flows out of box 

of y for strongly anisotropic scattering, q = 1.8, similar to that 

occuring in interplanetary space and for strong focusing, h/L = 5. 

M toward larger and smaller values of y, respectively, and 
whose numerical values can be derived from Equation 2. The 
difference equations that correspond to Figure 1 can be solved by 
standard numerical methods, but these methods are difficult to 
implement and subject to subtle errors, which are discussed in 
Reference 8. 

These probabilities exhibit the same gross features as the Fokker - 
Planck coefficient, but there is a significant assymetry such that p 
is consistently larger than q. This leads to the systematic drift 
toward forward directions that is expected as a result of focusing. 
Note that the probability of going backward through CI = 0 is 
only 0.13% in this example.  hi leads to a coherent mode of 
transport that is very different from diffusion, for any particle 
that reaches the forward hemisphere has a very small chance of 
going backward again. 

Figure 1. The number of particles in each cell of the CI - z plane 
changes, because scattering causes particles to flow in and out 
through the top and bottom boundaries, while motions in space 
cause them to flow through the vertical boundaries. 

In the Monte Carlo formulation, the random history of a large 
number of particles is followed under the assumption that the 
coefficients p and q can be interpreted as probabilities in each 
temporal step that p will change by Ay toward more forward or 
more backward directions, respectively. Obviously, this defines 
1-p-q as the probability that a pitch angle will not change. After 
their pitch angles are updated in each step, the particles move a 
distance y As. 

In Figure 2, the transition probabilities are plotted as a function 

Figure 2. Forward and backward transition probabilites plotted 
as a function of pitch-angle cosine. 

THE ALGORITHM 

To implement the Monte Carlo scheme outlined above, each 
particle was assigned an integer distance and an index M cor- 
responding to y that lies between 0 and 8. Because these 
parameters occupy only three bytes for each particle, there was 
plenty of storage for several parallel arrays of  particles. 
Consequently, the results given below are based on 32 arrays 
which contained 32 * 16384 = 524288 particles. The fate of the 
particles was determined by a single parallel array of random 
integers ( ranging from -32767 to t32767) that was updated 
frequently. To implement changes in the pitch-angle cosine, 
forward and backward integers were assigned to each particle, 
according to its pitch angle and distance, in such a way that the 
probability of the current random number being larger than the 
integer is the corresponding forward or backward probability 
analogous to those poltted in Figure 2. Then the angular index 
was incremented for those particles whose current random 
integer was positive and greater than the forward integer, and 
decremented for those whose random integer was negative and 
less than the backward integer with its sign reversed. This 
approach satisfies the basic requirement that the probabilities of 
incrementing, decrement ing and leaving unchanged the 
pitch-angle must add to unity. After the pitch-angles had been 
updated, each particle's distance was incremented. When the 
desired number of temporal steps had been carried out, particles 
were binned according to distance and pitch-angle. 



- 0.5 0 0.5 1.0 
DISTANCE : Z/X 

Figure 3. Density profile for rectilinear transport after a 
collimated injection at the arrow. 

SPATIAL AND TEMPORAL PROFILES 

To set the stage for the simulations of interplanetary transport that 
are the main subject of this paper, i t  is useful to consider first the 
case of rectilinear transport, in which the guiding field is 
constant, and focusing does not occur. Figure 3 presents results 
obtained from the MPP as plots of the total number of particles in 
each distance bin. This sum over pitch-angles is a measure of the 
isotropic particle density. Because the total number of particles 
was large. statistical errors are small and, consequentlv, are not 
shown ~xplicitly. However, slight irregularities ii some parts of 
the curves give an indication of their magnitude. 

This density profile describes a situation very shortly after the 
injection of a collimated beam of when the particles have had time 
to move a maximum distance of only one mean free path. The 
curve exhibits two features: an intense localized peak at the right 
and a broad wake spread on both sides of the arrow which 
indicates the point of injection. Qualitatively, the peak appears 
because particles become nearly uniformly distributed in the 
forward hemisphere, while very few partidles penetrate to the 
backward hemisphere through the region of weak scattering at 
p = 0. This means that the particles in the forward hemisphere 
move with nearly the same average velocity parallel to the field, 
but statistical fluctuations in individual velocities ive rise to a 
peak centered around the average displacement. g uch features 
are designated as coherent pulses. They decay exponentially as 
particles slowly escape into the backward hemisphere and join 
the wake. 

In the spiral pattern of the interplanetary magnetic field, the 
focusing assymetry that appears in Figure 2 tends to keep 
particles in the forward hemisphere. Consequently, the coherent 
pulse is long lived and intense relative to the wake. Moreover, 
the assymetry becomes very pronounced near the sun, for the 
ratio h/L varies approximately as l/r, where r is distance from the 
sun. 

To illustrate these effects, Figure 4 shows snapshot profiles of 
number of particles vs, r for four equally spaced timcs after 
injection into a model interplanetary field at r = 0. These profiles 

describe a moving pulse whose width increases as it moves out, 
which is the qualitative behavior expected. However, the exact 
evolution of this width and the deceleration of the peak, which is 
evident from a careful examination of the figure, are details 
which crucially affect observations, but which are not adequately 
described by the analytic theory of focused transport. 

In contrast with the rectilinear profile illustrated by Figure 2, the 
wake is virtually invisible in all of the four profiles. As was 
discussed above, this enhancement of the coherent mode is a 
consequence of focusing. 

Figure 4. Profiles of isotropic particle density vs. distance from 
the sun for four different times after injection. 

Figure 5. Profiles of intensity vs. time at a fixed distance. 

Observations from spacecraft generally take the form of profiles 
of intensity vs. time at an essentially fixed position in space. In 
Figure 5, results from MPP simulations, which are presented in 
this form, show what happens when the coherent pulse sweeps 
over an observer at a fixed location. The dotted curve, which 
refers to a mean free path equal to the distance of the observer 
from the sun, defines a peak followed by a very small wake. As 
the mean free path becomes smaller, this pulse becomes less 
prominent relative to the wake ( solid curve ), until i t  is 



submerged in the onset ( dashed curve ). Examples of all three 
of these behaviors are seen among observed solar particle events, 
along with events whose extremely slow onset can be understood 
in terms of standard diffusion theory. Consequently, the MPP 
results make it clear that all types of prompt solar particle events, 
diffusive, abrupt onset and coherent, can be understood as 
morphological stages in a continuous sequence of profiles 
predicted for increasing mean free paths by the theory of charged 
particle transport. The same basic physics explains all types. 

ANGULAR DISTRIBUTIONS 

The discussion above has focused on isotropic intensities in 
which particles are counted regardless of their directions. In fact 
both predicted and observed intensities are often highly 
anisotropic, and valuable information can be derived from a 
careful analysis of these anisotorpies. To illustrate this point, 
Figure 6 presents numbers of particles binned according toy  and 
summed over a coherent pulse. Evidently, the intensity in the 
forward hemisphere p > 0 is overwhelming larger than that in the 
backward hemisphere. The solid curve which gives the result of 
a MPP simulation is in very good a reement with the dashed 
curve, which gives the function exp ( 8 ) which is expected from 
theory. 

Figure 5. Angular distributions for particles summed over the 
coherent pulse. 

CONCLUSIONS 

Results obtained on the MPP with the ald of Monte Carlo 
methods are equivalent in every detail to those based upon careful 
use of more traditional methods, but they are less subject to error 
and are closer to the physics. These characteristics offer 
tremendous advantages in the investigation of exotic transport 
regimes for which no theoretical description is available. In 
particular, the formulation of problems in which particles gain or 
lose energy leads to prohibitively large conventional com- 
putations, but their Monte Carlo versions are not significantly 
more complicated than the one described here. We intend to 
exploit these advantages in  the investigation of two such 
problems: Adiabatic deceleration of cosmic-rays duc to 
expansion of the solar-wind, and the loss of energy by electrons 
in radio sources due to synchrotron radiation. On a more 
immediate time scale, the current simulations, which embody an 
accurate and useful description of solar particle events, will bc 
applied to the interpretation of observations. 

ACKNOWLEDGEMENTS / 
This research was supported by NASA undcr 
Grant NGR-21-002-066. 

REFERENCES 

1. Lin, R. I?, "Emission and Propagation of -40 keV Solar 
Flare Electrons," Solar Physics, 15, 453, 1970. 

2. Case, K. M., and Zweifel, P. F., "Linear Transport 
Theory", Addison-Wesley, Reading MA, 1967. 

3. Earl, J. A., "Coherent Propagation of Charged Particle 
Bunches in Random Magnetic Fields", Astrophysical 
Journal, 188, 379, 1974. 

4. Earl, J. A., "Analytical Description of Charged Particle 
Transport Along Arbitrarary Guiding Field 
Configurations", Astrophysical Journal, 251, 739, 1981. 

5. Earl, J. A., "Simulation of Charged Particle Transport on 
the Massively Parallel Processsor", First Symposium on 
th Frontiers of Massive1 Parallel Scientific Computation, 
NASA Goddard Space Blight Center. Sept. 21  - 25, 1986 

6. Earl, J. A., "Charged Particle Transport Calculations on 
the Massively Parallel Processor", Conference Papers. 20 
th International Cosmic Ray Conference, Moscow, 3, 
198, 1987 

7. Jokipii, J. R., "Cosmic-Ray Propagation I, Charged 
Particles in a Random Magnetic Field", Astrophysical 
Journal, 146, 480, 1966. 

8 .  Kota, J., Merenyi, E., Jokipii, J. R., ~ o m b o s i ,  T. I., 
and Owens, A. J., "A Numerical Study of the 
Pitch-An le Scattering of Cosmic-Rays", Astrophysical 
Journal. $54. 398, 1982. 



ABSTRACT 

SUITABILITY OF SIMULATION OF A POPULATION OF 
CHEMICAL POLYMERS ON THE MASSIVELY PARALLEL PROCESSOR 

David Marshall Cohen 

Department of Computer Science 
The University of Iowa, Iowa City, IA 52242 

We describe our investigation of the suitability of the Massively 
Parallel Processor (MPP) for the execution of a program which 
simulates the degradation of the heparin polymer by the enzyme 
heparinase. The architecture of the MPP offers massive fine- 
grained parallelism, with the following limitations: (1) There is 
a single instruction stream, i.e., each of the 16,384 processing ele- 
ments (PE's) executes the same instruction. (2) Each PE com- 
municates directly with only four neighboring PE's. and the oppo- 
site edges of the grid of PE's are logically connected to each 
other. (3) Each PE has 1024 bits of local random access 
memory as well as (slower) access to a large (20 Mbyte) Staging 
Memory. 

We report on the use of the MPP Pascal programming language 
to implement the simulation program, including the representa- 
tion of polymer chains, the cleaving of chains into smaller 
chains, and the search for (stable) chains which are impervious to 
the actions of heparinase. 

Keywords: Massively Parallel Processor, Polymer. Simulation, 
MPP Pascal, Heparin, Depolymerization 

INTRODUCTION 

The Massively Parallel Processor (MPP) was built by Goodyear 
Aerospace Corporation for the NASAIGoddard Space Flight 
Center, which utilized it for processing data sent to earth from 
orbiting satellites (Ref. 1). In addition to image processing appli- 
cations which included algorithms such as the Fast Fourier 
Transform and maximum likelihood classification, the MPP has 
been used for a wide variety of applications, including simulations 
of plasma electrodynamics, king spin exchanges, neural networks, 
and chemically reactive flows in two and three dimensions (Refs. 
2-6). 

We have conducted a test of the use of the MPP to simulate the 
enzymatically catalyzed degradation of a population of chemical 
(polymer) chains. The design of the algorithm to fit the wm- 
puter architecture and the use of the MPP Pascal Programming 
language (Refs 7-8) to code the algorithm will be illustrated. We 
describe the algorithm and the MPP Pascal code for the algorithm 
in some detail. 

HEPARIN DEPOLYMERIZATION 

Heparin is an acidic mucopolysaccharide mixture that is found in 
vertebrate blood. Despite its widespread clinical use as an 
anticoagulant, the exact structure of heparin remains unknown 
(Refs. 9,lO). Heparin molecules vary in length (polydispersity) 
and in composition (microhetereogeneity). Rice and Linhardt 
(Ref. 11) have demonstrated that after degradation by the enzyme 
heparinase. five types of chemical molecules can be isolated, 
which together make up approximately 80% of the heparin 
molecules. These so-called "fundamental fragments" form the 
basic units of our simulation, and for purposes of discussion will 
be referred to as units F1, F2. F3, F4 and F5. 

Chemically. the fundamental fragments are well-characterized oli- 
gosaccharides (Ref. 11). or small chains of sugar molecules. 
Heparinase is believed to catalyze the dissolution of the bond 
between any two fundamental fragments, with the exception of 
free Fl -Fl  dimer (two unit chain), which is called F4. A molecule 
of heparinase nonpreferentially ("randomly") attaches to a pair of 
adjacent fundamental fragments, enables the splitting of the bond 
at its site of attachment, and releases the product chains, with no 
net change to the enzyme itself. This process occurs with massive 
parallelism. owing to the presence of astronomical numbers of 
heparin and heparinase molecules. 

Our objective in performing the simulation was to test the 
hypothesis that heparin polymer chains are a random arrangement 
of fundamental fragments. We simulated the degradation of 
heparin by heparinase, assuming a completely random arrange- 
ment of F1. F2. F3, F4, F5, and the same relative molar concen- 
trations as had been measured experimentally (Ref 12). By wm-  
paring the simulated rate of appearance of free (unbound) funda- 
mental fragments with observed rates of appearance, we were able 
to demonstrate that the observed data were not completely con- 
sistent with the consequences of the above-mentioned hypothesis. 

One aspect of the model in particular makes it difficult to predict 
the rates of appearance of free fragments without the aid of a 
computer. As indicated earlier, fundamental fragments F1 
through F5 are either impervious to heparinase or are cleaved at 
such a slow speed that they may be considered stable relative to 
the time scales of our observations. The complicating factor 
comes from the fact that F4 equals Fl-Fl dimer or (Fl)z,  pro- 
vided the dimer is not bound to any other fragments. We do not 
observe F4 unless it is free. Hence a chain that is composed of 
four F1 fragments, i.e., (F1)4, has two kinds of cleavable bonds: 
! ::ween the central two F1 units and between the terminal F1 
units and their neighbors. If the first kind of bond is cleaved, the 
result is two F4 units; if the second kind of bond is cleaved, the 



result is one free F1 unit and a chain of three F1 units, (F l ) , ,  
which is subject to further depolymerization and will yield one F1 
unit and one F4 unit. 

THE MASSIVELY PARALLEL PROCESSOR 

The Massively Parallel Processor belongs to the SIMD (single 
instruction stream, multiple data stream) category of parallel com- 
puters (Ref. 13). It achieves massive parallelism by doing arith- 
metic or logical operations on many short (I-bit) operands simul- 
taneously. 

The MPP is comprised of 5 principal parts (see Fig. 1). The 
Array Unit (ARU) consists of a 126x128 planar array of bit-slice 
microprocessors. Each of these processing elements (PE's) con- 
tains a variable length shift registcr (2-20 bits), several 1-bit regis- 
ters, a full adder, logic circuitry, and 1024 bits of random access 
memory (Refs. 14-16). Communication between PE's occurs via 
the grid topology, with opposite edges logically joined together, 
thus forming a cylinder or a torus. 

Figure 1. MPP System Block Diagram 

The Staging Memory serves as a large (20 Mbyte) random access 
shared memory for each PE, with the 1024 bits of local memory 
functioning as a high-speed cache. Communication between the 
ARU and the Staging Memory is done in parallel, with 128 bits 
sent simultaneously between the two components. Using pipelin- 
ing, the 16,384 PE's can all send (or receive) one bit to (or from) 
the Staging Memory in 12.8 microseconds. 

The MPP runs as a peripheral processor, with the host machine 
currently a DEC VAX-111780 minicomputer. The program in the 
host initiates the execution of a program in the MPP and can run 
concurrently with the MPP. Data may be transmitted between 
the MPP and the host via a high speed interface. 

The Program and Data Management Unit (PDMU) is used for 
hardware testing and diagnostics. It is a DEC PDP-11/34 mini- 
computer, which played a larger role when the MPP first came 
on-line. 

The Array Control Unit (ACU) consists of three parts, all of 
which can operate simultaneously. The Main Control Unit 
(MCU), a serial processor, performs all of the arithmetic not 
done by the array of PE's. The program running in the MCU 
invokes the use of the Array Unit by sending a subroutine call to 
the Processor Element Control Unit (PECU), the second com- 
ponent of the ACU. The PECU maintains a queue of requests 

and directs the computations to be performed by the PE's. 
Lastly. the Input/Output Control Unit (IOCU) handles the 
transmission of data into and out of the ARU. 

Programming may be done in assembler. MPP Pascal, or MPP 
Parallel FORTH. Assembler language programs are written either 
in Main Control Language (MCL) for execution on the MCU or 
the IOCU, or in Processing Element Array Control Language 
(PEARL) for execution on the ARU (Ref. 17-19). An interac- 
tive symbolic debugger is available as well as a simulator of the 
MPP which run on the UNIX operating system or on the 
VAXI VMS operating system (Refs. 7,17). 

MPP Pascal derives from the programming language Parallel Pas- 
cal, which was proposed by Reeves for use on SIMD computers 
(Ref. 20). We shall discuss MPP Pascal in detail below. John 
Dorband of the NASAIGoddard Space Flight Center designed and 
implemented a compiler for the programming language Parallel 
FORTH for use on the MPP (Ref. 21). 

M P P  PASCAL 

MPP Pascal is an extension of standard Pascal (Ref. 22) for use 
on SIMD computers. Aspects of the standard Pascal language 
that have not been retained include recursive procedures, sets, 
pointer variables and the character data type (Ref. 7). Three 
additions to Pasc4 have been made, namely (1) the 'parallel 
array" data type; (2) the where statement; and (3) predefined 
procedures and functions for use with parallel arrays. 

Corresponding bit positions in the local store of the PE's comprise 
a single 'bit plane" of memory. Groups of continuous bit planes 
can be treated a single bit plane of integer values or reals. MPP 
Pascal allows for the declaration of parallel arrays of integers, 
reals, or subranges of integers (of any desired bit length). As one 
would surmise, all elements of a single parallel array have the 
same type, length of representation in bits, and location in the 
local store of the PE's. 

MPP Pascal provides the where statement as an alternative to 
iteratively reading values from or writing values to the elements 
of a parallel array. In fact, owing to the architectural restrictions 
of the MPP, MPP Pascal does not allow the programmer to 

address locations in a parallel array by index values; the where 
statement is required. 

The syntax of the where statement is the following: 

where c boolean parallel array> 
do < statement> 
[ otherwise < statement> ] 

where < boolean parallel array> is any parallel array of 1-bit 
integers, with 0 signifying the boolean value of false and 1 signi- 
fying true. For each PE whose entry in the boolean parallel array 
is true, the MPP Pascal statement following the keyword do will 
be executed. If there is an otherwise clause in the where state- 
ment, then each PE whose corresponding entry in the boolean 
array is false will execute the statement following the keyword 
otherwise. 

MPP Pascal extends the use of arithmetic operators ( +  , -, *, I .  
div, mod), arithmetic functions (abs, sqr, sin. cos, exp. In, sqrt. 
arctan), logical operators (and,  or, not), and relational operators 
(= , < > , < , < = . > , > = ) to parallel array operands of 
appropriate parallel array types. The result of applying an arith- 
metic operator to two parallel arrays (say A and B )  is a parallel 



array in which the value of element [ i ,  j ]  is 

where < op> is the operator as it is used in standard Pascal. The 
result of applying an arithmetic function f to a parallel array A is 
a parallel array whose [i, j ]  entry is f ( A  [i.j]). In the case of 
logical operators or relational operators applied to two parallel 
arrays (of appropriate type) called A and B , the result is a parallel 
array of boolean (1-bit) values, in which the value of entry [ i ,  j ]  
equals (again) 

A [ i ,  j ]  < op> B [ i ,  j l  

where < op> is the relational or logical operator as it is used in 
standard Pascal. In all cases, restrictions on operators and func- 
tions (no division by zero, div requires integer operands, In(O.0) 
is undefined, etc.) carry over to individual elements of parallel 
array operands (Refs. 22-23). 

MPP Pascal provides several predeclared functions for computing 
a scalar (non-array) value from the elements of a parallel array. 
Functions min, max,  sum, and prod return the minimum, max- 
imum, sum and product (respectively) of the elements of the 
(parallel array) parameter. In the case of a boolean parallel array. 
functions all and any return the logical conjunction and logical 
disjunction (respectively) of the elements of the (parallel array) 
parameter. 

In addition to functions for calculating a single value from a paral- 
lel array, MPP Pascal provides three predefined functions for per- 
muting the elements of a parallel array. The functions shift and 
rotate perform an end-off shift (filling with zeros) and an end- 
around shift, respectively. The direction of the rotation or shift is 
given by the directions of the compass (north, south, east and 
west) and is specified in the invocation of the function. A matrix 
transpose operation on a parallel array can be accomplished by 
invoking the function transpose. 

lure of the MPP, allow for massive concurrency in the calcula- 
tions (Refs. 12.24). Each PE represents the location of one oh- 
gosaccharide unit in a population of chains of oligosaccharides. 
(The PE's have been assigned an implicit linear ordering. 
corresponding to row-major ordering of the elements of the two- 
dimensional array of PE's.) The identity of each oligosaccharide, 
the locations of the ends of the polymer chains, and the types of 
chemical bonds (see below) are stored in the local memories. 

The simulation begins with an initialization phase, in which the 
PE's compute the assignment of identities to the oligosaccharide 
units, the locations of the termini of the initial population of poly- 
mer chains, the types of the bonds between successive oligosac- 
charide units, and the seeds (initial values) for the random 
number generator. 

Random Numben-The random number generator uses the 
current value of its parameter (seed) to compute the next pseu- 
dorandom number. A linear congruential algorithm (Ref. 25) is 
implemented, generating uniformly distributed random numbers 
in the range [0.0, 1.0). Next we demonstrate the use of random 
numbers to select the identities of the ohgosaccharide units. 

Selection of Units- The choice of oligosaccharide units can be 
determined by assigning disjoint subintervals of [0.0, 1.0) to each 
type of oligosaccharide unit, with the proviso that the extent of a 
subinterval equals the desired fraction of units of that type in the 
entire population of units. It is readily seen that the collection of 
subintervals so defined covers the interval [0.0, 1.0). If the ran- 
dom number lies in the interval belonging to type "x" of oligosac- 
charide, then "x" is chosen for the identity of that particular 
unit. The (mole) fraction and accompanying subinterval for each 
of the fundamental fragments of the simulation are shown in 
Table 1. 

Table 1. Mole fractions and intervals used for 
selecting the type of fundamental fragment to be 
assigned to a PE. 

The MPP Pascal run-time system automatically creates two paral- 
lel arrays of integers, row-Index and col-Index, whose utility can- Fragment Fraction Interval 
not easily be overstated. The value of element [ i ,  j ]  is i in array F 1 0.8184 [O.OOOO, 0.8184) 
row-index and j in col-Index. To illustrate the use of these F2 0.0398 [0.8184. 0.8582) 
arrays, consider the following problem: we want to assign the 
value of 0 to all elements of rows 0, 1, and 2 of the (user- 

F 3  0.0589 [0.8582. 0.9171) 

declared) parallel array pixels and the value of 20 to the rest of 
F4 0.0607 [0.9171. 0.9778) 
F5 0.0222 r0.9778, 1.0000) 

the elements. The following MPP Pascal statement suffices: 

where row-Index < 3 
do pixcls := 0 
otherwise pixels := 20 

Note that in evaluation of the expression 

row-Index < 3 

the compiler generates assembly code that directs the MPP to 
compare row-index with a parallel array all of whose entries have 
the value of 3. 

SIMULATION ALGORITHM 

Generation of Initial Population of Chains 

Termini of Subcbains- After initially constructing a single (long) 
polymer chain, we proceed by dividing the chain into subchains, 
which will be the initial population of chains in the simulation. 
As in the case of the selection of the identities of the units, the 
simulation program uses the random number generator to deter- 
mine the locations of the termini of subchains. A parameter 
fractwnTerminators which has a value between 0.0 and 1.0 serves 
as the demarcation between the subinterval of [0.0,1.0) determin- 
ing the presence of a terminus and the one which does not. The 
value of fractwnTerminators used in the simulation is 5.91%. 
Roughly speaking, the value of fractionTermi~lors multiplied by 
the populotionSize (a parameter equal to the number of oligosac- 
charide units in the population) approximates the number of 
chains that will be formed. In fact, one can calculate (Ref. 26) 
that if the algorithm for selecting the termini of the initial popula- 
tion of chains is repeated N times (with different values for the 
initial seeds), then the average number of chains in the initial 
population will have a value of 

Overview-The structure of the computations performed during populationSize X fractionTerminators 
the simulation of the model. together with the particular architec- 



and a variance of MPP PASCAL CODE 

Simulation of Heparinase 

After establishing an initial population of heparin chains, the 
simulation of depolymerization begins. The rate of the enzyme- 
catalyzed chemical reaction obeys the following differential equa- 
tion (Ref 27): 

where x ( t )  is the number of cleavable bonds at time t and time is 
measured from the start of the depolymerization reaction. The 
parameters a and $ are constants which are related to the max- 
imum velocity and the Michaelis constant K,, respectively, of 
Michaelis-Menten kinetics (Ref. 27). The number Ax(t )  of 
bonds to be cleaved at the current (discrete) time step is calcu- 
lated from Equation 1, using a Taylor series method of second 
order (Ref. 28). The parameter dcltaTime represents the duration 
of each time step and was kept at a fixed value for the entire 
simulation. Different values for deltaTime resulted in differences 
in the accuracy of the numerical integration and differences in the 
time required for running the simulation to completion. 

There are three kinds of bonds: "cleavable", "noncleavable" and 
"nonexistent". A cleavable bond can be cleaved by heparinase, 
whereas a noncleavable bond can not. Noncleavable bonds are 
found only in the (FI), dimer. Nonexistent bonds are considered 
to lie at the termini of the polymer chains, each designating the 
end of a chain. At each time step, a random number is calculated 
for each cleavable bond. If the random number belonging to a 
bond is below the value of the state variable threshold at the 
current time step, then the bond will be cleaved at the end of the 
time step. The formula for the threshold at time t is 

In this manner. the expected number (in the statistical sense) of 
ba11di cleaved during each time step equals the number deter- 
m.,lrc! by Equation 1. 

After the bonds have been cleaved, newly emergent chains of free 
(FI), need to be detected. and the bond between the pair of F1 
units changed to bond type "noncleavable". (Recall that a free 
FI-Fl chain is impervious to heparinase, and is, in fact, a single 
F4 unit.) 

We define the value of fractwnComplerion to be the ratio of the 
number of bonds cleaved or rendered noncleavable since the 
beginning of the depolymerization to the number of cleavable 
bonds in the initial population of chains. At the conclusion of 
each time step. the value of fractwnCompletion is recalculated, 
using the formula 

The simulation continues until a desired value of 
f ractionComple~wn has been achieved. at which time information 
may be written to disk files. Then the program either continues 
or terminates execution. 

In this section we present the code in MPP Pascal for the depoly- 
merization of heparin molecules (chains). We use two globally 
declared parallel arrays called name and bond to hold the name 
of each oligosaccharide unit and the type of bond between that 
unit and its successor, respectively. Each PE stores information 
concerning one fundamental fragment in the simulated popula- 
tion. Recall that the PE's (and hence the fundamental fragments) 
have an implicit ordering by rows of the Array Unit. In order to 
clarify the presentation of the excerpts of the simulation program 
which follow, we have used boldface print for the names of pro- 
cedures and functions. 

The function getNextStoppingFractiaa returns the next value of 
fractwnCompktion to be used as a stopping criterion for the 
numerical integration routine. The function yetMoreStopping- 
Fractions returns a boolean value of true if there are more stop- 
ping fractions yet to be considered, and false otherwise. The 
depolymerization begins with the invocation of the procedure 
depol ymerizatlon. 

procedure depolymerization; 
begin 
while yetMoreStoppingFractions do 

be nin - "~ 
currentstop := getNextStoppingFrwtion; 
while fractionCompletion < currentstop do 

begin 
( Simulate one time step ) 

oneTimeS tep; 

( Find free Fl-F1 dimers ] 
modifyCteavableBonds; 

( Recalculate fractioncompletion ) 
updates tatevariables 
end ; 

( Write data to disk ] 
printInformation 
end 

end ; ( depolymerization) 

Next we provide code for procedures invoked from procedure 
&polymerization, and then procedures invoked from within those 
procedures, etc. These procedures are all declared within pro- 
cedure depolymerization, though for ease of exposition we have 
presented them separately. 

procedure oneTimeStep; 
( Compute threshold and change bonds 
from "cleavable" to "nonexistent". J 

var 
nextRand : parallelArrayType ; 

begin 
( seed is global parallel array; 
randomNumber is a function that returns 
a parallel array of random numbers. ) 

nextRand := randomNumber (seed) ; 
where (nextRand c: threshold) 

and (bond = cleavable) 
do bond := nonexistent 
end ; ( oneTimeStep) 



procedure modifyCleavableBonds; 
( Find all occurrences of free F l -F l  dimers. 

Look for a sequence of three units x ,  y ,  and z 
such that y and z are F1 units; x and z have 
nonexistent bonds; and y has a cleavable bond. 

Change the bond at y to "noncleavable" ) 
var 

leftName, leftBond, rightBond: parallelArrayType ; 
begin 

( Shift array name to the left one position; 
shift array bond to the left; 
shift array bond to the right. 
Use these shifted arrays to find all sequences 
x ,  y ,  and z (as stated above). ) 

leftblame := IeftRowshift (name) ; 
leftBond := IeftRowshift (bond) ;  
righ [Bond := righ tRowshift (bond) ; 

{ Modify bonds, changing them 
from cleavable to noncleavable. 1 

where (name = F1) and (1eftName = F l )  
and (bond = cleavable) 
and (1eftBond = nonexistent) 
and (rightBond .: nonexistent) 

do bond := noncleavable ; 
end ; ( modifyCleavableBondsJ 

procedure updateStateVariables; 
var 

temp: parallelArrayType ; 
begin 
where bond = cleavable do temp := 1 
otherwise temp := 0 ; 
numberCleavable := sum (temp) ; 

( Calculate new value for fractwnCleavable, using 
global variable inirioWumberCleavable. which equals 
numberCleavable at time t = O .  ) 

fractioncleavable 
:= 1 - numberCleavable/ initialNumberCleavable ; 

end ; ( updatestatevariables) 

Each of the next two functions takes a parallel array parameter A 
and returns the same array with the elements shifted one position 
downward (IeftRowShift) or upward (rightRowShift) with 
respect to row major ordering of the elements of A .  In the case of 
shifting downward, the [0,0] element of A is lost (destroyed), 

and the [127,127] element of the array returned by IeftRowShift 
is zero. In the case of shifting upward, the [0,0] element of the 
array returned by rightRowShift is zero, and the [127,127] ele- 
ment of A is lost. 

Each of the predeclared functions shift and rotate requires three 
parameters: a parallel array A and two integer values ns and we. 
If ns equals 1, the shift is upward (northward); if ns equals -1, 
the shift is downward (southward). lf we equals 1, the shift is to 
the left (westward); if we equals -1,  the shift is to the right 
(eastward). To illustrate. suppose that the ARU is a 3 x 3  array of 
PE's instead instead of a 128x 128 array of PE's. If A were the 
following parallel array: 

then the matrix returned by IeftRowShift would be 

and the matrix returned by rightRowShift would be 

Here are the actual functions: 

function IeftRowShirt (var A : parallelArrayType) 
: parallelArrayType ; 

var 
ns, we, maxIndex : integer ; 
temp : parallelArrayType ; 

begin 
( Shift each row to the left, wrapping around 
at the edges of the ARU. ) 

ns := 0 ; we := 1 ; 
temp := rotate (A, ns, we) ; 

( Shift rightmost column upward, filling with zero. ) 
ns := 1; we := 0 ; maxIndex := 127 ; 
where col-Index = maxlndex 
do IeftRowShift := shift (temp, ns, we) 
otherwise IeftRowShift := temp ; 
end ; ( IeftRowShift) 

function rightRowShift (var A : parallelArrayType) 
: parallelArrayType ; 

var 
ns, we, minIndex : integer ; 
temp : parallelArrayType ; 

begin 
( Shift each row to the right, wrapping around ) 

ns:= 0 ;  we := - I  ; 
temp := rotate (A, ns, we) ; 

( Shift leftmost column down, filling with zero. ) 
ns := -1 ; we := 0 ; minIndex := 0 ; 
where col-Index = minIndex 
do rightRowShift := shift (temp, ns, we) 
otherwise rightRowShift := temp 
end ; ( rightRowShift ) 

DISCUSSION 

The MPP may be compared with two other SIMD (parallel) com- 
puters, namely the Connection Machine (CM), manufactured by 
Thinking Machines Corporation, and the ICL-DAP computer, 
manufactured by Active Memory Technology, Inc. The Connec- 
tion Machine series of computers (CM-I and CM-2) resembles 
the MPP in the massive number (65,536) and word size (1-bit) of 
its processing elements. Unlike the MPP, the CM has a 16- 
dimensional hypercube interconnection topology, 4096 bits of ran- 
dom access memory at each PE, and a message-passing facility 



and router (Ref. 29-31). The ICL-DAP series of computers pos- 
sess the grid (2-dimensional array) interconnection topology, like 
the MPP (Ref. 32). The grid itself is smaller (32x32 PE's), but 
each processing element possesses 32,768 bits of local random 
access memory, considerably more than belong to a processing 
element of the MPP. 

Much attention has been shown in the last few years to algorithms 
for the Connection Machine (including an entire issue of the 
Communications of the ACM, see Ref. 33). To a lesser extent. 
some exposure has been given to algorithms running on the MPP 
(Refs. 34-35). 

CONCLUSION 

We have described a simulation of the enzyme-catalyzed depoly- 
merization of heparin and shown how it can be mapped to the 
architecture of the MPP. We explained the principal differences 
between MPP Pascal and standard Pascal. Our presentation of the 
actual program for the simulation illustrated the language con- 
structs in MPP Pascal which allow for manipulation of the 16.384 
processing elements in the Array Unit. The simulation included 
algorithms for circulating data among the PE's (using an implicit 
row-major ordering of the PE's) and for pattern matching. 

REFERENCES 

1. Faiss, R.O. 'The Goodyear SIMD Processors: Insights 
Gained from 20 Years of Usage," unpublished technical 
report, Goodyear Aerospace Corporation, Akron, Ohio. 

2. Gledhill, I.M.A. and Storey. L.R.O.. "Particle Simulation of 
Plasmas on the Massively Parallel Processor," (Proceedings 
o f  Frontiers o f  Massively Parallel Sckntific Computation ) , 
NASA Conference Publication No. 2478, NASA Scientific 
and Technical Information Office. Greenbelt MD, 1987, pp. 
37-46. 

3. Sullivan, F. and Mountain, R., "A Fast MPP Algorithm for 
Ising Spin Exchange Simulations," (Proceedings of Frontiers 
of Massively Parallel Scientific Computation ), ibid., pp. 
53-56. 

4. Barnden, J.A., "Simulation of an Array-Based Neural Net 
Model", (Proceedings of Frontiers of Massively Parallel 
Scientific Computation), ibid., pp. 59-68. 

5. Hastings, H.M. and Waner, S., "Neural Nets on the MPP", 
(Proceedings o f  Frontiers of Massively Parallel Scientific 
Computation),  ibid., pp. 69-74. 

6. Carmichael, G.R., Cho, S.Y ., Cohen, D.M., and Oguztuzun, 
M.H., "Chemical Network Problems Solved on 
NASAjGoddard's Massively Parallel Processor Computer", 
(Proceedings of Frontiers of Massively Parallel Scientific 
Computation),  ibid.. pp. 165-170. 

7. Science Applications Research. "MPP Pascal Programmer's 
Guide", prepared for NASAIGoddard Space Flight Center, 
Greenbelt MD, Contrect No. NAS-5-28200, Task No. 240- 
00, March 1988. 

8. Fischer, J. (editor), "MPP User's Guide", prepared for 
NASAIGoddard Space Flight Center, Greenbelt Md 20771, 
by Science Applications Research, 4400 Forbes Boulevard, 
Lanharn Md 20706, Contract No. NAS-5-28200, Task 
assignment No. 192, January 1986. 

9. Linhardt, R.I.. Rice, K.G., Merchant, Z.M., Kim, Y.S., and 
Lohse, D.L., "Structure and Activity of a Unique Heparin- 
Derived Hexasaccharide," J. Biol. Chem. .  1986. 261(31). 
pp.14448-14454. 

Rice. K.G. and Linhardt. R.J.. "Study of Homogeneous, 
Defined Oligosaccharide Substrates of Heparin and Heparan 
Monosulfate Lyases," Carbohydrate Research. 1988. submit- 
ted. 

Linhardt. R.J., Rice. K.G., and Cohen. D.M., "Non- 
Random Structural Features in the Heparin Polymer," 
Biochem.. 1988. submitted. 

Hwang K. and Briggs F.A., ComputerArchiteciure 
and Parallel Processing, McGraw-Hill, New York, 1984. 

Gilmore P.A.. 'The Massively Parallel Processor." Technical 
Repon GER - 17272. Goodyear Aerospace Corporation, 
May 1985. 

Goodyear Aerospace Corporation, "General Description of 
the MPP," Technical Repon No.  GER - 17140. April 1983. 

Batcher K.E., "Design of a Massively Parallel Processor", 
IEEE Trans. Computers. 1980, C-29. pp. 836-840. 

NASAJGoddard Space Flight Center, "Computing on the 
MPP at the Goddard Image and Information Analysis 
Center (GIIAC)". version 2, February 1986. 

Parker D., "MPP Main Control Language - MCL". Technical 
Report prepared by Science Applications Research (Lanham, 
MD 20706) for NASAIGoddard Space Flight Center, Con- 
tract No. NAS-5-29200, Task Assignment No. 177, Sep- 
tember 1985. 

Parker D.. "MPP PE Array Language - PEARL". Technical 
Report prepared by Science Applications Research (Lanham, 
MD 20706) for NASAJGoddard Space Flight Center, Con- 
tract No. NAS-5-29200, Task Assignment No. 177, Sep- 
tember 1985. 

Reeves A.P., "Parallel Pascal: An Extended Pascal for Paral- 
lel Computers". J. Parallel Distributed Computing, 1984, 
1, pp. 64-80. 

Dorband J.E., "MPP Parallel FORTH User's Manual", Ver- 
sion 1.1.1, NASAIGoddard Space Flight Center, Greenbelt 
MD 20771. 

Jensen K. and Wirth N.. Pascal User Manual and 
Report,  3rd edn., revised by A.B. Mickel and J.F. Miner. 
Springer-Verlag. New York, 1985. 

Welsh J. and Elder J.. Introduction to Pascal, 2nd edn.. 
Prentice-Hall International, Englewood Cliffs, N.J., 1982. 

Cohen D.M. and Linhardt R.J., ''Use of Computer Simula- 
tion on the Massively Parallel Processor to Study the Struc- 
tural Features of Heparin". (Proceedings of the Third 
I n t e r ~ t i o n a l  Conference on Suprcomputing, edited by 
L.P.  Kartashev and S.I. Kartashev, International Supercom- 
puting Institute, Inc.), 1980, volume 1, pp. 210-213. 

Knuth, D.E.. The Art of Computer Programming: Volume2, 
Seminumerical Algoruhms, 2nd edition, Addison-Wesley, 
Reading MA, 1981. 

Cohen, D.M., "Validation of A Stochastic Algorithm for 
Choosing the Initial State of A Monte Carlo Simulation on a 
Parallel Computer," SIAM J Sci. Star. Computing. 1988, 
submitted. 

Lehninger, A.L.. Biochemisrry. 2nd edition, Worth Publish- 
ers, New York, 1975. 

Johnson, L.W. and Riess, R.D., Numerical Analysir, 2nd 
edition. Addison Wesley, Reading MA, 1982. 

Hillis. W.D., The Connection Machine. MIT Press, Cam- 
bridge MA, 1985. 

Thinking Machines Corporation. "Introduction to Data Level 
Parallelism". Technical Report No. 86.14. April, 1986. 

Gabriel R.P., "Massively Parallel Computers: The Connec- 
tion Machine and Non-Von", Science. 1986, 231, pp. 975- 
978. 

10. Lindahl. U., Feingold, D.S., and Roden, L., "Biosynthesis of 
Heparin," Trends Biochem. Sci. . 1986, 11. pp. 221-225. 



32. Active Memory Technology, Inc, "DAP Hardware", bro- 
chure, Active Memory Technology, Inc, Irvine, CA. 

33. CACM , vol29,  No. 12, December, 1986 

34. Tilton, J.C.. Hallada. W.A. and Ramapriyan. H.K.. "An 
Overview of Algorithms for the Massively Parallel Proces- 
sor." internal memo, Goddard Space Flight Center, Green- 
belt, MD. April 1985. 

35. Cohen, D.M., 'Program Development on a Massively Paral- 
lel Computer," Sofrware- Prac~ice and Experience, 1988, 
submitted. 



ESTIMATING WATER FLOW THROUGH A HILLSLOPE USING THE MASSIVELY 
PARALLEL PROCESSOR 

J. E. Devaney 
Sc ience Appl icat ions Research 

Lanham, Maryland 

P. J. Camillo and R. J. Gurney 
NASA/Goddard Space Flight Center 

Greenbelt, Maryland 

ABSTRACT 

A new two-dimensional model of water flow in a 
hillslope has been implemented on the Massively 
Parallel Processor at GSFC. Flow in the soil both 
in the saturated and unsaturated zones, evaporation 
and overland flow are all modelled, and the 
rainfall rates are allowed to vary spatially. 
Previous models of this type had always been very 
limited computationally. This model takes less 
than a minute to model all the components of the 
hillslope water flow for a day. The model can now 
be used in sensitivity studies to specify which 
measurements should be taken and how accurate they 
should be to describe such flows for environmental 
studies. 

INTRODUCTION 

One important part of the global hydrological 
system is a catchment, which separates rainfall 
into evaporation, overland flow, and infiltration. 
For a heavy rain, infiltration excess reaches the 
stream first as overland flow. Part of the 
infiltrated water may then flow rapidly below the 
surface to re-emerge downslope or enter the stream. 
This is usually referred to as saturated subsurface 
flow. The rest reaches the unsaturated zone. The 
flow there is vertical and horizontal, and the 
latter component may eventually contribute to the 
stream flow. Another component which can 
contribute to the stream flow is horizontal flow in 
a perched water table above the bedrock. 

The primary output of catchment models is the 
hydrograph, in which the rainfall and fluxes to 
the stream from each of the above processes are 
plotted as a function of time. The rainfall 
rate and the sum of all the output fluxes are the 
usual data from a catchment, and a primary goal of 
catchment modelling is to understand the 
sensitivity of the output to the physical 
characteristics of the catchment, such as 
topography, cover type, soil characteristics, and 
antecedent moisture. 

Ref. 13 define catchment models as being of three 
basic types, but with overlapping characteristics 
so they may be considered a continuum. The first 
is stochastic. These models are statistical, in 
which time series of measured hydrographs (output) 
are correlated to rainfall (input) using classical 
time series analysis techniques. This leads quite 
naturally to parametric models, their second class, 
in which the parameters of the stochastic models 
are related empirically to the physical properties 

of the catchment. The third class contains 
deterministic models based on the laws of 
conservation of energy, mass, and momentum, usually 
expressed as time and space dependent differential 
equations. As these almost always contain non- 
measurable parameters which must be calibrated, 
deterministic models are partly parametric. 

There are many deterministic catchment models, but 
none of them includes all of the processes in the 
hydrological cycle. In part this is because we 
don't even know what they all are, due to the 
extreme complexity and variability of natural 
catchments. However, no existing model even 
includes all the processes previously 
described, because no serial computer can model 
them with a reasonable amount of computer time for 
a spatially variable catchment and for a long 
enough time period (Ref. 1,7,8,13.15). 

The concept of partial (or contributing) areas is 
one basis of our understanding of how catchments 
distribute rainfall (Ref. 17). Due to the spatial 
variability of catchment characteristics (soils, 
cover, topography), different areas handle the rain 
in different ways. For example, if the rain rate 
exceeds the infiltration capacity for a particular 
area, then the excess rain becomes overland flow. 
Once the soil is saturated, the water can flow 
rapidly below the surface and parallel to it. This 
process is referred to as saturated subsurface 
flow. The water will re-emerge somewhere 
downslope, adding to overland flow. The areas 
change over time, so the saturated partial area 
which contributes to overland flow varies in time 
as well as in space. 

We have tried to overcome the computing limitations 
by developing a model on the Massively Parallel 
Processor (MPP). The model consists of a set of 
partial differential equations, solved in parallel, 
and so adapts naturally to a parallel architec- 
ture. The MPP hillslope model includes the 
following components: 

- -  Surface retention 

- -  A complete surface energy balance (tempera- 
ture and moisture) with separate evaporation 
rates from the soil, plants (with water 
extraction from the unsaturated zone), and 
surface retention 

- -  Overland flow 

- -  Saturated subsurface flow parallel to the 
surface 

PRECEDING PAGE $LANK NOT flLMED 
249 



- -  Horizontal and vertical flow in the unsatur- 
ated zone 

- -  Horizontal flow in an unconfined aquifer 

Our model is a vertical slice of a hillslope, so it 
is basically a two-dimensional model. It may be 
considered three-dimensional only if the gradients 
are all downslope, not across the slope. It is 
based on a catchment model of Ref. 11, which is 
simply a series of uncoupled one-dimensional soil 
columns placed side by side. We have improved 
their design by allowing for horizontal flow in the 
unsaturated zone between the columns, and including 
the soil and surface temperatures. 

We decided at the beginning of this research effort 
to create one-, two-, and then three-dimensional 
models in succession. The one-dimensional model 
(Ref. 6) was compared to a similar one which runs 
on a serial machine (Ref. 5,10) to make sure the 
equations are solved correctly on the MPP, and as a 
timing benchmark. After the two-dimensional model 
is completely tested, we plan to develop a three- 
dimensional version. 

Our use of a parallel processor significantly 
reduces the execution time. Typically a 24 hour 
period may be modeled in about one CPU minute. 
Ref. 11 state that their model does not use 
excessive computer time on a serial machine, but 
they only present results from 6 hour simulations. 

THE TWO-DIMENSIONAL MODEL 

The specifications for each of the components of 
the model given in the first section are described 
here as flux and continuity partial differential 
equations. The method of solution is also briefly 
described. 

Unsaturated Zone 

Moisture flow is modeled as described in Ref. 5, 
except we now have a horizontal component in the 
soil moisture flux. The surface temperature is 
modeled by the force-restore method. 

Boundary value fluxes must be specified for 
moisture at the top and bottom of the hillside 
(vertical direction) and at the hillslope divide 
and surfaces (horizontal direction). The top 
boundary flux is the infiltration or evaporation 
rate, computed from the surface energy balance. 
The horizontal flux into the hillslope at the 
divide is zero. The horizontal flux at the 
hillslope surface depends on whether that cell is 
saturated. If it is and the sum of the vertical 
fluxes plus the horizontal flux into the cell from 
the interior of the hillslope would cause soil 
moisture to exceed saturation, then the flux onto 
the surface is set to whatever value is needed to 
keep moisture just as saturation. Otherwise, it is 
zero. This is the mechanism which allows 
subsurface return flow. 

Saturated Zone 

The water table height in each column is HB. The 
horizontal flux is QB, and the vertical flux is QZ. 
The fluxes and vertical boundary conditions are 
calculated by the one dimensional Boussinesq 
equation (Ref. 14). The flux into the water table 
from the unsaturated zone is modelled as the 
vertical hydraulic conductivity of the layer, and 
the bottom boundary condition is an input parameter 
representing an impervious layer or upward or 
downward seepage. 

The flux at the catchment divide is set to zero. 
At the seepage face the height HB is a fixed input 
parameter. Therefore the time derivation of HB is 
zero for the last column, and the discretized form 
of this derivative may be solved for the horizontal 
flux at the seepage face. This is the saturated 
zone flux which contributes to the hydrograph. 

Overland Flow 

If the surface water height is larger than a 
critical value, the overland flow flux is 
determined by Manning's equation (Ref. 7). 

The infiltration rate is basically the Green-Ampt 
model (Ref. 9) , with the usual modification which 
replaces the depth of the wetting front with the 
cumulative infiltration: 

Surface Energy Balance 

The energy balance equation provides the surface 
fluxes : 

All fluxes are positive downward. G is the heat 
absorbed by the soil, R is the net radiation flux, 
LE is the evapotranspiration energy flux, and H is 
the sensible heat. After finding the solution, the 
surface moisture flux qg is set equal to the soil 
evaporation rate, and G is used in the force- 
restore model. The surface temperature needed to 
evaluate the fluxes is known from the force-restore 
equation. The latent and sensible heat fluxes are 
the usual resistance formulations. We imagine the 
soil and vegetation as one surface with the 
temperature T . We also allow for some surface 
water storage.'This affects the evaporation rates, 
because the surface resistance is zero for the 
fraction of the evaporation which comes from the 
stored water. 

Method of Solution 

The soil moisture and temperature continuity 
equations are solved by calculating the spatial 
derivatives of the moisture fluxes and then 
computing the time integral using numerical models. 

The soil is divided into cells by creating a grid 
of N layers and M columns of varying widths Azi and 
Ax. respectively, which are input parameters. At a 
spicified time the fluxes at the interior 



boundaries are calculated. The surface energy 
balance equations are evaluated and all boundary 
conditions applied. The continuity equations are 
of the form: 

The vector y represents the state of the system in 
the unsaturated zone and ?(t , y) represents the 
model equations. This is solved with an Adams- 
Bashforth predictor-corrector method (Ref. 3,16). 
This solution is described in detail in Ref. 5. 
Since double precision is not available on the MPP, 
the form of the predictor-correction equations with 
the calculations done with the derivatives instead 
of the backward difcerences was used. New values 
of the state vector, y(p)(t+At) are predicted in 
terms of the previous derivatives. The derivatives 
are recalculated from the model equations, and then 
the corrected value of the state vector, + 
y(c)(t+At), is obtained. 

The difference between 3(p) and ;(c) is a reliable 
estimate of the discretization error, and the 
software determines if each element of this 
difference lies within a user-specified window. If 
all differences are smaller than this window, the 
integration step size (At) is doubled, leading to 
increased computational efficiency and reduced 
roundoff errors. If any difference is too large, 
the step size is halved. Doubling of the time step 
was accomplished by saving the previously 
calculated derivatives and using them. Thus, 
maximum accuracy could be retained. Where the time 
step could be doubled because the errors are small 
enough but there were insufficient b a c k  
derivatives, doubling was postponed until there 
were sufficient back data. When the error window 
checks required that the time step be halved, three 
of the required derivatives for the predictor- 
corrector were available, and two were missing. 
The Runge-Kutta method was used to calculate these 
needed derivatives . The continuity equations for 
surface and saturated flow are solved using a 
Runge-Kutts method throughout. 

UTILIZING THE MPP ARCHITECTURE FOR SPEED 

Since identical calculations were needed at each 
soil cell, the mapping of the two dimensional model 
of the hillslope was accomplished by assigning an 
individual processing element to each soil cell 
(see Fig. 1). Thus, the local memory of each 
processor contains the values which belong to that 
cell, i. e. moisture, position, thickness, depth, 
conductivities, etc. Surface temperature, deep 
soil temperature, cumulative infiltration, overland 
flow, and saturated flow were all stored as vectors 
in the same array as the moisture values since they 
were part of the state vector. 

The first step in the solution required calculation 
of the fluxes at the interior boundaries of the 

UNUSED 
PROCESSOAS 

El- # Hlll Top 

1 
I 

mom Layer 

Figure 1. One processing element is assigned 
to one soil cell 

soil cells. These calculations involved only array 
arithmetic and nearest neighbor (in one direction 
for horizontal fluxes and in the other direction 
for vertical fluxes) calculations. Since the 
interconnect- scheme of the MPP is a nearest 
neighbor network, all of the array arithmetic and 
nearest neighbor calculations could be done in 
parallel. The next step in the solution required 
the surface energy balance equations be evaluated 
and the boundary conditions applied. These all 
involved vector calculations. Numerous input 
vectors were required to do these calculations over 
the course of a model run. Some were time 
dependent vectors such as the air temperature 
across the surface of the hillslope throughout the 
day and some were static throughout the model run, 
such as surface slope, surface roughness, and 
surface vegetation properties. These vectors were 
packed into array columns. To get the vector data 
to a convenient place to do calculations, the row 
and column broadcast capability of the MPP was 
used. This allows fast broadcast of one element 
from each row (column) to the other processor 
memories in the same row (column) (see Fig. 2). 

It is not necessary that the broadcast row (column) 
be composed only of elements in a horizontal 
(vertical) direction but merely that one element 
per column (row) be selected. The MPP's capabilitv 
to select arbitrary areas of an array for 
calculation via boolean masks allowed the completed 
vector calculation results to be placed for example 
into the processor memories of only the surface of 
the hills lope. This combination of data movement 
via broadcast and boolean selection enabled the 
vector calculations to be done simply. In 
addition, since many of the vector calculations 
were similar, it was possible to do more than one 
set at a time. 

Once the derivatives were calculated, the 
predictor-corrector equations were used and the 
differences between them found. The tests on the 



MODEL OUTPUT 

Figure 2. The row and column broadcasting 
feature of the MPP allows quick 
movement of data for vector 
calculations 

halving (doubling) converted to a hardware 
instruction on the MPP and could thus be done in 
parallel. This global testing ability of the MPP 
was also used to decide if whole blocks of code 
needed to be executed or could be skipped. This 
occurred for example with the infiltration 
calculations under surface saturation. If no part 
of the surface was saturated, then these 
calculations could be skipped entirely. This also 
contributed to the overall speed of execution. 

In summary, the program's speed was achieved 
through array arithmetic (masked and unmasked), 
parallel data movement through nearest neighbor 
communication and row and column broadcasting, and 
global testing of conditions using ' any' or 'all ' 
for the purpose of choice in the next set of 
calculations. All of these fitted naturally with 
the MPP architecture and the computational 
requirements of the model. A comparison of the 
times (see Table 1) for the model as it has evolved 
from a 14 layer, one-dimensional limited flow model 
to the current two dimensional model shows that a 
single day of data run through the model requires 
only about a minute of CPU time. 

Table 1. Timing measurements comparing MPP and 
a serial processor for 24 hours of data 
processed. 

One Dimensional Model 
(14 soil layers, no rain, vertical flows only) 

IBM (Full processing capability): 4 sec 
MPP (14/16384 processors): 10 sec 

Two Dimensional Model 
(102 soil layers, 102 soil columns, horizontal 
and vertical unsaturated flows, saturated flow, 
overland flow, one hour of rain) 

MPP : 57 sec 

We have not yet completed unit testing of all the 
processes in the model. Here we present the 
results of one test, which includes the surface 
energy balance of and infiltration into an 
initially very dry sandy loam soil. 

The hillslope is divided into 102 columns of width 
. 5 meters each. The first column has 100 soil 
layers of thickness .1 m and the bottom two layers 
.5 meters. The last column has only the bottom two 
layers. The slope is a line drawn from the top of 
the first column to the top of the last, so the 
area modeled is a right triangle with height 11 
meters and base 60 meters. These soil cells plus 
the additional cells for temperature, infiltration, 
overland flow and saturated flow use approximately 
one-third of the Array Unit Processor capacity. 

The initial volumetrjic- jnoisture in the unsaturated 
zone is set to .05 m rn everywhere. To model a 
sandy loam we have set the parameters in the 
hydraulic conductivity and matr c po ential models 
to 8 - ,375, K - 2.8 x 10 nit , - -.43 m, 
and bS - 5. ~heszvalues were derived frzm fits to 
the characteristic curves measured during an 
experiment near Phoenix in 1972 (Ref. 12) . They 
were reused for each of the 6 days modeled here. 
Ref. 4 show how these data were fitted to the 
surface energy balapce model. The rainfall rate 
was 1.6 cm h- for the first 3 hours. 

Perhaps the most important result is that the 
simulations took approximately 1 minute of CPU time 
per 24 hour period, or 6 minutes for the entire 6 
day run. In numerical simulations on earth science 
problems, computer runs of an hour or more are not 
uncommon. In such a time, it is feasible to 
simulate 2 months or more of model time on the MPP. 
This will allow for simulations of many storms and 
inter-storm periods. 

Figure 3a and 3b show the force restore solutions 
to the surface and deep soil temperatures as 
functions of time and column number. Time zero is 
the start of the simulation, which here is 
midnight. Column 1 is at the hillslope divide 
and column 102 is at the seepage face. It is 
difficult from these plots to project the daily 
maximum value onto the time axis, but for each day 
this occurs at 2 p.m. The temperatures range from 
22 to 40 (OC), increasing as the soil surface 
dries. The temperatures in the last three columns 
show some problems, which we are examining. 

Figure 4a shows soil moisture in the top soil layer 
as a function of time and position. The rapid rise 
as the initially dry soil absorbs all the rain and 
the subsequent decline over the next 5 days are 
physically realistic. 

Figure 4b shows the soil moisture profile in column 
50 (halfway down the hillslope) as a function of 
time. This shows that the moisture never 
penetrates deeper than the top 5 layers, or . 5  
meters. It also shows that after 2 days the 
surface exhibits small oscillations about a value 
of .05 (same as in Fig. 4a), increases to a value 



dRlGlNAL PAGE 
BLACK AND WHITE PHOTOGRAPH 

Figure 3a. Force-restore solution for the surface Figure 4a. Surface soil moisture as a function 
temperature as a function of time and of time and position on the hillslope 
position on the hillslope 

Figure 3b. Force-restore solution for the deep 
soil temperature as a function of 
time and position on the hillslope 

of about .12 at about .3 meters then decreases to 
an unchanging value of .05 below .5 meters. Thus, 
the dynamic zone seems to be the top .5 meters. 

Figure 4c shows the variation of the top cell soil 
moisture as a function of time. The effects of 
infiltration and evaporation, as well as of 
capillary action, can be seen. 

Figure 4b. Soil moisture profile for column 50 as 
a function of time 

Figure 5a shows the infiltration rate as a function 
of time andqposit_ifn. The maximum rate shown here 
(414 x 10 cm s ) equals the rain rate, 1.6 cm 
h . Figure 5b shows the cumulative evaporation 
everywhere as 4.8 cm, exactly equal to the 
cumulative rainfall. For this simulation, then, 
all the rain immediately infiltrated into the soil 
surface. Figure 5b also shows that the cumulative 
infiltration calculation is correct. There is no 
surface retention. 



radiation, a rather large value. The problem is 
not in the values for thermal conductivity and heat 
capacity, as may be seen in Figure 7. These vary 
with soil moisture as they should. 

Figure 4c. Surface moisture for column 50 as a 
function of time 

Figure 5a. Infiltration rate as a function of 
position and time 

The surface energy balance fluxes are plotted in 
Figs. 6a-6d. The net radiation (Fig. 6a) is the 
data used to drive the energy balance model. These 
are the same very day, as we simply reused the 24 
hour data set each day. The latent heat flux (Fig. 
6b) decreases each day as the soil dries out. The 
sensible heat flux (Fig. 6c) exhibits peculiar 
behavior, being predominantly positive (towards the 
soil in the sign convention of Eq. 2) for the first 
4 days and negative thereafter. Finally, Figure 5d 
shows the soil heat flux. It is positive during 
the day as it should be for a soil surface which is 
getting warmer every day, but it is also 50% of net 

Figure 5b. Cumulative infiltration as a function 
of position and time 

Figure 6a. Surface net radiation as a function of 
time and position 

These peculiarities in the surface fluxes are most 
likely due to the use of the same net radiation 
every day, which cannot be representative of all 
the surface conditions modeled here. This is being 
checked out by using modeled instead of measured 
radiation. 

ORIGINAL PAGE 
BLACK AND WHITE PMOTOW4PH 



ORlGlNAL PAGE 
BLACK AND 'rV)il l i  Pk'JTOGRAPH 

Figure 6b. Latent heat flux as a function of 
time and position 

Figure 6d. Soil heat flux as a function of 
time and position 

Figure 6c. Sensible heat flux as a function of 
time and position 

SUMMARY 

We have presented a new model of the hydrological 
response of a hillslope to rain. It runs on a SIMD 
parallel architecture computer, the Massively 
Parallel Processor, at Goddard Space Flight Center. 
Its major advantage over other models of its type 
is its much reduced execution times (due to the 
parallel architecture of the MPP) from what one 
gets on a serial machine. This allows the model to 
include more of the hydrological processes than any 
other model has been able to, including saturated 
subsurface flow and a sophisticated surface energy 

Figure 7a. Thermal conductivity of the top soil 
layer as a function of time and 
position 

ACKNOWLEDGEMENT 

One of the authors, J .  E. Devaney, was partially 
supported by NASA Contract NAS5-28200. balance. 



Figure 7b. Heat capacity of the top soil layer 
as a function of time and position 

REFERENCES 

1. Bathurst, J. C., "Physically-based Distributed 
Modeling of an Upland Catchment Using the 
Systeme Hydrologique Europeen," Institute 
of Hydrology, Wallingford, Oxon, UK. 

2. Becker, F., P. J. Camillo and B. Choudhury, 
"Review of ET Estimation by Means of Satellite 
Data," Proceedings of the ISLSCP Conference on 
Satellite Data Algorithms, Pasadena, CA, 
January 1987. 

3. Devaney, J. E., P. J. Camillo and R. J. Gurney, 
"A SIMD Implementation of a One-Dimensional 
Energy-Moisture Balance Model," submitted to 
Proceedings of the ISLSCP Conference on 
Satellite Data Algorithms, Pasadena, CA, 
January 1987. 

4. Booth, A. D., Numerical Models, Academic Press, 
New York. 1957. 

5. Camillo, P. J. and R. J. Gurney, "A Resis- 
tance Parameter for Bare Soil Evaporation 
Models," Soil Science, 141, 1986, 95-105. 

6. Camillo, P. J . ,  R. J. Gurney and T. J. 
Schmugge, "A Soil and Atmospheric Boundary 
Layer Model for Evapotranspiration and 

Devaney, J. E., P. J. Camillo and R. J. 
Gurney, "A SIMD Implementation of a 
Distributed Watershed Model," Proceedings 
of the Second International Conference on 
Supercomputing, Santa Clara, California, 
May 3-8, 1987. 

Eagleson, P. S., Pvnamic Hvdroloey, 
McGraw-Hill, New York, NY, 1970. 

Freeze, R. A,, "Three-Dimensional, Transient, 
Saturated-Unsaturated Flow in a Groundwater 
Basin, Water Resources Research, 7, 1971, 
929-941. 

Green, W. A .  and H. A. Ampt, Studies on 
Soil Physics, 1. The Flow of Air and Water 
~hrou~h- Soils, Journal of Aericultural Soils, 
4, 1911, 1-24. 

Gurney, R. J. and P. J. Camillo, "Modelling 
Daily Evaporation Using Remotely Sensed 
Data," Journal of Hvdrolo~y, 69, 1984, 305-324. 

Hillel, D. and G. M. Hornberger, "Physical 
Model of the Hydrology of Sloping Heterogeneous 
Fields," Soil Science Soc. Am. J . ,  43, 1979, 
434-439. 

Jackson, R. D., "Diurnal Changes in Soil-Water 
Content During Drying," in Field Soil Water 
Reaime, R. R. Bruce et al. (eds.), Soil Sci. 
Soc. Am. Proc, Special Publ. 5, 1973. 

Kirkby, M. J. (ed.), Hillslope Hvdroloay, 
Wiley-Interscience, Chichester, UK, 1972. 

Pikul, M. F., R. L. Street, I. Remson, "A 
Numerical Model Based on Coupled One-Dimen- 
sional Richard and Boussinesq Equations," 
Water Resources Research, 10, 1974, 295-302. 

Smith, R. E. and D. A. Woolhiser, "Overland 
Flow on an Infiltrating Surface, Water 
Resources Research, 7, 1971, 899-913. 

Teddington, A., Modern Comautin~ Methods, 
Philosophical Library, New York, 1958. 

van de Griend, A. A .  and E. T. Engman, 
"Partial Area Hydrology and Remote Sensing," 
Journal of Hvdroloav, 81, 211-251. 

Soil Moisture Studies," Water Resources 
Research, 19, 1983, 371. 



Implementation of a 3D Thermal Analysis Code on the CM-2 
Connection Machine Computer 

R.E. Cline, Jr. 
recQsnll-arpagw.llnl.gov 

Division 8233, Sandia National Laboratories, Livermore, CA 94550 
(415)-294-1395 

B.M. Boghosian and B. Nemnich 
bmbOthink.com and bruceQthink.com 

Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-1214 
(61 7)-876-1111 

Abstract 

This paper describes progress toward the full imple- 
mentation of a version of TAC03D, a 3D thermal anal- 
ysis code, for use on the CM-2 Connection Machine. 
We have implemented a combination of a parallel con- 
jugate gradient solver, which runs on the CM-2, and a 
serial calling program, which resides on the VAX front- 
end in order to assess the feasibility of utilizing this 
type of massively parallel computer in the engineer- 
ing production environment. Preliminary results have 
shown this implementation, running on a 16K proces- 
sor CM-2, is over 5 times faster than a single XMP 
processor in the solution of a N 30,000 node 3D appli- 
cation. We will also discuss future plans to complete 
the optimum implementation of the entire code. 

Keywords: finite element, diffusion, parallel corn- 
puting 

1 Introduction: Parallel Pro- 
cessing in the Production En- 
vironment 

/- 

Application of parallel processing in the production 
environment requires the development of algorithms 
that efficiently solve problems of interest to design 
engineers. Aside from fast floating point processing 
modern production codes require the availability of in- 
put/output (I/O) devices for the storage and retrieval 
of temporary information as well as online databases 

With the availability of floating point performance of 
over 100 Mflops, mass storage and graphical frame 
buffers, massively parallel processors are now being 
considered as viable additions to the engineering pro- 
duction environment. 

Many of the currently available examples of engi- 
neering applications of parallel processing solve sim- 
plified problems which have been tailored to specific 
architectures. The true measure of the utility of par- 
allel processing in the production environment should 
be based upon the ability to solve larger problems and 
solve them faster than currently possible on Cray class 
supercomputers. In order to assess the feasibility of 
incorporating a massively parallel processor into the 
production environment we have undertaken the trans- 
lation of TAC03D, a finite element heat transfer code 
currently used for production applications a t  Sandia 
National Laboratories, for use on a number of different 
computational platforms. The structure of the code al- 
lows this process to performed in a stepwise manner, 
as will be discussed later. This paper describes the 
progress of an implementation for use on the Thinking 
Machines Corporation CM-2 and results from several 
application problems. The current phase of implemen- 
tation uses a conjugate gradient solver, running on the 
CM-2, interfaced to the main program, which resides 
on the front-end machine. 

2 The Connection Machine 
Computer 

of material properties. Modern production codes also 
rely heavily upon the ability to present the numeri- The CM-2 Connection Machine system is a massively 

cal results in an easily understandable graphical form. data parallel computer consisting of up to 216 = 65536 



bit serial processors arranged in a hypercube topol- 
ogy. Each processor has 64K bits of local memory, 
so a full machine has an overall memory capacity of 
512 megabytes. The processors and their associated 
memories are arranged in hardware with 16 to  a chip. 
Every pair of chips, 1.e. 32 processors, is supported 
by 32-bit floating-point unit (FPU) resulting in 2048 
FPU's per full machine. A nominal performance fig- 
ure, averaged over a variety of applications, is in the 
vicinity of 2.5 GFlops, with a peak performance rat- 
ing of more than an order of magnitude greater than 
that. The CM-2 operates in SIMD, single instruction 
multiple data, mode and is further characterized by 
a sophisticated communications network linking all of 
its processors. 

In addition to the memory and computational ca- 
pacity of the CM-2, the machine has an 1 /0  structure 
that allows for parallel input/output. This is accom- 
plished by 1 / 0  controllers, of which there are eight on 
a full CM-2. An 80 bit wide 1 / 0  bus connects each of 
these I/O controllers with the device that it controls. 
The 1 / 0  devices currently available fill the need for 
mass storage and graphics capability essential in the 
production environment. The Datavault, is a parallel 
disk drive unit, capable of transfering data to  or from 
the CM-2 a t  approximately 40 Mbytes/second. This 
system could be used to enable the solution of prob- 
lems that are larger than the current memory size of 
the machine. The second device is a high-resolution 
graphics display that can receive and display data 
stored in the CM-2 a t  approximately 1 Gbit/second. 
In addition to  the analysis of results, this interface 
would enable the development of interactive mesh gen- 
erators for large problems. 

The CM-2 Connection Machine system uses a con- 
ventional front-end computer. currently, it may be 
either a VAX with the ULTRIX operating system, or 
a Symbolics 3600-series Lisp Machine. The front-end 
machine supports the operating environment and all 
programming is done via the front-end. The control 
structure of program is maintained by the front-end, 
which issues commands to  the CM-2 processors when- 
ever necessary. Because the front-end could not pos- 
sibly broadcast instructions directly t o  the Connec- 
tion Machine processors as fast as the latter could ac- 
cept them, high-level instructions are instead sent to  
a sequencer which in turn translates a corresponding 
packet of microcode from a control store into many 
instructions of nanocode and broadcasts these to the 
processors for execution. 

In order to make the granularity of the machine 
somewhat flexible, the Connection Machine system al- 
lows the use of virtual processors (VP's). This is soft- 
ware that allows the programmer t o  treat one physical 

processor (OP) as though it  were really some larger 
number of processors in a fully transparent manner. It 
thus enables makes the machine to simulate a system 
with more processors. The abstraction of virtual pro- 
cessors is supported by segmenting the local memory 
of each processor, and by having the sequencer mul- 
tiplex over these memory segments as necessary. The 
degradation in the speed a t  which a program executes 
varies linearly in the number of virtual processors used; 
this is because the different virtual processors within 
a single physical processor operate sequentially. 

Connection Machine processors are arranged in a 
Boolean hypercube configuration. Thus, for a Con- 
nection Machine with 65536 processors, a processor 
address is a sixteen-bit cube address that specifies the 
location of the processor on a sixteen-dimensional hy- 
percube. Using a Gray code mapping it is possible to 
embed a one-dimensional array in a binary hypercube 
of n dimensions in such a way that nearest neighbors 
are preserved. By applying the Gray code to  m succes- 
sive subsets of bits within the sixteen bit cube address, 
i t  is possible to embed an m-dimensional Cartesian ar- 
ray into the hypercube so that nearest neighbors are 
preserved, as long as m 5 n. It is therefore possible 
to address processors on a Cartesian grid of rn dimen- 
sions, where m 5 16, through the use of this Gray 
coded grid address. 

Interprocessor communication can be either regular 
or irregular. An example of regular communications 
might be every processor getting data  from some spec- 
ified memory location of the processor whose grid ad- 
dress differs by -1 in some direction, e.g. along the 
x-axis. The Gray code mapping allows this to  be done 
along unique cube wires with no resulting conflicts. 
An example of irregular communications, on the other 
hand, might be every processor getting data from pro- 
cessor 0. In this case, some data  might have to traverse 
many cube wires to  reach its destination, e.g. to get 
from processor 0 to processor 65535 it is necessary to 
traverse 16 cube wires, and some form of control is 
necessary to resolve resulting conflicts in the commu- 
nications requests. 

Regular communication is done by having each pro- 
cessor simply send its message over the cube wires di- 
rectly; in this case, there is no possibility of contention. 
Irregular communication also uses the cube wires, but 
only in a manner that is controlled by special purpose 
adaptive communications hardware called the router. 
Any processor can use the router to send information 
t o  any other processor with a command that is ap- 
propriately called SEND. It is also possible to specify 
logical and/or arithmetic operations to  be performed 
in case of a "collision", i.e. two data being sent to 
the same location within the same processor simulta- 



neously. and an initial condition must be specified for 0 as well, 
When a processor wants t o  SEND data, it hands 

that data to  the router. The router keeps track only 0 = 90 (4) 

of the relative address of the destination processor 
with respect to  the current cube address. The rel- 
ative address is continually updated as the messages 
move through the network toward the destination pro- 
cessor; when it reaches zero, the message is a t  its des- 
tination cube position and is delivered to  the proces- 
sor there. The router is responsible for buffering con- 
flicting communication requests when more than one 
message wants to  move along the same edge of the 
hypercube. 

Due t o  the lack of contention, regular communica- 
tions, using the cube wires directly, are going to be 
faster than irregular communications, using the router. 
As we shall see in the next two sections, finite element 
analyses in some geometries can be done with regular 
communications only, while in other geometries irreg- 
ular communications are required. 

3 The TACO Code 
TAC03D is a three-dimensional finite element code for 
the solution of heat transfer problems in arbitrary ge- 
ometry. It can perform both linear or nonlinear anal- 
yses on either steady-state or transient problems. Ma- 
terial properties, transport coefficients, and boundary 
conditions, may be specified as functions of space and 
time for inhomogeneous heat transport, or of temper- 
ature for nonlinear heat transport. 

TAC03D also has a variety of specialized features 
that make it a valuable engineering production tool. 
These include the treatment of enclosure radiation, 
bulk nodes, and master/slave internal surface condi- 
tions which are useful for handling the material inter- 
faces. The code has user-friendly input/output options 
such as free-field data  input format, and user-specified 
functional representation of any independent variable. 
Graphical output plots in time or space are easily ob- 
tained by a variety of post-processing tools. 

Here we adopt the notation from Reference [I], 
which should be consulted for additional details. 

The basic equation solved by the TAC03D code is 
the diffusion equation: 

pcP8 = (kij8,j),i + Q E LO. (1) 

The boundary conditions can be any combination of 
Dirichlet conditions 

9 = t?,, 

or Neumann conditions 

kij8,jni + q = 0,  

Here, 9 is the temperature, the commas denote differ- 
entiation with respect to  the spatial coordinates, the 
overdot denotes differentiation with respect t o  time, 
p is the mass density, cp is the specific heat, kij is 
the thermal conductivity tensor, Q is the internal vol- 
umetric heat generation rate, ni  are the components 
of the unit normal to  the boundary surface, 8, is the 
temperature boundary condition which is a specified 
function of space and time, q is the surface heat flux 
which is a specified function of space time and tem- 
perature, and 90 is the temperature initial condition 
which is a specified function of position. 

The flux boundary conditions may be written in the 
general form: 

where f, a, b, and Oq depend on the specific type of 
boundary condition used, e.g. conduction, convection, 
radiation, etc. This may be recast into the form: 

where the fo term is necessary t o  account for the case 
when a = b = 0. In what follows, we shall assume 
that the Neumann boundary conditions are expressed 
in this form. 

Because our dependent variable is a scalar quantity, 
its finite element representation is particularly simple: 

where the Oj(t) are nodal temperatures, and the Nj(xi) 
are basis splines. Employing the Galerkin principle, we 
can insert this representation into the dynamical equa- 
tion, Eq. (I), and the boundary conditions, Eq. (3), to  
get the matrix equation, 

where 
Cij . N i ~ p N j d V  (9) 

where SN denotes the subset of the boundary sur- 
faces on which Neumann conditions are specified. This 

(3) must be suplemented by the Dirichlet conditions on 



I User Interface and I /O  Routines I 
U 

Matriz and Load Vector Assembly 
ft 

I Matriz Solution: Ax = b 1 

Figure 1: Diagram of the coarse grain structure of 
TAC03D 

the components dj(t) corresponding to nodes that lie 
on boundary surfaces on which Dirichlet conditions are 
specified. 

The integration in time of Eq. (8) is accompliihed 
by a generalized midpoint method, described in Refer- 
ence [I]. The essential point is that time is discretized, 
so that the value of the temperature is represented 
by Bk a t  time tk.  Then, B(t) and B(t) in Eq. (8) are 
represented by various linear combinations of 81. and 
8k+1 a t  time tk. Exactly which linear combinations are 
used depends on what sort of time differencing (e.g. 
forward-explicit, Crank-Nicholson, backward-implicit, 
etc.) is desired. Differencing Eq. (8) in this manner 
yields an equation of the form: 

that must be solved a t  time step tk for the new tem- 
perature, O k + i .  The matrix K *  and load vector F* 
are linear combinations of C, K,  and F a t  timesteps 
tk and tk-1. For example, in a steady-state analysis, 
the 6 term in Eq. (8) vanishes, so that K* = K and 
F* = F, and Eq. (12) needs to be solved only once. 

When the dynarnical equation, Eq. (I),  or boundary 
conditions, Eq. (3), are nonlinear, the matrix equation, 
Eq. (8), will also be nonlinear. That is, K' will depend 
on 19, and/or F will depend nonlinearly on 8. In this 
sort of situation, Eq. (12) is solved iteratively by the 
TACO code. That is, K* and F* are evaluated based 
on 8 a t  the last iteration, and are used to solve for the 
next iterate. As a first guess, the value of 8 at  the last 
time step is used. 

Thus, regardless of whether the analysis is steady- 
state or time-dependent, and linear or nonlinear, the 
main computation done by the code is the solution of 
the matrix equation, Eq. (12). This must be done at  
least once a t  every time step. 

4 Implementation of the Con- 
jugate Gradient Algorithm 

The coarse structure of TAC03D, Figure 1, consists 
of a user interface, input-output routines, the global 
conductance matrix and load vector assembly and the 
solution of the matrix equation, Eq. (12). The natural 
breaking point for the first step in the code conversion 
is a t  the level of the matrix solution. It was decided to 
implement the conjugate gradient routine on the CM- 
2, written in C-Star and Paris, and interface it to the 
main FORTRAN program running on the front-end. 

The matricies generated by Taco are in general 
found to be symmetric positive-definite. These con- 
ditions allow some simplifications of the generalized 
conjugate gradient algorithm. The Cray version of 
TAC03D used in this study includes the conjugate 
gradient routine from SPDPACK [3], a package of rou- 
tines developed by J .  Grcar and J. Meza of Sandia. 
The detailed algorithm used in both the CM-2 and 
Cray XMP versions of the solver is: 

To solve Ax = b: 

M 
k 

2 0  

r 0 

Po 
loop: 

k 

a 

X k  

Pk 

f k  

P 
Pk 

got0 loop 

The bulk of the computational effort is in computing 
A -  p, but only one of these matrix-vector dot-products 
is required per iteration. 

Taco solves the finite-element problem in terms of 
nodal equations rather than elemental equations. That 
is, an n-node problem involves solving a system of n 
linear equations at  each time step. A very natural ap- 
proach is to assign each node to one virtual processing 
element. The result is that each processing element 
contains data pertaining to one of the nodal equations, 
a. e., one row of the matrix and its right-hand-side ele- 
ment. 

for TACOSD 



Table 1: Comparison of the Cray XMP-24 and the CM-2 solution times for the regular cubic solid with varying mesh 
sizes. The solution time for the CM-2 is found to scale linearly with the virtual processor ratio (VPR). 

11 Routing Solver Cray Solver 
Problem I Nodes 11 VPR I ms/iter 11 rns/iter 

J 

Table 2: Comparison of the Cray XMP-24 and the CM-2 solution times for the hemispherical dome problem with 
varying mesh sizes. The Dome256 problem was too large to  run on the XMP-24. 

Problem 

11 x 11 x 11 
21 x 21 x 21 
31 x 31 x 31 

4.1 Routing Version 

Nodes 

1331 
9261 
29791 

Grid Solver Routing Solver Cray Solver 

The most general way to represent the matrix A is to 
store row n in processing element n as a vector of pairs 
(Ni,  Wi), the node numbers and weights, respectfully, 
corresponding to the i nonzero entries in that row of 
the matrix. This is a parallel analog t o  the IJA storage 
scheme used in PCGPAK [4,5]. 

All the vectors, such as the right-hand-side 6, are 
simple to  represent: processor n gets element n of the 
vector. Vector addition then becomes a simple addi- 
t i ~ n  of two values within each processor; the whole 
vector sum is computed a t  once in parallel, and it in- 
volves no interprocessor communication. A vector dot- 
product is a simple multiplication of two values within 
each processor, followed by a sum-reduction across all 
processors. The sum-reduction is an O(1ogn) opera- 
tion on the CM system. 

Computation of the matrix-vector dot-product A . p  
is a little more complicated. Each processor computes 
an element of the product, given by Ci W i p ~ , .  The 
values Wi and Ni are local t o  the processor, but the 
value p ~ ,  is not. However, with the use of a single 
Paris instruction each processor can get the needed 
value from another processor, to  which it has a pointer, 
using the parallel GETinstruction. This must be done 
i times each iteration, and is by far the speed-limiting 
operation in this approach. 

The router in the CM-2 system is a message sending 
system; GETS are implemented as multiple SENDs. A 
SEND instruction tells each selected processor t o  send 
a datum to  a processor to which it has a pointer. The 
messages are all sent in parallel through a mess&e 

"routing network". This ability to  efficiently pass mes- 
sages through pointers to  other processors is what sep- 
arates the Connection Machine computers from other 
massively-parallel architectures. 

We can take advantage of the symmetry of the ma- 
trix t o  make it go somewhat faster using SENDs. Since 

Ajk = Akj, we can arrange, for some a ,  to  have 
Ni = j in processor k, and Ni = k in processor j 
and Wi = Ajk in both. That is, for step i of the 
matrix-dot-vector operation, pairs of processors will 
be exchanging their vector elements using a SEND. 
The weight Wi does not need to be sent, since it is the 
same a t  both ends of the exchange. 

This is the general-purpose "routing" implementa- 
tion; it deals only with the solution of the matrix prob- 
lem, and takes no advantage of the geometry of the 
problem which lead to  the matrix. 

gr id  
32 x 16 x 16 
32 x 32 x 32 
32 x 32 x 32 

4.2 Grid Version 

ms/iter 

38.8 
41.5 
88.5 

If the geometry of the problem consists of a paral- 
lelepiped mesh a special purpose solver can be used 
to  obtain large performance gains. One can configure 
the CM as an ndimensional grid of virtual processors, 
with each dimension taking on an integral power-of-2 
length. As discussed above, it is much faster to  shift 
data from neighbor to neighbor along a grid direction 
than to use the general-purpose SEND instructions. 

A large class of problems solved by Taco involve 
3D parallelepiped element grids. For each node, Taco 
generates contributions from the 6 directly-connected 
neighbor nodes and the 20 "diagonal nodes". There- 
fore, each internal node typically has 26 nonzero ma- 

ms/iler 

30 
49 
159 

ms/tter 

10.5 
16.6 
16.6 

VPR 
1 
1 
2 



trix elements in each row plus the diagonal. 
We can take advantage of the geometry by config- 

uring the CM as a 3-dimensional grid large enough 
to hold the grid of nodes in the problem. Then, the 
layout of the nodes in the CM reflects the layout of 
the nodes in the real problem. All communication can 
be done locally, since all matrix row contributions are 
nearby on the CM grid. 

If the problem is mapped onto the CM grid in this 
manner, the Ni  aren't needed; we can simply use the 
convention that Wi refers to the coupling of the node in 
direction i ,  hence this implementation uses less mem- 
ory per processor. 

However, there are some drawbacks. First, the grid 
must be regular. Second, the CM system software cur- 
rently requires each dimension to be a power-of-2 in 
length; if we have, say, a 33 x 33 x 33 grid of nodes, we 
need a 64 x 64 x 64 grid of processors, and we are only 
using a little more than 118 of the processors. One 
can assume that on average, a little less than half, i.e. 
(3/4)3, of the configured processors will be used if the 
grid generators don't know about the power-of-2 limi- 
tation. 

Nevertheless, the grid version is so much faster that 
i . it is the right choice whenever it is topologically pm- 

sible to use it. The speed increase is sufficiently large 
that it may be beneficial to tune the mesh generation 
package toward the production of a parallelepiped grid. 

5 Results and Timings 

We ran several sample problems on both a Cray XMP 
24 with scatter-gather hardware and a 16K-processor 
CM-2 at  the Naval Research Laboratory. 

The first class of problems are rectangular solids di- 
vided up into equal rectangular elements. A constant- 
temperature boundary condition is imposed on one 
side. This problem is an obvious fit to the grid solver. 
The results for problem using several various mesh 
sizes are listed in Table 1. 

Note that the Cray times scale linearly with the 
number of nodes in the problem. The CM grid solver 
scales better than linearly because nearest-neighbor 
communications scale better than linearly. Also note 
that the times are the same for the 21 x 21 x 21 and 
31 x 31 x 31 problems with the CM grid solver, because 
it  needed to use the same number of virtual processors 
to solve the problem. 

The second set of problems involves a more compli- 
cated geometry. It is a hemispherical volume of three 
materials: the curved "dome" shell, a disk-shaped 
plate, and the interior volume. This mesh is gener- 
ated by spinning a 2D mesh about the symmetry axis 

of the dome shell, resulting in a grid that is periodic in 
the 0 direction. A 3D solution is required due to the 
application of nonsymmetric heat load applied to the 
surface of the dome. The results listed in Table 2 show 
that the CM-2 versions perform the solution step up 
to 5 times faster than the Cray version. 

6 Conclusions and Future 
Work 

We have presented here the initial step toward the 
complete conversion of TAC03D to run in the Con- 
nection Machine environment. Results for a parallel 
implementation of the conjugate gradient routine have 
been shown to be faster than the Cray XMP-24 results. 
The greatest speed increases have been demonstrated 
for a grid version of the solver, which requires a par- 
allelepiped mesh. The more general solver, which uti- 
lizes the router communication scheme, is still able to 
perform at  up to 2 times the speed of the Cray solver 
on a 16K CM-2. One of the major gains in perfor- 
mance comes from the fact that the CM-2 algorithm 
scales linearly with the number of virtual processors 
required to solve the problem, where the Cray imple- 
mentation scales linearly with the number of nodes 
in the finite element mesh. Extrapolating the CM-2 
timings to a full 64K processor, Figure 2, shows that 
this machine is capable of up to 8 and 30 times the 
performance of the Cray XMP for the router and grid 
versions of the solver respectively. 

The next step in the conversion of the TAC03D 
code would be the generation of the global conduc- 
tance matrix and load vector using the CM-2. The 
parallelization of these tasks appears to be simplified 
by the fact that they can be broken into independent 
operations on individual elements of the mesh. The 
only communication necessary in these steps would be 
the transfer of the assembled matrix and load vector 
into processor geometry required for the solver. 

The capability of solving large finite element prob- 
lems may also require the renovation of several related 
processes, including mesh generation techniques and 
graphical analysis of the resulting information. These 
are both areas in which the computational power of 
the CM-2 may be useful. It may also be possible to 
solve problems which are several orders of magnitude 
larger through the use of the Datavault mass storage 
system. 



Extrapolated Results 
64K CM-2 vs Cray XMP-24 

Figure 2: Comparison of the scaling of solution times between a Cray XMP-24 and the extrapolated results for a 
64K CM-2 

7 Acknowledgements The Symmetric Codes, Technical Report 112, 
Yale University Department of Computer Sci- 

This work was supported by the United States Depart- ence, 1977. 
ment of Energy under contract DE-AC04-76DP00789. 
REC wishes to thank J .  Meza, R. Whiteside and W. [5] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and 
Mason for many helpful discussions. We also wish to A.H. Sherman, Yale Sparse Matrix Package. 
thank the NRL Connection Machine Facility for the II. f i e  Nonsymmefn'c Codes, Technical Report 
use of their CM-2. 114, Yale University Department of Computer 

Science, 1977. 

References 

[I] W.E. Mason, TACOSD - A Three-Dimensional 
Finite Element Heat Ransfer Code, Sandia Lab- 
oratories Report SAND83-8212, April, 1983. 

[2] G.H. Golub and C.F. Van Loan, Matrix Compu- 
tations, Johns Hopkins University Press, Balti- 
more, 1983, Chapter 10. 

[3] J. Grcar and J.C. Meza, SPDPACK - A Package 
for Solving Symmetric Positive Definite Systems 
of Linear Equations, Sandia National Laborat* 
ries Report, to  appear. 

[4] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and 
A.H. Sherman, Yale Sparse Matrix Package. I. 



PRECEDING PAGE BUNK NOT FILMED 

FRACTAL GRAPHICS AND IMAGE COMPRESSION ON A SIMD PROCESSOR 

S F Reddaway, A Wilson A Horn 
Active Memory Technology Programming Research Group 
Reading Oxford University 
England England 

ABSTRACT 

Fractal based Iterated Function Systems 
are producing very highly compressed 
graphics, images and movies, as well as 
being a promising approach to pattern 
recognition. T h e  processing 
requirements are severe, and this paper 
examines the algorithms best suited to 
an SIMD processor array (in particular 
the AMT DAP510) both for encoding and 
image generation (decoding). One image 
generation algorithm, RCTA, has been 
implemented, and another quite different 
algorithm, ITA, is being implemented 
that will enable real time movies to be 
played. The paper both introduces and 
contributes to the IFS literature. 

Keywords: Iterated Function Systems, 
Fractals, SIMD, Array Processor, Image 
Compression, Graphics, Movies. 

images, and even higher ratios for 
movies. The generation of images from 
the compact form has been reported to 
take up to 30 minutes on a Masscomp 5600 
and compression has been reported (Ref. 
1) to take up to 100 hours of man- 
machine interaction! 

This paper has overlapping purposes. Of 
most direct interest to the conference 
is how an SIMD computer with an array of 
1024 processors (the AMT DAP510) 
achieves high performance on some IFS 
algorithms. It is also a partial review 
of, and contribution to, the IFS 
literature from more of an engineering 
than mathematical angle. This is to 
help readers understand the algorithms 
and get into this rapidly expanding 
field. Ref. 1 is an easy introduction 
to IFS algorithms, and Refs. 2-5 are 
more detailed and up to date. Finally, 
some alternative machine architectures 
are discussed. 

INTRODUCTION 
IF8 IMAGE REGENERATION THEORY 

Images are not random arrays of pixels, 
but have structure; if this structure 
can be discovered, there is great scope 
for data compression. The aim of 
compression may be later regeneration, 
or it may be to help recognise or match 
patterns. The work may start from an 
image or movie, or conversely the aim 
may be to generate graphics or 
animation. The applications potential 
is very wide. 

Parts of images often have some 
similarity to other parts, often with a 
change of scale. The newly emerging 
science of Iterated Function Systems 
(IFS) exploits the self-similarity of 
images as a means of compactly defining 
images. Compression ratios as high as 
10,000:l have been claimed for some 

Boolean Images 
In simple IFS images, the compact form 
is represented by n contractive affine 
transformations with 6 coefficients each 
that map the whole image onto part of 
the image: 

The 6 coefficients are a to f, and there 
are n sets of these. Provided all the 
transforms are contractive, a unique 
binary image is defined solely by the 
recursive property that application of 
any transform to points in the image 
produces other points in the image. The 
imaqe is known as the attractor of the 



IFS, because iterative application of 
the transforms to arbitrary starting 
points converges to the attractor. This 
iteration can either be done by 
repeatedly applying every transform to 
the current set of points (pixels) and 
merging points falling into the same 
pixel, or else choosing a sequence of 
transforms according to probabilities, 
using them to progressively transform 
the coordinates of a point, and 
recording the pixels visited. The 
probabilities used in the second method 
do not affect the image (attractor) 
eventually generated, provided they are 
non-zero ; however, the image is covered 
most uniformly and quickly if the 
probabilities are proportional to the 
area into which a unit of area is 
transformed. (The latter is given by ad 
- bc) . Both methods converge at a rate 
dependent on the least contractive 
transform. If a fern is being 
generated, the least contractive 
transform has a linear contraction of 
about 15% and about 40 iterations are 
needed. (log (n)/log (l/S), where n is 
the required linear resolution, say 512, 
and S is the linear contraction, 0.85). 
Thus the first regeneration algorithm 
must generate about 40 intermediate 
images of steadily increasing accuracy, 
whilst the second algorithm should 
discard the first 40 points before 
recording pixels. The first algorithm 
lends itself to working in image space, 
with the transforms compressing, 
distorting and moving (binary) pixels 
arranged in raster arrays in the 
computer memory; it is thus termed the 
Image Transformation Algorithm (ITA). 
The ITA algorithm can be applied to 
points (pixels) held as coordinates, but 
the merging step (which is essential to 
prevent a combinatorial explosion of the 
number of points) is then more awkward. 
A key aspect of the ITA algorithm is 
that image resolution can start low and 
grow steadily. The second algorithm has 
been termed the Random Coordinate 
Transformation Algorithm (RCTA) and 
performs arithmetic on point 
coordinates. 

Grey and Colour Images 
A simple way of providing some colour is 
to associate a colour with each 

transform and colour a pixel according 
to the (last) transform that wrote the 
pixel. If the picture has been divided 
into segments that each have separate 
ets of IFS transforms, then the segments 
can be separately coloured. 

However, a better approach to grey and 
colour is to use "measure theoryn, or in 
simple terms to include intensity. With 
RCTA, a count is kept of the number of 
times a pixel is visited, and the 
probabilities may be adjusted to achieve 
intensity effects. Full colour can be 
achieved by generating an intensity 
image and two colour difference images 
which may be at a lower resolution. 
With ITA a weight is used instead of a 
probability, and the intermediate (and 
final) images are typically held as 8- 
bit pixels; the pixel values are carried 
through the transformation, being added 
or interpqlated when pixels are merged, 
and multiplied by the weight before 
being added to the next image. Either 
the weiqhts are normalised in such a wav 
that average intensity levels remain 
constant, or else the image will need to 
be renormalised at intervals. Colour 
can be dealt with as before, with 
intensity and 2 colour difference 
images. 

Negative weights or probabilities can be 
permitted. The implication is that the 
transformed image is subtracted instead 
of added. In RTCA the pixel counter is 
decremented. 

Effect of Probabilities on Image Quality 
Ref.6 proves that RCTA converges to the 
same result as ITA; however, convergence 
is slow. For example, if it is desired 
that a particular pixel should have a 
95% probability of being within 20% of 
the true intensity, it needs to be 
visited about 100 times. Similar 
accuracy with the ITA algorithm requires 
working to 4 or 5-bit precision, 
although one or two more bits may be 
desirable for dealing with low intensity 
parts of the picture. 

Extensions to the simple I F 8  
representations 
One extension to the simple scheme is to 
have several partially connected images. 



Each image will have its own set of 
contractive transforms which may map its 
own image onto part of itself, or else 
map one of the other images onto part of 
itself. One of the images is the 
desired output. This extension is 
described in Refs. 2 and 7, and does not 
add any basic problems to the image 
generation algorithms. The RCTA 
algorithm can be adapted by keeping 
independent points for each image, but 
recording the pixel hits only for the 
output image. Either the points for 
each image are updated in turn, or, more 
economically, points are updated only 

when new points are needed to serve the 
output image. Pixel storage is required 
for the output image only. The ITA 
algorithm may require storage for all 
images, but can take images in non-IFS 
form more easily than the RCTA 
algorithm. 

Another extension, which can be viewed 
as a variant of the above, is to compose 
the final image from several separate 
images. This can either be by spatial 
segmentation referred to earlier, or it 
can be by adding overlapping images. 
The latter could provide a basis for 
compression. An ordered overlay of 
images is also possible, controlled by 
zero pixels in one of the images. The 
compressed IFS form is extended from the 
simple case by: 
a) dividing the list of transforms 

into separate images, 
b) specifying the output image, and 
c) adding to each transform an eighth 

number specifying the source image. 
The techniques of this section are 
called wcondensationn in Ref.2. 
Animation and Movies 
Movies could be made with a succession 
of independent images. However, it is 
better to specify how transform 
coefficients change with time, as well 
as sometimes introducing new transforms 
(or images) and killing old ones. Thus 
every coefficient can be accompanied or 
replaced by rate of change coefficients, 
which do not need to be updated as 
frequently. Indeed, the update rate 
could be related to how quickly the rate 
of change is changing (ie acceleration) 
for that coefficient or transform. Thus 
the new data could be tagged to say 
which coefficient it applies to,. 

One technique to produce interesting 
graphics is to progressively interpolate 
between two unrelated images. 

IMAGE GENERATION ON DAP 
An adaptation of the RCTA algorithm has 
been implemented on the AMT DAP 510, 
which is a SIMD computer with 1024 bit- 
organised Processing Elements (PEs). The 
ITA algorithm is currently being 
implemented on the DAP, and offers the 
prospect of eventually being an order of 
magnitude faster than the RCTA 
algorithm could ever be. For high 
quality colour images, the prospective 
improvement is more than two orders of 
magnitude, because of the effect of 
probabilities. The following sections 
are an update of Ref.8. The improvement 
in the RCTA algorithm of using the local 
random bit to choose between two 
transforms rather than selectively 
ignoring one transform is due to A Horn. 

Adaptation of the RCTA algorithm for the 
DAP 
Each of the 1024 PEs generates in 
parallel a semi-independent point 
sequence as follows: 

a. Two Monte Carlo selections of the 
next transform are made globally. 

b. Each PE uses a local random bit to 
decide which of the two transforms 
to use. 

c. New points are converted from 
coordinate space to a 1024 x 1024 
image space. 

Fortran Plus code for the inner loop is: 

DO 100 J = 1, n 

c K1 and K2 are scalars that choose 
c the next transforms. 

K1 = choosevsl (J) 
K2 = choosevs2 (J) 

c get a random plane. Cost 200 
c cycles, including generation 

c perform transform in 1024 PEs. 
c 6600 cycles 



cc = merge (c(K1) , c(K2) , rp) 
t'X*CC 
aa = merge (a (Kl) , a(K2) , rp) 
bb = merge (b (Kl) , b (K2) , rp) 
ee a merge (e(Kl), e(K2), rp) 
x X x * a a + y * b b + e e  
dd = merge (d (Kl) , d (K2) , rp) 
ff Q merge (f(Kl), f(K2), rp) 
y P t + y * d d + f f  

c convert to integer. 500 cycles 
ix = X 
iy = Y 

C write dots to image space. 6600 
c cycles (special putdots) 

call putdots (ix, iy) 

lop continue 

Note the implemented code includes 2500 
cycles for scaling and positioning the 
coordinates prior to 81putdotsv1. The 
above code assumes the transform 
coefficients have been changed to make 
this unnecessary. 

Illustr8tion of semi-independence 
If the globally selected pairs of 
transform sequences for an image with 7 
transforms, TI, T2, .... T7, are: 

and the corresponding random bits in 2 
PEs are: 

then the transform sequences in the 2 
PEs are: 

Gmnmration of the Transform Choice 
Integers 

Fortran - Plus Code: 
c pr is the cumulative probability, 
c rand1 and rand2 are each 1024 

c random numbers and choosel and 
c choose2 are each 1024 integers 

choosel = L1 
choose2 = L1 
do 200 J = L1 + 1, Ln 

choosel ((rand1 + pr(J)).LT.l.) = J 
choose2 ( (rand2 + pr (J) ) . LT. 1. ) = J 

200 continue 

c convert choose integers from 
c matrices to vector sets. 

call convmv 2 (choosel) 
call convmv 2 (choose2) 

Performance of RCTA on the DAP 510 

cycles for 1024 new points 14K 
new points/second 740K 
typical time/ image 1 second 

(A Masscomp 5600 workstation apparently 
goes at about 10K new points second). 

RCTA Movies on the DAP 
The technique of adjusting coefficients 
is illustrated by the movie of a waving 
fern. Note that the fern is changing 
shape, not merely rotating. 

A fern has 4 transforms. Loosely 
speaking, 2 generate the first branches 
on either side of the stem, one 
generates the start of the stem and one 
causes t h e  structure repetition 
including a gentle curve. The 2 
coefficients (out of the 24) that 
control this curvature are progressively 
changed. Adding 2 successive images 
introduces motion blur. 

The binary version of this simple RCTA 
movie has the following performance on 
the DAP510: 

New points/sec 550K 
Points/basic image 238K 
Points/displayed image 476K 
Display resolution 1024 x 1024 
Frames/sec 2.3 
Approx data required 50 Bytes 

The ITA Algorithm on the DAP 
IFS transforms are usually expressed for 
p e r f o r m i n q  a r i t h m e t i c  o n  p o i n t  



coordinates. The ITA (Image 
Transformation Algorithm) algorithm 
moves raster image data around memory. 
The primitive operations are: 

a) linear shrink (can be negative) 
along a raster axis 

b) shear (or skew) along an axis 

c) translation along an axis 

In terms of 2 x 2 transform matrices, a) 
can be written: 

for shrinks along x (: ;) oryaxes, 

and b) could be written: 

for shears along x ( :) ory. 

It is usually fastest to do the shrinks 
first, so as to do most work with the 
least data. Thus one way of rewriting a 
general 2 x 2 transform is: 

Solving this gives: 

x = a  
y = (ad - bc)/a 
v = c/a 
u = ab/(ad - bc) 

T h i s  rewrite will often give 
satisfactory parameters for the 
primitives; however, one of the 
l1shrinksU may be an expansion, or else 
an angle of shear may be inconveniently 
acute. Other rewrites with the 
primitives are possible, and, 
fortunately, well-behaved parameters can 
always be found. 

Image Mapping 
Because image iterations are built from 
parts (which in turn are derived from 
the whole image), the implementation is 
using a 2D sheet mapping (Ref. 9) . 
Shear Primitive 
Shears do not change the number of 
pixels, and, because ITA is a robust 
convergent algorithm, interpolation is 
of little value; thus a row of pixels is 

shifted along its length by a whole 
number of pixel positions. Different 
rows in a sheet are shifted by different 
amounts. This is achieved by activity 
control of shifts of 1, 2, 4 and 8. 

Shrink Primitives 
A shrink is split into a power of 2 
shrink and a shrink of between 0.5 and 
1. The former might be re-used. 
Shrinks reduce the number of pixel rows. 
The new pixels can be formed in various 
ways. Selecting some rows and 
discarding others is one way; a better 
way is to interpolate so as "pixel massw 
is conserved. Pixel mass is conserved in 
the power of 2 shrinks, and in the other 
shrink a new row of pixels is either an 
unchanged row, or else the average of 
two rows. The shifting for the' power of 
2 shrinks is done with Parallel Data 
Transforms (Ref. 10) , and for the other 
shrink by shifts of 1, 2, 4, 8 . . 
applied to a whole sheet-row, with 
activity-controlled overwriting. 

Translation 
The intention is to eliminate 
translation as a separate primitive by: 
achieving translation alignment with DAP 
sheet boundaries as part of other 
primitives, and whole-sheet translations 
by addressing the correct sheets. 

Performance on ITA 
Many factors will affect performance. 
If resolution is increased appropriately 
through the iterations, then performance 
is dominated by the last one or two 
iterations only. An image with many 
highly contractive transforms will mean 
a lot of control work and work on 
partially filled sheets, but if all 
transforms are highly contractive few 
iterations are needed. For Boolean 
images control work will be more 
important, but for many bits/pixel, 
multiplication by the transform weight 
is not negligible. The overlap of 
transforms affects performance. 

For this type of work the programming 
level and effort is very relevant; a 
target of 500 cycles per bit-plane of 
final image is reasonable, but initial 
high level implementation may be more 
than an order slower. For a 1024 x 1024 



colour image with 8-bit pixels, plus two 
8-bit colour difference images at half 
resolution, the above target performance 
is 600 msec. A Boolean image of the 
same size would be 50 msec. 

Movie Performance 
Because one frame is similar to the 
previous one, image iteration can start 
with the previous image. This might 
typically speed up by a factor of 1.5. 
But if data is supplied as rate of 
change of transform coefficients, then 
only rapidly changing transforms need be 
updated frequently; the contribution of 
each transform can be saved, and on 
update the old can be subtracted and the 
new added. On the DAP510, only the 
relevant part of the framestore is 
updated. If the movie contains a lot of 
rapid movement then the DAP510 will not 
be able to prevent the movement looking 
jerky at 1024 x 1024 resolution; then 
the resolution can be dropped to 512 x 
512. 

COMPRElSION ALGORITHMS 

Whilst IFS fractal graphics and 
animation have a promising future 

independent of the compression of 
natural images, the greatest interest is 
in compression, either for later 
regeneration or else as an aid to 
pattern recognition and matching. Less 
has been published about compression, 
maybe because it has mostly been 
done with manual interaction. We have 
not implemented compression on the DAP, 
but have considered some algorithms. 
These are: some variations on the 
collage theorem approach, 2D projections 
of 3D primitives, image segmentation, 
the use of moments, and the Fractal 
Transf o m .  

collage Theorem 
This theorem is most easily pictured for 
Boolean images that represent shapes, 
but it is more general. If a shape is 
approximately covered by multiple copies 
of itself that are contracted, sheared, 
rotated and translated, then the 
corresponding IFS maps (transforms) 
collectively define an attractor (image) 
that is also an approximation of the 

original image (shape). The smaller 
distorted copies can overlap, but it is 
desirable that they are significantly 
shrunk, as the attractor is up to 1/(I- 
S) times bigger than the error in 
wcoveringll or "tilingw the shape. Here 
S is the shrink factor (<I) in the least 
contractive direction in the least 
contractive map (transform), and an 
error measure such as Hausdorff distance 
is used. Errors in the Ittiling" of a 
smooth shape may result in fractal 
shaped attractors, but the technique can 
be applied to arbitrary images. Both 
the theory and the technique can be 
extended to grey and colour images, 
where a different distance metric is 
used, and overlapping distorted copies 
are added. The aim is still to produce 
approximate images. 

Application of the Collage Approach 
Ref. 2 describes interactive use of the 
Collage theorem; the human is good at 
pattern recognition. A more automatic 
approach might be to try all sensibly 
different transforms and measure how 
good a fit to part of the image is 
achieved for each one, with a view to 
selecting a set of the best fits 
(smallest distance measures) while 
avoiding heavy overlap between pairs in 
the set. This initial approximation 
should avoid the local, minima 
difficulties of Ref 11. 

"All sensibly differentM transforms 
implies a large number. If the 
criterion is differing by at least one 
pixel position, then for a linear 
resolution of n, there are approximately 
n**6 different transforms, and the 
average number of pixel pairs involved 
in comparing the distorted image again& 
part of the original is nearly n**2. 
The work thus appears to vary as n**8; 
advanced algorithmic techniques 
involving re-use of intermediate 
results, for example with convolution 
methods, should reduce this dependence 
to nearer (log n)* n**6. This work is 
still prohibitive for full resolution 
images; for example, a 1000 x 1000 image 
would involve 10**24 pixel operations 
with direct methods, or 10**19 
operations with advanced methods. 



An encouraging approach is to perform 
the initial collage search with a very 
coarse version of the image; a 10 x 10 
image would require around 4*10**6 
operations, which is quite feasible in 
real time. Even for Boolean originals, 
coarse images are grey; the above 
analysis has not explicitly allowed for 

choosing the transform weights. 

Having selected a limited set of good 
transforms (plus weights) that do not 
greatly overlap, the set can be iterated 
in detail to improve the fit. This can 
either be done as a collage applying 
each transform to the original image, or 
by generating the attractor (including 
intensity) of the set. Either way, 
smooth variation of the IFS parameters 
gives smooth variation of the image. At 
this iteration stage the image 
resolution can be increased. When 
further improvement seems to be limited 
with that set of transforms, a full 
resolution attractor is generated and 
subtracted from the original image. 
This remainder (which may include 
negative pixels) can then be put through 
the full cycle again to generate an 
attractor that forms a further "layerv 
of the image. The process can continue 
until a satisfactory approximation is 
achieved. It would seem desirable to 
keep the number of transforms in each 
set quite small in order to ease the 
optimising work in the iterations. 

The above Itlayering" is a form of 
segmentation of pixel intensity, with 
the final pixel value formed by adding 
the layers. Another approach is to 
spatially segment the image (or image 
remainder) prior to choosing transform 
sets. The IFS sets may then be chosen 
so the attractors do not overlap (or the 
overlapping intensities are small), or 
else an ordering can be specified with 
later segments overwriting earlier ones. 
Segmenting may be automatic or manually 
assisted; for the former, the algorithm 
will involve rules that may be difficult 
to devise effectively, especially for 
non-specific images. 

Repeated patching-in of variations of an 
object can be a powerful tool, and can 
be achieved with multi-screen 

techniques. The automatic recognition 
of such possibilities may be difficult; 
looking for good matches of parts of the 
original images mapped onto other parts 
could be one way that might be feasible 
for 2D distortions. Real world pictures 
are 2D images of a 3D world, and it 
would seem that this is used to 
advantage in the wsunflowerw picture 
publicised by Barnsley's group (Ref.2). 
The individual sunflower primitive is 
described as an overlay of 4 IFS 
attractors; this would be one screen, 
which is then overlayed (by 
wcondensationw) onto the final image 
once for each flower in the picture. It 
would seem, however that the sunflower 
"primitive" must be a 3D IFS with 
different projections used for the 
different flowers. This is a good model 
of the real world, but it is difficult 
to see that IFS structure being 
automatically generated from a single 
photograph; with human knowledge of the 
real world it becomes feasible. 

Moment Theory 
If 2D space is viewed as the space of 
complex numbers, then the nth moment of 
an image can be defined as the sum of 
the products of the pixel values and the 
nth power of the pixel coordinate. The 
IFS literature contains some discussion 
of moments, and in particular the idea 
that the first n moments of an image can 
be calculated and that an IFS can then 
be sought with an attractor (plus 
intensity) having approximately the same 
moments. If high order moments are 
relatively unimportant, a reasonable 
approximation to the image might be 
obtained with, say, 10 or 20 moments and 
the approach can be used recursively as 
with the collage approach. The 
advantage is that the image information 
has been reduced to 10 or 20 numbers and 
it is these that are used to fit the IFS 
approximation. The powers of the 
complex coordinate can be calculated 
once and for all, and stored; with 
coarse resolutions of order 100 x 100, 
the storage space should not be a 
problem. 

Fractal Transform 
A recent press release from Iterated 
Systems (1988) claims to have discovered 
a "Fractal Transform" that could 



compress and regenerate images. This is 
either with exact reproduction and 
typical compression ratios of 10 to 
100: 1, or else approximately, with much 
higher compression ratios. The speed 
for either compression or regeneration 
of under 10 seconds for a 256 x 256 
image of 8-bit pixels on a SUN 
workstation indicates that an extensive 
optimisation process cannot be involved 
in the compression; possibly moment 
theory is involved. For the time being 
IS1 a r e  keeping t h e  details 
confidential. 

SUITABILITY OF THE DAP FOR COMPRESSION 

Collage approach 
Central to the Collage approach is the 
measuring of the difference between 
pairs of images. This may either be 
between a small number of pairs of quite 
big images in the optimisation stage, or 
else be between a large number of small 
image pairs (one or more to a PE) in the 
initial "try everythingw stage. A 
family of algorithms for performing 
similar measurements has been studied on 
the DAP (Ref. 12) ; the algorithms can be 
extended to the re-use of intermediate 
results for the try everything stage. 
The work is done entirely in raster 
pixel space, rather than in coordinate 
space. The distortions (transforms of 
the original image) are a very minor 
part of the try everything stage, 
because partially transformed data is 
used many times over. For example, a 
line of pixels resulting from a rotation 
and a linear shrink along the line, will 
be matched against lines resulting from 
many different translations, skews and 
linear shrinks in the orthogonal 
direction. 

The core work in the try everything 
stage is differencing pixels and summing 
the differences, together with a little 
data movement that is mainly 
broadcasting data. In mapping arrays 
onto the DAP, "crinklen mapping ("domain 
partitioning") of arrays is important. 
This ensures that most of the summation 
is within PEs, that there is little data 
movement and that the multi-grid aspects 
of changing resolution are efficient 
(see for example Ref.13). 

In the optimisation stage the work is 
mainly generating intermediate 
resolution images with the ITA 
algorithm, starting with a good 
approximation; also important is 
measuring the difference between images. 

An indication of DAP 510 performance on 
measuring the difference between images 
can be derived from the above reference 
as less than 5 msec for a pair of 1024 x 
1024 images of 8-bit pixels. The try 
everything stage for 10 x 10 resolution 
would take about 40 msec. Clearly, 
there is a trade-off of speed against 
quality. For TV it is difficult to 
predict the quality achievable in real 
time. The use of rate of change 
techniques (see 2.5) can greatly improve 
the compression ratio and the 
compression speed. 

Moment Theory Approach 
The calculation of moments could be done 
quickly on the DAP. With the complex 
coordinate powers pre-computed, each 
moment requires 2 multiplies and 2 adds 
per pixel; with 8-bit pixels and a 256 x 
256 image, each moment could take as 
little as 2 msec. 

ABSESSMENT OF ARCHITECTURES AGAINST 
ALGORITIWS 
For image generation the RCTA and ITA 
algorithms have very contrasting 
requirements. Aside from random number 
generation, which the DAP can do very 
fast (Ref.l4), the RCTA algorithm 
requires arithmetic on coordinates, and 
incrementing one out of a raster of 
counters. A normal scalar machine can 
perform these operations fairly 
efficiently. An MIMD array could 
perform quite powerfully, provided it 
(a) had a fast random number generator, 
(b) had enough space for a complete 
raster in each processor, and (c) was 
effective in summing the rasters across 
the processors. An SIMD array without 
local indexing is likely to be fairly 
slow in converting its arrays of data 
from coordinate space to raster space. 
This is the case on the DAP, although 
its fast central addressing of the array 
memory means that it takes only about 
half the total time. A bit-organised 
arrav like the DAP would be able to 



tailor arithmetic precision with 
considerable advantage, because the 
precision requirement is modest. The 
implemented code uses 24-bit floating 
point for convenience. A factor of 
about 3 on the arithmetic (about 2 
overall) could be achieved by further 
tailoring, but this is not worthwhile 
because the ITA algorithm is a much 
faster prospect. Decision-making with 
random bits suits a bit-organised 
machine. With the modified RCTA 
algorithm there is no shortage of 
parallelism for the arithmetic, 
especially for high quality pictures. 
The DAP 510 measured achievement of 
600,000 points/second on RCTA is good, 
but might be bettered on some 
architectures. 

The ITA algorithm has the potential for 
being at least an order of magnitude 
faster than RCTA on the DAP, and more 
than two orders for high quality images. 
However on most machines RCTA will still 
be faster than ITA except for very 
precise images. At its heart, ITA 
requires data to be moved around memory 
in a raster-like way, but with fairly 
flexible control patterns. It also 
requires some pixel-precision array 
arithmetic. This is almost ideal for 
the DAP; even higher performance could 
be achieved if more flexible array 
routing hardware were provided. Neither 
conventional scalar machines nor MIMD 
arrays provide the fast and flexible 
array shifting capability required for 
high performance. The DAP 510 
performance on a 1024 x 1024 colour 
image with about 5% pixel accuracy might 
eventually be about 400 msec or about 
2.5 million 6-bit pixels/second; the 
RCTA algorithm for similar precision 
would need to generate about 400 million 
points for a standard deviation of 5%, 
so the RCTA equivalent performance would 
be about 1000 million points/sec. That 
is a difficult figure for any machine to 
match with the RCTA algorithm. (The 
DAP610 is four times more powerful than 
the DAP510) . 
The Collage approach to compression 

involves highly parallel low precision 
work, change of resolution and use of 
the ITA algorithm. Thus the DAP 

architecture looks to be almost ideal. 
calculating moments for the moment 
theory approach is also close to ideal. 
An advantage of DAP over specialised 
hardware is that IFS work is likely to 
be part of a wider application. For 
example, compression might be used as a 
first step to pattern recognition. 
Doing the whole job in the DAP is a 
great advantage. 

APPLICATIONS 
If the results live up to the claims 
made for it, then the prospects for 
t h e s e  techniques, and future 
developments of them, are extremely 
bright. The techniques are wide, 
covering graphics, animation, T V ,  movies 
and images of all kinds, with impact on 
transmission, storage and pattern 
recognition. The potential application 
fields are very wide, covering medical, 
defence, (for example, image 
understanding) , TV etc. The leading 
company in the field is Iterated 
Systems, whose first product is known as 
VRIFS, which was first implemented on a 
SUN; the company now has a DAP 510, and 
is porting code onto the DAP. 

1. Barnsley M F and Sloan A D. "A 
Better Way to Compress Images11, Byte 
Magazine, January 1988. pp 215 - 223. 
2. Barnsley M F, Jacquin A, Renter L, 
Sloan A D. ItHarnessing chaos for Image 
Synthesisw Computer Graphics, vol 22, 
number 4 ,  August 1988. pp 131 - 
140. (Siggraph 1988). 

3. Barnsley M F. I1Fractal Modelling of 

Real World Imagesg1 in I1The Science of 
Fractal Imagesv, edited by H Peitgen and 
D Saupe. (Springer - Verlag, 1988). 

4. Barnsley M F. "Iterated Function 
Systems" in Lecture NoteswChaos and 
Fractals: the Mathematics behind the 
Computer Graphics" American Mathematical 
Society, August 1988. 

5. Barnsley M F. llFractals 
Everywhereg1. (Academic Press, 1988) . 
6. Elton J. "An Ergodic Theorem for 



Iterated Maps" Ergodic Theory and 
Dynamical systems 7 (1987) pp 481 - 488. 

7. Barnsley M F, Berger M A and Soner H 
M. "Mixing Markov Chains and their 
Imagesu. Preprint. 

8. Reddaway S F and Wilson A. 
"Regeneration of Images from IFS Codes 
on a Processor Arrayu, Poster Paper, 
SIAM Annual Meeting, Minneapolis, July 
1988. 

9. Reddaway S F. "Mapping Images onto 
Processor Array Hardware" in "Parallel 
Architectures and Computer Visionw, 
edited by I Page (Oxford, 1988). 

10. Flanders P M and Parkinson D. 
"Data Mapping and   outing for Highly 
Parallel Processor Arrays" Future 
Computing Systems 2 1987 pp 183 - 224. 

11. Levy-Vehel J and Gagalowicz A. 
"Shape Approximation by a Fractal ImageI8 
Eurographics 1987 (North Holland, 1987). 
pp 159 - 180. 

12. Reddaway S F. "Some Fast 
Measurements on ImagesM paper presented 
at SIAM Annual Meeting, Minneapolis, 
July 1988. 

13. Reddaway S F. "Achieving High 
Performance Applications on the DAPw 
paper at CONPAR 1988, to be published by 
Cambridge University Press, 1989. 

14. Smith K A, Reddaway S F and Scott D 
M. "Very High Performance Pseudo-random 
number generation on DAPs" Computer 
Physics Communications 37, 1985, pp 239 
- 244. 



APPLICATION OF MASSIVELY PARALLEL HACHINES TO HOLECUIAR 
DYNAMICS SINUIATION OF FREE CLUSTERS 

L. L. Boyer and P. J. ~dwardson* 
Complex Systems Theory Branch 

Naval Research Laboratory, Washington, D.C. 20375-5000 
*NRC-NRL Postdoctoral Associate 

ABSTRACT 

Molecular dynamics is used to examine melting of a 
free cluster of up to 1000 sodium and fluoride 
ions. An algorithm designed originally for the 
Distributed Array Processor (DAP) is implemented 
on the Connection Machine (CM), and their 
performance for this problem is compared with that 
of the Cray 1. The CM would be twice as fast as 
the DAP using twice the number of processors as 
the DAP's 4096 if not for saturation of the VAX 
front end. Saturation of the front end increases 
the run time by 50% in typical cases. 

Keywords: Molecular Dynamics, Massively Parallel 
Processing, Connection Machine, Distributed Array 
Processor, Single-Instruction-Multiple-Data 
Computers, Melting, Sodium Fluoride, Ionic 
Clusters. 

INTRODUCTION 

Molecular dynamics (MD) simulation is becoming an 
increasingly important tool for research in 
materials science, owing to new methods for 
deriving realistic interatomic potentials and 
advances in computer performance. Even though 
future major advances in computer performance are 
likely to involve parallel computation in some 
form, relatively few MD calculations have actually 
been carried out on massively parallel machines. 
Here we discuss some techniques available for MD 
simulations which exploit the power of massively 
parallel computation, focusing especially on a 
relatively simple approach for simulating the 
dynamics of free clusters of particles using 
massively parallel single-instruction multiple- 
data (SIMD) computers. 

Molecular dynamics simulations are usually carried 
out for systems with periodic boundary conditions. 
The use of periodic boundary conditions has some 
advantages over cluster simulations: 1) it 
presumably requires fewer particles to simulate a 
"bulk" property and 2) the pressure on the system 
is easily controlled, since all of space is 
filled. In addition, periodic boundary conditions 
can be exploited in developing algorithms for 
massively parallel systems. Specifically, for 
systems with little or no diffusion, one can map 
the particles to processors in a manner which 
allows easy transfer of data between neighboring 
particles. This clearly leads to great efficiency 

if the particles do not interact with long range 
forces. Pawley and coworkers (Ref. 1-3) have 
employed this approach in a number of KD 
calculations using the ICL Distributed Array 
Processor (DAP) at the University of Edinburgh 
(Ref. 4). An algorithm which exploits periodic 
boundary conditions for computing long range 
forces, the so called P ~ M  method (which scales as 
NlnN, where N is the number of particles), also 
has been applied recently in MD calculations using 
the DAP (Ref. 5). 

The first MD simulation of free clusters using a 
massively parallel computer were carried out on 
the DAP (Ref. 6). An algorithm called the row- 
column difference (RCD) method was introduced 
which proved to be remarkably efficient for the 
DAP. The DAP is an SIMD machine consisting of 
4096 single-bit processing elements connected on a 
square grid. In the RCD method the coordinates of 
a group of 64 particles are put in the rows of one 
of the natural 64x64 matrices and the coordinates 
of another group of 64 particles are put into the 
columns of another natural matrix. Subtracting 
the two matrices gives the relative coordinates 
between all possible pairs formed from the two 
sets of particles. Forming a double loop over all 
distinct sets of 64 particles one can compute and 
accumulate the forces due to all pairs by doing 
them 4096, or very near to 4096, at a time. Some 
special care must be taken when computing the 
interactions involving only one set of 64 
particles (see Ref. 6 for detail). Even though 
this "brute force" approach is an N~ algorithm, 
i.e. , the time scales as the square of the number 
of particles, it efficiently exploits the parallel 
architecture. Thus, it can be more efficient than 
NlnN algorithms for N up to a thousand or more. 
As mentioned above, simulation of certain 
phenomena require both free surfaces and long 
range forces: For such problems the N* algorithm 
is essential. 

The simulation of free clusters, i.e., systems 
with free boundaries rather than periodic 
boundaries, has some advantages over bulk 
calculations. Obviously, free-cluster 
calculations provide the most realistic zero 
pressure simulations. Moreover, one can study 
both bulk and surface properties by the same 
technique provided the system is sufficiently 
large. Calculations of thermal expansion of NaF 
(Ref. 6) suggest that "sufficiently largen is 
approximately 500 hundred or more particles. 



While surface effects are clearly of great 
interest in their own right, the proper simulation 
of certain phenomena requires both large systems 
and surfaces; two examples being melting and the 
response of a system of charged particles to an 
electric field (Ref. 7-8). 

APPLICATION OF THE RCD =OD 

The RCD method is most easily illustrated by 
considering a specific example: assume we have a 
computer with 16 processing elements (PE's) on a 
4x4 NEWS grid. Let our system contain at least 8 
atoms located at positions (xi, yi, zi) . The 
position coordinates are simply a set of numbers 
stored in some convenient fashion among the PE's 
whose values have no relation to the structure of 
the PE's. The procedure begins by transferring 
sets of 4 of these numbers to rows and/or columns 
of the natural sized 4x4 matrices. In particular 
let 

be the matrix whose rows are the x coordinates of 
the positions of atoms 1-4, and 

be the matrix whose columns are the x components 
of atoms 5-8. Then the relative separations of 
all pairs from these two sets of atoms are given 
in the matrix 

where YR, YC, ZR and ZC are the analogous matrices 
for the y and z components. If the atoms interact 
with the Coulomb force then the x components of 
this force are given by elements of FXC-(XR- 
XC)/R**3 . The forces on atoms 1-4 are obtained 
by summing the rows of FXC and the forces on atoms 
5-8 are the negative of the values derived from 
summing the columns of FXC. Techniques for 
handling interactions between atoms in a single 
set of four and in partly filled sets are 
discussed in Ref. 6. 

In an MD simulation the time required to update 
the positions and velocities is usually a 
negligible fraction of the time required to 
compute the forces. This is certainly the case 
for our problem. Observe that three separate 
operations are required to compute the forces 
using the RCD method; 1) spreading data from a 
vector to form a matrix with identical rows or 
columns, 2) performing the arithmetic operations 
required to compute the forces, and 3) collecting 
the results by summing over rows and/or columns. 
Obviously, the spreading and collecting operations 
must be performed efficiently for the RCD method 
to be a viable approach, since this time is 

independent of the functional form of the 
potentials. The calculations carried out on the 
DAP employed a functional form consisting of the 
Coulomb interaction plus 4 exponential terms (Ref. 
9), which resulted in approximately 60% of the 
total time being spent on the arithmetic 
operations. 

The particular Connection Machine used to carry 
out the calculations reported here consisted of 
512 chips, with 16 PE's per chip. Communication 
between chips occurs along wires with connections 
prescribed by a 9 dimensional hypercube. 
Communication between PE's within a chip are much 
faster. Floating point operations on the CM were 
performed by 256 floating point units accompanied 
by "Sprint" routers to handle communications 
between the PE's of designated chip pairs and the 
floating point units. NEWS programing for the 
Connection Machine is accomplished by a software 
package, which gives the user some freedom to 
select the number of "virtual" processors in a 
virtual NEWS grid. Increasing the VP ratio 
(number of virtual processors per physical 
processor) permits the pipelining of data through 
the floating point units, which can give a 
substantial increase in performance (Table 1). 

Table 1. Timing results (sec per time step) for MD 
simulations on the CM (8192 PE's), DAP (4096 PE's) 
and Cray XMP-24 computers. 

512 ions 1000 ions 
Computer Block VP CM Elapsed CM Elapsed 

Size Ratio Time Time Time 

CM 128 2 0.34 1.26 1.18 4.42 
CM 256 8 0.23 0.48 0.76 1.44 
CM 512 32 0.23 0.32 
DAP 64 0.5 2.0 
Cray 0.3 1.14 

On the other hand, the RCD method becomes less 
efficient when the number of processors exceeds 
about (N/z)'. These two effects combine to give 
only small improvement in going from a VP ratio 
of 8 to 32 for the N - 512 system. For the 1000- 
ion cluster we were limited to a 256 grid by 
memory constraints. The most efficient 
calculation for the 512 ion cluster was achieved 
for the 512x512 NEWS grid; specifically, 0.32 sec 
per time step. (The elapsed time is larger than 
the CM time because the host, which in our case is 
1 processor of a VAX 8800, is 100% saturated by 
our process. Using larger NEWS grids dramatically 
lessens the burden of the host, but even for a VP 
ratio of 32, the host is still the bottle neck.) 
This compares with 0.5 sec for the DAP (negligible 
time on the DAP host) and 0.3 sec on the Cray XMP- 
24. About 75% of the CM time was spent spreading 
and collecting data, whereas on the DAP these 
operations required only about 40%. On going from 
N-512 to N-1000 ions, the DAP time increases by a 
factor of 4, rather than (1000/512)~ - 3.81, 
because the same number of operations are required 
for an N-1000 or an N-1024 cluster. The Cray 
scales by the expected factor of 3.81. On the CM, 



the calculations for the N-1000 ion system are 
somewhat more efficient than would be expected 
from the timing of the 512 ion system. 

RESULTS FOR NaF 

Molecular dynamics simulation of 216- and 512-ion 
clusters of NaF have been performed to study 
various properties: thermal expansion, melting, 
diffusion and responses to external electric 
fields, specifically, electrostriction and 
infrared absorption (Ref. 6-8). One of the more 
intriguing results of these calculations pertains 
to the melting transition and the presence of a 
rather dramatic kink in the plot of "temperature" 
vs energy. Temperature is placed in quotation 
marks because very long simulations are needed 
near the transition to obtain a good average 
kinetic energy, from which the equilibrium 
temperature is determined. Interestingly, a kink 
occurs for both melting (increasing energy) and 
freezing (decreasing energy), the details of which 
permit one to make the following statement with 
confidence. The energy range for which solid and 
liquid phases coexist in these clusters is much 
less than the latent heat. 

This poses a fundamental question: Does the 
presence of the kink and associated absence of 
two-phase coexistence result from not having a 
truly macroscopic sample? Or, does two phase 
coexistence result when a system is not in perfect 
isolation long enough to achieve equilibrium? To 
help answer this question we have performed 
calculations which simulate melting for a 1000-ion 
cluster of NaF. Results for temperature (T) vs 
half the total energy (E/2) are shown in Fig. 1. 
A slope of unity on such a plot indicates exact 
equipartition of energy, which results for 
perfectly harmonic systems. 

The simulation was started with the ions in a 
perfect cube shaped microcrystal at low 
temperature. Constant energy simulations were 
performed for -10 psec to determine the 
temperature at each energy. Near the melting 
transition longer simulations, up to -100 psec, 
were carried out in an effort to avoid 
superheating. The energy of the system was 
changed by scaling the velocities, and the points 
in Fig. 1 were obtained by increasing the energy 
of the previous point. The solid points are used 
to indicate that longer simulations could well 
produce a further change in temperature. The 
results obtained thus far do not show substantial 
differences from the simulations of the 512-ion 
system. For both systems the vertical dimension 
of the kink is -250 K and the horizontal dimension 
agrees well with the experimental latent heat. 
Simulation of the corresponding freezing curve is 
underway and will be reported elsewhere. 

5: 
C 

0 

5 

1 
0 

8 
z - .  - 0 

,. 

H 

I -  
0 

REFERENCES 

I I I 1 

0 

- 0 - 
0 

0 - 0 0 - 
0 0 

0 0 - 0 - 
0 

0 

- 0 - 
0 

0 

- 0 - 
0 

o 0  - 
0 

I I I I 
SO0 I000 IS00 PO00 moo 

1. M.T. Dove, G.S. Pawley, G. Dolling, and B.M. 
Powell, Mol. Phys. z, 865 (1986); and 
references therein. 

LIZ 03 

2. K. Refson and G.S. Pawley, Mol. Phys. 41, 669 
(1987); ibid., 693 (1987). 

3. G.S. Pawley, Solid State Commun. 2, 817 
(1985). 

4. R. W. Hockney and C. R. Jesshope, "Parallel 
Computers", (adam Hilger Ltd., Bristol, UK, 
1981). 

5. A .  Brass, Ph.D. Thesis, University of 
Edinburgh, 1986. 

6. L. L. Boyer and G.S. Pawley, J. Comp. Phys., 
z, 405 (1988). 

7. L. L. Boyer, "Application of Vector and 
Parallel Machines to Molecular Dynamics of 
Large Clusters", Proc. of Third Inter. Conf. 
on Supercomputing (L. P. Kartashev and S. I. 
Kartashev, editors, International 
Supercomputing Institute, Inc. 1988) vol. 1, 
p. 187. 

8. L. L. Boyer, P. J. Edwardson and R. E. Cohen, 
"Ab Initio Calculation of Electrostriction and 
Field Induced Instability of NaF", Bull. Am. 
Phys. Soc. 2, 627 (1988 March Meeting). 

9. L. L. Boyer, Phys. Rev. B 23, 3673 (1981). 

Fig 1. Plot of temperature vs half the total 
energy, both expressed in Kelvin, for a 1000-ion 
cluster of NaF. The energy has been shifted to 
give zero at T-0 . Filled circles indicate that 
longer simulation could well change the 
"temperature", while open circles results showed 
no drift in the kinetic energy. The experimental 
melting temperature is 1265 K. 



PRECEDING PAGE BUNK NOT FllMED 

AN OVERVIEW OF CURRENT CONNECTION 
MACHINE APPLICATIONS AT MRJ 

R. Michael Hord 

MRJ, Inc. 

ABSTRACT image procesing primitives, image model matching, stereo 
matching, knapsack, neural networks, nonlinear network optim- 

The Perkin-Elmer Advanced Development Center at MRJ in- ization, thermal diffusion, wave equation, pyramid linking for 
stalled the first commercial Connection MachineTM (CM) super- image segmentation, and rapid 3D rendering. 
computer in August 1986. A second 16K CM was installed in 
March 1987 and was upgraded to a CM-2 in January 1988. A This paper surveys diverse current CM applications at MRJ. 
Data Vault and Frame Buffer have also been added. Both contract and internal R&D (IR&D) activities are addressed. 

Previously, a variety of CM applications at MRJ have been re- 
ported. These include maze solving, line of sight, text process- 
ing, HI-CAMP target tracking, automatic target detection, FFT, 
image processing primitives, image model matching, stereo 
matching, knapsack, neural networks, nonlinear network optim- 
ization, thermal diffusion, wave equation, pyramid linking for 
image segmentation, and rapid 3D rendering. 

This paper surveys diverse current CM applications at MRJ. 
Both contract and internal R&D activities are addressed. These 
include: 3D electromagnetic scattering models using both finite 
difference and method of moments; signal processing; system 
scheduling; synthetic aperture radar pattern recognition; robotic 
arm control; optimal resource allocation; traveling salesman; 3D 
shape recognition; large matrix solution and eigenvalue determi- 
nation; Monte Carlo techniques; computational fluid dynamics; 
communications network reconstruction; multispectral image 
analysis; strategic defense simulation; battlefield analysis; optical 
system ray tracing; logistics models; and symbolic computation. 
A FORTRAN to CM language semiautomated translator facilitat- 
ed these efforts. 

Keywords: Applications, Scattering, Images, Signals, Opera- 
tions Research, Engineering, Fluids 

The Perkin-Elmer Advanced Development Center at MRJ in- 
stalled the f i s t  commercial Connection MachineTM (CM) super- 
computer in August 1986. A second 16K CM was installed in 
March 1987 and was upgraded to a CM-2 in January 1988. A 
Data Vault and Frame Buffer have also been added. The CM 
produced by Thinking Machines Corporation in Cambridge, 
Massachusetts, is a fine-grain massively parallel supercomputer. 
The CM-1 has a Symbolics 3675 host and is characterized by a 
4MHz clock and 4K bits per processor. The CM-2 is a second 
generation of this technology with a 16-fold increase in memory 
per processor, floating point hardware, faster clock, and a much 
increased input/output rate. The CM languages in use at MRJ are 
PARIS, *LISP, and C*. 

Previously, a variety of CM applications at MKJ have been re- 
ported. These include maze solving, line of sight, text process- 
ing, HI-CAMP targrt tracking, automatic target detection, FFT, 

Electromagnetic scattering models have been implemented on the 
CM for computing the near and far fields of diverse 3D bodies. 
Initial efforts addressed both finite difference time domain mod- 
els and method of moments models, and considered a range of 
materials, shapes, and sizes of both simple and complex objects. 
The finite difference time domain code addressed nonhomogene- 
ous time domain composite dielectric or perfectly conducting 
scatterers. The scattering object size on a full 64K sized CM-2 
can be as large as 24 lambda x 24 lambda x 10 lambda, where 
lambda is the wavelength of the incoming wave. 

The method of moments code addresses homogeneous dialecmc 
scatterers. Mamces are complex and dense and are solved to size 
4000 x 4000. 

A system study addressing the insertion of a CM into a large o p  
erational system for expedited system scheduling was success- 
fully concluded. A benchmark activity executed a scheduling al- 
gorithm on a variety of computers including an IBM 30901200, 
Cray X-MP1, and Cray Y-MP8 for comparison with the CM-2 
with 8K, 16K, and 32K processors. 

Vector and Parallel Computing for Luge Scale Network Optimi- 
zation, research performed by Professor Stavros Zenios of the 
Wharton School of the University of Pennsylvania and Dr. Rob- 
ert Lasken of the Advanced Development Center at MRJ won in 
March 1988 a special award in the Gordon Bell competition or- 
ganized by the IEEE computer society. The research was per- 
formed in part on the CM and supported by MRJ. The topic was 
drawn from the field of Operations Research and deals with the 
optimal flow of a commodity through a network characterized by 
nonlinear costs. Runtime comparisons were made with Cray and 
other computers showing an advantage for the CM in speed and 
problem size. 

A variety of operations researcNcontrol theory problems were 
addressed by the CM under contract. Multiply articulated robot 
arms of complex configuration were manipulated in the same 
physical workspace without collision and without constraint 
(cable wrap, velocity, acceleration, jerk, etc.) violation in mini- 
mum time. 

A large set of diverse resources was allocated to competing de- 
mands in an optimal way with provision for both rapid replan 

CH2649-2/89/0000/0279$0l.00 O 1988 IEEE 



and minimum disruption upon changes in demand. Orbit opfimi- 
zation planning was also performed. Several other operations re- 
search problems have been studied in a CM context. These in- 
clude parallel algorithms for the traveling salesman problem for 
which near optimal solutions for very large tours are obtained 
very quickly. 

The naveling salesman problem seeks the optimal (shorttst) path 
among N nodes uniformly dismbuted in a plane based on a Eu- 
clidean distance metric. MRJ devised a two-step approach that 
obtains a good first guess solution by fractal s e h g  and then 
refines that solution using a barter method. Eight thousand 
nodes were solved to within 1% of optimal in 20 minutes on the 
m - I .  

Under DARPA funding, the CM is being employed to develop 
pattern recognition algorithms for synthetic aperture radar irnag- 
es of the ocean surface. 

Perkin-Elmer makes a ranginglimaging sensor with active laser 
ground scan illumination. This IR&D effort uses the CM to con- 
vert range data to elevation information, thereby resolving range 
ambiguity, and then applies 3D pattern recognition methods to- 
gether with reflectance images to detect objects in a ground 
scene. For this project the ranging data were processed to find 
net covered camouflaged trucks among trees. The laser ranging 
data were produced by the Perkin-Elmer 3-D Line Scanner. This 
laser line scanner looked down at Earth from an air breathing 
piatfarm flying at a 229 meter altitude. The scanner sweeps a 
collimated beam of laser radiation through a 120 degree arc. The 
laser radiation has a wavelength of 0.85 microns. From the re- 
turning laser radiation both the range and surface reflectivity are 
recorded. 

Processing included two broad areas. The first area included re- 
moving artifacts in the data. These artifacts are ambiguities 
caused by the collection process, which are not naturally found 
in the scene. The second area was pattern recognition. This ef- 
fort succeeded in highlighting trucks hidden in the image. 

Trucks represent a good focus for pattem recognition. Automati- 
cally identifying trucks in an image is of military interest for in- 
telligence purposes or for targeting purposes. Methods that work 
for trucks should extend to other military targets such as tanks 
and mobile missiles because they are all of similar but unique 
size and shape. 

Automatic techniques are necessary because the laser line scan- 
ner produces large amounts of data; in the unprocessed data 
there is low contrast between the trucks and the background, and 
there is not enough manpower to analyze the data in a timely 
manner:By highlighting the trucks, automatic target recognition 
solves these problems. 

Stereo image matching was used to generate a 3D scene model 
for interactive manipulation. Using two airborne visible USGS 
images of Tysons Comer, VA, acquired from unknown altitudes 
and at different times of day, an apartment complex was dis- 
played at arbitrary azimuth and elevation angles and range with 
an arbitrary illumination direction in about a second per view. 

The major functions of the 3D scene model are: 

1) registration (2D) 
2) determination of the axis of shift 
3) f e a m  extraction 
4) image segmentation 
5) matching 
6) tkvationcotnputation 
7) model display. 

One unusual characteristic of this method is that the matching 
works with a 5D feature vector associated with each pixel. One 
set of five features that works well is: 

1) neighborhod average 
2) edge magniadc 
3) edge direction 
4) constant false alarm rate 
5) max-min texture. 

Structures analysis using NASTRAN is a major MRJ business 
area. This IRLD project's f i t  task was to design a method of 
using the CM for the computationally intensive sections of NAS- 
TRAN runs. The second task sought methods for the analysis of 
dynamic structures. The primary thrust of this effort to date has 
been the development of linear algebra tools: matrix solvers, ma- 
mx inversion, and eigenvector determination. Versions of these 
tools are available for dense unstructured matrices and special 
versions are also available for certain matrix types. For example, 
for block tridiagonal matrices, sizes of up to 64K x 64K are ac- 
commodated. 

Calculation of the behavior of optical system is known to be 
computationally intense. An example of such a calculation is the 
examination of the behavior of the diffraction pattern formed by 
an obiective lens or mirror under varvine conditions of obscura- - -  ~ - . .  

tion dy, for example, secondary opt i~s  Gpport structures. There 
are a number of ways to perform this computation, including an- 
alytically (symbolically) and by use of Fourier transforms. In the 
present case, the use of Monte Carlo techniques for determining 
the diffraction pattern by direct calculation is explored, making 
use of the substantial computational capabilities of the CM to 
produce results rapidly. 

A program, written in the parallel computing language *LISP, 
calculates the interference pattern produced by a user-selected 
number of randomly chosen rays passing through the chosen 
aperture relative to the central reference ray. These interference 
patterns are ultimately summed, and their square gives the ob- 
served luminous intensity of the diffraction pattern. A number of 
typical apertures can be specified, includingthose for Newtonian 
and Cassemain reflector desiens. as well as some more unusual 
choices. ~e program user also select the aperture sizegnd 
the wavelength of light in use and observe the effect that these 
choices have on the resulting pattem in the focal plane. 

The CM and its host computer provide a particularly effective 
model for this problem, as the system structure parallels that of 
the physical model: the host computer plays the role of the aper- 
ture, while the CM is analogous to the focal plane. Light rays 
passing through the aperture and forming patterns over the entire 
focal plane correspond to the movement of data from the front- 
end computer to the various CM processors in parallel. This cor- 
respondence of structure makes the implementation of the central 
computation routines quite straightforward, while the substantial 
graphics capabilities of the Symbolics host computer allow the 
development of a convenient and high-powered user interface. 
The details of the implementation also serve to illustrate such 
valuable parallel processing techniques as problem replication 
and segmentation, the former being used for the parts of the 
problem much smaller than the configured number of proces- 
sors, with the latter being employed where the problem was big- 
ger than the machine. 

Turbulentflow around vehicles moving through the atmosphere 
has previously been modeled in FORTRAN on sequential com- 
puters in the WAKE program. This code is being migrated under 
this project to the CM for faster execution. 



A second computation fluid dynamics activity addressed gar- 
seous diffiuion polurion modeling. The CM solves the diffusion 
equation in three dimensions to propagate smoke plume size and 
shape subject to effects of the surrounding terrain, local wind 
velocity, and other model parameters. A time averaged model in 
5 12 x 512 x 21 cells generates a graphic display. 

Using terrain models, doctrine, equipment constraints, and other 
criteria, a CM-based system derives the topology of probable 
military communications networks from signal externals. A 
demonstration of this capability addressed the Fulda Gap area of 
Germany in which spokelhub relationships are extracted from 
among hundreds of emitters. The approach is to use a knowl- 
edge-based system for situation assessment-the knowledge is 
separate from the control and the chaining of applicable knowl- 
edge is driven by goals and data. 

Image Processing research is developing a range of CM-based 
software for image processing, pattern recognition, and display. 
Specific items involved principal components data compression, 
sham recognition in two and three dimensions, frame buffer and 
~ e ' ~ a t e k  display tools, registration of terrain elevation data to 
maps, flythrough DTED demonstrations with cast shadows, and 
so forth. 

A diverse project used the CM to perform a variety of functions 
in support of a remote sensing system. Computationally intense 
background suppression was performed on the data. The data 
for this activity are derived from a mobile facility with a Perkin- 
Elmer sensor termed a Fourier Transform Spectrometer. One ex- 
ample application is the sensing of spectral data associated with 
the smoke from a Consolidated Edison client facility to deter- 
mine whether the fuel used was coal or natural gas. 

Launch Missiles is a program that demonstrates the CM's ability 
to run strategic defense simulation games. In this demonstration, 
one-thousand missiles are launched from sites in the Soviet Un- 
ion. A few minutes into the flight, each missile MIRVs into eight 
warheads (making a total of 8,000 warheads). The warheads 
continue along their flight path until they reach their targets. Ra- 
dar dishes are stationed along the flight path to monitor 
progress. A total simulation takes about 3 minutes real time 
while simulating approximately 30 minutes of flight time. 

The simulation has two displays. The first shows a polar map of 
Earth and plots the course of each missile or warhead. The sec- 
ond display simulates six radar screens and plots each missile or 
warhead as it would be seen from this radar position. All dis- 
plays are updated in real time. During the simulation it is possi- 
ble to place a new radar dish at any point on the map. The radar 
will immediately begin displaying from its new position. 

Each missile can have its launch position, launch time, MIRV 
time, flight time, and destination independently controlled. The 
problem of Gauss is solved separately for each missile. 

The CM is responsible for three separate activities during the 
simulation. First, for each step in the simulation the CM calcu- 
lates the new position and velocity of each missile or warhead. 
After calculating the new position, the CM calculates how this 
warhead would be seen in each of the radar displays (if it can be 
seen). And finally, the CM calculates which bits to turn on or off 
in each of the two displays. In each of these activities the CM 
does the work for all 8,000 warheads simultaneously using 
8,000 processors. 

and a variety of other hiding methods. Image analysts seek to 
exploit reconnaissance pictures for opposition deployment and 
order of battle information. To facilitate rapid image exploitation 
in the presence of CC&D activity, a phase 1 prototype soft-copy 
image analyst workstation was developed on the CM. 

This workstation consists of a Symbolics 3675 host for the CM, 
a high-resolution color image display unit, a map projection unit, 
an ancillary computer running an expert system, and a print sta- 
tion that issues a formatted exploitation report. The Symbolics- 
CM-display system performs image manipulation under operator 
command. The expert system, which in phase 2 will be integrat- 
ed onto the Symbolics, functions as an analyst associate to im- 
prove the productivity of analysts with low-to-moderate skill 
levels under time pressure. The expert system addresses tactical 
situations using a specified ER (exploitation request), doctrine, 
terrain, weather, and collateral rep& to advise the operator re- 
garding the most effective image manipulation algorithms to ap- 
ply for enhancing the digital imagery. 

A substantial program has aimed at finding better ways to exploit 
the CM's parallel advanced architecture. FORTRAN to CM- 
language semiautomatic translation, improved fast Fourier trans- 
forms, linear algebra, and other primitive math tools have been 
addressed. Interprocessor communication efficiency has been 
emphasized. 

The CM code translator software converts FORTRAN or LISP 
programs into LISP-PARIS for parallel processing on the CM. 
The translator will also convert to LISP, C, and C-PARIS. 

The translator is used mainly for convening large blocks of 
FORTRAN code into PARIS, a parallel-operation language, so 
that individual instructions can be run in parallel on the CM. 
(There are two CM's available to the user. A CM-I, front ended 
by two Symbolics 36xx, contains 16K processors. There is also 
a CM-2 16K processor machine front ended by both the VAX 
8300 and the Symbolics 36xx.) Input is a file or a smng contain- 
ing working cobe written in thk original programmingianguage. 
Output, which has been translated to the selected language, is . - 
sent to either a file or the screen. 

The translator resides on both the Symbolics 36xx and VAX 
8300. A user needs some basic knowledge of the machine, edi- 
tor, and operating system upon which the program is run as well 
as knowledge of the output language to integrate the output into 
operational code. 

Text processing research examines the utility of the CM for rapid 
document search and remeval. An innovative and powerful ap- 
proach termed Euclidean Concept Space (ECS) was identified 
and developed. ECS defines mapping the documents of a text 
data base into mints of an N dimensional soace (N>20) based 
on content.  hen the tools of analytic geomeky a; employed to 
explore relationships among the documents and their meaning. 

Many applications not described here are being pursued as well. 
We are gratified to note that almost every application area we've 
examined of relevance to our client base responds well to mas- 
sively parallel methods. 

Camo@age, Cover, and Deception (CC&D) techniques by mili- 
tary units include using trees for concealment, nets and tarpau- 
lins over emplacements, background matching paints, decoys, 



A HIGH PERFORMANCE PARALLEL APPROACH TO MEDICAL IMAGING 

G. F'rieder 0 .  F'rieder M.RStytz 

School of Computer and Bell Communications 
Information Science 445 South Street 

Syracuse University Morristown, NJ 07960 
Syracuse, NY 13224 

ABSTRACT 

Research into medical imaging using general purpose 
parallel processing architectures is  described and a review of 
the performance of previous medical imaging machines is  
provided. Results demonstrating that  general purpose parallel 
architectures can achieve performance comparable to other, 
specialized, medical imaging machine ~ rch i t ec tu re s  is  pre- 
sented. 

A new back-to-front hidden-surface removal algorithm 
i s  described. Results demonstrating the  computational 
savings obtained by using the modified back-to-front hidden- 
surface removal algorithm a r e  presented. Performance 
figures for forming a full-scale medical image on a mesh 
interconnected multiprocessor are  presented. 

Keywords: parallel processing, medical imaging, 
mesh, da t a  parallel, image processing pipeline, hidden- 
surface removal. 

INTRODUCTION 

Medical imaging i s  inherently computationally 
intensive. There a r e  many computational aspects of medical 
imaging: the  most prominent being the massive amount of 
data to be processed1, preferably in real-time, the need for long 
range retention of data, and the need for data manipulation 
and display of the resulting three-dimensional (3D) images of 
complex anatomical structures, again preferably in real-time. 
These displays differ from the more familiar CAMICAD and 
other graphics applications in that they do not have underlying 
geometrical structures which can be exploited to reduce the 
computational burden. Only a limited amount of abstraction 
from the raw data is permitted because disease diagnosis is  
based upon departures from the  norm, and high level models 
would reduce, or eliminate, these differences. These stringent 
imaging and performance requirements combined with the 
associated heavy computational demands indicate t ha t  a 
massively parallel approach is worthy of consideration. 

This  research h a s  two objectives. First ,  unify, 
capitalize and expand previous work in medical image 
processing. Second, demonstrate tha t  a medical imaging 
machine operating in a general purpose massively parallel 
architecture can achieve the  performance of specialized 
medical imaging machines operating on specialized architec 

 he average computerized tomography procedure generaes one million 
voxels pcr single slice of a patient scan, magnetic resonance imaging 
and uluasound proccdurcs produce similar amounls of data. In 3D 
medical images, which are the subject of this paper, there can be 100 
million data points generated per patient scan. 

Research Air Force Institute of Technology 
assigned to 
University of Michigan 
Ann Arbor, MI 48109 

tures. ~ e i c e ,  in terms of cost and reliability, they are a viable 
approach to the  interactive display of medical data. The 
research h a s  been through two phases. The first phase, 
described in cSty881, mapped the parallel primitives of the Voxel 
Processor machine  described in  [Go1871 onto mesh 
architectures. In the second phase, described here, we develop a 
new algorithm which reduces the computational overhead 
without sacrificing image quality and apply i t  to simulated 
mesh computers. The results of this investigation provide a 
foundation for cost effective, high quality three-dimensional 
images for disease diagnosis and treatment. 

This paper is  organized a s  follows. The next section 
provides a brief review of medical imaging terminology and a 
discussion of previous medical imaging machines. Section 3 
presents a modified back-to-front algorithm which reduces the 
computational time required to generate an  image. Section 4 
describes the  proposed medical image processing pipeline. 
Section 5 presents performance results obtained when the  
pipeline uses the  modified back-to-front algorithm in the  
demonstration architecture. The final section contains our 
conclusions and outlines our future work. 

MEDICAL IMAGING: TERMINOLOGY AND PREVIOUS 
APPROACHES. 

Medical imaging employs many of the  image quality 
enhancement operations used in other graphics applications, 
and consequently has  adopted many graphics terms as  well. 
We define these terms below. 

Anti-aliasing (see LCro771 and [CroBlI for examples) is 
a graphics operation used to smooth the  jagged edges which 
would otherwise appear in the final two-dimensional (2D) 
image when the scene is rotated. 

The cuber i l le  model, described in [Her79], describes the 
contents of a volume with identically sized, tightly packed, 
cube shaped small volumes called cuberilles. Each cuberille 
represents one or more properties of the associated volume 
within the  irradiated space. A three dimensional s e t  of 
cuberilles, therefore, represents the  entire irradiated volume. 
Cuberilles have four characteristic properties: They are  all of 
the same size, they are discrete, they lie in one of three 
mutually perpendicular directions, and they are very small 
relative to the  object being imaged. The cuberille array is  
naturally represented within a computer by a three-  
dimensional (3D) array, in which each array element's value 
is the density value of the corresponding cuberille. 

Hidden-surface removal  ( see [Fol83l,[Fri851, [Fuc791, 
and [Mea821) is  a graphics operation used to remove from the 
final 2D image those portions of the scene which the observer 
can not see. Hidden-surface removal can be accomplished 
using, for example, a z-buffer or back-to-front readout 
algorithm. A z-buffer algorithm makes use of two buffers. The 
refresh buffer, which i s  always required when forming a 



digital image, is  used for storing pixel intensity values. The 
other buffer is a z-buffer which i s  used to  store the z-value of the  
each cuberille tha t  is currently mapped to a screen pixel. The z- 
buffer is  initialized to the  largest representable z-value and the 
refresh buffer is  initialized to the  background value. Each 
cuberille is  then scan converted. The conversion yields a depth 
z(x,y) a t  screen position (x,y). If the  newly computed z(x,y) is 
less than the z(x,y) stored in the z-buffer, then the current 
cuberille is  closer to the observer than the cuberille previously 
stored a t  (x,y), so the z value and intensity of the current 
cuberille replaces the z value and intensity stored in each 
buffer a t  position x,y. 

Another class of hidden-surface removal techniques is 
- - r& readout of the cuberilles in the scene. Front is 

defined a s  the point(s) in the scene closest to the observer. Back 
is defined a s  the  point(s) furthest from the observer. The 
algorithm is simpler to implement than the z-buffer algorithm 
and requires less space since there is no z-buffer to maintain. 
The operation of the algorithm requires that  the entire data set 
be accessed in back-to-front order relative to the observer. This 
is  accomplished by correctly oriented the scene relative to the 
three coordinate system axis. Once the correct viewer-object 
orientation is  achieved, the cuberilles in the scene are read-out 
in back-to-front order and mapped onto the image display. 

Pixel is  an  abbreviation for picture element. A single 
pixel is the smallest element of a picture that  can be displayed, 
i t  is essentially a single point on the display screen. 

Shading (see, for example, LChe851, [Fuc831, IHef851, or 
[Pho751) i s  a graphics process whereby the appearance of a 
visible surface is altered to account for the number and types of 
light sources illuminating the surface, the surface texture, 
surface color, surface reflectance, and the  position and 
orientation of surrounding surfaces. 

Five medical imaging machines were examined with 
a view toward defining their capabilities. Figure 1 contains 
the performance figures for the  five machines. In brief, their 
performance can be characterized a s  follows. The Image 
Overlay Machine, [FarES], is a high resolution, high-speed 
machine implemented on a general-purpose mainframe and 
workstation. The graphics processing algorithms are encoded 
in software, and the common 3D image formation operations 
are avoided, with a 3D effect being provided by color and image 
rotation. The Pixel-Planes machine, [Fuc85], is  a medium 
resolution, medium speed machine which is implemented a s  a 
special purpose processor. The Pixel-Planes graphics 
processing algorithms are hard-coded into the hardware of the 
machine, with an  apparent 3D view formed using shading, 
shadows, and hidden-surface removal techniques. The Voxel 
Processor, ([Go187J), is a medium-resolution, high-speed 
machine which i s  implemented on a special-purpose 
architecture. The graphics processing algorithms are encoded 
in hardware,  with the  apparent 3D image formed using 
shading and hidden-surface removal techniques. The True 
3D machine, ([Rob851 and [Rob861), is  a low-resolution, high- 
speed machine which is  implemented on a general-purpose 
architecture using a special purpose graphics display device. 
The graphics processing algorithms are placed in software, 
with the  3D image formed using a varifocal mirror and a 
series of frame buffers to provide a true 3D image (this is  the 
only machine of the  five which does form a real 3D image). 
The Medical Image Processing Group (MIPG) machine, 
FHer861, is  a low to medium resolution, slow machine which is  
implemented on a general-purpose architecture. The graphics 
processing operations a r e  placed in software, with shading, 
motion, and hidden-surface removal algorithms employed to 
create a 3D effect in the displayed scene. A thorough survey of 
medical imaging modalities and medical imaging machine 
a r c h i t e c t u r e s  c a n  be  found  in  [F r i881 .  

MEDICAL IMAGING MACHINES 

AKMTECTURE hnhameand Smart lrame Parallel, Manftame and CT scannet mi- I / arkslatton ) buffer l palme I workslalon cropmssor  

PROCESSmG 
STRATEGY 

bl~rea ! Parallel opera Manframe per 
lwns on 64 dls forms m a p  am 
pln tskubes pitatcans, work 

d scene stallon lakes on 
minor mrnplta 

i i tonal Imd 

lndentity wgan 
in 

w-w 

AHTULllSHKi 

rnEK 
SURFACE 
E W A L  

Datmm only, 
~~nlexlual.  

Supnam l~ng 
to doubt 
18501ubon 

Modifted 
Z bulfer 

Figure I: Medical Imaging Machines 

Even in this brief survey it is evident tha t  there is no 
one architecture or approach which dominates the medical 
imaging field. In broad terms, these machines can be 
characterized a s  follows. The serial machines sacrifice 
image quality or speed in order to accomplish their image 
processing tasks. On the other hand, the parallel processing 
machines are special purpose architectures and therefore 
relatively costly for their performance, especially in a medical 
imaging environment. Additionally, the  special purpose 
parallel  processing machines sacrifice t he  processing 
flexibility provided by software encoding of algorithms for the 
speed advantage tha t  comes from hardware encoding in order 
to  achieve the i r  real-time performance. Note t ha t  each 
machine has  a suite of capabilities which distinguishes it from 
the other four. These capabilities, such as  software encoding of 
algorithms, use of general purpose architectures, apparent 3D, 
high speed, and high resolution, are not mutually exclusive. 
These capabilities should be able to be combined within one 
medical imaging machine to provide a richer, more flexible 
imaging environment for t he  clinician. Our research has  
concentrated on melding the advantages possessed by each of 
these machines into one unit which is  fast and has  high 
resolution while remaining cost effective. 

We began by implementing the parallel operational 
primitives of the Voxel Processor within a mesh architecture. 
This choice was motivated by three factors. First, the Voxel 
Processor operational primitives are  geared toward parallel 
processing, albeit on a special purpose architecture. Second, the 
parallel primitives employed in the  Voxel Processor a r e  
scalable. Third, the stages operate independently except for 
message passing to move the data through the machine. This 
aspect provides flexibility when tackling the performance 
bottlenecks in each stage because modifications to a stage are 
transparent to all other stages in the pipeline. Thus, we were 
able to quickly implement the machine with confidence in its 
ability to scale to full-size medical images and in its ability to 
accommodate improvements to the operation of each stage. We 
employ the cuberille data model so a s  to reduce the pack- 
indunpacking overhead in the processing of the images (note 



that  this does not preclude any compression of data for retention 
purposes). Anti-aliasing is  accomplished using super  
sampling to high resolution with averaging to a low 
resolutionfinal image a s  described in ICro811. Pixel intensity 
values are assigned using an 8 bit gray scale. Our evaluation 
is done on various mesh architectures that are simulated using 
C under HP-UX 5.3 on a Hewlett-Packard 9000 Series 300 with a 
CPU running a t  16Mhz. Message passing is used to simulate 
the node interconnections of the  architecthres. While the  
environment i s  simulated, the algorithme a re  actually 
executed under the assumption that each node is actually a HP  
machine, thus actual displays are produced. The elapsed time 
required for each stage to perform its processing is obtained 
using the timing calls provided in HP-UX. Total elapsed time 
for formation of a single image is taken to be the sum of each 
stage's processing time plus the communication time between 
stages. 

The image processing machine consists of a multistage 
pipeline which operates on a three-dimensional scene formed 
by interpolation of computerized tomography, magnetic 
resonance imaging, or ultrasound image data. Figure 2 
portrays the image processing pipeline used to obtain the 
baseline and modified back-to-front implementation results. 

M Input Host 
SSG Sub-scene Generatm 
MP Merge Processor 
OH Output Host 
OH, Output Host Co-Processor 

Display 

I I 

Figure 2: Image Processing Pipeline 

Each stage of the pipeline operates as follows. The Input 
Host gathers user scene editing inputs and broadcasts them to 
all the processors in the machine a s  well a s  performing the 
initial data distribution of the floating point cuberille values to 
the Sub-scene Generator (SSG) processors. The data which 
forms the 3 D  scene is equally distributed among the Sub-scene 
Generators with each SSG receiving a continuous volume for it 
to operate upon. Figure 3 demonstrates how the image volume 
is divided into eight octants, and the numbering scheme used to 
identify each octant. Each octant is  recursively divided by 

Figure 3: Oclant Numbering Scheme 

repeatedly applying the Figure 3 scheme until the data volume 
has been divided into a s  many suboctants as there are SSGs, a t  
which time each volume is sent to the corresponding SSG. Each 
Sub-scene Generator performs anti-aliasing, scene rotation 
and object space t.9 image space mapping on its subset of the 
image volume based on the user inputs broadcast by the Input 
Host. When a SSG finishes processing, i t  sends its output 2D 
scene, consisting of a floating point density value and an 
integer z value for each coordinate, to its Merge Processor in 
the next stage. Each Merge Processor (MP) gathers the 
output of the eight SSG's or MP's which send i t  input and 
performs a back-to-front merge of the eight input scenes to form 
its larger output scene. The final pipeline stage, consisting of 
one MP,merges the eight scenes from the previous stage of 
MP's into the final, full-scale scene. The last stage MP output 
is  divided among the Output Host and three coprocessors 
(Output Hostl, Output Host2, and Output Host$ for shading to 
provide a three dimensional effect before final display by the 
Output Host. Shading is performed in software, even though 
image shading hardware exists, to demonstrate tha t  the  
pipeline operates correctly within the realm of the simulation 
environment. The results obtained for the final stage are  not 
presented a s  they are based on a serial mode of operation for the 
display device, and this mode masks the performance speedup 
obtained from parallel processing. The questions of shading 
and image display will be addressed separately as they have a 
great impact on the performance of the pipeline. 

Timing results were obtained using a message packet 
size of 64k bytes and a 16 x 16 x 16 scene a t  each SSG. As our 
goal was identifying the bottlenecks in the pipeline, production 
times for each stage were gathered a s  an  integral part of each 
simulation run. Refer to Figure 4, where the elapsed time spent 
in each stage of the baseline pipeline is presented. Note that  the 
SSG stage, where back-to-front readout of the suboctants is  
performed, is  the  main bottleneck in the image processing 
pipeline. This bottleneck motivated our development of a new 
back- to - f ron t  h idden- su r face  removal  a lgo r i thm.  



I Mesh Architecture Stage Performance I 

I Baseline Modified BTF I 

1. MRc- I 
Figure 4: Mesh Stage Performance Results 

THE MODIFIED BACK-TO-FRONT ALGORITHM 

In the second phase of the research, we developed an improved 
back-to-front algorithm which reduces the  amount  of 
computation required in the Sub-scene Generator (SSG) stage. 
The algorithm produces a two-dimensional slice of the scene 
which is  useful for scene editing purposes (see [Rob861). Once 
the  user has achieved the desired orientation of the scene, we 
then switch to the full three-dimensional (3D) scene processing 
scheme. This approach permits rapid editing of the imaged 
volume a s  well as  full 3D viewing of the volume of interest by 
the user. Our algorithm is based on two observations. First, if 
graphic output is placed in the output buffer in back-to-front 
order, then the final image contains only those portions of the 
scene observable from the viewer's position. Second, any 
portion of the scene which is closer to the back of the scene and 
further from the  scene's cutting plane than is the geometric 
center of the scene can not be observed from the user's position. 
We capitalized on these two observations and developed a new 
hidden-surface removal algorithm which reduces t he  
computation burden a t  each SSG by roughly a factor of 4 as  
compared to the standard back-to-front algorithm. A brief 
description of the algorithm follows, it is  not complete as  it does 
not allow for rotation of the scene but is  presented to give a feel 
for the algorithm's operation. 

Assume an imaged volume of size N x N x N, where N 
is a power of two, and a cutting plane through the volume which 
is  perpendicular to the y-z plane. The origin lies a t  the front, 
lower, left of the scene. First, divide the imaged volume into 
eight equal sized octants of size N/2 x N/2 x N/2. Division in 
this manner allows us  to perform the remainder of the scene 
subdivision process with shifts rather than divides. The 
octants thus formed are labeled a s  shown in Figure 3. We then 
place the observer a t  the center front of scene, coordinates N/2, 
N/2, 0. A back of scene reference point is placed a t  coordinates 

Next, compute each of the eight octant's center coordinate a s  
follows: 

For octants 0 ,2 ,4 ,6 :  x coordinate = Nl4 
For octants 1 ,3 ,5 ,7 :  x coordinate = 3 * N14 
For octants 0 ,1 ,4 ,5 :  y coordinate = N14 
For octants 2 ,3 ,5 ,7 :  y coordinate = 3 * Nl4 
For octants 0, 1,2,3:  z coordinate = 3 * N/4 
For octants 4.5.6, 7: z coordinate = Nl4. 

Let i represent octant i of the  scene, ij represent t he  
octant j which lies within octant i, and so on. Let C represent 
the center of the scene, Ci represent the center of octant i, and 
Cij represent the  center of octant j, which lies within octant i ,  
and so on. Dr,(x) returns the distance from a point x to the  
back-of-scene ieference point. Dp(x) returns the distance from 
the point x to the  scene's cutting plane. Perform the following 
steps in back-to-front or& on each of the eight octants . First, 
determine if the octant contains data which is visible from the  
observer's position. The octant is obscured if Drp(Ci) < Drp(C) 
and Dp(C;) > Dp(C). If these conditions are  met, ignore the  
remainder of octant i. If either test is  not met, process the 
remainder of the octant. Octant i now becomes a parent octant 
of dimension M x M x M, where M=N/2. Now, t rea t  parent 
octant i a s  though i t  were the entire scene and determine in 

- - which of i ts  eight octants are visible as  
follows. First, if i encloses 2 x 2 x 2 primitive data elements 
write i to the output buffer in back-to-front order. Otherwise, 
divide i into eight new octants iO ... i7 using the method 
employed above to divide the entire scene. Determine which of 
the new octants ij are visible to the observer. The visibility 
determination is made by following the  steps originally 
performed to determine which scene octants are visible. First, 
the new suboctant centers, Cii, are computed a s  shown above, 
and then the distance from the-new octant centers to the cutting 
plane and the back-of-scene reference point are determined. If 
Drp(Cij) c D (C;) and Dp(Cij) > Dp(Ci) then do not process the '9 . 
remainder of y. If either test fails, consider ij to be a parent 
octant and  perform the  octant division and  distance 
determination steps for each of the new octants ijk. Continue 
processing smaller and smaller portions of each scene octant i 
until each element has been either cast away or written to the  
output  buffer. When processing concludes, t he  two- 
dimensional slice of the volume defined by the cutting plane 
will be in the output buffer. 

The  modified back-to-front a lgor i thm rapidly 
determines the front of the scene a s  defined by the cutting plane 
by recursively examining the  scene to determine the set  of 
cuberilles the cutting plane intersects. This determination is  
made by applying two tests to each octant. The first test  
determines if there is another octant between the current octant 
and the observer, this test is accomplished by computing the 
distance from the current octant to the back-of-scene reference 
point and comparing this to the distance of the parent octant to 
the  back-of-scene reference point. The second test determines 
if the cutting plane passes through the current octant. This test 
is accomplished by comparing the distance from the  octant 
center to the  cutting plane with the distance from the octant 
center to the furthest point in the octant. These tests allow the 
SSG to cast away substantial portions of its subscene early in 
the  hidden-surface removal process, thereby reducing the  
computation performed a t  the  SSG. This is in contrast to the 
other hidden-surface removal algorithms described in Section 
2 which must examine each element in the SSG's subscene to 
construct the required view of the image. 

Refer back to Figure 4, where the baseline image 



processing pipeline performance using the modified back-to- 
front algorithm is presented. The results were gathered on a 
simulated 16 node mesh connected multiprocessor using 64k 
byte message packets with a 16 x 16 x 16 scene a t  each SSG. The 
reduction in time spent in the  SSG stage when the modified 
back-to-front algorithm is used instead of the standard back-to- 
front algorithm is demonstrated by the  results presented in the 
figure. The SSG stage was then timed independently to gather 
performance data for various SSG scene sizes, ranging from 8 
x 8 x 8 to 64 x 64 x 6 4 ,  a t  a constant packet size of 64k for both the 
standard and  modified back-to-front algorithms. These 
results are presented in Figure 5. Note tha t  the amount of time 
spent a t  the  SSG stage decreases linearly with decrease in 
scene size a t  the SSG, or, equivalently, with the increase in the 
number of nodes used in the SSG stage. These promising 
results led us  to develop the front end to an image processing 
pipeline, based on the baseline image processing pipeline 
described above, which is capable of matching the performance 
exhibited in special purpose medical imaging machines. 

SSG Performance vs Data Cube Size I 

1 10 
Scene Dimension 

- MditidBTF 

Figure 5: Sub-scene Generator Performance 

FULL SCALE MEDICAL IMAGING PIPELINE 

To demonstrate the  ~e r fo rmance  of the  full-scale 
medical imaging pipeline when operating within a general 
purpose parallel processing machine, the  simulation results . .  - 
were extended to 512 x 512 ; 128 cuberille medical images (33.5 
million data elements), which is  a reasonably sized volume of 
CT scanner data. This extrapolation is valid because our data 
allows us  to employ a data parallel approach, a s  defined in 
LTuc881, for programming the machine. Recall that  the PEs in 
each stage operate in concert, with no interference from other 
stages. As a result, the timing results for a given stage remain 
valid as  the overall image size is increased because the amount 
of work performed by a PE in a given stage remains constant. 

The graphics pipeline we use to obtain these 
performance figures is modified from the baseline pipeline 
described earlier. This new confipration is motivated by the 

observation t h a t  image shading is  now the performance 
bottleneck. Because the time required to shade an image 
decreases l inear ly  with decreasing image size, t h e  
performance of the shading stage can be improved by dividing 
the shading operation among many processors which each 
shade a very small portion of the overall scene. To move the 
shading operation forward in the pipeline, the processors in the 
shading stage must exchange the information needed to shade 
their portions of the scene. The first two stages remain a s  
depicted in Figure 2. For ease of exposition, t he  scene 
dimension a t  each SSG is the dimension without supersam- 
pling, and the time to perform anti-aliasing operations is  not 
included within the SSG figures we use below. The third stage 
performs Sub-scene Generator output shading using the  
gradient shading algorithm described in [Sty88l. The 
simulation environment only permits software shading, a t  a 
cost of one shading node per SSG. An actual implementation 
could replace the software shading nodes with a hardware 
shading capability and thereby reduce the multiprocessor node 
count and the time required to process an image. The fourth 
stage performs image translation and merging. A naive 
implementation of the remainder of the pipeline would have 
subsequent Merge Processor (MP) stages forming successively 
larger 2D scenes, with the last stage of MPs sending their output 
to the Output Host for display. Adopting this configuration for 
the pipeline results in elapsed times in later stages of the  
p ipel ine  which nul l i fy  t h e  benef i t s  rea l ized  by 
multiprocessing. To bet ter  highlight t he  performance 
available, we omit t he  scene merging times from this 
discussion and concentrate instead on the operation of the first 
four stages (the front end) of the pipeline. 

RESULTS 

The timing results for the first four stages of the full- 
scale image processing pipeline described in the  previous 
section are based on a message packet size of 64k bytes. The 
mesh processors a r e  assumed to run a t  the speed of t he  
simulation CPU, which is 16Mhz. The scene size is 512 x 512 x 
128 cuberilles and the observer is placed a t  the front, center of 
the scene. Each of the four stages of the pipeline were timed 
independently in the simulation computer, and the individual 
stage results combined to determine the performance achieved 
by the first four stages of the full-scale pipeline. The results are 
conservative in the i r  assessment of each stages' t r ue  
performance because of hardware and software limitations 
inherent in the simulator used for the research. Hardware and 
software improvements can be made in the actual machine 
which would yield substantial performance improvements. 
For example, multiprocessor computers with nodes running 
significantly faster than the l6Mhz of our simulator are avail- 
able. Since the  machine's performance i s  presently 
constrained by the amount of computation performed a t  each 
node, rather than communication between stages, an increase 
in the CPU speed a t  each node translates to decreased elapsed 
t ime a t  each s t age  resul t ing  in improved machine 
performance. In addition, the code for each stage was not 
optimized in tha t  function calls and recursion are  freely used, 
especially in the SSG stage. Unwrapping the recursion and 
eliminating the  function calls will yield further significant 
performance improvements in each stage. Replacing the  
software shading in the third stage with a hardware shading 
capability a t  the end of the pipeline would yield a significant 
performance improvement, thereby removing the shading 
bottleneck from the pipeline. 

There are  two components to the performance of the  
pipeline we have proposed: The image production rate and the 
elapsed time through the pipeline. The image production rate, 
Tr,  is  the rate a t  which images emerge from the pipeline. In 



general, Tr  is  equal to the processing speed of the slowest stage. 
In the  full-scale medical imaging pipeline, Tr is equal to the  
amount of time spent in the shading stage when the modified 
back-to-front algorithm is used, and is  equal to the elapsed time 
in the SSG stage when the standard back-to-front algorithm is 
used. The elapsed time through the pipeline, T,, is defined a s  
the  amount of time which must elapse before the  image 
corresponding to a user input is displayed, ie., the  t ime 
required for a n  input to be converted into an image. Both 
components are  used to describe the full-scale pipeline's 
performance. The results  below describe the  pipeline's 
performance when producing a continuous stream of images 
using the modified back-to-front algorithm. 

Placing a 64 x 64 x 64 scene a t  each SSG gives a Tr for 
the  four stages of 1.97 seconds and a T, of 4.15 seconds 
employing 128 SSG nodes on a mesh connected multicomputer 
using software shading. This is not acceptable performance in 
a clinical environment,  therefore a higher degree of 
parallelism is required to achieve our goal of real-time perfor- 
mance. By decreasing the subscene a t  each SSG from 64 x 64 x 
64 to 32 x 32 x 32 cuberilles, we incease the number of SSG nodes 
required to lk. However, Tr decreases to .49 seconds and Te 
decreases to 1.03 seconds. By removing the recursion and 
using state of the  a r t  technology processors a t  each node this 
machine approaches real-time speeds using software shading. 

Multicomputers capable of supporting 128 SSG nodes are  
well within the scope of today's technology, but the elapsed time 
is well beyond the real-time range. The 32 x 32 x 32 SSG scene 
size offers the  most promise a t  this time. The numbers of SSG 
nodes required is  small enough, lk, tha t  computers with this 
number of nodes are available. The performance, .49 seconds 
to form a n  image, combines high image quality with low 
image formation times. 

CONCLUSIONS 

Medical imaging on mesh connected architectures is 
practical ,  especially when the  modified back-to-front 
algorithm is used to accomplish the  initial scene editing 
operations. The front end of the  image processing pipeline 
described above offers a unique combination of high image 
quality, high speed, and scalability. Its performance along 
these three dimensions using state of the a r t  technology 
compares favorably with t he  special purpose parallel 
architecture medical imaging machines described in Figure 
1. The machine is  suitable for medical imaging applications 
within a general purpose parallel processing architecture. 

We have several projects underway which will bring 
about the realization of a full-scale medical image processing 
pipeline. Of primary importance is  developing methods for 
subscene merging and scene display which do not cancel the 
benefits which accrue from parallel processing. One 
bottleneck remaining in the pipeline is the time required to 
move the image from the end of the pipeline to the display. This 
bottleneck arises from the fact that  in the simulator pixels are 
written to the display buffer serially by a single processor. 
This bottleneck is not caused by the algorithms employed or the 
pipeline architecture, but is solely due to the serial display 
hardware.  To eliminate this performance constraint, an  
investigation of display methodologies which scale along with 
the multiprocessor size is underway. A second bottleneck is  the 
time required to merge the subscenes into the full scene. This 
processing takes place in the later portions of the pipeline, and 
like the  image display process itself, largely cancels the  
benefits which come from parallel processing. We a re  
inves t iga t ing  a l t e rna t ive  pipeline archi tec tures  and  
algorithms which eliminate merge processing. Third, we are 

investigating methods for reducing the elapsed time required 
for the 3D image formation process. We expect that  this can be 
done by changing the  imagelsub-Scene Generator da ta  
assignment algorithm and by employing an image processing 
pipeline tha t  overlaps the operations of the stages. The data 
assignment is  made such tha t  each SSG has  data  from each 
scene octant, and the  octants are  processed sequentially in 
back-to-front order by the  pipeline. Preliminary results for 
this new data  assignment scheme are  promising and will be 
presented in a future paper when they are more conclusive. 
Finally, we a r e  attempting to quantify t he  performance 
improvement achieved when hardware shading replaces 
software shading in the  pipeline. We plan on implementing 
the pipeline on a n  actual, scalable multicomputer to further 
va l ida te  ou r  conclusions with ac tual  performance 
measurements.  

Chen, Lih-Shyang; Herman, Gabor T.; Reynolds, 
R.Anthony; and Udupa, Jayaram K "Surface 
Shading in the  Cuberille Environment," I E E E  
Computer Graphics and Applications, vol. 5,  no. 12, 
pp. 33-43, December 1985. 
Crow, Franklin C.  "The Aliasing Problem in 
C o m p u t e r - G e n e r a t e d  S h a d e d  I m a g e s , "  
Communications of the  ACM, vol. 20, no. 11, pp. 799- 
805, November 1977. 
Crow, Franklin C. "A Comparison of Antialiasing 
Techniques," IEEE Computer Graphics and 
Applications, vol. 1, no. 1, pp. 40-48, January 1981. 
Farrell, Edward J . ;  Yang, Wen C.; and Zappulla, 
Rosario. "Animated 3D CT Imaging," I E E E  
Computer Graphics and Applications, vol. 5, no. 12, 
pp. 26-30, December 1985. 
Foley, J a m e s  D., a n d  Van Dam, Andries.  
Fundamentals of Interactive Computer Graphics. 
R e a d i n g ,  M a s s a c h u s e t s :  Add i son -Wes ley  
Publishing Company, 1983. 
Frieder, Gideon; Herman, Gabor T.; Meyer, Craig; 
and Udupa, Jayaram. "Large Software Problems for 
Small Computers: An Example from Medical 
Imaging," IEEE Software, vol. 2, no. 5, pp. 37-47, 
September 1985. 
Frieder, G.; Frieder, 0; and Stytz, M.R. "Medical 
Imaging:  Computers  Ass is t ing  Medicine,' '  
submitted for publication. 
Fuchs, Henry; Kedem, Zvi M.; and Naylor, Bruce. 
"Predetermining Visibility Pr ior i ty  i n  3-D 
Scenes(PreliminaryReport)," Computer Graphics, 
vol. 13, no. 2, pp. 175-181, August 1979. 
Fuchs, Henry; Abram, Gregory D.; and Grant, Eric 
D. "Near Real-Time Shaded Display of Rigid 
Objects," Computer Graphics, vol. 17, no. 3, pp. 65-69, 
July 1983. 
Fuchs, Henry; Goldfeather, Jack; Hultquist, Jeff P.; 
Spach, Susan; Austin, John D.; Brooks, Frederick P. 
J r . ;  Eyles, John G.; and Poulton, John. "Fast  
Spheres, Shadows, Textures, Transparencies, and 
I m a g e  E n h a n c e m e n t s  in P ixe l -P lanes , "  
SIGGRAPH '85, vol. 19, no. 3, pp. 111-120, July 1985. 
Goldwasser, Samuel M., and Reynolds, R. Anthony. 
"Real-Time Display and Manipulation of 3 -D 
Medical  Objects :  T h e  Voxel Processor  
Architecture," Computer Vision, Graphics and 
Image Processing, vol. 39, pp. 1-27, 1987. 
Heffernan, Patrick B.  and Robb, Richard A. 



"Display and Analysis of 4-D Medical Images," 
Proceedings of the International Symposium: CAR 
'85, Computer Assisted Radiology, Berlin, West 
Germany, pp. 583392,1985. 
Herman, Gabor T., and Liu, Hsun Kao. "Three- 
Dimensional Display of Human Organs from 
Computed Tomograms," Computer Graphics and 
Image Processing, vol. 9, pp. 1-21, 1979. 
Herman, Gabor T. "Computerized Reconstruction 
and 3-D Imaging in Medicine," Technical Report 
MIPGIOB,  Dept. of Radiology, University of 
Pennsylvania, February 1986. 
Meagher, Donald. "Geometric Modeling Using 
Octree Encoding," Computer Graphics and Image 
Processing, vol. 19, pp. 129-147, 1982. 
Phong, Bui Tuong. "Illumination for Computer 
Generated Graphics," Communications of the ACM, 
vol. 18, no. 6, pp. 311-317, June 1975. 
Robb, Richard A. Three-Dimensional Biomedical 
Imaging. 2 vols. Boca Raton, Florida: CRC Press, 
1985. 
Robb, R.A.; Heffernan, P.B.; Camp, J.J . ;  and  
Hanson, D.P. "A Workstation for Interactive 
Display and  Quantitative Analysis of 3D and 4D 
Biomedical Images." Proceedings of the Tenth 
Annual Symposium on Computer Applications in 
Medical Care,  Washington, D.C., pp. 240-256, 
October, 1986. 
S a m e t ,  H a n a n  a n d  Webber ,  Rober t  E. 
"Hierarchical Data Structures and Algorithms for 
Computer Graphics," IEEE Computer Graphics and 
Applications, vo1.8, no. 3, pp. 48-68, May 1988. 
Stytz, Martin R.; Frieder, G.; and Frieder, 0 .  "On 
t h e  Exploitation of a Commercially Available 
Para l le l  Processine Architecture for Medicak - 
Imaging," Proceedings o f  the Symposium on the 
Engineering of Computer-Based Medical Systems, 
~inneapo l i s ,  Minnesota, pp. 49-59, June, 1988. 
Tucker,  Lewis W. and  Robertson, George G. 
"Architecture and Applications of the  Connection 
Machine," IEEE Computer, pp. 26-38, August 1988. 



PARALLEL ALGORITHM FOR THE SOLUTION OF NONLINEAR POISSON 
EQUATION OF SEMICONDUCTOR DEVICE THEORY AND ITS 

IMPLEMENTATION ON THE MPP 

J. P. Darling 
The Johns Hopkins University Applied Physics Laboratory 

Laurel, MD 20707 

I. D. Mayergoyz 
Electrical Engineering Department and Institute for Advanced Computer Studies 

University of Maryland 
College Park, MD 20742 

ABSTRACT 

The solution of the nonlinear Poisson equation of semiconductor 
device theory is important for the design of sub-micron devices used 
in VLSI circuits. A new algorithm for the numerical solution of this 
equation has been described in Ref. 1. This algorithm is inherently 
parallel and is thus well suited to implementation on a computer 
with large parallelism. This paper describes the initial implementa- 
tion and testing of this algorithm on NASA's Massively Parallel Pro- 
cessor (MPP). 

Keywords: Modeling of semiconductor devices, Nonlinear Poisson 
equation, Parallel algorithm, Global convergence, MPP implemen- 
tation, Parallel Pascal. 

INTRODUCTION 

Numerical modeling of semiconductor devices is becoming increas- 
ingly important in the design of sub-micron devices used in VLSI 
circuits, as well as in the characterization of materials and processes 
used in the manufacture of these circuits. A complete model of the 
device requires the solution of three coupled equations: the Poisson 
equation for electrical potential combined with the continuity equa- 
tions for electron and hole currents. Because electron and hole den- 
sities are nonlinear functions of potential, the first equation is known 
as the nonlinear Poisson equation. 

Solution of the nonlinear Poisson equation is directly applicable to 
determining the thermal equilibrium value of the potential within 
the device. Furthermore, problems involving reversed biased p n  junc- 
tions can be reduced to the solution of the nonlinear Poisson equa- 
tion using standard low-level injection approximations. 

The conventional approach employed for the solution of the non- 
linear Poisson equation is based on the Newton-Raphson method 
applied to simultaneous discretized equations. This approach has two 
major difficulties. First, the Newton-Raphson method possesses only 
local convergence, and thus global convergence using this technique 
is not assured for an arbitrary initial guess. Second, the amount of 
computation and storage required to solve the simultaneous equa- 
tions is large, especially for high-density meshes, requiring the use 
of high-performance computers with a large main memory capacity. 

The MPP was selected as a good candidate for implementing this 
algorithm because of the large parallelism it possesses-16,384 Pro- 
cessing Elements (PE). The Single Instruction Multiple Data (SIMD) 
architecture of the MPP matched well with the algorithm charac- 
teristics of updating the potential at each mesh point, using the same 
steps, in parallel. Also, the two-dimensional interconnection struc- 
ture of the MPP's Processing Elements is ideally suited to the al- 
gorithm's nearest neighbor communications requirements. 

Subsequent sections of this paper are organized as follows. The next 
section develops the discretized equations for implementing the two- 
dimensional version of the algorithm. Using these equations, the ma- 
jor computational steps of the algorithm are described. The follow- 
ing section provides a brief description of the parallel architecture 
of the MPP, highlighting the features exploited by our numerical 
implementation. The fourth section describes the specifics of the al- 
gorithm implementation using the Parallel Pascal language of the 
MPP. Refinements made to the algorithm implementation to im- 
prove run-time efficiency are also discussed. The last section sum- 
marizes the algorithm implementation, and outlines future work. 

NONLINEAR EQUATION 

Poisson's equation (1) describes the variation of electric potential 
within the MOSFET device shown in Figure 1. 

Here, n and p represent the mobile electron and hole concentrations, 
respectively, D is the concentration of ionized impurities, q is the 
electron charge, and e, is the permittivity of silicon. 

At thermal equilibrium in a nondegenerate semiconductor the con- 
centrations of mobile electrons, n, and holes, p, are approximated 
by Boltman's statistics. By using these statistics in equation (I), we 
end up with the nonlinear Poisson equation (2), 

A new, inherently parallel algorithm for solving the nonlinear Pois- - 
son eauation has been described in Ref. 1. This algorithm has none u 

of the disadvantages of the existing method. First, it has guaran- 
teed global convergence for an arbitrary initial guess. Second, ex- where n, represents the intrinsic mobile carrier concentration, k is 
plicit algebraic formulas are used to update the value of electric Boltzman's constant, and Tis absolute temperature. This equation 
potential at each mesh point, minimizing the amount of storage re- applies for any position within the boundaries of the device in Fig- 
quired per mesh point. Third, the calculations used to update the ure 1. 
value of electrical potential at each mesh point can be performed 
concurrently for all mesh points, making the algorithm especially There are three classes of boundary conditions that apply to the 
attractive for implementation on a parallel computer. MOSFET geometry of Figure 1. The boundary conditions for the 



Ohmic Dioxide Boundary Ohmic 

Artificial 
Boundary 1 Artificial 

Boundary 

C(/. , , , , , -  .&J 
I 

Substrate 

Figure 1. ,MOSFET Device Geometry With Boundary Conditions. 

potential at the ohmic contacts (source, drain, and substrate) can 
be determined by assuming charge neutrality. The artificial bound- 
aries in Figure 1 are intended to isolate the MOSFET device. This 
isolation is well approximated with a zero Neumann boundary con- 
dition. The dioxide-semiconductor interface, under the gate electrode 
of Figure I, is well approximated by an impedance-type boundary 
condition as described in Ref. 1. 

Equations (3), (4), and (5) describe the boundary conditions for the 
ohmic boundaries, the artificial (Neumann) boundaries, and the 
impedance-type boundary, respectively. 

Here, 6 represents the thickness of the dioxide, V, is the voltage ap- 
plied to the gate, Q represents the charge trapped at the dioxide in- 
terface, c, is the permittivity of silicon dioxide, and v is an outward 
normal. 

For a numerical solution the problem is discretized by choosing two 
sets of mesh lines, one set parallel to each of the x and y axes of 
Figure I. The mesh lines are specified by: 

with both s,, and v ,  specifying the top left corner of the MOSFET 
device of Figure 1. Furthermore, the mesh line spacing must form 
a monotonically increasing sequence, such that x, < x,+ , (and yJ 
< y,, , )  for all iQ. The intersection of these mesh lines forms a 
set of mesh points at which the physical quantities of interest will 
be calculated. Each mesh point can be uniquely identified by the 
pair (i J ), which will be used in subsequent equations to denote the 
values of physical quantities at specific mesh points (these indices 
Here chosen to conform with the MPP's convention for identifying 
PE,). 

The discretized version of the two-dimensional nonlinear Poisson 
equation, which describes the electric potential at mesh point (i j ), 
is given in Equation (6), 

q"1 -qQ,j - - qDtJ 
- - [exp (s) - exp - - , 

c s  c s  

where g, and h, are the distances between adjacent mesh tines in 
the x and y directions, respectively, and are defined by h, = y!+, 
- y, and g, = xi+, - x,. Combining terms of biJ with identical 

'?n Q@'J , p = 2 subscripts, and introducing the notation: a,, = - 
kT - '?Di J 

Cs 

and f,, = - , we arrive at equation (7). 
t s  

The mesh constants a;, a:, a:, a:, and a t  are given in terms 
of mesh lines by Equatrons (lo), (1 I), (12), (13), and (14). (Note that 
these constants are defined only for nonboundary mesh points). 

The discretized forms of the boundary conditions, and the values 
of the mesh indices for which they apply, are given by Equations 
(13) through (18).These equations include the effects of external vol- 
tages applied to the MOSFET device, which include the gate volt- 
age, V,, the source voltage V,,  the drain voltage V,,  and the 
substrate voltage Vsub. The end points of the gate electrode are 
demarcated by the indices iJS, and i,,. The maximum indices of 
mesh tines in the x and y directions are given by 1, and j,,. 



Ohmic Boundaries 

for j = 0, 

O s i s i g s .  

(13) 

for j = 0, 

Side (Neumann) Boundaries 

+ = , for i = 0, I 5 j s jmLY - I . (16) 

@,-lJ = qJ f o r i  = i,,, 1 5  j 5 jm, - I . ( I T )  

Dioxide Boundary 

According to the algorithm in Ref. I, simultaneous Equations (7) 
are solved using the following iterations: 

fly+)) = a; + a$ @l:?l 

+ *r(-ml),j+ a,"/ @i'+":, - fiJ 9 

and 

The algorithm starts by choosing an (arbitrary) initial guess for poten- 
tial at all nonboundary mesh points (1 5 i 5 i,, - I), and then 
proceeds as follows: (1) Use Equation (19) to calculate F,:' I )  from 
@$"'  at all nonboundary mesh points in parallel. This computation 
step is referred to as the outer loop, with index m. (2) Insert F,>"+') 
into Equation (20) which then must be solved for OLm+') at all mesh 
points in parallel. Because equation (20) is transcendental and can- 
not be solved for @Am+') directly, the one-dimensional iterative 
Newton method is employed. Formula (21) is the one-dimensional 

Newton-method formulation of Equation (20), which is applied to 
find @Am+" until the selected convergence criterion is satisfied. 

c +,!;N+I!W + 0 (exp(+,:'"+l''"') - exp( -a,!;"' "'"' ) )  - ~,y+Il 
a ,,I 

cry, + 0 (ewp(+,':"+"'"') + exp( -4,jyC'""')) 

The repetitive application of Formula (21) is referred to as the inner 
loop, with index variable n .  (3) The value of @,':+I) found by For- 
mula (21) is compared to @$"'. If their difference, for all nonboun- 
dary mesh points, is less than some convergence threshold, the 
algorithm terminates with Ohrn+" as the solution. (4) Otherwise, 
computations proceed again to step 1. 

MPP ARCHITECTURE 

Before describing the specifics of the implementation of the above 
algorithm, it is appropriate to describe briefly the MPP architec- 
ture. Complete details on the MPP are available to the interested 
reader in Ref. 2. We present only the architectural details of the MPP 
that are significant to the understanding of the implementation of 
the above algorithm. 

The MPP operates as an attached processor to a host computer, 
which is currently a VAX 11/780. The host computer performs high- 
level control, provides disk storage, and supports software develop- 
ment tools for the MPP. 

There are three basic units of the MPP: (I) the Array Unit (ARU); 
(2) the Array Control Unit (ACU); and (3) the Staging Memory that 
reformats and buffers data passing between the ARU and the V A X  
host. 

The ARU consists of 16,384 PEs, which are interconnected to form 
a two-dimensional mesh with 128 PEs on a side. PEs that are not 
on the boundary of the matrix have a direct connection to their four 
nearest neighbors, designated as its East, West, North, and South 
PEs. The boundary processors have only three nearest neighbors; 
the remaining connection for these PEs is determined by a software- 
configurable topology control register. For our implementation, the 
boundary PEs were left unconnected. 

In addition to the four communication paths, each PE has a dngle- 
bit ALU, 35 single-bit registers, and 1024 bits of local RAM. One 
of the single bit registers is the mask register, which is used to con- 
trol the activity of the PE. The purpose and operation of this mask 
register will be described later. 

The PE instruction set includes the standard arithmetic and logical 
operations, as well as inter-PE data transfer primitives. Moreover, 
the ARU hardware supports array reduction operations. Reduction 
operations provide a parallel method for finding a selected quanti- 
ty; for example, the maximum value across all PEs in the ARU. 
Both the inter-PE data transfer primitives and array reduction oper- 
ations were architectural features exploited by our implementation. 

The single-bit ALUs in the MPP PEs mean that the PE instructions 
operate on single-bit operands. Multiple-bit fixed-point arithmetic 
is emulated on the MPP by performing multiple single-bit instruc- 
tions. The MPP can be programmed to perform arbitrary precision 
fixed point arithmetic as well as floating point arithmetic. 

The MPP is classified as Single Instruction Multiple Data (SIMD) 
architecture. This means the following. At each instruction cycle, 



a Single Instruction (SI) is executed concurrently by all PEs, acting 
on Multiple Data (MD) points. In the MPP, there exists the capa- 
bility to individually "mask" off PEs, disabling them from execut- 
ing current instruction. The control of this mask register is available 
to the programmer. The stream of parallel operations for execution 
in the ARU is generated by the MPP's Main Control Unit, which 
will be described in a subsequent section. 

The MPP Stager facilitates movement and reformatting of data be- 
tween the VAX host and the MPP array unit. It connects to the 
MPP through the s-plane, and to the VAX through a dMByte/sec, 
16-bit parallel bus. For each PE in the ARU, the Stager contains 
an additional 16K bits of RAM memory. These data can be trans- 
ferred between the ARU and Stager at a high bandwidth (180 
MBytes/sec.). Data to be transferred from the VAX to the ARU 
(i.e. an input data set) is first transferred to the Stager at a 
12-MByte/sec. rate. The Stager reformats the data, and then trans- 
fers the data to the ARU, through the s-plane, at the high rate. Be- 
cause of the low bandwidth between the Stager and the V W ,  it is 
desirable to minimize the amount of data traversing this path. 

The Main Control Unit (MCU) controls both the Array Unit and 
the Stager. It is a 16-bit minicomputer that runs the MPP assembly 
language code. It contains separate controllers for the Array Unit 
(PECU) as well as the Stager Unit (IOCU). The PECU and IOCU 
are slave processors, taking commands from the MCU and then oper- 
ating in an independent fashion, in parallel with the MCU as much 
as allowed by the constraints imposed by the executing program. 

The MPP can be programmed at the microcode level, the assembly 
language level, or using a high-level language. The usual tradeoffs 
for selecting the level of programming apply to the MPP as if it were 
any other computer. The MPP currently supports the PASCAL and 
FORTH languages. 

The MPP implementation of PASCAL is called parallel Pascal (PPj 
(Ref. 3). It is an extension of the standard PASCAL language to 
include constructs that are directly supported by the MPP hardware. 
These extensions are: (I) parallel data-type declaration, for parallel 
arrays that reside in the MPP array memory; and (2) parallel oper- 
ators and functions for operating on parallel arrays. The Where- 
dootherwise statement for selected parallel assignments uses the mask 
feature of the PEs. 

PP makes the power of the MPP available in a high-level language 
format. This gives the MPP the appearance of a general purpose 
computer, especially from the PP code level. The only nonstandard 
aspect about programming the MPP using PP is that the program- 
mer must specify the movement of data from the VAX host to the 
Stager memory and then into the Array Unit. This is due in part 
to the limited memory available in the Array Unit and the Stager. 
The programmer is in the best position to decide when data can be 
moved and where local PE storage is available. 

IMPLEMENTATION SPECIFICS 

Coding of the algorithm to run on the MPP was considerably sim- 
plified by the use of PP, which provided function calls to imple- 
ment the ARU's hardware primitives (such as the array reduction 
and inter-PE data transfer operations). In addition, PP provided 
microcode support for all basic floating point operations, as well 
as higher order functions (i.e. exponentials). 

This implementation provided for the use of grid sizes up to 128 
x 128 mesh tines. Meshes that were smaller than this were mapped 
into the Northwest corner of the MPP ARU; see Figure 2. The un- 
used processors in this figure were masked from performing any un- 
desirable operations (i.e., divide by zero). 

Figure 2. Variable Size MOSFET Geometry Mapped to the MPP 
Processor Array. 

In PP, Equation (19) was efficiently implemented by four shift oper- 
ations, four floating point multiples, and four floating point addi- 
tions. For example, a shift operation transfers all values of @,, 
north by one mesh line (from PE,, to PE,,- ,) where it then is mul- 
tiplied by a:. Subsequent shift and multiply operations, for the re- 
maining three directions, would generate the other terms of Equation 
(19). The boundary PEs (i.e. i = 0, i = i,, , j = 0, j = j,,,) do 
not implement Equation (19). 

Implementation of Equation (21). while slightly more complex mathe- 
matically, is still quite straightforward. While this equation doesn't 
require any inter-PE data tiansfers, considerably moie computation 
is required to calculate the exponentials and to perform the floating 
point division. Moreover, different PEs might require a different 
number of iterations of Equation (21) before satisfying the conver- 
gence criteria. Initially, we chose to disable any PE that had satis- 
fied the convergence criteria from performing any more iterations 
of the Equation (21). the inner loop. 

The boundary conditions were implemented separately for each 
boundary, according to Equations (13) through (18). Most of these 
are simple expressions, except for the dioxide boundary Equation 
(la), and require only a shift or an assignment operation. 

This initial implementation was validated by comparing the results 
with those from a previous implementation in FORTRAN running 
on a VAX. Figure 3 shows an example of results generated by our 
implementation on the MPP. It illustrates the variation of electric 
potential within the MOSFET device as a function of both the x 
and y coordinates. This implementation used a mesh constructed 
from 128 x 128 mesh lines. Simplistic (constant) doping profiles 
were used in this example, with doping in the n region D = 1 x 
10'' cm-', in thep region D = - 1 x 10" cm-', 6 = 0.05 rrn, 
Q = 0, and v, = = Vd = vSub = 0 volts. 

Some efforts have been made to improve run-time efficiency. The 
most inefficient aspect of the algorithm implementation was reali- 
zation of the boundary conditions. In the later case, only about 200 
PEs were doing any useful operations at a given time; the remain- 
ing PEs were sitting idle, for a PE utilization of approximately 1%. 



- - -  A 
Figure 3 .  Plot of Potential Versus Position in a MOSFET Device. 

To improve efficiency, we reorganized the computations to include 
the boundary condition computations into the general nonboundary 
mesh point eauations. The motivation for this was the fact that im- 
plementing the boundary condition equations required only shifts 
and multiplies, which were already being performed in all PEs dur- 
ing the solution of Equation (19). Because the boundary PEs are 
not involved in the realization of Equation (19), and thus remain 
idle, they could possibly be used during this period to improve exe- 
cution efficiency. 

Substituting in the boundary conditions into Equation (19) at the 
appropriate pre-boundary mesh points, new values for the mesh cons- 
tants were derived. The modified a's for each boundary condition, 
and the mesh indices for which they apply, are presented as Equa- 
tions (22) through (27). 

Ohmic Boundaries 

f o r j  = 0, 0 s i 5 I,,; 

and GiJ given by Equations (16), (17), and (18) remains constant 
vm (for all outer loop iterations). 

Neumann Boundaries 

Boundary PEs 

Dioxide Boundary 

Boundary PEs 

for j = 0, I,, < i 5 iKe ; 

Pre-Boundary PEr 

for j = 1, igs < i < ige (27) 

The second source of inefficiency for this algorithm has been in the 
inner loop. Here, some PEs require more iterations of Newton's 
method before satisfying the convergence criteria. It is important 
to note that solving Newton's method, Equation (21), requires con- 
siderably more computation steps than the outer loop, Equation (19). 

From our observations of the algorithm's execution characteristics, 
after the first few iterations of the outer loop, at most, three itera- 
tions of Newton's method (the inner loop) were required before all 
PEs satisfied the convergence criteria. The PEs that required two 
or three iterations were those whose mesh positions were in a region 
that was undergoing large changes of F,, , the inner loop forcing 
function. Since the value of potential in these PEs is very likely to 
change again during the next iteration, determining their accuracy 
to high precision is inefficient. 

Rather than let each PE determine for itself when it had satisfied 
the convergence criteria, Newton's method could be applied a fixed 
number of times by all PEs. This method trades off the time spent 
computing in the inner loop against the total number of outer loop 
iterations required for termination of the algorithm. Table 1 sum- 
marizes the trade-off results we have collected. It presents the num- 
ber of outer loop iterations (and the total number of inner loops 
executed) required for algorithm termination as a function of the 
number of inner loop applications, for different mesh sizes. 



Table 1. Inner Loop versus Outer Loop Trade-off Results. SUMMARY 

'OL is the number of outer loop iterations. 
tTIL is the total number of inner loops performed. 

Maximum inner 
loop iterations 

1 

2 

r 3 

These experimental results indicate that computing the solution of 
Equation (20) to a high accuracy, by allowing a large number of 
inner loop iterations, does not improve and can actually retard (see 
Table 1) the global convergence of the algorithm. This characteris- 
tic appears to be a function of the initial guess used. 

Intuitively, this make sense by the fact that an accurate solution to 
Equation (20), for an initial guess that is far from the actual solu- 
tion, can cause the new estimate to remain farther away than a less 
accurate computation. This can result in an increase in the total num- 
ber of outer loop iterations to achieve global con\.ergence. 

Mesh Size 
This paper has described the implementation of a new, inherently 
parallel algorithm for solving the nonlinear Poisson equation of semi- 
conductor device theory on the MPP. This parallel implementation 
has also provided insight into techniques for improving run-time ef- 
ficiency of this algorithm, including integrating the boundary con- 
ditions into the standard mesh point equations, and the 
interrelationship between the number of inner loop iterations and 
the number of outer loop iterations required for global convergence. 

Plans for additional work with this algorithm include extending the 
algorithm to the modeling of a three-dimensional MOSFET device. 
Next, electron and hole continuity equations can be incorporated 
into the discretized implementation. Furthermore, realistic doping 
profiles can be added using a program similar to SUPREM (Ref. 4.). 

128 x 128 

OL = 285 
TIL = 285 

OL = 309 
TIL = 618 

O L = 3 0 9  
TIL = 631 

32 x 32 

'OL = 82 
tTIL = 82 

OL = 84 
TIL = 168 

O L = 8 5  
TIL = 183 

REFERENCES 

64 x 64 

OL = 170 
TIL = 170 

OL = 182 
TIL = 364 

O L = 1 8 2  
TIL = 381 

1. I. D.  Mayergoyz, "Solutionof the Nonlinear Poisson Equation 
of Semiconductor Device Theory," Journal of Applied Phys- 
ics, 1986, 59, p. 195. 

2. The Massively Parallel Processor, J .  I-. Potter, Ed., MIT Press 
series in scientific computation, MIT Press, Cambridge, Mass., 
1985. 

3. A. P. Reeves, "Parallel Pascal, An extended Pascal for Paral- 
lel Computers," Journal of Parallel and Distributed Compur- 
ing, 1984, Vol. 1, pp. 64-80. 

4. D. A. Antoniadis and R. W. Dutton, "Models for Computer 
Simulation of Complete 1C Fabrication Process," IEEE Jour- 
nal of Solid-State Circurrs, April 1979, Vol. SC-14, No. 2, pp. 
41 2-430. 



DARPA SENSOR NATIONAL TESTBED: 
HARDWARE AND SOFTWARE ARCHITECTURE 

D.R. Guarino, R.P. Kruger, S. Sayre, T. Sos, C.J. Turner, C.L. Winter 
Science Applications International Corporation 

ABSTRACT 

A heterogeneous network of  parallel computers  
deve loped  fo r  complex dis t r ibuted p rocess ing  
applications is described. Network computers include 
a Connection Machine, a Butterfly multiprocessor, a 
WARP systolic array, a Symbolics and several SUN 
Workstations; an Ethernet and high-bandwidth APTEC 
bus supports data transfers. Distributed applications 
are built from individual processes executing on 
computers in the network. A powerful asynchronous 
communication facility is  built upon the multiple 
computer opera t ing sys tems to provide uniform 
message passing, global memory variables and remote 
process execution services to processes. An Executive 
Controller and the LISP+ functional language provide 
a method of integrating distributed procesSes into an 
application with transparent control of network 
r e s o u r c e s  and  c o m m u n i c a t i o n s .  Add i t iona l  
applications can be rapidly built from existing 
processing to support experiments in distributed and 
parallcl applications. 

Keywords: Message Passing, Data Flow, Software 
Backplane, Distributed Computing, Parallel Computing. 
Parallel Processing 

INTRODUCTION 

Efficient imagery exploitation is a complex activity 
that requires the application of diverse algorithms. 
Technical challenges include the detection and 
recognition of image signatures; understanding of 
non-imagery based cues such as terrain; automated 
hypotheses generation and inference; information 
fusion; and control of distributed applications. These 
algorithms require diverse machine architectures to  
be efficiently implemented (Ref. 1-2), and flexible 
control strategies to manage distributed resources. We 
describe the Defense Advanced Research Projects 
Agency (DARPA) Sensor National Testbed (SNTB) as an 
integrated solution to support rapid and flexible 
development of heterogeneous, distributed processing 
applications. 

A major objective of the SNTB was to develop a general 
purpose programming environment for distributed 
and parallel applications. This environment was 
designed to increase programmer productivity by 
sh ie ld ing  appl ica t ion developers  from machine  
dependencies, and to support a laboratory atmosphere 
for  experimentation in distributed and parallel  
applications. 

The result is a loosely-coupled heterogeneous network 
of computers integrated with a flexible, distributed 
communications facility for asynchronous message 
passing, and a central control facility for applications 
development.  Applications are integrated from 
individual processes executing on any computer in the 
network; thus, algorithms can be implemented on the 
m o s t  a p p l i c a b l e  m a c h i n e  a r c h i t e c t u r e .  
Communications and control between processes is  
provided across computers and across operating 
sys tems.  

HARDWARE DESCRIPTION 

The  hardware architecture of the S N I B  is a 
heterogeneous network of computers integrated into a 
single environment. Major hardware subsystems are 
either uniprocessors or homogeneous multiprocessors 
of varying granularity as shown in Figure 1 .  An 
APTEC high bandwidth data bus providcs a means to 
centrally store and share imagery and othcr large data 
quantities among computers. Ethernct low-bandwidth 
message-handling protocols are used to support  
message passing and sharing of small data transfers. 

The  SNTB is designed to facil i tate ef f ic ient  
implementation of the individual algorithms (numeric 
o r  symbolic) comprising an application by providing 
five different machine architectures to which an 
algorithm can be mapped. Multiple SUN Workstations 
and a VAX provide traditional computing with one 
central processor running UNIX. The SYMBOLICS Lisp 
machine has  hardware optimized for execut ing 
programs in that high level language. Multiple 
instruction, multiple data (MIMD) processing is  
performed on the Butterfly multicomputer,  while 
single instruction, multiple data (SIMD) processing is 
performed on the massively parallcl Connection 
Machine. The hardware suite is completed with a 
WARP linear systolic array. The Butterfly, Connection 
Machine and WARP are the primary conlputing 
resourccs of the SNTB. 

The Butterfly, produced by Bolt, Beranek and Newman 
is a network of up to 256 identical processor nodes. 
Each node is a Motorola 68020 microprocessor with a 
floating point co-processor and 1 to 4 MBytes of local 
memory. A proprietary "butterfly" switch network 
allows local memory to be tightly coupled and shared 
between processor nodes. Thus, the Butterfly achieves 
its processing performance by using multiple low-cost 
processors cooperatively. The SNTB currently has a 28 
node Butterfly with 76 MBytes of total memory. 



The MIMD architecture and shared memory of the 
Butterfly can be used to effectively exploit control 
level parallelism. Each identical processor can execute 
i ts  own  set o f  instructions,  meaning different 
processors can run different programs on different 
data sets. And the shared memory architecture 
provides a program execution environment in which 
tasks can be  distributed among processor nodes 
without regard for the physical location of the task 
data, although some performance is lost if the data does 
not reside in local memory. 

The Butterfly uses the Chrysalis Operating System 
which suppor ts  both heterogeneous and uniform 
programming. In the heterogeneous mode, each 
processor node may run a different program. Under 
the uniform system, each node, o r  set of nodes, runs 
the  same  program. Sof tware  development  i s  
performed on a SUN Workstation host and downloaded 
into the Butterfly for  execution. Programming 
languages include C. Fortran, and Scheme. Current 
testbed applications include parallel methods for 
Monte Carlo Simulation and R-Tree based spatial 
s e a r c h .  

The Connection Machine is a SIMD architecture with 
high processor  granular i ty  built  by Thinking 
M a c h i n e s  Corpora t ion .  Each  p rocesso r  i s  
interconnected with both a local grid (N, E, S. W) 
hardware interconnect and a highly efficient global 
packet switched interprocessor hypercube network. 
The Connection Machine is  the first architecture to  
fully exploit data level parallelism. 

The initial Connection Machine model CM-1 contains 
up to 65,536 bit serial microprocessors, and 32 MB o f  
total physical memory. The SNTB has a 16,384 node C M -  
1 for a total  of  1,000 million instructions/second 
(MIPS) capability. The successor to the CM-I, the CM-2 ,  
will support parallel 32 and 64 bit floating point 
arithmetic and increase the total physical memory b y 
a factor of 16 over the CM-1. It is  capable of 3500 
MFLOPS and was introduced in the fourth quarter of 
1987. 

The Connection Machine uses a DEC VAX 8000 series 
computer, linked over a special high speed interface. 
as a host for software development and control. The C * 
and *LISP languages for programming the C o n n e c t i o n  
Machine are extensions of the standard l a n g u a g e s  . 
Library functions logically create virtual nodes to 
match the number of processors to the problem. For 
example, image processing on a 512 x 512 pixel image 
is  easily performed on a 16K node machine by 
mapping one image pixel to each of 256K virtual 
processors. Existing SNTB applications include SAR 
imagery detection and spatial clustering operations. 

The underlying architecture of the WARP is a linear 
systolic array consisting of 10 powerful computing 
cells. It was developed as Carnegie Mellon University 
and built by General Electric Company. Each cell is 
capable of 10 MFLOPS, giving the 10 cell array a 
combined maximum throughput of 100 MFLOPS. Two 
independent 110 buses can pipe data through the a r r a y  
at 20 MBytes per second or store data in any cell's 1 2 8  
KBytes of memory. 

FIGURE 1. SENSOR NATIONAL TESTBED ARCHITECTURE. Lightly shaded 
interfaces to the Aptec bus are not currently implemented. 



There are three main hardware components to the 
WARP: an external SUN host processor, the WARP 
systolic array, and an interface unit with two cluster 
processors. The SUN is used for program development 
and WARP control. In operation, data is loaded into the  
memory of the cluster processors. An interface unit 
then converts between fixed and floating point 
formats while the data is transmitted from one cluster 
processor through the array and to the other cluster 
processor. The cluster processors are a I s o 
programmable. The APTEC data bus feeds data into or 
out of the cluster memories directly without passing 
through the SUN host. 

The WARP can be programmed in either W2, a high- 
level C like language that gives the programmer full 
control over each processing cell and the data flow 
through the array, or in APPLY which only supports 
homogeneous programming. In this mode, each cell 
executes the same program on different data. W2 
allows the WARP array to be programmed for 
heterogeneous processing where each cell may 
execute a different program, usually on the same data 
as it is passed through the array. Current testbed 
applications of the WARP include a true systolic 
algorithm for SAR imagery detection. 

Two distinct communications networks are available 
for passing data and messages between processors on 
the testbed. Images and other large data items can be 
transferred over the APTEC bus and stored on the IBIS 
disk drive. The APTEC DPS-2400 is a synchronous, 
high-speed computer bus with a transfer rate of 24 
MByteIsecond over two 12 MByteIsecond, readiwrite, 
uni-directional buses. The APTEC network includes 9 
MBytes of mass memory and a high-speed 1.2 GByte 
IBIS disk. The disk and mass memory are useful for 
storage of intermediate results. The APTEC host 
computer is a MicroVAX I1 and acts as the controller 
for the APTEC network file system. The Ethernet is a 
slow speed bus for the transfer of messages and other 
control data between computers on the SNTB. 

SOFTWARE DESCRIPTION 

Several layers of software have been added on top of 
the operating systems of the individual computers. 
This additional software provides the various layers of 
abstraction shown in Figure 2 and consists of three 
primary components: Communication and System 
Services, an Executive Controller Agent, and Network 
Vision Software. Together, this software integrates the 
various hardware components of the SNTB into a 
single programming environment called the Virtual 
Computer. 

Communication and  System Services 

For an application to use multiple machines in the 
SNTB, processes executing on each machine must not 
only share data, but they must know when to execute. 
This implies the need for both message passing and 
control mechanisms. Although this capability is 
provided through the Ethernet bus with TCPIIP 
software, it has several disadvantages. First, the 
protocols are at too low of a level and do not directly 
support interprocess data sharing or control. Second. 
the protocol implementations and syntax vary between 

machines. And third, each application must derive 
and implement its own requirements. These factors 
lead to longer development time and reduced software 
portability. 

These limitations initiated development of the SNTB 
Communications and System Service (CSS). The CSS is a 
distributed service used to provide f lexible  
asynchronous inter-process communication among 
processes executing on the SNTB. Additionally, it 
provides system and network wide functional tools and 
abstractions upon which the LISP+ and Data Flow 
Model of the Executive Controller are implemented. 
The basic services are provided by communicating 
Local System Servers (LSS), one on each machine in 
the testbed, while uniform interfaces to each LSS are 
provided by libraries of functions that are linked with 
the process' software. 

M e s s a g e  P a s s i n g  The basic inter-process 
communication paradigm provided by the CSS is 
asynchronous message passing between logically 
named, distributed client processes called agents. One 
of the main goals of the CSS is to hide details of the 
actual locations of agents from other communicating 
agents. This location independence is realized by 
providing logical named references. Logical names 
are managed by the collective LSSs and are known as 
io-ids or just ids. Ids are unique within the CSS and are 
dynamically created or deleted by agents. 

Each id is associated with an object in the CSS. Objects 
are nodes in directed acyclic graphs (DAGs) used for 
message routing and storage. Each node in the graph 
has a separate and unique id, while each leaf also has a 
unique machine location in the SNTB, allowing CSS 
messages to be queued at and removed from the leaves 
of the graph. In a simple communication between two 
agents, the graph would have two nodes which are also 
leaves, and the message would flow along the edge of 
the graph from one node to the other. 

The CSS provides a powerful facility for mapping ids. 
This provides the abstraction of "connecting" nodes in 
the DAG where the intermediate, non-leaf nodes of the 
graph are mapped ids. Each node may be mapped to 
one or more other nodes which may be mapped to 
other intermediate nodes before being mapped to a 
leaf node. The only limitation is that a circular path 
cannot be formed within the graph. The result is a 
very flexible and controllable message routing 
facility. 

Agent message passing is accomplished through 
functional constructs that take on various forms of 
send and receive. An agent can send to any id in the 
CSS and optionally wait for a reply. Likewise, an agent 
can receive from any id previously associated with the 
agent. (This association constraint is necessary to 
support some receive functional abstractions provided 
by the interface libraries.) Both synchronous and 
asynchronous receive operations are supported. A 
synchronous receive is provided by waiting for a 
message to appear on a particular id; this allows 
processes to syhchronize with each other. An 
asynchronous, or conditional receive, allows a Drocess 
to- poll for messages and continue execution fi none 
are currently available. 



LISP+ PROGRAMMING 

FIGURE 2. SNTB FUNCTIONAL ABSTRACTION LAYERS. 

Individual messages have priorities associated with 
them to control the way in which they are queued. 
The priority is  specified when the message is sent, or 
defaulted to a preset value. Messages with higher 
priority are de-queued to satisfy a receive request 
before those of lower priority. This facilitates some 
degree of  control over message traffic that would not 
otherwise be available. 

O t h e r  Se rv ices  Besides application agent message 
passing, the CSS provides other important services 
built upon the general message passing paradigm 
discussed above. These include global memory 
variab1e.d remote process execution, resource tracking 
and message logging. 

The CSS provides a mechanism for sharing global 
memory between agents in the form of memory 
variables. This abstraction is  currently supported 
with a special kind of io-id. The queue for memory ids 
i s  implemented such that a send overwrites the 
current message, and a receive returns a copy of the 
last stored message. With this implementation, 
variable assignment and access is performed using 
send and receive constructs identical to those for 
message passing. Except for the agent that created the 
memory variable id, other agents are not aware of its 
special status. 

The capability to remotely spawn agents from a single 
location is provided through the CSS with a special 
message construct. Each LSS has the responsibility of 
spawning processes through i t s  local opera t ing 
system. When an LSS receives this message-based 
command, it tries to execute the process contained in 
the message's data field and returns the status in a 
reply message. A similar special message construct is 
used to terminate an existing process. 

Resource management is an important issue in the 
control of most distributed systems. The resources of 
the SNTB can be thought of in terms of the io-ids and 
processes that have been created through the CSS. In 
order to provide access to the state of the CSS, each LSS 
responds to a special status message construct. The 
reply contains a snapshot of the io-id and process state 
on the LSS's local machine. The message contains the 
number of sends and receives for each id. the number 
of stored bytes in the queue for each id, and id and 
process history. 

A message logging capability i s  provided within the 
CSS to help with debugging SNTB applications. Both 
local and global message logging are supported. Local 
message logging causes a copy of all message traffic 
through an LSS, and a log of all LSS processing errors, 
to be written out to a file on the local machine. Global 



message logging causes a copy of all messages through 
an LSS to be sent to a particular id in the network. In 
this way, one location can keep tract of all messages in 
the CSS. 

In t e r f ace  L i b r a r i e s  With each LSS implementation, 
a set of primitives was developed in the programming 
language of the LSS. These primitives could be used to 
interface with the LSS on each machine. However, 
they d o  not  provide  the  uniform,  language 
independent agent interfaces supported on the SNTB. 
For this reason, Communication Interface Libraries 
(CILs) were developed as a part of the CSS. 

Built upon the primitives available to each LSS, these 
libraries provide exactly the same functionality for 
using the CSS to every agent in the SNTB. There are 
currently two libraries, one in Common LISP (LCIL) 
and one in C (CCIL), although a CIL can be easily 
developed for any language available on a machine as 
long as the language interface to the operating system 
and LSS primitives is also available. 

The CILs primary goal is  to provide a uniform and 
portable interface between each agent and the LSS. 
The CILs however,  also provide the additional 
capability for hiding the details of message transfer 
from the agent; multiple destinations in message send 
operations; and local error and consistency checking. 

In summary, the CSS provides a uniform interface to 
its client processes, regardless of the machine the 
client is  executing on. This uniformity promotes 
modular  c l ient  development and portabili ty of 
software where, in many cases, software is source code 
compatible across a few of the different machines in 
the SNTB. Such capabilities allow greater flexibility of 
e x p e r i m e n t a t i o n  in  d i s t r ibu ted  and  pa ra l l e l  
processing. The paradigm of the CSS is used for both 
in t ra-machine  and in ter -machine  communicat ion 
between agents since it does not limit an application to 
any one data structure or communication format. The 
form and content of  messages are left to the 
application, as is the way the messages themselves are 
used. 

Execut ive  Con t ro l l e r  

The Executive Controller (EC) provides the user with a 
single interface to the entire testbed. thus treating the 
SNTB as a virtual computer. The EC allows the user to 
easily configure a distributed application. It is  
designed to facilitate the process of controlling and 
experimenting with distributed applications on the 
testbed. As such, it can maintain information about 
SNTB compute r s ,  appl ica t ion agents  and the  
communications within an application. 

The EC is an application agent designed for a special 
purpose in the SNTB. It derives all its capabilities from 
self contained knowledge and the CSS, and is given no 
system level privileges that are not also available to 
other agents through the CSS. Its purpose is to provide 
several functions commonly required in distributed 
applications so that new applications can be quickly 
and easily developed on the SNTB. This frees the 
programmer to  concentra te  on  deta i ls  of  the 
application rather than on details of the SNTB. 

The EC provides two different models of computation 
that can be used: a graphics oriented dataflow model, 
and a functional configuration language, LISP+. For 
both models, the programmer must supply information 
about each agent in the application. This information 
includes agent input and output behavior. startup 
parameters, host computer, and data dependencies. 
The EC uses this information when starting up agents 
and  conf igu r ing  the  communica t ion  c h a n n e l s  
between them. 

Data  Flow Model The Executive Controller provides 
a se t  o f  graphical.  user  or iented tools  f o r  
experimenting with a distributed application from a 
data flow view point. The user can easily configure an 
application, activate and deactivate agents and specify 
data routings with the aid of mouse sensitive icons 
while the entire application agent suite is  displayed on 
the screen. Mouse sensitive objects on the display 
allow the user to  selectively view agent 110 
information, equivalencies and host processors. 

The user configures an application by connecting data 
paths between agents on the screen. Assuming the 110 
behavior of the agents is compatible, the EC will define 
all necessary io-ids and communication channels 
through the CSS. This process is  transparent to the 
user. Control. functions such as conditionals are 
handled by special user control agents designed for 
that purpose. 

For example, a single detection agent may operate on 
multiple resolutions of imagery, while a subsequent 
clustering agent may be specific to high resolution. 
Under the data flow model. the user would have to 
provide a special agent that directed the data 
according to the imagery resolution. This agent would 
have a single input and two outputs. Its logic would be 
very simple: IF (data from high resolution imagery) 
THEN (send data to output A) ELSE (send data to output 
B). 

Once the application is configured it may be executed. 
During execution, the EC will collect and display 
various status information such as individual agent 
execu t ion  t imes  and p rocess ing  advancemen t .  
Additionally, inter-agent messages and intermediate 
results are saved for  later examination. Th i s  
information is available to the user through the mouse 
sensitive icons. 

The data flow model is useful for experimenting with 
distributed systems because of its graphical interface, 
but its limitations soon become exceeded. For example, 
it requires the network configuration to be static once 
execution has begun. Many distributed and parallel 
appl ica t ions  must dynamical ly  reconf igure  thei r  
communication channels in response to external 
stimuli (data) o r  intermediate results. Although this 
could be handled by using special control agents as 
discussed above, it would rapidly become cumbersome 
and awkward. 

L I S P  + The Executive Controller provides another 
means  to  configure and control a distributed 
application on the SNTB. This method allows the SNTB 
to be programmed as a virtual computer through the 
functional language LISP+. LISP+ is a powerful 



command interpreter that allows individual agents to 
be treated as functions in a programming language. 
Through LISP+, the EC shields the programmer from 
operational knowledge such as agent host identity, 
number of agent instances, message passing, and 
global variables by providing the required scheduling 
and routing operations. 

LISP+ is designed as a language for configuring 
applications on the SNTB. It is implemented by adding 
functions such as defvar+, let+ and setf+ to Common 
LISP. These additional functions a n  simply special 
versions of the standard implementation that use the 
global memory variables of the CSS instead of local 
variables. Additionally, when LISP+ executes a 
function that is really an agent, the EC first performs 
the desired communications routing. As in the data 
flow model, these operations are transparent to the 
p rogrammer .  

In LISP+, conditional control is handled by the 
constructs of the Common LISP language. Special 
control agents, as in the data flow model, are not 
needed. This further allows the user to concentrate on 
the application problem rather than on control. 

The EC also maintains an agenda where program 
fragments can be executed. Thus, an application can 
have a special agent (for example, and inference 
agent) that generates program fragments and places 
them on the agenda for execution. This gives an 
application the capability to dynamically respond to its 
data environment or to multiple competing demands 
placed upon it. 

Network Vision 

The testbed contains several Symbolics and SUN 
Workstations that can be used for display of 
in te rmedia te  p rocess ing  resu l t s  and o ther  
information. One example might display imagery and 
associated terrain data overlays, as well as the results 
of image understanding operations all on a single 
display. Since this processing will likely be performed 
on different machines in the SNTB, Network Vision 
(NV) software was developed to direct all results to a 
single display of the virtual computer. 

Network Vision is composed of a server and a set of 
libraries that operates in much the same way as a 
remote windowing system such as X-windows, but at a 
much "higher" level. The purpose of the NV software 
is  to provide the application developer with basic 
image display routines used to display information 
from agents running on any computer in the SNTB. 
Current capabilities include operations such as 
window creation, deletion, and management, as well as 
image, terrain, detection and cluster display, and some 
simple graphics capabilities. 

The NV server is an autonomous agent and performs 
all of the window management functions for agents in 
the application. Communication between an 
application agent and the server takes place via 
messages through the CSS. Agents do not directly 
communicate with the NV server, but instead use the 
NV library calls. 

The NV library functions are used by the application 
agents. Currently a library exists for the Common 
LISP and C programming languages. The agent 
callable functions are written in a flexible keyword 
style to permit the use of default argument values. 
Each request is checked for simple errors, reformatted 
for the NV server and passed through the CSS. The NV 
system may be used in a synchronous manner, where 
the calling process suspends until the requested 
operation has been acknowledged; or display 
commands may be executed asynchronously, in which 
case no reply is sent. 

All actions performed by the NV server currently take 
place relative to a window on the Symbolics color 
screen or SUN Workstation. Multiple display windows 
are managed. Initial placement of windows is  
determined by other windows which are currently 
active on the screen. The user can subsequently 
reposition the windows with the normal move/reshape 
mouse-based operations. The display windows are 
identified to the user by an agent name or other 
description. 

SUMMARY 

We have described the heterogeneous computer 
network and integrated software of the DARPA Sensor 
National Testbed. Network computers include several 
von Neumann architectures, a SIMD and a MIMD 
machine, and a linear systolic array. Upon this 
foundation. SAIC has built the distributed 
asynchronous communications, control and display 
software required to integrate these diverse parallel 
architectures into a flexible testbed. 

Application programming on the SNTB is a three stage 
process. First the application agents are developed on 
the individual machines in one of the standard 
programming languages available. Here the 
programmer is  free to use any debugging tools 
provided on the local operating system to help in 
agent development. Second, agents are interfaced 
with the CSS. In the software, this is simply a matter of 
using funct ions fo r  receiving and sending 
information. Third, the agents are integrated into the 
distributed application. The Executive Controller and 
Network Vision are tools available during this stage. 

Once a number of agents are developed through the 
first two stages, they can be rapidly combined to form 
different applications. In this way, the SNTB aids in 
the rapid prototyping of new applications from 
existing application agents. Thus, the SNTB supports 
experimenting with and rapid prototyping of 
distributed and parallel applications. 

Although the testbed was initially developed for 
complex image exploitation tasks, it provides a g e n e r a l  
purpose programming environment for distributed 
and parallel applications. This environment permits 
the user to construct multiple application agent level 
execution scenarios without requiring him to have 
detailed knowledge of the system testbed layers, 
thereby improving programmer productivity. 



ACKNOWLEDGMENTS 

This work was performed under the Advanced Digital 
Radar Imagery Exploitation System (ADRIES) program, 
DARPA Contract No. DACA76-86-C-0011. The authors 
would like to acknowledge the support of DARPA and 
their contracting agent, the U.S. Army Engineering 
Topographic Laboratories. 

REFERENCES 

1. Cantoni, V., and Levialdi, S., "Matching the Task to 
an Image Processing Architecture." C o m p  u t a r 
Vision, Graphics,  and Image Processing, Vol. 22, 
301-309. 1983. 

2. Reeves, A.P., "Parallel Computer Architectures for 
Image Processing." Computer Vision, Graphics, and 
Image Processing, Vol. 25. 68-88, 1984. 

3. Kruger, R.P.. "DARPA SAR National Testbed Mission, 
Architecture and selected applications." AFCEA 
Eleventh Annual Seminar. March 1988. 

4. Sayre, S.M., "ADRIES Communication System 
Functional Design Description," SAIC September 
1988. 



PRECEDING PAGE BUNK NOT FILMED 

EFFICIENT MANAGEMENT OF SENSORY DATA FOR AN 
AUTONOMOUS SUBMERSIBLE UTILIZING A PARALLEL 

PROCESSING ARCHITECTURE 

Alhad Chande, Sondra Shapiro, and Art Acampora 

Martin Marietta Aero & Naval Systems 
Baltimore, Maryland 

ABSTRACT 

Today's Remotely Operated Vehicles (ROVs) provide sensory 
data, so that the control of the underwater vehicle can be 
managed by an operator on the surface ship. To remove the 
operator from the control loop, creating a fully autonomous 
vehicle (untethered), requires new and improved sensor 
configurations and sensor post-processing techniques. In an 
autonomous vehicle, multielemental array sonar sensors are 
exploited to sense the surrounding environment, so that a 3-D 
obstacle surface can be reconsmcted in real-time. The sensor 
hardware placed strategically around the vehicle provides 
forward and peripheral fields of view of the surrounding 
environment, in terms of massive amounts of data. Because of 
the limited space available on the submersible, obsolete sensor 
information must be discarded. This paper describes a 
systematic method of managing sensor information, utilizing a 
bit serial systolic array, so that irrelevant data storage and 
archival are rendered unnecessary. 

Keywords: Systolic Arrays, Underwater Sensing, Obstacle 
Avoidance, Object Identification, Sonar, Lidar, Multisensor 
Fusion, Automated Sensing. 

SUBMERSIBLES 

Manned oceanic submersibles of the early 1960's have matured 
into free-swimming and bottom-crawling Remotely Operated 
Vehicles (ROVs) with significant advances in operational 
efficiency in the hazardous undersea environments. The ability 
to execute deep sea exploration missions will have a positive 
impact on the industrial and military strength of a nation. The 
cost of manned exploration has been prohibitive, similar to that 
of space exploration, and large investments in this area have not 
been economically justifiable, with the exception of limited 
advances made for oil and natural gas explorations, at depths of 
6000 feet. The parallel advances in mobile robotics, undersea 
sensors and processing, and, artificial intelligence and digital 
computing, have provided a technical base for the research and 
develo~ment of advanced teleoperated underwater vehicles and 
Auton6rnous Undenvater vehicles (AUVs). 

The primary focus of contemporary autonomous vehiculur 
research has been dichotomized into sensing and control. In 
terns of Draper's informator-effector model (Ref. 3), Figure 1 
shows a three-tier control architecture for an AUV. The 
informator in this architecture consists of a pre-informator with 
apriori information for the autonomous system, and the in-situ 
informator deals with current data and real-time path planning. 
The effector is the physical real-time servo-controller for the 

actuators and propulsion system. The requirements for control 
of manned spacecraft or deep space probes are easier to predict, 
primarily because space transit is resistance free, and also, 
because on-board computers perform the critical function of 
monitoring forces affecting the ship and its attitude control. 
Contrarily, a six degree-of-freedom AUV requires a controller 
that can adapt to the action-reaction nature of the fluid medium 
engulfing it, and continually compensate for deviations from the 
desired trajectory due to hydrodynamic forces. This generates 
the need for a more frequent sensing of the surrounding obstacle 
environment, to allow for sensor post-processing delays and 
latencies of an autonomous controller and its servocontrollers. 
This paper deals with autonomous obstacle avoidance and obiect 
iden6fi-cation for AUVs, which constitutes the autonombus 
"informator," that is indespensible for efficient route planning 
and its plan execution. 

NECESSITY FOR MULTISENSOR FUSION 

Multisensor fusion is the process by which specific unified data 
relating to an entity, the fusion entity, is obtained by the 
integration of information from multiple sensors. The fusion 
entity for the AUV is a reconstructed model of the 3-D world 
geometry of the obstacles in its vicinity. The typical model 
update rate is estimated to be 500 milliseconds or less for an 
AUV transit velocity of 2 to 8 knots. The number of sensor 
elements on the submersible could be up to 4000 elements, and 
these would supply meaningful range, azimuth, and elevation 
three-tuples after post-processing throughput delays. The fusion 
process commences to reconstruct a 3-D world geometry model 
of the obstacle surfaces that intrude the approximately 8000 
cubic feet that encompass the mobile submersible. This estimate 
is based on a sensor ranging maxima of 2000 feet. This occurs 
after the sensor post-processors have range, azimuth, and 
elevation data from each sensor element suitably ingested and 
collated. This type of sensor fusion is termed as direct, 
autonomous, or local fusion, and is radically different from 
classic global fusion. Typically, global fusion deals with a 
battlefield scenario, where the fusion entity is in the form of 
intelligence reports for human perusal and analysis, and the 
sensors are widely distributed over different mobile or stationary 
platforms. 

The real-time fusion aleorithms on the Martin Marietta A S A P ~  
(Advanced Systolic A G ~ ~  Processor) (Ref. 4) spatio-temporally 
fuse 3-D range data from multiple and disparate types of 
sensors (SonarfLidar) into a cogently compressed world 

of surfaces of avoidance; these algorithms and rs",";:XI together, comprise the Fusion Processor. Further. 
the systolic array updates this surface of avoidance geometry 
incrementally, based on either sensor updates or compensations 
due to ship movement. The "systolic" action of the ASAPTM 



provides a persistence to the reconstructed world geometry as it 
is viewed from a mobile submersible. The key issue in the 
obstacle and terrain avoidance functionality is the ability of the 
Fusion Processor to represent large amounts of range data, and 
provide the AUV controller with an updated report, within 100 
to 500 milliseconds, detailing obstacle surfaces that must be 
avoided. Additionally, motion compensation for six degrees-of- 
freedom, especially to adjust for the vehicle's crab angle (actual 
path resulting from cross-currents), must be made at least every 
100 milliseconds based on navigation fixes. This is also 
necessary during sensor-blackout down times resulting from the 
send-receive time periods of sensor operation. 

The Martin Marietta fusion algorithms for the bit-serial 
ASAPTM are designed to successfully handle the spatio- 
temporal fusion for different densities of 3-D sparse image data 
in the required short durations. 

SYSTEM ARCHITECTURE 

The entire electromagnetic (EM) spectrum is minimally suited for 
underwater sensing, because EM waves have high attenuations 
at high source powers, therefore, sensing underwater is 
predominantly acoustic. Maximum ranging distances of such 
sensors is small, with the exception of blue-green light of 480- 
580 nanometers. Light of these wavelengths can penetrate 
around a hundred meters, while high frequency (200 KHz) 
active acoustic ranging devices can range up to one thousand 
meters. Even though underwater laser devices suffer from 
transmissivity problems in turbid waters, they have the potential 
of acquiring images that are crisper that television,.for ten times 
the range of camera imaging. However, these Lidar (LIght 
Detection And Ranging) sensors are non-operational at ranges 
less that ten meters, so, cameras can be deployed for up to ten 
meters. The multi-beam sonar arrays can range up to one 
thousand meters with decreasing resolutions. Consequently, the 
front-end to an autonomous intelligent controller q u i r e s  the use 
of range overlapped Lidar and Sonar devices of varying range 

maximas and resolutions. The sensor post-processors and 
fusion processor algorithmically extract and reconstruct a 3-D 
obstacle world model from data streams of successive swaths of 
multiple sensors strategically placed around the AUV. See 
Figure 2, for a forward looking overlapped sensor suite and a 
hardware block schematic of an autonomous sensing system. 

r----------- 7 
I AUTWICOT STATUS 

The system architecture, shown in Figure 3, indicates how the 
systolic array receives ingested and collated data from the sensor 
post-processors and compresses it into a world model. This 
iconoclastic method departs from the conventional approach of 
incorporating large peripheral memories, such as disks, since the 
subsequent archival and data management from several such 
storages for several sensors results in a non-convergent 
processing scenario. Such a radically new approach to 
multisensor fusion, requires a single disk drive with limited 
memory, for the purposes of tagging analyzed symbolic 
versions of high resolution imaging processes, that are initiated 
by the low resolution world model, which resides in the systolic 
array. Such high resolution imaging processes are carried out in 
the high resolution sensor post-processor, comprising highly 
monfigurable Datacube (Ref.2) hardware. 

WORLD MODEL 

Restricted space on the AUV makes it infeasible to cany mass 
storage systems onboard with large amounts of data, that must 
further be archived and processed on demand. Moreover, 
peripheral storage data archival would scarcely lead to real-time 
performance, due to latency and VO delays. Consequently, 
sensor data storage is mostly high speed random access, and is 
directly accessible by the processing elements (PEs) of the 
systolic array. This requirement leads to the need for a world 
model that stores only relevant information to the task at hand, 
and a world model that compresses its data storage to a 
minimum size. To achieve this, the world model stores, at bit 
level, the occupancy state of the environment surrounding the 
AUV as unknown, occupied, or empty. The task at hand is to 

I 

I PUmER k+ NAVIUTIO* STATUS 

I IUV/STATE 
SWSaR 
SUBSYSTDI 

ACTUAL STATE 

---- ------- ----------------------- "--I 
I 

DES 1 RPD I I 

; AUlCfIWT STATE 
I 

L PRaPULSIoN & I - ACTUAL 
I - - '  

DYNAMICS PUHT I - STATE 
I m#Km I 

I I 

! i I 
I 

Figure 1. Informator - Effector Model 



Sonlor's-Ey. V k w  d Ran* Data 

' p j  0.5 d Scan 

SRS 

Maxlmum Number [.s. "81 

of Rang. Data 

Figure 2. Prototypical Multisensor Configuration 

Fusion 
~ a n s o r s  Processor 

f 
f 
t 
f 
f 
I 
f 
f 

IIF I 
# a-g. TOAS * Lbvd 1 

f 

(Includm Depth 
......I.... .......... J ................... 

Sonars) t 
# 

f 
4 I 
i I 

Figure 3 .  Autonomous Sensing System Architecture 

Controller 



utilize sensor data and to reconswct the three dimensional 
spatial occupancy of the real world around the submersible. The 
volume of space represented by the world model is defined in 
terms of the submersible's position, so that the monitored 
volume always surrounds the submersible. Therefore, the total 
storage required can be fixed, and sensor data that no longer 
occupies the current volume represented is deleted from the 
world model. Deleted data can always be resensed, if the region 
it represents is revisited. 

Processing required to generate and maintain this world model is 
triggered by sensor data, in the form of range, azimuth, and 
elevation three-tuples, tagged with vehicle position, to represent 
occupied and empty volumes around the AUV. These processes 
must be accomplished in real-time, since a moving vehicle 
cannot afford to continue storing outdated sensor information. 
Since the processing required is massive, and is characterized by 
repetitive operations applied to different data, a single instruction 
multiple data (SIMD) parallel computer architecture is apt for this 
application. System constraints, such as physical size 
limitations, data size of the compressed world model, and 
associated computational load per unit volume sensed, indicate 
that the Martin Marietta Advanced Systolic Array Processor 
(ASAPTM) is a particularly suitable parallel processor for this 
application. 

SYSTOLIC ARRAY FOR A FUSION PROCESSOR 

The Martin Marietta Advanced Systolic Array Processor 
(ASAPTM) is a SIMD array processing unit, composed of 16 
single bit processing cells. The cells are arranged in a 4 x 4 
array with the processors physically connected to form a mesh. 
Each processor in the mesh can communicate directly with its 
north, south, east, and west neighbors, and multiple ASAPTM 
chips can be configured to form larger arrays. 

The ASAPTM is a micro-coded machine with programmable 
micro-code control for the array of PEs and the input/output 
modules. The on-chip local memory in each PE provides the 
high speed random access data storage required by the 
application. Each processor element can directly access 
additional RAM space, as needed. Also, the micro-code word 
size is ample to provide the opportunity for low level parallelism 
within a processing element itself. 

ALGORITHM OVERVIEW 

The data store in the Fusion Processor is distributed and stored 
among the PEs. The sensor data ingest process receives sensor 
data, then, with vehicle position and orientation information, it is 
converted into a set of empty and occupied volumes 
corresponding to the vehicle's frame of reference. The result of 
this process is a sensor data store that represents three 
dimensional spatial occupancy, as perceived through the sensors 
from the vehicle's frame of reference. 

When the vehicle's current position and orientation indicate the 
need to motion compensate, the following algorithm runs on 
each processor of the SIMD machine. This results in an updated 
sensor data store, in which all sensor data is relative to the 
vehicle's frame of reference. 

for each occupancy state value per processor 
old-position <-- occupancy state position in world 

model 
new-position <-- 3-D coordinate transformation 

on old-position 
if (new-position is within world model) * then occupancy state @new-position <-- 

occupancy state @old-position 
delete occupancy state @old-position 

endif 
endfor 

Since the occupancy states are distributed among the PEs, step * 
may require interprocessor communication. The processing 
required is directly proportional to the distance between the 
processors, which is  in terms of the processor mesh 
interconnect. Processor array sizes ranging from (16 x 16) to 
(32 x 32) accommodate the application adequately, and result in 
tolerable interprocessor communication overheads. Larger array 
sizes corresponding1 y have increasing communication overheads 
rendering the application non-real-time; these overheads can be 
alleviated by a hypercube interprocessor interconnect, such as 
that found on the Connection Machine (Ref. 6). 

INTELLIGENT SENSING 

In a mobile robot, such as an AUV, the information directly 
acquired by the sensing system rarely has an adequate 
representation of cognitive relationships defining the contextual 
structure within the environment, due to the impracticality of 
storage requirements. To reconstruct an adequate representation 
of the world surrounding the vehicle, both high and low 
resolution sensor data need to be judiciously analyzed, so that 
the related cognitive overhead is alleviated by efficient cueing 
and localizing of potential obstacles. This cueing efficiency is a 
function of the toggling capability between the high and low 
resolution sensors, afforded by the Fusion Processor (see 
section 3 & 4). Due to the incorporation of multiple sensors to 
achieve such cueing efficiencies, there is  a resultant 
overwhelming quantity of sensor data that must be processed 
before it can be made useful for maneuvering commands. 

Two types of intelligent sensing applications that are currently 
being investigated are Obstacle Avoidance and Object 
Identification, with an attempt to eliminate the need for involved 
scene analyses of all obstacles within a field of view (see Figure 
4). Obstacle Avoidance is the process of scanning the 
surrounding environment for any path obstruction without shape 
descrimination, and determining the best route around the 
obstructions to arrive at the final endpoint. Such Obstacle 
Avoidance functionalities can be achieved primarily by low 
resolution sonar sensors, and if necessary tertiarily by high 
resolution Lidar sensors. Object Identification is the process by 
which localized obstacles are analyzed for eventual 
identification, with the help of data from high resolution 
sensors, such as Lidars, and other apriori data constructs stored 
in the sensor post-processor memory. 

A decision mechanism for prioritizing between Obstacle 
Avoidance or Object Identification processes is imperative for 
autonomous sensing; for which Artificial Intelligence is a 
suitable candidate. Even though the incorporation of cognitive 
knowledge is essential to these types of decision making 
processes, there are practical deficiencies in relying solely on 
Artificial Intelligence concepts for a complete solution to the 
obstacle avoidance and object identification problem. 



Eventually, a "context cueing" performed solely by Artificial 
Intelliaence techniaues normally suffers from a severe lack of 
real-tik data that f h e r  impro;es context definition, or suffers 
from a need to post-process large quantities of data, so that it can 
be utilized for context analysis; a process that invariably abounds 
for an autonomous sensing system aboard a mobile robot. For 
example, in Computer Vision and Image Processing, most of the 
research has been confined to the use of one type of sensor, 
such as a camera, for all data input excluding apriori data, and 
the responsibility for the recognition process depends entirely on 
the reasoning mechanism used, and not on the efficient 
management of the data being stored; this has been a serious 
shortcoming for object identification. This paper explores 
schemes for more accountable and efficient data management, 
rather that open-ended Artificial Intelligent methods that could 
accommodate numerous instances, but also need recoding for 
every previously unaccountable instance that subsequently needs 
to be included. Conventional database management also does 
not apply, since this is an autonomous system with no human in 
the loop. Consequently, radical data management methods, 
such as described in Section 3, need to be investigated. 

To further explore the issues concerning efficient data 
management of high resolution data, it is necessary to look at 
typical data rates. The sensor information is sent from the 
sensor to the post-processing computer memory at a rate of 
thirty frames per second. Typically, high resolution sensor data 
being transmitted comprises a stream of image frames of 5 12 x 
512 pixels each. Looking at Figure 5, storing all the high 
resolution images at every point in the autonomous vehicle's 
trajectory is not only unnecessary, but also impractical. The 
amount of data that would be stored would overflow any 
onboard computer memory. To eliminate this overflow of data, 
selected regions in the surrounding environment are chosen as 
candidates for high resolution sensing, by the triggering derived 
from the low resolution sensing system. The sensor pointing 
angles are used to designate the pan and tilt mechanisms of the 

high resolution sensors, and data acquisition is triggered. Pmm 
the real-time analysis of the packets of such consecutive frames 
of data, a condensed symbolic contextual output as a probable 
"object" is stored in another section of memory, with a tagged 
association to the low resolution data "obstacle" source in the 
Fusion Processor. Each time this data analysis occurs, the 
transmitted high resolution data stored in memory is then 
condensed to occupy a smaller quantity of memory in a different 
area of the disk. Therefore, the disk space that was used for 
data ingest and analysis can be overwritten with new data. In 
the interim, most of the disk space can be continually reused 
with new sensor data. This reusability of limited disk space is 
imperative, in a mobile autonomous system. The usually 
involved Computer Vision task is thus rendered as an 
"intelligent" scratch-pad memory consuming task, and image 
data archival overheads are considerably reduced. 

Succinctly stated, for an autonomous system, such as an 
underwater vehicle, sonar array data is considered low 
resolution information that is exploited for the representation of a 
model of the surrounding environment. Based on hand-offs 
from low resolution information, the appropriate assignment of 
pointing angles is derived, and the high resolution information 
can now be acquired through camera or Lidar sensors. 
Appropriate pointing angles best achieve the robusmess of a 
multisensor system, and achieve adequate data gathering 
efficiencies for an autonomous sensing system of a mobile 
robotic vehicle. An Artificial Intelligence-based decision 
mechanism allocates sensors and enables triggering between the 
high and low resolution sensors. Additionally, key events that 
occur randomly during vehicle maneuvers contribute to sensor 
prioritization, due to the decision mechanisms. Such methods 
reduce the need for the construction of a global database. 

CONCLUSION 

Systolic arrays provide a significant advantage to multisensor 

N A V  

1lA.D 
rn I NAY A/ HI Rm I DATA 

NAVIGATION 
mRE 

RANGE HrrS 

Figure 4. Obstacle Avoidance and Object 
Identification for Autonomous Vehicles 



ONBOARD 
FUSION 
PROCESSOR 

AUTONOMOUS 
VEHICLE 

SELECTIVE & ESSENTIAL 
STORAGE DISK 

-HGH 
DATA TO DISK 

BASED ON LOW 2 
-RESOLUTION 

HAND-OFFS 

AbTONOMOUS VEHICLE WITH HI, LO 

PRO(ISYWI 

h.  --..-.......... .-.; 
Figure 5. Intelligent Sensing 

fusion research. Not only d o  the massive number of processors 
of an array accomplish repetitive and similar processing for 
numerous sensing elements simultaneously, but their mesh 
connectedness also promotes implicit data associativity without 
explicit software allocations. Eventually, autonomous vehicles 
will need to be equipped with smart skins, comprising 
pmessing-sensor arrays, that feed into a massively parallel data 
fusion association center. The incorporation of multiple systolic 
arrays as sensor post-processing firmware will considerably 
advance the development of sensory interactive systems for 
autonomous mobile robotics in the near future. 

REFERENCES 

1. Chande, A.M., and Noon, K.M., "Obstacle Avoidance and 
Navigational Sensing for an Autonomous Underwater 
Vehicle," (Proceedings of the 1986 SPIE Symposium on 
Optical and Optoelectronic Engineering), October, 1986. 

2. Datacube, Incorporated, MAXVIDEO Image Processing 
Hardware, 4 Dearborn Road, Peabody, Massachusetts. 

3 .  Draper, C.S., "Control, Navigation, and Guidance," IEEE 
Control Systems Magazine, Vol. 1 ,  No. 4, December, 198 1. 

4. Haug, A.J. and Graybill, R.B., "The Martin Marietta Bit- 
Serial Systolic Processor," (The Second Symposium on the 
Fronriers of Massively Parallel Cornpuration), October, 
1988. 

5. Herr, W. and Collins, K., "MUST - A Large Versatile AUV 
Technology Testbed System," (Proceedings of the 
Underseas Defense Conference), USD, 1987. 

6. Hillis, W.D., "The Connection Machine," The MIT Press, 
Cambridge, MA, 1985. 

7. Liddle, D., "TROJAN: Remotely Operated Vehicle," IEEE 
Journal of Oceanic Engineering, Vol. OE-11, No. 3, July, 
1986. 

8. Noon, K.M. and Chande, A.M., "Sense Analysis Simulator 
for Sensor Fusion on an Autonomous Underwater Vehicle," 
(Eastern Simulation Conference), April, 1987. 

9 .  Robinson, R.C., "National Defense Application of 
Autonomous Underwater Vehicles," IEEE Journal of 
Oceanic Engineering, Vol. OE- 1 1, No. 4, October, 1986. 



SECTION 11: APPLICATIONS 

Part 2: Poster Presentations 



SIMULATIONS OF CONPOSIT, 
A SUPRA-CONNECTIONIST ARCHITECTURE FOR COMMONSENSE REASONING 

John A. Barnden 

Computing Research Laboratory, New Mexico State University 
Box 3CRL, Las Cruces, NM 88003. 

ABSTRACT 

A computational architecture called "Conposit" is outlined. 
Conposit manipulates very-short-term complex symbolic 
data structures of types that are useful in high-level cogni- 
tive tasks such as commonsense reasoning, planning, and 
natural language understanding. Conposit can be straightfor- 
wardly implemented as a large neuraVconnectionist network, 
and therefore provides a way of bridging the gap between 
high-level cognitive information processing and neural net- 
works. Conposit's data structures are, essentially, temporary 
configurations of symbol occurrences in a 2D array of regis- 
ters. Each register is implementable as a neural subnetwork 
whose activation pattern realizes the symbol occurrence. The 
data structures are manipulated by condition-action rules that 
are realizable as further neural subnetworks attached to the 
array. In simulations, Conposit has performed symbolic pro- 
cessing of types previously found difficult for 
connectionist/neural networks. This paper concentrates on a 
version of Conposit, simulated on t h e - ~ a s s i v e l ~  Parallel Pro- 
cessor, embodying core aspects of Johnson-Laird's mental 
model theory of human syllogistic reasoning. This version 
illustrates Conposit's power and flexibility, which arises from 
unusual data-structure encoding techniques called "Relative- 
Position Encoding" and "Pattern-Similarity Association" 

Keywords: Cognitive Modeling, Commonsense Reasoning, 
Connectionism, Neural Network, Knowledge ~e~resen ta t ion ,  
Syllogism, Mental Model. 

INTRODUCTION 
The challenge presented to connectionism by high-level cog- 
nitive processing - which includes commonsense reason- 
ing, planning, and some aspects of natural language under- 
standing - is gaining increasing recognition. The main 
technical difficulties are listed in Refs. 1-4, 7, 8, and else- 
where in the connectionist literature, and include the well- 
known variable-binding problem and the problem of account- 
ing for complex, temporary, novel data structures. 

Ref. 6 reports experiments with a version of Conposit 
that incorporates production rules for commonsense reason- 
ing, one of which can be paraphrased as 

PRECXDING PAGE BLANK NOT FILM€D 

IF:  a person X loves a person Y who 
loves a person Z (dijerent from X )  

THEN: X is jealous of Z.  

This exercises Conposit's handling of variable bindings. 

The version of Conposit described below engages in a 
particular type of commonsense reasoning, namely syllogistic 
reasoning, by embodying some core aspects of the Johnson- 
Laird's "mental model" theory (Refs. 9-12). The main goal 
of the work was to verify that the techniques developed for 
other types of processing in Conposit (Refs. 4-7) were flexi- 
ble enough to be extended in a natural way to the distinctly 
different type of processing required by the mental model 
theory - and in fact no new features have had to be added. 

Conposit is currently concerned only with short-term 
processing: there is no adaptive learning capability at present, 
and long-term memory consists entirely of the fixed set of 
condition-action rules (but see the suggestions in Refs. 4,7 
for a long-term memory of data structures). It is closer to the 
"localist" than to the "distributed" end of the spectrum of 
connectionist systems. 

BRIEF SKETCH OF CONPOSIT 
Conposit is currently defined as a computational architecture 
whose components can be straightforwardly implemented in 
connectionist terms. Details are reported in Ref. 7 (or Ref. 4 
for an earlier formulation). 

In Conposit, a "Relative-Position Encoding" technique 
is used as the foundation for complex short-term data struc- 
tures. These reside in a 32x32 array of registers. This array 
is called the conjiguration matrix (CM). The values in 
registers are usually rapidly changing. Each register can be 
implemented ;IS a small connectionist subnet that holds a 
dynamically changing activity pattern implementing the 
register's value, and that is connected to neighboring regis- 
ters and other components. 

A register's value consists of a "symbol" and a vector 
of binary "highlighting flag" values. A symbol may have a 
specific representational function, such as denoting a particu- 
lar person or a particular type of relationship among people. 
Any symbol can be placed in any register, and all registers 



have the same set of highlighting flags. Temporary struc- 
ture is encoded mainly in rhe adjacency relationships among 
values in C M  registers. For instance, if a register contains 
a symbol denoting the class of all possible situations in 
which one person loves another, and has a certain highlight- 
ing flag in the ON state, then any adjacent register that has 
another specific highlighting flag ON is deemed to represent, 
temporarily, a specific loving situation. 

See, for example, the representation of the proposition 
that John loves Mary in the upper portion of Figure 1, which 
shows an 8 x 8 region of the CM. 

Figure 1. "Bill believes that John loves Mary." 

Each square stands for a register, and capitalized words and 
letters stand for symbols. The word JOHN stands for a 
symbol denoting a particular person John known to the sys- 
tem. The LOVE symbol denotes the class of all conceivable 
loving situations. The L symbol may be ignored for now. 
The registers with no symbol shown contain a null symbol 
that does not denote anything. The denotations of symbols 
are considered to be borrowed by the registers they occur in 
at any moment: a register containing a non-null symbol 
denotes what that symbol denotes. Hence, in the figure there 
are registers that - temporarily - denote John, Mary and 
the love-situations class. The other signs within squares 
show ON states of highlighting flags, which in this example 
are all referred to by the names of colors. An 'r' indicates 
that the register is red-highlighted (i.e. the red flag is 
currently on); similarly 'g' for green, heart sign for white, 
and spade sign for black. One important function for 
highlighting is to help specify the representational relation- 
ships temporarily holding between adjacent registers. For 
instance, a white-highlighted register is deemed to denote a 
member of the class denoted by any neighboring black- 

highlighted register. Therefore the upper white register in 
the figure denotes some love situation. Further, if a register 
denotes a love situation, then any adjacent red register (here, 
the one containing JOHN) denotes the "lover" and any adja- 
cent green one (here, the one containing MARY) denotes the 
"lovee". Note that the absolute positions of the symbols 
and highlighting states are irrelevant, as are the directions of 
the adjacency relationships. 

Complex data structures can be split up into pieces by a 
shared-symbol association technique. Shared-symbol associ- 
ation relies on the stipulation that two registers containing 
the same symbol are considered to represent the same entity. 
The real power comes from the sharing of variable-like 
"unassigned symbols". By appearing within a data struc- 
ture, an unassigned symbol can be viewed as having a tem- 
porary denotation dictated by the role of the symbol in the 
saucture. The letter 'L' in Figure 1 indicates an unassigned 
symbol, which temporarily comes to name the hypothetical 
loving situation by being in the white-highlighted register in 
the loving-subconfiguration. The Figure shows how the pro- 
position that Bill believes that John loves Mary can be 
encoded by two separate register-value subconfigurations 
that are linked by the sharing of the L symbol. 

In this shared-symbol association technique, two or 
more registers contain the same symbol, and to that extent 
contain similar activity patterns at the connectionist level of 
description. The notion of similarity here is simple and all- 
or-none (i.e. not graded), but other versions of the technique 
could be based on more sophisticated, and perhaps graded, 
notions of similarity of connectionist activity patterns. 
Shared-symbol association is thus a simple instance of the 
class of "Pattern-Similarity Association" techniques, which 
are discussed briefly in Ref. 6.  

The processing of the short-term data structures in the 
CM is performed by internal "circuitry" (i.e. system com- 
ponents that are mapped straightforwardly into a connection- 
ist implementation) mediating mainly neighbor-neighbor 
interaction within the CM, and external "circuitry" outside 
the CM but attached to it. The external circuitry embodies 
"hardwired" condition-action processing rules. Rules can 
detect particular configurations of symbols and highlighting 
states in the CM by means of highly parallel detection circui- 
!ry that involves further two-dimensional register mays iso- 
morphic to the C M  (Refs. 4,7), and can in response send 
complex sequences of signals to the CM. A rule can 
embody conditionals testing the CM state, loops, and a sim- 
ple form of non-recursive routine calling. A rule operates 
on the CM in a highly SIMD, register-local, parallel fashion: 
each action on the CM is performed by sending to each 
register an identical "command signal" in parallel, whereu- 
pon different registers change state differently, according to 
their own current states and those of their immediate neigh- 
bors. 

A command signal can have one of a number of effects, 
such as making each register that has specified highlighting 
flags ON or OFF change the states of some flags, and/or 
accept a new symbol value, andlor broadcast its symbol value 



to the other registers (via a central relay station attached to 
the CM and called the Parallel Dismbutor). It is also possi- 
ble for a signal only to have an effect on a single, randomly 
chosen register with specified highlighting, rather than on 
each such register. A command signal may also require that, 
for a register to respond, either some or all of its neighboring 
registers be in a specified highlighting state. Refs. 4, 7 detail 
how the signals can be used to process data structures, and, 
in particular, to find free space for, and then create, new data 
structures in the CM. 

A tentative mapping of the model to connectionist net- 
works that appear to be biologically reasonable is sketched in 
Refs. 4, 7. In particular, it is suggested that the CM could be 
realized as a localized group of thin cortical columns. It is 
this suggestion that motivates the choice of dimension two 
and size 32x32 for the CM (see Ref. 4). A non-biological 
version of the approach could be based on a CM of other 
dimensions and sizes. 

JOHNSON-LAIRD AND SYLLOGISMS 

Consider the syllogism 

Some chemists are beekeepers. 
All beekeepers are  householders. 
Therefore, some chemists are householders. 

To simplify a little, Johnson-Laird maintains that we make 
such a syllogistic inference by constructing a mental model 
of the form illustrated in Figure 2. 

Figure 2. A Johnson-Laird syllogistic mental model. 

This mental model is an abstract data structure made up of 
"tokens" (shown by the capital letters) and identity links 
between tokens (shown by the equality signs). There is an 
arbitrarily selected number of tokens C standing for chemists. 
An arbitrarily selected proper non-empty subset are related 
by identity links to beekeeper tokens B, and all beekeeper 
tokens are so linked to householder tokens H. The 
parentheses in the figure indicate that the enclosed tokens are 
optional. The conclusion that some chemists are household- 
ers arises from noticing that some chemist tokens are linked 
by chains of equality tokens to householder tokens. There is 
much arbitrariness in the construction of a mental model. 
For instance, the number of tokens in a particular model is 
arbitrarily chosen, as is the number marked as optional. 
There is also leeway in how the links are placed. The mental 
model serves as a sort of internalized, highly abstract "exam- 
ple" situation conforming to the premises of the English 

syllogism. Naturally, the "conclusion" read off from a men- 
tal model might merely be an artifact of the particular exam- 
ple it embodies, and therefore be invalid. In response to this, 
Johnson-Laird postulates that the system attempts to con- 
struct several different mental models conforming to the 
premises in an attempt to falsify any particular putative con- 
clusion before outputing it. The attempted-falsification pro- 
cess will fail in the present case, but should succeed if in the 
above syllogism contained "some beekeepers" rather than 
"all beekepers". 

Johnson-Laird's theory is able to explain certain syl- 
logistic preferences, difficulties and errors exhibited by 
human subjects. He does not specify any implementation 
of mental models in neural net terms. 

JOHNSON-LAIRD SYLLOGISTIC REASONING IN 
CONPOSIT 

Conposit straightforwardly represents mental models, and 
con&cts them from propo&ional CM subconfigurations 
that encode syllogism premises. I have not yet addressed 
the following aspects of Johnson-Laird's approach: (i) the 
understanding or generation of natural language; (ii) a 
thorough attempted-falsification process - the current Con- 
posit is given the conclusion, and merely checks its validity 
with a single model randomly generated from the premises; 
or (iii) negative premises and conclusions ("no X are Y" 
and "some X are not Y"), which require special representa- 
tional and processing features. The correction of the last two 
deficiencies is not difficult, however, and will be described 
elsewhere. 

Figure 3 shows the CM version of a syllogistic model 
derived from the premises in the Section 3 syllogism. The 
CHMS, BKRS and HHS symbols denote the classes of all 
conceivable chemists, beekeepers and householders respec- 
tively. The X1 to X7 are distinct unassigned symbols. Each 
Johnson-Laird "person token" is implemented as a pair of 
adjacent CM registers, one of which (the black one) tem- 
porarily represents a class of person, and the other of which 
(the white one, containing an Xi symbol) represents a partic- 
ular though indefinite member of the class. (Recall the use 
of whiteblack adjacent highlighting in the love-situation 
representation in Figure 1). Each Xi symbol is thereby con- 
sidered to denote a person for the time being. The Figure 
shows the person tokens positioned in a regimented way, but 
in the actual simulation they are randomly positioned in the 
CM, and the white-highlighted register in each pair is a 
random neighbor of the black register. The function of 
Johnson-Laird's identity links is taken over by symbol- 
sharing, which is therefore being used for its standard func- 
tion of making different CM registers represent the same 
thing. In the figure an 's' indicates special highlighting sig- 
nifying that the token is optional. 



Figure 3. CM version of a syllogistic mental model. 

The mental model in Figure 3 is constructed from 
representations, analogous to the one for John loving Mary in 
Figure 1, of the two premises of the syllogism. These prem- 
ise representations are shown at the bottom left and bottom 
middle of Figure 4. Conposit is also given a propositional 
representation for the syllogism's conclusion (bottom right of 
Figure 4) and checks that the mental model is consistent with 
this given conclusion. The OLAP and SUBC symbols denote 
the classes of all conceivable class-overlap situations and 
subclass situations respectively. The IST, 2ND and 3RD 
symbols are arbitrary, distinct, unassigned symbols. None of 
these five symbols is dedicated to syllogistic reasoning. The 
registers containing IST denote the situation of chemists 
overlapping with beekeepers (i.e. of some chemists being 
beekeepers). The registers containing 2ND and 3RD are 
analogously interpreted. 

The construction of the mental model has two main 
phases. A hardwired rule called Rule-Some detects the 
subconfiguration for the first premise (Figure 4, botttom left), 
and constructs, in a another part of the CM, the chemist and 
beekeeper tokens in Figure 3. (It creates randomly many 
chemist tokens, six on average, then constructs beekeeper 
tokens using the same unassigned symbols as in a random 
subset of the chemist tokens, and, finally, randomly con- 
structs three extra beekeeper tokens on average.) Another, 
similar, rule called Rule-All detects the subconfiguration for 
the second premise and constructs some householder tokens 
with the same unassigned symbols as in the beekeeper 
tokens, and then constructs some extra householder tokens. 
Finally, Rule-Some comes into play again by detecting the 
subconfiguration for the conclusion (bottom right of illustra- 
tion) and checking that there is at least one chemist token 
and householder token sharing a symbol. In cases where the 
conclusion is invalid (such as in the amended Section 3 

Figure 4. The statement of the syllogism displayed in the text. 

example). Conposit sometimes does and sometimes does not 
consmct a mental model consistent with the conclusion, 
because of the randomness. It would be trivial to get Con- 
posit to repeat the whole process in an attempt to randomly 
alight on a falsifying model. 

Rule-Some and Rule-All work with any classes in syllo- 
gisms, not just the chemist, beekeeper and householder 
classes. There is no replication of rule circuitry for the dif- 
ferent classes. Achievement of this effect in a more standard 
type of connectionist system would cause considerable 
difficulty. 

Ref. 4 describes versions of Rule-Some and Rule-All in 
complete detail. That paper also describes the rule 
Note-Next that fires three times, once in response to each of 
the propositional CM subconfigurations at the top of Figure 
4. These state the order in which the premise 
subconfigurations are to be considered. (The THEN symbol 
denotes the class of all conceivable succession situations.) 
Note-Next moves highlighting of two special sorts around in 
the CM with the result that Rule-Some and Rule-AN are mg- 
gered in the right order. 

Rule-Some checks the conclusion in our example as fol- 
lows. It marks all the white registers in chemist and house- 
holder tokens with special highlighting flags 
"member-of-classl" and "member-of-class2" respec- 
tively. Part of this marking process is to spread such 
highlighting to all registers with the same symbol. All that is 
left to do is to detect the presence of some register marked 
with both "member-of-classl" and "member~of~class2". 
We have here a traditional marker passing process, but work- 
ing over highly temporary data structures. 



Simulation Results 
Elapsed simulated time depends on values for signal-travel 
distances, signal-travel speeds, and combinatorial-logic 
delays (e.g. within CM registers) that are based on broad 
assumptions about how Conposit could be realized as a bio- 
logically reasonable neural net (Ref. 4), rather than just as an 
abstract connectionist net. The main parameter values are as 
follows: 

distance between rule circuitry and the CM: 50mm 
long distance transmission speed: 1 Omm/ms 
basic time for register's response to a signal: 1 Oms 
overhead of random rtgister selection: 5ms 

The values of the last two parameters listed appeal to fast 
non-spike inter-neural communication in local circuits (see 
Ref. 4 for a discussion). Notice the long distance of 5 cen- 
timeters between CM and rule circuitry. The lOmm/ms 
value appears to be about the maximum speed for 
transmisison of neural impulses over long distances in cortex. 

The following average timings were observed over one 
set of twelve experiments conducted (one syllogism per 
experiment). 

processing of a whole syllogism 2526ms 
detection phase of a rule 98ms 
a Note-Next execution 76ms 
a Rule-SornelAll execution on first premise 905111s 
a RuleSomelAll execution on second premise 602ms 
a Rule-SomelAll execution on conclusion 180ms 

CONCLUSION 
The average syllogism-processing time of about 2.5 seconds 
seems small enough to be psychologically realistic. It is hard 
to discern timings for human syllogistic reasoning in 
Johnson-Laird's experimental reports, partly because of the 
need for a natural language understanding phase. The experi- 
ments all appear to have allowed a time much longer than 
two and a half seconds. E.g. in the experiments of Ref. 11 
subjects were given either ten seconds or as long as they 
liked. According to figures of Bara (personal communica- 
tion), the faster human subjects work a simple syllogism in a 
time comparable to the two and a half seconds needed by 
Conposit.) 

It is probably not biologically plausible for rules like 
Rule-Some and Rule-All to be hardwired as in the current 
Conposit version, partly because of the difficulty of seeing 
how the rule circuitry could be developed on the basis of 
experience. However, the basic processing techniques 
developed will be central also in more realistic systems in 
which a high-level production rule such as Rule-Some would 
itself be a data structure in one of a possibly large set of 
CMs (Refs. 4,7). In such systems, which are under investiga- 
tion, individual rule execution could be faster because of 
faster subconfiguration creation, and because there would be 
the possibility of massive parallelism among rules in dif- 
ferent CMs. 

The power and flexibility of Conposit arises from its 
Relative-Position Encoding and Pattern-Similarity 
Association techniques for encoding data structures. These 
techniques arc unusual for connectionism, although the are 
loosely related to methods found elsewhere (see Ref. 6). 

ACKNOWLEDGMENTS 
This research is being supported in part by USAF under grant 
AFOSR-88-0215 and by NASA through the MPP Working 
Group. 

REFERENCES 
1. Barnden, J.A. On association techniques in neural 

representation schemes. Procs. 5th Conf. of the Cogni- 
tive Science Society, Rochester, NY, 1983. 

2. Barnden, J.A. On short-term information processing in 
connectionist theories. Cognition and Brain Theory, 7 
(I), 1984. 

3. Barnden, J.A. Diagrammatic short-term information 
processing by neural mechanisms. Cognition and Brain 
Theory, 7 (3&4), 1985. 

4. Barnden, J.A. Complex cognitive information- 
processing: a computational architecture with a connec- 
tionist implementation. Tech. Rep. 211, Computer Sci- 
ence Dept., Indiana University. 1986. 

5. Barnden, J.A. Simulation of an array-based neural net 
model. In Proceedings of the First Symposium on the 
Frontiers of Massively Parallel Scientific Computation. 
NASA Conference Publication 2478. 1987. 

6. Barnden, J.A. The right of free association: relative- 
position encoding for connectionist data structures. 
Procs. 10th Annual Conf. of the Cognitive Science Soc. 
Hillsdale, N.J.: Lawrence Erlbaum, 1988. 

7. Barnden, J.A. The power of some unusual connectionist 
data-structuring techniques. In J.A. Barnden & J.B. 
Pollack (Eds), Advances in Connectionist and Neural 
Computation Theory, Vol. 1,  Norwood, N.J.: Ablex, to 
appear. 

8. Dyer, M.G. Symbolic NeuroEngineering and natural 
language processing: a multilevel research approach. In 
J.A. Barnden & J.B. Pollack (Eds), Advances in Con- 
nectionist and Neural Computation Theory, Vol. I ,  Nor- 
wood, N.J.: Ablex, to appear. 

9. Johnson-Laird, P.N. Mental models. Harvard Univer- 
sity Press: Cambridge, Mass., 1983. 

10. Johnson-Laird, P.N. Reasoning by rule or model? 
Procs. 10th Annual Conf. of the Cognitive Science Soc. 
Hillsdale, N.J.: Lawrence Erlbaum, 1988. 

11. Johnson-Laird, P.N. & Bara, B.G. Syllogistic inference. 
Cognition, I6 (I), pp.1-61, 1984. 

12. Johnson-Laird, P.N., Oakhill, J. & Bull, D. Children's 
syllogistic reasoning. The Quaterly J. of Experimental 
Psych., 38A, 35-58, 1986. 



PRECEDING PAGE BLANK NOT FlLMED 

Rlassively Parallel Computing Applied to the 
One-Dimensional Bin Packing Problem 

Judith 0. Berkey 

George Mason University 
Fairfax, Virginia 

ABSTRACT 

This paper presents a parallel bin packing algorithm 
for packing N 2 n2 pieces in a massively parallel com- 
puting environment of n2 processors operating in 
SIMD mode. A new heuristic approach is developed 
that improves packing efficiency by a careful structur- 
ing of the input. Results are compared with parallel 
versions of the traditional Next Fit and First Fit pack- 
ing algorithms. 

Keywords: Bin packing, SIMD Algorithms, Parallel 
Processing, Analysis of Algorithms 

INTRODUCTION 

Bin packing is an optimization problem that plays an 
important role in many combinatorial problems exist- 
ing in the areas of computer science and operations re- 
search (Ref. 3). In this problem, a set of n objects hav- 
ing weights between 0 and 1 is placed in a set of unit 
bins so as to minimize the number of bins used. The 
optimal solution for this problem is known to be NP- 
Hard but a number of heuristics have been developed 
that find solutions with provable and acceptable bounds 
(Ref. 2). 

This paper presents a parallel algorithm for packing 
N 2 n2 pieces in a massively parallel computing envi- 
ronment of n2 processors operating in SIMD mode. 
The new heuristic approach that is developed utilizes a 
grid topology that structures the input to increase pack- 
ing efficiency without sorting the data set. The results 
of implementing this algorithm on a Connection Ma- 
chine 2 System are compared with the results obtained 
from parallel versions of two traditional bin packing 
algorithms. 

A parallel algorithm must yield an acceptable solution 
while maximizing the utilization of the processors and 
minimizing the total interprocessor communication 

time (Ref. 4). It  is therefore important to choose an a p  
propriate representation for both the pieces and the 
bins. The algorithm should distribute the pieces to the 
processors in such a manner that both the movement of 
pieces between processors and the packing time for the 
bins is minimized. The grid topology that we use in- 
creases the packing efficiency while decreasing the 
amount of internode communication that is  neces- 
sary. 

THE GRID PACK AU30lUTHM 

The algorithm begins by dividing the pieces into two 
classes. Pieces that are between 0.5 and 1.0 in size are 
labeled "bin starter" pieces. The remaining pieces, 
that is, those with size between 0.0 and 0.5, are "bin 
filler" pieces. The goal of the algorithm is to pack piec- 
es in the bin starter class of size pi into a bin with ca- 
pacity as near as possible to (I-pi). Note that the pieces 
do not have to be presorted. The division can be done as 
part of the data input step. 

The bin starter pieces are packed first. Observe that 
since pieces of size greater than 0.5 cannot be com- 
bined, each one must be packed in a separate bin. 
Thus, at  this point, the packing is optimal. This pack- 
ing is done in parallel and the resulting bins are 
maintained in each processor's local memory. Then 
the algorithm packs the remaining pieces by matching 
pairs of bin starter and bin filler pieces whose com- 
bined size fills a bin as completely as possible. We 
want to minimize the amount of empty space remain- 
ing in the bin after a packing cycle has been per- 
formed. It has been shown that processing the pieces in 
order of decreasing size will increase the packing effi- 
ciency (Ref. 2). Our structuring of the input allows us 
to do this without actually sorting the input data. 

Packing continues in this fashion until all bin filler 
pieces have been processed. A piece that cannot be 
packed in any bin in the set of bins resulting from the 
bin starter packing is labeled as "well-traveled." The 



well-traveled pieces will be combined using a next fit Figure 2 is an example of the piece input for a set of one 
packing in the final phase of the algorithm. The pack- hundred input pieces. In our sample data the piece siz- 
ing algorithm is presented in Figure 1. es were randomly generated and are evenly distribut- 

ed between 0 and 1. 

Algorithm Parallel-Pack 

begin 
in parallel 

send pieces to processors 
pack bin starter pieces 

Pack-Loop 
begin 

find all bins that can pack bin-filler piece 
then 

pack piece in the smallest cap. bin 
else 

mark piece as well-traveled 
until all pieces have traveled 

end 
if piece is well-traveled 

then 
Next-Fit pack piece 

end 

Figure L Grid Pack Algorithm 

IMPLEMENTATION 

The Grid Pack Algorithm was implemented on a Con- 
nection Machine 2 in *Lisp. The input data, consisting 
of a list of pieces, was divided as described above and 
placed in a two-dimensional array on the host ma- 
chine. Each row of the array received the pieces that 
had sizes within a specified interval. These intervals 
are determined by an analysis of the piece size distri- 
bution. 

The packing loop is performed in parallel by all active 
processors. The size of each bin filler piece is broadcast 
in turn to all processors containing bin starter pieces. 
From the set of all processors that can pack the piece, 
the processor with the maximum self-address is se- 
lected to pack it. When all bin filler pieces have been 
processed, the well-traveled pieces are combined into 
new bins using an iterative next fit packing procedure. 

Initially, the 50 bin starter pieces were packed into 50 
bins. Forty-seven of the bin filler pieces were added to 
these bins and one new bin was required to pack the 
three well-traveled pieces for a total of 51 bins. The o p  
timal packing of this piece set required 49 bins. 

The algorithm was tested with sets of data of size 100 
and 1000. The results presented in Table 1 are the aver- 
age of 5 runs for a data set of size 1000. It compares the 
results obtained by the Grid Pack algorithm to those ob- 
tained by using parallel versions of the traditional 
Next Fit and First Fit bin packing heuristics. The Par- 
allel Next Fit and Parallel First Fit algorithms that 
were used for comparison are adaptations of those pre- 
sented in Reference 1. When the input was unsorted, or 
sorted into nondecreasing sequence, the Grid Pack al- 
gorithms resulted in a packing that was much better 
than the packing obtained with either Parallel Next Fit 
or Parallel First Fit. In the case where the pieces are 
sorted into nonincreasing order, the packing from 
Grid Pack was still much better than the Parallel Next 
Fit packing and was comparable to the Parallel First 
Fit packing. 



Algorithm W b i n s d  

Grid Pack 501 

Next Fit 676 
unsorted 

First Fit 535 
unsorted 

Next Fi t 639 
increasing 

First Fit 627 
increasing 

Next Fit 640 
decreasing 

First Fit 497 
decreasing 

Table L Packing Resulta 

CONCLUSIONS 

Bin packing algorithms can be efficiently implement- 
ed in a SIMD processing environment. The use of data 
partitioning to initialize the packing appears to be a 
practical method of allocating the packing workload to 
a set of parallel processors while maintaining the in- 
tegrity of the packing algorithm. 

This study supports our contention that parallelism of- 
fers opportunity for improvement in the efficiency of 
packing algorithms and that the SIMD model of com- 
putation with its data parallel programming approach 
is appropriate for bin packing problems. 

ACKNOWLEDGEMENTS 

1. Berkey, J.O., and Wang, P.W. "An Initial Study of 
Some Parallel Bin Packing Algorithms," to be pub- 
lished. 1989. 

2. Coffman, E.G., Jr., Garey, M.R., and Johnson, 
D.S., "Approximation Algorithms for Bin-Packing- 
An Updated Survey," in Algorithm Design for Com- 
puter System Design, G. Ausiello, M. Lucertini, P. 
Serafini, eds., Springer, New York, 1984. 

3. Horowitz, Ellis, and Sahni, Sartaj, Fundamentals 
of Computer Algorithms, Computer Science Press, 
Inc., Rockville, MD, 1978. 

4. Quinn, Michael J., Designing Efficient Algorithms 
for Parallel Computers, McGraw-Hill Book Company, 
New York, 1987. 

The author would like to thank the Naval Research La- 
boratory in Washington, D.C., for providing access to 
the Connection Machine 2 System. 



~REcED\:DING WWK NOT F i i f l i D  

SURFACE MODELING ALGORITHM FOR PYRAMID ARCHITECTURES 

D. Britton 

George Mason University 
Trident Systems Inc. 

Fairfax, VA 

ABSTRACT 

To accurately model a surface, such as a landscape, a high density of 
three dimensional locations must be found. This data is not always 
available or easily extracted from a surface. Given a few critical locations 
on the surface, level of detail (surface density), and a roughness factor 
the random midpoint displacement algorithm produces a realistic 
looking approximation of the surface. A parallel version of this 
algorithm has been developed to take advantage of the similarities 
between the structure of the algorithm and massively parallel machines 
with pyramid (quadtree) architectures. 

Keywords: Pyramid Architecture, Massively Parallel, Surface 
Modeling, Random Midpoint Displacement. 

INTRODUCTION 

The proposed random fractal surface algorithm, associated with 
Fournier, Fussell, and Carpenter (Ref. I), is designed to be used with 
massively parallel (greater than 1000 processing elements) pyramid 
architectures in a three dimensional environment. In following sections 
the general algorithm is explained, followed by an explanation and - comparison of the sequential and parallel algorithms. 

The General Algorithm 

Given four three dimensional locations forming a convex (in the 
horizontal plane) polygon, the midpoints along each of the lines forming 
the polygon and the center of the polygon are found. The center is 
randomly displaced in the vertical direction with a Gaussian distribution 
of mean-square variance proportional to the scale, determined by the 
sue  of the region and depth of recursion, and factors which characterize 
of the surface (Ref. 2). Each of the quadrants, formed by the subdivision 
of the four locations, are subdivided in the same way. This subdivision 
continues until the specified depth of recursion has been reached. The 
area subdivision and midpoint displacement are illustrated in Figure 1. 

Q .......................... Quadrants 
M .......................... Boundary Midpoints 
C ........................... Center Midpoint 
P ........................... Points on Surface 

Figure 1. Area Subdivision and Midpoint Displacement. 

Slngle Processor Algorithm 

To implement this algorithm on a machine with a single processor, much 
overhead is involved in the recursion (four calls to itself). In addition, 
the single processor solution is inefficient for this type of algorithm since 
it has to perform each calculation for each area subdivision and 
displacemint sequentially. This inefficiency becomes exponentially 
worse as the depth of recursion increases. The number of iterations of 
the algorithm on a machine with a single processor grows exponentially 
with depth. 

n-1 
# iterations = Z 4' 

k -0  

The characteristics of the surface can be specified using the 'H' 
(roughness) factor and the 'DEPTH' (the depth of recursiodamount of = (4*'Pth - 1 ) ~  (2) 
detail). The 'H' factor determines how much each location can be 
randomly displaced in a vertical direction from its center location 
between the surrounding points. The 'H' factor, therefore, determines where 'depth' is the maximum depth of recursion and 'k' is the curent 
how randomly high or low the surface may rise or dip. Equation 1 defines level. 
the vertical displacement at the depth of recursion 'depth' with 
roughness factor 'H', and 'RND' a gaussian variable with mean = 0 and 
variance = 1. 



The Relationship of the Pyramid Archltedurc to the Algorithm 

The pyramid structure has a direct relationship to the structure of the 
algorithm. Each processing element has a parent processor (except the 
one at the apex) and four children processors (except the ones at the 
base). Since the algorithm calls itself four times within itself, each of the 
four calls (branches) can be handled simultaneously by the children 
processors. This match between the pyramid structure and the strudure 
of the algorithm greatly improves the performance. 

The Parallel Algorithm lor Pyramid Architectures 

A patch (defined by four three dimensional locations on the surface) is 
entered into the processor at the apex of the pyramid and processed 
downward towards the base of the structure. During this processing, 
each processor calculates the midpoints and the center (as described by 
the general algorithm) of the patch passed from the parent processor on 
the level above and vertically displaces the midpoint randomly with a 
mean square variance proportional to the roughness factor and inversely 
proportional to the current level of detail, thus subdividing its patch into 
four smaller patches. The processor passes each of the smaller patches 
to the corresponding child processor on the level below. This process 
continues until the desired level of detail is reached. The randomness 
among the processors on a particular level is achieved by performing a 
random number algorithm simultaneously on a plane of seeds residing 
in the processors at that level. The number ofiterationsof this algorithm 
is 

# iterations = depth (3) 

where 'depth' is the depth of recursion (level of detail). 

However, if the depth of recursion is greater than the number of levels 
of the pyramid structure, then the equation defining the number of 
iterationsgets complicated. Each time the baseof the pyramid structure 
is reached, the surface at the base must be divided into quadrants, and 
each quadrant fed back to one lcvel above the base. Using this technique 

n-1 

# iterations = LP + (depth-LP)' Z 4k/4(LP-1) 
k = l .P 

Comparison Behveen the Sequential and Parallel Algorithms 

Since the processors at each level of the pyramid architecture perform 
the same calculations concurrently on individual patches, a level of detail 
can be added to the entire surface during each iteration of the parallel 
algorithm. A sequential machine requires 2%'' iterations at each level 
ofdetail for a totalof (4"-1)D iterationsfor asurface of 'n'levelsof detail. 

If the depth of recursion is less than or equal to the number of levels in 
the pyramid structure, then the number of iterations using this parallel 
algorithm grows directly with depth. If the massively parallel pyramid 
machine uses a bit serial processing element, it operates on one bit of 
the numbers at a time. Most single processor machines can work on at 
least eight bits at a time. However, in comparison to an eight bit machine, 
the pyramid architecture outperforms it at a depth of recursion of three 
(which is not very deep) and greater. After this point, the number of 
iterations increases linearly with a slope of eight, whereas the single 
processor machine increases exponentially. 

However, if the depth is greater than the number of levels, the 
performance depends upon the difference between the maximum depth 
of recursion and the number of levels in the structure. The number of 
iterations using the algorithm on a pyramid architecture grows 
exponentially with the truncated ratio of the depth to the number of 
levels. Therefore, as the ratio of the number of levels in the structure to 
the depth of recursion increases, the elEciency inweases. If this ratio is 
greater than or equal to one, maximum efficiency is achieved. Also, if 
the number of levels in the structure were only one, the performance of 
this algorithm would be equal to that of the sequential algorithm, 
independent of the depth of recursion. Therefore, the depth of 
recursion must be greater than two and the number of levels must be at 
least as great as the depth of recursion to take advantage of the parallel 
algorithm on a massively parallel machine with a pyramid architecture. 

1. Fournier, A., D. Fussell, and L. Carpenter, "Computer Rendering of 
Stochastic Models," Communications of the ACM, vol. 25, no. 6, June 
1982, pp.371-384. 

2. T. Jeffery, "Mimicking Mountains," BYTE, vol. 12, no. 14, December 
1987, pp.337-344. 

where 'n' is I depth/LP 1, 'k' is the current level, and 'LP' is the number 
of levels in the pyramid structure. 



A HOMOGENEOUS COMPUTATIONAL MODEL FOR SPATIAL INFERENCE ON 
MASSIVELY-PARALLEL ARCHITECTURES 

ABSTRACT 

Mark J. Carlotto 
The Analytic Sciences Corporation (TASC) 

55 Walkers Brook Dr. 
Reading, MA 01867 

A computational model for 2-d spatial inference on 
massively parallel SIMD architectures is described. In the 
model, spatial information is represented by three basic types of 
parallel variables or pvars: label maps which assign unique 
numbers to sets of related processors (e.g., the largest cube 
address of the set of processors representing a connected 
region), feature maps which contain the property values of 
related sets of processors, and hypothesis maps which indicate 
the probability, membership, belief, etc. that a processor set 
belongs to a particular class. Spatial inference involves the 
application of parallel operators to pvars, e.g., labeling operators 
to assign unique labels to related groups of processors that 
belong to the same class, spatial operators to compute features of 
connected regions, and inference operators to assign classes to 
regions based on their properties. The application of the model 
to a geographic information remeval problem is described. 

1. INTRODUCTION 

In geographic information systems, image understanding 
systems, and other systems that reason about spatial data, a 
variety of representations are used. Many employ some form of 
iconic representation (label maps, spatial occupancy arrays, quad 
trees, etc.) to explicitly delimit the spatial extent of regions in the 
image space. Iconic representations are usually complemented 
by some type of non-spatial or symbolic representation such as 
an attributed graph where the nodes in the graph correspond to 
regions in the image.The symbolic representation describes 
properties of and between regions, and provides a place to store 
hypotheses, and other summary information about the regions. 
Traditionallv. s~a t ia l  reasoning has been viewed as a process 
that involves thk repeated tranifer of information between spatial 
and symbolic representations. An alternate computational model 
is described here that is based on a uniform representation for all 
spatial information (iconic and symbolic) using parallel variables 
organized in a 2-d grid. 

The organization of the paper is as follows. Section 2 
summarizes the salient features of the Connection Machine and 
the *Lisp programming language. Section 3 presents a data- 
parallel model for spatial reasoning. Section 4 describes some of 
the operators that have been implemented to date. Application of 
the model to a geographic information retrieval problem is 
presented in Section 5. 

2. THE CONNECTION MACHINE AND *LISP 

The Connection Machine (CM) is a data-parallel 
computing system containing up to 64K physical processors 
which can act like millions of virtual processors. The CM, 
originally conceived by Hillis (Ref. l) ,  is built by Thinking 
Machines Corporation (TMC). A description of the CM system 
can be found in Ref, 2. The CM-2 contains 64K bits per 
physical processor and can perform 32 bit arithmetic at a rate of 
2500 MIPS for a 64K system. The current system configuration 
at TASC is a 8096 processor CM-2 system with a Symbolics 
front-end processor and a frame buffer that allows the contents 
of the CM to be viewed at rates up to a gigabit per second. 

*Lisp, a parallel dialect of Common Lisp, and PARIS, 
the assembly language of the CM are provided within the 
Symbolics software environment. *Lisp (Ref. 3) is based on 
objects known as parallel variables or pvars which we shall 
denote in uppercase Greek letters, e.g., A. Elements of pvars are 
processors that may be accessed by their cube address (i.e., 
relative to the hypercube) or their grid address, a(x,y). 
Elements of pvars may be signed and unsigned integers, variable 
precision floating point numbers, and booleans. The operation 
(!! a ) returns a pvar in which the value of a has been broadcast 
to all processors in the currently selected set. Macros such as 
*when, *cond, and *if select subsets of processors. For 
example the form (*if (=!! A B) (!! 1) (!! 0)) returns a pvar that 
contains ones in those elements in which A and B are equal and 
zeros elsewhere. Functions and macros that operate on all 
selected processors in parallel are identified by !! suffixes, e.g., 
(+!! A B). Reducing operations are denoted by a * prefix and 
return a value from the currently selected set, e.g., (*min A). 
Relative addressing in the grid is also provided. The form 
(pref-grid-relative!! A (!! -1) (!! 0)) returns a pvar that is equal 
to A shifted one position to the left. The reader is referred to 
Ref. 3 for additional information on *Lisp. 

3. DATA-PARALLEL MODEL FOR SPATIAL REASONING 

Fig. 1 is the proposed computational model for spatial 
reasoning in 2-d domains that contain objects that may belong to 
K possible classes. Such a model is appropriate for many image 
understanding and geographic information processing 
applications. It involves I) ,  representing spatial data (label 
maps, features, and hypotheses) by 2-d pvars and 2), viewing 
the processes of labeling, segmentation, feature extraction, and 
spatial inference as data-parallel transformations between pvars. 



LABELING 
OPERATORS 

INFERENCE Features FEATURE 
OPERATORS EXTRACTION 

OPERATORS 

. 

Fig. 1 Computational model 

+ 

The organization and representation of spatial data using 
pvars is shown in Fig. 2. Label maps A are pvars that are used 
to explicitly delimit the spatial extent of regions (or edges) that 
may or may not be spatially connected. Labeling operators, 
L(R) 4 A assign unique numbers to sets of related processors 
(e.g., the largest cube address of the set of processors 
representing a connected region). Features are pvars that are 
used in conjunction with label maps to store properties of 
regions (e.g., area, distance from) or simply by themselves to 

L 

region 

Fig. 2 Organization and representation of spatial 
data using parallel variables 

SEGMENTATION 
OPERATORS 

l v 

store properties derived from other properties (e.g., the local 
man of an image). In pvars that &scribe region properties, the 
value for each region is replicated in all the processors that 
belong to the region. Feature extraction operators P(A, @') 4 
compute features from label maps and/ other features. T Conversely, segmentation operators f- ( a )  4 A can be viewed 
as inverse operations that compute label maps from features. 
Hypotheses R describe the degree to which regions belong to 
various classes. Inference operators W(0) 4 R compute 
hypothesis maps from features. - 

Labeling and segmentation operators assign unique 
numbers in the range from one to the number of processors to 
each region in the image. All of the pixels in a region with label 
h can then be easily accessed in unit time within forms such as 

-1 
f m  n k  

(*when (=!! A (!! k)) &body). 

w 

4 A 
L 'n 

Feature extraction and inference operators access regions by the 
label map. For example, the area $ of a region with label k can 
be computed as 

Hypotheses 

where the result is broadcast to each processor in the currently 
selected set. Inference operators can then compute hypotheses in 
parallel, e.g., 

Label maps 

(*set R (+!! R (abs!! (-!! ( a  (!! b))) 

in an amount of time proportional to the number of features. 

To see how the above model applies to spatial reasoning 
consider the following examples. In a black-and-white image 
interpretation application, the input 0 is segmented into 
homogeneous connected regions by some type of region 
grower, f -I(@) + A. Various features related to the average 
brightness, texture, size, and shape of the regions and the spatial 
relationships between regions are computed from the label map 
and image, Pm(A, a )  4 Om. These features are then evaluated 
against a set of constraints in order to accumulate evidence for 
candidate object categories such as buildings, roads, etc., 
wk(@m) + Qk. 

v 

In a geographic information system application, the input 
might be a database that provides certain kinds of information 

- 

I v 
Wk 

(sdace  material type, soil drainage characteristics, slope, etc.). 
The objective is to infer other kinds of spatial information, e.g., 

~- @m 4 

likely locations for a nuclear waste site based on constraints such 
as soil drainage characteristics, distance from populated areas or 
bodies of water, etc. The inputs, represented by a set of spatial 
occupancy arrays (Rk] are labeled L(Rk) -+ Ak and are used to 
compute properties such as the area, compactness, containment, 
and distance between regions, fm(Ak) + @ A measure of % the suitability of various areas Wk'(omko) + can be used 
to determine the best places (if any) to put the nuclear waste site. 
This second type of application is pursued further in Section 5. 

f m  

4. DATA-PARALLEL OPERATORS 

This section discusses some basic operators that have 
been implemented to date for the purpose of developing the ideas 
introduced in this paper. Additional operators are currently under 
development and improved algorithms, e.g., based on scanning 
(Refs. 4 and S ) ,  will be added in the future. 



A connected components labeler based on the "brush 
fw" algorithm was implemented. Initially, each processor in the 
output pvar A is assigned its cube address, i.e. a number 
between one and the number of processors, NZ. Then, for all 
processors whose input pvar R = {o(x,y)) is non-zero, if 
o(x,y) = o(x+u,y+v) where (x+u, y+v) are the addresses of the 
4- or 8-nearest neighbors of (x, y), the output is updated as 
h(x,y) = max h(x,y), X(x+u,y+v)). The process is repeated I until ~ f + l  = A  . The run time is proportional to the size of the 
largest connected region, which for small connected regions or 
large highly irregular regions is comparable to the more complex 
scan-based algorithms described in Refs. 4 and 5. For large 
regularly shaped regions, significant improvement can be 
obtained using scanning to propagate the maximum label up, 
down, left, right, and along diagonal connected segments. 

Spatial operators include those that compute properties of 
individual regions (unary operators) and those that compute 
information about relationships between two or more regions 
(n-ary operators). Unary operators that compute geometrical 
properties such as the area, perimeter, and centroid of connected 
regions have been implemented using a counting approach. As 
an example, the area is computed by stepping through each 
unique label and adding up the number of processors in the 
currently selected set as described earlier.?he complexity is thus 
of the order of the number of regions. Relational operations such 
as the minimum distance between two sets of connected regions 
are performed by computing the distance from any point in one 
set to all image pixels. The method involves propagating the 
label with the minimum distance and either the minimum 
distance or the address of the nearest processor. The minimum 
distance to each connected region in the other set is obtained by 
stepping through all labels ana executing a *min over the 

- 

minimum distances within the currently selected set. The 
complexity is of the order of the number of regions and the size 
of the largest region. 

The set of feature pvars can be viewed as an image of 
feature vectors. This motivates an inference strategy based on a 
decision theoretic pattern classification approach. The inference 
operator implemented computes a similarity measure between a 
feature value or constraint and a feature pvar, and accumulates 
the similarity measure across all features. Constraints have the 
form ( a  0 $0 w) where is a feature pvar, 0 is a parallel 
version of the standard Common Lisp predicates, +o is a 
number, and w is a weighting factor. A constraint returns a pvar 
that contains zeros in those processors that satisfy the predicate 
and w I $(x,y) - $o I in the others. The resultant pvar can be 
add to the results from other constraints to produce a score for % the k class Rk. This is accomplished in an amount of time that 
is proportional to the number of features or constraints. For K 
classes, the process is repeated for each set of feature prototypes 
or constraints. The (Rk) can then be used as the basis for 
assigning the "best" class, in some sense, to each region. 

5. CASE STUDY: GEOGRAPHIC INFORMATION SYSTEM 

An example illustrating the application of our model to 
geographic information processing is shown in Fig. 3. The 
objective is to find regions that satisfy certain terrain constraints. 
The area of interest (a) is 512x5 12 pixels in size and contains the 
following categories: water, wetlands, coniferous and deciduous 
trees, bare soil, grass, agriculture, main, and secondary roads. 
The CM is configured as a 512x512 grid with a virtuaVphysical 
processor ratio of 32: 1 thus providing up to 2048 bits per 
processor. First, coniferous and deciduous nee categories are 
merged and intersected with regions that are not main roads (b) 

and a label map computed. Information about tree legions such 
as the area, compactness, and distance between groups of trees 
can then be com~uted (c). Information about trees relative to 
other ~ate~ories.(e.~., histance from, containment, intersection, 
adjacency, etc.) is determined by marking those categories in 
working memory (d), computing a label map to uniquely 
identify each connected region, and applying the appropriate 
spatial operator, e.g., (e) is the minimum distance to main roads. 

The result in (f) shows the five best forested areas given 
the constraints: 

(area > 10000 0.5) 
(compactness > 0.05 0.25) 

(distance-from-water-or-wetlands > 5 0.75) 
(distance-from-main-roads c 1 1.0) 

(distance-from-secondary-roads c 1 0.5) 

The result in (f) was obtained by ranking scores and selecting 
the top five areas (i.e., the five "closest" areas with respect to the 
decision legion defied by the constraints). 

6. SUMMARY 

Massively parallel architectures motivate new approaches 
to old problems. While parallel processing solutions are almost 
always faster (they'd better be), in some cases they may even be 
simpler than those originally developed on serial machines. A 
homogeneous data-parallel model for 2-d spatial inference has 
been described that represents spatial information in a uniform 
manner by parallel variables organized in a 2-d grid. The model 
is simpler since it relies on a single representation as opposed to 
the heterogeneous (iconic and svmbolic) re~resentations used in 
more conventional systems. ~n-initial appli'cation of the model to 
a geographic information processing problem was presented. 

Future efforts will address other spatial reasoning tasks 
such as image interpretation and will involve developing 
additional data-parallel operators. We also plan to investigate the 
problem of handling images whose size exceeds the maximum 
number of virtual processors available in a given system. 

REFERENCES 

(1) W.D.Hillis, TheConnection Machine,T Press, 
Cambridge, MA, 1985. 

(2) L.W.Tucker and G.G.Robertson. "Architecture and 
applications of the Connection Machine," -, 
Vol. 21, No. 8, August, 1988. 

(3) * p , T h i n k i n g  
Machines Corporation, Cambridge MA, 1987. 

(4) J.Little, G.E.Blelloch, and T.Cass, "Parallel Algorithms 
for computer vision on the Connection Machine," 

e on C-, pp 587- 
591, 1987 

(5) G.E.Blelloch, "Scans as primitive parallel operations," 

( 



Fig. 3a Thematic map showing trees, water and wetlands, 
roads, and open areas (bare soil, grass, and agriculture) 

Fig. 3b Forested regions partitioned by main roads 

Fig. 3c Halftone rendition of the area of forested regions Fig. 3d Main mads 

Fig. 3f Five best forested regions for given constraints 

326 ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



SCAN LINE GRAPHICS GENERATION 
ON THE MASSIVELY PARALLEL PROCESSOR 

John E. Dorband 

NASA/Goddard Space Flight Center1635 
Greenbelt, MD 2077 1 

ABSTRACT 

This paper describes how we have implemented a scan line 
graphics generation algorithm on the Massively Parallel Roces- 
sor (MPP). Pixels are compute in parallel and their results are 
applied to the Z buffer in large groups. To perform pixel value 
calculations, facilitate load balancing across the processors and 
apply the results to the Z buffer efficiently in parallel requires 
special virtual routing (sort computation'f) techniques devel- 
oped by the author especially for use on single-instruction 
multipledata (SPMD) architectures. 

Keywords: Graphics, scanline, Z-buffer, sorting, son computa- 
tion, SIMD, massively parallel, MPP, load balancing. 

INTRODUCTION 

A scan line graphics generation algorithm basically determines 
the brightness of pixels in a simulated 3-D scene a scan line at a 
time. The brightness value of a pixel is based on the surface 
brighmess of simulated polygon which would be seen through 
the pixel. Triangles are the polygons used here. Only the triangle 
nearest the pixel on the simulated viewing screen will be seen 
through the pixel. Therefore a Z buffer is setup to accumulate the 
values of theclosest polygons tothe viewing screen. It is actually 
not necessary toonly process one scan line at a time. On the MPP, 
a subset of triangles at a time are processed for all scan lines that 
these triangles cover. This is done by projecting each mangle 
onto the viewing screen and determining which scan lines it 
covers. Then the pixels of each scan line that the mangle covers 
is determined. This results in pixels of different values and 
distances from the viewing screen which are loaded into the Z 
buffer. When all mangles are processed the Z buffer can be 
displayed as an image. 

To efficiently compute pixel values in parallel an efficient load 
balancing method was developed so as many processors as 
possible could be kept busy. This is of importance when greater 
parallelism can be realize by duplicating data into more proces- 
sors. This is made complex when it is determined that data in 
certain processors is of no more computational use, randomly 

U.S. Government Work. Not protected by 
U.S. copyright. 

leaving processors without work to do. Therefore the data must 
be moved in such a way that it is known that when the data is slid 
to new processors it will not be written over useful data. This 
movement or compression is done by sorting. Although effi- 
ciency of processor usage is of primary interest here, efficiency 
of data movement is also of importance. Therefore the ineffi- 
ciencies in the use of sorting are also considered. This has 
prompted the modification of the sorts used. This involves a 
preprocessing (scout) step which determines how much of the 
sort is necessary to provide sufficient contiguous space to dupli- 
cate the data. Once this has been determined a sort is used to 
compress the data which can be terminated early based on the 
information derived by the scout step. This then allows one the 
ability to reasonably efficiently keep as many processors as 
possible busy. 

PROJECTION CALCULATION 

The projection calculation converts the three coordinates of the 
three comers of a mangle in a 3 dimensional viewing space into 
two coordinates on the viewing screen and a range from the view 
point. Given the coordinates of the mangle ( XI, Y,, Z,, X,, Y,, 
&, X,, Y,, Z,), the coordinates of the view point (&, Y,, q), and 
the projected coordinates (X',, Y',, R,, X',, Y',, &, X',, Y',, R, 
)the following equations do theconversion from 3-Dcoordinates 
to2-D projected coordinates. The f i t  set of equationsrotates the 
triangles in space so that the viewing axis lines up with the Z axis. 
Thus the view point will lie along the Z axis. 

where x., y ,  and zv are normalized values of X,, Y,, and Z,,. 

where y", and z " ~  are normalized values of Y",, and Z",. 



Thus the rotated coordinates of a mangle is X"',, Y"',, Z',. X',, 
Y"',, Z"',, X"',, Y"',, and Z"',. The rotated triangles are 
projected on to the screen which is the distance R,from the view 
point. The following equations give the values for X', Y', and R' 
for each comer of a mangle. 

R , RV=1/XtrYttZZ, Xt=X''f R' r=rt*- 
R,' Rv ' 

and R =d (X"' -x~)~+(Y"  -Y,) 2+(Z'1' -ZJ . 

A brighmess value (B) is also calculated for each triangle. The 
actual means of calculating it is not important, only that it exists 
and must be included with the rest of the information for each 
triangle. 

SCAN LINE DETERMINATION 

Once the projection calculations have been performed each 
triangle will be described by an X and Y coordinate and a range 
for each comer and a brighmess for the entirc triangle. This 
information will make up a triangle description record. These 
records will be duplicated so that there exists one copy of a 
triangle's description record for each scan line that intersects the 
triangle's projection onto the screen. 

Assume that scan lines are parallel tothe X axis. Then the corners 
of a mangle with the largest and smallest Y values define the 
range of scan lines that the triangle intersects. By recursively 
dividing this range in half and making records comsponding to 
the two halves, we will eventually have a record for each scan line 
in the range. The difficulty arises when this has to be done in 
parallel, especially when it is done on a large array of processors, 
like the MPP. The number of scan lines that a mangle overlaps 
is not the same for all triangles. This means that the rate of 
creation of new records is uneven across the processors and some 
sort of load balancing must be performed if one is to efficiently 
utilize large arrays of processors. 

LOAD BALANCING 

Load balancing consists of dstr ibuting records across the 
processors when some processors contain more than one record. 
This is caused by creating more records in one area of the array 
of processors than in others. One can do this by moving all the 
records to one end of the array of processors, only one record per 
processor. Any left over records, if all processors have at least 
one record, can be saved in a stack. There several means by 
which the records can be moved(compressed) to one end of the 
array, but we have found that parallel bitonic sort is very efficient 
at doing this on the MPP. So the use of sort to load balance is what 
will be discussed here. 

Actually the records x e  sorted to one end of the array so that there 
are two records per processor. Therefore if only half of the 
processors have any record in them, then half must have none. 

The final step of the load balancing is to move one record from 
eachprocessorthathas two toaprocessor that has none by sliding 
them halfway across the array. This means that a complete son 
has to be done and the data moved halfway across the array. 
Though the sort is efficient, there is no sense in doing a complete 
one if one doesn't have to. 

Therefore, a scouting step was developed to determine how 
much of the sort needs to be performed so that records can be 
simply moved to empty processors. Simply implies moving one 
record form each processor that has two to a processor that has 
none by moving them all the same number of processors away 
form their original processor. 

For an incomplete sort to be useful at least the following condi- 
tion must be true. That forevery group of processors, at least half 
of the processm must be empty. These groups must contain the 
same number of processors and all records within each group 
must be compressed to the same side of the array of processors 
of the group. The scout routine determines the shortest sort 
necessary to meet these conditions by performing a sort on a set 
of flags that represent where the records exist within the m y .  
The difference from the sort being that after every merge step it 
checks to see if the required conditions have been meet. 

Scan line determination is merely duplication of records, modi- 
fication so that they represent different ranges of scan lines, and 
redistribution of records (load balancing). This is repeated until 
each record represents only on scan line. 

PIXEL DETERMINATION 

At this point each record represents a triangle and one scan line 
that it intersects. The range along the scan line which represents 
the part of the scan line that is covered by the triangle is 
determined. Then in the same way that scan lines ranges were 
reduced to individual scan lines, so pixel ranges are reduced to 
individual pixels. Analogous to scan line determination, pixel 
determination involves duplication of records, modification so 
that they represent different ranges of pixels, and redistribution 
of records (load balancing). Thus, each record will represent a 
aiangle and a pixel that it covers. From each of these records a 
pixel record is created that contains the pixels location on the 
scmn, the bright of the mangle, and the distance to the triangle 
as seen through the pixel. 

Z BUFFERING 

Many of the pixel records will represent the same pixel, but with 
different range and brighmess and range values. The Z buffer is 
merely a collection of the records for which duplicate pixel 
records an eliminated. They are eliminated based on there range 
value. Only the pixel record with the smallest range is kept for 
each pixel. This is done using a sort computation function, son 
minimum, which will flag the minimum range record for each 
pixel during the son. All unflagged records can be mark as 
deleted. 



IMAGE ASSEMBLY 

The records in the Z buffer are then used to form a final image. 
Techniques for assembling data points into an image were 
developed previously in the process of developing algorithms of 
point plotting and raytracing on the MPP. 

Since there may not be a Z buffer record for every pixel in the 
image, a template image must be created. This consistsof a group 
of pixel records that contain a record for every pixel in the image. 
Image assembly is a two step operation, pixel value distribution 
and image organization. Both of these operation can be done 
with sort computation functions. Pixel value distribution is done 
with sort distribution. Z buffer records are flagged as containing 
valid data and image template records are not. Son distribution 
copies data from Z buffer records to image template records. This 
however leaves Z buffer records interspersed with image tem- 
plate records. Thus the image can not be displayed in this form 
as is. Since image records are flagged as belonging to the image 
template andZ bufferrecordsare not, therecords can be sort with 
the image flag as the major key. This will separate the Z buffer 
records from the template records. At the same time the pixel 
location can be used as the minor key, which will order the pixels 
so that they can be displayed as a raster scan image. 

CONCLUSION 

This technique is in use on the MPP, which is a 2-D grid of 128 
by 128 processors. We are generating 3-D renderings of eleva- 
tion data. The data consists of a 512 by 512 grid of points which 
is convened into 524,288 triangles (see Color Plate II, p. 694). 
These mangles take from 45 seconds to 75 seconds to render, 
which is from 6 to 12 thousand triangles a second. Currently we 
are working on more efficient means of data movement and or- 
ganization to increase its speed. 

REFERENCES 

1 Dorband, John E., Son Computation, Frontiers 88 Confer- 
ence Proceedings, September 1988. 

2 Dorband, John E., Son Computation and Conservative 
IrnageRegistration,Ph.D. thesis,Pennsylvania StateUniv., 
December 1985. 

3 Dorband, John E., 3-D Graphic Generation on the MPP, 
Proceedings of the 2nd International Conference on Super- 
computing, Vol. 11, pg 305-309, 1987. 



PRECEOiNG PAGE BLANK NOT FJLMED 

FINGERPRINT IDENTIFICATION ON A MASSIVELY PARALLEL ARCHITECTURE 

George Mason University 

Gowrishankar T .  R .  

ABSTRACT 

A feature-based recognition scheme for fingerprint identifica- 
tion on a massively parallel system is presented. The algo- 
rithm provides an orientation-independent recognition sys- 
tem that utilizes the features offered by massively parallel 
architectures. Implementation of this algorithm on the <: Ahl 
I pvrarr~id to extract the different features is discussetl. The 
use of adder pyramid that is incorporated in GAhl I architec- 
trlrc- in determining the Euler count that is used to recognize 
t l ~ v  I<r<rps in the pattern is also highlighted. The results of 
itlt.ntificatior~ of simulated patterns on GAhl I pyramid is 
[>rr~sentetl. 

Kevw~~rtls  GAM I pyram~d,  Feature vector, Euler c o u ~ ~ t ,  
,L(I Irr ~ V I ~ I I I I ~ ,  lsvlated p o ~ n t ,  loop, merge pomt, terrruna- 
t  on, cxpal~d,  rnask 

INTRODUCTION 

The increasing volume of fingerprints collected and the nerd 
fnr fastrr identification of patterns have generated a great 
dral of interest in improving the existing automatic finger- 
print identification systems. 

In (Ref. 1-2),  a set of fingerprint impressiuns were partitioned 
 inti^ sarnpling squares which were preprocessed for feature 
extract ~ ( J I I .  A class of context-free languages described the 
fingerprint patterns and the recognition was accomplished 
using a sequential parsing technique. The same set of features 
wrrtB used to further classify the fingerprint patterns using a 
rlass nf stochastic context-free languages. This approach was 
further improved in (Ref. 2) by the use of tree grammars t o  
idrntifv the features. This system has only provided a first 
step in automatitm of fingerprint identification. 

'I'l~a advent of massively parallel architectures (architectures 
wit11 1,000 or more processors) has provided a whole new per- 
spctct,ivc, for irnage prr~cessing. Such highly parallel machines 
providt. an excellent infrastructure for the aualysis of highly 
ci)rnl>lex fingerprint patterns. This paper demonstrates the 
llsr ,)f triassively parallel architectures for the extraction of 
f(*aturt,s that uniquely identify each fingerprint impression. 

DIGITIZED IMAGE F l  
PREPROCESSING Q 

FEATURE EXTRACTION G 
IDENTIFICATION l - l  

Figure 1. Automatic Fingerprint Identification System 

'I'hesr characteristics or features, referred to as minutiae, are 
rssc~ntially intrrrnptions to the normal flow of ridges (Ref. 
'L), such as abrupt ridge ending (terminations), dots (isolated 
plrints), segments, branches or mergers and loops (i.e., holes). 
'rhrsr rninutiae (over 100 in each fingerprint) and their rel- 
ativr Ir~cations are considered sufficient to identify a given 
['at tern. 

' 1 ' 1 1 ~  l ~ ~ l ~ t ~ s m l  fingerprint r e c ~ g t ~ i t i o i ~  system (Figure. 1 )  uti- 
lizrs thp salient features of GAL2 I pyramid architecture (Ref 

3 ) ,  which I~rlirngs to the domain nf rnassively parallel systems. 
'I'ht. rev-ognition scheme also utilizes the unique adder pyra- 
mid which is incorporated on the <:AM pyramid to  determine 
surh usefirl parameters as the Euler count of the pattern. 
'I'hr. slider ci~mponent and Surrl-OR circuitry of GAM I pyra- 
mirl arcl~itertrire provides an added advantage in processir~g 
tlw slr~gle-bit wide binary image representing a fingerprint 
pat t c n ~ .  'l'he SIRsIL) mode of operation of massively paral- 
Ic.1 i trcl~itrct~lres facilitate simultaneous identification of all 
rrlir111~1ac~ r ~ f  a particular type spread thrnughout the pattern. 



This SIMD operation can be restricted to a subset of process- 
ing elements by employing the 'masking' feature available on 
the GAM I pyramid, as on other massively parallel systems. 
This provides a way to inhibit a selected set of processing 
elements from executing an instruction. 

THE RECOGNITION SYSTEM 

The recognition system requires that the fingerprint image be 
preprocessed and input to the GAM I pyramid as a digitized 
single-pixel wide image. Proper representation of the image 
is necessary for correct extraction of features and accurate 
identification. 

P a t t e r n  preprocess ing 

The video ramera interface of the GAM I pyramid enables 
the fingerprint pattern to be input directly to  the base level of 
the pyramid. The pattern is then digitized to obtain a binary 
representation of the image. This image is subjected to pre- 
processing to  get a single-bit wide image. The algorithm was 
trstcd on the GAM I pyramid using simulated patterns input 
directly as single-bit wide binary images using the keyboard. 

Fea tu re  vector  description: 

The idelltifiration system is built on a feature-based approach. 
The numerous ridge lines that run from one end of the pat- 
tern to the other do not form the characteristic features of 
a fingerprint. Only the interruptions to the flow of these 
ridge lines are considered fit for identification of fingerprint 
patterns. 

This automatic fingerprint identification system considers five 
fvatures as primary elements of a feature vector that uniquely 
idmtify a given fingerprint pattern. These five features are 
isolated points, terminating points, mergejbranch points, seg- 
ments and loops. These fingerprint primitives, shown in Fig- 
ure. 2,  referred to as minutiae have two characteristics, they 
forrn a finite set and their distribution throughout a pattern 
is sv t i~~ ique  that no two patterns are alike (Ref. 2). Each 
fingerprint has fifty to hundred such minutiae (Ref. 4) .  

Isolated pornts: These are dots in the original fingerprint pat- 
trros. These points appear in the digitized image as pixels in 
state ' 1 '  having eight '0' state neighbors. 

Ternrrnulrng potnts: These are the points where the ridge 
lines that run from the fingerprint periphery end abruptly 
within the pattern. These points appear as pixels with only 
one neighbor in state ' 1 '  in the digitized image. 

Alerge/bmnch pornts: These are the points where two ridge 
lines merge into a single ridge line or the points where a single 
ridge line branches into two. These can be identified as the 
pixels with neighbors that form one of the junction patterns. 

Segm~nts:  These are ridge lines that start and end within the 
pattern without touching the periphery of the pattern unlike 
the terminating ridges that have one of their endpoints at  the 
edge of the pattern. 

Isolated Points 

Segments 4' 
Terminating Points r /  

Merginglbranching Points \1 
Loops 

Fig1 Ire 2. Fingerprint Primitives 

Loops: As the name indicates, these minutiae are ridge lines 
that form loops within the pattern with the tangential pixel 
having three neighboring pixels in state '1 '. 

The bifurcation and termination minutiae are considered to 
carry high information associated with the identification of a 
fingerprint (Ref. 4 ) .  

Feat irre ex t r ac t ion :  

As ~nentioned earl~er,  the aim of t h ~ s  fingerprint ldentifira 
tlon system 1s to form a unlque feature vertor of m ~ n u t ~ a e  
extracted frttm the fingerprint pattern In thls section, ex 
tract~on of each of the five features 1s described 

Iso1alr.d poznts: This feature can be identified as those pixels 
that appear with neighboring elements in all eight directions 
in ' 0 '  state. The N,  S, E and W slider cur~nectivns pruvided 
oil thr GAhl I pyramid help achieve this with relative ease. 

This is achieved by ANDing earh pixel of the input image 
with the inverse image of OR of all neighbors. Since the 
minutlae are required to be present within the periphery of 
the patt,ern, the border elements of the image are inhibited 
rrom the r~peration by 'masking' the border processing ele- 
ments. 

Mergang/branchtng potnts: Since, the algorit.hm treats the in- 
put image as direction-independent, the merging and branch- 
ing minutiae are considered as a single feature element. The 
merging points are identified as those pixels at  the junction 
of three ridge lines. These are recognized by extracting those 
pixels with two neighbors separaled from each other by at  
least une pixel in '0' state. The algorithm acrourlts for all 
possible rombinatiuns of such occurrences. The algorithm 
a l s~ )  roi~firms that the merging pixel does have three neigh- 
bors in state ' I '  inrlirating the merging or branching of three 
ridgr lines. 

'f'erm~nattng poznty As previously rnentir~ned, these are the 
endpo~nts of r~dge  l~nes that terminate ahruptlv wlthln the 



age for the endpcjint patterns. The endpoints are essentially 
pixels wit11 only one neighboring element in state '1 '. The 
determination of merge points, too, require that the border 
pixels be transparent to the operatinn. 

Segments: Segments are identified as the ridge lines connect- 
ing two terminating points within the periphery of the image. 
Thus, the algorithm initiates the segment search procedure 
with the end point image. The endpoint image is developed 
along the ridges containing the endpoints. The endpoint irn- 
age is expanded successively and the seed pixel is excluded 
from the expanded image. This image is added to the pro- 
cessed image of the previous stage to  get a new intermediaie 

image. Alongside, Lhe expanded image is also ANDed with 
thr  input image to  obtain the seed pixels for further expan- 
sion. The procedure is repeated till the intermediate image 
fnrmed in two successive stages are identical. Number of dis- 
connected regions in the segment image thus formed gives the 
number of segments in the pattern. 

Loops: Extraction of this feature utilizes the Euler character- 
istic number. The Euler number characterizes any polygon 
and is a function of the number of vertices V ,  edges E and 
faces F (Ref. 5). The Euler number C given by 

represents the number of objects in the image (such as dots, 
merge points, segments, etc ) less the nurnber of holes or 
luop5. 

The Euler Characteristic equation is applied for this blob 
counting [In GAM I pyramid by defining the different vari- 
ahles as (Ref. 5): 

V e r t e x  - Each object pixel 

Edge - A pair of adjacent horizontalor vertical object pixels, 
as well as the object pixels diagonally adjacent without 
any horizontal or vertical connections. 

Face  - Any 2x2  object pixel square. V,  E and F are cal- 
culated by searching the input image for the specified 
palterns (Ref. 6) .  

V I S  calculated by counting the total number of object pixels 
wh~le E I S  nbtalned bv calculaling the total number of occl~r- 
rci1cc.s of the various edge patterns This can be represented 
a5 fol11)ws (Ref 3 )  

rvhere rach pattern represents tlle number of occurrences of 
that partlcrllar pattern and "t" stands for addltlon F IS 

oOta111r11 I I Y  counting the number of patterns of the form 

I 1  
1 I 

Ill(. calcl~latron uf Euler count can be further slmpl~fied as 
glvrrt below 

where " x "  stands for don't care state 

i 'l~e nurnl)er of objects in the image is determined by the 
sum of all the object pixel patterns discussed thus far, viz., 
isolaterl points, merge points. segments, endpoints, border 
segments (segments that run along the periphery which are 
nnt included in the feature vector set), etc. Hence, the Eu- 
ler characteristic number of the image with the said features 
masked gives the number I I ~  lctops in the input image. The 
adder pyramid on G A M  I proves distinctly efficient in the ap- 
plicaticrn ~rf  Erller countiug a lg~~r i thm to determine the num- 
l,cr o f  I I I C I ~ I S  i r ~  the image. 

The nu~nber  of minutiae of each of the five types extracted 
fr~rrn an image form the elements of a feature vector associ- 
ated with the image. This feature vector serves to identify 
the fingerprint that corresponds to  the digitized image. 

Figure 3. Digitized Input Image 

SIMULATION ON GAM I PYRAMID 

The algorithm for feature-extraction in fingerprint patterns 
J I I S ~  described was tested on GAR1 I pyramid using simulated 
images. The programs for implementation of the algorithm 
werr written in Function IV,  a structured interpreted func- 
tic~nal programming language (Ref. 7 ) .  Simulated images (as 
i r ~  Figurr. 3)  containing all nr few of the features discussed 
thus iar were input as binary images using the keyboard input 
<~ptic)n. 

'I'he exclu~lnn r-tf the border feature elements from the feature 
t r r tnr  determlnatlon was aclueved by utlllzlng the 'ma.sktngl 
operat~on D~rect  masklng of border elements before sub 
jectlng the lrnage to  the extract~on algorithm wlll Introduce 
arl t l~t~onal e l~dl )u~nts  and t l ~ r ~ s  wlll affect the de t e r~ ru~~a t run  



of other feature vectors that are dependent on the number of 
endpoints In the image Thus the d~fferent procedures for ex- 
t r ac t i i~ l~  i ~ f  each of the five features were implemented twice. 
once on the border masked image and once on the unmaskeo 
Image The d~fference between the two values thus obtained 
detertnlned the particular feature element 

The Sum-OR operation was widely used to detect the pres- 
ence of image pixel(s) a t  various intermeditate stages of iden- 
tification. Other salient features of GAM I pyramid such as 
the slider and other components are used for eight-directional 
expansion of the image and for shifting the image one pixel 
position in any of the eight directions. The nearest neighbor 
r~~tnrnunication provides a distinct advantage in processing 
the image in parallel. 

All the features of the simulated images were correctly iden- 
tified. The different images were so constructed to include 
rarious ronlbinations of features and their locations that are 
realizable in actual fingerprint patterns. The implernenta- 
t i i l t ~  nf t he algorithm also generates various feature images 
that contain ~lnly the corresponding feature elements present 
ill the input pattern. This will prove useful in analyzing the 
different features individually as opposed to the pattern in 
its rntiretv 

CONCLUSIONS 

11 feature-based system for automatic fingerprint identifica- 
tion on massively parallel architectures is presented. The 
features selected associate every fingerprint pattern with a 
unique feature vector. The algorithm to extract these fea- 
tures f~illy utilize the parallel operations offered on the GAM 
I pyramid. Spatially parallel architectures, such as the GAM 
I pyramid, with their largely SIMD mode of c~peration are 
highlv suit able for processing binary images representing fill- 
gerprint patterns. 

L'aril~us simulated images (16x16) containing all or few of the 
fraturt)s ~nentloned were used to  test the identification sys- 
tc111. T l ~ r  ~tresent dimensions of base level of GAM I pyramid 
IGx 1 G limit the algorithm to  only simulated images. The suc- 
cessful identification of the features in all simulated images 
provide a s t r~mg  motivation for implementing the algorithm 
1x1 act 11a1 fingerprint pat terns. 

Use of massively parallel systems of dimensions commensu- 
rate with the normal size of fingerprints will aid in extracting 
the spatial parallelism to  the fullest extent. A normal fin- 
gerprint pattern requires a dimension of 256 x 256 pixels for 
fine grain representation. Secondary features surh as the dis- 
tance between the center of loops, segment lengths, etc. can 
be used to  improve the performance of the system. Existing 
serial algorithms use other features like whorls, archs, etc., in 
addition to  the primary features mentioned for more efficient 
recogni tion. 

The other main advantage of using massively parallel archi- 
tectures is the parallel input /output capabilities that result 
ill sig~lificant increase in the efficiency of 1/0 handling. This 
feature is of particular importance for this application due to 

thr  high order of input data 

References 

[I ]  B.hloayer and K.S.Fu, " A  syntactic approach to figner- 
print pattern recognition", Pattern recognition, Vol. 6 ,  
Dec. 1974. 

[2] B.hloayer and K.S.Fu, " A  twe  system approach for finger- 
print pattern recognitron", IEEE transactions on Pattern 
arialysis and Machine intelligence, Vol. PAMI-8, No.3 ,  
May 1986. 

131 ll.FI.Schaefer, et.al., "The  MPP pyramrd computcr", In 
L.Uhr (Ed.):  Parallel Computer Vlsron, Academic Press, 
Boston, 1987, pp. 15-42. IEEE International conference 
(111 Systenls, Man and Cybernetics, Tucson, Arizona, Nov. 
1985. 

141 M.ELeccinn, "Automatic fingerprint identificatron", IEEE 
spectrum, Vol. 10, Sept. 1973. 

[5] P Ilo, "Object 1dent:ficat:on and segmentation utlrztng hr- 
erarchiral structures of computrng elements", Master's 
thesis, 1)epartrnent of Electrical and Computer Engineer- 
Ing, George Mason Un~vers~ty ,  Fa~rfax,  VA, 1986 

161 M.B.Chu, "Object recognrtion utilizrng combined general 
purpose and special purpose hierarchical structures", Mas- 
ter's thesis, Department of Electr~cal and Computer En- 
gineering, George Mason University, Fairfax, VA, 1987. 

(71 J Hnyd, ''Lpunctlon IV User's manual", George Mason 
IJn~vers~ty,  Fairfax, VA, 1987 



ABSTRACT 

GRAY SCALE ADJUSTMENT ALGORITHMS 
ON SIMD ARCHITECTURES 

Christopher Lee Kuszmaul 

MRJ, Inc. 

A large number of methods of gray scale adjust- 
ment are invoked in image processing. Substantial 
gains in time performance of such algorithms can 
be garnered by implementing them on highly paral- 
lel single instruction multiple data (SIMD) archi- 
tectures. There are some gray scale adjustment al- 
gorithms that appear to be inherently serial, and 
thus seem unable to benefit from a SIMD architec- 
ture. But for one such algorithm (gray scale adjust- 
ment by histogram equalization) that falls in this 
category, an efficient parallel implementation is de- 
scribed that uses three fundamental operations: 
Sort, Send, and Scan. In this paper, several gray 
scale adjustment algorithms' SIMD implementa- 
tions and order of growth performances are dis- 
cussed. 

Linear Gray Scale Adjustment 

As in all the algorithms described in this paper, the 
imagery is represented with one pixel per proces- 
sor. To perform linear gray scale adjustment is 
then very easy. Simply find the maximum and min- 
imum gray scale levels using the global reduction 
operators *MAX and *MIN, broadcast these values 
to every processor, along with the desired final dy- 
namic range, and compute a new value: 

NEW = (DYNMAX-DYNMIN)(OLlXMIN)/(MAX-MIN) 

where MIN is the minimum gray scale value of the 
original image, MAX is the corresponding maxi- 
mum value, OLD is the original gray scale value of 
the pixel in question, DYNMAX is the top of the de- 
sired dynamic range, and DYNMIN is the bottom of 

that range. NEW is then the new value for the pixel 
in question. 

The global reduction, and broadcast functions take 
O(logn) time, where n is the number of processors. 
The recomputation formula takes O(k) time since 
every processor can compute independently of the 
others. The entire computation takes O(logn) time 
on n processors for an image with n gray scale val- 
ues. 

Tabular Gray Scale Acijustment 

This problem is trivial if the dynamic range of the 
input image is comparable to the number of pixels, 
in which case a single global communication (send) 
can perform the necessary computation. However, 
it is typical for the number of pixels to be roughly 
the square of the dynamic range. In general, the re- 
lationship between dynamic range and number of 
processors cannot be known, and thus there are 
several possible algorithms, each optimal under the 
proper conditions. 

The most obvious choice besides performing the 
aforementioned send is to store the entire table in 
each processor with each pixel value, and execute 
an indirect local memory access into the table in 
each processor simultaneously. This will take order 
constant time, but require order nm memory over n 
processors, where n is the number of pixels in the 
image and m is the dynamic range. 

A choice that is interesting, but fails to gain any ad- 
vantage, involves an "interleaved scan" in which 
the number of each kind of pixel can be counted in 
a single scanning operation by setting the krth bit 
of the memory location to be scanned, where r is 
the input gray scale value and k is the log of the 



maximum number of instances of a given value. 
Unfortunately, k is too large to be of any use in al- 
most any practical application. 

Finally, one can perform the standard many-to-one 
sending operation that sorts the input data into 
some location A, compares each element of A with 
its right neighbor, storing a 1 into memory location 
B if the comparison returns an inequality, and 0 
otherwise, subselect processors in which B is 1, in a 
sending operation retrieve the tabular lookup value 
for each subselected pixeVprocessor into C, perform 
a segmented copy scan on C, with segmentation 
memory location = B, and unsort C into the output 
memory location. This takes O[(logn)21 time on n 
processors, with n pixels, and constant memory per 
processor. 

Linear Local Neighborhood Gray 
Scale Acijustment 

This algorithm performs precisely the same as the 
normal linear gray scale adjustment, except differ- 
ent values for MAX and MIN are computed for each 
pixel. This algorithm takes different time, because 
it finds the MAX and MIN for neighborhoods 
around each processor, which can be found in order 
m time, where m is the linear size of the neighbor- 
hood. To find MAX, each processor examines the 
processor in its own column, m rows up, then m-1, 
then m-2, etc., to find the maximum value along 
that line. Then each processor does the same thing, 
with rows and columns switched, upon the maxi- 
mum values so far found. Now each processor sends 
this result to the processor m/2 right, and m/2 up. 
Now each processor holds its appropriate MAX. 
MIN can be computed similarly. 

Median Filtering 

This algorithm could be simple with indirect ad- 
dressing. Each processor performs the standard me- 
dian taking algorithm as done in serial. This takes 
order q time, where q is the number of elements in 
the immediate neighborhood. Indeed, for small im- 
mediate neighborhoods, that is the proper algo- 
rithm to use, but for larger neighborhoods, there is 
an algorithm that takes O[(l~gq)~I time. First, seg- 
ment the image into blocks of q pixels. Sort each of 

these blocks into memory location A. Now i t  is im- 
mediately possible to get the median of every qth 
pixel. In fact, in OOogq) steps we can find the medi- 
an of every q12nd pixel by combining adjacent sort- 
ed lists of pixels. This can be done recursively so 
that in O(1ogq) steps every pixel has the median 
of its neighborhood. Thus, this algorithm takes 
O[(logq)?l time. 

Histogram Equalization 

The objective in this algorithm is to cause the inte- 
gral of the histogram of the output image to be as 
nearly linear as possible, while following the con- 
straint that any two pixels, if equal in shading in 
the input image, have the same shading in the out- 
put image. 

A very simple sequence of parallel operations ac- 
complishes this. First, sort the pixels in terms of in- 
tensity, and store the result into memory location 
A. Preserve the unsort information for later use. 
Have each processor look to its right neighbor (in a 
linear array), and if the value is different from its 
own, in A, then store a 1 into B, otherwise store a 0 
into B. 

Perform a min-scan on the processor index (self ad- 
dress), segmented by B, storing the result into C. 

Unsort C using the preserved unsorting informa- 
tion saved from above. That is all. The unsorted C 
now contains the new values for the output image. 
At least one pixel of a given gray scale value in the 
output image has the same gray scale value as pro- 
cessor index. Any given pair of pixels with the same 
value on input has the same value on output. 

The image can now be scaled linearly to match the 
dynamic range desired. This algorithm takes 
O[(logq)q time, due to the sort. 

One can also perform a local neighborhood histo- 
gram equalization in much the same way that the 
median filter works. In this case, every qth pixel (q 
is used the same way here as above), determines its 
rank in its neighborhood by having its neighbor- 
hood sorted. This rank serves as an unscaled new 
value. Now every q12nd pixel can determine its 
rank in O(1ogq) steps using the two sorted lists of 



numbers that already have been generated by its 
neighbors of index a multiple of q. This can be done 
recursively, so that the total time is O[(logq)21. 

Conclusion 

A number of gray scale adjustment algorithms' de- 
scriptions and order of growth performances have 
been discussed. There is substantial reason to be- 
lieve that since every algorithm attempted ran 
quickly (order polynomial in log of the size of the 
problem a t  worst), gray scale adjustment algo- 
rithms' performance, and their cousins in statistics, 
graphics, and image processing, will benefit from 
SIMD architectures. 



PRECEDlNG PAGE W 4 K  NOT F!LMED 

A PARALLEL PARTICLE-IN-CELL MODEL FOR THE MASSIVELY PARALLEL PROCESSOR 

C. S. Lin A .  L. Thring J .  Koga 

Southwest Research Institute 
San Antonio. TX 78284 

ABSTRACT 

The Particle-in-cell (PIC) model, which has been used extensively on 
supercomputers to  simulate fusion and space plasma phenomena, is dif- 
ficult to develop for the Massively Parallel Processor (MPP) because 
the model requires indirect indexing in computing electric fields. To 
overcome the difficulties, a parallel PIC algorithm is developed for MPP 
by mapping particles in a cell randomly to a row of processors. Because 
of this mapping, the algorithm needs only the nearest neighbor com- 
munication to sort particles and to collect charge density for each cell. 
From the cell charge density, this algorithm then calculates electric 
fields a t  the cell by Fast Fourier Transform. The developed PIC code 
has a speed comparable to  that of the vectorized PIC code on CRAY 
X-MP. The results from simulating the plasma instab~lities of a cold 
electron beam in a hot electron background are presented. 

Keywords: particle-in-cell model, plasma simulation, beam plasma in- 
stability 

INTRODUCTION 

This paper reports a parallel particlein-cell (PIC) algorithm developed 
for the Massively Parallel Processor (MPP) a t  Goddard Space Flight 
Center. With the nearest-neighbor communication, the MPP consists 
of 16,384 processors configured in a 128 x 128 array. Based on the 
developed algorithm, the MPP PIC code called MPPPlC simulates the 
electrostatic interactions among 524,000 charged particles in a two di- 
mensional plane with 128 by 128 cells. Although the MPP has a slow 
clock and 1 /0  speeds, MPPPlC is as fast as the corresponding PIC 
code on CRAY X-MP. 

The particle-in-cell model, which has been used extensively for study- 
ing wave-particle interactions in fusion and space plasmas, is difficult to 
develop on parallel computers because the model needs indirect index-. 
ing to compute charge density a t  the cell from particles' positions and 
electric forces on the particles from the cell charge density. Recently 
some success has heen obtained with a one dimensional electrostatic 
PIC sirnulation developed for the Hypercube parallel computer with 32 
processors where the simulation box has heen divided into sub-domains 
containing an equal number of particles (Ref. 1). Two studies have at- 
tempted to develop two-dimensional plasma simulation codes on the 
hiPP (Ref. 2-3) .  In one study, the model maps the simulation domain 
directly to the processor array and sorts particles according to their 
cells every time step (Ref. 2). The algorithm turns out to  be ineffi- 
cient on the MPP because it needs to extensively use 110 between the 
array unit and the staging memory. Furthermore, the processors do 
not evenly share the computat,ion load because fluctuations in electric 
forces cause particles to distribute nonuniformly over the processors. In 
the other study, we developed a gridless model, which maps particles 
randomly to processors (Ref. 3) .  Avoiding the charge collection, the 
gridless model computes electric forces directly using discrete Fourier 
Transform. Although the algorithm is fully paralielized and particles 
are uniformly distribued over the processors, the gridless code is st111 

seven times slower than the PIC code on the CRAY X-MP because 
the gridless model has much more computation than the PIC model 
(Ref. 4). 

Learning from the previous two studies, we developed a parallel PIC 
algorithm that maps particles in a cell to  a row of processors. This 
parallel algorithm can efficiently sort particles and easily collect charge 
density for each cell. The next section presents the key ingredient of 
this algorithm, particle mapping and sorting. Section 3 describes the 
numerical method, the flow chart and the timing of the MPPPIC code. 
Section 4 shows some results from simulating a plaama instability of a 
cold electron beam in a hot plasma. Finally, section 5 summarizes the 
results. 

PARTICLE MAPPING AND SORTING 

Figure 1 illustrates the scheme that maps particles in a cell to  a row 
of processors. For example, in a two dimensional z - y plane, all the 
processors in a nth plane have the z coordinate within the nth column 
z, < z < z, + At, where z, is the z coordinate of the column and 
Az is the column width. This mapping scheme implies that  a plane of 
array processors has particles with the same z cell coordinate, that is, 
in the same column of cells. In each particle plane, particles in j t h  row 
of processors have the y pasition as yj < y < yj + A y ,  where yj is the 
coordinate of the j th  cell in the y direction. 

For each particle plane, we use six array planes to  specify the two 
spatial coordinates z and y, the three components of velocities Vs, Vv 
and I.:, and the species index k .  For a simulation domain with 128 
by 128 cells, the model ~deally would have 128 particle planes to store 
particle coordinates. However, because the MPP's 64 Mbyte staging 
memory can store 64 but not 128 particle planes, we pack 2 columns of 
cells in a particle plane to  simulate a simulation domain of 128 by 128 
cells. Therefore, in the MPPPIC code, a row of processors actually con- 
tains particles in two cells. Moreover, MPPPlC partially fills the row of 
processors with particles and lets the sequence of particles in a row of 
processors be random (Figure 1, lower panel). As explained below, the 
vacant processors and the random sequence simplify the communication 
among the processors, resulting in a more efficient sorting procedure. 

At every time step, MPPPIC sorts particles according to their cells 
as electric forces move some particles to  the neighboring cells. The 
sorting procedure involves shuffling particles to the neighboring rows 
and merging particles into the neighboring particle planes. For particles 
moving to the adjacent cells in the y direction, we rotate particles to 
the neighboring rows in the north-south direction. For particles moving 
to the neighboring cells in the z direction, we merge them into their 
rlew particle planes. When particles are shuffled or merged to  the oc- 
cupied processors, we rotate the processors in the east-weat direction 
until vacant processors are found. Searching of vacant processors in a 
row is possible because of the random sequence of particles in a row. If 
the row of processors has sufficient vacancy, the shuffling and merging 
of particles will not overfill the processors, thus greatly simplifying the 

C H2649-2/89/0000/0339$01.00 O 1 988 l EEE 



PAHTICLE LOADING SCHEME 

PARTICLE INDEX 

Figure 1. Schematic of mapping particles to the processors 

sorting algorithm. However, too many vacant processors decreases the 
algorithm efficiency. We thus typically load 50% of the processors with 
particles by choosing the average number of particles per particle plane 
to be 64. 

NUMERICAL METHOD AND FLOW CHART 

The particle-in-cell simulation code usually represents the plasma as 
a large number of finite-size particles moving according to classical me- 
chanics in the self-consistent electromagnetic fields. The two-dimen- 
sional spatial system is then divided into fixed spatial cells or grids on 
which charge densities, potentials, and fields are defined. For the pur- 
posee of illustration, we will discuss only the electrostatic model which 
has no electric current density. Details of the PIC model are given in 
the textbooks of plasma simulations (Ref. 5-6) 

Rom the electric fields at  the nearest grid points I?(=!, yg), the code 
then interpolates the electric forces on the particles. F~nally, we use a 
leap-ffog scheme to mlve the equations of motion in a uniform magnetic 
field B 

where rn and q are the particle mass and charge, and 7 i s  the particle's 
radius vector. 

Figure 2 gives the flow chart of the MPPPIC code. The first pr* 
cedure INITPARTICLE initialises particles' positions at  the zero time 
step and velocities at  -112 time step according to the mapping scheme 
described in Section 2. Procedure PUSH then obtains particles' new 
positions and velocities rn and v"- ' /~  using Equations 3 and 4. The 
next procedure SORT contains two procedures SHUFFLE-Y to shuffle 
particles in the y direction and MERGE-X to merge particle planes in 
the z  direction as described in Section 2. Procedure CHARGE collects 
the cell charge density p, which is the input to  the procedure FIELD. 

MPP PIC FLOW CHART 

START 

7 

PUSH RETRIEVE 
p, ,,"-in STAGING 

I 

FIELD 
E (x,. Y,) 

I 

Q 
INTERPOLATION GI 

MEMORY 

A charged particle is assumed to have a rectangular shape with a 
width A comparable to the cell width. The charge density of each 
cell p(z,, y g )  is calculated by accumulating each particle's contribution 
according to its occupied area in the cell, where zg and y, are the co- 
ordinates of the cell. The charge density defines the electric potential 
9 according to Poisson's equation 

vZ4(z , ,  ~ 9 )  = - 4 ~ ~ ( ~ g 5  ~ g )  ( 1 )  

We use Fast Fourier 'Ransform to solve the electric field at  the center EXIT 
uf the cell E(zg ,  y,) from Poisson's equation and the definition 

E(zg ,  y g )  = -d+ (2 )  Figure 2. Flow Chart of the MPPPIC code 



Solving Equations 1 and 2 for the electric field at  the cell E ( z , ,  y,), 
the FIELD procedure uses the twedimensional Fast Fourier Transform 
developed for the MPP by Ref. 7. Finally, the INTERPOLATION p r e  
cedure interpolates the electric fields E(rn) at  the particles' position 
from E(z,, y,) before returning to  PUSH for the next time step. 

Since the I/O between the staging memory and the array processors 
is slow, the MPPPIC code minimizes the number of I f 0  by retrieving 
each particle plane once during PUSH and restoring the particle plane 
in the staging memory after CHARGE. Furthermore, the code outputs 
diagnostic quantities such as particles' positions and velocities, charge 
density, and electric fields after FIELD. 

Because MPPPIC loads particles randomly on half of the processors 
for 64 particle planes, the code can simulate up to 524,288 particles. 
For simulations with 524.288 particles, MPPPIC runs about 4.7 sec- 
onds per time step, which IS six times faster than the vectorized PIC 
code on our CONVEX U-1 computer. On the CRAY X-MP at  San 
Diego Supercomputer (:enter, we used to run the PIC code for 32,768 
particles on a 32 x 32 grids for 0.25 seconds per time step. Since we 
no longer have acress to  CRAY X-MP, we cannot compare the perfor- 
mance of MPPPIC with the corresponding PIC code on CRAY X-MP. 
However, from our previous jobs, we estimate that MPPPIC is slightly 
slower than the vectorized PIC code on CRAY X-MP. 

Table 1 lists the percentage of timings for each procedure during a time 
step, indicating that PUSH and FIELD procedures use very little time, 
7% and 3% of the total time, respectively. MPPPIC spends about 22% 
of the time on transferring 64 particle planes between the array unit 
and the staging memory. On other parallel computers with large array 
memory, this code would increase its speed by simply eliminating the 
I/O for transferring particle arrays. Sorting particles according to their 
cells also takes a significant 41% percentage of the MPPPIC time. The 
sorting algorithm essentially plays the role of communications among 
the MPP processors, which have only nearest-neighbor communication. 
It is unclear how much improvement MPPPIC would make on other 
massively parallel computers with sophisticated communication. 

TABLE 1. Percentage of Timings for MPPPlC Procedures 

Procedure 
1'I'SH I I 

SORT 
CHARGE 
FIELD 
INTERP 

SIMULATION RESULTS 

I/O 

To study beam plasma interactions in the earth's magnetosphere, we 
use MPPPIC to simulate the electrostatic interactions between a cold 
electron beam and a hot electron background. At altitudes of 2-3 earth 
radii in the auroral zone, the electron background is usually a mixture 
of cold electrons with a temperature of less than 1 eV and hot elec- 
trons with a temperature of about 1 keV. During auroral activities, 
keV electrons precipitate into the upper atmosphere to produce au- 
roras because of electric fields along the geometric field lines. In the 
region where parallel electric fields accelerate precipitating electrons to 
form a cold beam. ~ara l l e l  electric fields also deplete the cold electron 

22 

. . 
background. Assuming a neutralizing ion background, we can therefore 
simulate high frequency wave instabilities by using only the two com- 
ponent plasma, a cold electron beam and a hot electron background. 
In a separate paper, we reported the results of simulations of such a 
beam plasma instability in one dimension on the CONVEX C 1  com- 
puter to  explain broadband electrostatic waves observed by satellites 

Total 

in the earth's auroral zone (Ref. 8). The two dimensional simulation 
results from the MPP agree with those obtained from the CONVEX 
computer. Below we briefly describe the simulation model and present 
the MPP results. 

100 

We initially loaded the beam and background electrons uniformly in 
the simulation system with a uniform magnetic field in the y direc- 
tion. The background electrons had Maxwellian velocity distributions 
with the thermal velocity ah, whereas the beam electrons had a shifted 
Maxwellian distribution with the beam velocity vb and the thermal ve- 
locity ab. The simulation had the same number of particles for the back- 
ground electrons and the cold beam. We chose ah = 0.1 c, aa = 0.001c, 
and vb = 0.15c, where c is the speed of light, a unit of the simulation. 
The grid size, A ,  was half of the Debye length of the hot electrons de- 
fined as Ad = ah/wpe, where w,, is the hot electron plasma frequency. 
The electron gyrofrequency w,, in the simulation was 4.0wp,, which is 
typical a t  high altitude auroral zone. For the time increment per step, 
the simulations used At = 0.05w,,'. 

Figure 3 shows the phase space vv - y of the beam electrons (left pan- 
els) and the hot electrons (right panels), which are a small sample of 
the total population. The top two panels show the initial distribution 
for the beam component (Panel l a )  and the hot electrons (Panel lb). 
Panel l a  indicates that the electron beam initially has a beam velocity 
vb = 1 . 5 ~ ~  in the y direction. At N = 200 step, the cold electron beam 
began to oscillate in the phase space (Panel 2a). The phase space plot 
a t  N = 600 time steps shows that the electron beam forms the vortex 
pattern in the phase,space, suggesting electron trapping by large am- 
plitude electrostatic waves (Panel 3a). Although the vortex pattern is 
less clear, hot electrons also oscillate in phase space (Panel 3b). About 
this time step, the electrostatic wave grows from very small fluctuation 
level to a maximum amplitudes. At the end of simulation ( N  = 1200) 
the electron trapping motion is been destroyed (not shown). 

The two dimensional contour plots of electric potential a t  N = 600 
show horizontal wave structures (Figure 41, which is better illustrated 
in color plate 111, p. 695 (Figure 5). The horizontal wave structures in 
potential suggest an electric field in  the vertical direction or along the  
magnetic field. From Figure 4, we deduce the dominant wave mode to 
to  have a wavelength of about 40A, or about ~ T V ~ / W , ,  in the physical 
unit. The frequency spectrum of potential reported in Ref. 8 shows a 
broad power law spectrum up to 2wp.. The wave instability produced 
by a cold electron beam in a hot electron background therefore can 
produce broadband electrostatic waves above the electron plasma fre- 
quency. In  contrast, the well known Bunt-man instability due to the 
interactions of a cold beam with a cold plasma occurs at frequencies 
less than the electron plasma frequency. 

SUMMARY 

The objective of t,his paper is to demonstrate that a parallel particle- 
in-cell (PIC) algorithm is feasible for the Massively Parallel Processor. 
Currently, our parallel PIC code MPPPIC performs as fast as CRAY 
X-MP, a very good performance since the MPP has a slow arithmetic 
operational speed. In principle, the proposed algorithm also works for 
other slngle-instruction-multiple-data (SIMD) computers like the DAP 
and the Connection Machine. With faster 1 / 0  or more array memory, 
the parallel PIC algorithm has potential to simulate large-scale research 
problenis in plasma physics and astrophysics, which have used the PIC 
model extensively. The efficiency of this algorithm mainly depends on 
the percentage of the occupied processors. In our example, electrostatic 
waves cause the localized distribution of particles in space, resulting in 
inefficient use of processors. Future studies will need to improve the 
algorithms in order to use the processors more efficiently. 

Acknowledgments. We thank E. Seiler for providing the MPP FFT 
routines, which are critical for this study. This work was supported by 
NASA grant NAGW-1231, NSF grant ATM-8713225 and SwRI Inter- 
nal Research Program. 



BEAM ELECTRON HOT ELECTRON 

Figure 3. Phase space plot of the electron beam and hot electron back- 
ground at 0, 400, and 600 time steps. 

POTENTIAL 

Figure 4. Electric potential contour plot at  600 time steps 

REFERENCES 

1. Liewer, P. C. and V. K. Decyk, "A Universal Concurrent Algorithm 
for Plasma Particle-in-Cell Simulation Codes," UCLA Center for 
Plasma Phystcs and Fuston Engtneenng Report, PPG-1164, 1988. 

2. Gledhill, I. M. A,, and L. R. 0. Storey , "Particle simulation of plas- 
mas on the Massively parallel processor," (Proceedrngs of the Frrst 
Sympostum on the Frontter of Mossrvely Parallel Sctenttfic Compu- 
tation), Goddard Space Flight Center, 1987, p. 37-46. 

3. Lin, C. S., A. L. Thring and 3 .  Koga, "Gridless particle simulation 
using the Massively Parallel Processor," Computer Phys~cs  Commu- 
nrcatrons, 1988, 48, p. 149-154. 

4. Lin, C. S. , A. L. Thring, J .  Koga and R. W. Janetzke, "Plasma 
simulations using the Massively Parallel Processor," (Proceedings of 
the First Symposium on the Frontter of Massively Parallel Sctentrfic 
Computation), Goddard Space Flight Center, 1987, p. 185-191. 

5. Hockney, R. W. and 3 .  W. Eastwood, Computer Stmulafton l s t ng  
Parircles, McGraw-Hill, New York, 1981. 

6 Blrdsall, C K and H B Langdon, Plasma Physzcs flta ('07npuler 
Stmulatron. McGraw-Hill, New E'ork, 1985 

7 Ramaprlyan, H K and E J .  Seller, “Synthetic Aperature Radar Slg- 
nal Process~ng on tht. MPP," Procredtngs of the Ftrst Sympos~unt  on 
the E'mntler of Masslzely Parallel Sc trnt t jc  C'omputatlon. Goddard 
Space Fllght Center, 1987, p 177 181 

8.  W o ~ g ,  H. K., C. S Lin and J .  Koga, "Excitalior~ of higl~ frequrllcy 
broadband electrostatic waves in the anroral zone," suhm~tted to 
Geophys. Res. Lett., 1988. 



ORIGINAL PAC__EIS

OF POOR QUALITY

w

NgO- 1645.1

PARALLEL ALGORITHM FOR DETERMINING MOTION VECTORS IN ICE

FLOE IMAGES BY MATCHING EDGE FEATURES

M. Manohar, H. K. Ramapriyan and J. E Strong

NASA/Goddard Space Flight Center Space Data and Computing Division, Information

Systems Facility, Code 636, Greenbelt, Maryland 20771

ABSTRACT

A parallel algorithm is described to determine motion vectors of

ice floes using time sequences of images of the Arctic ocean

obtained from the Synthetic Aperture Radar (SAR) instrument

flown on-board the Seasat spacecraft. Time intervals between

two successive images of a given region can be as much as three

days. During this period, large translations and rotations of ice

floes can occur. Therefore, conventional local correlation tech-

niques which perform searches in a small neighborhood to detect

translated features have a very small chance of success. To

account for large, translations and rotations, it is necessary to

perform large area searches in a three dimensional space (two

translational and one rotational). This makes conventional corre-

lation techniques computationally intensive even on a high-

speed parallel computer such as the Massively Parallel Processor

(MPP). In this papea" we describe a parallel algorithm which is

implemented on the MPP for locating corresponding objects

based on their translationally and rotationally invariant features.

The algorithm first approximates the edges in the images by

polygons or sets of connected straight-line segments. Each such

"edge structure" is then reduced to a "seed point". Associated

with each seed point are the descriptions (lengths, orientations

and sequence numbers) of the lines constituting the correspond-

ing edge structure. A parallel matching algorithm is used to

match packed arrays of such descriptions to identify correspond-

ing seed points in the two images. The matching algorithm is

designed such that fragmentation and merging of ice floes are

taken into account by accepting partial matches. The technique

has been demonstrated to work on synthetic test patterns and real

image pairs from Seasat in times ranging from .5 to 0,7 seconds

for 128 x 128 images.

INTRODUCTION

Sequential images of ice floes in the Arctic ocean were

obtained from the Synthetic Aperture Radar (SAR) flown on-

board the Seasat spacecraft in 1978. Using time sequences of

these images, it has been shown in the literature that it is possible

to map ice motion. The approach taken is to match recognizable

features in the ice field which are imaged from two successive

orbits. The matching procedures have been traditionally manual

and time consuming. In order to perform this task routinely on

a large number of images, it is necessary to develop automated

analysis techniques. Recently, several automated techniques of

estimating ice motion using cross correlations have been pro-

posed (for example, [1-3]). Collins [31 posed the problem of

finding a field of displacements between two successive images

as an estimation problem. The typical time interval between two

images of a given region is of the order of three days. During this

period, large differential translations and rotations of ice floes

can occur. Therefore, conventional local correlation techniques

which perform searches in small local neighborhoods for dis-

placed features have a very small chance of success. To account

for large translations and rotations, it is necessary to perform

large area searches in a three dimensional space (one rotational

and two translational dimensions). These factors make correla-

tion techniques computationally intensive even on a high-speed

parallel computer such as the Massively Parallel Processor

(MPP). Additional problems specific to ice floe images are

fragmentation and merging during the time interval between the

images. This requires approximate matches of ice floes from one

image to the parts of larger ice floes from the other images. This

problem is referred to as segment matching in the literature [4].

The work reported in this paper is an effort to automate ice

floe matching in computationally feasible times (a few seconds

for a pair of 512 x 512 images) using the MPP. In our approach

the images are abstracted as line models of the boundaries of

dominant objects (ice floes) in the image, and these models are

matched using parallel matching techniques. The boundaries of

the dominant objects are extracted by edge detection algorithms

and the edges are segmented into set of lines by fitting polygons

or connected sets of straight lines to the edge data. Such polygons

or connected sets of straight lines will be referred to as edge

structures. Now the problem is to match corresponding edge

structures in the two images. Edge structure models have been

used in the literature for matching cloud images [5] and terrain

scenes [6]. Both these techniques are essentially sequential and

are not considered segment matching. Davis [4[ uses a relaxation

technique for segment matching of edge structures. Initially,

figures of merit are assigned to the matches between pairs of

angles on two edge structures. Relaxation methods are then used

U.S. Government Work. Not protected by

U.S. copyright.

343



to find acceptable combinations of these matches. This method 
is also sequential and is not a practical solution for images 
containing thousands of edge structures. 

THE ALGORITHM 

The algorithm presented in this paper consists of the follow- 
ing steps, each of which is implemented in parallel. The edges 
of ice floe images are obtained by a suitable edge detection 
algorithm. The edges obtained are further subjected to some 
prepmessing such as thinning and eliminating isolated edge 
points. A connected component labeling algorithm [7] is applied 
to the edge map to obtain a label array, LBL. This algorithm 
locates a seed point in each connected set of edge points in the 
edge map and assigns the address of the seed point to all edge 
points in the connected set. Next, each edge is decomposed into 
a set of straight line segments. This is accomplished by detecting 
the comer points in the edge map. The comer point detection 
algorithm examines a local window (typically 7 x 7) and fits a 
straight line passing through its center. The fitting m r ,  equal to 
the sum of the perpendicular distances from the edge points of the 
window to the fitted line is computed. The locations at which this 
error function has local maxima are identified as comer points. 
By assigning 0's to all comer points in the edge map the 
connected sets of edge points are separated into straight line 
segments to obtain a segmented edge map. Now, the length of 
each straight line segment is computed by shrinking the seg- 
mented edge map and counting the number of shrink operations 
each segment undergoes. The lengths so computed are stored in 
an array LEN, with the mid-points of each line segment contain- 
ing its length and all other points containing 0. The orientation 
of each line segment is computed by applying the Hough trans- 
form to local windows (typically 5 x 5)  surmunding its mid- 
point. This information is stored in an array. DIR, at addresses 
corresponding to the mid-points of the line segments. Next. 
sequence numbers an assigned to all line segments within each 
connected component indicating the order in which they are 
connected. This algorithm processes the edge map and LBL 
arrays to produce sequence numbers. This information is stored 
in an array, SEQ. Now, the quadruple (LBL,SEQ,DIR, LEN) 
provides a complete description of the edge structures in the 
image. These quadruples are sorted with LBL and SEQ as the 
primary and secondary keys,respectively, using a bitonic sorting 
algorithm [12]. This brings all data values of the arrays together 
into adjacent processing elements. Note that the arrays of sorted 
atmbutes is significantly smaller than the original images. This 
can make the matching more efficient, especially for images 
significantly larger than the n x n processing array if amibute 
records are packed by processing n x n segments of the images. 
These sorted arrays obtained from two images are then matched 
using a combination of global and local correlations. In the 
following sections we describe each of these steps in more detail. 

Preprocessing: 

The prepmessing step consists of obtaining the boundary of 
the dominant objects of the ice floe images and applying thinning 
and eliminating isolated edge points. In the present work, 
various edge detection techniques such as Marr-Hildreth's zero 
crossing detection [a], Canny's algorithm [9], and Spatially 
ConstrainedClustering (SCC) [Tilton. 101 were applied to the ice 
floe images. Both Marr-Hilhth's and Canny's algorithms gave 
unacceptable results. The zero crossings obtained by convolving 
the Laplacian of Guassian with the image combined the bounda- 
ries of the dominant objects with several other details and so it 
was difficult to delineate the boundaries from the zero crossings. 
Larger filter sizes could solve this problem to some extent but the 
edge location accuracy becomes poor. The Canny's algorithm 
also has the same problem for the ice floe images. The smaller 
filter gives unnecessary edges (due to noise and fine texture) and 
large filter sizes affect the shape of the boundary. Tilton's SCC 
algorithm [lo], which grows regions based on a "best pair 
merging" criterion, performed better than the other two in 
delineating boundaries of dominant objects. The edge focussing 
algorithm by Bergholm [Ill  performed best for these images. 
This edge focussing algorithm is as follows. 

1. Initialize a m a t  (of the size of the image) to 1 's. 

2. Detect major edges using Canny's algorithm with large size 
Guassian filters (e.g., o = 7.0) and an appropriate threshold 
(e.g., 0.1) forthe image. Accept edges only at locations where 
mask has values 1 as true edge. 

3. Dilate the edges obtained in step 2 by one pixel in each 
di i t ion and generate a mask which is 1 at all the dilated 
edge locations. 

4. Now decrease sigma of the filter by 0.5. (It is shown 
analytically in [l  11 that change of sigma by 0.5 can displace 
an edge location by at most one pixel on either side of its 
previous location). Repeat steps 2 and 3 until the filter size 
is 0.5. 

In order to speed up convolution the filter size also can be 
reduced in steps of two for every iteration starting with a size of 
15 x 15. 

This algorithm takes about 200 ms for 128 x 128 images on 
the MPP to perform 7 iterations with window sizes ranging from 
15 x 15 to 5 x 5. The results of the edge detection algorithm are 
shown in Fig. 2(a - b) for both the images of the given pair 
Fig. l(a-b). 

The edges obtained using the above algorithm are one pixel 
wide, but they are 4-connected for inclined (other than horizontal 
and vertical) lines. The subsequent processes involved require 
inclined edges to be Bconnected. A thinning algorithm is used 
to reduce such inclined 4connected edges to lconnected edges. 



The thinning algorithm examines a 3 x 3 neighborhood and 
replaces the central pixel by 0 under the following conditions: 

0 0 1  x l x  o o x  
0 1 1  0 1 1  0 1 1  
0 0 1  x l x  x l x  

In the above configurations 0 denotes the absence of an edge 
point, 1, the presence and x, a don't care condition. The other 
configuration of masks can be obtained by rotating the above 
masks by 90 degrees. The elimination of isolated edge points is 
straightforward. 

Connected Component Labeling: 

The connected component labeling algorithm labels each of 
the connected edges with a label that is equal to the array address 
of the seed point. The algorithm is discussed in detail in [7]. This 
algorithm is based on parallel shrinking and expansion of binary 
patterns and requires about 30 ms of MPP time for labeling the 
edges. The time required is data dependent and is proportional 
to the length of the within-component-path of the longest wm- 
ponent. The connected component labelling reduces all wn- 
nected patterns, both open and closed, to single points called seed 
points. The connected component labels obtained from the edge 
maps are shown in Fig. 3(a-b), The value of the label at a pixel 
is coded as its grey level so that all pixels belonging to a given 
connected component are displayed with the same grey level 
value. 

Edge Decomposition: 

Each connected component identified above is decomposed 
into a set of straight line segments by f i t  identifying the corner 
points. The edge points between a pair of comer points are 
assumed to form a straight line. Comer points are edge points 
where the linedirectionchangessignificantly. The algorithm fits 
a straight line at every edge point to the connected set of edge 
points in a local neighborhood of size w x w (w = 7, typically). 
The fitting error (which is sum of perpendiculars from the edge 
points onto the fitted line) is copputed. The local peaks in the 
fitting error function correspond b the comer pixels. The fitting 
error function is derived as follows. 

; ' 8  

Let ax + p = 0 be the equation of the straight line passing through 
the origin of a local coordinate system to be fitted to the 
qonnected set of edge points in a w x w local neighborhood. 

The error term, E ,  is sum of perpendiculars from all connected 
edges of the local window which is given by 

The value of a resulting in minimum E is obtained by differen- 

tiating error, & with respect to a and equating it to zero. 

The minimum error for the best fit, Em can be obtained by 
substituting a from equation 2 in equation 1. 

High values of the emr  term Em indicate comers because a single 
line cannot be fitted to the given set of edge points. Therefore, 
local peaks of Em correspond to the comer points. The corner 
points detected in both images are shown in Fig. 4(a - b) 
superimposed over the comesponding edge images. 

Length Computation : 

The line segment lengths are computed by applying an 8- 
connected shrinking algorithm [7] repeatedly on the edge map 
wherein comer points are replaced with 0's. The number of 
shrinking operations required to reduce each line segment to a 
single point corresponds to the length of the line segment. Thus 
the lengths of the line segments are stored at their mid- points 
(called line-seeds). These points ~IE the locations where all 
information needed for matching (such as label, direction, and 
length) about the line segments is stored. The length of the 
different edge segments are shown in Fig. 5(a-b) for two images. 
For displaying length as gray level image its value is propagated 
throughout the edge segment. The algorithm however, does not 
require this propagation. 

Direction Computation : 

The direction of each line segment is computed at the line- 
seeds using a localized version of the Hough transform. At every 
line-seed in the edge map a local neighborhood of size w x w is 
examined. For every point in the neighborhood with the same 
label as the line-seed, the angle subtended by the line joining it 
and the line-seed is computed. A 32-bin histogram of these 
angles over the w x w window is computed. This corresponds to 
an angular resolution of less than 6 degrees. The slope corre- 
sponding to the peak of the histogram is the direction of the edge 
segment. The direction of different edge segments are shown in 
Fig. @a-b) for two images. 

Sequence Computation : 

An ordered set of direction and length measurements corre- 
sponding to a sequence of connected line segments constituting 
an edge structure describes the edge structure 
completely. The order of occurrence of line segments is essential 



for this description to be unique. Thus attaching sequence 
numbm to all line segments of the edge structures is an impor- 
tant step of the algorithm. The sequence numbers are attached to 
all edge points constituting the edge structure and the numbm at 
the location of line-seeds are retained as line attributes. The 
sequence numbers are anached to all points of the polygon 
boundary staning from seed points for closed polygons. The 
process is slightly different for open edge structures and will be 
discussedlater. Initially a sequence numberof 1 isattached toall 
seed points (starting points) of the polygons. Now a 5 x 5 
neighborhood centered at one of the immediate neighbors of 
starting point is considered. This point is given the next sequence 
number provided none of the other seven neighbors of the 
starting point has already been given this number. Then the 
position of the starting point is shifted to the cumnt pixel where 
sequence number is assigned. This is repeated until no more 
assignments are possible. This algorithm is sequential along 
perimeter of a given polygon, but operates in parallel on all 
polygons. 

For open edge structures the seed points are the mid-points 
(rather than end points), so they are not suitable as starting points 
for sequence generation. One of the two end points should be 
considered as a starting point. To locate the starting point for all 
open edge structures in parallel, we proceed as follows. The line 
ends are detected by examining 3x3 windows and counting 
number of edge pixels surrounding the central edge pixel. If this 
number is equal to 1 then the central pixel is an end point. This 
is valid for thin edges where inclined edges are 8-connected (but 
not Cconnected). Then the sequencing algorithm is applied 
from the seed points as in the case of closed polygons. The 
sequencing algorithm terminates at one of the end points. Now. 
it is not difficult to locate unique end points in parallel. The 
points where the sequence array hasavalue greaterthan 1 and the 
line-end array has a value of 1 are the starting points for open edge 
structures. 

Thus the sequence computation algorithm treats closed and 
open edge structures separately. The open edge structures can 
easily be separated from closed edge structures (polygons) by 
applying an 8-connected shrinking algorithm. The open edge 
structures shrink to isolated points and closed ones are not 
affected. By eliminating isolatedpoints after shrinking, the array 
will have only closed polygons. To obtain only open edge 
structures, the array containing closed polygons is subtracted 
from the array of all edge structures. The sequence numbers 
obtained by this algorithm have been coded as gray values and 
shown in Fig. 7 (a-b). The sequence infoxmation, label, length, 
and direction are retained only at the line-seed locations for 
further processing. 

Matching of edge structures: 

The four edge structure attributes, namely, label of each edge 

structure, sequence numbersof line segments, direction value of 
each line segment, and length of each line segment, are stored in 
mysLBL,  SEQ, DIR, LEN. In these arrays, all locations except 
the line-seed points (defined above) contain 0's. Since this data 
is quite sparse the matching can be significantly improved by 
packing the measurements in the adjacent Processor Elements 
(PE) of the MPP. This is accomplished by sorting the edge 
structure attribute quadruplets using LBL, and SEQ as primary 
and secondary keys, respectively. A parallel bitonic sort algo- 
rithm [12] is used for this purpose. The sorting brings each edge 
structure attributes into the adjacent PE locations. The quadru- 
plet (LBL. SEQ, DIR, LEN) completely characterizes the edge 
structures. Since DIR, LEN are sorted using LBL and SEQ as 
primary and secondary keys, respectively, the order in which 
they occur in adjacent PE's is a complete description of the edge 
structures. The matching algorithm essentially looks for similar 
list of attributes, DIR and LEN. The array, DIR contains the 
directions of line segments. The angle between the adjacent sides 
is used for matching. This can be obtained by a single absolute 
difference operation of DIRvalues contained in adjacent PE's. If 
DIR alone is used, the polygon matching is not affected by 
rotation as well as scale changes. It is necessary to use both DIR 
and LEN to ensure that significantly different scales of similar 
objects are not considered identical. 

The sorted arrays (LBL,SEQ,DIR,LEN) for each of the 
twoimages are mated as one dimensionalvectorsfor subsequent 
matching. (The snake-shift feature on the MPP is extensively 
used for this purpose). To permit matching of open edge 
structures in one of the images with closed polygons in the other 
without being sensitive to the (arbitrary) starting segments in the 
polygons and to avoid sensitivity to reversal of the sequencing of 
segments in the edge structures, the quadruplets for each edge 
structure are duplicated in the forward and reverse direction 
respectively, for the first and second images. Thus for example, 
the directional amibutes for an n-sided edge structure in the first 
image are stored as Dl, D2, .., Dn, Dl, D2. ..., Dn and for an m- 
sided edge structure in the second image as d 1, d2, ..., dm, dm, 
dm-1, ..., dl.  The parallel matching of polygons proceeds as 
follows. 

1. Normalize DIR and LEN features of each polygon 

2. Perform global correlation of DIR features and LEN fea- 
tures separately for both images. That is compute Cd = 
DIR lC3DIR2 and C, = LEN 18LEN2, where 8 denotes 
comlation. This is done efficiently using Fast Fourier 
Transform. 

3. Locate local peaks in Cd and C,. 

4. Shift DIR2 by an amount equal to the peak coordinate and 
subtract from DIR1. Find sum of absolute differences 
within a local window of size 5 around each point. 

5. Where the sum of absolute differences is less than a 
predetermined threshold, load the corresponding labels in 



the output array. 

6. Set DIRl and DIR2 at locations of matched labels to 0. 

7. Repeat steps 2 to 6 until no more matches are possible or 
DIRl or DIR2 contains all 0's. 

RESULTS AND DISCUSSIONS 

Using the matching technique described in this paper we 
are able to match ice floes which have undergone significant 
translations and rotations during the time interval between two 
images (Fig. 8). The edge extraction significantly affects the 
results of the algorithm. We have demonstrated using test 
patterns that our algorithm is able to match polygons accurately 
which have undergone significant translations, rotations, frag- 
mentation, and merging. These synthetic images are shown in 
Fig. 9(a-b). The corresponding edge structures are shown in Fig. 
10. The algorithm has been tested with subimages of ice floe 
images and found to yield satisfactory results. 

In the present work, we have established correspondence 
among objects contained in the images by matching the sides 
having same subtended angles and lengths. Using the informa- 
tion so derived, it is possible to establish correspondence among 
the pixels and thus compute optical flow. 

The computation times are data dependent. For the 128 
x 128 test image, where the edge detection step was not needed 
the algorithm took approximately 500 msec on the MPP. For ice 
floe images, 700 msec of the MPP time was required including 
the time needed for the edge focussing algorithm. However, it is 
to be noted that for larger images than 128 x 128, one would 
process all 128 x 128 segments to obtain the edge structures and 
pack the attribute quadruples and then perform the matching. 

REFERENCES 

1. Fily M., and Rothrock D. A., 'Sea Ice Tracking by nested 
correlations', IEEE Trans on Geoscience and Remote Sens- 
ing,' Vol. GE-25, pp. 570-580, Sept 1987. 

2. Vesecky J. F., Smandani, R., Smith M.P., Daida, J. M., and 
Bracewell R. N., 'Observation of Sea-Ice Dynamics Using 
Synthetic Aperture Radar Images : Automated Analysis,' 
IEEETrans on Gwscience and Remote Sensing, Vol. 26,pp. 
38-48, Jan 1988. 

3. Collins M. J., Emery W. J., ' A Computational Method for 
Estimating Sea Ice Motion in Sequential Seasat Synthetic 
Aperture Radar Imagery by Matched Filtering,' J. of Geo- 
physical Research, Vol. 93, pp. 9241-9251, Aug, 1988. 

4. Davis L. S., 'Shape Matching Using Relaxation Techniques' 
IEEE Trans. on Pattern Anal. and Mach. Intell. Vol. PAMI- 
1, pp. 60- 72, Jan 1979. 

5. Aggarwal J. K., and Duda, R. O., 'Computer Analysis of 
Moving Polygonal Images,' IEEE Trans. on Computers, 

Vol. C-24, pp. 966-976, Oct 1975. 
6. Clark C. S., Conti, D. K. Eckardt, W. 0.. McCulloh, T.A., 

Nevatia, R.. and Tseng, D. Y.,'Matching of Natural Terrain 
Scenes.' Poc of the IEEE Conf on Pattern Recognition and 
Image Processing, pp. 217-222, 1980. 

7. Manohar M., Ramapriyan H. K., ' Connected Component 
Labeling of Binary Images on Mesh Connected Massively 
Parallel Processor,', to Appear in Computer Vision Graphics 
and Image Processing', Jan 1989. 

8. Marr D. C., Hildreth E., ' Thwry of Edge Detection,' Proc 
R. Soc. London, B 207, pp. 187-217,1980. 

9. Canny J., 'Computational Approach to EdgeDetection,' 
IEEE Trans on Paaen Anal. Mach. Intell. Vol. PAMI-8, pp. 
679-698, NOV 1986. 

10. Tilton J., 'Image Segmentation by Parallel Region Growing 
with Application to Data Compression and Image Analysis, 
Proc of 2nd Symposium on the Frontiers of Massively 
Parallel Computation, Oct 10-12,1988. 

11. Bergholm F., 'Edge Focussing', IEEE Trans. on Pattern 
Anal. and Mach. Intell. Vol. PAMI-9, pp. 726-741, 1987. 

12. Dorband J. E., 'Sort Computation', Proc of 2nd Symposium 
on the Frontiers of Massively Parallel Computation, Oct 10- 
12, 1988. 

NOTE: All figures appear as Color Plates IV, V, and VI, on 
pp. 696-698 of these Proceedings. 



pRECEolNG PAGE B U N K  NOT FlLMED 

J 

SYMBOLIC SOLUTION OF SIMULTANEOUS LINEAR 
ALGEBRAIC EQUATIONS VIA PARALLEL NUMERICAL COMPUTING 

I.D. Mayergoyz and F.P. Emad 
Electrical Engineering Department 

and Institute for Advanced Computer Studies 
University of Maryland 

ABSTRACT 

Symbolic solutions of linear algebraic equations are im- 
portant in many applications. Usually, special languages 
for symbolic manipulations (e.g. MACSYMA) are used 
for handling problems like these. However, pure symbolic 
computations become very time- and memory-consuming 
when the number of simultaneous equations increases. In 
this paper we describe a new approach to the symbolic 
solution of simultan&us linear algebraic equations via nu- 
merical computing. This approach has the following at- 
tractive features: (i) computations are inherently paral- 
lel and can be implemented on parallel processors with a 
he-grain architecture, (ii) calculations are reduced to two 
well-studied problems: numerical solution of simultaneous 
linear equations and the fast Fourier transform (FFT). 

I. INTRODUCTION 

This paper describes a new method for the symbolic so- 
lution of simultaneous linear algebraic equations via par- 
allel numerical computing. Symbolic solutions of linear 
algebraic equations are important in many applications. 
One particular application, which we shall constantly keep 
in mind, is the computation of analytical expressions for 
transfer functions of multivariable control systems. Usu- 
d y ,  special languages for symbolic manipulations (e.g. 
MACSYMA [I]) are used for handling problems like these. 
However, pure symbolic computations become very time 
and memory-consuming when the number of simultane- 
ous equations increases. In this paper we describe a new 
approach to the symbolic solution of simultaneous linear 
algebraic equations via numerical computing. This ap- 
proach has the following attractive features: (i) compu- 
tations are inherently parallel and can be implemented 
on parallel processors with a h e - g a i n  architecture, (ii) 
calculations are reduced to two well-studied problems: nu- 
merical solution of simultaneous linear equations and the 
fast Fourier transform (FFT). 

The paper is organized as follows. The description and 
mathematical substantiation of the method are given in 
section 11. Section I11 provides some numerical examples 
illustrating the potential of the method. 

11. DESCRIPTION OF THE METHOD 

Consider the following simultaneous algebraic equations 

where A(s, A) and ~ ( s ,  A) are matrices whose entries 
are polynomials with respect to s and A . 
We are concerned with the computation of the matrix 
f ( s ,  A) such that: 

The matrix T is known in control theory as a transfer 
function matrix, We restrict our discussion to the case of 
two variables s and X only for the sake of notational 
simplicity. The technique itself is directly applicable to 
any number of variables. The condition that matrix en- 
tries are polynomials is not very restrictive either. By 
introducing new variables, we can always satisfy this con- 
dition. 

It is easy to see that matrix entries of ~ ( s ,  A) can be 
represented as follows: 

where A(s, A) is the determinant of ~ ( s ,  A) . Thus, the 
problem of computing symbolic expressions for T,,,(s, A) 
is tantamount to the problem of numerical computing of 
polynomial coefficients d:, and ck, . 

To solve the last problem, we shall use the following change 
of variables: 

Then the expression (3) can be represented as follows: 

CH2649-2/89/~0/0349$0l.00 O 1988 l EEE 



Thw, d,,(6, 4) and A(@, 4) can be conetrued as finite 
two-dimensional Fourier aerie and the unknown coeffi- 
cients dpm and ckv aim be interpreted as Fourier coef- 
ficients. Consequently, the values of these coefficients can 
be found through FFT if we nomehow generate the values 
of dnm(s, A) and A(s, A) in discrete mesh points: 

where 
7 W 6, = 2 ~ -  4, = 2 ~ - .  r ' n (8) 

The last problem can be attacked as follows [2]: 

Consider the basis 

in the linear vector space R~ of input values. Substi- 
tuting these basis vectors into (I), we obtain: 

where Z("')(s, A) is a solution of (10) corresponding to 
dm), rn = 1,2, . . . M . We will solve linear simultaneous 
equations (10) for each mesh point (s,, A,) : 

According to (Q), we have: 

where ~"')(s,, A,) is the vector which coincides with the 

m-th column of matrix l? computed at (s,, A,) . 
Using (12), simultaneous equations (10) can be repre- 
sented in the form: 

d(s,, A,)d("')(s,, A,) = gm)(s,, A,). (13) 

Taking into account the structure of the basis vectors 
dm) , we find 

Consequently, 

Dnm(sl A) = xLm)(s, A)A(s, A). (17) 

Now, the validity of (14) follows from (17). 

By using the msah-point value of A(s,,A,) and 
dn,(s,, A,) found as described before, the polynomial 
coefficients d2m and ck, are computed by employing 
the two dimensional discrete Fourier transform: 

Thus, the numerical algorithm can be summarized aa fol- 
lows. 

On the first step, the linear simultaneous equations (13) 
are mlved for each mesh point. Employing triangulariza- 
tions of ?attrices A , the determinants A and the ae 
lutione X(m) sre found. Using them and formula (14), 
dn, are determined. It is worthwhile noting that it is de- 
sirable to solve the linear equations (13) aimultaneowly for 
all different right-hand-side vectors gcrn), rn = 1,2,. . . , M 
at each mesh point. By this way, the triangularization of 
matrix A (which is the most time-consuming part of the 
solution of linear equations (13)) need only be performed 
once. 

It is apparent from the given description that the method 
is conceptually simple and very general in nature. The 
most computationally laborious part of the method is the 
solution of the linear simultaneous equations (13) at the 
m a h  points. But these computations can be performed 
in parallel and hardly any communication is required be- 
tween different processors (or different groups of proces- 
sors) assigned for the solution of linear simultaneous equa- 

If triangularization is used for the solution tions (13) at different mesh points. For this reason, the 
(I3), thm both the detsminants A(s,7A,) and the nUerj& implementation of the method on parallel corn- 

solution %("')(s,, &) can be found for e d  mmh-~oint putem with a heg ra in  architecture (such as MPPs) is 
( )  - Knowing these, the mesh-pOint of very attractive. However, the above method can also be 
dnm(s,, A,) are determined as follows: competitive with other methods in the case of implemen- 

tation on sequential computers. This is particularly true 
dnm(s7t A,) = xim)(3,, A,)A(a,, A,). (14) for probley with !arge degrees of polynomial entries of 

matrices A and B and relatively lower orders of these 
This formula can be substantiated as follows. matrices. For such problems, the numerical realization 

of the above method on sequential computers will require 
According to (2), we have sequential solutions of simultaneous equations (13) of rel- 

(15) 
atively low order in many mesh points. 

2("')(s, A) = T(S, ~)d'"). 



111. NUMERICAL EXAMPLES 

Even when implemented on a serial computer, the method 
presented above proved to be very fast. As an exam- 
ple, the transfer functions for an n-output, 2-input system 
were computed wing a SUN31260 computer. The results 
of these computations are the 2n transfer functions be- 
tween the 2 inputs and the n outputs. The computation 
was performed via two methods: MACSYMA and the new 
FFT method presented in this paper. The time in seconds 
per transfer function is shown in Figure 1 for d u e s  of n 
ranging from 3 to 6. Above n = 6 MACSYMA would 
not operate due to stack limitations. It is noted that the 
computation time for MACSYMA increased fast, while 
the time for the new FFT method was very small and did 
not increase appreciably. 

transfer function8 ie described below, first using MAC- 
SYMA and then using the new method: 

Using MACSYMA: 

Mocsymo I 
And using the new FFT method (five significant figures 

I shown, only the coefacients are printed, in the same posi- 
tiona as they appear above): 

New Mgthod I - 0.33440E + 07 - 0.16912E + 10 0.12609E + 12 
O L -  L. - C= 1- I - 0.22188E + 08 0.156483 + 10 0.205233 + 11. 

0 n 10 
S i z e  n x 2 

Figure 1. Time per transfer function. 

To illustrate the accuracy of the new method, one of the 
transfer functions computed above is detailed below and 
compared yith the exact results from MACSYMA. The 
matrices A and B had entries made of second order 
polynomials in s with random integer coefficients in the 
range (0,991. Integer coefficients were chosen because 
MACSYMA operates faster with integers. Two entries 
of d had X added to them, these were in row 1 col- 
umn 2 and in row 2 column 3. The-size of the matrix a 
was 6 x 6 while the size of the B matrix was 6 x 2. 
For brevity, only the numerator of the first of the twelve 

The new FFT method was tested for larger systems (MAC- 
SYMA could not be used for n > 6 due to stack size 
limitations). The results are shown in Figure 2 for n up 
to 15. The irregularity of this curve is due to the fact 
that the mesh points used were a power of two, while the 
order of the transfer functions was not exactly equal to a 
power of two, thus for some sizes, more mesh points were 
used than the minimum number (in order to simplify the 
FFT algorithm). It is also noted in Figure 2 that the rise 
in time to about 2 seconds per transfer function is mostly 
due to the use of a serial computer. Had the computation 
been done on a parallel computer, due to the highly paral- 
lel nature of the algorithm, the time per transfer function 



1 1  

I 

0, I - 1 1 _I 

0 n 15 
S i z e  n k 2  

Figure 2. Timing for the new FFT method. 

would not have risen as much as seen in Figure 2 which 
was derived uaing a serial computer. 

To further explain the significance of the times shown in 
Figure 2, it is noted that when n = 15, there are 30 
transfer functions, each of them a multinomial in s and X 
with powers of s up to 30 and powers of X up to 2. Each 
of these multinomials took less than 2 seconds to compute 
using a serial computer (SUN 31260). The coefficients of 
the nemerator ?f the first transfer function are shown in 
Table I. The A matrix was of size 15 x 15 with entries 
~blynomials in s of second order whose co$icients were 
random real numbers over [O, 1.51. The B matrix was 
similar but of size 15 x 2. The A matrix had X added 
to two of its entries (row 1 column 2 and row 2 column 
3). 

IV. REFERENCES 

[I] MACSYMA, a language for symbolic manipulation 
developed at Project MAC at MIT. MACSYMA is 
a trademark of Symbolics, Inc., a Delaware corpo- 
ration. 

TABLE I. The numerator of the f i s t  of 30 transfer 
functiom using the new FFT method detailed in the pa- 
per. Entriesfor the coefficientsof s and X in the A and 
B matrices were in the interval [O, 1.51. (Note that each 
line in the Table corresponds to a term (azkX2 + aIkX + 
aok)sk, k = 0, 1, . . . , 30). 

Imerator of first term: 

0.171420+02 (k=30 term) 

-0.46880et02 (k=29 term) 

0.68636et02 -0.14387e+02 (k=28 tom, otc.. . ) 
0.366280+03 0.42288*+02 

-0.466960+03 -0.686890+02 O.61924o+O1 

-0.21766et04 -0.43130et03 -0.14208e+02 

-0.96628r+03 0.48333et03 O.1368Oet02 

0.29870et04 0.18400e+04 0.13936et03 

0.500370+04 0.10664et04 -0.17604e+03 

0.60069et04 -0.17466et04 -0.36679e+03 

0.60602e+04 -0.600180tO4 -0.64296e+03 

-0.31939et04 -O.4O111etO4 0.80164et03 

-0.41172et04 O.I2617e+O4 0.18603et04 

0.13213e+04 0.95373e+04 O.I3966e+O4 

-0.43065ot03 0.32658e+03 -0.11903e+04 

0.26146et06 0.44178ot03 -0.32236e+O4 

0.18089et06 0.16231e+04 -0.236480+04 

-0.36137ot04 -0.26642e+M 0.34667ot03 

-0.30316e+05 -0.76001et03 0.24671e+04 

-0.31643e+06 -0.21668ot04 0.30368e+04 

-0.13684et06 0.11334et05 0.16189et04 

-0.7780Qet04 0.11067e+06 -0.43347ot03 

-0.10436e+04 0.40239e+O4 -0.43849e+04 

0.38144r+O4 -0.19618e+O4 -0.31910e+04 

0.44378.+04 -0.27993e+O4 -0.71390et03 

0.61368et04 O.I142Oa+O4 0.10661ot04 

0.68292ei03 0.10322e+04 0.77673et03 

-0.11991etO4 -0.60690e+03 -0.118060+03 

-0.44176ot03 -0.74646ot02 -0.66861ot02 

0.954670+02 0.83314e+02 0.18320e+02 

0.64301e+02 0.23279e+02 0.62786e+01 

[2] I.D. Mayergoyz, F.P. Emad, International Journal 
of Control, vol. 46, No. 6, pp. 1935-1945, 1987. 



PARALLEL IMPLEMENTATION CONSIDERATIONS FOR A 
CLASS OF SIGNAL PROCESSING ALGORITHMS 

Nidal M. Sammur and Martin T. Hagan 
Elecmd and Compter Engineering Department 

Oklahoma State University 
Stillwater, OK 74078 

ABSTRACT ALGORITHM DEVELOPeNT 

The Burg filter is a signal processing algorithm 
which is widely used in such areas as geophysical 
data analysis, speech processing and spectral 
analysis. The structure of this algorithm is 
typical of a class of important signal processing 
algorithms. The Burg algorithm has been 
investigated with the objective of determining its 
suitability for implementation on parallel 
processing architectures. The algorithm has been 
implemented on three different machines, 
representing a variety of parallel architectures: 
the Denelcor HEP, the Intel iPSC/2 hypercube and 
the NASA/Goodyear MPP. It is concluded that the 
algorithm is especially suited for implementation 
on massively parallel architectures, such as the 
MPP. 

INTRODUCTION 

This paper discusses an investigation of parallel 
processing implementations of an important type of 
signal processing algorithm. The Burg algorithm 
is commonly used in such areas as seismic data 
processing, spectral estimation and speech signal 
analysis. It has a structure which is similar to 
several other signal processing algorithms, and 
the results of this study should be relevant to 
these algorithms as well. 

During the course of this study the Burg algorithm 
has been implemented on three different parallel 
processing architectures: the Denelcor HEP, a 
tightly coupled MIMD machine; the Intel iPSC/2 
hypercube, a loosely coupled MIMD machine; and the 
NASA/Coodyear MPP, a massively parallel SIMD 
machine. It was found that the algorithm is 
especially well suited to the massive parallelism 
of the MPP. This was somewhat surprising since 
the MPP, with its mesh architecture, was designed 
(in part) to process two-dimensional images; and 
the Burg filter is a one-dimensional signal 
processing algorithm. 

The next section of this paper will introduce the 
Burg algorithm. This will be followed by a 
description of the parallel implementation of the 
algorithm, with special emphasis on the MPP, and a 
comparison of the performances of the three 
machines. Finally, there will be a discussion of 
the results. 

The Burg filter is a method fol' fitting an 
autoregressive time series model. An 
autoregressive model of order m is given by: 

AR PROCESS ~ ~ + a y ~ ~ - ~  +. . .+a;~,-~=eE 
where Xn is the autoregressive process, a? thru a: 
are the process parameters, and e; is white noise. 
This model can be implemented by the digital 
filter shown in Figure 1. This figure illustrates 
the direct form I1 implementation [ I ] .  

Figure 1. Direct Form I1 Implementation 
of Eq. (1). 

Another way of realizing this process is by means 
of a lattice structure, as shown in Figure 2. 

Figure 2. Lattice Implementation of Eq. ( 1 )  

In most applications the order of the process (m 
in Eq. ( 1  ) )  is not known a priori. Therefore the 
analysis begins with a first order model, and the 
order is increased one step at a time. It can be 
shown 121 that the autoregressive coefficients 
(ails of Figure 1 )  are related to the reflection 
coefficients (ci7s of Figure 2) by the following 
equation: 



The objective of the Burg algorithm is to estimate the individual Computations, or tasks, are 
the reflection coefficients, and in turn the labeled: Tin( 1 1, Tn( 1 ) ,  Tin( 21, Tnn(2), Tin( 3). 
autoregressive coefficients, so as to best fit the 
data sequence (xl,x2, ..., xnl. 

I. INlTlALlZATlON 

To derive the Burg algorithm, first consider the FOR 1.1 TO M DO 

forward prediction error of the m+lth order ~ ( i )  = x ( i )  
autoregressive model: 

If equation ( 2 )  is used to obtain 
coefficients, ( 3 )  can be written: 

(3) 

the 

Now consider the forward prediction error of the 
mth order model: 

There is an equivalent backward prediction model: 

bn!m-l = x ~ - ~ - ~  + alm xn-,,, + ... + atxn-l ( 6 )  

It can be shown that the statistics of this model 
are ~quivalent to those of the forward prediction 
model. 

THE MAIN LOOP 

IF n>l THEN DO I 

[al(i) = a(i)+c(n)*a(n-i l l  
FOR I - I T O n - I  DO 

a h )  = c(n) 
FOR I =  n t l  TOM DO 

temp = r(i)+c(n)*b(l-n) T(3) 
b(i-n) =b( i -n)+  c(n)*r(i) In I I 

By comparing equation ( 4 )  with equations ( 5 )  and Figure 3. Sequential Implementation of 
( 6 ) ,  we can see that: the Burg Algorithm 

Likewise we could show: 

The Burg algorithm chooses em+, so as to minimize 
the sum of squares of the forward and backward 
prediction errors: 

It can be shown 131 that the optimal choice of 
reflection coefficient is: 

To surnmariz~, the Burg algorithm consists of two 
steps: 1 )  update the forward and backward 
prediction errors using ( 7 )  and ( 8 ) ;  2 )  calculate 
the reflection coefficient using (10) and then 
repeat step 1). If the autoregressive 

coefficients ) ,  . . . , a A"' I) are desired 

they are calculated using equation (2). 

IWLEMENTATION ON THE W P  

To implement the Burg algorithm using parallel 
techniques we need to determine which tasks can be 
performed in parallel. Figure 4 illustrates the 
relationship between the various tasks for the 
case where there are 5 data points ( M = 5 )  and 3 
coefficients to be calculated (MAX=3). Any tasks 

A standard sequent,ial implementation of the Burg Figure 4. Maximally Parallel Graph for 
algorithm is shown in Figure 3. In this figure M=5 and MAX=3 



which are on the same level can be performed at 
the same time. As illustrated by the maximally 
parallel graph we would need to have M processes 
(where M is the number of data values) to take 
full advantage of the parallel nature of the 
algorithm. This is clearly infeasible on machines 
like the Denelcor HEP or the Intel iPSC/2 
hypercube computer but feasible on the 
NASA/Goodyear MPP due to its massive number of 
processors (16834). In practice it is unlikely to 
get a time series made of more than this number of 
observations. 
The MPP is a two-dimensional mesh type 
architecture with nearest neighbor communication 
between the processing elements in the array unit 
(ARU). This type of architecture is most suitable 
for the processing of two-dimensional images; the 
Burg filter is a one-dimensional signal processing 
algorithm. The implementation problem reduces to 
finding a way to map the one-dimensional structure 
inherent in the Burg filter onto the two- 
dimensional architecture of the MPP. A miniature 
(16 elements) ARU is shown in Figure 5 with arrows 
representing the required connections or 
communication channels needed to view the mesh 
architecture as a linear array of processors, 
which would be most suitable for the 
implementation of the Burg filter. 

Figure 5. Mapping a Linear Array on a Mesh 

Figure 6 illustrates the data movement for the 
Burg filter in a linear array of eight processing 
elements. In stage 0 the linear array is loaded 
with both the forward and backward prediction 
errors, actually the observed time series. To 
calculate the first reflection coefficient the 
forward prediction errors are shifted to the left 
by one as shown in stage 1. Now the reflection 
coefficients can be determined by forming the two 
sums: the first is the sum of the products of the 
two elements in each processing element, the 
second is the sum of the squares of the two 
elements in each processing element. Equation 
(10) can then be used to calculate the reflection 
coefficient that will be broadcast to all the 
processing elements, where it will be used to 
update the forward and backward prediction 
errors. To calculate the second reflection 
coefficient the updated forward prediction errors 

are shifted to the left by one, as shown in stage 
2. The above sequence of operations will be 
repeated until all reflection coefficients are 
computed. 

STAGE 0 

STAGE 1 

STAGE 2 

Figure 6. Data Movement For the Burg Filter 
in a Linear Array 

The MPP Pascal code used to implement the 
described sequences is: 

for n:=l to max do begin 
e: = snake-shift(e); 
where (col-index = 127) do 

where (row-index = 128-n) do 
b: = 0.0; 

sl: = e*b; 
32: = sqr(e)+sqr(b); 
sum1 : = sum(s1 ,1,2); 
sum2: = sum(s2,1,2); 
c[n]: = -2.O*suml/sum2; 
temp: = c[nlNb+e; 
b: = c[nlxe+b; 
e: = temp; 

end ; 

The procedure snake-shift is used to simulate the 
effect of shifting the forward prediction errors 
to the left by one in the linear array mapped onto 
the MPP. The MPP Pascal code for the main part of 
snake-shift is: 

r2: = shift(x,O,l); 
rl: = rotate(x,l,l); 
where (col_index=127) do 

where (row_index<l27) do 
r2: = rl; 

snake-shift: = r2; 

Figure 7 illustrates the procedure. 

The parallel Burg algorithm was implemented on the 
MPP as described above. The number of data points 
was 16384 and the number of reflection 
coefficients to be calculated was varied from one 
to 100. The results are shown in Table 1 .  Notice 
the linear relationship illustrated here. 



Machine Execution 
Time 

Figure 7. Procedure Snake-shift (x) 

MAX TIME(msec1 

Table 1 .  Summary of Parallel Burg Algorithm 

The Burg filter was also implemented on the 
Denelcor HEP (a tightly coupled MIMD machine) and 
the Intel iPSC/2 hypercube (a loosely coupled MIMD 
or SPMD machine). The mapping techniques used for 
those machines is discussed in [41, [5] and 161. 
A comparison of the performances of those machines 
with the MPP is given in Table 2, which compares 
the execution times to compute 10 reflection 
coefficients for 16,384 data points. Clearly the 
Burg algorithm takes full advantage of the massive 
parallelism of the MPP. 

Denelcor HEP 1.679 sec 
Intel iPSC/2 0.6121 sec 
MPP 0.05522 sec 

Table 2 Comparison of Burg Execution Time 
(16384 Data Points, 10 Reflection Coefficients) 

S W R Y  AND CONCLUSIONS 

The Burg filter was implemented on three different 
computers: the Denelcor HEP (a tightly coupled 
MIMD machine), the Intel iPSC/2 hypercube (a 
loosely coupled MIMD or SPMD machine); and the 
NASA/ Coodyear MPP (an SIMD machine). The choice 
of these three architectures provides a variety of 
mapping possibilities for the algorithm. 

This study showed that the Burg algorithm has a 
high degree of parallelism, which can be fully 
exploited only if the number of processors is 
equivalent to the number of data points. This is 
only feasible if a massively parallel machine like 
the MPP is used. 

It should be emphasized that the Burg filter was 
used in this study because its structure is 
typical of a class of important one-dimensional 
signal processing algorithms. The results 
obtained here should be relevant to these other 
algorithms as well. 

REFERENCES 

[I] W.D. Stanley, G.R. Daughterty, R.D. 
Daugherty, Digital Signal Processing, Restor 
Publishing Company, Reston, Virginia, 1984. 

[2] John Makhoul, "Stable and efficient lattice 
methods for linear prediction," IEEE Trans. 
Acoust., Speech, Signal Process., Vol. ASSP- 
25, No. 5, pp. 423-428, Oct. 1977. 

C31 J. Burg, "Maximum entropy spectral analysis," 
Ph.D. dissertation, Stanford University, 
Stanford, CA, May 1975. 

[4] M. Hagan, H. Demuth and P. Singgih, "Parallel 
Signal Processing Research on the 
HEP,"Proceedings of the 1985 International 
Conference on Parallel Processing, St. 
Charles, ILL., pp. 599-606, August 20-23, 
1985. 

[5] H. Demuth and M. Hagan, "A Parallel Burg 
Algorithm and other HEP Research," 
Proceedings of the Workshop on Parallel 
Processing Using the Heterogeneous Element 
Processor (HEP), Norman, OK, pp. 349-361, 
March 20-21, 1985. 

[61 N.M. Sammur, M.T. Hagan, "Mapping signal 
processing algorithms on the hypercube," To 
be submitted. 



IMAOB SBGHENTATIOll BY ITERATIVB PARALLEL RBOIOH BROwIRO 
WITH APPLICATIONS TO DATA COI(PRESS1ON AND INAGE ANALYSIS 

James C. Tilton 

Mail Code 636 
NASA Goddard Space Plight Center 

Greenbelt. MD 20771 

ABSTRACT 

Image segmentation can be a key step in data 
compression and image analysis. However, the 
neementation results produced by most previous 
approaches to region growing are suspect because 
they depend on the order in which portions of the 
image are processed. An iterative parallel 
segmentation algorithm avoids this problem by 
performing the globally best merges first. After a 
background section, this paper describes such a 
segmentation approach, and two implementations of 
the approach on NASA's Massively Parallel Processor 
(MPP). Application of the segmentation approach to 
data compression and image analysis is then 
described, and results of such application are 
given for a Landsat Thematic Mapper image. 

Keywords: Image segmentation, Image Analysis. Data 
compression. Data parallel analysis. 

Segmentation is the process of partitioning images 
into constituent parts called regions using image 
attributes such as pixel intensity, spectral 
values, and textural properties. Image 
segmentation produces an image representation in 
terms edges and regions of various shapes and 
interrelationships. 

Image segmentation is a key step in many approaches 
to data compression and image analysis. An optimal 
coding of an image segmentation, such as through a 
region label map and region feature file, can be 
used to effect data compression (see Ref. 3). 
Image analysis can be performed on an image 
segmentation by using the shape, texture, spectrum, 
etc, of the regions found by the image segmentation 
and interrelationships between the regions. This 
region based analysis of imagery is potentially 
more effective than pixel based analysis, because 
region based analysis exploits spatial information 
whereas pixel based analysis does not. 

Most image segmentation approaches can be placed in 
one of three classes: (i) characteristic feature 
thresholding or clustering, (ii) boundary 
detection, and (iii) region extraction. 
Characteristic feature thresholding or clustering 
is often ineffective because it does not exploit 

U.S. Government Work. Not protected by 
U.S. copyright. 

spatial information. Boundary detection does 
exploit spatial information through examining local 
edges found throughout the image. For simple 
noise-free images. detection of edges results in 
straightforward boundary delineation. However, 
edge detection on noisy, complex images often 
produces missing edges and extra edges which cause 
the detected boundaries to not necessarily form a 
set of closed connected curves that surround 
connected regions. One way to overcome this 
problem is to combine region extraction and 
boundary detection. Ref. 2, reports on some 
experiments in combining boundary detection 
approaches with the iterative parallel region 
growing approach discuss here. 

Early approaches to region extraction (usually by 
region growing) had the disadvantage that the 
regions produced depended on the order in which 
portions of the image are processed. But 
Schachter , e f 6 1 (Ref. 1) suggest that implementing 
region growing as "an iterative parallel process" 
would overcome the order dependent problem. This 
is the approach taken by the iterative parallel 
image segmentation algorithm presented here. 

ITERATIVE PARALLEL RBOION GRO*ING 

The basic concept behind our iterative parallel 
segmentation approach is to perform the globally 
best merges first. With this approach, the whole 
image is processed in parallel, eliminating the 
order dependence problem that troubled earlier 
approaches to region extraction by region growing. 

The globally best merge is defined as follows. A 
similarity criterion is calculated for all pairs of 
spatially adjacent regions in the image. The 
globally best merge is the merge of the pair of 
spatially adjacent regions with the best similarity 
criterion value over the entire image (i . e . , the 
most slmilar pair of regions). (NOTE: For 
convenience, we assume from this point that the 
best sinilarity criterion value is the mi~imun 
similarity criterion value.) 

Since only spatially adjacent regions can group 
together in this approach, we call our approach the 
Spatially Constrained Clustering (SCC) algorithm. 
The basic SCC algorithm is as follows: 



i. Initialize the segmentation process by 
labeling each pixel as a separate region. where Di and are the data values of the ith band 

ti. Calculate a similarity criterion between each of the original and reconstructed images, 

pair of spatially adjacent regions. 
iii.Find the minimum similarity criterion measure 

value for the entire image. 
iv. Check for convergence by projecting if the 

proposed nerge would produce an error larger 
than the error threshold. If converged, stop. 
Otherwise continue on to step v. 

v. Merge pairs of regions with the minimum 
similarity criterion measure value. 

iv. If the number of regions remaining in the 
image is less than the preset minimum, stop. 
Otherwise return to step ii. 

Two different versions of the SCC algorithm have 
been implemented (see next section) that differ 
only in how step v is handled. The serial merge 
version is: 

v! Merge a single pair of regions with the 
minimum similarity criterion measure value 
(break ties arbitrarily). 

The parallel merge version of the SCC algorithm 
implements step v as: 

vP Merge all pairs of regions with similarity 
criterion equal to or less than 1 + d times 
the minimum similarity criterion. 

When 6 = 0 ,  the parallel merge version is still an 
exact implementation of the basic SCC algorithm. 
It is only different from the serial merge 
implementation in that ties are not broken when 

respectively; D i p  and D : ~  are the values of the 
pth pixel of the ith band of the original and 
reconstructed images, respectively; E denotes the 
expected value; and N is the total number of pixels 
in the image. 

The variance normalized mean squared error for band 
"i" (NMSE, ) is def ined as 

WSE; = MSEi 
VARi 

where VARi is the variance of band "i". The 
similarity criterion used in our tests is the 
~ ~ ( A N M s E ~  ) for each pair of spatially adjacent 

1 

regions, where the maximum is taken over all bands 
(l<i<m) . (Optionally, the similarity criterion can 

be taken as f! (ANMsE~ ) . ) For a particular pair of 
i - I 

spatially adjacent regions, ANMSE; is the change in 
NMSEi when the pair of regions is merged and the 
reconstructed image is formed by substituting the 
mean vector of each region for the multispectral 
radiance values of each pixel in the region. 

The change in NMSE; , or ANMSE~, is calculated as 
follows: 

more than one pair of regions have the minimum 
similarity criterion value. All such regions are where MSE: is the mean squared error when regions j 

and k are merged, while MSEi is the mean squared 
merged (in 'Or ' O '  the error before regions j and k are merged. Using the 
merge version becomes an approximation of the basic 

definitions of MSE, and the region mean, it is easy 
SCC Using ' ' O speeds 'Onvergence with to derive a more fundamental version of equation 
the cost of finding a less optimal segl~entation. 

(3). v i t  

For either the serial or parallel nerge version. 
the algorithm is considered to have converged when 
either a desired number of regions remain, or when 
no pair of adjacent regions is similar enough to be 
merged according to a predefined bound on the 
similarity criterion. 

A key aspect of any region growing approach is the 
similarity criterion employed. The optimum 
similarity criterion depends upon the application. 
To fully explore the utility of the general SCC 
approach, we will need to devise and test several 
different similarity criteria for different types 
of image data and for various analysis procedures 
performed on each type of image data. In the 
experiments reported here. the similarity criterion 
used is based on mininizing variance normalized 
mean squared error. 

The Mean Square Error (MSE) of band "i" of a 
multiband image is defined as 

where nj and nk are the number of points in regions 
j and k ,  respectively, before combining, and N is 

the number of points in the image. and Dik are 
the mean values of band i for regions j and k, 

respectively, before combining, and b i j k  is the 
mean value of band i for the region that would 
result from combining regions j and k. 

We have implemented the serial and parallel merge 
versions of the SCC algorithm on the Massively 
Parallel Processor (MPP) at the NASA Goddard Space 
Plight Center. For a description of the MPP see 
Ref. 4. Both implementations use the staging 
memory extensively to allow the processing of 
multispectral images of up to 512-by-512 pixels and 
up to 12 bands. Without the staging memory, either 
implementation would be restricted to a 128-by-128 
4-band image, or a 128-by-256 2-band image or a 
128-by-384 single band image because of the local 



array memory limitations of the W P .  While the use 
of the staging memory makes possible the processing 
of reasonably large multispectral images, this use 
does extract a penalty in the terms of processing 
time for the data transfers between the staging 
memory and array memory. We estimate that for a 
7-band. 256-by-256 pixel image, the parallel merge 
version of the SCC algorithn would execute 10 times 
faster on an MPP with sufficient local array memory 
to eliminate the need for extensive stager-array 
data movements. 

The implementation of the serial merge version of 
the SCC algorithn (using step vl) on the W P  is 
extremely straightforward. The initialization is 
trivial, and local neighborhood data movements are 
used in step ii to calculate in parallel the 
similarity criterion for spatially adjacent 
regions. (For images larger than 128-by-128 
pixels, a virtual MPP of up to 512-by-512 
processors is emulated by data rotates across the 
edges of the 128-by-128 array and masked 
assignments.) In step vs, a single pair of regions 
is identified for merging. (When more than one 
pair of regions has similarity function value equal 
to the minimum, the pair of regions with a minimum 
region label value is chosen.) The feature values 
(number of pixels and mean vector) for this pair of 
regions is extracted from the array, and new 
feature values are calculated in scalar mode for 
the new region. The merged region is given a new 
region label equal to the minimum of the two region 
labels, and the feature values are assigned to the 
merged region using a masked assignment. 

The implementation of the parallel merge version of 
the SCC algorithm (using step vP) on the MPP is 
more complicated than the serial version. In order 
to merge more than one pair of regions in parallel 
in step vP, we need to resort to nore than just 
local neighborhood data movements and masked 
assignments. The method we chose is as follows. 
First perform all the merging on the region label 
level. This is done through parallel region label 
propagation keyed on the similarity criterion 
function values. Once the new region label map is 
established, the new region feature values (number 
of pixels and mean vector) need to be calculated. 
In order to do this in parallel we grow a tree from 
a single pixel (seed pixel) in each region until it 
covers every region completely. (A unique seed 
pixel can be identified in region by comparing the 
current region label map with the initial region 
label map.) Then the number of pixels and sum of 
the data values at each pixel in each region are 
accumulated by tracing back up each tree. All 
region means are then calculated at each seed 
pixel, and the feature values for each region are 
broadcast out to each pixel in each region by 
traveling back down each tree, and depositing the 
feature values at each node of each tree. 

APPLICATION M DATA COHPRBSSION AND INAGE ANALYSIS 

An image segmentation can be a key step in a lossy 
data compression process. This type of data 
compression is a variant upon an image data 
compression process often referred to as vector 
quantization. In this form of data compression, 

each region in an image seguentation is given a 
unique label, and a list is generated of feature 
values corresponding to each region. This region 
label map and feature list is then encoded by a 
lossless compression scheme. For a more detailed 
discussion of this process, see Ref. 3. 

The amount of information lost by this lossy data 
compression process is determined by how well the 
segmented image represents the original image. If 
the key region feature is taken to be the 
multispectral mean vector for each region, the 
effect of this data compression an image can 
measured by calculating the Root Normalized Mean 
Squared Error (RNMSE), which we define as follows: 

RNMSE 2 JK. 

The Normalized Mean Squared Error of band "i", 
NMSEi, was defined in equation (2). The RNMSE 
carries the following intuitive interpretation: 
The RNMSE is the band average of the single-band 
RNMSE, which can be regarded as the mean deviation 
of a reconstructed image pixel value from the 
corresponding original image pixel value per 
standard deviation of the band. 

An image segmentation can also be used as a first 
step in an image analysis scheme. As mentioned 
before, image analysis can be performed on an image 
segmentation by using the shape, texture, spectrum, 
etc. of the regions found by the image 
segmentation, and by the interrelationships between 
the regions. Whereas the more complicated shape. 
texture and interrelationship analysis have the 
greatest analysis potential, we will demonstrate 
here how even a simple analysis approach using 
spectral information alone - the Maximum Likelihood 
Classifier - can be improved by proceeding it with 
an image segmentation step. 

EXPERIUEWI'AL RESULTS 

A 256-by-256, 7-band subset of a Landsat Thematic 
Mapper (TM) image over Ridgely, Maryland was used 
as a test data set for this study. For this test. 
we processed the TM image with the parallel merge 
SCC algorithm. We first used a value 0.5 for 6 and 
stopped the segmentation process when the total 
remaining nunber of regions was < 2.5% of the 
nunber of pixels in the original image (1486 
regions). Then we restarted the algorithm and 
processed from that point with a 6 value of 0.1 
until the number of regions was < 2.0% of the 
number of pixels in the original image (1299 
regions). (This produced better results than 
processing all the way down to 2.0% with a 6 of 
0.5.) 

Figure 1 (color plate VII, p. 699) shows the origi- 
nal and segmented images, along with the difference 
image (plus a bias) between the original and seg- 
mented images (bands 2, 4 and 5 of the 7-band image 
are displayed). A subjective evaluation of the seg- 
mented image reveals that areas in the original im- 
age that are relatively homogeneous, but not neces- 



sarily uniform, become completely uniform in the 
segmented image. Low contrast spatial features are 
often lost in the segmented image, but higher con- 
trast spatial features, such as edges of regions, 
are retained very precisely. Even very small spatial 
features are retained if they have sufficient con- 
trast relative to the surrounding area. 

The RNMSE image quality measure for segmented image 
in figure 1 is 0.33. That is, the mean deviation 
of an image pixel value in the segmented image from 
the corresponding original image pixel value per 
standard deviation of each band is 0.33. 

The segmented image was encoded into region label 
map and a region feature files, and the region 
label map was losslessly compressed using 
run-length encoding. This segmentation/run-length 
encoding combination produced a data compression 
ratio of 13.1 to 1. (A optimal lossless 
compression technique may produce an even higher 
compression ratio). Optimal lossless encoding of 
the original TM image data typically produces a 
compression ratio of 3 to 1 or less (see Ref. 5 ) .  

We tested an image analysis approach where the 
segmented image was classified by a simple Maximum 
Likelihood Classifier. This analysis result was 
compared with the result obtained by using the same 
classifier on the original image. (For a more 
detailed description of the test setup see Ref. 3.) 

The classification results for the original and seg- 
mented image are given in figure 2 (color plate VII, 
p. 699) and Table 1. The classification accuracies 
are consistently better for the segmented image than 
they were for the original data! We hypothesize that 
the segmentations produced by the SCC algorithm en- 
code information from the surrounding regions of the 
image in each pixel. The MLC classification results 
are improved because each pixel has knowledge of its 
spatial surroundings in the segmented image. 

Table 1. Accuracy comparison (% correct 
classification) between classifications of the 
original and segmented TM images. 

Classification 

Water/Marsh 73.7% 79.3% 
Forest 74.8% 75.6% 

Residential 54.4% 64.9% 
Ag./Dom. Grass 81.9% 83.4% 

OVERALL 79.2% 80.9% 

The first ten iterations of the parallel merge 
version took 118 seconds to perform 6192 merges. 
The serial merge version would need 6192 iterations 
to perform 6192 merges. In an actual test, the 
serial merge version took 2913 seconds to perform 
6200 merges. This means that the parallel merge 
version performed the first 6192 merges nearly 25 
tines faster than the serial merge version. The 
last ten iterations of the parallel merge version 

took 2174 seconds to perform 164 merges. We 
estimate that the serial merge version would take 
roughly 250 seconds to perform those 164 merges. 
Thus, the serial merge version would have performed 
those last 164 merges better than 6 times faster 
than the parallel merge version did them. For this 
data set, it would have been most efficient to use 
step vP for 138 iterations (resulting in 60.037 
merges), and switch to step v6 for the remainder of 
the processing (to do the last 4.013 merges at one 
merge per iteration). 

The parallel merge version took 4.6 hours to 
produce the segmentation shown in Figure 1. The 
serial merge version would have taken an estimated 
8.4 hours to do the same number of merges. An 
optimal parallel merge/serial merge combination 
would have taken an estimated 2.4 hours. Further, 
such a combined implementation on an MPP-like 
machine with sufficient local array memory for all 
data and variables would take roughly 15 minutes 
(assuming the estimated 10 times speed-up mentioned 
earlier.) Clearly, the best way to implement this 
iterative parallel region growing approach is a 
parallel merge/serial merge combination on an 
MPP-like machine with significantly more local 
array memory. Within the coming year, we hope to 
have made such an implementation on AMT's DAP 610. 

An ultimate segmentation goal would be to find the 
globally best image segaentation for a given 
similarity criterion and number of regions. Our 
iterative parallel region growing approach can only 
approximate this desired result. Fortunately, for 
many applications an approximate result may be 
sufficient. Nevertheless, we are seeking 
improvements to our SCC algorithm. One such 
improvement would be to allow pixels split out of 
regions when appropriate. We eventually plan to 
explore neural network optimization as an approach 
that could actually produce the globally best image 
segmentation. 

1. 0 .  J. Schachter, L. S. Davis and A .  Rosenfeld, 
"Some Experiments in Image Segmentation by 
Clustering of Local Feature Values." Pattern -. Vol. 11, No. 1, pp. 19-28, 1979 . 

2. M. Manohar. H. K. Ramapriyan and J. P. Strong, 
"Parallel Algorithms for Determining Motion 
Vectors in Ice Floe Images by Matching Edge 
Features." proc. of the 2 n d o s i u m  on a 

of Mas-v Par-, 
Fairfax, VA, Oct. 10-12, 1988. 

3. J. C. Tilton and H. K. Ramapriyan, "Data 
Compression Experiments with Landsat Thematic 
Mapper and Nimbus-7 Coastal Zone Color Scanner 
Data," proc. of the Scientific Data 
Co.DressionWorkehoD, Snowbird, UT, May 3-5. 
1988. 

4. K. E. Batcher, "Design of a Massively Parallel 
Processor," Trans. on C-, Vol. 
C-29, NO. 3, pp. 836-840, 1980. 

5. T. M. Chen, D. H. Staelin and R. 8. Arps. 
"Information Content Analysis of Landsat Image 
Data for Compression," Trans, 

te S W ,  Vol. GE-25, No. 
4, pp. 499-501. 1987. 



Of44GHVAL PAGE IS 
OF Pam Q u m  

THE PERFORMANCE OF THE IMAGE UNDERSTANDING 
ARCHITECTURE ON THE DARPA INTEGRATED 

IMAGE UNDERSTANDING BENCHMARK 

Dr. Charles C. Weems 

Computer and Information Science Department 
University of Massachusetts 

Amherst, MA 01003 

ABSTRACT 

This paper will present an overview of the DARPA In- 
tegrated Image Understanding Benchmark and of the Im- 
age Understanding Architecture. It  will then discuss the 
performance of the architecture on various portions of t h t  
benchmark. The article will conclude with a discussion of 
lessons that  have been learned as a result of the experience, 
both in terms of the design of the architecture and of the 
benchmark. 

THE DARPA INTEGRATED IMAGE 
UNDERSTANDING BENCHMARK 

The  need for a computer vision benchmark for parallei 
architectures has become apparent as researchers from the 
fields of computer vision and computer architecture have 
had increasing contact over the last several years. Motion 
sequences a t  moderate resolution (512 x 512) and typical 
frame rate (30 frameslsec) in color (3 bytes) involves about 
23.5 Mbytes of data  per second. The amount of cornpu- 
tation required for dynamic scene interpretation including 
the labeling of objects, surface/volume reconstruction and 
motion analysis is difficult to estimate; however, for rnany 
applications computational power in the range of 100 bil- 
lion instructions per second, plus or minus two orders of 
magnitude, is probably required. Thus, vision has become 
a subject of major interest to  computer architects. 

Unfortunately, the evaluation of progress in vision ar- 
chitectures has been difficult [Duff, 19861. There are now 
quite a few interesting machines, both existing and pro- 
posed, that  may be effective for a t  least part of the vi- 
sion problem. However, computer vision transcends a wide 
range of representations and forms of processing. In ad- 
dition, despite exciting advances in many of the subtopics 
of computer vision, there is currently no consensus in the 
research community on a unified approach to vision. There 
are many competing approaches and a great deal of debate 
has persisted. Nonetheless, it is clear that  there is a need 
to address some of the visionJarchitecture issues in a form 
that  will allow scientific insight and progress in hardware 
development. 

Recent attempts a t  defining a vision benchmark include 
the Abingdon Cross problem [Preston, 19861, defined a t  

the 1982 Multicomputer Workshop in Abingdon England, 
and the Tanque Verde benchmark suite [Uhr,1986] defined 
at  the 1984 Multicomputer Workshop in Tucson Arizona. 
The most recent attempt at  constructing a benchmark for 
vision emerged from the DARPA Image Understanding 
community, where a set of ten vision tasks were defined. 
These were: Gaussian convolution, zero crossing detection 
and output of border lists, connected components labeling, 
Hough transform, convex hull, Voronoi diagram, minimal 
spanning tree, visibility of vertices in a 3-D model, min- 
imum cost path, and subgraph isomorphism. A meeting 
was held in November, 1986, in Washington to compare the 
results of programming, simulating, or estimating the per- 
formance of a number of machines on the individual bench- 
mark tasks. The results [Rosenfeld, 19871 were both inter- 
esting and thoroughly confusing. The data  sets were only 
loosely specified, leading some to groups to  report average 
performance while others reported worst case performance; 
different groups used different algorithms; some used 32- 
bit floating point arithmetic while others used 16-bit inte- 
ger arithmetic, etc. 'I'hcse results must be interpreted with 
extreme care. 

The DARPA Intrgrated Image llnderstanding Bench- 
mark Exercise is an outgrowth of the first DARPA Image 
Understanding Benchmark Workshop. The new benchmark 
has been designed by th r  ITniversity of Massachusetts and 
the University of Maryland to address the need for an in- 
tegrated vision benchmark that transcends several differ- 
ent representations and forms of processing that are typ- 
ical of complex vision applications. The specification for 
the benchmark is now being widely distributed [Weems, 
1988a1, and the results frorn participating groups are to be 
gathered at  a workshop in October of 1988. 

This benchmark task suite involves model-based object 
recognition given images from intensity and range sensors. 
It is our intention that  the test images be designed so that 
neither, by itself, is sufficient to form a complete match. 
The  object to be recognized is a collection of rectangles 
of various sizes, brightnesses, two-dimensional orientations 
and depths. It can be thought of as a semi-rigid mobile con- 
sisting of suspended rectangles floating in space with fixed 



spatial relationships. To simplify the task, each rectangle 
is oriented normal to  the Z axis (the viewing axis) and the 
image is constructed under orthographic projection. A set 
of models is provided, from which the best matching model 
must be selected. The models are approximate in the sense 
that  the sizes, orientations, and depths of the rectangles as 
well as their spatial relationships may vary and are con- 
strained to within some tolerances. 

some of the models from further consideration for match- 
ing. Since only some of the model rectangles will have been 
extracted from the intensity image, portions of each model 
will have no match. The unmatched portions of a graph 
model are used to focus attention in the depth image so 
that  additional localized features can be extracted and the 
model can be extended through the use of context. This 
match extension step is further divided into three parts that 
are repeated for each model rectangle: model directed rect- 

The  rectangles that  make up the object are interspersed 
angle detection, rectangle depth and intensity verification. with additional extraneous rectangles in the scene from 
and model update. 

which the two images are taken. These additional rectan- 
gles may occlude portions of the mobile object, and some of The scientific gain that  should result from this exer- 
the adjacent rectangles in the scene may have very similar cise is a better understanding of vision architecture re- 
brightnesses. The image from the range sensor is further quirements, and the performance bottlenecks in different 
degraded by the addition of Gaussian noise. classes of machines, so that  the needs of vision processing 

The  low-level operations on the intensity image consist can be better addressed in the next generation of architec- 

of identifying connected components and finding the cor- tures. We also expect to learn even more about the design 

ners of each connected component based on a K-curvature of benchmarks for computer vision. 

operation. The initial processing of the intensity image also 
includes an intermediate level grouping operation t.hat con- 
sists of creating good hypotheses for rectangles from the 
lists of corners around connected components in the image. 
The  result of the initial intensity image processing is thus a 
set of connected component tokens. The only feature that  
is extracted from each connected component as a whole is 
its intensity. However, each component region has associ- 
ated with it a list of the corners that were extracted from 
its boundary. 

The  low-level operations on the depth image consist of 

THE IMAGE UNDERSTANDING 
ARCHITECTURE 

The Image Understanding Architecture (IUA) is a 
massively parallel, multi-level system for supporting real- 
time image understanding applications and research in 
knowledge-based computer vision. The design of the IUA is 
motivated by the architectural requirements for integrated 
real-time vision in terms of the type of processing element, 
control of processing, and communication between process- 
ing elements. (Figure 1) 

smoothing via median filtering, computing the magnitude The IUA integrates parallel processors operating simul- 
of the gradient, and thresliolding the gradient magnitude, taneously a t  three levels of computational granularity in a 
The result of the initial depth image processing is an image tightly-coupled architecture. It consists of three different, 
array that  represents points in the depth data  that have tightly coupled parallel processors. These are the Content 
large gradient magnitudes. The smoothed depth image is Addressable Array Parallel Processor (CAAPP)' a t  the low 
also used in later stages of ~rocessine.  level, the Intermediate Communications Associative Pro- - - 

Intermediate level processing starts with bottom-up 
grouping of right-angle corners, in component tokens, in 
order t o  generate rectangle hypotheses. The resulting can- 
didate rectangles form the basis of the initial model graph 
matching operation. The intermediate level operation on 
the depth image is a top-down directed search for expected 
rectangles, incorporating a spatially local ffough transform 
with model-constrained ranges on the pararr~eters for each 
rectangle. The high level operations are first, constrained 
subgraph-to-subgraph matching to choose and orient the 
models to be matched; and second, top-down control of 
probes into the depth and intensity images to find and f ix 
the parameters of the rectangles that are required to fi l l  
out the chosen models. As a concluding step, an irnage is 
produced that  represents the single best model match as an 
overlay with the original intensity image. 

The goal of the first graph match step is to attempt 
to  establish the most likely positions and orientations of 
the modeled objects in the image and possibly to eliminate 

cessor (ICAP) a t  the intermediate level, and the Symbolic 
Processing Array (SPA) at  the high level (Figure 2) .  The 
CAAPP and ICAP levels are controlled by a dedicated Ar- 
ray Control Unit (ACU) that takes its directions from the 
SPA level. Each level of the IUA is a parallel processor that 
is distinctly different from the other two levels, in order to  
best meet the processing needs a t  each of the corresponding 
levels of abstraction in the interpretation process. Commu- 
nication between levels takes place via parallel data  and 
control paths. The processing elements within each level 
can also communicate with each other in parallel, via a dif- 
ferent mechanism a t  each level that is designed to meet the 
specific communication needs of each level of abstraction. 

An associative processing paradigm has been utilized 
as the principle control mechanism at  the low and inter- 
mediate levels. It  provides a simple yet general means of 

'The term Ucontent-addrersable" is a synonym for. U n e ~ o r i n t i v ~ ~ "  al~il  
is all alternate term that now is not a widely used as it was w11e11 rorlle 
of our work began IFoster, 1076, Weenis, 1984a.1 



SHARED 

SYMBOLIC 
INSTANTUTU) SCHEMAS 

PROCESSOR 
ARRAY Object Reoognition. Conflict Resolution. 

COMMUNICATIONS 
ARRAY L i e  grouping, graph marching. rrgion 

analysis, exnacting geomemc structure 

BACKING 
STORE 

Segmentation, Goal Directed Resegmena- 
PROCESSOR tion, Feature Exnactioh Stereo, Motion . . .  

SENSOR DATA 
MEMORY 

DATA QUERY /RESPONSE PROCESSES 

Figure 1: IUA Compared to UMass VISIONS System 

managing massive parallelism, through rapid responses to is currentsly under construction by the University of Mas- 

queries involving partial matches of processor nlemory to sachusetts and Hughes Research Laboratories. The proto- 

broadcast values. This has been enhanced with hardware type will contain 4096 1-bit SIMD processors at  the low 

operations that  provide for global broadcast, local corn- level, 64 16-bit microprocessors a t  the intermediate level, 

pare, SomejNone response, responder count, and single re- and a single symbolic processor a t  the high level. It is 

sponder select. A 1164th scale proof-of-concept prototype scheduled for completion late in 1988. [Weems, 1988b1 pro- 
vides a more extensive discussion of the architecture. 

64 USP poassors (MIMO) 

. Instantiallon of 
schemr stretegles 

1 51 2 M Bytes Globel Shared Manay (ISR) - 64 x 6 4  (4K) Arrayol 
16 -~passsOrr  
SMIMWMIMD operalm. 
Execulesgrcuplng 
poasns. . !Slues htnrmedlate 
s y w d s  repesentation. 

ParslU A%uzlaOve 

512 ~512(256K) Array of 
r - trt ( d l )  procssslng 
denents 
Custcin VLSl chlps 
SKXS senmy dala 
t xeci~tes h v  - lewd and 
.ryr~l .nht~m algolltlims 

TUA BENCHMARK PERFORMANCE 

As of this writing, only part of thc henchmark has been 
programmed on the I U A  simulators. The deadline for com- 
pletion of the benchmark, for all participating groups, is 
October of 1988. Preliminary results for the IUA are listed 
in Table 1. For comparison purposes, the table also shows 
the results for a Sun-31160 workstation running the bench- 
mark sequentially. 

Task 
Overhead 
Connected Components 
Find Rectangles 
Median Filter 
Gradient Magnitude 
Initial Match 
Complete Match 
Output  Result 
Total Time 

IUA 
- 

0.0000500 
0.0070163 
0.0005625 
0.0026000 
0.0076055 
0.0488545 

- 

0.0727513 

Sun 31160 
6.28 

28.26 
6.28 

247.90 
136.68 
24.40 

326.04 
24.80 

800.64 

d e p e n d s  on execution of entire benchmark 

Table 1: 
Integrated IU Benchmark Results 

(All times in seconds) 
Figure 2: IUA Overview 



LESSONS LEARNED 

With regard to  the IUA itself, these preliminary re- 
sults indicate outstanding performance on the lower-level 
tasks, especially with the &bit intensity data. Floating 
point performance, while good, could be improved with ad- 
ditional hardware support in the processing elements of the 
CAAPP. Of greater interest will be the performance of the 
IUA on the intermediate level processing and top-down con- 
trol aspects of the benchmark (which are currently being 
programmed), as these portions of the architecture have 
not been as extensively exercised as the low-level processor. 
Our development to  date of the graph matching portion of 
the task indicates that  it greatly underrltilizs the ICAP. 
We estimate that  the size of the model-base could be in- 
creased by a factor of 400 without sigrificantly increasing 
the execution time. This is quite a reasonable result, since 
a real vision task is likely to  have a much larger and more 
complicated set of models to  work with. 

In terms of the benchmark, we have fotlnd i hat solving 
even a task as simple as this can present serious difficulties. 
The  benchmark code is significantly larger and Inore com- 
plex than that  of any preceding vision benchmark, which 
was the inevitable result of attempting to capture some of 
the complexity of a real vision task. Unfortunately, even 
this complex benchmark does little more lhan touch upon 
true high level processing, because there has yet to be any 
real consensus among the members of the image under- 
standing research community as to what constitutes typi- 
cal high level tasks. Once some consensus is achieved, it 
is likely that  this benchmark will be extended to address 
further high level processing, so that  participants can make 
use of the large body of code already developed. Our initial 
sequential testing of the benchmark has also revealed that 
just three of the tasks account for eighty-nine percent of the 
total time. The match extension process (which includes all 
of the top-down probing of the image data) is the most time 
consuming. The second most costly task is the median fil- 
ter that  is applied to  the floating-point depth image. The 
computation of the gradient magnitude i r i  the depth im- 
age is also a significant contributor to  the total time. The 
other tasks are minor in comparison, which serves to ern- 
phasize that  the total execution time is just one part of the 
benchmark result, and must be considered carefully in the 
context of all the other data  that are obtained. 

ACKNOWLEDGEMENTS 

This work was supported in part by the Advanced Re- 
search Projects Agency of the Department of Defense un- 
der contract number DACA76-86-C-0015, monitored by the 
Engineer Topographic Laboratory. 

The author would like to  thank Edward Riseman. Allen 
Hanson, Azriel Rosenfeld, Larry Davis, and Todd Kush- 
ner for their help in developing the IU Benchmark; Poorn- 
ima Balasubramaniam, Sunit Bhalla, Chris Corinoly, John 
Dolan, Martin Ilerbordt, Michael Scudder. Lance \Villiairis, 

and James Burrill for their efforts in designing, program- 
ming, and debugging solutions to the benchmark; Steven 
Levitan, Deepak Rana, David Shu, Gregory Nash, and Cax- 
ton Foster for their rnany contributions to the development 
of the IUA. 
REFERENCES 

Illraper, 19881 Draper, B.A., Collins, R.T., Rrolio. J .  
Grifitll, J . ,  Hanson, A.R., Risernan, E.M., The Schema 
System: Knowledge Based Vision (in preparation). 

[Duff, 19861 Duff, M.J.B., "How Not to Benchmark Im- 
age Processors", in Evaluation of Multicomputers for Irnage 
Processing (Proceedings of the 1984 blulticomputer Work- 
shop, Tucson, AZ), L. Uhr, K .  Preston Jr. ,  S. Levialdi, 
M.J.B. Duff editors, Academic Press, Orlando, FL, 1986, 
pp. 3-12. 

[Foster, 19761 Foster, C.C., "Content Addressable Par- 
allel Processors", New York: Van Nostrand Reinhold, 1976. 

[Preston, 19861 Preston, Jr. ,  K., "Benchmark Results: 
The Abingdon Cross", in Evaluation of Multicompuers 
for Image Processing (Procredings of the 1984 Multicom- 
puter Workshop, Tucson, AZ), L. Uhr.. K .  Preston, Jr . ,  
S. Levialdi, M.J.B. Duff editors, Academic Press, Orlando, 
FL, 1986, pp. 23-54. 

[Rosenfeld, 19871 Rosenfeld, A.R., "A Report on the 
DARPA Image Understanding Architectures W,rrkshopV, 
Proceedings of the 1987 DARPA Image Understanding 
Workshop, February 1987, 1,os Angeles, CA, pp. 298-302, 
Morgan Kaufmann Publishers, Los Altos. CA. 1987. 

[Uhr, 19861 lihr,  I , . ,  Preston Jr. .  K., I,evialdi, S., Duff, 
M.J.B.. "Preface", in Evaluation of Mult,icomputers for Im- 
age Processing", in Evaluation of hlulticornputers for Iniage 
Processing (Proceedings of t,he 1984 hlulticomputer Work- 
shop, Tucsori, AZ), I,. IThr, K .  I1rest,on Jr. ,  S. I,evialdi, 
M.J.B. Duff editors, Acadeiiiic I'ress, Orlando, FL, 1986, 
pp. ix-xiv. 

[Weerns, 1984ai Weerns, C.C., "Image I'rocessing on a 
Content Addressable Array Parallel Processor", Ph.D. Dis- 
sertation Computer and Information Science Department, 
also. COINS Technical Report 84-14, llniversit) of Mas- 
sachusetts at Amherst, Septernber, 1984 

[Weems, lYRRaj Weems, C' (:., Risernan, E . FIarlson, 
A., "A Computer Vision Benchmark for Parallel Process- 
ing Systems", Proceedings of the Third International Con- 
ference on S ~ ~ e r c o m p u t i n g ,  Volume 111. Supercomputing 
Design: Hardware & Software, Boston. MA, 1988. 

(Weems, 1988b] Weems, C.C., "Some Example Algo- 
rithms for the CAAPP and ICAP Levels of the Image Un- 
derstanding Architecture", Proceedings of the Third Inter- 
national Conference on Supercomputing, Volurne 111: Su- 
percomputing Design: Hardware & Software, Boston, MA, 
1988. 

[Weems, 19881 Weiss, R , "On the Organization and 
Application of Shape in Retognitiorl", AAAI Symposium, 
Stanford I'niversitv. Mart h 22-24, 1988. 



SECTION 111: ARCHITECTURES 

Part 1 : Oral Presentations 



PRECEDING PAGE B U N K  NOT FILMED 

THE MARTIN MARIElTA ADVANCED SYSrOLIC ARRAY PROCESSOR 

A. Haug R. Graybill 

Martin Marietta Aero & Naval Systems 
Baltimore, Maryland 

An overview of the y i r t i n  Marietta Advanced Systolic 
Array Processor (ASAP ) will be presented. The 
modular design of the ASAP~'  allows a user to build as 
large a processor as desired by concatenating multiple, 
independently programmable unit arrays. Each unit array, 
housed on a single VME card, is composed of a two- 
dimensional grid of 256 bit serial nearest-neighbor con- 
nected processors (SIMD), a local controller, and all 1 / 0  
support. Multiple unit arrays can be configured in any 
configuration desired; all SIMD, groups of SlMD arrays 
with MIMD between groups or all MIMD. 

Keywords: ASAP~', Massively Parallel Processor, 
Beamforming, Data Fusion, Associative Memory, Image 
Processing, Neural Processing, Signal Processing. 

INTRODUCTION 

Martin Marietta has a corporate-wide commitment to 
develop and use advanced computer architectures for 
military systems. At Aero & Naval Systems, in Baltimore, 
our efforts have concentrated on coarse and fine grain 
systolic architectures. To this end we have put in place a 
real-time signal and data processing laboratory that serves 
as an architectural testbed for all ongoing research in 
this area. This laboratory contains a number of high- 
speed devices for I/O, memory, and computation. The 
computational devices include a vector processor, a 1 
Gigaflop linear coarse grain systolic processor, and several 
Martin Marietta-developed two-dimensional fine grain 
systolic processors. Significant expansion of this labora- 
tory is planned for 1989. 

Corporate commitment to the development of a fine grain 
bit serial massively parallel processor began in 1981 when 
the Geometric Arithmetic Parallel Processor (GAPP) was 
designed for image processing applicatio~~s. At Baltimore, 
the GAPP technology was transitioned to a new applica- 
tion area with the development of a Programmable Sonar 
Beamformer (PSB). Based on the experience gained on the 
PSB, it was realized that a processor with more powerful 
computational capabilities would be useful for beamform- 
ing, so a new JLSI chip, the Advanced Systolic Array 
Procesfgr (ASAP ) was developed ir, 1986. In 1987 the 
ASAP chip was redesigned to increase capabilities still 
furthefd resulting in our current fourth generation chip, 
ASAP 11. 

To meet a diverse set a potential customer requirements, 
we designed a unit array processor that was completely 
modular at the card level. To achieve the desired pack- 

aging requirements, three additional VLSl chips were 
designed and developed. To demonstrate our processor 
capabilities, several generations of full-up processors that 
use multiple unit arrays have been built. A variety of 
applications are being demonstrated including conventional 
and adaptive beamforming, signal processing, high level 
image processing, data fusion, parallel inference engines, 
and neural net simulators. 

PRODUCr DESCRIPTION 

ASAP" Chip Significant Feature3 

The T~ignificant features of the current generation 
ASAP chip are shown in Table I .  The processing cells 
are connected via nearest neighbor paths with a broadcast 
bus for each north-south column. Our processor design 
provides for much improved add times, an equalization of 
multiply times relative to adds, and a significant floating 
point capability. All of these capabilities w g e  traded-off 
against chip real estate resulting in an ASAP chip with 
16 processing cells per chip. Each processing cell has a 
1200 bit local memory with additional external memory 
capability. 

Table I .  Simplified features of the A S A P ~ ~ I I  VLSl 
device 

Complex, High-Performance Cells 
Low to Medium Chip Density 
Balanced Ratio of Computational Power to Memory 
External Memory and I10 Cell Ports 
Floating Point 
Multiplier Accelerator (1 OX) 
MIL-STD Ada 
VLSl Support Logic 
Software Development Tools 

Unit Array Features 

To aftieve the desired single card packaging for the 
ASAP unit array, three additional VLSI chips were 
developed. In order to understand the function of these 
chips, we first define the unit array concept, ?town in 
Figure I .  As shown, a 4 x 4 array of ASAP chips 
provide a unit array of 256 processing cells. High speed 
data is normally passed into the array from external 
parallel buses via the serial-to-parallel 1 /0  (SPIO) inter- 
face. This interface converts external 32 bit-parallel 
words to bit serial data and visa-versa. Data then passes 
through a 16 x 16 cross point switch (XPOINT) into a 



Figure 1. ASAP" unit array functional design 

double buffered RAM. Simulta#ously, data can be passed 
from the RAM into the ASAP cells through the cross 
point switch. An alternate data path allows data to be 
passed to adjacent unit arrays through the north/south/ 
east/west serial buses. 

1 /0  and ASAP~* array operatiqfls are controlled by the 
1 / 0  controllers and the ASAP controller, respectively. 
A simple AMD 2910 based pfpessor chip (IOCTLR) is used 
for both the 1 /0  and ASAP controllers. For compact- 
ness and reliability, the SPIO. XPOINT, and IOCTLR were 
developed as VLSI devices. In addition to the above 
functions, the XPOINT device provides for a unique 
s o f t w ~ e  controlled arbitrary interconnection among the 
ASAP processing cells. 

The unit array has been functionally implemented with a 
VME interface, as shown in Figure 2. Figure 3 shows the 
card layout for a 9 U VME card. This VME unit array 
design provides the following features: 

a 16 x 16 array of processing cells (16 ASAP" 
chips) 

a Dual VMO controllers 
a ASAP controller 
a High speed data and control interfaces 
a 20 MHz operation 
a Independent 1 / 0  speed operation 
a A 24, D32. VME interface. 

Multiple Unit Array Configuration 

The ASAP~' unit array has been designed to allow 
multiple unit arrays to be interconnected. as shown in 
Figur~, ,  4. Since each unit array has only a single 
ASAP controller, all processing cells on the array 
operate in a SIMD fashion. However, because each unit 
array has its own controller, operation from unit array to 
unit array can be MlMD or SIMD. 



ORiGlNAL PAGE IS 
OF POOR QUAUTY 

Data Address Select 

High Speed Control Interface 3 2 
(HSCI) 4 ,I b 

1 6  1 6  

Controller 4 24, Address 
T 

Trlg 
CLKA Bus 4 32, Dsta 

v 

4 
4 , Control 

4 I 

110 
Circuit 4 

4 
C 

3 2 

3 2 
Hlgh Speed Data Interface 

(HSDI) 

Data Req ACK Data Req ACK 

Figure 2. VME based unit array functional design 

Figure3.  Card layout for VME based ASAP~' unit 
array module 



Hlgh Speed 
I n p u t m b  80 Mbps 80 MBps 80 MBps 

Figure 4. Multiple unit array interconnectability 

Software 

Since our primary customers are within the DoD, we have 
chosen Ada as our initial high-level language. Figure 5 
shows the support software developed to date. All of the 
software is currently hosted on VAX computers, but is 
portable to other systems since this is designed into Ada. 
The procedure for applications software development is as 
follows. After an Ada program is developed it is executed 
within the Ada Code Generator. This generates the micff- 
code that can then be downloaded to an Ada &SAP 
simulator or the target hardware. The Ada ASAP Run- 
Time Debugger provides a complete software debugging 
capability with both the simulator and target hardware. 
The Hardware Test Software provides a complete set of 
test vectors down to the device level. This test software 
was used to certify all VLSl devices as they arrived from 
the vendor showing first pass success on each device with 
a very short turn-around for each certification. In 
addition to the above software, a set of mathematical and 
engineering library functions, as well as numerous 
applications programs and a graphic/software development 
tool, are under development. 

To date we have developed several products which include: 

SMSP-2OM Single Module Systolic Processor, 
20MH2, Multibus 

a SMSP-2OV Single Module Systolic processor, 
20MH2, VME 

a SMSP-20s Single Module Systolic Processor, 
20MH2, VME/SUN. 

.---...--....., 
i Graphical , {-I4 
i Entry Generator/ Package 

Linkers Library 
\. . .. . . . . . . . . .* 

Run-Time ASAPN 
Simulator 

Language Hardwarr 

Figure 5. ASAP~' Ada software development tools 

units are being used for a number of capability demon- 
strations and extensive library and applications software 
development is planned for 1989. 

PERFORMANCE COMPARLWNS 

A com~arison of ~ e a k  ~erformance for five rcassivelv 
parallel bit serial machines are shown in Figure 6 and 7 
and in Table 2, for add, multiply, and 32 bit floating 
point operations, respectively. Data for the MPP, DAP, 
and CM-2 were derived from data found in References 1, 
2, and 3, respectively. In all cases, performance has been 
normalized to that of l o f t  processors. It is obvious from 
this data that the ASAP Drocessor ~rovides  a signifi- 
cant performance improvement over all- others. In fact, in 

The baseline versions of each of these products contain a package approximately the size of the ~ p p ,  we 
the equivalent of 4 unit arrays (1024 processors) and can could provide in excess of 1.3 T ~ ~ ~ ~ - ~ ~ ~  for single bit 
be expanded with additional unit arrays. The existing operations. 



Table 2. Performance comparison for 32 bit floating Processor, a parallel implementation of Kalman filtering, 
point operations normalized to 1024 processors adaptive hypothesis scoring based on changing sensor 
(Mflops) modes and environment. and an intelligent "rule-based" 

hypothesis pruning parallel inference engine. Each of 
these will be implemented in a separate "processor" or 
group of unit arrays, with overall control residing in a 
SUN workstation. 

Semnd 
(Bllons) 

Adds 

Multiplies 

0.30 - 0 28 0 27 MPf' GAPP, DAP. 
0 06 0.05 CM-2 
.r. . 7 

8 12 16 

Figure 6. Performance comparison for add operations 
normalized to 1024 processors 

ASAPm 

91 

170 

Muliply 
Operalwns 

Per I - 
Second 
(Btllansl 

NYs. GAPP. DAP, & CM-2 fan bebr MPP 

MPP 

29.3 

18.2 

I . . . . . . . . 12 
06 .a MPP 

12 16 

Word Sue (Bb) 

DAP 

12 

7 

Figure 7. Performance comparison for multiply operations 
normalized to 1024 processors 

APPLICATIONS 

GAPP 

0.54 

- 

Several sonar signal processing applications have been 
demonstrated to date. The first of these is time domain 
delay and sum beamforming for linear, planar, spherical, 
and volumetric receive arrays with data words ranging 
from one to twenty bits fixed point, and twenty four and 
thirty two bits floating point. In 1989 we will extend 
this application to time and frequency domain adaptive 
beamforming. Conventional digital signal pf~cessing has 
also been demonstrated in 1988. Using ASAP to gener- 
ate simulated hydrophone data for linear and spherical 
sonar arrays is planned for early 1989. 

CM-2 

0.07 

0.07 

Also in 1989, we are planning several demonstrations in 
the hkh-level 3-D image understanding arena by using an 
ASAP aorkstation as a Conformal Image Fusion Proces- 
sor (CIP ). Finally, we lope to demonstrate a sonar 
classifier using an A S A P ~  work ation as a Systolic a& Neural-type Array Processor (SNAP ). Table 3 presenfi 
a comparison of the performance p#ential of an ASAP 
workstation configured as a SNAP relative to existing 
neural array processors. 

Over the next few years seve I improvements are planned fi' for the ASAP~'  chip. ASAP 111 should provide a 4?$ 
percent iftrease in performance relative to ASAP 11, 
and ASAP IV should provide a 1500 percent increase. 

Extensive development and applications software is also 
planned for the next few years. This includes libraries of 
mathematical and,  signal processing functions as well as 
software for the specific applications mentioned above. 

Planned improvements to the total system include the 
development of MIL-SPEC VME based processor, as well 
as Navy Standard Electronics Module (SEM) based proces- 
sors. Preliminary designs for these products have been 
developed and will be implemented as soon as funding 
permits. 

SUMMARY 

Martin Marietta has introduced the most powerful bit 
serial massively parallel processor available to date. It 
provides significant computational power in a SUN based 
workstation environment with larger machines available. 
Extensive software is under development, with a substan- 
tial software environment alreaQ available. And although 
the current version of ASAP can be configured to 
provide a terra-op of operation, within a f q r  years this 
performance will be available in an ASAP processqfi 
packaged in a relatively small volume. As the ASAP 
products evolve, upward compatibility will be maintained 
for a l software, as was the case in our transition from \ ASAP '1 to ASAP'"II. 

REFERENCES 

1. Batcher, K.E., "The Massively Parallel Processor 
System Overview" The Massively Parallel Processor. 
edited by J.L. Potter, MIT Press., 1985. 

2. Reddaway, S.F., "Signal Processing on a Processor 
Array". Course 14, ICL. Defense Technology Center, 
Eskdale Road, Winnersh, Workingham, Berk, R G l l  
STT, UK,  1987. 

A multitude of additional military applications are sche- 
duled for demonstration in 1989. In the sensor data 3. 'Connection Machine Model CM-2 Technical Sum- 
fusion area we are planning a Data Fusion Workbench. mary", Thinking Machines Technical Reporl, HA 87- 
This workbench will contain multiple groups of unit arrays 4, April 1987. 
with different memory configurations on which we will 
demonstrate data association performed on a parallel 



Table 3. Neurocomputer performance parameters 
comparison (preliminary) 

CUPS = Connection Updates Per Second 

H NC 

PC-AT 
The HNCl 

ANZA 

30,000 
(Simulated) 

300,000 

? 

25,000 

? 

Company 
Corporation 

Machine 

Capacity 
Processing 
Element 

interconnects, 
Connections 

Layers 

Speed 
Connectlonsl 
Sec 

CUPS' 

Martin Marietta 
Aero 81 Naval Systems 

(SNAPm) 
Concept 
Development Stage 

1024 Dedicated 
(Non-Simulated-HIW) 

33,000,000 

32 81 Expandable 
to (1024) 

200,000,000 

1,333,333 

SAlC 

C- lm 
NC WIS 

1,000,000 
(Slmuiated) 

1,000,000 

7 

10,000.000 

? 

Nestor, Inc. 

Sun1 
Appollol 
PC-AT 

150,000 
(Simulated) 

15,000,000 

? 

500,000 

7 

3-D Pattern Match 
Conformal Object 

Manlpulatlon 

TR W 

blVAy 

250,000 
(Simulated) 

5,500,000 

8 

5,000,000 

250,000 

2-D Pattern Match 
Utility 

2-D Pattern Match 



THE GEOMETRIC ARITHMETIC PARALLEL PROCESSOR 

Eugene L. Cloud 

Martin Marietta Electronic Systems 
Orlando, FL 32862-8007 

ABSTRACT 

In the last decade the demand for parallel processors, particu- 
larly for image processing, has grown rapidly. Single instruc- 
tion multiple data (SIMD) computers provide very high 
throughput, can be directly scaled to computational problems, 
and exhibit a tractable, readily solvable control problem. 

The Martin Marietta Geometric Arithmemc Parallel Processor 
( G A P P )  is a massively parallel processor that contains over 
10,000 processing elements (PEs) in one or more arrays of PEs. 
Developed to meet the requirements for installation into tacti- 
cal military units, the GAPP-based processor is based on prin- 
ciples which result in small size, light weight, and low power. 

This paper describes the GAPP processing element, the array 
of processors and its control, the system into which an array is 
embedded, the interface to external data sources and data sinks, 
and the software development environment. Typical applica- 
tions are discussed. 

KEYWORDS: massively parallel processors, high throughput 
computers, image processing, Gwmetric Arithmetic Parallel 
Processor (GAPP), single instruction multiple data (SIMD), 
full adderlsubtractor (FAS). 

INTRODUCTION 

Massively parallel processors provide unique, high- 
performance solutions to a large class of problems. In the fall 
of 198 1, Dr. Wlodzimierz Holsztynski applied his mathemati- 
cal expertise to the research and development of solutions to 
Martin Marietta's image processing problems. 

This research resulted in the invention of the Geometric Arith- 
metic Parallel Processor (GAPP) and a family of derivatives. 
The fundamental processing requirement for this system is to 
provide flexible processing power despite environmental sizc 
constraints. 

BACKGROUND 

The GAPP concept was first implemented as a medium scale 
integration (MSI) breadboard in 1982. This first system emulat- 
ed a 6 x 12 cell array using programmable logic and discrete 
memory components to mechanize the cells. Later that year, 
this system demonstrated the execution of a simple pattern 
matching algorithm. The development of GAPP technology 
continued into 1983 with the commitment to develop a GAPP- 
based custom integrated circuit. NCR Corporation of Fort Col- 

lins, Colorado, was licensed by Martin Marietta to design and 
build GAPP chips. The fust design was a PLA-based approach 
that resulted in 3 x 6 cell chips. Prior to the completion of these 
parts, known as GAPP I, we began to improve the design of the 
basic cell toward higher cell density per chip (6 x 12 cells, or 
72 cells per chip). The fust of these new chips, GAPP 11, was 
delivered to Martin Marietta in lage 1984. Two chip design and 
fabrication cycles were completed within 2 years. These chips 
were fabricated in 3-micron complementary metal oxide semi- 
conductors (CMOS) using a double metal process. NCR has 
continued the process improvement and is now delivering parts 
from a 2-micron double metal CMOS process. 

During chip design and development, Martin Marietta designed 
and built a prototype system on company funds. This system 
was designed to perform real-time (30 frames per second) vid- 
w processing. The video source of primary interst and focus 
was a forward looking infrared (FLIR) sensor. This application 
was chosen because the FLIR is a major product line of Martin 
Marietta Electronics and Missiles Group in Orlando. 

The desired result from this processor was the extraction of tar- 
gets from each image and the rejection of all nontargets (clut- 
ter) in a tactical military scenario. In addition, the targets were 
classified by type. This GAPP system was designed to be both 
a research tool and an example of an automatic high-speed pro- 
cessor. Packaged in a standard laboratory rack with considera- 
ble room for additional experimental pieces, the design includ- 
ed two GAPP arrays: the main array containing 41,472 proces- 
sing cells or elements and the target array containing 4,608 
cells. The system also contained two 29,116 micro controllers, 
two 68,000 single board microcomputers, and an extended 
MIL-STD-1750A instruction set processor designed by Martin 
Marietta. The GAPP I1 chips and the system design came to- 
gether in 1985 and has since been in continuous operation. 

The merit of the GAPP computation approach was well recog- 
nized within the company and additional versions of GAPP 
processors were authorized prior to completion of the f ist  pro- 
cessor. A flightworthy helicopter system whose main array 
contained 51,840 processing cells was built and flown in 1986 
and 1988. This system continues to serve as a test bed for vari- 
ous programs. We also recognized that algorithm development 
for GAPP-based systems would be dramatically improved by 
installing GAPP processors as peripherals to our VAXTM-based 
image processing laboratories. There are currently three GAPP 
systems attached to VAX-based systems in support of pro- 
grams at Martin Marietta. The largest GAPP systems' main ar- 
ray contains 82,944 processing elements. This is probably the 
largest array of processors ever constructed. 

VAXN is a registered trademark of Digital Equipment Corp. 



Martin Marietta and NCR jointly developed a peripheral prv- 
cessor for the NCR Towerm Computers (also compatible with 
IBM PC-ATsTN and other compatible computers). Martin Ma- 
rietta expanded the development so that the basic system is also 
compatible with SUN 3TN systems. NCR continued its devel- 
opment system for their customers. 

CELL DESCRIPTION 

General 

We intentionally keep the GAPP cell as simple as possible. 
This simplicity is the driving principle resulting from Dr. 
Holsztynski's work. Nothing should be included in the cell that 
is not involved in the computation clock cycle. This require- 
ment keeps the cell structure small, allowing a large number of 
cells per chip. As shown in Figure 1, the cell consists of six ac- 
tive components: four 1-bit registers, a l-bit full adder/subtrac- 
tor (FAS), and 128 bits of memory. Additionally, multiplexers 
and data paths permit the movement of signals within the cell. 

Registers 

Three of the I-bit registers, labeled North-South (NS), East- 
West (EW). and carry bonow (C) are connected to the inputs 
of the l-bit FAS. Additionally, the NS register output is con- 
nected as an alternate input to the NS registers in the cells that 
exist geometrically to the north and south of this cell. Likewise, 
the EW register is connected as an altemate input to the EW 
registers in the cells that exist geometrically to the east and 
west of this cell. This is the nearest neighbor orthogonal con- 
nection of the fine grid array of GAPP cells. The contents of 

the C register are not available outside the cell in which it ex- 
ists without passing through some other register. 

Full AdderlSubtractor 

The l-bit full adderlsubtractor (FAS) is the computational ele- 
ment of the cell. It implements the huth table shown in Figure 
1. The three 1-bit inputs come from the three previously men- 
tioned registers. NS, EW, and C. On every clock cycle the FAS 
automatically produces the result prescribed by the truth table. 
This truth table allows the construction of arithmetic and logi- 
cal results, in a bit serial fashion, that are completely general. 
In principle, one can perform all arithmetic and logical opera- 
tions with this element. The output labels represent respective- 
ly sum, carry, and borrow (SM, CY, BW). The SM output is 
the exclusive OR of the three inputs. The CY output is the ma- 
jority of the three inputs. The BW output is the majority of the 
three inputs with the NS value as the negated value in the table. 

RAM 

The memory bit in each cell is organized as a 1 x 128 bit static 
RAM. When a 7-bit address is supplied, along with read-write 
signals, 1 bit of data may be read from or written into the ad- 
dressed memory location in each cell. The cell RAM is only 
used to store data. 

Each cell requires 20 bits of controVaddress information defin- 
ing the activity required of the cell. The control section consists 
of 13 signals (the other 7 are associated with the RAM address- 
ing) which primarily select data paths within the cell. There are 

Figure 1. GAPPm Cell 

NCR Towerm Computer is a registered trademark of NCR Corp. 
IBM P C - A F  is a registered trademak of International Business 

Machines Corp. 
Sun 3nris a registered trademark of Sun Micmsystems, Inc. 



five independent parallel groupings of data paths: one associat- 
ed with each portion of the cell that can store data. Thus, the 
RAM and registers NS. EW, CM, and C can be manipulated in 
parallel. Additionally, each cell must receive a clock signal. All 
changes of state within the cell occur synchronously with the 
clock. 

GAPP CHIP DESCRIPTION 

Control 

The control, address, and clock signals are common among all 
cells on the chip. Thus, every cell performs exactly as its neigh- 
boring cell. The only difference between activities are a func- 
tion of the data content within each cell's registers and RAM. 
These data differences are crucial because a cell or group of 
cells, through the proper use of algorithms, can appear to be 
"turned off." The cells' ability to perform logical operations 
makes individual cell operations practical even in an SIMD 
control strategy. 

Shift Register Groups 

If the NS registers are pictured as in Figure 2a, they form bidi- 
rectional shift registers in the north-south direction. On a single 
GAPP chip, there are six sets of 12-bit NS shift registers. If the 
EW registers are likewise pictured as in Figure 2b, they form 
bidirectional shift registers in the EW direction. On a single 
chip there are 12 sets of 6-bit EW shift registers. Since every 
processing element contains one each NS register and one each 
EW register, then these groups of NS and EW shift registers 
form a geometric orthogonal arrangement, as shown in Figure 
3, across groups of cells. Means are provided for the contents 
of the EW registers to be transferred to the NS registers and 
vice versa. 

Similarly, the CM registers are organized as a group of shift 
registers, geometrically placed in parallel with the NS shift reg- 
isters. The CM registers are unidirectional (from south to north). 

Figure 2. GAPPTM One-Bit Latches Viewed as Shift Registers 

NS and EW 

Figure 3. Orthogonal GAPPm Register Pairs. 

Chip PerformanceiMechanics 

Each grouping of like-named registers, such as outputs from 
the FAS and RAM locations at the same address, can be 
thought of as planes of data (Figure 4). When an insauction is 
executed, every cell in the chip reacts in exactly the same way. 
Since each chip contains 72 cells, this has the effect of operat- 
ing on a 72-bit "word" within the chip for up to five planes (in- 
structions involving NS, EW, C, CM, and RAM) in one clock 
time. Usually one to three planes are moved at once. 

C M 

NS 

EW 

C Reglrters 

SM 

CY 

BW 

0 
1 
2 R A M  

1 2 6  
1 2 7  

Figure 4. GAPPTM Chip Plane Names 



Chip Edges 

The ends of each of the three groupings of shift registers (CM, 
NS, and EW) come to the edge of the chip. Both the CM and 
NS groups exit at the north and south edges while the EW 
group exits at the east and west edges. Each of these data 
groups may be thought of as input/output ports to the chip. In 
that sense, each chip has 6 ports; 2 bidinctional 6-bit ports 
(one at the northern andddd one at the southem edge for NS; 2 
unidirectional 6-bit ports (one for output at the northem edge of 
CM and one for input at the southan edge of CM, and 2 bidi- 
rectional 12-bit ports (one at the western and one at the eastern 
edge for EW). Further, the system designer may choose to pro- 
vide three simultaneously input (CMS, and E or W and N or S) 
and three simultanwusly output (CMN, and E or W and N or 
S) paths on a given clock cycle. At a 10 MHz clock, each chip 
has an inpur/output bandwidth of 60 MByteslsecond, 30 
MBytesIsecond input, and 30 MBytedsecond output. 

The data signals are deliberately pinned out of the chip package 
at four mechanical edges, providing relatively easy printed cir- 
cuit board layout. 

Chip Performancehfechanics 

Consider the following: a cell requires 25 clocks to p e r f m  an 
8-bit add (3n+l, where n is the number of bits in each operand 
to be added). Each chip can be clocked at 10 MHz frequency. 
At this 100 nanosecond rate, each cell can perform 400,000 8- 
bit adds per second. Each chip contains 72 cells each perform- 
ing their add: thus the chip throughput is equivalent to 28.8 
million 8-bit adds per second. The &bit add executes in 2.5 mi- 
croseconds. As an example of an elementary image processing 
operation, a 3 x 3 neighborhood Sobel operator takes 54.6 mi- 
croseconds or 18.3 15 Sobels per second per cell. 

Each chip contains 84 pins for power, ground, clock, control, 
address, and data exchange. Each chip occupies about one 
square inch of board space and dissipates about one-half watt. 

GAPP ARRAY 

Assembly 

The assembly of an array is simple; each chip is connected to 
its logical neighbor (east connects to west and north to south). 
Clocks and control are distributed to every chip in the m y .  
Practical limits exist and most are imposed by the choice of 
board housing, backplanes, bus standards, or system architec- 
ture. In the current design, arrays are modularized as 48 x 132 
(6,336) cells on a single 9u board (15 x 17 inches). See Color 
Plate VIII, page 700. 

In standard systems, input of data occurs via the CM south port 
and output occurs from the CM north port. This arrangement 
takes advantage of CM plane, allowing for simultanwus input 
and output during computation. To obtain simultaneous input 
and output, three conditions must exist. First, a result must be 
available at the start of the inputloutput operation. Second, a 
plane of input data must be available in the external world. 
Third, the algorithm currently running must require at least N 
clocks, where N is the size of the GAPP array in the north- 
south direction. To obtain free input/output, a result is loaded 

from RAM or registers into the CM plane in one clock cycle. 
Data in the CM register plane are shifted north one position for 
each clock. Simultaneously, a row of data is output into an ap- 
propriate buffer on the northern edge of CM. On the same 
clock, a row of data is input into the southern edge of CM. This 
operation continues for N clocks. During the N clocks, any oth- 
er operation can occur withint the array as long as it does not 
involve the CM plane. At the end of N clocks, data are written 
from CM into RAM or registers as dictated by the program. 

Sizes 

The smallest size array is one chip. The required array size is 
tailored to the system problem. In real-time image processing. 
the major parameters then determine size including input data 
rate, algorithm length (execution time), and array clock speed. 
For example, assume a 10 MHz clock speed for the array. Fur- 
ther assume that the data are arriving at 12 megapixels per sec- 
ond and that the algorithm requires 50,000 instructions or 
clocks (the equivalent of 2,000 8-bit adds for every pizel in the 
m y  1. 

The algorithm will require 5 ms to execute (50,0001 
10,000,000). The array must contain at least 60,000 cells (5ms 
x 12,000) to maintain real-time rates without missing any data; 
this equates to about 833 chips. Using the 48 x 132 cell GAPP 
modules previously mentioned, a system containing ten mod- 
ules will suffice (880 GAPP chips or 63,360 cells). The modu- 
lar design approach can accommodate up to 24 GAPP modules, 
2,112 chips, or 152,064 cells as shown in Figure 5. At a 10 
MHz clock frequency, a 24-module system would exhibit a 
computational throughput of 60 giga 8-bit adds per second. The 
largest GAPP system to date contains 1,152 chips or 82,944 
cells. 

Figure 5. GAPPN Chip Modules--Optional Configurations 

GAPP SYSTEMS 

Composition 

Every GAPP-based image processing system must interface 
with the outside world, as shown in Figure 6a. At the next level 
of detail, the systems must include elements unique to GAPP- 
based architecture such as the interface to data sources and 
sinks appropriate to the array as well as program store and con- 
trol for SIMD style processors, as depicted in Figure 6b. 



All GAPP systems have these functions but unique implemen- 
tations are too numerous to mention in detail. The range of sys- 
tem applications has spanned NASA Mars Lander studies to 
Saategic Defense Initiative (SDI) applications, from laboratory 
systems to tactical military hardware. GAPP array designs 
rmge from small arrays (12 x 18 cells) to very large arrays. 
GAPP systems have handled frame rates from seconds per 
frame to more than 100 frames per second. 

The remainder of this paper discusses systems composed of a 
standard set of modules. The system component overview is 
shown in Figure 7. We assume that these systems will be con- 
nected to a host computer, although the majority of our GAPP 
systems are stand alone ROM or disk-based machines. The re- 
quired modules (solid outline) are described and available op- 
tional modules (dashed outline) are discussed. 

GAPP Module 

The GAPP module, pictured in Color Plate VIII. page 700, and 
diagrammed in Figure 8, is the heart of the system. The design 
philosophy applied to this module drives the overall system 
definition. The module contains three major elements, the array 
of GAPP chips, an input buffer memory and an output buffer 
memory. The GAPP array contains 88 chips arranged as a 48 x 
132 cell p u p .  CMS lines are used as the input means to the 
input buffer section. CMN lines are used as the output means to 
the output buffer section. 

The input buffer is composed of standard memory chips, either 
with 16K or 64K parts, depending on the application. These 
parts are arranged to form a 48-bit wide memory that matches 
the GAPP array size. Both data to be stored in the input buffer 

-7- Program In ( a )  

Program 
Source 

Figure 6. GAPPTM Chip System View Figure 7. GAPPTM Chip-Based Optional Elements 

GAPP Array 48x132 (6,336) 

f w 

OB Data 

t \ 
I * 

GAPP CT Data 

Scan Data 
& Address 

CMD 
& ADR 

Figure 8. GAPPTM Chip Module GMOD 



and its addresses may come from two sources: the GAPP con- 
troller (G2MC) and (if one is included in the system) the SIOC. 
These sources control and write 48-bit wide data into the mem- 
ories. The G2MC has priority over the input comer turn (CT) 
data and address bus. 

The output buffer is composed of the same type of chips as the 
input buffer, but is double buffered. This double buffering al- 
lows the simultaneous transfer of results to the data sink during 
GAPP computations involving the other section of the output 
buffer. Depending on the system configuration, the scan bus 
output from the output buffer is the data and control path by 
which real-time results and display transfers are made to the re- 
mainder of the system. If few results are desired, or if the data 
rates are low, then results can be extracted from the output buf- 
fer via the comer turn bus through the G2MC to the host. 

Data may be input into the GAPP array from two sources via 
the CMS port: the input buffer and the output buffer. This ar- 
rangement allows continuous real-time sensor input while ena- 
bling the output buffer to be used as virtual memory to aug- 
ment the in-cell GAPP data memory. Since every module has 
its own output buffer, the time required to save and recover 
data to virtual memory is independent of array size or organiza- 
tion. 

The impact of this approach reflects into all areas of the system 
design. Fist, consider the input side of the module. Since the 
input buffer is not double-buffered, it is possible for the GAPP 
program to need input from the input buffer while a real-time 
sensor is inputting data. This eventuality is handled via control 
from the GMC in conjunction with FIFO storage on the SIOC. 

Second, on the output side, there are currently two system com- 
ponents that might require simultaneous access to the scan bus: 
the video display conmller (VDC) and the post-GAPP pro- 
cessing chain [entered via the output buffer data extractor 
(OBDX)]. Because of this possibility, an arbitration function is 
included on each board. 

Thii, from a system standpoint. each GAPP module has its 
own unique relationship with respect to the other modules and 
to the mapping of data into the modules. When the data frame 
size is established (512 x 512 or 100 x 100) the relationship be- 
tween that frame and the physical processor size must be deter- 
mined. This reflects into GAPP module and input buffer mem- 
ory addressing. Further, GAPP modules do not reside on the 
system bus, MBII. Rather, they are accessed via the G2MC on 
MBII. 

GAPP Module Controller 

The purpose of the GMC shown in Figure 9 is to provide sys- 
tem synchronization and program storage and broadcast to the 
GAPP modules. It is the primary interface to the GAPP mod- 
ules and consists of two major sections plus the MBII interface. 
The f i t  section is the control and GAPP program storage sec- 
tion and the second is the data inpudoutput section. 

All data and control commands are provided to the G2MC via 
MBII from the host, including download of GAPP algorithms 
and the control sequence to be executed. The controller can be 
configured to hold as many as 1 mega word of GAPP instruc- 
tions. The minimum configuration is 256K words. Board con- 
trol starts the sequence of GAPP execution via the system 
control and sequencer. This in turn establishes system synchro- 
nization as a function of embedded commands within the 
GAPP code. Both GAPP module input and output buffer ad- 
dress sequences are established from the controller for normal 
operational interface with the GAPP array. A priori knowledge 
of the algorithm is used by the system to precompute addresses 
to maintain system throughput. These addresses are known as 
either compile or load time. 

The second section, data inpudoutput, is used for low volume 
real-time, high volume nonreal-time, or setup data transfers. As 
previously noted, results may be @ansferred via this path to the 
host. Some applications require masks to be available as a bit 

Static RAM (4 MB mexlmum, 1 MB mlnimum) 

m To 
GAPP 

Board 
Interface Control 

C Addmsa 

System System System 
Control Sync 1 State 

end and and 
Seauencer Dr ivers  Sync 

t 
& GAPP 

I I control I data Path 

Figure 9. GAPPTM Chip Module Controller (G2MC) 



plane while others assign a unique array cell address to each 
cell loaded from the output buffer. These data are downloaded 
via this path, which sets up data and extracts test algorithm ex- 
ecution results to determine the integrity of the GAPP array. 

Generic Interface 

The generic interface (GI) module, shown in Figure 10, pro- 
vides a standard GAPP system interface to a host system. This 
smart switch routes programs and data to the appropriate mod- 
ules within the GAPPrbased system via the highest speed path 
available. A host unique interface is required in conjunction 
with the GI. Currently, three host interfaces are planned: IBM 
PC-AT, SUN, and VAXJAptec Systemsm. 

The GI passes GAPP program data, lookup data, execution or- 
ders, and the like to respective bus modules via the MBII mes- 
sage passing protocol. Modules that can reside on the bus have 

Figure 11. GAPPm Chip-Based Minimum System 

Figure 10. Generic Interface 

a predefined list of recognizable primitives that enable new ca- 
pabilities to be added to the system equipment list. 

Minimum System 

With these three modules and the host interface, a minimum 
system can be configured (Figure 11). GAPP modules (1 mini- 
mum), a controller, and the GI perform algorithm development 
and numeric, geometric, and logical computations. This config- 
uration is useful in a personal workstation with the IBM PC- 
AT or the SUN as a host. The data transfer rates of these hosts 
prevent gross inefficiencies for a 2-to-6 GAPP module system. 

High Speed System 

Figure 12 represents a high-speed real-time display and pro- 
cessing system. If connected to a VAXfAPTEC system with an 
IBIS disk system, this system would provide powerful process- 
ing capabilities for a multiple user environment. With a mini- 
mum of eight GAPP modules, this system would avoid inputl 
output overload. Additional equipment would include video 
disks and tapes for real-time data input. 

The video display controller (Figure 13) provides for symbolo- 
gy overlay over output video derived from GAPP output or 
symbology overlay over digitized analog video with the option- 
al video digitizer. The VDC provides a digital output port to 
supply digitized video as an input to the GAPP system from 
standard analog inputs (RS170 or RS343). The analog video 
output is provided in RGB format. Lookup tables establish col- 
or parameters. The VDC may be used alone, for output only, or 
in conjunction with the sensor input/output controller (SIOC). 

Figure 12. GAPPTM High-Speed SysternlMultiuser Environment 

Aptec Systemsm is a registered trademark of Aptec Computer 
Systems, Inc. 



Interface 0 

Figure 13. Video display controller 

- - - - - - - - -  
I I 
I I 

I Vldeo 
Dlgltlzer 

I I 
L - - - - - - - - 1  

The. SIOC, shown in Figure 14, provides the interface between 
digital video and the input buffer section of the GAPP rnod- 
ules. The SIOC accommodates a quantity of GAPP modules 
and can select from one of two video sources. A or B. With op- 
tional adapters, Emitter-Coupled Logic (ECL) or double-ended 
Transister Transister Logic ('ITL) digital inputs can be used. In 
the high-speed system configuration, one of these inputs is the 
generic interface, while the other is the digitized video pon of 
the VDC. Thirty frames per second video can be received and 
processed from-either port. In some sensors, the order of pixel 
 resenta at ion is scrambled. The DSC block is a ~roerammable 

Dlgltel 
Vldeo 
Output 
Port  

kindow function. Windows of different sizes miy 6e selected 
from each frame of a continuous stream of images. The CMP 
or compressor function is a programmable down-sampler. 

- 
Memory 

The statistics box represents a custom statistic chip that accu- 
mulates image statistics as the image is input to the system. 
These data may be used to adjust the algorithm in real time. 
The lookup table (LUT) can remap the image if desired. Some 
sensors are scanned vertically while others are scanned hori- 
zontally. This box remaps vertical scan to horizontal scan. The 
system can accommodate direct vertical scanned input if de- 
sired. The remainder of the SIOC interfaces the digital video 
c-nnrn tn  tha C A D D  rnn,-I~.lar ;n rmn;a.not;nn s.r;th tha C A D D  
J U b m L I I  W UlU U N  1 . In-U.UO .I1 L A t . I J U I I U U V I E  11.t.1 L8.U U-1 I 

controller module. 

The software development environment for GAPP-based sys- 
tems is continuously improving and expanding. Our fust soft- 
ware system was based on the STOIC threaded language. 
While this approach produced a complete software develop- 
ment environment in about 4 weeks of elapsed time, it was not 
attractive to outside customers. To overcome this aversion to 
STOIC, an Ada-like language compiler was developed. 

. b 
Vldeo 

Controller 
8 2 7 8 6  

In conjunction with NCR, a C language-based sofware devel- 
opment system was created. This system has been ported to the 
NCR Tower computers, IBM PC-AT and its close compatibles, 
and the SUN computer. 

Vldeo 
DAC 

+ 
* 

A 
q DSC 4 WWD 4 CUP+ LUT 

St.tIstlcs 

DSC - Dm-.crarnblmr 
W M  I Wkdow function 
CUP = CornDremmor 

DRAM 
control 

LUT - ~ook;~  1.bb 
V - I 4  . Vor1Ic.I 10 horlzan1.l 
CT . cort5.r turn 
B I  . Bu. inlH1.c. 
IB = hput bulk, 

DRAM 
Scan 

Control 
and Data 

Module 
Input 
Bulfsr 
Input 
Bus 

Figure 14. Sensor inputfoutput controller (SIOC) 

L 

A nurnoer or uullnes runcnons ana agonmrmc: apprwacnes 
have been developed between 1986 and 1988. These include 
computational and representational approaches to Hough 
Transforms, artificial neural networks, fdimensional image 
manipulation and rotation, multiple simultaneous discrete Four- 
ier transforms, and floating point representations. 

'Ornor 

Turn 

Many basic level operations exist as libraries. These libraries 
are available for addition, subaaction, multiplication, division, 
absolute values, thresholding, erosion, dilation. general convo- 
lution, spatial filtering, down sampling, histogramming, and 
logical operations on both single and multiple bit functions. 
The "ADD" library, for example, must handle a significant di- 
versity of operand locations and operand precision for bit serial 
geometric processors. Geometrically, operands may be in the 
same cells as data memory or in neighboring cells. The oper- 
ands may be located at the same GAPP RAM address or at dif- 



ferent addresses, and the number of bits in the operands need 
not match. All of these considerations must be implemented in 
a general purpose library function for each of the standard ele- 
mental computer operations. 

Mars Rover Sample Return (MRSR) 

Marcin Marietta Astronautics Group uses a GAPP-based system 
to investigate complex autonomous spacecraft landing. Color 
Plate M (p. 701) shows the marrain (Martian terrain) board 
used to simulate the surface and the TV probe that captures the 

pictures to be processed by the 100 x 100 GAPP cell process. 
This processor is coupled to a Gould SELTM computer via 
RS422 link. 

SUMMARY 

The GAPP-based processor is a flexible and affordable system 
architecture based on simple fine-grain bit serial processing 
cells. This system has broad application, including use in labor- 
atory, tactical military, and space-based systems. 

Gould SELTM is a registered trademark of Gould, Inc. 



NAP (NO ALU PROCESSOR) 
THE GREAT COMMUNICATOR 

StJeff Fried and §$Bradley C. Kuszmaul 

SMIT Laboratory for Computer Science 
Cambridge, MA 02139 

iGTE Laboratories $Thinking Machines Corporation 
Waltham, MA 02254 Cambridge, MA 02139 

ABSTRACT INTRODUCTION 

Message routing networks for parallel supercomputers 

Message routing networks are acknowledged to  be one 
of the most critical portions of massively parallel com- 
puters. This paper presents a processor chip for use 
in massively parallel computer. The programmable sp 
proach used in this processor provides enough flexibility 
to make it a "universaln part for building a wide variety 
of interconnection networks and routing algorithms. A 
SIMD control scheme is used to  make programming and 
synchronizing large numbers of processors simple. 

In the course of designing this processor, we were faced 
with the decision of which logic operations to implement 
in an ALU; informal design studies showed that it was 
best to provide none. The processor performs all com- 
putations by a sophisticated table lookup mechanism, 
and has no ALU; it is thus called the No ALU Proces- 
sor (NAP). Using tables rather than an ALU provides 
a very flexible instruction set, and in real programs of- 
ten allows more than one "operation* to  be done in one 
cycle. 

Benchmarks written for the NAP show that indirect 
addressing mechanisms can speed many common opera- 
tions by a factor of about log N. We have therefore pro- 
vided hardware to  support indirect addressing, or Mul- 
tiple Address Multiple Data (MAMD) operation. In ad- 
dition, the NAP contains local storage used for flexible 
instruction decoding: the same instruction can result in 
different operations on different chips. These two mech- 
anisms allow programmers to write programs for NAP 
machines easily using SIMD style, and also provide the 
power of different cornputstions happening simultane- 
ously in different parts of the machine. 

Keywords: Universal, Table lookup, ALU, Parallel, Pro- 
cessor, Network, VLSI 

pRECEDiNG PAGE BLANK NOT FILMED 

occupy a unique place in the spectrum from special- 
ized to  general-purpose machines. Although these rout- 
ing networks can used to  build general-purpose parallel 
computers (as well as specialized computers), they them- 
selves are usually built out of very specialized hardware. 
This paper presents a single processor design which is 
useful for building a variety of different networks; in this 
sense it is a general-purpose element within the spe- 
cialty of interconnection networks. This processor is 
an experimental design incorporating several novel ar- 
chitectural features which make it simple to program, 
general purpose, and efficient. Specifically, no ALU is 
provided in the processor. The arithmetic functions nor- 
mally performed by an ALU are instead performed by 
table lookups into memory. In addition, a very flexi- 
ble programming model is provided, which supports in- 
direct addressing and multiple concurrent instructions 
while operating in a SIMD or Multiple SIMD (MSIMD) 
mode. 

The NAP chip described in this paper is the result 
of a design experiment which explores architectures for 
communication network support. The experiment has 
three main design goals: 

Act as a "universaln element for routing networks. 
By universal we mean both general purpose and ef- 
ficient. The performance of the NAP when used as 
a node within a network should be as close as pos- 
sible to the performance of a special purpose chip 
designed especially for that network. 

Provide communications control which is as flexible 
as possible. 

Keep the processor's I/O pins (which connect to 
other NAP chips) and memory as busy as possible 
performing useful work. 



In the course ofdesigning the NAP, we were faced with Ind i rec t  Addressing a n d  MIMD - - 

the decision of which logic operations to  implement in an 
ALU; informal design studies showed that it was best to  
provide none. Using tables rather than an ALU provides 
a very flexible instruction set, and in r ed  programs of- 
ten allows more than one "operation" to be done in one 
cycle. One of the most interesting lessons from the de- 
sign of the NAP was that table lookup is a very powerful 
mechanism. 

A collection of NAP chips can be wired together and 
can be programmed to simulate many things. We have 
programmed our simulators to  perform several impor- 
tant parallel algorithms, including reduction and paral- 
lel prefix in a tree network (Ref. I), connection-machine 
style routing on a cube connected cycle (Ref. 3)) cellu- 
lar automata programs (such as Conway's game of Life) 
(Ref. 7). We are able t o  support any network with a 
large number of nodes (up to about 28' nodes) of con- 
stant degree, including fat-trees (Re&. 4, 2), butterfly 
networks (Refs. 8, 5, 6), cube connected cycles, trees, 
and meshes. 

Section of this paper describes the instruction set ar- 
chitecture of the NAP. Section discusses the processor 
design and the implementation of the NAP chip. Fi- 
nally, Section evaluates the NAP in the light of our 
design goals, and summarizes the lessons learned from 
this project. 

I N S T R U C T I O N  S E T  A R C H I T E C T U R E  

We adopt the (M)SIMD model of one or more con- 
trollers broadcasting microinstructions to sets of p r e  
cessors; each set of processors is controlled by one con- 
troller. The controller handles all instruction sequenc- 
ing, like loops or branches. In this SIMD model all 
processors are globally synchronized at the instruction 
level. Each processor communicates with other proces- 
sors through eight bidirectional wires. The bidirectional 
wires may be connected in any fashion to form an in- 
terconnection network; the NAP chips form the nodes 
of that network, and may do computations in parallel 
to perform routing, do actual computing for the system, 
or both. A system-level view of the NAP is shown in 
Figure 1. Examples of networks which can be built us- 
ing NAPS are Butterfly or Fat-Tree networks, Banyan or 
Flip-type networks, Hypercubes (more than 2' proces- 
sors require multiple NAPS per node), Cube-Connected- 
Cycles, Shuffle-Exchange networks, Torus and Mesh net- 
works, restructurable networks, and Trees. An impor- 
tant restriction is that the networks are regular enough 
to have fewer than 16 distinct types of nodes; most prac- 
tical networks have one or two. 

One very important mechanism provided by the NAP 
which is not found in conventional SIMD computers is 
indirect addressing. We support indirect addressing be- 
cause of the wave nature of the computations performed 
by many routing networks. Consider for example paral- 
lel prefix (Ref. I) ,  which is a class of parallel algorithms 
which use a tree interconnection structure between pro- 
cessors to  perform many operations (such as addition) 
in logN time. At any stage of a parallel prefix computa- 
tion, each level of the tree may be accessing a bit a t  a 
different address than other levels of the tree are access- 
ing. Conventionally, this would be handled by enabling 
or disabling the processors a t  different levels of the tree, 
and running the computation on different levels a t  differ- 
ent times, thus slowing down the overall computation. 
Indirect addressing provides a mechanism for different 
processors to  access different memory addresses at the 
same time under SIMD control. The result is that par- 
allel programming can be done more flexibly and more 
efficiently. 

In addition to  indirect addressing, there are three 
means of differentiating processors within the SIMD con- 
trol structure and hence making programming more flex- 
ible and efficient. 

1. Conditional execution: the instructions broadcast 
on the SIMD bus can conditionally load a local in- 
struction store called the nanostore, conditionally 
load the memory, conditionally load configuration 
bits within the NAP (called 110-or-State-Select or 
ISS bits), and conditionally execute sequences of in- 
structions. An instruction may be conditioned on 
any of the 16 bits of state within the NAP. 

2. The instructions stored within the nanostore of each 
NAP may be different, so that different processors 
may perform totally different operations in response 
to  the same broadcast instruction. 

3. Processors can have different tables a t  the same ad- 
dress in local memory, and thus perform different 
functions even while they are accessing the same 
address. 

These three mechanisms, which are explained in more 
detail below, provide a large degree of flexibility to NAP 
programmers. 

Ins t ruc t ion  Phi losophy 

We assume that off-chip wire delays are slow compared 
to on-chip cycle times and local memory access time, 
since we are implementing systems with long wires. 



8 Bldlrectlonal 
'Ne1work' wt*. 

BrOsdc'st 
SIMD 

Control 

Figure 1. System-level view of a NAP-based computer. Global microcontrollers broadcast instructions to sets of 
NAP chips. Each NAP chip is connected to  an off-chip RAM, a SIMD instruction broadcast bus, and 8 bidirectional 
network lines. 

No-Alu 
processor 
(NAP) 

RAM 

Therefore, we chose a microcycle/nanocycle timing ap- 
proach. At each microcycle, the controller broadcasts a 
global microinstruction, and each processor can read or 
write from each of its eight pins. Within each microcy- 
cle, there are four minor cycles called nanocycles. Dur- 
ing each nanocycle, a nanoinstruction is executed which 
nearly always references the external memory twice (one 
read and one write or write-back). Thus, the NAP uses a 
two-phase timing methodology internally, and the mem- 
ory may be accessed during each phase. Two phases 
make a nanocycle, and four nanocycles make a micro- 
cycle. The memory address may be changed once a 
nanocycle. 

The NAP is heavily memory based. As we have seen, 
each phase of a nanocycle may involve a memory access, 
so that the performance of the NAP is driven by memory 
performance. Most programs written for the NAP are 
also very memory-oriented. Operations are performed 
using tables in memory under the control of broadcast 
microinstructions. Typically, these table-based opera- 
tions take as operands an arbitrary combination of state 

and input wire values, an integer, or an address. Each 
table (called a function table) requires 256 words (8 bits 
each). Our prototype supports up to 2K words of ex- 
ternal RAM, so that up to eight different tables can be 
stored in memory a t  once; additional tables are down- 
loaded as needed. Tables may be accessed using either 
direct or indirect addressing. 

The NAP microword 

Figure 2 shows the format of the NAP microword. This 
word is the instruction broadcast from a controller to  a 
number of NAP chips in (M)SIMD fashion each micro- 
cycle. The 39 bits of the microword are common to all 
the NAPS in a set. Each microword contains distinct op- 
eration codes for every nanocycle, as well as condition 
codes, a direct memory address, and two table offsets 
used for indirect addressing or table-based logical oper- 
ations. The microword is also very memory-oriented; 17 
of its 39 bits are used for memory addressing. 

The microword does not contain the actual nanoin- 



Name Function Width 
INIT initialization and download control 1 bit 
OPO four-bit indexes into the nanostore 4 bits 
OP 1 which specify which nanoinstruction 4 bits 
OP2 to perform in each nanocycle 4 bits 
OP3 OPs share one address and condition code 4 bits 
CC Condition code; this decodes to 16 conditions 4 bits 
MIP Memory address (for direct addressing) 11 bits 

' FO Function table offsets (for indirect addressing) 3 bits ' 

F1 normally contains the start address of a table 3 bits 
total number of microword bits 39 

Figure 2. The microinstruction word format shows the mnemonics, functions, and width of each instruction field. 

structions executed each nanocycle by the NAPS. 
Rather, it contains four four-bit OP  codes which specify 
an address in an on-chip memory called the nanostore. 
The nanostore contains the nanoinstructions in the form 
of a bit for every control line needed by the NAP hard- 
ware. The O P  fields give the 'address' of the nanoin- 
struction within the nanostore. This approach reduces 
the number of bits broadcast to  the processors and thus 
economizes on chip pins. In addition, it provides a mech- 
anism for different processors to perform different work 
under the control of the same microinstruction, since 
different processors may have different nanoinstructions 
loaded into the same address in the nanostore. 

M e m o r y  Addressing Modes  

A number of memory addressing modes are supported 
by the NAP. Bit-read, bit-write, word-read, and word- 
write modes are supported, and each of these may be ad- 
dressed using any combination of bits available to  the ad- 
dress multiplexors. A memory address is built as shown 
in Figure 3. Bits are multiplexed onto the SRAM ad- 
dress pins from the microinstruction (the MIP, FO, and 
F1 fields), or from internal state bits. There are sixteen 
bits of state in the NAP: eight bits from the external 
SRAM held in a Memory Data Latch (MDL), and eight 
bits which can be configured as any arbitrary combina- 
tion of I/O bits or additional State bits (called IS bits). 
All of the these state bits may control the memory ad- 
dress. 

A memory address specifies an eight-bit word. Within 
that word, the low order three bits of the MDL specify a 
bit in that word. A memory address is 11 bits (providing 
8K bits of address space) in the NAP chip. Each mem- 
ory address is used for one nanocycle only, although the 
memory addressing fields are held constant for a whole 
microcycle. 

Providing a Global  OR- t ree  

A global-or line to  the microcontroller (the computer 
which broadcasts the SIMD instruction stream) can be 
derived fiom any of the I/O/State bits by ORing the ex- 
ternal wires together. This capability is extremely use- 
ful. For example, when checking for a condition (e.g. 
does any processor contain zero, or does any processor's 
memory contain a pattern which matches the broadcast 
pattern), the result can be returned to the microcon- 
troller within a microcycle. The distance from the mi- 
crocontroller to  the NAP chips through the SIMD bus 
and back through the global-or tree might be more than 
200 ns, so that programmers using the global-or mecha- 
nism might have to  take account of the pipelining effect. 
Any bidirectional communications pin on the NAP may 
be used t o  construct a wired-OR tree. 

P R O C E S S O R  D E S I G N  

A block diagram of the NAP processor is shown in Fig- 
ure 4. The major subcircuits are a set of datapath cir- 
cuitry, a Nanocode store consisting of 16 by 28 bits of 
static RAM, Nanosequencer logic to control the execu- 
tion of instructions, and a set of Instruction pipeline 
registers. The NAP uses a three-phase (1.5 nanocycle) 
pipeline internally: operation lookup, nanocode access, 
and datapath operations happen sequentially in every 
nanoinstruction. 

The NAP is designed to work with 35-11s external 
Static RAMS. These are expensive. It would make sense 
to  move this memory on-chip. 

Sixteen words by 28 bits of nanocode store are pro- 
vided which are addressed in sequence by each of four 
opcode fields in the microinstruction. These nanoin- 
structions are downloadable and may differ for different 
processors. The outputs of the nanostore are the con- 



Address bits bit source 0 bit source 1 bit source 2 
Bits 0:4 MIP[O:4] MDL[3:7] IS[O:4] 
Bits 5:7 M I P [ ~ : ~ ]  IS[5:7] 
Bits 8:10 MIP[8:10] F0[0:2] Fl[O:2] 

Figure 3. The memory address is constructed from combinations of the Memory Immediate Pointer (MIP), the 
Memory Data Latch (MDL), the 110-State bits (IS), and the Function table pointers (FO and F l ) .  

Figure 4. The block diagram of the NAP chip shows the SIMD instruction latches (left), the nanosequencer (lower 
left), the state and 110 circuitry (top center), the da tspa th  (right), and the RAM interface (lower right). 



trol bits used directly by the logic in the processor; the 
nanostore itself is a static RAM with decoders, write 
amps, and sense amps. This RAM has a access time 
goal of 25 ns, and is 1974 by 1620 microns in area using 
a 3 micron CMOS technology. 

Conditional instruction execution is provided in the 
nanosequencer via an enable control which may disable 
all outputs of the nanostore. This disabling happens 
if the bit in the microinstruction condition code field 
selected by the state bits is high. This mechanism allows 
up to 16 different classes of processors. 

The NAP is designed using a fully static CMOS cir- 
cuit methodology in MOSIS scalable CMOS design rules. 
A two phase non-overlapping clocking approach is used; 
Approximately half of the circuitry on the chip (and ex- 
actly half of the control lines) are 'active' on phase 1, 
while the other half is active on phase 2. The MAGIC 
layout system was used for the layout of the chip. Each 
chip contains four NAPs, although only one of these pro- 
cessors is fully connected to the pins of the chip. The 
other three processors are accessible through scan path 
circuitry. The overall circuit is 7900 by 9200 microns in 
a 3 micron CMOS process. 

EVALUATION A N D  CONCLUSIONS 

We have shown that it is feasible to design a processor 
chip which supports a variety of bit-serial routing net- 
works efficiently. This type of chip is a step towards 
understanding how to  build and operate interconnection 
networks for massively parallel computers. The NAP 
chip we have designed provides very flexible address- 
ing mechanisms, and allows indirect addressing so that 
MAMD operation is pmsible. This chip also supports 
three distinct means of multithread operation, so that 
different processors operating off the same instruction 
stream can do different things. Finally, this processor 
chip has no ALU; table lookup is used for all operations. 
We have found all of these mechanisms useful in writing 
example programs, and believe that the NAP approach 
can teach designers about how to  provide addressing and 
processor selection mechanisms in SIMD processors, and 
about the issues involved in providing flexible and high- 
performance interconnection networks. 

How well has the NAP design stood up to its original 
design goals? Let us examine those goals one by one: 

P rov ide  communicat ions control  which is a s  
flexible a s  possible. The operation of the pro- 
cessor is completely programmable a t  both the 
microinstruction and nanoinstruction levels. Pro- 
cessors have considerable flexibility in addressing 
modes, and indirect addressing at both the bit and 
word level is well supported. In addition, there are 

three distinct means for processors operating from 
the same instruction stream to do different things: 
in addition to  the standard conditional execution 
(which is made very general in the NAP), they can 
have different nanoinstructions in their nanostore, 
or use different operation tables in their memory. 
In practice, this allows programmers to write pro- 
grams with the simplicity implicit in SIMD control 
and synchronization, yet keep processors efficiently 
utilized doing different things a t  the same time. Es- 
sentially, one can program a machine built of NAPs 
as sets of processors, even if those processors share 
the same controller. 

K e e p  t h e  I / O  p ins  a n d  memory  a s  busy a s  
possible performing useful work. Each mi- 
croinstruction may make up to four memory ref- 
erences, each of a read-modify-write nature. Ev- 
ery microinstruction executed by the processor can 
be able to  read from and write to up to eight 110 
pins on the processor. All of the programs written 
on NAP to date have been able to keep the 1 / 0  
pins active a t  a t  least one bit per microcycle, which 
corresponds to  our assumptions about wire latency. 
Similarly, most of these programs use most of the 
nanocycles in a microcycle to perform useful work, 
so that memory is well utilized. The cycle time of 
the NAP is also in good agreement with the speed 
available from state-of-the-art commercial SRAMs 
or on-chip dRAM. 

T h e  NAP should se rve  a s  a 'universal' ele- 
m e n t  for  rou t ing  networks. To date, we have 
written NAP programs for message routing using 
algorithms designed for butterfly networks (Ref. 6) 
using the same number of cycles as a node designed 
specifically for that purpose. We have also written 
NAP programs for parallel prefix (Ref. 1) which ex- 
ecute in one microcycle per bit. Although these 
examples are not sufficient evidence to  prove that 
NAP is in fact a universal communication element, 
they do indicate that NAPs would be useful in a 
number of different networks. 

Exper iment  w i th  a n  ALU-less processor.  Our 
experience in writing NAP programs using tables 
for operations is that 'compressed tables', which do 
more than one thing in one operation, are immedi- 
ately of use. For example, one portion of the table 
might be used to increment a pointer while another 
part might perform a boolean operation on a few 
1 / 0  bits. We had hoped that experimenting with 
table-based operations might lead us to a choice of 
which operations to put into an ALU; instead, we 



discovered that the generality offered by these ta- 8. L. G. Valiant and G. J.  Brebner. Universal schemes 
bles was just the right thing for programming. for parallel communication. In Proceedings of the 

We hope that the NAP chip will eventually serve as 19th Annual ACM Sympo~ium on the Theory of Com- 
puting, May 1981. 

a testbed for experimentation with new interconnection 
networks and parallel algorithms. We plan to  test the 
NAP design using a variety of 'benchmark' programs and 
networks to  test its utility as a general-purpose network 
element. Measurement of effect of indirect addressing 
and our processor differentiation mechanisms on proces- 
sor utilization will tell us something about the efficiency 
of our approach. Finally, using these mechanism to write 
programs may lead t o  future insights about what pro- 
gramming constructs are useful for writing effective par- 
allel programs for communication networks. 

ACKNOWLEDGEMENTS 

The authors would like to  thank Tom Cormen and Elliot 
Kolodner for their hard work on the design, layout, and 
programming of the NAP, Bill Dally for his direction 
and feedback during the course of the NAP project, and 
Charles Leiserson for his insightful comments, direction, 
and consultation in the early stages of the NAP design. 

REFERENCES 

1. A. Borodin and J. E. Hopcroft. Routing, merging, 
and sorting on parallel models of computation. In 
Proceedings of the 14th Annual ACM Symposium on 
the Theory of Computing, pages 338-344, 1982. 

2. Ronald I. Greenberg and Charles E. Leiserson. Ran- 
domized routing on fat-trees. In Proceedings of the 
26th Annual IEEE Symposium on the Foundations of 
Computer Science, November 1985. 

3. W. Daniel. Hillis. The Connection Machine. MIT 
Press, Cambridge, MA, 1985. 

4. Charles E. Leiserson. Fat-trees: universal networks 
for hardware-efficient supercomputing. IEEE Tmns- 
actions on Computers, C-34(10), October 1985. 

5. Nicholas Pippenger. Parallel communication with 
limited buffers. In Proceedings of the 25th Annual 
IEEE Sympo~ium on the Foundations of Computer 
Science, October 1984. 

6. Abhiram G. Ranade. How to emulate shared mem- 
ory. In Proceedings of the 28th Annual IEEE Sym- 
posium on the Foundations of Computer Scaence, 
pages 185-194, October 1987. 

7. Tommaso Toffoli and Norman Margolus. Cellular 
Autonoma Machines. MIT Press, Cambridge, MA, 
1987. 



Generalization of Orthogonal Multiprocessor 

for Massively Parallel Computation* 

Kai Hwang and Dongseung Kim 

Dept. of Electrical Engineering - Systems 
University of Southern California 

Los Angeles, CA 90089-0781 

Abstract 

An orthogonal rnultiproccssor (OMP) was recently proposed 

by the authors. This paper presents multidimensional OMP 

which is conceived for massively parallel computation. The OMP 

compares very favorably over two known architectures, namely 

generalized hypercube and spanning-bus hypercube. All three ar- 

chitectures extend the original concept of binary n-cube. Among 

the three, the OMP requires equal or lesa hardware and yet 

presents some interesting application potentials in massively par- 

allel computation. The orthogonal architecture is a viable al- 

ternative to the conventional SIMD array computers which use 

distributed local memories. 

1 Introduction 

An orthogonal multiprocessor (OMP) architecture has 

been recently conceived at  University of Southern Califor- 

nia [4] and independently at  Princeton University 161. A 

similar architecture, called EMPRESS, has been built by 

ETH (Swiss Federal Institute of Technology) for solving 

PDE problems 131. 

An OMP has p processors and p2 memory modules inter- 

connected by p dedicated memory buses in two orthogonal 

directions (Fig.1). The details of the OMP architecture can 

be found in [4]. Each white circle represents a memory 

module and each shaded circle is regarded as a computer 

the row memories. Likewise, in a column access, all proces- 

sors access the column memories. All processors can com- 

municate with each other in two memory accesses. By the 

orthogonality principle, parallel computation and commu- 

nication can be achieved among multiple processors. High 

memory bandwidth and efficient computation are provided. 

A rich class of parallel algorithms has been developed for 

the OMP [4,5,6]. Parallel programming is easy due to easy 

partitioning of the tasks and simple allocation of resources. 

However, a major problem in implementing a large OMP 
comes from the fact that it requires O(pa) memory modules 

and their interconnections. 

PIM @ Computer node 
(processor/memory/sw~Ich)  

M 0 Memory 

node consisting of a processor, its local memory and a bus 

selector. Each bus is used by only one processor. The 

unique feature the OMP rests On Fig. 1: (JI\.II>( J,Z), a two-d imensional orthogonal 
access operations: column access and row access. The two ~rlultiprucessor with radix 4. 

accesses are mutually exclusive, which is termed as the or- 

thogonality principle. In a row access, all processors access 'This research was supported in part by the ONR grant N00014-86 
K-0559 and in part by the NSF grand DMC-84-21022. 

PRECEDING PAGE BLANK NOT FILMED 



In this paper, the OMP is extended to multidimension 

for massively parallel computation. The OMP compares 

very favorably over two known architectures, namely gener- 

alized hypercube [1,2] and spanning-bus hypercube [1,7]. All 

three architectures generalize the original concept of binary 

n-cube. The OMP requires equal or less hardware among 

the three and yet presents some interesting application po- 

tentials in massively parallel computation. 

The organization of the paper is as follows: Sections 2 

and 3 describe detailed architecture of binary OMP and 

k-ary OMP; Section 4 deals with interprocessor cornmuni- 

cation strategy and network characteristics; Section 5 in- 

cludes potential applications and conclusions. 

2 Binary Orthogonal Multiprocessors 

The original OMP (Fig.1) is regarded as a 2-dimensional 

architecture with radix 4 since the memories are organized 

into a 2-dimensional array. Before a general extension of the 

OMP (i.e. k-ary OMP), binary orthogonal multiprocessors 

are characterized below to clarify the idea. 

A binary 3-dimensional OMP, denoted as OMP(2,3), 

is shown in Fig.2. It consists of 2'-' = 4 processors and 

2' = 8 memory modules. Each processor has a dedicated 

memory bus to shared memory array. Memory buses are 

switched to provide 3 directional accesses (z, y, and 2). Fig- 

ure 3 shows patterns of parallel memory access using the 

orthogonality principle. For the z-access, only those buses 

running in the z direction are active. There is no contention 

between processors in memory accessing. y-access and z- 

access are performed in a similar fashion. Each memory 

bus is spread into z ,  y, and z directions. There are two 

memory modules tied to a bus for each dimension. One of 

four memory modules connected to the same bus can be 

accessed in any direction. It is dedicated to the processor 

that owns the bus, called a private memory. Thus, private 

memories and associated processors are assumed to be at 

same nodes (i.e. shaded circles, which is termed computer 

nodes in the figures). 

A binary 4-dimensional OMP (OMP(2,4)) has 2'-' = 8 

processors and 2' = 16 memory modules. The architecture 

is illustrated in Fig.4. There are 4 disjoint ways of memory 

accesses ( w ,  z, y and z accesses). Figure 4b-c illustrates the 

memory accesses. 

Processor 

0 Memory 

Computer node 
(processor, memory, switch) 

Fig.2 The ~nultiple bus interconnection 
structure of an OMP(2,3) 

(a) x-accesa 

(b) y-access 

Fig.3 Three orthogonal directions for 
memory accesses in an OMP(2,3) 



A binary n-dimensional OMP (OMP(2, n)) is constructed 

by p = 2"-' processors and m = 2" memory modules based 

on a binary n-cube. Memories are located a t  all vertexes of 

the cube. Edges of the cube form 2"-' buses interconnect- 

ing processors and memory modules. 2"-' processors exist 

every two links away. This corresponds to two-bit differ- 

ence in the node index when an n-bit binary representation 

is used. 

Binary OMPs are very similar to binary n-cube com- 

puters. Buses with shared memories are counterparts of 

the point-to-point links in the hypercube computer. An 

OMP uses equal number of memory modules and a half 

of processor nodes. The OMP needs 2"-' buses, each of 

which runs into n dimensions, while the hypercube requires 

n.2" point-to-point links. Thus, OMP demands fewer links 

(buses) to achieve massive parallelism. Orthogonality rule 

simplifies the control complexity in memory access. 

A network diameter is defined as the maximum number 

of links of the shortest path between any two processors. In 

a hypercube topology, the network diameter is obtained by 

Hamming distance. It corresponds to the number of edges 

of the shortest path between the source and the destination. 

The communication cost in the OMP is measured by the 

number of memory reads or memory writes for a message 

to reach the destination via the shortest path. Message 

passing between processors d edges apart in an OMP needs 

d - 1 memory reads and d - 1 memory writes. Thus, two 

memory references in the OMP are equivalent to the rout- 

ing cost for one edge in the hypercube. We will call them a 

routing unit. By the above definition, the network diameter 

of a binary n-dimensional OMP is n - 1. Thus, OMP has 

slightly smaller network diameter. Comparisons of binary 

OMP with binary hypercube are summarized in Table 1. 

Table 1: Comparison of a binary OMP with a binary hy- 
percube 

Processor 0 Memory Computer node 

(a) Overall conllguretlon 

(b) W-aCCeSS 

(C) 2-acces* 

Fig.4 The OMP(2.4) architecture with 

4 orthogonal memory access directions. 

3 k-ary Orthogonal Multiprocessors 

In general, a k-ary n-dimensional OMP (OMP(k,n)) 

consists of p = kn-I processors, m = kn = kp memory 

modules, and p dedicated memory buses. Memories and 

interconnecting buses form a k-ary n-dimensional hyper- 

cube ((k, n) hypercube). The architecture may be called a 

shared-memory hypercube. Nodes on colinear edges are con- 

nected by a bus instead of point-to-point links. Figures 5 

and 6 show a ternary bdimensional OMP (OMP(3,3)) and 

ternary 4-dimensional OMP (OMP (3,4)), respectively. 

A memory bus spans to n orthogonal directions (dimen- 

sions). k memory modules are tied together per dimension 

in a bus. A private memory located at computer node is 

common to every direction. A total of n(k - 1) + 1 mem- 

ory modules are accessible by each individual processor. A 
memory module is shared by n different processors except 

private memories. Since n w p, memory is partially shared. 

The access is controlled by an n-to-1 switch in each mem- 

ory module that allows only one bus (or a processor) be 



Fig. 6: An OMP(3,4) architecture consisting of 
27 process~rs  and 81 memory modules. 

(Only partial interconnections are shown.) 

Fig. 6: An OMP(3,3) architecture consisting of 
9 processors and 27 memory modules. 

(Hidden nodes and buses are not shown.) 

p processors 

I ( memory modules) I 

To n out of p buses p >> n 

(b) A memory module 

~ 1 ~ .  7: An OMP(k,n) architecture consisting of 
n-1  

p= k processors and k n  memory modules 

interconnected by p dedicated buses. 

switched to at  a time. The logical structure 

can be viewed as Fig.7. The orthogonal access 

rule is observed for memory readlwrite: all pro- 

cessors should access the memory in the same 

direction in a memory cycle. Processors which 
do not need memory accesses do not participate 

the memory access. There are n different pat- 

terns of memory access by the rule. Due to the 

synchronous memory access, the SIMD operation 

is quite suitable for controlling high-dimensional 

OMPs. 

The OMP architecture is very similar to span- 

ning bus hypercube (SBH) [1,7] and generalized 

hypercube structure (GHC) [1,2] as shown in Fig.8. 

They are organized based on hypercube topol- 

ogy. Each node of both architectures represents 

a processor and its local memory. SBH and GHC 

are distributed-memory multiprocessors while the 

OMP is a shared-memory one. A bus connects 

multiple processor-memory nodes in SBH. There 

could be bus contentions between processors while 

the OMP does not. The GHC contains point- 

to-point links for interprocessor communication. 

Radixes of all dimensions of GHC are assumed 

same here. If the three systems have an equal 

number of nodes, OMP uses k times less nodes 

as processors. Table 2 summarizes the compar- 

isons of hardware complexity of OMP 



with GHC and SBH. The longest path between two nodes 

in k-ary n-dimensional hypercube has n edges. Thus the 

network diameter of OMP(k,n) is n - 1. Section 4 deals 

with the issue in more detail. So the diameter of the OMP 

is a slightly smaller than others. The number of ports is 

the largest for GHC. Both OMP and SBH have n ports 

per node. For massively parallelism, OMP is appealing 

since it has the least interconnection complexity for the 

interconnections. Figure 9 shows the interconnection com- 

Table 2: Comparisons of Orthogonal Multiprocessor 
(OMP) with Generalized Hypercube Computer (GHC) and 
Spanning-Bus Hypercube (SBH) architectures 

4 Orthogonal Computation and 

plexities of the OMP compared with GHC architectures for (a) A 4X3X2 generalized hypercube network 
various configurations for massively parallel computation. [Bhuyan and Agrawal '841 

Communication 
I 

The number of independent buses and the number of links 

are considered in both OMP and SBH, and GHC, respec- 

tively. 

For the OMPs with the same number of processors, 

there are various system configurations with different radixes 

and dimensions. The larger the dimensionality, the smaller 

the number of the memory modules required ( p = kn-I). 

For example, a OMP(2,7) of 64 processors requires only 128 

There are various mappings for kn-' computer nodes 

onto (k,n) hypercube with kn vertice. The following sec- 

tions deal with interprocessor communication after formal- 

izing the node assignment of an OMP onto (k,n) hyper- 

cube. 

,' 

memory modules with a diameter of 6, while an OMP(8,3) (b) A 33 spannlng bus hypercube network 
[Wlttie '811 needs 512 modules with a diameter 2 (Table 3). Similar 

situation can be observed for 64K processor systems. The 
~ i g .  8: Two known generalizations of 

tradeoff between the choice of radix k and dimension n lies 

in cost-effectiveness and communication speed (network di- t h e  h y p e r c u b e  a r c h i t e c t u r e  

ameter). 

-- 

4.1 Processor/Memory Assignment 

Processors in an OMP(k,n) can be h-~dexed by (n - Memory modules can be indexed similarly by n dimensions 

s ~ H ( k , n )  

dimensions. as M(bn-l,bn..2 ,..., bl,bo) f o r 0 5  b, < k, q = 0 , 1 , . - . , n -  

GHC(k,n) 

- 

Architecture 

1. One simple way to assign kn-' computer nodes on the 

vertices of (k,n) hypercube as follows: Pi is mapped to a 

OMP(k, n) 

(0 5 a, < k for all p = 0,1, ..., n - 2) node j = (bn-l, bn-2, ..., bl, bo) such that 



For a non-private memory module M(bn-1, bn-2,. . . ,b1, b), 
A (k, n - 1) processor-hypercube can be created by pro- 

the n processors sharing the memory are those at (6,-l,bn-2, 
jecting the OMP(k,n) to n - 1 dimensional space. For 

".,bl,~),(bn-l,bn-l,...,~1,4), ..., (bn-l,~n-2,.",bl,b0), 
example, the original OMP(k,n) may be projected along 

and (z,,-l,bn-2,... ,bl,~), where q ,z l , . . - , zn - l  are some 
the nth dimension. Because no two processors exists on the 

fixed constants satisfying the relationship (2). 
same line (bus) in the OMP(k, n), there is no overlap of pro- 

The OMP architecture can be cessors at the same node in the projection. A processor a t  
such that only the processors and their interconnections are 

(bn-1, bn-2,. .. ,b~,bo) is mapped to P(bn-~,bn-2,. . . ,bl, bo) 
considered. Hypothetical interconnections between proces- 

in the processor-hypercube. The (k, n-1) processor-hypercube 
sors, called logical links, are introduced. Two processors are 

preserves the interprocessor connection relationship czcept 
assumed connected by a logical link if they share a mem- 

the nth dimension. In other words, the interconnection 
The OMP(kyn) can be reduced to information for the nth dimension is last in the processor- 

(k,n - 1) hypercube by removing all memory nodes and 
hypercube. This results in decreasing the physical proxim- 

creating logica1 links' The (k> - l )  of ity (edge count) by one between pmcaurrs whose nth dig- 
prOceasors at each node and links between nodes' Such a its in their indices were different. Suppose distance in the 
structure may be called a processor-hypercube. processor-hypercube is computed using Hamming distance. 

It will overestimate the distances for processor pairs which 

had the same coordinates in nth dimension, since d-digit 

difference in their indices does not change after projection. 
Table 3: Various OMP configurations for two given nmchine However, the d-digit difference corresponded to the distance 
sieea of d - 1 from our original definition. Those with different 

No. of busu 
or links 

0 # processors 11 p = 64 )I p = 65,536 (= 64K) 7 )  
I I I  

11 
10 

10 

II Oruanization: /I I I II I I I1 

,,' ,' Radix 

*---r GHC 
L 

k=8 

0 - - -  SBH a' ,, 
bk = ah-1 for k = 1,2, . - . ,n  - 1 10 - OMP 

n-2 8 4= xak modk I=, I 
Thue, only the last digit of j needs to be determined in the 

mapping. 

A processor located a t  (bn-l,. . , b )  can directly access 

n(k - 1) + 1 memory modules whose indexes are the same 

as that of the processor node except in one dimension: 

10 

M(bn-l ,bn-~, . . . ,h ,b~,z)  2 4 6 8 10 12 

M(bn-l,bn-~,...,h,z,bo) Dimension (n) 

( z = O , l , * . . , k -  1) Fig. 9: Comparisons of interconnection complexities of 
M(bn-l,z,bn-~,... , b ~ , b )  OMP with Generalized Hypercube (GHC) and Spanning 

M(z,bn-~,bn-~,. . .  ,b l ,b)  Bus Hypercube (SBH) architectures. 

- 
(k-ary, n-dim) 
# memory modules 
Network diameter 

('47) 
128 
6 

(4,4) 
256 
3 

(8,3) 
512 
2 

(2,17) 
128K 

16 

(4,9) 
256K 

8 

(16,5) 
lOOOK 

4 

-, 



coordinate values in the nth dimension will get correct dis- 

tance. l-hus, the routing distance measurement based on distance required to reach the destination. The maximum 

(k, n - 1) processor-hypercube gives an upper bound. difference in the indices between processors is n - 1 for the 

The average internode distance a, determining the queue- 
(k, n - 1) processor-hypercube. Thus the network diame- 

ing delay in the communication network, is defined as 
ter is n - 1 for OMP(k, n). Simultaneous data movements 

by multiple processors via the same logical link causes no 

where pd is the number of processors in the distance d from 

a source node. It is computed as (n - 1) (k - 1) kn-2 /(kn-' - 

1) EJ n - 1, if k > 1. In binary OMP, a ~3 (n - 1)/2. 

The average internode distances of generalized hypercube 

and spanning bus hypercube are n [I]. Hence the network 

properties of the OMP are quite comparable to those two 

hypercube architectures. 

4.2 Routing Algorithms 

Data can be routed on the processor-hypercube using 

algorithms employed in hypercube computers. Two proces- 

sors having only one-digit difference can communicate with 

the cost of one routing unit. Messages are sent toward the 

direction with unequal coordinate values. Processors with 

two-digit difference have a distance of two. For example, in 

the OMP(4,4), the processor P(0,0,0) can send a message 

to the processor P(O,l, 3) in two routing units. There are 

two disjoint paths in the processor-hypercube. 

Path 1 : P(0,0,0) -+ P(O,1,0) -+ P(O,1,3) 

Path 2 : P(O,O,O) -+ P(0,0,3) + P(O,1,3) 

Exact paths in original OMP can be derived using the same 

idea with computer node assignment defined in (2). 

Data routing between two processors whose indices dif- 

fer by multiple digits can be done using a successive routing 

to immediate neighbor processors whose indices differ only 

one digit. There are many alternative paths for a given 

pair of processors. Data routing can be simplified if the 

routing sequence follows the order of the index, i.e. if there 

are d-digit difference in the indices, we arbitrarily choose a 

dimension in which the digit is different. The data are sent 

along the direction, then along the next highest dimension 

with unequal indices, and so on. Once the lowest dimen- 

sion is reached, the next dimension is determined in wrap- 

around fashion. We can find d disjoint paths to route data 

to the same destination due to d different choices for the 

first routing dimension. Hamming distance is the routing 

contention. It is because each logical link represents n sep- 

arate physical memory buses associated with the processors 

in the direction. The orthogonal access guarantees parallel 

data movement for all processors without conflict. 

Brcmdcaeting from a processor to all p processors takes 

n - 1 = logL p steps. The data propagate along j th  dimen- 

sion at j t h  step (j  = 0, l , . . .  , n  - 2). At one memory cycle, 

each processor simultaneously writes the data received onto 

all k memory modules in the j th  dimension. Each step the 

number of processors grows k times which have already re- 

ceived the data. Thus, after n - 1 steps all processors will 

get the data. 

Below we show a parallel algorithm for computing a 

consensus function. Consensus functions include the max- 

imum/minimum, sum, and/or of p numbers. By recursive 

doubling, k numbers stored in k processors of OMP(k, 2) 

can be summed up in O(log, k) memory accesses 151. This 

corresponds to the summing of k numbers stored in k pro- 

cessors which lie on a straight line in a (k, n - 1) processor- 

hypercube. There are p/k such parallel lines along the di- 

rection. Thus, for each of those parallel lines, a summation 

of k numbers is computed simultaneously. After one step 

of the concurrent sum, the number of intermediate sums 

to be further added is reduced to l /k  of previous one. By 

alternating the direction among the n - 1 dimension, the 

total is found after n-1 summing operations since there are 
kn-1 numbers. The algorithm is sketched below. The re- 

sult (a sum of the p numbers) will be obtained in processor 

P(O,O,.-.,O). 

Algorithm SUM 

for  j = 0 to n - 2 d o  (1) and (2): 
(1) Form groups of k processors having same coordinate 

(0,-l,an-2,-..,aj+l,a,,O,O,-..,O) except a,. 
Each group of k processors simultaneously computes a 

sum of k data by recursive doubling using k x k 
memory array in the group. 

(2) The results are shifted to the processors whose nodes 
have the same indices except a zero in j-th 
dimension. 



The following computes the time complexity of Algo- 

rithm SUM. Step (1) can be done in O(log, k) time. Step 

(2) takes constant time. Hence the overall time complex- 

ity of the algorithm is O{(n - 1) log, k) = O(log, kn-') = 

O(log, PI. 

5 Concluding Remarks 

The OMP is a hybrid architecture which combines the 

advantages of both shared-memory and distributed-memory 

systems. It is generalized from the hypercube to use some 

of the nodes as processor nodes and the remaining as par- 

tially shared memories. Partial sharing of memories signif- 

icantly reduces the required memory ports per module as 

compared with fully shared-memory multiprocessor. Log- 

arithmic diameter provides fast and efficient communica- 

tion. The orthogonality principle enables conflict-free, par- 

allel memory access, and scalable performance, which are 

very desirable for either SIMD or MIMD operations. These 

properties support ~nassively parallel computation for me- 

chanics, physics, chemistry, vision, and e t ~ .  Potential ap- 

plications are summarized in Table 4. 

Table 4: Potential applications of the generalized OMP ar- 
chitecture 

Signal/image/speech processing 

Numerical modeling 

Neural network simulation 

Graphics for visualization 

Sensory fusion and robotics 

The distinct characteristics of the generalized OMP are 

summarized below: 

By introducing high-dimensional configurations, the 

number of memory modules required is reduced sig- 

nificantly from the original OMP (O(kp) vs. O(p2)). 

The orthogonal memory access rule may be rigid for 

general-purpose applications. However, it contributes 

to the delivery of high memory bandwidth and simple 

memory access control. 

The performance of the OMP in interprocessor com- 

munication is comparable to other similar architec- 

turea like GHC and SBH in terms of network diameter 

and average internode distance. The OMP requires 

lower interconnection complexities. 

For fine-grain computation., the shared-memory or- 

ganization performs better in communication than 

distributed one. It has less overhead in carrying rout- 

ing information and does not need complex routing 

algorithms than the message-passing scheme. 

Indeed, the orthogonal architecture becomes a viable 

alternative to the conventional SIMD array architecture 

which uses distributed local memories. 

References 

[l] D.P. Agrawal, V.K. Janakiram, and G.C. Pathak, 
"Evaluating the Performance of Multicomputer Config- 
urations", IEEE Computer, vol. 19(5):pp. 23-37, May 
1986. 

[2] L.N. Bhuyan and D.P. Agrawal, "Generalized Hyper- 
cube and Hyperbus Structures for a Computer Net- 
work", IEEE Trans. Computers, vol. C-33(4):pp. 323- 
333, April 1984. 

[3] R.E. Buehrer, H.J. Brundiers, H. Benz, B. Bron, H. 
Friess, W. Haelg, H.J. Halin, A. Isacson, and M. Tadian, 
"The ETH-Multiprocessor EMPRESS: A Dynamically 
Configurable MIMD System", IEEE Trans. Computers, 
vol. C-31(11):pp. 1035-1044, Nov. 1982. 

[4] K. Hwang, P.-S. Tseng, and D. Kim, "An Orthogo- 
nal Multiprocessor for Lager-Grain Scientific Computa- 
tions", IEEE Trans. Computers, Jan. 1989. 

[5] D. Kim and K. Hwang, "Parallel Image Processing and 
Pattern Analysis on Orthogonal Multiprocessorsn, sub- 
mitted to IEEE Trans. Pattern Analysis and Machine 
Intelligence, July 1988. 

[6] I.D. Scherson and Y. Ma, "Orthogonal Access Mul- 
tiprocessing: An Architecture for Numerical Applica- 
tions", Journal of Parallel and Distributed Computing, 
to appear 1989. 

171 L.D. Wittie, "Communication Structures for Large 
Networks of Microcomputers", IEEE Trans. Comput- 
ers, vol. C-30(12):pp. 273-284, April 1984. 



BLITZEN: 

A HIGHLY INTEGRATED MASSIVELY PARALLEL MACHINE* 

D. W. Blevins, E. W. Davis', R. A. Heaton, and J. H. Reif2 

The Microelectronics Center of North Carolina 
Research Triangle Park, NC 27709-2889 

ABSTRACT 

The goal of the BLITZEN project is to construct a physically 
small, massively parallel machine. A highly integrated chip 
has been designed with 128 processing elements (PEs). A 
BLITZEN system consisting of 16,384 SIMD PEs will require 
only 128 PE array chips. This paper presents the PE 
architecture , the organization of PEs on the chip, and the 
feature set of the chip which has been custom designed and is 
being fabricated at the Microelectronics Center of North 
Carolina. Each PE has 1K bits of static RAM and performs 
bit-serial processing with functional elements f o r  
arithmetic, logic, and shifting. Unique local control features 
include modification of the global memory address by data 
local to each PE, and complementary operations based on a 
condition register. PEs on the chip are positioned in an 8 by 
16 array. Data I10 is accomplished through a new method 
using a four-bit bus for each row of 16 PEs. The BLITZEN 
chip is one of the first to incorporate over 1.1 million 
transistors on a single die. It has been designed with MCNC's 
advanced 1.25 micron CMOS process to operate in excess of 
20 MHz. A 16K PE system, operating at 20 MHz, can perform 
IEEE standard 32-bit floating point multiplication at a rate 
greater than 450 megaflops. Fixed point operations on 32 bit 
data can exceed the rate of one billion operations per second. 
Since the processors are bit-serial devices, performance 
rates improve with shorter word lengths. The bus oriented 
110 scheme can transfer data at 10240 megabytes per second. 

Keywords: massively parallel, custom VLSI, paral le l  
processing, SIMD, MPP. 

OVERVIEW AND MOTIVATION 

Parallel machines make use of multiple processing elements 
executing simultaneously to speed up computation. For the 
purposes of this paper, we will consider a massively parallel 
machine to be a parallel machine with at least 10,000 
processors. A number of massively parallel machines have 
been constructed, including the Massively Parallel Processor 

This work was supported in part by NASA Goddard Space 
Flight Center under Contract Number NAG-5-966 to the 
Microelectronics Center of North Carolina. 
1. Dept. of Computer Science. North Carolina State Univ.. 
Raleigh, NC 27695-8206. 
2. Dept. of Computer Science, Duke Univ., Durham, NC 
27706. He is also supported by contracts: ONR #N00014- 
80-C-0647, Air Force #AFOSR-87-0386, 0 N R 
#N00014-87-K-0310, NSF #CCR-8696134, DARPAIARO 
#DAAL03-88-K-0195, and DARPAIISTO #N00014-88-K- 
0458. 

(MPP) built for NASA Goddard Space Flight Center by 
Goodyear Aerospace Corporation (now Loral Systems Group), 
the Distributed Array Processor (DAP) built by the British 
firm ICL, and the Connection Machine (CM) built by Thinking 
Machines, Inc. (Refs. 1. 7, 8, and 11). These projects 
demonstrated the feasibility of constructing machines with 
massive parallelism. Nevertheless, only a relatively small 
number (a few dozen) of the machines have been built so far 
and they have been utilized almost exclusively by research 
branches of government agencies, academic, and industrial 
organizations. 

Mlnlaturlzatlon of Sequentlal Computlng Machlnes 

The situation now may be very similar to the development of 
the first mainframe computers in the late 40's: only a few 
general purpose computers existed. At that time. IBM made an 
early study which indicated that the worldwide use of 
computers would require only a few dozen mainframes (the 
rest of the computing equipment being calculators or special 
purpose machines). Nevertheless, a combination of 
advantageous engineering and economic factors resulted in the 
proliferation of computers. Central among these factors was 
the use of advanced electronic techniques to reduce the 
physical size, that is, to miniaturize computing machines. By 
miniaturization, we mean a high level of integration of the 
hardware onto VLSI components. Note that the process of 
miniaturizing sequential architectures has not necessarily at 
all degraded the computing power available to users. 
Miniaturization first allowed mainframe computing machines 
to be economically manufactured; and later, further 
improvements in integrated circuit technology allowed 
personal computing machines to be physically placed within 
the working environment of office workers, engineers, and 
scientists. In fact the development, for example, of 
miniaturized RlSC architectures, has actually improved 
performance in many cases, by allowing higher execution 
rates. 

BLITZEN: A Miniaturlzed Massively Parallel 
Machine 

The central goal of the BLiTZEN project is to develop a 
miniaturized massively parallel machine. The machine will 
be physically small while providing the performance 
associated with massively parallel processing. We are 
convinced that the development of such a miniaturized 
machine will have the same benefits as discussed above for 
conventional sequential machines: 

(1) These miniaturized machines should be much more 
economical, allowing a much larger market for massively 
parallel machines. 

CHZ649-2/89/0000/0399$01.00 O 1988 IEEE 



(2) The miniaturized machines could be backplaned with 
conventional workstations, making the capabilities of 
massively parallel computation easily accessible to 
engineers and scientists. 

(3) A miniaturized machine could potentially be used in 
environments that require very small size and power 
consumption, such as on space flights. For example, NASA 
plans to have such a machine as a component of the Space 
Station computing system. 

This paper provides rationale for design decisions, many of 
which have the dual benefit of both insuring miniaturization 
and also improving performance. 

The Project Team 

The BLITZEN project involves a number of institutions in the 
Research Triangle area of North Carolina, including Duke 
University, North Carolina State University (NCSU), and the 
Microelectronics Center of North Carolina (MCNC). Project 
personnel included John Reif, Jonathan Rosenberg, and 
graduate students Jonathan Becher. Nigel Hooke and Lars 
Nyland of the Computer Science Dept. of Duke, Edward Davis 
of the Computer Science Dept.of NCSU, and Don Blevins and 
Fred Heaton of MCNC. The BLITZEN project has received 
partial support under a grant from NASA Goddard Space Flight 
Center. 

Team effort to date has resulted in development of the 
processing element architecture (Refs. 4 and 5), custom 
design for the PE array chip, development of a full scale PE 
array simulator (Ref. lo), microcode for selected arithmetic 
operations, and the specification of an assembler language and 
architecture for the BLITZEN controller (Ref. 9). We are in 
the process of developing a prototype system and a high level 
parallel programming language which is an extension of C++ 
for the BLITZEN machine. 

Organlzatlon of the Paper 

In the next section, "Processing Element Architecture", we 
describe the bit serial processing element and provide some 
comparisons with the MPP and Connection Machine. Local 
control features and methods for memory access are 
emphasized. Following the discussion of individual P E 
architecture, we describe, in the section "PE Array Chip 
Architecture", the organization of PEs on the custom chip, 
with emphasis on our interconnection and 110 schemes. The 
section "Chip Feature Set", provides details of the custom 
chlp design and instruction pipeline. An overview of system 
architecture concepts and software for BLITZEN is given in 
the final section, "BLITZEN Systems". 

PROCESSING ELEMENT ARCHITECTURE 

Each processing element in BLITZEN is a bit serial processor, 
with a variable length shift register and random access 
memory. The BLITZEN design used the MPP PE architecture, 
described in Ref. 2., as a starting point. 

The existence of the MPP has provided experience with 
massively parallel processing such as that reported by the 
MPP Working Group (Ref. 6) and by K. E. Batcher, the chief 
architect of the MPP, (Ref. 3). 

Our group has designed various improvements on the MPP PE 
architecture into BLITZEN: 

(1) Incorporalion of RAM on-chip for each PE. 

Motivation: This allows the PE to access memory without off- 
chip delays. 

(2) Bus oriented I/O with a four bit path for each set of 16 
PES. 

Motivation This gives BLITZEN a total I f 0  capability of 
4,096 bits per cycle. (In comparison, the MPP has a total 
110 capability of 256 bits per cycle, and the Connection 
Machine has an 110 capability of 1,024 bits per cycle.) 

(3) Local modification of RAM addressing. 

Motivation: This allows on-chip memory accesses to be 
determined by the contents of each PE's shift register. 

(4) Loca l  conditional control of arithmetic and logic 
functions. 

Motivation: This improves the performance of various 
arithmetic operations. 

(5) Bidirectional shift register. 

Motivation: This allows more flexible data movement. 

(6) An X-grid interconnect, allowing eight neighbors per PE. 

Motivation: This gives a factor of two improvement (over the 
NEWS grid) in diagonal data movement. 

Note that (3) and (4) give the BLITZEN PE a degree of MlMD 
control, which can improve the flexibility and efficiency of 
the machine. 

Figure 1 presents the functional elements of one BLITZEN PE 
and shows a similarity to the PE in the MPP. Blocks with 
double line boundaries are storage devices. There are six 
single-bit registers labelled A, B, C, G, K, and P. Two devices 
hold multiple bits. One is a variable length shift register 
which, in conjunction with registers A and B, has a capacity 
of 32 bits. The remaining storage device is a 1024 bit 
random access memory (RAM). Arithmetic and logical 
operations are performed by a full adder and a logic block. 
The above elements communicate primarily over a single bit 
data bus. A four bit I10 bus provides a path to pads of the chip 
for connection to external storage devices. An 110 bus is 
shared among 16 PEs on a chip. Following paragraphs discuss 
features that represent significant departures of BLITZEN 
from the MPP. 

On-Chlp Memory 

An on-chip, static random access memory (RAM) i s  
associated with each PE. From a processing point of view it is 
a 1024 by 1 bit RAM. A memory read operation reads the 
single bit specified by a ten bit address and places the value 
on the data bus. A memory write operation writes the value 
from the data bus into the location specified by a ten bit 
address. 



I , '"a" 
TREE 

ADDR (1.0) 
4 

LOCAL MOD (9, .... 0) 

GLOML ADDRESS (9. ..., 0 )  
OR . ADDR (9, 

MEMORY - 258 X 4 

I 
4 

Figure 1. Functional elements of one BLITZEN PE. 

InpuVoutput operations view memory as a 256 by 4 bit RAM. Connection Machine 2, allowed a large group of processors to 
110 operations access memory using the eight most significant share indirect addressing logic. 
bits of the ten bit address, and transfer four bits between the 
110 bus and memory. Conditional Operations 

Masking, the local control feature that can be used to enable 
or disable certain operations, is possible on all memory 
accesses. 

Local Address Modiflcatlon 

In a SlMD machine, the control unit issues an instruction to 
all PEs. If a memory operation is involved, one address is 
delivered to all PEs. In BLITZEN, the global address can be 
modified at each PE. Conventional processors generally 
modify an address that appears in an instruction by adding 
index or base register values, or extracting an address from 
some location for indirect use. In a SlMD machine, logic that 
handles local modification of addresses must appear at each PE 
and be locally decoded. That is, the logic must appear at each 
of the 128 PEs on this chip. To conserve chip area the 
modification chosen is the logical OR of the global address 
with ten bits from the shift register. This can simulate 
indexing when data structures begin on appropriate power of 
two boundaries where the least significant bits are zeroes. 
When normal (unmodified) memory operations are issued, 
the global address is unchanged. 

Figure 1 shows a ten bit bundle of signals from the shift 
register labeled "local mod". The ten most significant bits of 
the 16 bit section of the shift register are used to provide 
local address modification. 

BLITZEN provides additional new local control of PEs through 
the use of a programmable conditional operation test 
involving register K. When using the conditional feature, 
operations which are complements of each other can be 
performed at the same time in different PEs. The feature 
applies to operations involving b g k  at register P, or loading 
a value into register C. When a conditional operation Is 
issued, processing is normal in all PEs where K - 0. In those 
PEs where K - 1 the results are complemented. Since both 
normal and complemented operations take place, based on 
testing a condition, this Is like a restricted form of the high 
level IF-THEN-ELSE concept with both the THEN and ELSE 
clauses happening concurrently. When a conditional operation 
instruction is not used by the programmer, register K is 
available to hold a temporary value. 

The conditional operation feature can be used to improve 
performance, by a factor near two, in non-restoring dlvisbn 
algorithms where the next iterative step depends on the 
result of the current step. If the current step produces a 
negative partial remainder, the divisor is added at the next 
step. If the current step produces a positive partial 
remainder the divisor is subtracted at the next step. The 
approach to following both paths concurrently is to program 
the subtraction operation for conditional execution. By using 
the sign bit as the conditional flag in K, subtraction will take 
place in those PEs where K-0 and addition where K-1, as 
desired. 

We believe BLITZEN is the first massively parallel machine 
with the ability to modify the global SlMD memory address in 
every PE. BLITZEN has addressing logic with every PE. 
Previously, a SlMD machine developed by DEC, and the 



Bidlrectlonal Shlft Register and Data Paths 

The MPP shifl register is unidirectional. In BLITZEN it has 
been made bidirectional. In the MPP all bits shift during a 
shift operation, even if they are not selected under the 
current length setting. Since BLITZEN uses a section of the 
shift register to hold local address bits, the register design 
has been changed such that bits do not shift if they are not 
selected. This also lets the shift register be used to hold 
temporary variables. 

Several smaller changes have been made, as compared to the 
original MPP PE. Bidirectional paths are provided between 
the data bus and all registers except C. Since a masked writ6 
operation is possible, the equivalence function between 
registers P and G has been eliminated. For a more detailed 
description of the BLITZEN PE architecture, see Refs. 4 and 5. 

PE ARRAY CHIP ARCHITECTURE 

Organlzatlon of PEs and Functional Components 

The above PE architecture is used as the basis for the 
BLITZEN VLSl processor array chip. A single chip contains 
128 PEs, each with 1K bits of locally addressable memory. 

By placing 128 PEs and their local memory on a single chip, 
we make a major step toward miniaturization of the BLITZEN 
machine. Only 128 of these PE array chips are required for 
an entire 16,384 PE BLITZEN machine (In comparison the 
MPP processing element array chip contains eight PEs, and 
the system requires a total of 2048 such chips. The 
Connection Machine has 16 PEs per chip.). 

A single PE is a building block for the chip architecture. PEs 
are organized into an 8 by 16 array on the chip. They are 
interconnected with a two dimensional grid for 
communication between PEs, as discussed in the next section. 

Data is moved on and off the chip over a set of eight 110 buses, 
each with 16 PEs attached, as described in the section 
"BLITZEN 110 Scheme" Figure 2 shows the organization of PEs 
on the chip, including the X-grid interconnections, 110 buses, 
and some logic and control signals that are common to all PEs 
on the chip. 

Message Routing Capablllty on  the BLITZEN Machine 

Why a Hypercube Interconnect i s  Not Necessarily 
an Improvement Over a Grid - One major design 
decision was not to use a logarithmic d i a m e t r  
interconnection network. such as the hvDercube used bv the 
Connection Machine. Instead we used'a variant of t h i  two 
dimensional grid, namely the X-grid (due to C. Fiduccia), 
with diameter 128, which is the square of the number of 
processors. In spite of our background in theoretical 
computer science, we concluded that a logarithmic diameter 
network would be impractical for our needs. The key 
problems with logarithmic diameter networks, such as the 
hypercube, are: 

(1) The number (namely 896) of 110 pads that would be 
required for hypercube edges exiting a processing element 
chip with 128 PEs is impossibly large. 

(2) The inter-PE wiring requires large amounts of area, 
both on-chip and between chips. 

A decision to use a hypercube interconnection network would 
make it very difficult to highly integrate our machine. 
Because of pin count and network area requirements, we 
would have been limited to only 16 PEs per chip, and even 
then only have 1/16 of the I10 pins required for a full 
hypercube interconnect. The result would be an interconnect 
with perhaps no greater communication capabilities than a 
two dimensional grid. 

r 4  

X-GRID 
INTERCONNECT 

4 
/ 

chip 
COLUMN SELECT I 

boundary 

COLUMN SELECT ADDRESS 

Figure 2. BLITZEN Chip Architecture 



Another argument in favor of the grid interconnect is the 
empirical experience that a very large class of applications 
naturally require the grid interconnect. 

The Connection Machine has some impressive built-in 
hardware for doing permutatlon message routing. 
Unfortunately, this routing circuitry uses a large fraction of 
their processor chip area and decreases the step rate of their 
machine. We decided that our need for a high performance, 
miniaturized architecture was more important than the need 
for message routing circuitry, (which can be replaced by 
software routing routines that are nearly as efficient.) 

X-Grid lnterconnectlon - Processing elements are 
interconnected in two ways on a chip: a grid interconnection 
for routing and a bus structure for 110. Figure 2 shows the 
X-grid nearest neighbor routing network. PEs are arranged 
in a two dimensional grid with interconnection paths to 
neighbors in the eight compass directions N, NE, E, SE, S, 
SW, W, and NW. A routing operation transfers the state of P 
to the P register of a neighboring PE and accepts a new state 
from the PE in the opposite compass direction. 

Four bidirectional routing connections are brought out of each 
PE from the four logical corners: NE, SE, SW, and NW. The 
connections intersect between PEs as shown in figure 2. A 
routing path is established by an operation which sends data 
out in one direction and accepts data in from one of the 
remaining directions. As an example, routing in the north 
direction can be achieved by sending P out to the NE and 
accepting P in from the SE. The data value on the SE input 
originated in the PE to the south. All PEs route the same 
direction in one processing cycle. 

Eight paths can be established with four wires out of each PE 
by sending data on one wire, receiving data on one of the other 
three wires, and placing the remaining two wires in the high' 
impedance state. This X-grid interconnects PEs on a chip and 
extends across chip boundaries so that an array of chips can 
be uniformly interconnected. Additional off-chip logic can 
provide various treatments of edges of the total array, as was 
done in the MPP system. The use of the X-grid allows a factor 
of two improvement in the frequently occurring case of 
diagonal data movement. 

BLITZEN I10 Scheme - Data I10 is the critical path in any 
parallel machine. The MPP's I10 scheme is simple -- data is 
shifted in from the west edge of the array using the S-plane, 
and shifted out simultaneously along the east edge. In a 
BLITZEN system the array would be segmented along chip 
boundaries, so a natural extension to the MPP 110 scheme 
would be to have data flow in one side of a chip and out the 
other using the same S-plane idea. Thus BLITZEN would have 
data 110 occurring every 16 PEs, from west to east, using 32 
pins. 

At that time in the chip design activity, floorplanning 
predicted that the local static RAM should have a 256 by 4 
aspect ratio. The RAM would have a four-bit interface, with 
further demultiplexing and multiplexing for the one-bit PE 
data bus. Since there were four data wires available per row 
of PEs on a chip, an alternative 110 approach was presented. 
The approach was to move, conceptually, the 16 output S- 
plane connections from the east edge to the west edge, and 

combine them with the 16 input S-plane connections to form 
eight bidirectional, four-bit I/O buses on each chip. Each 
four-bit bus is shared by the 16 PEs in a row. This scheme 
has several advantages, such as very high bandwidth, an 
easier interface for extending memory off-chip, the ability to 
broadcast data to all PEs simultaneously, fast data movement 
across the chip, and elimination of the S-plane. 

Each chip has column select logic that is used in conjunction 
with the I10 buses. For normal I10 transfers, one PE in each 
row is active. The PE column index is the same for all rows 
and is given by a four bit address to the column select logic. In 
broadcast mode, data can be input to all PEs on a row, thus 
column selection is not used. 

Video RAM (VRAM) chips are available with very high block 
data transfer rates, matching the rates of our PE 110 buses, 
and with four bit outputs, matching our four bit I10 buses. 
We plan to use one megabit VRAM chips, organized as 256K 
by 4, to augment the PE memory by 64K bits each. We will 
allow the 16 PEs along an 110 bus to share a vertically 
packaged VRAM chip. 

CHIP FEATURE SET 

The BLITZEN PE array chip was designed by the 
Microelectronics Center of North Carolina (MCNC) with two 
orthogonal constraints: maximize both integration and speed. 
The chip incorporates over 1.1 million transistors on a die 
11 .O by 11.7 mm. It was designed with MCNC's 1.25 micron, 
two level metal, CMOS process. It is packaged in a 168 pin 
pin grid array and is designed for the JEDEC 3.3 volt power 
supply standard. The operating frequency is 20 MHz worst 
case, and power dissipation is 1.0 wan. 

The chip contains 128 PEs positioned in an 8 by 16 array. 
Internally, a three stage pipeline enables BLITZEN to execute 
an instruction every cycle, as shown in figure 3. During the 
first cycle a 23 bit SlMD instruction from the control unit is 
latched and decoded into a fully horizontal 59 bit 
microinstruction. During the second stage of the pipeline the 
microinstruction is broadcast to all 128 PEs. In the final 
stage the instruction is executed. By issuing a fully horizontal 
microinstruction, no additional decoding logic was needed in 
the PEs. The encoding of the 23 bit instruction was optimized 
to minimize the amount of internal decoding. 

Data transfers on the I10 bus take place in a single cycle as 
shown in the timing diagram in figure 4. If the 110 buses are 
used as an interface to high density video RAMS, blocks of data 
can be transferred quickly to and from the chip. Routing 
communication on the X-grid also takes place in a single 
cycle. 

Figure 5 is the floorplan of a single PE. Each PE has access to 
its own 1K bits of memory, which are internally organized as 
32 by 32 bits. Multiplexing is provided to select four out of 
32 bits for interfacing to that PE's 110 bus. When a PE 
accesses memory for an operand, further selection of one out 
of four bits is needed. Address calculation logic (predecode) Is 
also needed at each PE to support the indirect addressing mode 
provided by local modification of the global address. The 
execution unit of a PE, including the shifter and ALU, contains 
approximately 1130 transistors. 



clack 

lnstruction Decode 
instr 1 X i n s t r  2 X i n s t r  3 X i n s t r  4 x n s t r  5 

lnstruction Broadcast 
instr I X i n s t r  2 X i n s t r  3 )<instr 4 X i n s t r  5 ) 

lnstruction Execution 
(instr 1 X i n s t r  2 X ins t r  3 X i n s t r  4 X i n s t r  5 

Figure 3. The instruction pipeline. 

lnstruction Decode 
(iowr 1 X i o w r  2 X i o r d  1 X i o r d  2 ) 

lnstruction Broadcast 
(iowr 1 X i o w r  2 X i o r d  1 X i o r d  2 ) 

lnstruction Execution 
(iowr 1 X i o w r  2 X i o r d  1 X i o r d  2 > 

lobus Pins 
rdatal X r d a t a 2  

Figure 4. The instruction pipe for 110 bus transfers. 

BLITZEN SYSTEMS 

R/W Bit Muxing I I D t  
Register Set Register nn 

- Wordline 
Decoders 

- Predecode 

Figure 5. VLSl design floorplan for one PE. 

In a top level view of the system architecture, major 
components are organized around two buses. An internal bus 
supports data transfers between register and memory 
components. The second bus is used for transfers between 
BLITZEN and a host computer. Massive SlMD processing takes 
place in the processing array. Data in the on-chip local 
memory is supplied from off-chip, video RAM data memory, 
with the transfers considered as I t0 operations with respect 
to the array. 

Instructions are broadcast from the control unit to all PEs in 
the array. More specifically, operation codes originate in 
microcoded routines stored in control memory, and local 
memory addresses are generated from the register set. 
Together they form an array instruction. Control logic 
manages the register set and sequences the microinstructions. 
A scalar microprocessor can be included for use as the 
processor running an application program. It executes scalar 
instructions and sends calls for array instructions to the 
sequencing logic in the control unit. 

Two external interfaces are planned. The host interface is a 
narrow path that matches the host wordlength. It is used for 
downloading programs (both application and microcode) and 
transferring data at low bandwidth between BLITZEN and the 
host with it's peripherals. High speed peripherals 
communicate with BLITZEN through custom peripheral 
interface logic. This path accesses the data memory and is 
potentially very wide for very high bandwidth. 



Data Memory 

Each BLITZEN processing element has 1 K bits of RAM on-chip 
for holding data. It is known that many applications can 
benefit from additional memory, but the 1K amount was 
governed by chip size and density limits. In BLITZEN, the 
memory limitation can be alleviated by off-chip data memory 
that is accessed across the 110 buses. The use of VRAM for this 
purpose was mentioned earlier. Data memory can be viewed 
as the primary data memory of the system with on-chip RAM 
treated as registers or data cache. 

Using the high bandwidth 110 buses it is possible to change the 
content of all or part of the on-chip RAM very quickly. In one 
instruction cycle 32 bits (eight four-bit items) can be 
transferred between VRAM and each array chip. If the system 
is operating at 20 MHz, the total transfer rate is 
(4 bytes/chip)*(l28 chips) per 50 nanoseconds, or 
10.24 Gigabytes per second. In 128 instruction cycles, 32- 
bit data items can be transferred into (or out of) the on-chip 
RAM of each PE. In 4096 instruction cycles the entire 1K per 
PE RAM can be loaded. In 8192 cycles the content of RAM for 
the entire array can be swapped. Operating at 20 MHz, the 
time required to swap the total content is 409.6 
microseconds. 

Holographic Routing 

J. Reif, at Duke, has invented a holographic message routing 
system, using electro-optical components yielding very high 
routing rates. He is developing this device under DARPWARO 
contract. K. Johnson from the Electro-optical Computing 
Center at University of Colorado, Boulder, is constructing a 
prototype of this system. We are developing microcode to 
allow BLITZEN to use this electro-optical routing device. 

Programmer's Model 

BLITZEN is a computing system whose primary computational 
resource is a single instruction stream, multiple data stream 
array processor with a massive number of processing 
elements. This massively parallel array operates in 
conjunction with several other major system components. 

Programming BLITZEN takes place at several levels. At the 
lowest level is the machine language for the array. The 
hardware instruction set is specified in Ref. 4. Since the 
instruction set is concerned with single bit register  
transfers, it is not expected to be used by application 
programmers. Rather, it is the basis for a microcode 
development language, named BLITZ (Ref. lo), that couples 
array operations with control unit register transfers and 
sequencing operations. Commonly used routines 
corresponding to assembly language instructions such as load, 
store, add, floating point add, etc. are being written in BLITZ 
for inclusion in a microcode library whose routines can be 
called from a higher level language. An object oriented 
language based on C++ is being developed for application 
programming. High level language statements will be 
compiled into parallel assembly language statements that 
result in a calls to microcode routines which are executed on 
the array hardware. 

Parallel PE Array Slmuletor 

Prior to the existence of hardware, a software behavioral 
simulator known as "Zyglotron" was developed (Ref. 10).1t is 
a "full scale" simulator in that it can simulate the entire 
16,384 PE array with very high performance. Zyglotron is 

being used for microcode development, and can allow the 
development of algorithms and high level software to proceed 
concurrently with hardware system development. As noted in 
the abstract of Ref 10, * The simulator has achieved such high 
performance by taking advantage of a natural mapping that 
exists between massively parallel bit-serial machines and 
the vector architecture used in many high performance 
scientific super-computers." The simulator runs on the 
CONVEX C-1 vector processing machine and is written in C 
and in the CONVEX C-1 assembly language. 

CONCLUSION 

This paper has reported on the architecture and VLSl design of 
a new massively parallel processing array chip. The BLITZEN 
PE array chip, containing 1 .I million transistors, has been 
submitted to the Microelectronics Center of North Carolina 
for fabrication. The chips are the basis for a highly 
integrated, miniaturized, high performance, massively 
parallel machine that is currently under development. 

The work reported in this paper resulted from the efforts of a 
group of researchers, mentioned in the overview section, 
participating in this project with the support of the 
Microelectronics Center of North Carolina. We also benefitted 
from discussions with Kenneth Batcher of Loral Systems 
Group concerning architecture of the MPP and local address 
modification schemes; with John Dorband of NASA Goddard 
SFC concerning conditional operations; and with Charles 
Fiduccia of General Electric who described their cross-omega 
machine with an eight neighbor grid interconnect. The 
interest and support of Milt Halem, NASA Goddard SFC, has 
been crucial to the success of this project. 

REFERENCES 

1. Batcher, K. E., "Design of a Massively Parallel 
Processor", IEEE Trans. on Computers, C-29(9), p 
836-840. 

2. Batcher, K. E., "Array Unit", The Massively Parallel 
Processor, J. L. Potter, Editor, The MIT Press, 1985. 

3. Batcher, K. E., "The Architecture of Tomorrow's 
Massively Parallel Computer", Proc. of the First 
Symposium on the Frontiers of Massively Parallel 
Scientific Computation, 1 986. 

4. Blevins, D. W., E. W. Davis, and J. H. Reif, 
"Processing Element and Custom Chip Architecture for 
the BLITZEN Massively Parallel Processor", MCNC 
Technical Report TR87-22, 1987. 

5. Davis, E. W., and J. H. Reif, "Architecture and 
Operation of the BLITZEN Processing Element", Proc. 
o f  the Third International Conference on 
Supercomputing, Boston, MA, May 1988. 

6 .  Fischer, J. R., el al, "Report from the MPP Working 
Group to the NASA Associate Administrator for Space 
and Science Applications",NASA Technical 
Memorandum 87819, November,1987. 

7. Hillis, W. D.. The Connection Machine, The MIT Press, 
1985. 

8. Potter, J. L., Ed., The Massively Parallel Processor, 
MIT Press, 1985. 



9.  Rosenberg, J. B., and E. W. Davis, "BLITZ: Blitzen's 
Microcode Assembly Language Design Document, MCNC 
Technical Report TR88- 14. 1988. 

10. Rosenberg, J. B., J. Becher, and N. Hooke, 
'Vectorization Enables Full Scale Simulation of 
Massively Parallel (SIMD) Architectures", 
Proceeding of the Third International Conference on 
Supercomputing, Boston, MA, 1988. 

11. Sharp, J. A., An Introduction to Distributed and 
Parallel Processing, Blackwell Scientific 
Publications, 1987. 



MASSIVELY PARALLEL COMPUTING SYSTEM FOR RESEARCH AND 
DEVELOPMENT APPLICATIONS 

W. Keith Johnson 
Amber Engineering, Inc. 

Gdeta, CA 

ABSTRACT SlMD Processor Development System 

A description of Amber Engineering's SlMD Processor 
Development S W m  (SPDS) is presented. Tho SPDS is doaigned 
to provide a cost-effective, tum-key solution to UM deairing to 
explore massively paralkl computing applications. The SPDS, 
which is based upon the Geometric-Mthmetic Parallel Processor 
(GAPP) integrated circuit, contains a two-dimensional array of 
between 2,304 and 10,368 processing elements. This processing 
element array operates in a classical single-instruction/ multiple- 
data fashion. The SPDS processing electronics may be connected 
to any 'AT-bus' compatible computer via an Amber provided 
interfao card. The SPDS works in conjunction with an optional 
frame grabber card to acquire RS170 imagery and to display 
processed results on a standard analog monitor. Sofhuare bundled 
with the SPDS runs under the MSDOS operating system and 
includes a compiler/linker/ microcode Qenerator for the (UPP 

array, a GAPP utility library in source code form, and a menudriven 
user interface with interactive symbolic debugging capability. 

Keywords: Massively Parallel Processing, Single- 
Instruction/Multiple-Data (SIMD), Geometric Arithmetic Paralkl 
Procerisor (GAPP). Development System. 

INTRODUCTION 

Massively parallel computing syetems are emerging from highly- 
Bpedalized laboratory and research environments Into mainatream 
processing applications. Impeding the progress of this trend has 
been the lack of lowcost development system products designed 
to expedite the generation of application software for mawholy 
parallel computers. To date, development environments for 
massively parallel computers either emulate the target platform 
with a generalpurpose machine (very slow) or reside upon the 
target platform itself (very expensive). Amber Engineering hu 
recently releassd a development system for massively paralkl 
computers that alleviates both of these problems. 

knber Engineering's SlMD Processor Development System (SPDS) 
provldoa a oornpktr dovolopment environment for the Geometric- 
Mthmdk Pualkl Processor (GAPP) integrated circuit (Ref. 1). The 
SPDS incorporates an array of GAPP integrated circuits, an array 
controller circuit card, and compller/debugging software into an 
integrated development platform. Application code generation is 
expedited by the fact that execution is performed in hardware at 
the full rated speed of the GAPP integrated circuit. The cast of the 
SPDS is minimized by utilizing an 'AT'class personal computer as 
the host machine, by constraining the input/output operation of the 
SPDS to the DMA rate supported by the host computer, and by 
utilizing a moderately dzed GAPP array as the execution engine. 
Although 8 moderately sized GAPP may is used (from 4&by-48 up 
to 1 W y - 9 6  proosdng elements), tha SPDS software allows the 
GAPP array to process images of arbitrary size via successive 
wbimage processing (windowing). Once application software has 
been developed and validated upon the SPDS, the resulting 
executable microcode may be directly ported to a user developed 
W P  execution system. In many applications, the SPDS itself 
may be used aa an execution system with the addition of a real- 
time input/output interface circuit card. 

r 

OMPATABI F 
COMPUTER 

figure 1. SPDS Block Diagram 



SPDS HARDWARE ARCHITECTURE 

As depicted in Figure 1, the SPDS is comprised of a Processing 
Electronics Unit that Is conn.cled to a host cumputer via a High- 
Speed Host Interface. Contained in the Processing Electronics Unit 
are from one to four GAPP Array circuit cards, an SlMD Controller 
circuit card, and an optional Real-Time I/O lnterface circuit card. 
The host computer is an 'AT'class personal computer (including 
m d  machines that support the 'AT' bus). Installed on the 
AT expansion bus of the host computer are the High-Speed Host 
lnterface circuit card and an optional Frame Grabber circuit card. 

Host Computer 

The host computer facilitates thr man-machine interface 
opsrations of the system, and Is also responsible for the 
compile/link/download 8 control functions, In addition, the host 
computer's mass storage device is utilized to store source code, 
intermediate compiled code, executable microcode, and image 
data for uos by the Processing Electronics Unit, tf equipped with 
the optional Frame Grabber circuit card, the host computer may 
perform RS170 image acquisition and display. The Frame 
Grabber incorporated into the SPDS is the Imaging Technologies 
model FG100bK)/2 AT. All Interactions between the host 
computer and the Processing Electronics Unit are accommodated 
via the High-Speed Host interface circuit card, which is capable of 
transferring program and image data between the host computer 
and the Processing Electronics Unit at the DMA rate supported by 
the host computer. The DMA rate is between 500,000 and 
1,000,000 bytes per second depending upon the manufacturer and 
model of the host computer. 

Processing Electronics Unit 

The Processing Electronics Unit, shown in Figure 2, is packaged in 
a selfcontained enclosure that houses the GAPP Array circuit 
cards, the SlMD Controller circuit card, and, optionally, a Real-Time 
I/O Interface circuit card. The Processing Electronics Unit is 
responsible for executing the program(s) supplied by the host 
computer upon image data supplied by the host computer 
(development mode) or upon image data supplied by the Real- 
Time I/O lnterfacs (real-time execution mode). The Processing 
Electronics Unit has dimensions of 15 by 28 by 26 inches making it 
ideal for lab or office environments. 

The SPDS can be configured with one, two, or four GAPP Array 
circuit cards, thus providing main array sizes of 48-by4, -by-96, 
and 108-by-96 processing elements respectively. In addition to the 
main processing array, the one, two, or four GAPP Array circuit 
cards will provide corner-turn arrays of 12-by-48, 12-by-96, and 12- 
by-96 processing elements, respectively, to accommodate 

input/wtput reformatting for the main GAPP array. Each GAPP 
Array circuit card contains 40 GAPP integrated circuits as well as 
the necsssary buffers, transceivers, and decoding logic necessary 
for the proper operation of the card. Jumpers installed on the 
GAPP A m y  circuit card allow the card to be configured as a 48-by- 
48 element main array with a 12-by4 element corner-turn array, or 
as a m y - 4 8  element main array. The SPDS has been designed 
for field expansion such that users may enlarge their GAPP arrays 
by installing additional GAPP Array circuit cards. 

I 

Fgure 2. SPDS Processing Electronics Unit 

The SlMD Controller circuit card broadcasts command and address 
information to the GAPP Array circuit cards during program 
execution. The SlMD Controller performs this operation at a 10 

megahertz rate, the maximum rate allowed by the GAPP integrated 
circuit. Prior to program execution, microcode is downloaded from 
the host computer into the SlMD Controller's 64K deep by *bit 
wide writeable control store memory. During program execution, 
the microcode is read out from the control store memory, under 
the direction of a program sequencer, to cause the GAPP 
processing elements to perform the desired operations. 
Additionally contained on the SlMD Controller is a 256 bit dynamic 
constant memory. The dynamic constant memory allows the host 
computer to download run-time constants, such as thresholds or 
adaptive filter coefficients, for subsequent injection into the GAPP 
processing array. 

Additionally contained on the SlMD Controller circuit card is a 256K 
byte input/output buffer memory. This buffer streamlines data 
transactions between the host computer and the GAPP array circuit 
cards. The input/output buffer memory is divided into two 
independent blocks. While one block is communicating with the 
host computer, the other block may send data into and receive 
data from the GAPP array, thereby overlapping host 
communications with processing. The roles of the two buffer 
blocks are reversed after each wccessive GAPP processing 
window, 1.e. the block communicating with the host will then 
communicate with the GAPP array and the block communicating 

408 ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



with the GAPP way  will communicate with iho hoat. Each of the 
two blocks Is furthermore segmented into separate d o n s  for 
input to the GAPP Array and output from the GAPP Array so that 
input and output may occur simultaneously. 

Although designed as an Interactivs development system, the 
SPDS may be converted into a high-speed execution platform with 
the addition of a Real-Time I/O Interface drcuit card. This drouit 
card will place the image acquisition and display functions 
(normally performed by the frame grabber and host computer via 
software drivers) into hardware for real-time performance. The 
Real-Time I/O Interface is responsible for partitioning the Incorning 
video stream into GAPP array-sized regions of pixels for Injection 
into the GAPP array. The Real-Time I/O Interface is also 
responsible for reintwrating the GAPP array output data into a 
contiguous image for display. In both the input and output 
functions, the Real-Time I/O Interface circuit card must 
accommodate werlap between adjacent processing windows in 
order not to introduce artificial edge effects during subimage 
processinp. 

SPDS S O W A R E  ENVIRONMENT 

The SPDS indudes a software package that is combined with the 
hardware to provide a complete development mvironment. The 
aoftwam consists of four major elements - a user interface shell, a 
GAPP campller, a W P  applications/utility library, and embedded 
hardware drivers. 

The user interface shell is a multiwindow, menudriven environment 
in which all aspect8 of the SPDS system may be controlled. When 
entering the user interface shell, the user is prompted to select one 
of four modes of operation: 

1. Algorithm Development Mode, 
2. Image - No Corner Turn Mode, 
3. Corner Turn Development Mode, 
4. Image -with Comer Tum Mode. 

These four modes of operation allow the user to tailor the operation 
of the SPDS to the task at hanrr as the user is progressing with the 
development of a W P  application. Extensive built-in help filer 
are available to assist the user at any time via the user interface 
shell. 

Algorithm Development Mode 

In the algorithm development mode, the SPDS works with an 
image that is identical to the size of the W P  array. The W P -  
sized subimage may be selected from a 640 by 480 frame grabber 
image under software control. Once a subimage of data has been 
selected, the user is provided with a menu set that allows him to 

call up an oditor to generate souror wdo, to compile and Link the 
aource cude into executabk microcode, and to cause the SPDS 
system to execute the microcode. Additionally, a number of debug 
facilitiee are included in the algorithm development mode menu 
structure. The debug fadiities indude breakpoint and stepping 
functions as well as GAPP RAM and GAPP register 
upioad/download utilities. GAPP RAM uploading/downloading 
functions may be performed symbolically 4.0. as GAPP variable 
names) or absolute (i.0. as GAPP RAM addresses). When 
uploading GAPP information, the data may be sent to the frame 
grabber for presentation as video information or to the host 
computer for presentation as numerical information. Figure 3 
ahows the top-level menu structure for the algorithm development 
mode along with a window of W P  RAM information displayed In 
numerical format. After a user has completely debugged a GAPP 
prwram in the algorithm development mode on single subimage 
data, the user may mow on to tho Image-no corner turn mode to 
test the algorithm on full images. 

Figure 3. Algorithm Development Mode Menu 

Image-No Corner Turn Mode 

In the image-no corner turn mode, the SPDS works with the full 640 
by 480 frame grabber image (or other full Image size aa specified 
by the user). The W P  array processes the larger full image by 
splitting the full image into WP-sized subimages and 
sequentially processing each subimage. To avoid artificial edge 
effects between adjacent subimages, the SPDS software overlaps 
adjacent subimages. The amount of overlap is a function of 
maximum algorithm kernel size, and as such, the overlap 
parameters may be arbitrarily set by the user. After a frame of data 
has been captured by the frame grabber or uploaded from the host 
computer's hard disk, the user may instruct the SPDS to execute a 
number of predefined programs on the data with the results 
automatically displayed. Menu options in the image-no corner turn 
mode indude input/ output RAM location selection, kernel size 
selection, microcode file selection, image transfer functions, and 

ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



execution control functions. Figure 4 shows the top-level menu intermediate code to executable form which may be downloaded 
structure for the input-no corner turn mode. to the SlMD Controller. 

I 

Figure 4. Input-No Corner Turn Mode Menu 

In the image-no corner turn mode, all input/output functions are 
performed via standard, built-in SPDS hardware drivers. 
Additionally in this mode, input/output and processing occur 
sequentially instead of overlapped. To generate custom 
input/output code for the GAPP Corner Turn array and/or to 
overlap corner turn code with main array processing code, the last 
two SPDS modes of operation are provided. 

SPDS PERFORMANCE 

The throughput of tho SPDS is indicated In Table 1 for a variety of 
image processing tasks. As indicated in the table, the millions of 
operations per second rating for the SPDS is a function of the 
operation complexity, the size (number of bits) in the operands, 
and the size of the GAPP array. 

MOPS PER ARRAY SIZE 
OPFRATION 4 8 x 4 8 ~ ~  

BOOLEAN OPERATION ( I  -BIT) 5760 1 1500 25920 

ADDITION (&BIT) 853 1706 3838 

MULTIPLICATION (&BIT) 65.0 130 292 

MULTIPLICATION (1 6-BIT) 15.6 31.2 70.2 

3x3 CONVOLUTION (8-BIT) 16.7 33.4 75.2 

5x5 CONVOLUTION (8-BIT) 6.0 12.0 27.0 

3x3 MEDIAN FILTER (8-BIT) 8.0 16.0 36.0 

Table 1. SPDS Performance 

Corner Turn Development Mode and Image-With Corner Turn 
 ode SPDS APPLICATIONS 

The final two modes of operation are reserved for constructing 
custom input/output routines (corner-turn programs) and for 

merging corner-turn programs with main processing programs. 
Custom corner-turn programs may be developed for applications 
that have input/output requirements that are not met by the 
standard corner-turn program supplied with the SPDS system. 
Furthermore, corner-turn programs may be merged with main 
array processing programs so that input/output and processing 

occur simultaneously in the GAPP array for maximum 

performance. 

NCRGAL Compiler 

The GAPP array within the SPDS utilizes NCR's GAPP Algorithm 

Language (GAL) as source code. NCRGAL combines the structure 

and syntaw of the 'C programming language with GAPP-specific 

assembly level mnemonics resulting in source code that is easy to 

develop and maintain yet compiles to extremely efficient object 

code. The NCRGAL compiler included with the SPDS reduces the 

source code to an intermediate form. A linker and microcode 
generator, also included with the SPDS system, transforms this 

The SPDS is currently being utilized to perform frontmd 
processing functions for a passive airborne warning application. As 
shown in Fgure 5, a standard SPDS system is outfitted with an 
application-specific Real-Time Processor Interface circuit card to 
receive digitized video from an infrared-sensitive telescope. The 
telescope provides 360 degree azimuth coverage to detect 
incoming threat objects (helicopters, aircraft, and missiles) from all 
directions. 

The custom Real-Time Processor lnterface provides delay 

equalization, nonuniformity correction, intensity transformation, 
and frame buffering functions upon the incoming video. The 

buffered video data is then placed into the GAPP array contained in 
the SPDS under the direction of the SlMD Controller. The GAPP 

array performs spatial and spectral tiltering on the video data and 
then prescreens the filtered image for candidate targets. The 

processed image, along with detection point indication flags, is 

passed back out from the GAPP array into the Real-Time Processor 
Interface where each detection point location and associated 

intensity information are recorded. The detection point data is then 
handed off to the Compaq 386120 Host Computer for final 
classification and track file processing. 

410 ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



Additionally output from the Aeal-Time Processor Interface Is a 
uniformity corrected video stream which is displayed upon a 
monitor after passing through a scan converter. Track and mission 
symbology generated by the Host Computer is also received by 
tha scan converter and wperimposed upon the video data for 
presentation to the system user. 

W W E D  
rr lLScoPL C<I"?O W N  nu., C W P U I I Y  

<*OCb*CC 
u w r n  C V L H W t l  

Figure 5. SPDS Applied to Passive Airborne Warning System 

REFERENCES 

1 

1. 'Geometric Arithmetic Parallel Processor Data Sheet,' 
NCR Corporation, 1987. 



THE APx ACCELERATOR 

E. Abreu, D. Jenkins, M. Hervin, D. Evans 

Visionary Systems, Inc. 
New Haven, CT 06511 

ABSTRACT The APx PROCESSOR SYSTEM 

The  APx Accelerator is an  SIh'fD Parallel Processor system designed 

t o  provide very high computing power in a PC/workstation 

environment.  The rZPx is an expandable system and provides from 

64 t o  256 16-bit processors which provide peak instruction rates from 

800 to  3200 hIIPs. The individual processors in the  APx Accelerator 

a r e  16-bit RISC processors which are quite powerful and versatile. In 

addition, pairs of 16-bit processors can be configured to  operate in 

32-bit rnode untler software control. IEEE format single precision 

floating point operations arv supported in 32-bit mode with peak 

ratings from 10 t o  160 hfF1,OPs. 

This  presentation drals with the architectural and implementation 

feature> tha t  work together in the APx Accelerator t o  achieve high 

sustained systern performance for a significant set of compute- 

i n t e~ i s i \~e  functions. These features include VLSI integration, 

memory bandwidth, concurrency of operations, inter-processor 

cornrnunications, processor selectloll mechanisms, and I/O 
bandwidth 

The APx Parallel Processor System from Visionary 
Systems Inc. (VSI) is a desktop supercomputer tha t  offers 
the performance advantages of massively parallel 
processors in a desktop and interactive environment. 
The APx is a result of the research and development 
efforts performed a t  the I T T  Advanced Technology 
Center on Cellular Array Processors (Ref. G ) ,  and 
continued through product development a t  VSI. T h e  
major design goals of the APx are the following: 

True supercomputing performance: Floating point 
performance equivalent t o  supercomputers and 
integer and memory bandwidth approaching tha t  of 
massively parallel processors. 

.Price range equivalent to  that  of technical 
workstations. Substantial reduction in cost is 
afforded through the use of custom VLSI technology. 

I<eywords: SIRID, RISC, Parallel Processors, Workstation, . c~~~~~~ size that is expandable and scalable to fit 
PC,  Array Processors. the user's present and future needs. 

INTRODUCTION 

As processing needs of engineers, scientists and 
professionals continue to  outpace the performance 
improvements of conventional machines, computer 
scientists have come to realize the advantages of parallel 
processing techniques t o  keep up with these demands. 
Parallel processors which contain thousands of processing 
elements have been developed to try t o  keep in pace with 
today's processing requirements. Examples of these 
machines include Thinking Machines' Connection 
Machine Ch12 (Ref. 1), Goodyear's hlassively Parallel 
Processor Rll'P (Ref. 2)), ICL's Distributed Array 
Processor DM' (Ref. 3) and the NCUBE Ten (Ref. 4). 
Each of these machines has particular strengths and 
features that  are not available with the others. These 
machines nlay also be characterized as being too large 
and expensive to  be widely available in a desktop 
environment. 

PRECEDING PAGE BUNK NOT FILMED 

CH2649-2/89/0000/0413$01.00 O 1988 IEEE 

Architecture tha t  provides uniform acceleration over 
a wide range of applications rather than very specific 
and limited sets of routines. 

THE APx ARCHITECTURE 

The  APx is a d a t a  parallel computing system based on 
the Single Instruction, hlultiple Data (SIMD) 
architecture. In an SIMD machine, all of the processors 
execute the same instruction sequence from a common 
controller. Figure 1 shows a block diagram of the 
system. The block diagram reveals the following 
features: 

There is a single program Controller which contains 
the sequencer, program memory, scalar address 
generator and host (AT Bus) interface. 

The  Processor Array contains from 64 to 256 
powerful RISC-based, 16-bit processing elements. 
The Processor Array may be expanded in increments 
of 64 processors. 



Both program memory and da ta  memory are 
memory mapped into the host workstation's memory 
space via the A T  Bus. The host workstation or P C  
then becomes the  front end computer, allowing users 
t o  retain their user-friendly and familiar 
environments. 

If0 channels are provided for high-speed d a t a  
transfers between the processor array and high-speed 
peripherals like high resolution monitors and image 
scanners for real time graphics and imaging. 

Figure 2 shows a graphical presentation of the basic A P x  
system, which consists of a controller board and from one 
t o  four processor boards each containing 64 processing 
elements. Each processor board contains four custom 
VLSI chips, each containing 16 powerful RISC-based 16- 
bit processors with substantial on-chip memory. These 
boards are AT-sized, and can plug directly into available 
slots of popular workstations and PCs. Larger systems 
are  housed in their own self-contained units which can be 
connected t o  the host computer via an interconnect cable. 

Programming the AF'x will be done in C, FORTRAN, or  
the PAC assembly language provided by VSI. PAC is a 
parallel programming language designed t o  take full 
advantage of the features of the A P x  hardware but  
simple enough t o  be easily understood and learned. By 
utilizing the host workstation/PC as a front-end, the  user 
can retain major amounts of software, and simply replace 
compute-intensive routines and applications with routines 
t h a t  utilize the APx. These A P x  routines may have come 
from subroutine libraries supplied by VSI or may have 
been written by the user. 

64 - 256 PROCESSORS 

A n J 

w V 

IIIGH SPEED I/O 

h A I 
I*, pkJ 

DISP1,AY SCANNER 

Figure 1.  APx System. 

ssor connect bus 

Up to four boards for a 
total of 256 processors 

lour CMOS custom chips 

High s 
110 Bu 

Controller board 

F~gure 2 APx Hardware " - .- 3; -;:*< 

414 



PROCESSING ELEMENTS 

A t  the heart of the APx system are the processing 
elements. Figure 3 shows a block diagram of a n  
individual processing element, which is a powerful 16-bit 
processor as opposed t o  very simple 1-bit serial processors 
found in a number of massively parallel computers. T h e  
APx processing elements have several features t o  increase 
overall system performance. These are: 

Pairs of l b b i t  processors can be configured under 
software control t o  act as single 32-bit processors. 
Each 16132-bit processor has a n  integral multiplier 
and  IEEE format single precision floating point unit. 
An  integral multiplier/floating point unit eliminates 
the  need t o  transfer d a t a  t o  a separate ceprocessor 
which could slow down overall performance. 

Each processor contains 16 general purpose registers 
and has access t o  a substantial amount of on-chip 
memory and a much larger external memory. 
Furthermore, the processon employ a Load/Store 
architecture tha t  permits concurrency between 
arithmetic and memory operations. 

Addressing of memory can be done in two ways. 
T h e  first is through the use of a scalsr address 
generator which provides a single address t o  be used 
by all processors. The second approach is through 
each processor's register set wherein each processor 
supplies a n  independent address t o  its own memory. 
VSI's research into applications showed that  both 
scalar and independent addressing modes contribute 
t o  the applicability of a parallel processor over a 
wide range of problems. 

APx COMMUNICATIONS 

Efficient inter-processor communication was a major 
design implementation goal in the APx system. Because 
of VLSI technology and the ability t o  package a n  entire 
system in a compact enclosure, VSI was able t o  
incorporate two necessary communication mechanisms in 
the  APx. These are: 

A high speed mesh topology: Each processor in the 
Processor Array is connected with its left, right, up  
and down neighbors. The processors a t  the end of 
the  array are connected t o  form a torus. W h a t  
differentiates the APx implementation from other 
machines that  use a mesh or  a hypercube topology is 
tha t  the APx uses 16-bit busses t o  connect the 
processors as opposed t o  1-bit serial lines employed 
by other  parallel machines. As a result, an APx 
processing element can transfer a l b b i t  word of d a t a  
in one cycle. 

EXTERNAL MEMORY E I  
ON-CIIIP MEMORY L7 

MEMORY DATA REGISTER 

REGISTER SET + 
MWII 'L IER 

FLOATING POINT UNIT 

Figure 3. A P x  Processil~g Element. 

A high-speed 32-bit broadcast bus: The  broadcast 
bus allows the scalar controller or a selected 
processing element t o  send d a t a  t o  all o r  a subset of 
processing elements. Because of VLSI technology, a 
32-bit number can be broadcast globally in  a single 
cycle. 

APx PROCESSOR SELECTION 

VSI realizes t h a t  i t  is not enough t o  have powerful 
processors with very high memory and communication 
bandwidths, bu t  i t  is also necessary t o  be able t o  
efficiently control and coordinate these processors. The  
APx is equipped with a number of processor selection 
mechanisms t o  enable efficient coordination between 
processors. These mechanisms can be classified into the 
following groups: 

Intra-processor selection - In an SIMD machine, the 
instructions are broadcast t o  all processors. It  is 
important tha t  each processor be able t o  conditionally 
execute these instructions based on its own internal 
s ta tus  and flags. In the APx, each processor contains a 
mechanism called the Vector If Else stack for this 
purpose. The result of a conditional test is pushed on to  
this stack. The s tatus  of the stack then determines 
whether the processor is activated/deactivated t o  execute 
the instructions being broadcast by the controller. The  
Vector If Else mechanism supports 16-deep nesting of 
conditional instructions and provides support for high- 
level constructs like If, Else, Endif, etc. 



Inter-processor aelection - Frequently, it is important 
t o  be able t o  single out  a particular processor ou t  of the 
entire Processor Array. This selected processor is often a 
source processor during broadcast operations as explained 
earlier. Two inter-processor selection mechanisms are 
provided for this purpose. The  first mechanism enables 
the programmer t o  sequentially select processors in a n  
ascending or  descending manner, treating the processors 
in the array as a string of processors. The  second 
mechanism is a Find/Drop capability wherein the first 
Find operation causes the system to scan all the 
processors and select the first active processor. Each 
succeeding Find then selects the next active processor. 
Hardware is provided such that  the scanning and 
selecting activity is completed in  one cycle. 

Global Status - A status  which indicates if "any" of 
the processors are active is available t o  the controller. 
The  controller can then use this information t o  
conditionally jump over program code. This feature is 
useful in implementing high-level constructs like WHILE 
ANY which is useful for sparse matrix operations. 

APx 110 CAPABILITY 

The APx is designed t o  be ideal for applications such as 
high-speed graphics, for visualization of engineering and 
scientific analysis, and for advanced image processing. 
As such it  is very important that  the AF'x not only have 
superior computational capability, but it should also be 
complemented by an 1 / 0  system which can take 
advantage of the high processing bandwidths. 

In addition to  the industry standard A T  Bus, separate 
1 / 0  channels are provided in the APx which are geared 
for interface with high-speed peripherals for graphics and 
imaging. An I /O channel is a separate independently 
controlled and  asynchronously timed bus available for 
each group of 64 processors. Double buffered 1 / 0  
registers are provided in each processor. An external I /O 
controller can transfer d a t a  t o  and from these I / O  
registers concurrent with other operations in the APx. 
This is possible because the instructions t o  transfer da ta  
between the I /O registers and the I /O bus are 
independent of the other instruction fields. Interrupt 
logic is provided in the Controller such that  when the 
I /O controller has filled the 1 / 0  registers in each 
processor, it can activate an interrupt routine which 
transfers I /O register da ta  directly into general purpose 
registers, on-chip memory or external memory. An 1 / 0  
board is being designed to interface the I /O channels 
directly t o  frame buffers for graphics/image controllers. 

APx SOFTWARE ENVIRONMENT 

The  APx system software environment is based upon the 
host workstation's operating system. This has the 
distinct advantage that  users retain a familiar and 
friendly interface (i.e., CJNIX, blS-DOS). Application 

programs are written using the host's existing 
environment and programming languages, but key 
compute intensive routines are run on the APx. These 
routines are either called from a set of libraries supplied 
by VSI or  from user programmed routines. Data is 
shared between the  host application program and the 
APx routines, since the AF'x program and da ta  memories 
are mapped into the host computer's address space using 
the A T  Bus. 

Users can program their own routines in the P A C  
assembly language or in C or  FORTRAN. At  the lowest 
level, the P A C  assembly language gives the user access t o  
all the capabilities of the APx hardware. PAC 
instructions are very similar to  those in RISC-based 
instruction sets, with the only difference being tha t  da ta  
operations like ADD, MULT, LOAD, and STORE are 
really vector operations that  are executed on all 
processors. 

VSI expects to  supplement P A C  with two different types 
of C and FORTRAN subroutine compilers; those which 
compile code for a single processor and those which 
vectorize code to use the entire processor array. The first 
type of compiler will compile C or  FORTRAN routines 
for a single processor, with interprocessor comnlunication 
explicitly controlled by the program. This gives the user 
the  benefits of programming in a high-level language 
while retaining the efficiency of explicitly managing the 
parallel execution and da ta  storage mapping 011 

individual processors. The  second type of compiler will 
vectorize C or  FORTRAN subroiltines for users who 
want t o  automatically convert existing subroutines t o  use 
the APx hardware. In this case, the compiler maps the 
program data  onto the processors and generates the 
necessary code for interprocessor communication if one 
processor needs d a t a  stored in another processor's 
registers or memory. 

In addition to  the compilers and assembler, \'SI will 
provide a linker, loader, debugger, and simulator to  aid 
in software development and debugging. 

SPECIFICATION AND PROJECTED 
PERFORMANCE 

The  APx specifications are shown in Table 1. It  indicates 
tha t  the APx performance indeed competes with 
supercomputers and massively parallel processors. 
Performance for various selected subroutines on a 256- 
processor system (.4P256) using 16-bit precision are 
shown in Table 2. Again the projections cornpare 
favorably against very expensive superco~liputers and 
massively parallel processors. We believe that  
performance like this tha t  is widely available in a desktop 
environment will not only answer the present needs of 
engineers and scientists but will also open up markets for 
new capabilities in computing. 



Note: Where two numbers are shown, separated by a slash, the first is performance in 
16-bit mode and the second is performance in 32-bit mode. 

Number of Processors 

Peak MIPS 

Peak MFLOPS (32-bit IEEE format) 

Integer Add, Logical, Move, and Shift (MIPS) 

Integer Multiply (MIPS) 

Floating Point Add (MFLOPS) 

Floating Point Multiply (MFLOPS) 

Total On-Chip RAM (Icbytes) 

Total External Data RAM (Mbytes) 

External Memory Bandwidth (Mbytes/s) 

On-Chip Memory Bandwidth (Mbytesls) 

I/O Bus Bandwidth (Mbytesls) 

Processor to Processor Bandwidth (Mbytesls) 

Table 1. APx Specifications 

512x512 Image 5 msec 
3x3 Convolution 

512x512 Complex 60 rnsec 
2D F F T  

512x512 Complex 20 msec 
2D F F T  (16x16 Blocks) 

256x256 Hough Transform 20 msec 
(10% density) 

Maximum of a 64IC Vector 0.1 msec 

Sort of a 64I< Vector 7 msec 

Table 2. AP256 Projected Performance. 
l b b i t  precision used. 

AP64 

64/32 

8001400 

40 

8001400 

160140 

40 

40 

32 

2 to 8 

200 

800 

25 

1600 

References 

1. Hillis, W.D., "The Connection Machine", Sc ien t i f i c  
Amer ican ,  Vol. 256, No. 6, June 1987, pp. 86-93. 

AP128 

128164 

1600/800 

80 

16001800 

320180 

80 

80 

64 

4 to 16 

400 

1600 

50 

3200 

2. Potter, J.P., editor, The  Massively  Parallel 
Processor, MIT Press, Cambridge, Massachusetts, 
1985. 

AP256 

2561128 

3200/1600 

160 

3200/1600 

6401160 

160 

160 

128 

8 to 32 

800 

3200 

100 

6400 

3. Hunt, J.D., "The ICL DAP and its Application to  
Image Processing", in Languages and  Architectures 
for Image Processing, M.J.B. Duff and S. Levialdi, 
eds, Academic Press, London, 1981. 

4. Hayes, J.P. et al, "A Microprocessor-based 
Hypercube Supercomputer", I E E E  Micro,  Vol. 6 ,  
No. 5, Oct. 1986, pp. 6-17. 

5. Morton, S.G. et a!, " ITT CAP - Toward a Personal 
Supercomputer", IEEE i!,ficro, Vol. 5, No. 6, Dec. 
1985, pp. 37-49. 



The Design of a Bit-Serial Coprocessor 
to Perform Multiplication and Division on 

a Massively Parallel Architecture 
Robert E. Morley, Jr., Gary E. Christensen, Thomas J. Sullivan, Orly Kamin 

Elecaonic Systems and Signals Research Laboratory 
Department of Electrical Engineering 

Washington University 
St. h i s ,  Missouri 63130 

Abstract  - Many signal and image processing 
algorithms are being mapped onto SIMD massively 
parallel architectures which are often composed of 
single, bit-serial processor elements (PEs).These PEs 
are slow when performing the many multiplications 
and divisions required by FFTs, convolutions, and 
other common DSP operations. A custom VLSI co- 
processor has been designed to greatly increase the 
speed of these operations. In this paper, the need for 
such a processor, the multiplication and division al- 
gorithms of the processor, and comparisons of these 
algorithms to those implemented on several machines 
is presented. 

When fabricated in 1.2 pm CMOS technology, we estimate 
that 64 coprocessors will easily fit on a single die. This is 
equivalent to the number of AMT DAP processor elements on a 
chip. Hence, only a doubling of area is required to increase the 
multiplication and division performance by an order of 
magnitude for 16 bit operations. 

A description of the simple hardware architecture is 
presented, followed by the algorithms used for multiplication 
and division. Finally, performance comparisons between the 
algorithms used in the COPE, DAP, and GAPP for 
multiplication, division, and multiply-accumulate operations are 
given. 

CONVENTIONAL bit-serial processors such as the 
AMT DAP[l] and the NCR GAPP[2,3] execute the operations 
of multiplication and division in o ( N ~ )  cycles, where N 
represents the operand bit length. This corresponds to a design 
style that saves area at the expense of processing time and yields 
an areadelay product (ADP) of 0(N2). By employing a parallel 
adder whose area is proportional to N, another design is 
obtained which retains an ADP of o ( N ~ ) ,  but the delay is 
reduced to O(N). Furthermore, if successive multiply- 
accumulate operations are to be executed, as is commonly the 
case in a wide class of digital signal processing algorithms, a 
series of M multiply-accumulate operations takes o((N~+N)M) 
cycles for the bit-serial processor and only O(NM) cycles for the 
the parallel adder design. 

We will present the design of a VLSI coprocessor element 
(COPE) that employs a parallel adder to achieve the increased 
speed described above. It accepts operands of variable length 
(N I 16), and produces a 2N bit product. The overall process 
takes 4N cycles, and if needed, the result may be accumulated 
for fuxther processing without any processing time penalty. In 
addition, the COPE has been designed to perform division in 
O(4N) cycles, as opposed to o ( N ~ )  for a conventional bit serial 
processor. 

The COPE coprocessor of Figure 1 consists of three shift 
registers, a full adder, two's complement circuitry, control logic, 
and four serial bit manipulation circuits. The shift registers are 
used to multiply by two, store and retrieve data, and perform 
serial to parallel data conversions. The bit manipulation logic 
performs transformations on incoming and outgoing serial data, 
as required by the multiplication and division algorithms. 

The MQ register is used to serially acquire the multiplicand 
or divisor, or to assemble the quotient. It is also able to dump 
the quotient serially (right shift). The LS register is used to store 
either the multiplicand or divisor, and to multiply the left shift 
the multiplicand. The LS register may be loaded in parallel with 
either the MQ register or its two's complement. The final 
register is the accumulator. It serially acquires the dividend, 
serially dumps the remainder, or latches a new parallel sum. 
This sum is generated by a parallel full adder. 

Two algorithms have been developed for the COPE chip, 
which perform the desired functions of multiplication and 
division. The control circuitry to implement these algorithms is 
split into two sections. A global control section is responsible 
for generating data independent control signals for each PE on 
the chip. Each PE also contains local control logic to generate 
those signals which are data dependent. In this manner, it is 
possible to implement data dependent algorithms within an 
SiMD architecture. 

PhECEDiTiG PAGE BLANK NOT FILMED 

419 
& U I ~ M ~ A U V  a ~ l  



Divisor 
Shift is 

Performed 
by MUX 

I 32 Bit Accumulator I 4  
(Product-Remainder) 

r L d  

Sign 
Logic 

Remainder, 
.Product 
Output 

-Dividend 
Input 

32 Bit Full Adder 

Multinlirr 
32 Bit L-S Register -.----r--- 

sign bit 
I 

16 Bit 2-1 MUX 
- 

I I Complement I 7 

2-1 MUX 

MQ Register 

1 r- 

I Logic Sign k h r o t i e n t  Output 

Figure 1: The COPE Arithmetic Coprocessor 

111. ALGORITHMS 

The COPE chip accomplishes multiplication and division in a 
serial manner as the operands are shifted into the chip. In both 
algorithms, one operand is fully loaded into the PE. As each bit 
of the second operand is presented to the PE, the desired 
operation is progressively performed. Once the last bit has been 
used, the result may be shifted out of the COPE. The algorithms 
for both multiplication and division are described below and are 
detailed in Appendix I. 

Then, as each bit of the multiplier (LSB first) is presented to the 
COPE, the multiplier's absolute value is generated by the serial 
signlogic. If the resulting bit is high, the accumulator will be 
incremented by the value in the LS register. (If the multiplier is 
negative, the LS register contains the two's complement of the 
multiplicand, and hence the accumulator will be decremented.) 
At the end of the cycle, the LS register is multiplied by 2 (left 
shifted). After the last bit of the multiplier has been processed, 
the accumulator will contain the desired product, which may 
then be shifted out of the COPE for further processing. - 

A. Multiplication Algorithm 
A multiply-accumulate operation may easily be performed by 

For a multiply, the multiplicand is shifted into the MQ eliminating two of the Steps above. Since the product is required 
(Multiplicand-Quotient) register. As sign bit of the multiplier is for subsequent operations, the accumulator should not be cleared 
presented to the COPE, the LS register is loaded with either a (except for the first cycle), and the product should not be shifted 
copy of the multiplicand (positive) or the two's complement of out of the accumulator (this reduces the cycle time by the product 
the multiplicand (negative). Also, the accumulator is cleared. length, 2N). 



B. Division Algorithm Comparative Multiplication Cycles 

The division algorithm is started by shifting the divisor into 
the MQ register, after which the negative (i.e., -Idivisorl) of the 
divisor is loaded into the LS register, and the accumulator is 
cleared. Each bit of the dividend is then presented to the COPE 
(MSB to LSB). If the dividend is negative, its bits will be 
complemented as they enter the processor. For each dividend 
bit, the sum of the dividend bit, the LS register, and a left shifted 
accumulator is generated. If an overflow is generated from this 
operation, the accumulator is loaded with the sum; otherwise, 
the accumulator is left shifted, with the dividend bit becoming 
the accumulator's LSB. Also, the overflow bit is right shifted 
into the MQ register. Once all of the dividend bits have been 
processed, the accumulator may need a simple correction. The 
accumulatar is added to the LS register, and the sign of the 
dirideod (this m p l e t e s  the two's complement of the dividend, 
which was partially done by complanenting the incoming a). 
If this sum generates an werflow, the accumulator is replacad 
by the sum M l y ,  the quotient may be retrieved from rhe MQ 
register, md the mnnhdex retrieved from the accumulator. 

The results may still require some simple manipulation, 
depending upon the sign of the operands. If the dividend is 
positive, the accumulator will contain the remainder. Otherwise, 
the accumulator should be incremented by one if the final sum 
generated an overflow, and its two's complement generated. 
This will result in the correct remainder. The quotient must be 
incremented by one if the dividend is negative and an overflow 
occurred. Then if the operands are of different signs, the 
quotient's two's complement must be generated. All of these 
adjustments may easily be accomplished as the results are being 
shifted out of the COPE, with no time penalty. 

C. Algorithm Testing 

Both algorithms were tested through extensive simulation. 
Two programs were independently developed in the C language 
with slightly different features. The first program simulated the 
algorithm by using functions which closely emulate the classic 
two phase registers used in the actual VLSI implementation. 
This technique helps to guarantee that the data from various 
registers will be valid at the appropriate times. The second 
simulation simulates variable length operand feature. From 
these two programs, the required control signals were verified. 

IV. PERFORMANCE COMPARISON 

The motivation for the COPE chip was to design a 
coprocessor for the DAP which performed multiplication, 
division, and multiply-accumulates in a more timely fashion than 
an unaided DAP can. After comparing the algorithms used in 
the COPE to those of the DAP and GAPP, we found: 

where n is the number of bits in the operand. For simplicity's 
sake, it has been assumed that the two operands have an equal 
number of bits; however, this is not a requirement. It should 
also be noted that the equation for DAP division was derived 
from actual cycle counts for the DAP programs. 

Machine 
DAP 

GAPP 
COPE 

Comparative Division Cycles 

Number of Cycles 
for Multiplication 

0.86n2 + 28n + 105 
6112 - 2n + 1 

4n 

As mentioned above, a multiply-accumulate operation may 
be perfromed with no added expense, as the partial sum remains 
in the COPE to be used in later cycles. For an FIR filter the cylce 
time is 4NL +2, where L is the filter length, and N is the word 
length. Relative to the DAP, this is a s p e d  improvement of 
approximaltely 24 fold for a 16 bit, 32 tap FIR filter. 

op-wze 
(bits) 

8 
16 
32 
64 

Number of Cycles 
for Division 

0.44112 + 3811 + 227 
8n2 - 7n + 3 

4n + 1 

It has been shown that a coprocessor can be designed which 
will greatly enhance the functionality of a bit serial processor, 
such as the DAP. The coprocessor implements multiplication 
and division algorithms, which operate at least an order of 
magnitude faster than is possible through software methods. 
This processor is also able to accomplish multiply-accumulate 
operations at no extra cost to the user. All of this can be 
accomplished with an increase in area by a factor of only two at 
1.2 pm. 

VI. APPENDIX I 

Number of Cycles 
GAPP I DAP 1 COPE 

459 560 33 
1939 950 65 
7971 1900 129 

32323 4350 257 

A. Multiplication Algorithm 

c b  ACC 
extend sig bit of multiplicand into MQ 
shift multiplicand into MQ 
if multiplier is positive 

load MQ into LS (sign extend) 
else 

load two's complement of MQ into LS (sign extend) 
cndif 
for each multiplier bit (LSB to MSB) 

let m = multiplier bit 
if multiplier is negative 

let m = two's complement of m 
end if 
if m is set 

let ACC = ACC + LS 
end if 
left shift LS 

end for 
right shift ACC (LSB to MSB) to obtain product 

COPE Speed Increase Over 
GAPP I DAP 

13.9 17.0 
29.8 14.6 
61.8 14.7 

125.8 16.9 

A multiply-accumulate operation may be performed by 
repeated application of the above algorithm without clearing the 
accumulator. The result is obtained after the final multiplication 
has been performed. 



B . Division Algorithm 

clear ACC 
extend sign bit of denominator into MQ 
shift denominator into MQ 
if &nominator is negetive 

let LS = MQ 
else 

kt LS = two's complement of MQ 
end if 
for each numeator bit (MSB to LSB) 

l a  n = numerator bit 
if numesator is negative 

let n = one's compkmat of n 
cnd if 
l d x = 2 * A C C + L S + n  
i f o v a f l o w o c c d  

let ACC = x 
else 

left shift ACC with n becoming LSB 
end if 
MQ = 2 * MQ + overflow 

end for 
if numerator is negative 

l e t x = A C C + L S +  1 
else 

l e t x = A C C + L S  
end if 
if overllow occurred 

l d A C C = x  
cndif 
C89C 

both numerata and denom* positive: 
right shift ACC to obtain mainder 
right shift MQ to obtain quotient 

numerator positive and denominator negative: 
right shift ACC to obtain mainch 
right shift MQ and genaetc its two's complement for quo- 
tient 

numerator negative and denominator positive: 
if overflow occllrred 

right shift ACC and two's complement for re- 
mainda 
right shift MQ, add one, and two's complement 
for quotient 

else 
right shift ACC. add one, and two's complement 
for remainder 
right shift MQ and two's complement for quo- 
tient 

end if 
both numerator and denominator negative: 

if overflow occurred 
right shift ACC and two's complement for re- 
mainder 
right shift MQ and add one to obtain quotient 

else 
right shift ACC, add one, and two's complement 
for Iwlahcb 
right shift MQ to obtain quotient 

end if 

(11 S.F. Reddaway, "DAP - A Distributed Array Pmessor," 
First Annual Symposium on Computer Architecture 
(IEEEIACM), 1973. 

[2] E.L. Cloud, "The Geometric Arithmetic Parallel Proces- 
sor," 2nd Symposium on the Frontiers of Massively 
Parallel Computation, 1988. 

[3] R.E. Morley and T.J. Sullivan, "A Massively Parallel 
Systolic Anay Processor System," International Conference 
on Systolic Arrays, 1988. 



CONTROLLING AND PROGRAMMING T H E  SPHINX 
MULTI-SIMD PYRAMID MACHINE. 

J. Mehat 
Universitt Paris VIII. St Denis. France 

A. MCrigot 
Institut d'Electronique Fondamentale. Universitt Paris Sud, 

Orsay, France 

ABSTRACT 

This paper is concerned with the control environment 
of the SPHINX Pyramid Machine. First, a low overhead 
interlayer method, to  synchronize communication of 
independently controlled SIMD processor meshes is  
presented. We show how it can be  used to provide 
multitasking within a mesh to allow opposite data flow 
to cross safely. Related programming concepts for  
Multi-SIMD machines - control transmission - is 
p re sen ted .  

Keywords: Pyramid Machines, Multi-SIMD, Parallel 
Languages,  Interprocessors Synchronization.  

INTRODUCTION 

SPHINX is a cellular pyramidal machine primarily 
designed for  image processing applications [4 ,5] ,  
currently under development as  a joint effort  of 
University Paris Sud, and ETCA Defence Research labs. 
It is organized as a set of stacked layers of decreasing 
size interconnected according to  a dual network: a 
mesh based inter-neighbor interconnection network 
within a layer, and a binary tree between adjacent 
layers. The SPHINX processing element relies on bit 
serial operations and communications. It is formed of 
an ALU, with enhanced data transfer capabilities, a 256 
bits local  memory, and a set of special purpose 
registers. An hardware prototype pyramid 32x32 (2047 
PEs) is going to be available in the next future. 

Two important differences between SPHINX and other 
pyramidal machines [1,6,7] are that each PE has 2 sons 
instead of 4, and that each layer receives its own 
instruction stream (figure 1); so SPHINX presents both 
an SIMD aspect, since all the PEs of a same layer share 
the same instruction stream and a MIMD aspect 
between layers. It is a Multi-SIMD machine. If we 
define the power of a pyramid as  the number of 
processors at it's base, SPHINX, as a binary pyramid 
uses 50% more PEs than a quaternary one of the same 
power, but presents several advantages: 

- operations between layers can generally be 
pipelined in an efficient way, since each PE has 
two sons and a two input ALU; 

binary pyramid MlMD control 

Figure I : SPHINX Architecture 

- oct-trees as well as quad-trees can be built by 
grouping PEs of differents layers into virtual 
PEs; 
- thanks to  the  larger number o f  layers  
compared with a quaternary pyramid, we  can 
make a more efficient use of the MIMD aspect. 

Arguments against pyramid are often the following 
[3] :either the pyramid is SIMD, leading to a very poor 
layer occupation, either, for  a Multi-SIMD machine. 
the interlayer control will slow down data transfer. We 
present a control scheme with a very limited overhead 
for SPHINX and related software aspects. 

T H E  CONTROL STRATEGY 

The instruction stream bandwidth problem draw us  to  
spread the control over the pyramid: different layers 
are  independently controlled.  With th is  cont ro l  
scheme, communication between adjacent layers leads 
to a critical synchronization problem. As data a r e  
transferred between layers in a bit serial way, this 
type of communication implies that one must be able to  
realize an intercontroller synchronization within a bit 
serial instruction execution time (typically 100ns). 



Two Levels of Synchronizat ion 

To obtain the necessary speed of synchronization, we 
distinguish between two levels of synchronization: a 
low level one insuring integrity of the interlayer 
transferred data with respect to the state of 
c o m m u n i c a t i o n  b u f f e r s  a c c o r d i n g  to  a 
producer/consumer protocol, and a high level  one 
allowing cohcrent manipulation of data within the 
whole pyramidal structure by means of information 
passing between adjacent layers. 

The high level synchronization is necessary to take 
into account the constraints of process scheduling. 
parameter passing and interlayer message passing. To 
deal with the problem of high level data exchange 
between layers, it communicates with its two adjacent 
controllers. It will typically be realized with a standard 
microprocessor executing compiled code to run 
application programs generating system control and 
word level pyramidal instructions, translated into 
sequence of bit-serial instructions by a simple macro- 
generator and put into a FIFO for the low level 
s y n c h r o n i z e r .  

The low level synchronization has in charge the 
correct transmission between layers at  the bit-serial 
level. It has to be done within a bit serial instruction 
execution time, but is very simple as one has only to 
consider if an instruction is executable with respect to 
the state of interlayer communication buffers, i.e. the 
buffers used as source arc full at the time of the 
operand fetch and the ones used as destination will be 
free when the results will be stored. 

The necessity of low level synchronization is not 
bound to the size of one bit of the communication 
buffers. I f  the buffer size were made greater, either 
through a hardware or software artifice, the problem 
would be actually identical: a n bit buffer permits to 
overcome the synchronization necessity for the n-1  
first bits, but then the buffer may be full and the 
problem comes back. 

High Level Macro FIFO Low Level 
Control Generator Synchronizer 

Figure 2 :  Overvicw of the Control System. 

T h e  Low Level synchronizer  

To illustrate the way program are synchronized, let us 
consider the following problem : We want to compute 

the h i s t o g r a m  of a certain at t r ibute  stored in the lowest 
layer of the pyramid. i.e. the number of occurrences of 
every value of a t t r i b u t e ,  and either output it by the 
apex of the pyramid, or store it in the upper layer. A 
straightforward algorithm is the following: 

f o r  i  varying from 0 to the last attributes value 
b e g i n  

select  the PEs where attribute = i  
count  the number of selected PEs 

e n d  

The select operation is a point wise procedure applied 
to PEs in the lowest layer. The count  operation uses the 
ver t ica l  communicat ions  to accumulate ,  i n  a 
logarithmic time. the number of selected PEs. The 
actual method is the following: at the lowest layer, PEs 
send the s e l e c t e d  bit to their father. At the others 
layers, PEs add sequentially the bits they receive from 
their sons, sending the result to their father, followed 
by the MSB of the result stored in their carry register. 
The algorithm is the following, assuming the pyramid 
has he igh t  layers: 

at  the base  
b e g i n  , 

send the selected bit to the father 
e n d  
at  layer I such as top 5 I < base 
b e g i n  

repeat height - I t i m e s  
b e g i n  

send to father the sum of the bits 
transmitted by left and right sons 

e n d  
send carry to the father 

e n d  

Figure 3a  presents the ins truct ion m a t r i x ,  i.e. the 
instructions executed on every layer vs. time, for one 
step of  the histogram, computing the sum for one 
attribute value on a pyramid of height 5. 

Thanks to the MIMD interlayer control mode. it is 
possible to start another step of this operation as soon 
as the previous step has completed in the lowest layer. 
This lead to the idealized version of the histogram 
computation presented in fig 3b. One can see that 
MIMD allows a large gain in computing time, as the 
apparent execution time will only be limited by the 
data output time. instead of the complete count 
operation time. 

The high level control will execute the previously 
described algorithm, and send to the low level 
controllers the instructions streams of fig 3c. The 
instructions are correct in term of their relative 
occurrence within a layer, but the actual execution 
time is not fixed. 

The low level controller will synchronize these 
streams, and send the instructions as soon as it is  
possible in terms of the producer consumer protocol. 
This leads to the instruction matrix presented in figure 
3d. This matrix is less regular than the idealized 



Layer 

TOP 
1 
2 
3 

base 

Time 

Fig 3a: One integration step 
of the plain histogram procedure. 

Layer 

base lFlFlFl 
Time 

Fig 3c: Instruction stream send by the 
high level controller to perform plain 
histogramm. 

Layer 

A 

Time 

Fig 3b: Idealized version of the plain histogram 
operation. The MlMD between layer control 
mode allows independant execution of every 
integration step. 

Layer 

TOP 
1 
2 
3 

base 
t Time 

Fig 3d: The instructions sent to the Processing 
Elements after producer-consumer like 
synchronization performed by the low level 
synchronizer. This step leads to a layer 
occupation automatically optimized at run 
time. 

Layer 

TOP 
1 
2 
3 

base 
Time 

Fig 3e: The associative histogram problem with the unidirectionnal synchronization 
scheme. The lack of data stream crossing capabilities leads to a poor pyramid occupation. 

Layer I 

Time 

Fig 3f: The associative histogram with the bidirectionnal synchronization 
scheme. The crossing of uncorrelated upwards and downwards streams 
insures a better layer occupation. 

Label signification 

Emit data to father 

Redispatch data 

Down to the sons 

process Carry 

Store 

Figure 3: Pyramid occupation vs. time for different histogram operations and different 
synchronization mecanisms. 



version of figure 3b, but more efficient in term of 
pyramid occupation. More, the programmer just has to 
take care of the logical correctness of his program, and 
the synchronizer will automatically optimize i ts  
execution at run time. 

On figure 3d at date labelled t, we can see a vertical data 
shift. Layer 3 performs an add operation and sends the 
result to layer 2, whilst this one performs the same 
operation on previously generated data and so  on until 
the top. This means that the instruction on layer 2 can 
take place, not because the present state of the father's 
receive buffer is  correct (empty), but because the 
instruction in the upper layer will empty the buffer, if 
executed. 

This kind of operation where all the concerned 
communication buffers are full before operand fetch 
but freed before the result should be stored, requires 
non local knowledge to be performed. (21 presents a 
cellular automaton based mechanism able to solve this 
kind of problems at  run time, as well as a complete 
description of this synchronization scheme. 

T h e  cross ing of d a t a  movements.  

The previous model works very well when all the data 
movement are of the same direction, but it presents 
some weakness in other cases. Let us consider the 
following associative histogram problem: each PE at 
the base of the pyramid contains an attribute value, 
and we want to associate it, in the PE memory. with the 
number of occurrences of its value in the base. The 
vertical connections of the PEs are used both to 
compute the number of  occurrences in the top of the 
pyramid in a time logarithmic to the number of PEs of 
the base, and to project the so computed sum from the 
top PE to the PEs of the base. The computing necessary 
for each value involves two distincts data movements: 
an ascending one to compute the sum and a descending 
one to project it. 

There is two way to realize this operation on a pyramid. 
The first one avoids data crossing by means of the 
following algorithm: 

f o r  i varying from the first to the last value 
b e g i n  

count the number of PEs where attribute = i 
send the result down 
a t  the base b e g i n  

w h e r e  attribute = i beg in  
associate the number with the attribute 

e n d  
end  

e n d  

As it i s  shown in figure 3e, this leads to a very 
inefficient use of the pyramid, most of the layers being 
idle whilst the data is sent downwards. 

Another method consists to allow the crossing of the 
upwards and downwards data stream. Indeed, these 
streams are logically uncorrelated, and one can 

perform the nth  integration, while the n -1 th  result is 
sent down. One possible result is  shown in figure 3f. 

The drawback of this solution, when using the 
previous synchronization method, is  the possible 
turning up of deadlocks when two data transfers are 
coexisting. The figure 4 shows the top layers and their 
communication buffers computing the first bits of the 
sum in the associative histogram problem. When the 
first bit of a sum is computed at the top of the pyramid, 
the 2d bit can't be computed at the top before this 1st 
bit has been consumed by the level 1. At the same time, 
the instruction to consume this bit can't be executed by 
level 1 before the one which compute the 3rd bit has 
been executed. The two layers are in deadlock. 

Layer 1 

Layer 2 

Layer 1 

Layer 2 

Layer 1 

Figure 4: Deadlock emergence in data reverberation 

Of course, one could imagine to synchronize statically 
the layers at compile time, and to schedule the 
instructions in a way avoiding deadlocks. This solution 
leads to several drawbacks. First, it implies that the 
state of the layers in term of occupation must be well 
known, and accordingly, all the previously scheduled 
routines must have completed, disabling any use of 
pipeline. Second, th is  leads to an unstructured 
instruction stream, that imposes a very large data 
transfer rate, that causing bandwidth problems. Third, 
this static synchronization is not always possible if we 
want to be able to use data driven algorithms. For 
instance,  if the global operation termination is 
controlled by a run time criterion as a convergence 
test on a layer, it is clearly impossible to perform any 
kind of static scheduling. We now present a 
synchronization method able to solve this kind of 
si tuation. 

Two FIFO fo r  the  synchronizer  

A proper  automat ic  dead lock- f r ee  run t ime  
synchronization of data crossing requires that the 
upwards and downwards instruction streams are 
generated by two independent (pseudo)  p a r a l l e l  
processes. The synchronization mechanism should be 
able to choose the best candidate according to the 



communication buffers state. The algorithm should be 
like the following: 

in  pa ra l l e l  begin  
for i varying from 0 to n b e g i n  

count the number of selected PEs 
where attribute == n 

e n d  
for i varying from 0 to n b e g i n  

a t  all levels except base b e g i n  
send downwards the result of the 

count operation 
e n d  
a t  base b e g i n  

where attribute = i b e g i n  
receive the value emitted by 

the upper level 
end 

e n d  
end 

e n d  

To perfom this. we propose to have two FIFOs in which 
the synchronizer fetches instructions. One contains 
the instructions taking part to the ascending data 
movement, and the other the instructions for the 
descending one (figure 5). The synchronizer selects 
one of the two FIFOs. As long as the execution of the 
instruction on the top of the FIFO is compatible with 
the state of the interlayer communication buffers, it is 
sent to the PEs of the layer. When the instruction must 
be delayed and the other FIFO is not empty, the 
synchronizer switches the context in the PEs of the 
layer and uses the instructions of the other FIFO. 

Instruction 
Fif o - 

Instructions processing 
GBnerator nstruclions Synchronize 

Elements 

High Level 
Contro 3 OISurn leedbadr CKum 

Figure 5: The dual FIFO synchronization. 

The context switch is expensive, since on SPHINX five 
registers have to be saved in the PE memory, but it 
occurs only when distinct data movements are  
crossing. When there is only one data movement in a 
layer, there is  no context switch and then no overhead. 

We will call process the sequence of instruction that 
takes part to a data movement in a layer. We label the 
processes as ascending or descending,  according to the 
data movement to which they are taking pan. Only one 
ascending and one descending process can be 
simultaneously running in the same layer.  The 
crossing of data movement is  accomplished through 
this coexistence of processes inside a layer. 

The use of two FIFOs allows a deadlock free coexistence 
of the two processes in the same layer, provided they 
only carry data either upwards o r  downwards: let's 
imagine that in the layer i we have a process P i w h i c h  
is blocked in a deadlock. We will suppose that P i  is an 
ascending process but the demonstration is  easily 
extended to the case where P i is a descending one. P i 
may be blocked either because a process P i.1 in the 
layer i -1  doesn't produces the data P i  needs, or because 
a process P i+l doesn't consumes the data P i produces. As 
Pi.1 and P i+ l  are ascending processes, they produce 
their instructions in the FIFO of the ascending 
processes. As they are the only ascending processes in 
their layers, their instructions are on the top of their 
FIFO, and they must be blocked because of the 
ascending processes of layer i -2  or i + 2  to which the 
same reasoning may be applied. There can't be a 
deadlock as long as there is  no interaction between 
ascending and descending processes. 

Ver t ica l  communica t ion  a s  r e s o u r c e s  

Some processes don't fit in the ascendingtdescending 
scheme we just described. For example, the process at 
the top of the pyramid in the associative histogram 
program, both consume data from the layer 1 like an 
ascending process, and produce data for the layer 1 
like a descending one in the same instruction. We label 
such a process as bidirectional, and activate it 
according to the following protocol: in each layer, 
each direction of communication is considered as a 
resource; an ascending process needs the ascending 
resource, instantiated by the communication buffers 
from the lower layer and to the upper layer, a 
descending process needs the descending resource and 
a bidirectional process needs both resources. A process 
is run in a layer only if the resources it needs are 
available. That way in a layer we can have either at 
most one ascending and one descending process, or  a 
bidirectional one. 

Bidirectional processes are necessary to have crossing 
data streams performing useful work, as they permit 
exchange of data between them, but their existence 
allows occurrences of deadlocks, as is usual when two 
processes are communicating together via blocking 
input and output primitives. Proper programming 
allows the avoidance of deadlocks, which are easy to 
detect as they are always caused by bidirectional 
processes.  

THE EXPRESSION O F  COOPERATION 

Independently of the control strategy, one has to 
provide an effective way to specify the cooperation of 
different layers, which directs as well how high level 
synchronization is realized, as how the programmer 
specify process creation. The control model described 
above relies on anonymous ports, as any other 
communication scheme would have implied to carry 
iden t i fy ing  i n f o r m a t i o n  abou t  c o m m u n i c a t i n g  
processes with any bit of data. Despite this constraint, 
one has to let the communication expression specify as 



explicitly as possible the identity of the processes 
involved.  

To express the cooperation of the layers, we propose to 
use the same scheme that is used for data movement: 
pyramid algorithms are conceived in term of data 
movements between layers. and then a task is defined 
which migrates, accompanying the moving data. W e  
choose not to execute that migration via process 
migration between layer controllers, because process 
migration implies that the process environment 
migrates with the process, and also because data 
exchange between PEs from differents layers involves 
two processes: one sending the data and a second one 
receiving them. 

The task migration is accomplished on a local to a layer 
base, in a way we call cont ro l  t ransmission,  after data 
transmission. The creation of the task involves three 
distinct steps: at first, a process is created in the layer 
initiating the data movement; that process creates in 
the neighbor level another process and then sends 
data to the newly created process. 

For example, a step of the sum for the histogram will be 
programmed with: 

p r o c e s s  s u m ( n )  
b e g i n  

if current layer = b a s e  t hen  begin 
create process s u m ( ] )  in the upper level 
send the selected bit to the upper level 
e n d  

else if current layer = t o p  t hen  begin 
sum the n bits received from lower level 
e n d  

e lse  begin  
create process s u m ( n  + 1 ) in the upper 

level 
send to the upper level the n + l  bit sum 

of the n bit received from lower level 
e n d  

e n d  
a t  base  create process sum(0) 

T h e  a s soc ia t ive  h is togram operat ion can b e  
programmed in the way. One only needs to activate at 
the upper layer a descending process to carry data 
downwards .  

Control transmission presents several advantages: 
involving only transmission between adjacent layers. 
it can be realized by in a point to point communication 
between adjacent controllers. 

The environment of each process is clearly stated in 
the program, as each process communicates either 
with the process which created it, or  with a process it 
has  created, or  both. Accordingly, provided the 
algorithm is correct in terms of data transfer i.e. the 
same amount of data is produced and consumed by 
communicating processes, the consumer will always be 
the right one,  even though transfers are made 
through anonymous ports. 

Deadlocks coming from process creation obeys the 
same  mechanisms as data  communication. One 
bidirectional processes can, directly o r  indirectly 
create deadlocks by process creation requests. 

The use of  layers being controlled by process 
execution, it can be dynamically adapted to the state of 
data in the PEs, allowing a better exploitation of the 
occupation of the layers. 

CONCLUSION 

We have presented a synchronization method to solve 
the problem of the Multi-SIMD control of the SPHINX 
Pyramid Computer. Based on a recently designed chip. 
we are building a 32x32 machine, with a controller 
relying on these principles. We have as well, designed 
a high level language-pyr-e-based on C for which a 
compiler is on the way. 

AKNOWLEDGEMENTS 

This work was supported by ETCAPRET. Its results from 
many helpful discussions with Patrick Greussay. 
Philippe Clerrnont, Francis Devos and Ni Yang. 

REFERENCES 

[ l l c a n t o n i  V., et  al., "The PAPlA image analysis 
system," 2nd Inr .  Techn.  Symp. on Opt ica l  and  
E lec t ro -Opt ica l  Appl ied Science and  Engineering,  
Cannes. Nov. 1985. 

[ 2 ] C l e r m o n t  P. and MCrigot A , ,  "Real t ime 
Synchronization in a Multi-SIMD Massively 
Parallel Computer," P r o c .  Workshop on  Computer  
Architecrure for  Pat te rn  Analysis and M a c h i n e  
In te l l igence .  Seattle, Oct 1987. 

[3] Duff M.J.B. "Pyramids - Expected performance," in 
P y r a m i d a l  Systems f o r  l m a g e  Process ing ,  V .  
Cantoni and S. Levialdi ed.. Springer Verlag, pp 59- 
74, 1986. 

[4] MCrigot A., Zavidovique B. and Devos F., "SPHINX, a 
Pyramidal Approach to Parallel Image Processing." 
in P r o c .  Workshop on Computer Architecture for  
Pattern Analysis and Image Database Management,  
IEEE Computer society Press. pp 107-1 11. 1985. 

151 MCrigot A., Clermont P. ,  MChat J.. Devos F., 
Zavidovique B., "A Pyramidal System for lmage 
Processing," in P y r a m i d a l  Systems for  l m a g e  
Processing, V. Cantoni and S. Levialdi ed.. Springer 
Verlag, pp 109-124. 1986. 

[6] Schaefer D.H.. Wilcox G.C. and Harris V.J. , "A 
Pyramid of MPP Elements-Experience and Plans." 
Proc.  18th In t .  Conf on System Sciences, Honolulu,  
1985. 

[7] Tanimoto S.L., "A Pyramidal Approach to Image 
Processing," P r o c .  1 0 t h  Annua l  I n t e r n a t i o n a l  
Symposium on  Computer  Architecture, .  Stokholm. 
pp 253-256, 1983. 



The Ynet: 
An Interconnect Structure for 

a Highly Concurrent 
Data Base Computer System 

Dr. Philip M. Neches 
Teradata Corporation 

Abstract 
The Teradata DBC/1012 Data Base Computer System applies a 
multiple data stream, multiple instruction stream (MIMD) 
concurrent processing architecture to implement the relational 
model. The interprocessor interconnect structure, called the 
"Ynet", is the basis of the architecture, which can connect up to 
1,024 high performance microprocessors to form a very high 
performance system. This talk describes the design 
considerations for the Ynet as the interconnect structure for a 
highly concurrent database system which also requires high 
availability and real-time operation. 

Background 
Design "Givens". Teradata Corporation was organized in 
1979 to develop and market a relational data base computer 
system. Several key elements of the product architecture were 
known from the outset of the design process: 

(1). The product would implement the relational model of 
database management. By 1979, the pioneering theoretical 
work of E. F. Codd and others had resulted in software 
prototype relational systems, which had established significant 
productivity benefits for both conventional application 
development and unanticipated ("ad hoc") requests. 

(2). The product would employ a MIMD parallel processing 
architecture. During the 197Os, several workers in academia 
produced an extensive literature on parallel architectures to 
im~lement some of the oDerators of the relational model. Hsiao 
and DeWitt particul&ly championed MIMD (Multiple 
Instruction streams, Multiple Data streams) approaches because 
of the breadth of functions required of a relational system. 

(3). The product would employ multiple microprocessors. The 
advent of the 16-bit generation of microprocessors put the 
power previously associated with minicomputers onto one chip. 
Further, both the absolute performance and pricelperformance 
of microcomputers would increase at a much faster rate than 
either mainframe or minicomputer technology. The 
microprocessor was thus clearly established as the engine of 
choice for cost-effective designs. 

The combination of a MIMD architecture with microprocessor 
economics permits products with a number of advantages. A 
design would be inherently very modular, pelmitting both small 
and very large systems to be constructed out of the same 
"building blocks". By using the most cost effective technology 
for the building block, the resulting systems should display very 
competitive price-performance across the range of 

configurations. Further, the rate of price-performance 
improvement should be very rapid. 

Combining a MIMD parallel architecture with microprocessors 
to implement the relational model also has several key 
consequences for the design. The Ynet interconnect design 
responded to these challenges: 

(1). Systems of up to hundreds of processors would be needed 
to address some of the most demanding applications. The 
interconnect structure thus has to be capable of extending 
systems to this scale. We chose 1,024 processors as the design 
target for this reason. 

(2). Work would have to be divided among these processors. 
This resulted in the functional division between host 
communication and language processing in the Interface 
Processor (IFP) and database semantics operations in the 
Access Module Processor (AMP). (See Figure I). This also 
led to the design decision to spread the storage of the rows of 
each table across all of the Access Module Processors. Each 
AMP stores some of the rows of each table: work is managed so 
that the task of operating on the rows is always done by the 
processor on which the rows are stored. 

Prim 1 1 3 . .  N 
Bucket N+l  N+1 N+3 . . . 2N 

Fallback 3 I 1 .  . .  
Buckel . . . . .  

Figure 1 - DBCllOl2 Overall Architecture 



(3). Every parallel processing system must face the issue of 
how to divide the problem into smaller sub-problems, each of 
which can be assiened to a urocessor. Because of the associated 
problem of man&ng th; distribution of data on secondary 
storage, this problem proved to be particularly straightforward 
for aklationd database managemeni system. - 

Consequences of the Requirements. The distribution of 
work following the dismbution of data means that the system 
must have a broadcast mode of operation. Many operations 
require every AMP to do essentially the same operation to its 
subset of the rows. Further, the broadcast operation must be 
reliable: that is, the message invoking the operation must be 
guaranteed to be received by all of the intended recepients. 

To see why this must be the case, consider a system with N 
Access Module Processors. If N-1 AMPs receive a message 
which will cause some change to the database, and 1 does not, 
that 1 AMP'S subset of the database will not be consistent with 
the rest. This is the worst offense imaginable for a database 
management system: to corrupt the integrity of the information 
under management. We call this the reliable multicast problem. 

Next, envision a system with perhaps hundreds of AMPs, each 
working on some portion of a complex request. There must be 
an efficient was to monitor the status of requests in process 
within the system. Such events as completion of a step which 
must be synchronized in all processors must be ascertained with 
a minimum of overhead. 

Finally, in this kind of MIMD architecture, each AMP produces 
only a subset of the response from its subset of the database. 
The system needs a way to merge the partial results from each 
processor into a single result stream. 

This requirement suggested the basic form of the Ynet as a 
sorting network. Users frequently request reports to be 
presented in some sorted order, typically different from 
whatever order was used to store the data. Thus a relational 
database management system will spend some significant 
amount of its resources sorting intermediate and final result 
sets. 

The system faces several other important requirements. The 
system will have many simultaneous users, and thus must be 
multi-threaded to permit many requests to be in various stages 
of processing at the same time. In a system with hundreds of 
processors, and which may have several hundred disk drives, 
this means that the system must be designed for fault tolerance 
from the outset. Finally, althourrh the system is commsed of 
many processing elements internilly, it &st appear to ihe users 
and operations personnel as a single system ("single system 

The Ynet 
The Ynet design evolved in response to the requirements 
outlined above. Historically, these requirements were 
understood before the design began. 

A DBU1012 system actually includes two completely 
independent Ynet structures for fault tolerance. (See Figure 1). 
When both Ynets are operational, the processors divide message 
traffic between the two Ynets. When either Ynet is down, 
traffic goes over the remaining Ynet, including messages passed 
by a special diagnostic program which tries to isolate the fault 
in the failed Ynet. 

Each Ynet is a hw-structured network of circuit switching 
nodes. Each node c o ~ c c t s  to two elements below and one 
above: an element can be either another node or a processor 
interface (YIF board). The following sections describe the node 
itself, the processor interface, and the protocols which operate 
in the network. 

Node 
Ports. Each node has three ports: A, B, and C. (See Figure 2) .  
The A and B ports connect to either nodes or interfaces in the 
"down tree" direction. The C port connects to another node in 
the "up tree" direction. 

Each port has a fully duplexed set of signals for data, control, 
clock, and parity. The data path is 1 byte (8 bits) wide. In 
addition, t h m  is a COLLISION signal which occurs only in the 
downtree path. 

Data Paths. The node logic is divided into the sorting logic 
in the uptree data path and the broadcast logic in the downtree 
data path. The sorting logic includes a comparitor, multiplexer, 
state flip-flops (DECIDED and AorB), parity checking, and 
control logic. The downtree logic includes only parity checking 
and latches. 

Flow. Let's follow a packet through the network. Initially, all 
of the nodes' DECIDED flip-flops are set to 0, indicating that 
the network is ready to accept a new packet. Each processor 
interface sends the next packet that it wants to send into the 
Ynet. On each clock interval, a new byte from each packet goes 
from the interface to the first level node. The Ynet is thus byte 
pipelined. 

Each node looks at the two packets coming in on the A and B 
ports, one byte on each clock interval. If the two bytes are 
identical, the node logic propagates the byte uptree to the C 

Figure 2 -Node Logic, Excluding Clock Circuits 



pat, and does not alter the settings of the state flip-flops. 
However, the the bytes miscornpare, then the node propagates 
only the lower valued byte to the C port. The node also sets the 
DECIDED flip-flop to 1 and sets the AorB flip-flop to incidate 
which port provided the lower-valued byte. The node is now 
armed to accept further bytes only from the port which sent the 
lower-valued byte, and thus which has the lower-sorting packet 
Finally, the node asserts the COLLISION signal to the losing 
parc only. 

Collisions. When a processor interface sees a COLLISION 
signal, it knows that its packet was not the lowest s d n g  
packet: it "lost" in contention with other packets. The collision 
mechanism arms the processor interface to retry its packet 
following the acklowledgement sequence, which follows every 
"primary" packet contention cycle on the network. 

Collisions, that is, rnis-compares, can occur at any level in the 
tree of nodes. Thus, is the node sees the COLLISION signal 
asserted from a higher level node via the C port, it propagates 
the COLLISION signal downtree to the A and B ports. 

In the uptree direction, the nodes implement in hardware an 
algorithm called "tournament sort". The name comes from the 
analogy to a sports tournament where the packets are players 
and the nodes are matches: the winners of the quarter-final 
matches advance to the semi-finals; the winners of the semi- 
final matches advance to the finals, and the winner of the final 
match is the winner of the tournament. 

Broadcast. At the top or apex of the network, the winning 
(lowest sorting) packet is turned around and started in the 
downtree direction. Each node simply propagates the byte 
which arrives on the downtree Port C data path to the downtree 
portions of Ports A and B: it thus broadcasts the downtree 
packet to both ports. 

The result is that the winning packet is received by every 
processor interface at exactly the same time. Subsequent 
sections will describe the actions taken by the processor 
interface. 

Packaging. The node logic consists of about 25 SSI and MSI 
parts. The design originally used standard 'LS and 'S series 
TTL; these parts have been largely replaced by 'ALS and 
CMOS equivalents to reduce power consumption. An ASIC 
version is planned for a follow-on implementation of the 
system. 

The node logic is packaged on two kinds of boards: the NODE 
and NODEX. The NODE board (See Figwe 3) houses seven 

nodes to connect to 8 processor interfaces by backplane wires 
using lTL signaling levels. 

The NODEX board (See Figure 4) houses 3 nodes, which 
connect to as many as 4 NODE or NODEX boards via a 
25-coax-pair ribbon cable using differential drivc signaling. 
The cable can be up to 10 meters. 

A system with only NODE boards can have up to 8 processors. 
A system with one level of NODEX boards can have up to 4*8 
= 32 processors. A system with two levels of NODEX boards 

can have up to 4*4*8 = 128 processors. And so on. 

Clock. The Ynet employs a unique scheme for clock 
distribution. Because the Ynet is a byte-synchronous network, 
the importance of clock distribution is readily apparent. Each 
NODE and NODEX board regenerates the clock locally, with a 
phase-locked loop to keep it synchronized with the board above 
it. The NODEX board has 4 phase locked loop circuits, one for 
each of the 4 downtree ports. Each phase locked loop circuit 
compares the locally generated reference clock with the clock 
returned from the lower level board. The difference between 
the local and returned clock signals is the error signal to the 
phase detector circuit. The phase locked loop scheme results in 
clocks held synchronous to within 1 nanosecond throughout a 
system which could fill a large computer room. 

Processor Interface 
Most of the functionality of the Ynet results from the logic 
implemented in the processor interface. The interfaces provide 
a packet-switched interface to software, where the node network 
is more accurately characterized as a circuit switch. Each 
DBCl1012 processor has two Ynet interface cards, one for each 
of the two Ynet structures in the system. 

The processor interface is divided into three sections, each of 
which is implemented by a finite state machine. (See Figure 5). 
These are the Ynet Input, Ynet Output, and CPU Interface 
sections. A special high speed memory (HSRAM) froms the 
core of the design of the processor interface. The HSRAM has 
three ports, one for each of the three finite state machines. The 
HSRAM and the three FSMs dervie thir clock from the Ynet 
network. 

HSRAM. The CPU Interface FSM makes the HSRAM 
appear to the CPU as pan of its memory address space. The 
programming interface to the Ynet appears through placing 
messages to be sent in the HSRAM and examining messages 

Figure 3 - Ynet NODE Board Figure 4 - Ynet NODEX Board 



received in the HSRAM using ordinary processor instructions. 
Messages received from the Ynet appear in the Input Circular 
Buffer area of HSRAM. The processor places messages to be 
sent in the Output Buffer area of HSRAM, and sets words in the 
Transaction Vector area of HSRAM to point to messages to be 
sent. The Ynet Output FSM places pointers to messages which 
have been successfully sent in the Output Pointer Circular 
Buffer, so that software running in the processor can take 
appropriate action, such as freeing the area occupied by the 
message itself in the Output Buffer area. 

The HSRAM also includes various control information that is 
used by the processor interface hardware. By placing this 
control information in HSRAM, software can initialize the Ynet 
in a very flexible yet powerful manner. 

Transaction Vectors. A Transaction Vector represents the 
state of a user transaction or job in each processor in the system. 
The state of a transaction within the system is derived from the 
Transaction Vectors with the same designation ("Transaction 
Vector ID" or TVID) in every processor. The current 
implementation of DBCl1012 software allocates over 1,000 
Transaction Vectors, which pennits over 1,000 user requests to 
be pending in the DBU1012 simultaneously. 

Hash Maps. Data rows are assigned to processors in the 
DBCl1012 by a hashing algorithm. The fiefd(s) composing the 
primary index of the row are put through a modulo prime 
number hashing algotithm, which results in a hash "bucket" 
number. The Hash Map section gives the mapping of buckets 
to Access Module Processors. 

There are two Hash Maps in the system: Prime and Fallback. 
Each row is stored on the AMP to which its hash bucket is 
assigned in the Prime Hash Map. In addition, if the user has 
requested it, a second copy of the row is kept on the AMP to 
which the corresponding bucket is assigned in the Fallback 
Hash Map. 

There are approximately 3,000 hash bucket numbers. Each 
AMP is assigned several bucket numbers for both Prime and 
Fallback Hash Maps. This makes it possible to evenly divide 

To Ynet From Ynet 

Processor Modulebus 

7' 

Logic 
Machine Machine 

C 

I 3 Port HSRAM Interface I 
I Output Buffer Area I 

t ___________________-----------------------.------------------------- 

Input Circular Buffer Area 
___--- -____________--*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Transaction Vectors 

Static & Dynamic Groups .................................................................... 
P r i m  & Fullback Hush Maps 

t------ ___________._______-----.------------------------------------- 

Processor ID Maps 1 HsRAM 
..................................................................... 

Control & lnitisiizntion Area 

Figure 5 - Processor Interface 

the storage of data, and hence the processing load, among the 
processors of the system. When additional AMPs are 
configured into a system, the new AMPs are populated by 
moving some buckets from the existing AMPs to the new 
AMPS, and then moving the rows corrcsponding to the moved 
buckets. Thus only the minimum amount of data necessary is 
moved during reconfiguration. 

&cause the Prime and Fallback Hash Maps are independent, 
the system has a great deal of flexibility in choosing which 
processors should provide back-up for each other. DBC/1012 
software implements a concept called "Fallback Clusters". In 
this concept, a group of between 2 and 16 AMPs form a cluster: 
rows that are in the Primary Hash Map of AMPs in the cluster 
will also be in the Fallback Hash Map within the same cluster. 
Obviously, the allocation of buckets must be such that the 
Prime and Fallback copies are on different AMPs. In the cluster 
concept, the Fallback copies for buckets that are Prime on one 
AMP in the cluster are equally allocated among the remaining 
AMPs in the cluster. 

Compared to conventional mirroring schemes for reliable 
operation. the.Fallback Cluster conceqt reduces the imnact of a 
processor fatlure on the remaning processors in the 
configuration. Under mirroring, if a processor fails, the mirror 
processor must assume 100% of the workload of the failed 
processor. With the cluster concept, for an N processor cluster, 
each processor assumes 1/(N-1) of the workload. This results in 
considerably less cost for standby processing capacity required 
to sustain a workload even with processors down. 

Groups. The Ynet HSRAM contains a set of groups. A 
group is represented by three bits: Valid, Member, and 
Semaphore. If the Valid bit is set in any processor, the group is 
allocated and is in use. A processor sets its Member bit to 
indicate that it belongs to the group and should receive 
messages addressed to the group. The Semaphore bit is used to 
ensure mutual exclusion during operations which allocate, 
deallocate, or test the status of the group. 

Groups can be allocated statically (when the system starts up) or 
dynamically. DBC/1012 software uses the Ynet group 
capability to form groups of processors which are concerned 
with a given user transaction, so that messages can be sent only 
to those processors engaged in doing work on behalf of that 
transaction. Present software allocates over 1,500 groups per 
system. 

Dynamic groups are important for workloads which consist of a 
large number of relatively simple transations. Each transaction 
cannot use the full degree of parallelism provided by the 
DBCI1012: in fact it typically affects only a few processors. 
However, the workload collectively uses the entire 
configuration. The dynamic group concept permits the 
DBCl1012 to be dynamically partitioned into subsets 
appropriate to each transaction. Note that many overlapping 
subsets can be in existence simultaneously. 

We believe that the dynamic groups concept will be essential to 
programming and operation of MIMD computers with 
thousands or tens of thousands of processors which are 
proposed for the 1990's. 

Example Message Flows 
The following examples discuss how various features of the 
Ynet operate for sending messages through the system which 
evoke new work in the Access Module Processors. These 
messages are called "Step Messages". They are prepared by the 



SQL Parser, which executes in the IFPs. Their transmission to 
the AMPS is requested by a second program which m s  in the 
IFPs, called the Dispatcher. Each step message requests one 
AMP, a group of AMPS, or all AMPs to do some operation 
against the database. The parser generates one or several step 
messages to effect each SQL statement nceived from the user. 

Arbitration. The fmt example (See Figure 6a) shows two 
IPPs each attempting to send a step at the same time. The first 
node on the left decides in favor of the step message from JFPl 
in the example because it sorted lower. Note that this means 
that the Ynet not only handles contention, but in doing so 
automatically enforces system wide message priorities. 
DBCf1012 software uses this feature to ensure that certain 
critical control messages always have priority over ordinary 
messages, for example. 

The winning message reaches the top of the network, and is 
turned around and broadcast down the network. It arrives at the 
processor interface of each processor at exactly the same time. 
(See Figure 6b). 

Acknowled ement. Every processor interface generates F some kind o acknowledgement to every received primary 
packet. Acknowledgements are minimum length (2 byte) 
packets which contain only a command code and the ID of the 
responding processor. The command code used in 
acknowledgement packets is a function of whether the 
processor is intended to receive the packet and whether it can in 
fact receive the packet. 

Figure 6a - Both IFPS try to send at the same rime 

The acknowledgements are suited (mrged) up the network just 
like the primary packets that evoked them. Only the lowest- 
sorting acknowledgement packet makes it to the top of the 
network: it is in turn broadcasted down the network and is sten 
simultaneously by all of the processor interfaces. 

After dealing with the surviving acknowledgement packet, each 
processor interface then begins the cycle over again by trying to 
send its next packet. This will be the same packet as in the 
previous attempt for all processors except IFP1, which got its 
message through. 

If a processor had no actual message to send, the processor 
interface sends a special "idle" sequence which is guaranteed to 
sort higher than any real message. 

A primary message can be addressed to a processor id, a hash 
bucket, a group, or a transaction vector. Step messages are 
always addressed to a hash bucket, a dynamic group, or to the 
special static group of all AMPs. We will consider each in turn. 

One AMP (Point to Point). Step messages are sent to a 
hash bucket when the Parser recognizes that all of the rows in 
the request must have the same Rime Key. An example of this 
kind of request in a banking application would be "find the 
balance of account 1234567". In this aoolication. account 
number is the primary key, and account 1234567 hashes to 
AMP4. (See Figure 6c). 

Every processor interface generates an acknowledgcmcnt to 
every primary packet. In this case, AMP4 generates an "ACK" 
or positive acknowledgement: AMP4 is the only processor 
which has the appropriate hash bucket. All other processor 
interfaces generate a Not Applicable Prucessor (NAP) 
acknowledgement. NAP means that the processor interface 
determines that the packet was not addressed to that processor. 
The command codes are assigned such that ACK sorts lower 
than NAP. Since ACK is the lowest sorting acknowledgement 
packet, it reaches the apex of the network and is broadcast down 
the network. 

When IFPl sees the ACK, it knows that the appropriate 
processor could and did receive the intended message. This is 
reflected by an update to the Output Pointer Circular Buffer in 
HSRAM. Also, the processor interface generates an interrupt to 
the rocessor to tell it to examine the Output Pointer Circular 
~ u f g r .  

Figure 6b - The winning packet is received by each processor 
interface at the same time Figure 6c - Acknowledgements for point to point messages 



In AMP4, the ACK confirms receipt of the message, now stored 
in the Input Circular Buffer. The AMP4 processor interface 
generates an interrupt to the processor to cause software to 
process the new message. 

All other processor interfaces see both the primary packet and 
the acknowledgement packet, but take no action. They simply 
wait for the acknowledgement sequence to complete. At that 
time, all of the processor interfaces, whether they were involved 
in the packet we just followed or not, attempt to send thier next 
primary packet. 

For IFP1, this will be the next packet it had ready to send. For 
all other processors, it will be the same packet they previously 
tried to send without success, or the idle pattern, or a new 
packet which software placed into the Output Area and chained 
to an active Transaction Vector during the processing of the 
current packet. 

A Few AMPS (Multicast). Next, conisider a message 
addressed to a dynamic group. Messages to commit or roll back 
work for a simple transaction are typically addressed to the 
dynamic group allocated just for that transaction. 

The message is sent from IFPl in exactly the same way as in 
the previous example, and is received by all processor interfaces 
in exactly the same manner as before. (See Figure 64. In this 
case, only AMP2 and AMPS are members of the group. 
(Previous step messages in this transaction would have caused 
these two AMPs to join the group). That is, only AMP2 and 
AMPS have the Member bit set for this particular group. 

Thus, both AMP2 and AMPS generate ACKs; all other 
processors send NAPS. In fact the ACK sent by AMP2 sorts 
lowest, because it has a lower processor ID than the ACK send 
by AMPS. The ACK from AMP2 is thus broadcast to all 
processor interfaces. 

Again, IFPl deals with the ACK by generating an interrupt to 
software to signal successful transnlission of the message. Both 
AMP2 and AMPS generate interrupts to begin processing of the 
new message in the Input Circular Buffer. All other processors 
effectively ignore both the primary packet and the 
acknowledgement and wait until they can send their next 
primary packet. 

All AMPs (Broadcast). A message intended for all AMPS 
is addressed to the special statically def111c.d group of All AMPS 
by the sending IFP. (See Figure 6e). Ln this case, the processor 
interface of every AMP generates an ACK, only the processor 
interfaces of IFPs generates NAP acknowledgements. 

As in the previous examples, IFPl's processor interface 
generates an inttrmpt to software that the message successfully 
got through to all receipients. Each AMP'S processor interface 
generates an interrupt to cause the new message to be 
processed. 

Two Phase Commit. Finally, consider an example in 
which one of the intended recepient AMPs cannot handle the 
message intended for it. (See Figure 65). This condition 
typically results from congestion control algorithms in the 
DBC/1012. In this example, AMP3 is temporarily overloaded, 
and cannot receive more messages. The processor interface of 
AMP3 generates a third kind of acknowledgement message: 
negative acknowledgement (NAK). The command code for 
NAK is arranged to sort lower than ACK, which in turn sorts 
lower than NAP. 

Since the NAK generated by AMP3 is the lowest sorting 
acknowledgement packet, it gets to the apex and is broadcast to 
all processor interfaces. 

The processor interface of IFPl generates an interrupt to 
software, as before. However, instead of storing the ACK 
response with the message, it stores the NAK response. This 
tells software that the message did not get through, and further 
identifies the lowest-numbered processor which could not 
receive the message. This information foxms the basis for 
recovery action initiated by software. 

In IFP2, the whole proceeding is of no interest, and IFP2 simply 
waits until it can send again. 

In AMP1, the processor interface generated an ACK, and is thus 
expecting of have its ACK confirmed. The NAK tells the 
AMPl processor interface that some other receipeint could not 
process the message. Thus AMPl in effect discards the 
message and generates no intempt to software. All of the other 
AMPS' processor interfaces take the same action. 

Figure 6d - Acknowledgements for multicast messages to a Figure 6e - Acknowledgements for broadcast messages to a 
dynamic group static group 

434 



Conclusions References 
As can be seen from the foregoing examples, the Ynet 
implements a two-phase commit protocol on every message, as 
a simple byproduct of transferring the message and 
acknowledging it. Two-phase commit is an expensive protocol 
if implemented in software, and is the only algorithm known for 
implementing reliable communications in a distributed system. 

The combination of two-phase commit and group addressing in 
the Ynet means that the system can treat a group of processors 
as a single entity whenever desired. The group, like a single 
prmessor, receives messages as an atomic, unintermptable 
operation which either entirely succeeds or entirely fails. 
Further, the processors in the group receive messages at the 
same time and in the same order. 

Because of this property, programs which implement such 
synchronization intensive functions of a database management 
system as transaction commit and roll back, and system start-up 
and recovery -- typically the most difficult algorithms of a 
database manager and tough enough in a unipracessor 
environment -- have straightforward extensions to a concurrent 
processing environment. 

Thus, we have demonstrated how the Ynet design responds to 
the challenges of a highly concurrent environment, but also to 
the challenges of real-time, high availability, multi-user 
applications. In this regard, the Ynet addresses problems 
usually not considered in the design of exsiting concurrent 
processing architectures. 

While the Ynet design evolved from the requirements of a 
commercial relational database management system, the 
saucture is suitable for other classes of problems characterized 
by high degrees of concurrency. These could include 
numerically intensive problems, such as matrix manipulation 
and simulation of physical systems, or more general problems 
such as those posed by intelligence research and 
implementation of object-oriented environments for large 
problems where a great deal of computational power must be 
harnessed. 

Codd, E. F., "A Relational Model for Large Shared Data 
Banks". ACM, 13.6, pp. 377-387, June 1970. 

DeWitt, D. J., "Data Base Machines", Proceedings of the Tenth 
International Symposium on Computer Architecnvc, IEEE, 
Stockholm, June 1983. 

Hsiao, D. K., K Kanan, and D. S. Ken; "Structure Memory 
Designs for a Database Computer", Proc ACM 1977, pp. 
343-350, December 1977. 

Neches, P. M., "Hardware Support for Advanced Data 
Management Systems", Computer, 17, 1 1, pp. 29-41, November 
1984. 

Neches, P. M., "The Anatomy of a Data Base Computer System 
- Revisited, Compcon '86 Digest of Papers, IEEE, M m h  
1986. 

Neches, P. M., United States Patents 4,412,285 (October 1983). 
4,445,171 (April 1984). and 4,543,630 (September 1985); 
others pending. 

Neches, P. M. and J. E. Shemer, "The Genesis of a Data Base 
Computer", Computer, 17, 11 pp. 42-56, November 1984. 

Smith, D. C. P. and J. M. Smith, "Relational Data Base 
Machines", Computer, 12.3 pp. 28-39, March 1979. 

Too l u v  

Figure 6f - If any intended recepient cannot handle the 
message, none receive it (two-phase commit) 



PRECEDING PAGE BLANK NOT FILMED 

A Reconfigurable Optical Interconnection 
Network for Highly Parallel Architecture 

X. Thibault , D. Comte and P. Siron ('1 
O.N.E.R.A. / C.E.R.T. 

Computer Science Department 
2, avenue Edouard Belin, BP 4025 
31055 - Toulouse cedex, - France 

uucp: xavier@tls-cs.cert.fr 

ABSTRACT 

The topology of the elementary processor 
interconnection in a parallel architecture is an important 
feature in obtaining high performances . Nevertheless. due to 
the constraints of electronics, the most of the parallel 
architectures have fixed interconnection topologies between 
elementary processors. As far as communications are 
concerned, optics presents interesting characteristics for 
application in highly parallel communication networks such 
: no crosstalk, free space transport and high bandwidth. The 
0.N.E.RA.fC.E.R.T. MILORD project aims at developing 
an optical interconnection network to build a reconfigurable 
highly parallel architecture dedicated to high performance 
applications. The multiprocessor promtype, which has been 
developed, is composed of INMOS microprocessors 
connected by their four serial links on an optical crossbar 
network. As the interconnection topology can change during 
the executig at pre-determinated points of the program. 
various configurations have to be managed. In this paper, we 
first a give a brief survey of optical network devices. Then, 
the architectural features and the main characteristics of 
needed software tools are presented. Finally, we give a survey 
of applications well suited for reconfigurable architectures. 

Keywords : optical reconfigurable network, parallel 
archimtux, transputer, Occam, optical free space. 

INTRODUCTION 

'Ihe increasing demands of applications like signal and 
image processing, artificial intelligence and numerical 
applications for growing powerful computation, indicate the 
needs of highly parallel computers (Ref. 1). With the 
advances of technology and declining cost of computer 
hardware, we can envisage the design of massively parallel 
architectures composed of several hundreds of processors. The 
elementary processor interconnection network becomes an 
important part of the parallel processing system. Its 
efficiency greatly contributes to the global system 
performance (Ref. 2). 

(*) in collaboration with P. Churoux, M. Fracts and 
Laug at 0.N.E.R.A.IC.E.R.T.- Dept of Optics 

The most attractive interconnection topology would 
permit any processor to directly communicate with any olher 
in order to fit the application requirements. Most of the 
highly parallel architectures have a rued interconnection 
topology between the processors due to the limitations of 
electronics for implementing highly parallel communications 
(pin limitations, wire design and wiring problems). This 
network rigidity confines them to specific applications. The 
configurable architectures have introduced the network 
flexibility : MPP Ref. 3) and CHIP (Ref. 4). Nevertheless, 
up to day, no one has been capable of configuring any kinds 
of topology. 

By its own nature. optics presents interesting 
characteristics : the non-existence of crosstalk between two 
optical links, the immunity to electromagnetic radiations, the 
possibility of using free space as a support of the data 
transport and the intrinsic parallelism (photons don't 
interact), should conmbute to improve the communications 
in a large parallel computer. It can provide an easy way to 
implement large reconfigurable interconnection networks. In  
a such context, the network can be configured to match the 
communication characteristics of the performed algorithm. 
Various implementations with the different optical media are 
feasible : optical fibers (Ref. 5), integrated optics (Ref. 6) and 
free space (Ref. 7). The basic idea of most existing systems 
is that a crossbar network can be implemented by a matrix- 
vector product system (Ref. 8). 

According to this idea, we have been developing for 
two years at 0.N.E.R.AJC.E.R.T.. a multiprocessor 
prototype called MILORD, based on a such network to 
interconnect electronic processors. This project aims at 
developing an optical crossbar network to build a 
reconfigurable highly parallel architecture dedicated to high 
performance applications. 

In this paper we first present optical network devices 
and give the performances that can be expected. In the 
following section, we describe the architectural features of the 
MILORD machine, software tools at system and user levels. 
At last, we give a survey of applications well suited for 
reconfigurable architectures using large networks builded with 
optical components. 



OPTICAL NETWORK DEVICES 

Optics is well adapted to communications due to its 
kry dhancc capabilities, the non-existmce of cmslak and 
the three dimensional propagation. The high bandwidth 
W t s  the use of bit serial links rather than conventional 
parallel ones. It reduces the number of communication 
cbmaels. allowing man processors f a  a given density limit. 

For the krt s e v d  y m ,  optical fibers have been used 
for long distance communications. From its widespread use 
in @lecommuniCltiOns, they are being propelled into data 
canmunidona within and between computers. But optical 
#tworLs ksed on optical fibers suffer of the same limits as 
ektronic wires as a as reconfiguration is concernad. 2x2 
fiberswitches are available. but with a too low switching 
I&IW fw OIP appliitian ( > 1 millisecond ). 

Other devices have been proposed to implemmt optical 
mtworks. Integrated optics projects aim an electmoptic 
aorspoint (Ref. 6). which could be fastu than electronic 
milcbes @iamax& range). This device called directional 
owpla, has two inputs and two outputs and a binary control. 
W U  their two inltnral states ; straight and exchange. so that 
any input can reach any outputs. In order to realize larger 
aslworks. integrated optics must integrate mon couplers on 
r chip or mnntct the couplers between themselves with 
opdcal fiben. The number of ways h limited by the chip 
rise and pWut for the first solution and the coupler 
rUenuationand insertion loss for the second. Today, the 
number of ways is limited to a few tens. 

The optical free space transmission seems a more 
promising technique to meet our requirements: flexibility, 
broadcast capability, large parallel system and three- 
dimension links. 

Many optical devices have been described for 
this rppmech (Refs. 7-9). The reference 10 analyses optical 
solutions to implen.ent crossbar network. Systems are 
mainly besed on Wx-vector product concept to implement 
m optical crossbar switching network. The figure 1 shows 
tho most popular N~ parallel matrix-vector product 
implementation. 

The design consists of a column of emitters (input 
wctor), a row of detectors (output vector) and a sandwich 
cmssbac mask (input matrix). Each miner broadcasts on an 
enthe row of the mask, so that a binary 1 is represented by 
Light of a fued intensity and a binary 0 is represented by a 
w o  intensity. Similarly. each detector is capable of 
summing light from an entire column of the crossbar mask. 
Ihe summation and the spreading are accomplished in optics 
by means of lensts. 

Input vector Crol8b.r muk Output vcctor 

The mask can be viewed as an array of windows. which 
are transparent or opaque. When the window of h e  column i 
and the row j is transparent (value 1). the ith emitter can send 
optical signal to the jth detector. In the case of opaque state 
(value 0) light coming from the ith emittea is blocked : thus. 
the mask disallows communications between the two 
elements. The crossbar mask device is set up by the matrix 
value with optical or electronic control depending of the 
optical component. 

This system can perform matrix-vector product or 
implemeat a crossbar network. Thc crossbar mask acts indeed 
as a switch at each window to permit or to block incoming 
light at each position. The switches are commanded to 
establish a connection, or a global interprmesmr topology 
configuration. For one to one communication, at most one 
switch in each row and one switch in each column may be 
opured and all other windows must be closed. 

It is interesting to note that this resulting optical 
network has the broadcast capability (a row of opened 
switches), added to the basic crossbar function. This 
capability can reduce the complexity of parallel algorithms 

The Spatial Light Modulator (SLM) is one of the 
devices which can implement the matrix-product function. 
Its role is to switch inputs to ouptuts (crossbar mask) . It 
may be either transmissing (as above) or reflective (input and 
output vector on the same mask side). The table 1 
summarizes the main parameters of the most interesting 
SLMs. 

) SLMS 1 Resolution 1 Response I Control 1 

(LCLV) I I I 
Deformable I 1 
Liquid Cryslal 
Lighl Valve 

Ih~erlmn~ial  I 100x100 1 200 us / optical ~aalld I 

500x500 

{DMD) 
PUT 
Nonlineer 

-- 

IMagnelo-optk 1 512x512 1 O,5ps I P. L L. ded. ' 1 
P. L. L. : Parallel Line by Line with electrical control 

Table 1 Parameters of some SLMs (Ref. 10) 

Tm 

50 ms 

1000~ 1000 

oplical parallel 

400 ps optical parallel 



Most of the given SLMs are not currently available, 
except the HUGHES Liquid Crystal Light Valve and the 
Deformable Mirror Device. The others are still studied in 
laboratories : thus, the given values are approximately. 
Nevertheless, this list gives a good idea of the performance 
that we can expected. Three parameters mainly define the 
characteristics of the resulting network : the resolution, h e  
response time ad the control. 

The resolution gives the number of pixels provided by 
the SLMs. In this way it defines. according with the contrast 
ratio and the efficiency of the SLM. the number of paths that 
we can expected in a network. The practical limits of SLMs 
allow the implementation of moderately large networks (at 
least 100x100). 

The response time is the time required by the SLMs to 
adress a pixel (corresponding to setting up a window). It 
therefore indicates the time to establish a connection between 
an input and an output. We note in table 1 that the response 
time is slow : the speedest modulator (magneto-optic) is still 
too much slower than switching time in electronic 
technology. The reconfiguration time needed to establish all 
the connections of a global interconnection topology. also 
depends on the SLM control. 

There are three modes of access to control the switches: 
optical parallel, electrical parallel line by line and electrical 
sequential. The optical control is the most interesting mode 
because it permits to set up all the pixels at the same time 
whereas the.second mode can simultaneously command only 
a line of p9els. The sequential control adresses the pixels 
sequentially. It is possible to evaluate the total 
reconfiguration time depending on the conlrol mode : T, 
@arallel). N*Tr (parallel line by line) and N ~ W T ,  (sequential) 
where Tr is the response time and N~ is the number of 
pixels. We note that the reconfiguration time in parallel 
mode doesn't depend of the number of pixels. Then, a such 
control provides a reconfiguration time, which can reach the 
performances obtained in large electronic networks 

Moreover. the bandwidth of optical crossbar networks 
is high. It is only limired by the response characteristics of 
the optical detector array ( c 1 Gigahertzs). A large optical 
network can be actually implemented with a high data rate. 
Due to the slow switching time of the current optical 
technology, it is unrealistic to change any connection at any 
time. It is better to modify the interconnection topology (all 
the connections) at pre-defined points of the execution. At 
these reconfiguration points the right topoloy is required to 
satisfy the most direct communications between elementary 
processorsconsidering the flexibility of the network, any 
well known topologies (mesh, tree, hypercu be...) or others 
original topologies can be established. This operation is well 
adapted to many applications like numerical and image 
processing. 

ARCHITECTURE OF MILORD 

Introduction 
The MILORD project (Multiprocesseur Interconned 

par Liaisons Optiqucs Rcconfigurablc Dynamiquement) aims 
at developing an optical interconnection switch between 
elementary processors to face the problem for which 
electronics suffers fundamental limits. Such a switch allows 
the parallel architecture to adapt a network configuration to a 
specific algorithm. Based on this optical switch. we design a 
massively parallel reconfigurable architecture dedicated to 
high performance applicalions. We are building a prototype 
now to prove the feasibility of such architecture. The design 
of dedicated tools for reconfiguration management is under 
way and a survey of applications well adapted to 
reconfigurable highly parallel architectures has been 
undertaken. 

In this context, the network topology can be altered 
between different algorithm executions or between different 
steps of the same algorithm execution. Then, two 
reconfiguration modes can be taken into account : static and 
dynamic. In a static mode. a program is written for a fured 
topology of the elementary processors. In a dynamic mode, 
Lhe topology can be dynamically modified at predeterminated 
synchronization poinu of the program. so as to match the 
different communication schemes required by the algorithm. 
The MILORD machine, which is implemented in the second 
mode may be characterized as a nconfigurable architecture. 
Today several types of parallel architectures have been 
developped like MPP and CHIP. In contrast with their 
networks, which can only configure a limited number of 
topologies, the MILORD machine can realize any required 
topology. 

The architecture of the MILORD machine is mainly 
composed of an execution unit. an optical crossbar network 
and a conwl unit as described in figure 2. This machine is 
connected to an host computer (PC microcomputer), which 
supports all the development tools 

Host Comuler r I 

1 1  unit Tr I 

u u 

Figure 2. Architenure of h e  MILORD machine 

Let us now give a description of the MILORD 
machine, which is composed of a such optical network. 



The execution unit 

The execution unit is built with 8 INMOS T414 
Trensprm connected to the optical crossbar network. The 
T414 Transputer is a new g e d o n  micro- (Ref. 
11). On a single chip. t h e  are a fast 32 bit m i a o p c a w ,  
2 Kilobytes of fast static RAM and four high speed 
communication links. In addition, the Transputer cm - 
a 256 Kibbytes c x d  memory. The four communication 
links allow networks of Transputus to be constructed by 
direct point to point connections. Some Transputer 
in~aconnection topologies are given in the figure 3. In the 
MILORD machine. the four links of each Transputer are 
connected to the optical network and support a standard 
operating speed of 10 MegabiWs. 

Figure 3. Eumpla of lirmputm intarmncction ropologia 

OCCAM, the standard programming language of the 
Transputer permits the expression of parallelism between 
processes Bef. 12). This OCCAM language has been 
designed for'using with multiprocessor systems.~~oncumncy 
rnucesw and message mode communications are deducted 
irom the concept-of Hoare's CSP (Communication 
Sequential Recesses) (Rcf.13). Communication channels are 
an explicit part of the language and can be mapped directly on 
the hardwere linLP connecting diffemt Transputers. 

In the MILORD machine, OCCAM programs are 
decomwsed in successive algorithmical sections. each one 
referencing an optimal netwok configuration. Between two 
sections a reconfiguration point synchronises the processors 
before to reconfigure the toplogy. These reconfiguration 
points together with the required topology are explicity 
managed by the programmer using dedicated programming 
tools. 

Within a section, execution takes place in the MIMD 
mode, comwponding to the asynchronous nature of a set of 
interconnected Transputers. However, the Transputers 
involved in the execution of a section can execute the same 
processes on different data 

Tbe optical crossbar network 

The optical crossbar network is based on matrix-vector 
concept, as presented above. The optical component thaI we 
have chosen is the Liquid Crystal Light Valve (LCLV) from 

HUGHES Oxpodan because it is tbe only oner. which is 
available commercially and it gives a good compromise 
between contrast ratio (100) pnd effciency (25 %) . The 
figure 4 shows the details of this component. 

Tk network of tbe MILORD machine provides a 34 
by 34 switch allowing any Transputer link to connect to any 
other link without wnluuion (Ref. 15). Two channels arc 
rc,u.rved for host communications and each Transputer has 
four bidinctwural channels to the network. Ihe Tmnsputu 
output link is connected to a laser diode to send data to the 
network and the Transputer input link is connected to a 
photodiode to receive data from the network. The switch 
seuings are controlled by a parallel optical signal coming 
from a &hod Ray Tube (CRT), which is commanded by a 
graphicJm 

The rccanfigumkm time of the network, meaning the 
total time aecded to change the settings of aU switches, 
depends tspecially of the LCLV response time plus the CRT 
erasing time for laking off the old configura~ion pattern and 
the CRT printing time for displaying the new pattern. The 
total time observed is about 200 milliseconds (Ref. 16). 
New LCLVs reduce this time significantly. 

Figun 4. Hughu Liquid Crystal Light Vdve (Ref.14) 
The control unit 

The control unit of the MILORD machine is 
implemented on the host computer Beside the classical 
functions, It assumes three functions : 

-I..& 
- sync- - Configure 
The Transputer Development System is provided with 

a Loadu.which laads processes on the Transpum by means 
of a pipeline topology. But we can modify the load strategy 
for profiting of the two host channels to the network by 
loading in parallel on the two channels. 

The. S y n c h r d i  manages the synchronization points 
before a configuration command ralres place to establish a 
new interprocessa topology. These ~tndavous points ate set 
by the user inside the process of each lhnspuw. During the 
execution, each Transputer receives a t o h  from a neighbour 
and sends it to another neighbour up to the host computer at 
these points : then, the Transputers are waiting for an 
OCCAM channel read. When the new topology is set up, the 



host computer sends a message to the network, which is 
spnaded to the processors. Then. the Transputers can resume 
opaation on the new topology. 

The Configurer commands the seuing of the topology 
pattern demanded by the program. Due to the optical nature 
of the LCLV command. a matrix pattern is generated on a 
CRT to establish the required interconnection topology. We 
use an INMOS graphics board, requid by the host computcr 
for drawing the pattern display of the new topology on the 
CRT. The predefined patterns are compiled in a topology 
library and stored on the host computer disc. This library 
contains a set of conventional topology : ring, tree, mesh, 
hypercube. With the Transputer Development System tools, 
the user can also define and store others topology patterns 

reconfiguration is more obvious in the second section. 
because the new interconnection topology minimizes the 
number of data transfers and doesn't need any routing (only 
direct connections). Tk norm between this current result 
vector and the previous result of the last iteration is 
computed in the third section. A binary ae topology on the 
first processor row gives the same nsult as the fvst section. 

Matrix-vector multipllcalon lranrporltion Norm amputation 

APPLICATIONS OF MILORD 
Fkum 5. TopoIogiu br rbe JACOBI mclbod 

In the fild of numerical applications, a number of 
algorithms could benefit of a recarfigurable architecture. For 
example the JACOBI method which solve the linear system 
: B x = b by computing the vector x by means of a series of 
asymptotically values. The algorithm can be written in this 
form : 

where N is the matrix dimension, A the matrix 
obtained by suppressing the diagonals of B and V is the 
vector containing the diagonals of B. 

We can split the algorithm in three sections , each one 
requiring a specific interco~ection topology (see figure 5) : 

- The matrix-vector product. 

- The transposition of the vector y from the fmt 
column to the fmt row and then the compulation of x 
and z. 

- The computation of norm. 

Considering ~2 processors and a NxN matrix, the 
transfer of the fmt section's data takes the following times : 
O(2logN) with the fist topology of the figure 5 and 
0(2(N-1)) with a mesh topology. The benefit of the 

Then, the flexibility of the network d e u w a  the data 
transfers of the algorithm in comparaison with the rued 
topobgies. Monover, it impmves the section execution time 
as shown by the table 2. 

Section 2 T t (2 * C) ( 2 N - I ) * T t 2 - C  
Section 3 l 4 N  a (T t C) (N-1 ) (1 t C) 
Tolai (3logN t 1) T (5N - 4) T 

r 
Section 1 

I I Iteration) I + ( & N t . 3 ) - ~ 1  +(PN-I)*C I 
C : the average computation time. 
T : the transfer time. 

Reconfigwable 
network 
2b0N T 

Table 2 : The execution times of the JACOBI 
algorithm (Ref. 17) 

Mesh 
tOpoksV 

2(N-1) T 

It is to be noted that the performances of the JACOBI 
method with a reconfigurable network are better than those 
obtained with the mesh topology. In this context. the 
execution time of the algorithm depends of course on the 
network reconfiguration time. It must be compatible with the 
lransfer and the computation time. 

The Gauss algorithm and some differential partial 
quation problems can also be divided in several sections 
cormpotding to different interconnection topologies. Many 
othet reconfigurable algurithms can be found in Reference 18. 

Image processing requires growing power to process 
increasingly larger images. A recontigumble network is well 
suited to certain applications. The low level algorithms 
(filters, histograms, correlation ttc..) rather use mesh 
topologies with four, eight or more neighbours than 
pyramidal topologies adapted to high level pattern 
recognition. The reference 19 shows that flexibility systems 
are promising for increasing the image processing system. 



CONCLUSION 

In this papa we have presented an optical network that 
allows any link to be connected to any other link without 
contention. Potentially. optical networks provide a high 
bandwidth and a large number of ways. Taking into account 
reconfigurable capnbilities when coding parallel algorithm 
may avoid Limitation duc to rued nature of cumnt massively 
parallel architecture. The interconnection topology is 
dynamically -ed at pre-determinatal moments, so as to 
match the different cornmunicarion schema nquind by the 
sections of an algorithm. Then, high performance can be 
achieved over a wide range of applications ( i  processing 
and nwnerical applications) with a mfigurable architecture 
like the MILORD machine. 

A such optical network takes advantages of the best 
features of two technologies by using optics for 
communications and electronics for computation. Massively 
parallel architectures using large networks can be reasonably 
envisaged with optical components. 

I ' Acknowledgements 

'Ibis research is supported by h e  Direction des Recherches et 
Eludes des Techniques (DRET). 

References 

1. D. Sshaefer and J. Fischer, "Beyond the 
Supercomp*", 
IEEE Spectrum. March 1982. 

2. D. P. Agrawal. V. K. Jonakiran and G. C. Pathak, 
"Evaluating the performance of multicomputer 
configurations", 
IEEE Computer. May 1986 

3. K. E. Batcher. "Design of a Massively Parallel 
Processors" 
IEEE Transactions on Computers. September 1980. 

4. L. Snyder, "Introduction to the Configurable Highly 
Parallel Computer". IEEE Computer, January 1982. 

5. L. Dekker and E.E.E. Frietrnan, "Optical link and 
processor clustering in the D m  parallel processor", 
Communications of ACM, 1988 

6 L. Mac Caughan, "Design and performance limitation 
of inlegrated eleceooptic cross-points" 
Roccbdings of IEEE.CH2064-4,1984. 

7. A. D. Mac Aulay. "Spatial Light Modulator 
inteaconnected computers", IEEE Computer, October 1987. 

9. A. A. Sawchuck. B. J. Jenkins. C. S. Raghavendra and 
A. Vama, "Optical crossbar nttwods" 
IEEE Cornputex, June 1987. 

10. P. Churoux, M. Fracks. M. Laug. D. Comtc. P. Siron 
and X. Thibault, 
"Optical crossbar network analysis", 
international Symposium on the Technologies for 
Optoelectronics, November 1987. 

11. Inmos Limited. IMS T414 Transputex Data Sheet. 

12. D. May. "Occam2 language definition" 
Inmos Limited. February 1987. 

13. C. A. Hoan, "Communicating Sequential Recesses" 
Communications of ACM, August 1978. 

14. W. P. Bleha et al, "Application of the Liquid Crystal 
Light Valve to real time optical data processing", 
Optical Engineering, July 1978. 

15. D. Comte, P. Siron, X. Thibault, P. Churoux. M. 
Frads and M. Laug, 
"Communication par crossbar optique dans une architecture 
infomatique massivement paralkle". 
Revue de physique appliquk, October 1987. 

16. M. Fracbs, J. P. Bouzinac, P. Churoux, M. h u g .  D. 
Comte. P. Siron and X. Thibault, "A multiprocessor based 
on an optical crossbar network: The MILORD project", 
SPIE Optical Computing Conference, August 1988 

17. P. Churoux, M. Fracbs, M. b u g ,  D. Comte. P. Siron 
and X. Thibault, 
"Le projet MILORD", Rapport interne no 113272 
ONERA/CERT. 1987. 

18. P. Berger and M. Dayde, "Architecture t~ paralltlisme 
massif: une approche algorithmique", Rapport interne 
no 1/8790 ONERAICERT. 1987. 

19. N. A. Alexandridris, "Architectural adaptations in 
image processing supersystems", First International 
Conference on Superrompulers Systems", December 1985. 

8. A. A. Sawchuck and B. J. Jenkins. 
"Optical inmconnection networks". 
Proceedings of Parallel Processing Conference, August 1985. 



THE GAM I1 PYRAMID 

Zahi Abuhamdeh 
Department of Electronics and Computer Engineering 

George Mason University 
Fairfax, Virginia 

Abstract - The CAM I1 Pyramid is a hierarchical structure 
with a total of 1365 processing elements. The sequencer 
des igned  f o r  con t ro l l ing  th i s  s t r u c t u r e  is capab le  of 
executing pyramid oriented primitives similar to an  add 
and subtract operations, as well as independent procedures 
similar to convolution. The pyramid contains three control 
buses embedded in the hardware in anticipation of a 
fu tu re  control system that will contain three independent 
control units. 

Keywords - Pyramid Data, Scalar Data, GAM I Pyramid, 
CAM I1 Pyramid, Corner Turning. 

1 - Introduction 

systems were developed in George Mason University's 
Advanced Computer Architecture Laboratory. The CAM 
I1 Pyramid, f igure 1, is a hierarchical Single Instruction 
Multiple Data (SIMD) system. 

2 - The Pyramid Structure 

The CAM I1 Pyramid contains 1365 processing 
elements, made up  of 172 custom microcircuits designed 
f o r  t h e  Massively  Pa ra l l e l  Processor.  T h e  p y r a m i d  
structure is broken down into the following sections: The 
basic processing element organization, the daughter cards 
that contain the processing elements, the back plane that 
contains the daughter cards and the processing element 
adder network. 

The GAM I1 Pyramid is a six level pyramid, which 
is a one level expansion of the previous CAM 1 Pyramid, 
used fo r  image processing applications [1][2][3]. Both 

Pyramid 

The GAM I1 Pyramid System 

F i g u r e  1 



2.1 - The Processing Element 
Leve l  0 D 

The GAM I1 Pyramid's processing elements are 
identical to the Massively Parallel Processor's [4J, with an L e v e l  1 5' 
expanded inter level communication network, figure 2. 
Each processing element is connected in a quad tree 
architecture that is six levels deep. A level is an N X N L e v e l  2 
square mesh whose edges on the bottom three levels are 
connected in a taurus topology and on the top three levels 
connected to a logical zero, figure 3. A processing element 
can communicate to four siblings (those to the the North. Leve l  3 
South, East and West), four children (V, X, Y and 2) and 
one parent. A Sum-OR circuit on each level signals if any 
processing element has a value "onen. 

2.2 - The Daughter Card 

The six levels are built by using 45 identical 
daughter boards developed at the Advanced Computer 
Architecture Laboratory, figure 4. Each GAM I1 Daughter 
board has four MPP microchips. and thus has thirty two 
processing elements configured in an 8 X 4 array slice. 
There are  four Static Random Access Memory (SRAM) 
microchips configured in an 8K X 8. Eight three-state 
switch microchips are used to perform level transfers, two 
per MPP microchip. The three-state switches are attached 
to every processing element bus, and are enabled whenever 
a level transfer cycle is performed. Once the switches are 
enabled, the sending level performs a memory write to the 
three-state switches and the receiving level performs a 
memory read from the three-state switches. 

2.3 - The Back Plane 

The back plane of the GAM I1 Pyramid contains 
three ident ical  control buses and a communications 
network that is unique to each card connector. The inter- 
daughter  ca rd  communication determines the logical 
location of that particular set of processing elements. The 
back plane is an active back plane that performs signal 
buffering and some logical operations on the control 
signals. 

To upper 
Level 

,, " " ,. X t, 8, y 8, ., z " 

F r m  Loner 
Level  

Leve l  4 

Figure  3 

GAM I1 Pyramid Daughter Card 

Figure  4 

Figure 2 



One of the three control buses, controls the base 
level, another controls the level above the base and the last 
controls the top four  levels, f igure 5. Though currently 
there is only one controller, the pyramid can handle up to 
three controllers with each issuing a unique instruction a t  
the particular levels. Each control bus is buffered through 
a set of latches that could be configured to be transparent 
for  debugging purposes or as part  of an  instruction 
pipeline to facilitate higher clock speeds. Discrete logic, 
on the back plane, has been added that allows for level 
disabling when not in use and generates a dummy memory 
read instruction whenever a level transfer operation is in 
progress. 

2.4 - The Adder Network 

The Adder Network is a collection of high density 
64K X 8 EPROM and binary adders. It is used to produce 
a sum of 256 one bit inputs with a value "one". The 
EPROM is programmed to produce the 5-bit sum of the 16- 
input address bits that have a value "one". There are  
sixteen EPROMs that each sum 16 bits for  a total of 256 
input bits and produce sixteen partial sums. The sixteen 
partial sums a re  then added together in pairs by eight 
binary adders to produce eight partial sums. The process is 
repeated until all the partial sums arc  totaled and one 
number remains. The addition is carried out in parallel 
and the total delay is 400x1s which is well within one cycle 
of the 500ns targeted cycle time of the GAM I1 Pyramid 
clock. 

Control BUS A > 

Control h s  c > 

Figure 5 

r - - -  - - - - - - - - - - - - - - - - - - - -  - -  - -1 
I I 

I I 

Program Flow Sub-Unit I I I 

Sequencer Unit 

Figure 6 

I 
I 

I 
I 
I 

I 
I 
I I I I I I CC 
I 

Next 
Address 
Gen 

A .1 
I 

I 
I 
I 
I 

- 
I 
I [ Pipeline Register ] 

.1 
I 
I 

Instruction 
Memory 

t - - - - -J To Pyramid - - - - 
I 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -r - - -- - - - 

J- J. 

ALU 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I > Control 
I Z 
I 
I 
I 
I Memory 
I Address 

I 

Special 
Purpose 
Registers 

Data 
Mem 

8 K X 1 6  

v 

I 
I 
I 

1 
I 
I V I t I 

& 
Shifter 1 

I f + I 
I Data Execution Sub-unit I 
L - - - - - - - - - - - - - -  - -- - - -- - - - - - - -1 



3 - The  Sequencer 3.1.4 Condition Code Register 

T h e  sequence r  is  t h e  lowest i n s t ruc t ion  level  
interface to the CAM I1 Pyramid arrays, f igure 6. Remote 
calls are  issued to the sequencer by the Host. The calls 
may request the sequencer to execute a primitive on the 
pyramid structure similar to an  addition or  multiplication, 
or to execute a fu l l  procedure that manipulates scalar data  
as well as pyramid da ta  [S]. The Sequencer Unit  is capable 
of issuing instructions to the pyramid a t  a rate of 2MHz. 
The function of the sequencer is to handle program flow 
control, global scalar calculation and pyramid instruction 
generation. The sequencer hardware is partitioned into 
two portions: the Program Flow Sub-Unit and the Data 
Execution Sub-unit .  The Program Flow Sub-Unit handles 
t h e  sequenc ing  of  p rogram ins t ruct ions .  T h e  D a t a  
Execution Sub-Unit handles scalar data  computation and 
storage. Pyramid instructions are  generated in coalition 
with the two Sub-Units. 

3.1 - The  Program Flow Sub-Unit 

This portion of the sequencer contains the next 
address generator, the Micro Memory, the Pipeline Register 
and the Condition Code register. 

3.1.1 - The Next Address Generator 

The Next Address Generator is based on Advanced 
Micro Device's 2930, which is a bit-sliced program flow 
con t ro l  microchip .  T h e  Next  Address  Genera to r  is 
composed of four  such microchips connected to form a 
sixteen bit address bus of which only thirteen bits are 
used. There is an  adder module as well as four  input 
sources: an  instruction pointer, an  auxiliary register, an  
external data  bus and a 17 register deep stack. The 
microchip can perform its fu l l  32 instructions on the four 
input sources to produce a straight-through address or an  
offset  branch address. 

3.1.2 - Micro Memory 

The Micro Memory is composed of a configurable 
Static Random Access Memory. The memory is built using 
8K by 8-bit with a 120x1s access memory modules and 
constructed to be addressed as a n  8K by 96-bit memory or 
as a 48K by 16-bit memory. The 96-bit wide memory is 
used when executing primitives or procedures, during 
which the memory is in a read only mode. However, 
during host transfer operations, fo r  example program load 
time or when the system debugger is operational, the 
memory is configured as a 16-bit da ta  bus with read and 
write capability. 

3.1.3 - Pipeline Register 

The Pipeline Register is a 96-bit register that holds 
a sequencer instruction An instruction has four major 
fields. The first  is the K constant which is used as a 
branch address or as a constant scalar for the Data 
Execution Sub-unit .  The second field of the Pipeline 
Register is used to control the Data Execution Sub-unit .  
The third is used to control the Program Flow Sub-unit .  
The fourth field is used for  pyramid control. 

The Condition Code (CC) register is a set of sixteen 
flags that a re  used by the sequencer to perform branching 
functions. The CC register contains the basic scalar flags 
generated by the Data Execution Sub-Unit as well as flags 
that are  used to handle communications between the host 
and the sequencer. The Sum-OR values f rom all  the levels 
of the pyramid are  also latched into the CC register. 

3.2 - The  Data Execution Sub-Unit 

The Data Execution Sub-unit  is composed of three 
basic parts. The General Purpose Registers and their 
accumulator, the Special Purpose Registers and the Data 
Memory. 

3.2.1 The  General Purpose Registers 

There are  sixteen 16-bit registers that are  used for  
general purpose data calculation. These registers are 
attached to an  Arithmetic Logic Unit and a Shifter. They 
can be used to store results of addition, subtraction and 
logical operations on scalars. An extremely flexible 
function of these registers is the generation of pyramid 
addresses. The registers can contain the address along 
with offsets that could be loaded f rom the K constant or  
the host, an  addition or multiplication can take place and 
a new address will be generated. This same address can be 
used in a post-increment or  a pre-decrement mode to 
support s equen t i a l  addres s  t r ave r s ing  f o r  mul t ip l e -b i t  
pyramid data. 

3.2.2 Special Purpose Registers 

Sixteen 8-bit registers are  used for level and child 
se lec t  gene ra t ion .  These  regis ters  a r e  t r ip l e  po r t ed  
registers that can output the level mask pattern and the 
child select values simultaneously. Any of these register 
values can be enabled to the Sequencer Data Bus. 

3.2.3 Data Memory 

This is a bank of 8K by 16-bits of Static Random 
Access Memory connected to the sequencer's data bus. The 
address of the memory is latched in a Data Memory 
Address Register (DMAR) from the data bus. Data is then 
read or written to the memory also from the data bus. 
This memory is used whenever a procedure runs out of 
register memory. This allows a compiled procedure, from 
a high level language, to contain large data structures. 

3.3 Array Instruction Generation 

Array Instructions are generated by the di f ferent  
portions of the sequencer. The basic processing element 
operations are  issued from the pipeline register. Array 
memory source and destination addresses are  stored in the 
Data Memory and the General Purpose Registers where 
their ALU is used to compute relative offsets, increment 
and decrement operations. Level masking information as 
well as an  alternative set of child enable signals are  
maintained in the Special Purpose Registers. 



4 - The  Input and Output Unit 

This unit is used to digitize analog input signals 
f rom a video camera and to generate analog video signals 
to display images f rom the pyramid, f igure 7. An image 
has a I28 by 128 pixel resolution and 6 bits of gray shades. 
The unit has 128KBytes Image Memory that is capable of 
storing up to 8 images. An image is stored in sixteen 32 by 
32 pixel frames that are  shifted in and out of the pyramid 
by using the S-Registers on the base level of the pyramid 
(Level 5 ) .  The image memory stores data in bit planes and 
can communicate to the host, camera and the display 
dev ice  t h r o u g h  a c o r n e r  t u r n i n g  i n t e r f a c e  of s h i f t  
registers. If a byte is needed f rom the Image Memory, a 
block of eight bytes is written to the corner turning block 
that in turn  will be decoded for  the appropriate byte. 

5 - The  Host System 

The  Host System is an  IBM AT compatible system 
that operates under DOS 3.3. The Host has a 40MByte hard 
disk. Text is displayed on a Monochrome display terminal 
and pyramid array graphics is displayed with 256 colors on 
a Video Gate Array (VGA) display. The Host interfaces to 
the pyramid by using a set of 32 8-bit registers. The Host 
can control the Pyramid Arrays, the Sequencer Unit and 
the Input and Output Unit. 

Since an  A T  clone is used as a front end to the 
pyramid, PC software is available fo r  program system 
development. Pyramid system software was developed 
using C and PASCAL, some of which include: an  
interactive micro assembly language with a simulated 
micro sequencer (PYRASM), an  interpretive high level 
l anguage  ca l l ed  (Func t ion  IV)  a n d  a compi ler  t h a t  
generates microcode f rom a high level language similar to - 
C. 

The Host was also extremely valuable in debugging 
the pyramid. Since through software it can single step any 
micro cycle. A state can be stopped and restarted as 
though it were running continuously. Special software has 
also been developed, S-Bug for  example, is a debugger for  
the Sequencer Unit. 

Cross 8.1 

u 
)*rltlple S I M  Cmtrol ler  Conflguratlon 

FlQure 0 

6 - Future Control System Expansion 

Connecting u p  to three sequencer type controllers is 
being investigated for fu ture  expansion of the C A M  I1 
Pyramid. If a single controller is used, it will be able to 
clock only one level a t  a time, the remaining unclocked 
levels will be idle. In such a situation, for  every apex 
clock there are  1364 processing elements that are  idle. A 
system being investigated contains multiple controllers that 
can be dynamically attached to any  of the three control 
buses, f igure 8. All ar ray  operations a re  memory to 
memory reference operations. If a controller is allowed to 
attach to a level and not be interrupted till it is done with 
that level, no  context switching is needed. The data 
memory locations a re  pre-allocated a t  compile time, a 
controller will attach to a level and read its own data 
memory area, update the data  with the desired operations 
and restore the updated data  back to memory. Another 
controller can attach itself to that  level a t  that time. 

The controllers will be capable of running complete 
procedures and  thus enabling the parallelisation to occur 
a t  the high level language level. Most of the program will 
be executing on the Host system. Parallelism is achieved 
by the use of Fork and Join operators that control the 
asynchronous execution of the procedures. 

A controller can produce multiple level requests per 
procedure. This feature is useful to facilitate data 
transfers between levels and alleviating the problem of 
deadlock. Any controller that wishes to perform a level 
transfer will request two levels only when all its other 
computations are  complete and had already released its 
current level. The next step is to request the two levels the 
controller needs. Should there be a conflict that results in 
deadlock, the controller attached to the level with the most 
processing elements gets its request fulfi l led while the 
other controller waits till the two levels are  available. 

Corner 
Turner 

Input and cutput w i t  
Flgure 7 



Acknowledgment 

This project was supported by a grant from the The 
Army's Center for  the Night Vision and Electro-Optics and 
a donation of MPP microchips from NASA's Goddard ' 

Space Flight Center. The Adder Network described above 
is the design of Trung Phan. Acknowledgment is also 
made to the following people for their contribution : Lu 
Yin, Xiaohong Zhang and Steve Jewel, for the construction 
and verification of the back plane. John Boyd and Brian 
Jordan for the construction of the pyramid interface to the 
PC/AT Computer. Rick Axtell and David Zafitz, for the 
construction of the Input and Output Unit. Professor 
David Schaefer, whose direction made this project possible. 

References 

[I] Schaefer, D. H., Ho, P., Boyd, J., Vallejos, C., "The GAM 
Pyramid". Paral le l  Computer Vision, L. Uhr, Ed., 
Academic Press, Boston, 1987, pp. 15-42. 

[2] Schaefer, D. H., Ho, p., "Counting on the GAM 
Pyramid", Pyramidal Systems for Computer Vision. V. 
Cantoni, S. Levialdi, Ed., Springer-Virlag, Berlin. 

[3] Man Bun Chu, "Object Recognition utilizing Combined 
General Purpose and Special Purpose Hierarchical 
Structuresn, Masters Thesis, George Mason University, Fall 
1987. 

[4] Burkley, J. T., "MPP VLSI Multiple Processor Integrated 
Circuit Design". The Massively Parallel Processor, J. 
Potter, Ed., MIT Press, Cambridge, 1985, pp 205-216. 

[5] Phillips, Tom, Michael, Bret and Abuhamdeh, Zahi, 
"Microcode Generation for the Control of a Massively 
Parallel Computer", Proceedings of the 2nd Symposium on 
the Frontiers of Massively Parallel Computation. 



SECTION 111: ARCHITECTURES 

Part 2: Poster Presentations 



PARALLEL AND PIP- VLSI DESIGN 
FOR THE HISTOGRAMMING OPERATION 

M. Abdelguef~ A.K Sood S. Khalaf 

Dept. of Electrical Engineering Dept. of Computer Science Dept. of Computer Engineering 
University of Detroit George Mason University Wayne State University 

ABSTRACT 

This paper describes the design of a VLSI processing unlt 
for the histogramming operation. The processing unit is 
composed of several bit-serial pl.ocessing elements (PE's) 
connected according to the odd-even network ~opology. In 
this approach, htstogramming is divided into two stapes, the 
counting process and the filtering process. The filtering 
process is computationally inexpensive compared to the 
counting and marking phases. The use of a h~stogramming 
unit of fixed size to handle a large number of pixels is 
considered. 

Keywords: Vision Architecture, Parallel Processing. Bit- 
Se r~a l  Architecture, Odd-Even Network, VLSI. MOS. 

INTRODUCTION 

This paper presents the design of a hfOS [I1 technology 
based special purpose processing unit for the histogramming 
operation. The architecture is composed of several 
processing elements connected according to the odd-even 
network topology [2]. The processing elements operate on 
pixels bit by bit. As a result, this system is referred to as  
parallel bit-level pipelined architecture [3.4]. The main 
advantage of this approach is that the memory requirement 
of each PE is very small and is independent of the input 
size. The input operands are  processed one bit a t  a time. 
hence, the amount of hardware in each PE is reduced. As a 
result, a large number of PE's can be integrated on a single 
VLSI chip. The proposed design has several features that 
are suitable for a VLSI implementation: 

1) Simple PE's - The system is composed of one 
tvpe of simple processing element. Each PE 
operates on data bit by bit. Thus, the design and 
verification of the circuit will be eas5. 

2) Overlap of data L'0 and processing - The data 
processing time is completely overlapped with 
the inputting and outputting of data to and from 
each PE. 

3) Static interconnection network - For ease of 
implementation a static interconnection between 
the different PE's is preferred as compared to a 
dynamic network. This will allow the system to 

process several data streams in a pipelined 
manner. 

4) High throughput - This is achieved by the use 
of several bit-serial PE's operating in parallel 
and pipelined manner. 

5r Low pin count - This property r e t u l ~ s  from t h ~  
inputting and outputting of operands one bit a t  3. 

time to and from the PE's. 

THE ALGORITHM 

The histogramming operation has been divided into two 
parts, the count and mark process and the filtering 
process. The count and mark process is the process of 
assigning to each grey level Gi, a count field Ci and a mark 
bit Mi. The filtering process consists of discarding all 
duplicate grey levels. Figure 1 shows an  example of the 
histogramming operation. Eight pixels { (CI, hli. Gi'i 1, 
l s i s  8, are input in parallel to the histogramming unit. It is 

5 are set to noted that  initially all mark bits and count field: 
1. In the first step, count fields and mark bits are 
computed. In the example sequence there are only four 
distinct grey level values. As a result, only four pixels will 
be output with a mark bit set to 1. The second step is the 
process of removing all duplicate pixels. This is done by 
discarding all pixels output with a mark bit reset to 0. It is 
noted that  the filtering process is computationally 
inexpensive compared to the count and mark process 
duration. In t h ~ s  paper, we will be mainly concerned with 
the design of a VLSI unit for the counting and marking 
process. In F l p r e  2, an  R-input odd-even network is used to 
count and mark the sequence of the earlier example. The 
algorithm to be implemented by each PE (Figure 4 gives the 
block diagram of a PE) is a s  follows: 

Procedure COUNT and MARK [(Ci,Mi.Gi),(Cj.Mj.Gj)l Gj)] 
I1 Two pixels (Ci, Mi, Gi) and (Cj. Mj. Gj) are  input 

to a processing element /I 
1. Begin 
2. If Gi > Gj then 
3. Begin out 1 t (Ci,Mi,Gi), 

outz* (Cj.Mj,Gji,end: 
4. If Gi < Gj then 
5. begin out1 c (Cj,hlj,Gj); 

o u t q t  (Ci,M~.Gi),end; 
6 .  I fGiZGjthen 
7. begin 
8. If hli A Mj = 1 then1 

-- - -- - -- 

' ~ h r o u ~ h o u t  t h ~ s  paper A refers t o  the l op~ca l  AND. 



9. bepn out 1 + (CI+CJ.MI.G~!: 
out2+(- .O.Gj), end; 

10. If hli .I = 1 then 
11. begin out 1 t- iCi,hli.Gi); 

out2+[ - ,RIj.Gii.end: 

12. else 
13. begin o u ~  1 +iCj.hIj.Gj) 

out2yCi.Mi.Gi!. end: 

11. End 
15. End /:output marked and counted,'; 

PERFORMANCE ANALYSIS 

We first investigate the processing time of our approach 
under the assumption that the number of pixels to be 
processed is no larger than the number of inputs La the 
histogramming unit. In the following analysis. the relevant 
parameters are: 

k = number of bits in the grey level representation 
p = number of bits in the count field 
r = time (in seconds) to manipulate and pass one bit ta 

the neighboring PE 
n = number of pixels to be processed. 

In our implementation, the processing of the pixels is 
completely overlapped with the inputting and outputting of 
the pixels to and from the histogramming unit. Since the 
longest path in an n-input histogramming unit is 
logn(logn+ 1) 

. processing n pixels will take 

In 151 and [6], our approach is compared with the 
implementation of the histogramming operation on the 
Massively Parallel Processor (MPP) [71. It is shown that  our 
approach manifests significant performance improvement 
over the MPP implementation. For instance, for p =  14 bits. 
k=8 bits, and n=16,384 (128x128 image), our 
implementation is 16.11 times faster than the MPP 
approach. It is noted that unlike the MPP implementation 
our approach allows foi the pipelined processing of different 
streams of grey levels. Suppose that  1 independent streams 
of grey levels are to be processed by the histogamming 
unit. The use of plpelining will reduce the processing time 
from IHI to H1 +( I - l ) (k+p+  l ) r  (assuming that  each 

stream is composed of n prey levelsi. For instance. when 
I =  10. n =  16,384. a speedup of 3.82 is achieved with the use 
of p~pelin~ng. The use of pipelining not only reduces the 
processing time but also allows for a more efficient use of 
the processing elements. 

The histopramming algorithm we have described is 
internal. That is, the number of pixels to processed is 
assumed to be no Inipe: than the number of inputs In) of the 
histogramming unit. In general, an entire image cannot be 
processed internally by an odd-even based h~stogramming 
unit (because of area and pln count limitations). Figure 3 
shows how to obtaln a 2n-input histogramming unit from n 
numbel of n-input histogramming units. Thts method is 
very useful to increase the internal processing capability of 

a histogramming unit. However, since VLSI chips are of 
fixed size and the number of pixels is very large, the 
application of the above method is impaired by financial as  
well a s  technological constraints. When the number of 
pixels is too large to be processed internally by a 
histogamming unit, an  external L'LSI algorithm is the most 
practical solution. It is recalled that an external VLSI 
algorithm is one that  allows a chip (or a set of chips] of fixed 
size to process an  input set of any size [8]. One approach to 
this problem is based on an iterative use of a histogramming 
unit of fixed size. The proposed algorithm is based on 
successively merging histogrammed sets of pixels of 
increasingly larger size. 

The external VLSI algorithm will use a histogramming unit 
of fixed size (n-inputs) in an iterative manner to process a 
set of pixels whose size2 N is larger than n. The external 
algorithm is divided into two steps. During the first step, the 
histogramming unit is  used to generate histogrammed sets 
of size n each. The duration of this step is 

In the second step, the histogramming unit is used as  a two 
N 

way merger. The second step requires log- phases. During 
n 

N N 
the i-th phase, lS is log-- .  (1121i-~ - sets of 2i-1n 

n n 
N 

histogrammed pixels are converted to (1:2)1 - sets of 21x1 
n 

pixels each. The merging duration is 

When pipelining is used between the two steps , the overall 
duration of the external algorithm is 

DESIGN AND VLSI IMPLEMENTATION OF THE 
HISTOGRAMMING UNIT 

Figure 4 shows a block diagram of PE. The PE contains five 
flags \Fi.Fj.Fl.FZ.F3), a Control Unit (CU), a serial adder. 
and a Bit Manipulation Unit (BMUI. It is recalled that pixels 
are input. processed, and output one bit at  a time. First, the 
two grey levels G,={ ~ f ,  G& ... ~ k ,  ), m = i j .  are input to 

' ~ ~ t h o u t  loss of genera11t.y N IS assumed U) be a rnult~ple of n 



the PE bit by bit starting from the MSB's (GI , G!). Next, 
the mark bits Mi and Mj are input followed by the  count 
fields Cm = { CR, Ch-1 ... ~ f ,  }, m = i j .  I t  is noted that 
unlike the grey levels, the count fields are input starting 
from the LSB's (C! . C] ). In order for the algorithm to 
work in proper synchrony, every bit must be passed to the 
right including leading zeros. Note that the grey level 
comparison. the manipulation of mark blts, and the updating 
of the count fields are completely overlapped with the 
inputting and outputting of the pixels to and from the PE's. 

Two control signal s l  and sp are used for control and 
synchronization. The control signal s l .  is a start  signal, it is 

logn (logn + 1) 
applied to all PE's of column M, 1 ~ I b f 1  , a t  

2 
time instant t ~ - l .  At time instant thl. PE's of column M 
reset their five Raps and begin the processing of the two 
pixels present a t  their inputs. The control signal s2 is used 
to indicate the completion of grey levels comparison. This 
signal is applied to PE's of column M a t  time instant 
t k + ~  At the same time instant, the mark bics are input to 
the PE of column M. From time instant t k + ~ + l  to 

t k + ~ + ~ +  1, the count fields are input to the PE's of 
column hl. 

The serial adder is used to compute the count sum (S = Ci 
+ C,j). The BhPU compute the value of out1 and out2 as  a 
function of the result of' the grey level comparison. the mark 
bit value, and the count sum. The flags Fi and Fj are used to 
store the mark bits hli and Mj. The flag F3 is set by the 
control signal s2. This flag when set indicates that grey level 

- .  

comparison has been completed. Finally. Rags F1 and F9  - 
are used to store the result of grey level comparison 
according to Table 1. 

The layout of a PE is given in Figure 5. Each PE is 
composed of 255 transistors and occupies an area of about 
0.2mm2 (assuming a three microns technology (A = 1.5 
pm)).  

F ~ G U P E  1. An Example 

SUMMARY 

In this paper, an  nMOS processing unit for the 
histogramming operation has been designed. The proposed 
unit is composed of a number of bit-serial structures 
connected according to the odd-even network topology. The 
use of a histogramming chip of fixed size to handle a large 
number of pixels has been considered. 

REFERENCES 

(11 Mead, C., Conwag, L., Introduction to VLSI Systems, 
Reading, Massachsetts: Addison-Wesley, 1980. 

[2] Batcher, K.E., "Sorting Network and Their 
Applications," AFIPS Proc. Spring Joint 
Comput. Conf., Vol. 32, April, 1968, pp. 307-314. 

[3] Batcher, K.E., "Bit-Serial Parallel Processing 
Svstems," IEEE Tmns. Comput.. C-31. 1982. 

377-384. 
[4] Hatamian, M., Cash, G.L., "Parallel Bit-Level 

Pioelined VLSI Designs for High-Speed Signal - - ~  

~ A c e s s i n ~ , "  Proc. of -the IEEE, Vol. 75, No. 9, 
September, 1987. pp. 1192-1202. 

[ 5 ]  Abdelguerfi, M.. et al., "Parallel Bit-Level Pipelined 
VLSI Processing Unit for the Histogramming 
Operation", IEEE Computer Conference on Vision and 
Pattern Recognition. University of Michigan. June  
1988, pp.945-950. 

[6] Abdelguerfi, M., et al., "Parallel Bit-Level Pipelined 
Processing Unit for the H~stogramming Operation", 
IEEE Trans. on Circuit and Systems (Submitted for 
Publication). 

[7] Kushner, T.. Wu, A.Y., Rosenfeld, A,, "Image 
Processing on MPP:l," Pattern Recognition, Vol. 5, 

No. 3. 19R2, pp.836-840. 
[a] Bonucelll. hI..4., ct al.. "External Sor t~ng In VLSI". 

IEEE Tmns. on Cornp., Val. C-33,  NO. lo. oct 81. 
pp. 931-934. 

FIGURE 2 .  Para l le l  lmplemen t a t i o n  of 
the Histograrnm ing Operat ion 



FIGURE 3.  Design of  a 2n- input 
Histogramming Unit 

T~~~~ 1. Flip Flop C o n l r o l  Stales 

( C  i, M,,G,) pr OUT 1 
(cj, M,.G,I our 2 

S e r i a l  adder  

F I G U R E  4. B lock  D i a g r a m  o f  
a P r o c e s s i n g  E l e m e n t  

FIGURE 5. LAYOUT OF A PE 



THE FUNCTION OF A CONNECTION NETWORK BETWEEN HOST AND PROCESSING 
ELEMENTS IN MASSIVELY PARALLEL COMPUTER SYSTEhfS 

Timothy Bridges 

Computer Science Department Massively Parallel Arch. Corp. 
Indiana University P.O. Box 954 
Bloomington, IN 47405 Bloomington, IN 47402 
tbridg@liuvax.cs.indiana.edu (812) 339-3753 

Abstrac t  

Massively parallel computation systems are routinely char- 
acterized, identified, and studied based on the connection 
topology of the processing elements (PEs). This method of 
classification is flawed since massively parallel computation 
systems are not stand-alone computers; they are invariably 
packaged with a standard von Neumann host. This paper 
examines the function of a connection network between 
massive numbers of PEs and a single host by comparing the 
Data Structure Machine (DSM), whose major connection 
network is a computationally powerful binary tree with 
the host connected at the root, and the Connection Ma- 
chine, which provides a very rich and general PE to PE 
connection network, but whose connection to the host is 
little more than a buffered wire. The binary tree network 
used in the Data Structure Machine can be utilized to 
achieve asymptotic improvements in speed for algorithms 
that maintain, locate and exploit data parallelism in data 
structures that can be characterized by a high degree of 
locality. For example, SUM, MAX, LEFTMOST, and 
INDEX are all constant time operations on DSM lists, 
while corresponding Connection Machine algorithms can 
require linear time to simply find and mark lists. 

Keywords: SIMD, Massively Parallel, Connection Topol- 
ogy, Host Interface, Connection Machine, Data Structure 
Machine 

1. Int roduct ion 

Of the two architectures being compared here, the 
Connection Machine is widely known, understood, and 
available as a commercial product. The Data Structure 
Machine is clearly less known, therefore requiring the fol- 
lowing introduction to the parent architecture, APSA, and 
an overview of the DSM. 

The Applicative Programming Systems Architecture, 
APSA, extends the traditional von Neumann design by 
including a special purpose functional unit that serves as a 
Data Structure Memory, DSM [4,6,7]. The DSM is a mas- 
sively parallel computing system that utilizes thousands, or 

even millions, of processing elements in an SIMD paradigm 
to exploit data structure parallelism. A custom VLSI pro- 
totype containing 128 Processing Elements, PEs, has been 
constructed and is under study at Indiana University (16 
chips with 8 PEs/chip). The simple tree-based connection 
topology used in this DSM allows for extending the system 
by adding more chips of the same design or by increasing 
the number of processors per chip. A single chip containing 
upwards of 128 processors is feasible by using the denser 
and more expensive technologies available today. Also, 
the total number of PEs in the system does not affect the 
specification of a individual P E  nor does it increase the 
complexity of the connection network wiring. A project is 
underway to construct a DSM of an interesting size, 2K - 
4K processing elements, and to implement bank switching 
so that larger machines can be emulated for study. 

Because of its simple binary tree connection topology, 
the APSA DSM will benefit from economies of scale that 
could lead to implementations containing over a million 
processors in the near future. However, the use of such 
a simple connection topology raises serious questions con- 
cerning possible applications for such a machine. PE - 
P E  communication is ohviollsly limited by the bottleneck 
at the root of the tree. What is less obvious, and what I 
attempt to show in this paper, is that the tree topology 
that is a bottleneck for PE ct PE communication pro- 
vides an extremely rich Host * PEs connection network. 
Further, this network can be used to efficiently implement 
algorithms of a 1 to many or many to 1 nature. I will 
present examples of these algorithms and compare their 
performance to Connection Machine [I], CM, algorithms. 
The CM was chosen for this comparison because of its 
rich P E  * P E  communication capabilities and its relative 
lack of a Host t+ PEs connection network. Figures 1 and 
2 depict system level layouts of the Connection Machine 
and the Data Structure Machine architectures. 

2. A P S A  D a t a  S t ruc tu re  Memory  Overview 

The original APSA architecture was designed for effi- 
cient implementation of list processing operations by rec- 
ognizing that most of these operations involve Host e, P E  



vax so00 
series 

Syrrbolii 3600 Data mapped into 
Binary N a b e  of 
Processing Elements 

VAX 8000 
series 

MIPS 
SUN 
Apolb 

Connection 
Network 

Data Mapped into 
Dual-linked Linear Array 
of Processing Elements 

Figure  1. Connection Machine high level architecture Figure  2. DSM high level architecture 

communication and computation [4,5]. In this context, the 
major function of the APSA communication structure is t o  
support efficient operators that 1) find, or mark, a list in 
the heap, 2) update marked lists, and 3) operate on marked 
lists as if they were compact linear data structures. 

Two simple regular connection networks combine to 
support these three types of operations. First, a binary 
tree of processing elements connects a leaf level, formed 
by PE/ME pairs, to the Host processor connected at the 
root. The store of the machine is mapped into the leaf 
level of the tree. Only intermediate status information is 
stored in the non-leaf nodes of the tree. Using the accepted 
method of classifying massively parallel systems based on 
the connection topology of the PEs, the DSM would be 
classified as having a one dimensional array of processing 
elements. The binary tree network would be ignored. 

A second network connects the leaf level horizontally 
across the breadth of the tree, allowing bidirectional shift- 
ing of data. This second, linear, connection topology im- 
plements limited PE ++ PE communication, that when 
combined with the tree network can implement a total or- 
dtring 011 the data stored in the leaf level. In this context, 
a total orderirlg on the data items in the leaf level means 
that if a node, N, ,  occurs before a node, N,, in a traversal 
of the list, then the node N, is physically stored to the 
left of node N,. The linear connections in the leaf level 
are used to effectively shift a leaf cell from the avail pool, 
in a single cycle, to a position that maintains the total 
ordering. 

The process of shifting data cells can destroy the valid- 
ity of explicit, address based. pointers in the heap, which 
could take significant time to update in a heterogeneous 
system. APSA solves this problem by using unique labels, 
instead of addresses, for explicit pointers. A pointer is 
dereferenced by having all cells perform a match function 
on the label. This content addressable pointer solution is 
efficient since updating of pointers is not necessary after a 
shift operation. A similar systexrl can be implemented on 
the Connection Machine. but PE H PE communications 

would then be based on a similar content addressable point- 
er system which would render most of the CM's routing cir- 
cuitry useless since explicit pointers would be dereferenced 
by content-based addressing, while the CM router only 
works with absolute location-based addressing. Though 
implementable, such a system wastes most of the band- 
width available, and paid for, on the Connection Machine. 
In other words, an efficient emulation of the DSM can be 
implemented on the CM, but fails to exploit the scaling 
advantage of the tree topology and wastes much of the 
CM's resources. For the purposes of the comparison in 
this paper, the CM is assumed not to be running in a 
DShl emulation mode. 

3. T iming  guidelines for SIMD algorithms 

It is necessary to clarify the guidelines used for timing 
comparisons of algorithms running on von Neumann archi- 
tectures with those running on SIMD architectures. This 
clarification is needed because of the dual use of the time 
complexity of a memory access/update operation on RAM. 
Any computer scientist asked to analyze the time com- 
plexity of the FETCH or STORE instructions for RAM 
will quickly and easily return the answer O(log(n)) .  How- 
ever, in analyzing algorithms running on these machines, 
analysts invariably consider the time complexity of these 
instructions to be O(1) .  Historically, this shortcut was 
taken because all algorithms were run on von Neumann - 
machines; by eliminating this extra log from all equations, 
the comparison between algorithms was clearer. This tech- 
nique has become so widely accepted that many computer 
scientists forget that RAM instructions are not constant 
in time. Several critics of the tree topology have wrongly 
pointed out that the tree must pay a log cost for sweeps up 
or down the tree. The router in the Connection Machine 
has probably received similar baseless criticism. In both 
of these cases the logarithmic delay is analogous to the 
logarithmic delay for address decoding in RAM. A fair 
comparison will treat time through the CM router and 
up or down the APSA tree as constant time operations, 
asymptotically equivalent to FETCH and STORE times. 



4. Examples  

In the limited space this short paper provides I will 
present an analysis of two sample algorithms that realize 
a performance gain by utilizing the Host t+ PEs network 
of the APSA DSM. The first example shows an algorithm 
to sum the elements of an array. The CM algorithm has 
appeared (21, and works by building a tree, using pointers, 
within the array to calculate and store intermediate results. 
This example illustrates the use of the APSA DSM tree 
as a purely computational network. The second example 
computes the sum of the contents of a linked list structure 
and illustrates the value of being able to utilize a total 
ordering to support implicit pointers. For these examples 
let n be the number of elements in the array or list, and 
e be the number of explicit pointers in the CM list. Note 
that e would be 1 for an APSA DSM list. 

Example  1 - Summing elements of an array 
T i m e  Complexity 

Opera t ion  CM DSM 
1. Mark array in PEs 1 1 
2. Build pointer tree log(n) - 
3. SUM by pointers log(n) - 
4. SUM by network - 1 

Total Algorithm log(n) 1 

Example  2 - Summing elements of a list 
T ime  Complexity 

Operat ion CM DSM 
1. Mark list in PEs e 1 
2. Build pointer tree e + log(n) - 

3. SUM by pointers log(n) -- 

4. SUM by network 1 

Total Algorithm e + log(n) 1 

The worst case time for the CM algorithm in Example 
2 is O(n)  for a severely fragmented list. Also the pro- 
grammer may choose, for other efficiency reasons, not to 
implement all APSA DSM pointers implicitly. It is possi- 
ble to maintain a balance between the number of explicit 
pointers and sharing between data structures. This can 
be accomplished under programmer control at runtime. 
These examples also assume that the CM is not running 
as a virtual APSA DSM through emulation routines. As 
mentioned previously, such an emulation could not use the 
CM's address based routing circuitry for general PE ct PE 
communication. 

cause the CM utilizes absolute location-based addressing, 
and therefore cannot efficiently shift large blocks of data, 
it must represent updates to lists using explicit pointers. 
Dereferencing explicit pointers serializes data parallel op- 
erations and accounts for the decrease in performance. 

5. Othe r  Archi tec tures  

The DSM unit of the APSA machine is the only ar- 
chitecture described in the literature that devotes signifi- 
cant power and circuitry to a structure that is not part of 
the memory map. Other tree-based topologies have been 
described, yet in each case long-term storage is allowed 
at  all levels. At first glance, this architecture may seem 
similar to the FFPM [3] since it is a tree based topol- 
ogy that uses a different design for processors for the leaf 
level. However, there are two major distinctions. First, the 
granularity of the FFPM is much bigger than that of the 
DSM; FFPM processors are approximately two orders of 
magnitude bigger than DSM processing elements. Second, 
the tree network is not used as an interface to a host. In 
fact the FFPM is an MIMD machine that could potentially 
operate without a traditional von Neumann host. 

6. Conclusions 

It is clear that characterizing a massively parallel pro- 
cessor solely on the connection topology between process- 
ing elements is not sufficient. In this paper the linear 

connection topology of the Data Structure Machine's pro- 
cessing elements is able to outperform the binary n-cube 
topology of the Connection Machine processing elements 
by utilizing an additional connection network to the host. 
In this case a binary tree network is able to maintain and 
exploit locality properties within data structures stored in 
the array of processing elements at the leaf level. 

Just as von Neumann machines may be optimal for 1 
to I or few to few operations, and general communications 
networks in massively parallel computer systems, such as 
the Connection Machine, may provide great speedups for 
many to many and many ( 1 to 1) operations, this work 
shows that a limited topology, such as a tree, can yield 
improvements for classes of 1 to many and many to 1 op- 
erations. Algorithms that operate on data structures that 
maintain a locality property are good candidates for inclu- 
sion in this class, and can find an asymptotic speedup on 
the DSM. We have recently extended this class to include 
nested relational databases, circuit simulation, and low- 
level image analysis operations. Further, the scalability of 
the machine can lead to an extremely large P E  per chip 
ratio. This development would allow a moderate number 
of processors in a very small space or could be used to 
build a machine with an enormous number of processors. 

The decrease in the performance of the CM algorithm Acknowledgements 
for linked lists compared to arrays i$ the result of the CM's 
inability to maintain locality witkin dynamic data struc- I would like to thank John T. O'Donnell who devel- 

tures. An array can be thought of as a list with predefined oped the architecture and the programming paradigm for 

length and all pointers represented implicitly. The CM can the Data Structure Machine, and who shared them with 
store and efficiently operate on this structure, however, be- me as my research advisor. 



References 

1. W. Daniel Hillis, The Connection Machine, Cambridge, 
Mass.: The MIT Press, 1985. 

2. W. Daniel Hillis and Guy L. Steele, Jr.,  Data Par- 
allel Algorithms, Commun. ACM, vol. 29, no. 12, 
December 1986, pp. 1170-1183. 

3. Gyula Magb and David Middleton, "The FFP Machine- 
a progress report", Proc. International Workshop on 
High-Level Language Computer Architecture, May 1984, 
pp. 5.13-5.25. 

4. John T .  O'Donnell, A Systolic Associative LISP Com- 
pu ter Architecture with Incremental Parallel Storage 
Management, Technical Report 81-5, Computer Sci- 
ence Department, University of Iowa, Iowa City, 1981. 

5. John T. O'Donnell, "An Architecture That Efficiently 
Updates Associative Aggregates in Applicative Pro- 
gramming Languages," 1985 IFIP Symposium on Func- 
tional Programming Languages and Computer Archi- 
tecture, Nancy, Fkance, September 1985, Lecture Notes 
in Computer Science 201, pp. 164-189, New York: 
Springer-Verlag, 1986. 

6. John T. O'Donnell, "Parallel VLSI Architecture Em- 
ulation and the Organization of APSA/MPP," Pro- 
ceedings of the First Symposium on the '&ontiers of 
Massively Parallel Scientific Cornpu tation, NASA God- 
dard Space Flight Center, Sept. 1986. 

7. John T. O'Donnell, Timothy Bridges, and Sidney W. 
Kitche1,"A VLSI Implementation of an Architecture 
for Applicative Programming," Future Generations Com- 
pu ting Systems, To Appear. 



DENSE SYMMETRIC NETWORKS FROM LINEAR GROUPS 

L. Campbell and M. Fellows 
Computer Science Dept., Univ of Idaho 

G. Carlsson 
Mathematics Dept., Princeton Univ. 

V. Faber and J. Moore 
Los Alamos National Laboratories 

M. Langston 
Computer Science Dept., Washington State Univ. 

A. Mullhaupt 
Mathematics Dept., Univ. of New Mexico 

H. Sexton 
Lucid, Inc., Menlo Park, California 

ABSTRACT 

An algebraic approach to the problem of constructing large 
networks of bounded degree and diameter is described. Sub- 
groups of GL[2, n] are employed to provide a number of record- 
breaking constructions in the range of potential engineering 
significance for massive networks. These constructions, all 
highly symmetric, can be viewed as belonging to a family 
of constructions based on vector spaces and their automor- 
phism groups that includes hypercubes and cube-connected 
cycles as special cases. 

Keywords: Cayley Graph, Symmetric Network, Hypercube, 
Parallel Processing, Group. 

lel processing systems. See Table 1. Our main contribution 
is the demonstration of the power of an algebraic approach 
to this problem. For related work see [2.,4.,9.]. 

Entries improved or matched by our constructions are shown 
in bold. Most have been obtained by a small amount of 
searching by simple programs running on small computers 
(such as an IBhI PC). The success of the limited search we 
have so far conducted seems to indicate that further compu- 
tational exploration may improve many more entries. 

D 

INTRODUCTION 

A 
The problem of constructing large graphs of a given degree 
and diameter (called dense graphs) has received much at- 
tention, and is significant for parallel processing because it 
models two important constraints in the design of massively 
parallel processing systems: (1) There are limits on the num- 
ber of processors to  which any processor in the network can n 

be directly connected, and (2) The distance between any two 
processors in the network should not be too great. Other 
applications of dense networks include shared-key crypto- 
graphic protocols and the design of local area networks. See 
[3.,6.] for recent surveys. 

In this paper we provide evidence that the table of largest 
known constructions for small values of the two parameters 
can be improved "almost everywhere" by methods based on 
finite groups. In many entries the constructions we report 
are dramatically larger than the best previously known and 
many of these improvements are in the range of the num- 
bers of processors currently being considered for large paral- 

Table 1 



ALGEBRAIC SYMMETRY AS AN ORGANIZING PRIN- 
CIPLE FOR PARALLEL PROCESSING. [ : ] order 2 [ ] order 52 [ l; : ] order I4  

There are important considerations apart from degree and Example 2 Degree 6 ,  diameter 10 : 682,080 vertices. ( ~ e s t  
diameter that must figure in any choice of network topology previous : 199,290.) 

for parallel computation. Our approach yields symmetric This is a Cayley graph on the group GL[2,29]. The genera- 
constructions, and we believe that in this lies their greater tors are the following elements together with their inverses. 
value. Symmetry is one of the most powerful and natural 
tools to apply to the central problem of massively parallel 
computation: how to organize and coodinate computational [ 2: ] order 28 [ 118 :: ] order 28 [ 2: ] order 840 
resources. 

The symmetries of the networks we describe are represented 
by simple algebraic operations (such as 2 by 2 matrix multi- Example 3 Degree 10, diameter 5 : 12144 vertices. 
plications and modulo arithmetic). The main advantage of 
algebraic networks is that the developed mathematical re- (Best previous : 10iOOO-) 

sources of 'debra are structure the problems of This is a Cayley graph on the group SL/2,99/ The generators 
testing, data exchange, message routing, scheduling and the are the following elements together with their inverses. 
mapping of computations onto the network. The appeal of -. 

hypercubes, cube-connected-cycles, butterfly networks and 
others rests in large part on this same availability of easily [ ,: ,:I order 11 [:: : : ] o r d e r  11 [ :; ] order 22 
computed (and comprehended) symmetries. These popular 
networks and those that we describe all belong to a class of 
algebraic networks based on vector spaces and their symme- 
try groups. For recent algebraic approaches to routing al- [ :: ; ] order 22 [ 1; :: 1 order 24 
gorithms, deadlock avoidance, emulation and scheduling for 
algebraically described networks of this sort see [1.,2.,7.,8.]. 

The next section describes our basic approach and some ex- 
amples of our constructions. 

TECHNIQUE AND EXAMPLE CONSTRUCTIONS 

A network is (vertex-) symmetric if for any two nodes u,v 
there is an automorphism of the network mapping u to v. 
Every Cayley network is symmetric (symmetries are given 
by group multiplication). If A is a group and S E A is a 
generating set that is closed under inverses, i.e., S = SUS-', 
then the (undirected) Cayley graph (A, S )  is the graph with 
vertex set A and with an edge between elements a and b 
of A if and only if a s  = b for some scS. It is remark- 
able (but, indeed, natural) that most networks that have 
been considered for large parallel processing systems (in- 
cluding hypercubes, grids, cube-connected-cycles and but- 
terfly networks) are Cayley graphs. The degree of a Cay- 
ley graph (A, S )  is A = IS/ and the diameter of (A, S )  is 
D = maxoc~{mint  : a = sl . . . s t ,  sics for a = 1, .  . . , t ) .  

Example 1 Degree 5, diameter 7 : 4368 vertices. (Best 
previous : 2988.) 

This is a Cayley graph on the subgroup of GL[2,13]consist- 
ing of the matrices with determinant in the set (1,-1). The 
generators are the following elements together with their in- 
verses. 

diameter 9 

1_ / 1 GL[2,37] [12,35,23,30]:76 11 (det = r9) [12,4,28,16]:152 -- 



1 [3,4,27,14]:840 
degree 7 480 1 GL[2,5] 1 [0,1,1,0]:2 1 

Parameters 

diameter 4 I I 1 [3,3,3,4]:24 11 [4,3,2,0]:20 

-- - 

S =  sus-' 
degree 6 - ) % % % ~ ~ ~ ] ~ %  1 
diameter 10 [17,13,16,27]:28 

Order 

degree 7 1 911088 

degree 7 
diameter 5 

degree 7 
diameter 7 

degree 7 
diameter 8 

diameter 9 

Group 

2016 

39732 

101232 

diameter 10 

Generatomorder 

diameter 5 

diameter 7 

diameter 8 

index 2 in 
S L[2,43] 
(/if 11) 

index 18 in 
GL[2,37] 

index 2 in 
GL[2,37] 
(det = r Z )  

GL[2,37] 

GL[2,10] 

index 10 in 
GL[2,31] 

(det = r") 

index 4 in 
GL[2,37] 
(det = r 4 )  

1 [0,26,3,1]:171 

References 

degree 8 
diameter 9 

degree 9 
diameter 8 

degree 10 

[I.] S.B. Akers and B. Krishnamurthy, "On Group 
Graphs and Their Fault-Tolerance," IEEE Trans. on 
Computers, 36(1987) 885-888. 

* 

[2.] F. Annexstein, M. Baumslag and A.L. Rosenberg, 
'Group Action Graphs and Parallel Architectures," 
COINS Technical Report 87-133, Univ. of Mass., 
Amherst, 1987. 

Order Parameters 

1822176 

682080 

12144 

[3.] J.C. Bermond, C.  Delorme, and J.J. Quisquater, 
"Strategies for Interconnection Networks: Some 
Methods from Graph Theory", Journal of Pamllel 
and Distributed Computing 3, pp. 433-449 (1986). 

[4.] J. Bond, C. Delorme and W.F. de La Vega, "Large 
Cayley Graphs with Small Degree and Diameter," 
Rapport de Recherche no. 392, Dec. 1987, Orsay. 

. 

Group 

GL[2,37] 

GL[2,29] 

SL[2,23] 

[5.] G. Carlsson, J. Cruthirds, H. Sexton and C. Wright, 
"Interconnection Networks Based on a General- 
ization of Cube-Connected Cycles," IEEE Trans. 
Comp., C-34(1985), 769-772. 

Generatoworder 
S =  sus-' 

degree 10 
diameter 8 

degree 12 
diameter 5 

[12,13,34,33]:18 
[35,3,19,35]:684 
[26,10,36,31]:1368 
[36,6,20,10]:36 
[0,1,1,0]:2 
[5,22,18,26]:14 
[17,15,21,4]:840 
[2,5,10,21]:840 
[23,12,11,21]:840 
[9,0,18,18]:11 

(6.1 D.V. Chudnovsky, G.V. Chudnovsky, and M.M. Den- 
neau, 'Regular Graphs with Small Diameter as Mod- 
els for Interconnection Networks," manuscript. 

1822176 

24360 

index 18 in 
GL[2,37] 

(det = r") 

SL[2,29] 

17.1 F.R.K. Chung, "Diameters of Graphs: Old Problems 
and New Results", Bell Communications Research, 
Morristown, NJ 07960. 

[35,10,17,~32]:684 
[5,31,35,14]:684 
[11,3,33,7]:1368 
[9,12,6,26]:456 
[21,12,22,5]:57 
[1,18,3,26]:58 
[17,20,14,8]:30 
[15,6,20,10]:30 
[23,28,28,19]:28 
[26,14,11,16]:28 
[16,7,28,25]:28 

[8.] V. Faber, "Global Communication Algorithms for 
Hypercubes and Other Cayley Coset Graphs," tech- 
nical report, Los Alamos National Laboratories, 
1988. 

[9.] M. Fellows, "A Category of Graphs for Parallel Pro- 
cessing," technical report, University of Idaho, 1988. 



PRECEDING PAGE BLANK NOT FILYED 

A MASSIVELY PARALLEL PROCESSING SYSTEM 
BASED ON A HYPER-CROSSBAR NETWORK 

C. Chin and W. Lin 
General Electric Company 1 CRD 

Corporate Research and Development 
Schenectady, NY 12301 

ABSTRACT 

Based on the advanced technologies, VLSI and HDI (High 
Density Interconnection), a parallel processing system con- 
sisting of 1024 processors is proposed. A special feature of 
this system is the reconfigurability of data communication 
channels between processors, achieved by using a hyper- 
crossbar interconnection network which facilitates a multi- 
processor system to operate as a SIMD, MLMD, MSIMD, ... 
etc. Each processor possesses two communication channels, 
separately connected to a local crossbar network and to a 
global crossbar network (which are sub-networks of the 
hyper-crossbar network) for local communication and global 
communication, respectively. Processors connected to the 
same local network form a processor cluster for the execu- 
tion of systolic-may-type algorithms. Primarily imple- 
mented by LINC chips, the global networks are able to pro- 
grammably hold or delay operation data to synchronize the 
data flow for generic applications. With the operation speed 
of 20 MHz, the system can reach a peak performance of 40 
billion operations per second. 

Keywords: Computer Architecture, Parallel Processing, 
Crossbar Network, VLSI, HDI, Reconfigurability. 

INTRODUCTION 

Due to the computation demands of the modem applications, 
e.g. image processing, system simulation, real-time graphics 
display etc., the computation power required has reached bil- 
lion operations per second or even higher. Given a general 
VLSI/CMOS operating clock speed, i.e. 10-40 MHz, it 
becomes necessary to develop a system with over thousand 
processors to achieve the required performance. Due to the 
communication demands from thousands of processors, one 
of the major bottle-necks existing in any multiprocessor sys- 
tem, interconnection communication networks for such sys- 
tems have been recently focused and heavily studied (Ref. 
1-2). 

The most flexible and simplest solution is to have every pro- 
cessor connected to a global crossbar network which pro- 
vides essentially a non-blocking communication link. 
Because of the technology limitation, this type of network is 
not feasible for a large scale system containing over 
thousand processors. In this paper, an alternative approach, 
i.e. a hyper-crossbar network based parallel processing sys- 
tem, is proposed. Because of the hyper-crossbar network, 
the proposed general-purpose multiprocessor system can be 

configured to operate as a SIMD, MIMD, MSIMD, ... etc. 
Furthermore, fault-tolerance capability can be enhanced by 
this approach. 

1024-by-1024 Hyper-Crossbar Network 

I Distributed Main Memory 
I 

L - -  - - - - - - -  - - - - - -  - J 

Figure 1. The system architecture 

SYSTEM ARCHITECTURE 

The proposed parallel processing system has 1024 proces- 
sors, a hyper-crossbar network, and a distributed main 
memory, as shown in Fig. 1. Processors are addressed by 
10 bit binary codes d9ds . . . dl&. Each processor consists 
of a node-level crossbar network, a processor controller, a 
multiplier, an ALU, a shifter, and a register file, as shown in 
Fig. 2. In the system, there are 1024 local memories which 
are individually attached to 1024 processors. The collection 
of all local memories forms the distributed main memory of 
the system. Through the node-level crossbar network, 
operands for the three operators, i.e. multiplier, ALU, and 
shifter, are provided by four resources: register file (two 
channels), operation results from previous clock cycle, local 
memory, and extemal (through the hyper-crossbar network). 
The operation results can be either temporarily saved in the 
register file, transmitted to other processors, or stored in the 
local memory. 

Selectors in a processor provide an option for a half-word 
operation, while registers hold operands for a certain period. 
The controller which controls all operations in the processor 
receives global commands from the extemal and selectively 



executes commands pre-stored in the local memory. The 
local memory is partitioned into two banks to facilitate the 
memory sharing and updating process. While one bank is 
being used to serve for the processor control, the other can 
be updated or read by other processors through the node- 
level crossbar network at the same time. There are no dupli- 
cated copies for information stored in the main memory to 
avoid memory incoherence problems (Ref. 2). 

Figure 2. The architecture of a node processor 

There is a hyper-crossbar interconnection network connect- 
ing all processors together. Instead of using a tightly- 
coupled connection, the hyper-crossbar network is an accu- 
mulation of many individual crossbar networks. The net- 
works are partitioned into two groups, i.e. local network and 
global network. Processors with the same four leading 

Figure 3. The hyper-crossbar network architecture 

DELAY 
CONTROL PATTERN MEMORY 

REGISTER 

FiFOlDELAY 
CONTROLLER CONTROL PATTERN REGISTER 

INPUTS {mF2F@ (FIFOIPD) 

Figure 4. The LINC chip block diagram 

address code d9d8d7d6 are connected to a 64-by-64 local 
crossbar network. Those processors which are connected to IMPLEMENTATION CONSIDERATION 
the same local crossbar network form a processor cluster. 
Processors with the same six trailing address code 
d5d4d3dzdl% are also connected together through a global 
16-by-16 network which consists of 4 sets of LINC chips 
(Ref. 3) as shown in Fig. 3. Each set consists of fourleight 
LINCs operating in parallel in order to provide 16-biU32-bit 
wide communication channels. All the 16 local crossbar 
networks and 64 global networks are controlled by a host. 
The host determines the connection patterns, depending on 
the data flow specified in parallel computation algorithms. 

The architecture of LINC chip is shown in Fig. 4. The chip 
has eight 4-bit data-paths consisting of an 8-by-8 crossbar 
network, either a FIFO or a programmable delay register for 
each of its inputs, and a pipeline register file for each of its 
outputs. The connection pattern between sources and desti- 
nations (including broadcasting) is determined by the control 
pattern register which is updated by the preloaded control 
pattern memory. Wider data channels can be achieved by 
combining more LINC chips together, while using the same 
control signals. With the reconfigurability and programma- 
bility, provided by LINC chips, data flow through a global 
network can be synchronized and redistributed. 

OUTPUTS 

The area complexity of a node processor has been studied. 
Using a 1.2 um CMOS technology, a node processor (Local 
memory is not included.) occupies an area of 340-by-340 
mil2 (Ref. 4). In other words, a 4-inch wafer can accommo- 
date more than 80 node processors. Thus, it is sufficient to 
include one entire processor cluster on a single wafer. The 
associated 64-by-64 local crossbar network may also be 
incorporated on the same wafer to interconnect the node pro- 
cessors as shown in Fig. 5. By using the strategy of device 
redundancy, it is reasonable to assume that the network is 
fault free. 

The area required by a crossbar network is due to switching 
circuits and data wiring. Although the area complexity of 
the crossbar switching circuits is known to be o(N'), where 
N is the number of network terminals, the actual area 
required for the circuits is almost negligible (only N transis- 
tors per channel as shown in Fig. 5). This is particularly 
true when the switching circuits are compared with 100 
thousand transistors in a node processor. It is estimated that 
the wire routing area required for the proposed crossbar net- 
work is 2W-B.N.S, where W, B, N, and S are the pitch 



width, the channel bits, the network terminals, and the pro- 
cessor perimeter length, respectively. For the case of W = 4 
um, B = 16 bits, N = 64, and S = 4 mm, the routing area is 
about 16 mm2 which is much less than the 64-processor 

1 2  area, i.e. 64x4 mm . It can be also shown that the multi- 
stage interconnection network requires 2W.B.S.N.((logN )-I) 
routing area on a silicon. It is larger than the area of a 
crossbar network by a factor of log N. 

Figure 5. An implementation of a distributed 
local crossbar network 

Other implementation alternative is to use the high density 
interconnection (HDI) packaging technology (Ref. 5). HDI 
connects signal VO pins between bare chips (unpackaged 
chips) with copper wires by using laser-patterned polymer 
layer overlays laminated the chips mounted on a silicon sub- 
strzte. By using VLSI technology in conjunction with HDI, 
a very reliable processor cluster embedded in a distributed 
64-by-64 crossbar network (as shown in Fig. 5) can be 
easily implemented in a package without any wire routing 
problem. Similarly a global network could also be realized 
as a network device. In this way, the system volume is 
reduced, and the system structure is moclulized to facilitate 
the system expansion. 

SYSTEM APPLICATIONS 

In general, the system is designed as a general purpose 
machine. The data links between processors can be 
configured into almost any possible pattern for computation- 
intensive applications. 

Image Processing 

By programming the connection pattern in the hyper- 
crossbar network, the proposed system can be configured as 
a array-type multi-processor system to process matrix opera- 
tion or pixel computation for image processing applications. 
In Fig. 6, an image processing algorithm is partitioned and 
distributed into different processor clusters (MSIMD). Clus- 
ters are pipelined together through global networks to sim- 

plify instruction flow and to enhance data throughput. The 
local network in a cluster can be programmed not only to 
emulate a mesh-connected network for neighborhood com- 
munication, but also to provide direct communication chan- 
nels for global interactions within a cluster. Intermediate 
results, generated by each pipeline segment (i.e. processor 
cluster), can be re-directed, broadcasted, or delayed to main- 
tain a synchronized operand flow by the global networks. 

Figure 6. A pipeline configuration for image processing 

Parallelized Looping 

Besides the mesh connected pattern, the processors can be 
configured as a multichannel pipeline to compute multi- 
level loop instructions in parallel as shown in Fig. 7. The 
local networks provide communication links to pipeline the 
inner loop instructions, while the global networks support 

For j - l m i  Do 
Fa I - I t 0 1  Do 

I t  f I  

u. l2 flI(1). Il(L.11) 

13 fl P ~ z J - 1 1 .  U ( 0 )  
I4 (4 (14(1j I). 13(i)) 

End 

End 

Figure 7. A multi-channel pipeline to execute multi-level 
loop instructions 



data communication between different loops. Because of the 
programmable delay egisters (FDR) and the pipeline regis- 
ter files equipped in LINC, which is the fundamental build- 
ing block of the global networks, data synchronization and 
dependency problems can now be easily resolved. Other 
interconnection patterns or any combination of different pat- 
terns may also be established to execute MIMD, MSIMD, or 
other generic operations. 

Object Domain Space Domain 

(SPHERE) E l  (SPXERE) 
___+ 

CcueE) Space Panition 

PE 3 P E 4  CCVBE) PE 10 PE 11 

CcvsE) 

Figure 8. Image object redistribution and 3-D image 
generation 

3-D Graphics Display System 

An advanced real-time 3-D graphics display system has to 
manipulate numerous 3-D image objects in a display win- 
dow. It usually requires a computation capability in the 
order of 10 billion instructions per second. Using parallel 
processing, as provided by the proposed system, is the only 
solution to enhance computation strength for satisfying the 
requirement. A special space partition algorithm (Ref. 6) to 
efficiently use multiprocessor elements for real-time graphics 
display is developed and shown in Fig. 8. The algorithm 
requires a flexible communication network to support its 
adjustable space partition and processor assignment, 
described in Fig. 9. Given the hyper-crossbar network of 
the proposed system, a flexible environment can be esta- 
blished to partition image space in various topologies which 
are required by high performance 3-D graphics display 
applications such as pilot training and mission rehearsal. 

Figure 9. A 3-D cube architecture and the associated 
image space partition 

PERFORMANCE EVALUATION 

The performance of the proposed system is evaluated in two 
ways, computation capability and communication capability. 
Operating at the speed of 20 MHz, each processor can per- 
form 40 million operations per second. In total, the system 
can provide the peak performance of 40 billion operations in 
every second. It satisfies the speed requirement for most 
modem applications. The network capacity is determined by 
the number of channels, the channel width, and the network 
speed. Given a regular CMOS operating speed, i.e. 20 
MHz, a 64-by-64 local crossbar network with 32 bits wide is 
able to transmit 40 billion bits in a second. In other words, 
each processor can transmit or receive over 320 million bits 
per second. Similarly, it can be easily estimated that a glo- 
bal network provides each processor with the same commun- 
ication capability. 

CONCLUSION REMARKS 

Operating at the speed of 20 MHz, the system can reach the 
peak performance of 40 billion operations per second. 
Because of the reconfigurability provided by the hyper- 
crossbar network, the average performance can be easily 
optimized to approach this peak performance. Systems with 
more processors can be achieved by either expanding the 
network size or introducing higher levels of crossbar net- 
works. Furthermore, failed processors can be dynamically 
by-passed, without interrupting the system service. 

REFERENCES 

1. T.Y. Feng, "A survey of interconnection networks," 
IEEE Computer, December 1981, pp. 12-30. 

2. K. Hwang and F.A. Briggs, Computer Architecture and 
Parallel Processing, McGraw-Hill Book Co., New York, 
March 1984. 

3. C.Y. Chin, W.T. Lin, J.P. Hwang, S. Chu, G. Forman, R. 
Dunki-Jacobs, S. Karr, J. Mallick, H.T. Kung, A. Suss- 
man, F.H. Hsu, and T. Nishizawa, "A dynamically 
reconfigurable interconnection chip," I987 IEEE Interna- 
tional Solid-State Circuits Conference Digest of Techni- 
cal Papers, Vol. XXX, Feb. 25-27, 1987, pp. 276-277. 

4. C.Y. Chin, G. Buchner, T. Chang, M.J. Hartman, C.Y. 
Ho, J.R. Jasica, D.E. Orton, and W.D. Smith, "10 MHz 
IC's for graphics processing designed on a silicon com- 
piler," 1988 IEEE International Solid-State Circuits 
Conference Digest of Technical Papers, Vol. XXXI, Feb. 
17-19, 1988, pp. 164-165. 

5. C.W. Eichelberger, R.J. Wojnarowski, R.O. Carlson, and 
L.M. Levinson, "High-density interconnects for elec- 
tronic packaging," Proceedings of SPIE, Vol. 877, 
Micro-Optoelectronic Materials, January 1988, pp. 90- 
91. 

6. C.Y. Chin and W.T. Lin, "A high performance VLSI 
architecture for computer graphics," Visual Communica- 
tions and Image Processing Ill, November 1988. 



HYPERCOMPUTERS: DESIGN AND ARCHITECTURE 

Ron Coleman and Michael Post 
Department of Electrical Engineering and Computer Science 

Polytechnic University 
Brooklyn, New York 11201 

(718) 210 - 3440 

Alan Waksman 
Plex Systems Research, Incorporated 

New York City, NY 10016 
(212) 686- 9600 

ABSTRACT 

In this paper we introduce the Hypenmputer supercomputer, a r m n -  
figurable, massively parallel architecture, a 9,072 processor prototype cur- 
rently planned. The hypercomputer architecture family is based on arrays 
of a simple and autonomous unit logic entity, the universal cell. Physically 
wired in a uniform, eight-degree mesh, the universal cell is a pipelined, 8- 
bit microarchitecture that provides the logical manifestation of processor 
elements, switch lattices, memory units, et cetera. In this sense, we say the 
hypercomputer family is honeycomb reconfigurable. The mesh array is 
supported by a separate 3D, parallel I 0  network which provides real-time 
I 0  in the planar dimension and distributed configuration and 
synchronization along the polar dimension. The programming model, 
which is integral to our design, is based on a new concept we call computa- 
tiond holism whereby increasingly abstract and logically skamless clusters 
of tightly coupled cell chunks or uctm give rise to parallel and highly spe- 
cialized centers of computational activity. The software realization of this 
holistic approach is embodied in hypenvum, an objcct-oriented, visually in- 
teractive environment for composing algorithmically specialized actors. 

Reconf~wable, parallel architectures offer much greater promisc for 
performance over a diverse range of algorithms by restructuri~lg 

their logical resources to accomodate the control or data characteristics 
of the algorithm. However, in the context of massive parallelism, recon- 
figuration places additional demands on efficient use of otherwise redun- 
dant architectural resources. By simple extrapolation, the rationale for 
building large machines is obvious: many cornoutationally intensive . - 

an opportunity for attack by massively bara~elim. 
Traditional analyses of scalability have focused mainly on upward 
scalability. Unfortunately, upwid scalabity does not account for non- 
ideal circumstances ( l i e  routing collisions) in which large systems may 
hampered by their size. Recently. a new scalabilih analvsis called 
do&wards&ability (Ref. 1,2) h;s emerged whidh prohdes design 
motivations for architectures to "scale-down" into smaller, more efticient 
subnetworks in which the overhead (eg., communication delay) is propor- 
tional to the size of the subnetwork. Thus, it can be shown that no multi- 
stage network (e.g., shared memory &signs) is downward scalable. On 
the contrary, mesh and torus architectures (cog., non-shared memory 
designs) are indeed downward scalable since data proximity (i.e., locality) 
can be exploited by nearest-neighbor communications. 

Several r t w n f i a b l e  architectures of this latter class, generically called 
spatial ~ c l y s  (Ref. 3,4,5), have been suggested in the style of Snyder's 
seminal CHiP processor architecture (Ref. 6) and the more general fype 
mhitectun (Ref. 7). In both cases, the primary design goal is the estab- 
lishment of subnetworks which correspond to algorithmically specialized 
structures. When composed, these structures capture the natural locality 
and regularity of the underlying problem. A sipXcaat advantage of this 
approach to parallelism is that many VLSI and systolic algorithms can be 

readily implemented. Physically, the spatial array design is characterized 
by a two dimensional mesh of processor elements with an embedded 
switch lattice either integrated in the mesh plane or in a separate, parallel 
plane. Spatial arrays of this kind have been favored not only for their 
downward scalabity but their upward scalabity and bounded degree 
(i.e., modularity) all of which exploit the physical constraints of VLSl im- 
plementation. In this paper, we introduce the Hyp~nomputer supercom- 
puter concept, a 9,072 processor prototype planned for construction at 
Plex Systems Research, Inc. in New York City. The Hypercomputer fami- 
ly represents an experimental extension of spatial arrays to their logical 
extreme in both architecture and magnitude. What is new in this ap- 
proach is that we mafry the two concepts of reconfiation and massive 
parallelism in an utterly simple, and uniform design. We also suggest how 
certain practical problems are solved in this framework with respect to 
other spatial array designs: namely, architecture and programming. 

ARCHITECTURE 

Universal Cell Array Phne 

At its foundation, hypercomputers are based on an eight-degree mesh of 
an autonomous unit logic entity called the univcrsd cell. Physically, the 
universal cell is a microarchitecture with an pipelined, &bit data path, 48 
8-bit general purpose registers, some control registers, flags and a 1 m 2 -  
bit control store. Although pipelining is not crucial to our design, we have 
concluded that its performance (see Table 1) is well worth the small cost: 
e.g., < 100 transistors of hardware-assisted support is required in the 
microcontroller. We achieve this low cost by delegating almost all the 
usual hardware features to software: the microinstruction firing control is 
static, beiig computed at compile-time and encoded in the previous 
microinstruction (Ref. 8). That is, each microinstruction contains a 
horizontal 3-bit field which has the relative cycle tick on which the next 
microinstruction is to be loaded from the control store into its cor- 
responding microinstruction register. At compile-time, two software 
modules called the linear accelemtor and the horizontal accelemlor 
schedule the execution of each microinstruction based on local and global 
flow analvsis. The linear accelerator compacts the microcode temporally 
by m&g. the pipeline delay and the horizontal accelerator &mpa& 
the microcode temporally and spatially by collapsing the operationsand 
reordering their sequence. Horizontal acceleration is based on the con- 
cept of trace scheduling as used, for example, in VLIW architectures 
(Ref. 9). 

In the data path, stage 0 provides l-bit shift (input A) and incre- 
menudecrement (input B) as preloading to  the-^^^, stage 1. The ALU 
computes three binary functions with programmable feedback to stage 0. 
The functions are add, bit-wise nor, and bit-wise md. Stages 2 and 3 
provide incremenudecrement (also with feedback to stage 0) and l-bit 
shift, respectively. With the exception of the single control microinstruc- 
tion, branch which operates in one cycle, each microinstruction requires 
four cycles (1 cyclelstage) and once an instruction begins execution (i.e., 
"fues"), it runs uninterrupted to completion. See F i r e  1. Very longwith- 
metic or VLA processing is a useful application of micropipeling. 



Table I. R j j e h e  effects. 

Specifically, @ter chaining is made possible whereby mutiple registers 
are treated as a single multibyte register so that for example, by chaining 
all 48 registers, a VLA 384-bit shift can be computed in 52 cycles (with 
pipelining) as opposed to 191 cycles (without pipelining). We employ this 
technique extensively for all 32-bit arithmetic, f w d  and floating point. 
Since the universal cell does not have an index register (pointing to its 
own register file), we also use VLA for indexed, table processing wbere 
for example, in the Fourier transform, VLA is used to retrieve entries 

Figun 1. Univcmal cell pipelined data path. 

from the "twiddle factor" table (Ref. 10) and in CORDIC processing, the 
tan-' table (Ref. 11). 

A cell is interfaced to its eight neighbors through extensions of the data 
path collectively called thesynqse in which there are four bidirectional, 
8-bit channels: alternatively, we can think of the synaptic channels as a 
very small amount (four bytes) of edge-shared memory. Physically, the 
synpatic channels are implemented as a -bit serial shiiter whose activa- 
tion is controlled by a pair of mask registers, one for OR-parallel input 
and one for AND-parallel output (i.e., local broadcast). By altering the 
mask registers, a cell can dynamically c o n f i i e  its I 0  structure. Hence, 
interprocessor communication is based on the wlueparsing paradigm. 

Because of the universal cell's generality, the manifest physical com- 
ponents of other spatial arrays designs--namely, processor elements, 
switch lattices and passive, external memory (or combinations therof)-- 
these items can be configured logically through the universal cell by 
r e d e t i i  the cell's operational microscript. In this sense, hypercom- 
puters are honeycomb reconligurable (Ref. 15). 

Whereas the universal cell array plane is the focus of all compute-bound 
and local 10, another c o ~ e c t e d  but autonomous I 0  network is the focus 
of global 1 0  to the array plane as a whole. This global I 0  network, generi- 
cally called thegIobal bur, is not a bus per se but is really two subnetworks 
which support the array plane in three dimensions. One perspective of 
the system architecture is depicted in F i e  2. Theplanar controller 

drives real-time I 0  in the planar dimension: that is, along the peripheral 
edges of the array plane. Thepolar controller drives configuration and 

System Bus 

Figun 2. System hhitecture. 

synchronization through the polar dimension: e.g., setting the general pur- 
pose re&ters, the 1 0  mask registers and loading the control store. Also. 

the event that planar I 0  at ;he array edges cannot reach cells em- 
bedded in the interior, the polar controller can perform real-time 10  by 
r e c o n f i  the general registers of these interior cells. Such a scenario 
could arise if, for example, the embedded algorithmic structure is en- 
folded in the plane to && cell density. 

Each 1 0  controller serves a small subnetwork of Multiple Instruction 
stream, S i e  Data stream (MISD) I 0  processors (IOPs) each con- 
nected to one another and the controller through a high-speed broadcast 
bus. It is these IOPs which actually communicate with the array plane. 
See F i e  3. For example, the polar IOPs physically partition the array 
plane into redangular parallel sectors. The IOP can address the ells in 

NIhvork 

Array Rane .' 
* ----....... /  MU lop 

IOP 
Network 

Figure 3. I 0  Architecture. 

the parallel sector discretely, cell by cell or globally through parallel sec- 
tor-wide broadcasting. The planar IOPs physically partition the array 
plane at the periphery into P linear parallel sectors or A-parallel sectors. 
Thus, the host CPU controls the entire machine only indirectly through 
the substantially fewer networked IOPs. Typically, the host will broadcast 
a stream of spatial directives (i.e., high level commands) which describe 
how to c o n f i i e  the logical regions of the array plane. All polar lOPs lis- 
ten for directives which address their particular parallel sectors and ex- 
ecute pre-compiled, locally stored mount scipts; these mount scripts may 
in turn invoke other mount scipts or configure the cells under its parallel 
sector jurisdiction directly. A similar process occurs for the planar IOPs. 
This I 0  scheme solves two major practical problems each greatly mag- 
nified in the context of massive parallelism. First, the problems of reliably 
distributing global control signals--power, ground and clock--is avoided. 
Second, I 0  can also proceed in parallel, avoiding a bottleneck in host- 
only operations. 

PROGRAMMING 

Computational Hdism 

The limitations of fuced parallel architectures become evident if we con- 
sider that many real-world problems are analysed as a set of smaller, 
coope~tivr subproblems each of which may be realized by different algo- 
rithmically specialized organizations. In this model, parallel computation 
is carried out cooperatively, without global control and using composed, 
locally interaclive agents. Synder (ref. 6) was the first to investigate this 
technique by way of the CHiP processor architecture. However, coopera- 
tive computation remained merely a useful, secondary mechanism to 
program the CHiP processor: the primary mechanism was Poker (Ref. 
13,14), a process-oriented language developed to explicitly program each 
of the machine elements, regardless of their numbers. Milutinovic and 



Milutinovic (Ref. 15) suggested the possibility of cooperative wmputa- 
tion using multicell CPUs, memories and buses but carried their abstrac- 
tion only to this level. Moreover, we have envisioned scenarios where the 
collective behaviour of a cell group may express much more fluid charac- 
teristics, perhaps being CPU-like for a while, then memory-like and so 
on. In general, we believe above approaches become impractical in a mas- 
sively parallel framework. We believe this provides sufficient motivation 
for a disciplined approach to functional and hierarchical integration 
which can specify abstract and arbitrarily complex computational be- 
haviors. 

We now introduce an approach which allows us to escape the grueling 
details involved with large conglomerations of cells. In this model which 
we call computational holism, objects or actors (Ref. 17) form hierarchies 
of logically continuous compositions of cell ensembles or chunks which 
cooperate as a single whole giving rise to parallel and highly specialized 
centers of computational activity. At the lowest level, the primitive actors 
which make a chunk are strongly interactive, communicating frequently 
and efficiently, exploiting locality preserved by the cellular mesh. In turn, 
these specialized, low level chunks participate in cooperative computa- 
tion with one another and so on in a hierarchy. Thus, we achieve both 
functional and hierchical integration. Moreover, this approach maps 
directly to an object-oriented, visual programming environment we call hy- 
wrware. (In the next subsection. we discuss hwerware and how its mans . . 
b t o  the hypercomputer.) ~rom' the  programmers point of view, hyper: 
ware is more than a medium for expressing hypercomputer algorithms: it 
is the hypercomputer, although thiphysi& ddtails ofbaralleisectors and 
global communication are transparent. As such, the map from the 
programmer input to hypercomputer semantics is direct: parallelism is 
not inferred. The programmer actually makes full use of the machine effi- 
ciently. In addition, the programmer can choose the level of abstraction, 
suppressing details in one case and enhancing them in another. 

The software realization of computational holism is embodied in a visual- 
ly interactive environment called hyperware. From the user's point of 
view, hyperware presents two abstract "window" spaces which interact 
with the user: the composition space where actors are composed and the 
work space where actors are staged for functional or spatial manipulation 
prior to being "chunked" in the composition space: that is, the work space 
actor becomes part of a larger, tightly coupled assembly of other composi- 
tion space actors. In one level of detail. the chunked actor relinauishes its 
simpler, individual identity (e.g., its primitive cell characteristics) to col- 
laborate in the expression of a more complex, logically seamless identity. - .  
As a whole, the aimciation consistutes &other more abstract actor. 1n hy- 
perware, all actors arefirst-class, regardless of their constitutions. Al- 
though there is one actor per window, each space may have multiple 
windows so that several actors can be composed simultaneously. Also, 
each space is local with relative spatial coordinates in the mesh array 
global, absolute binding takes place at configuration-load time. Prograrn- 
ming begins in one of two ways: either defining a new, primitive actor 
(which maps directly to a physical cell) in the work space or alternatively, 
retrieving a previously defined primitive or complex actor from a library 
of actors. If the actor is new, we supply a script of microinstructions (i.e., 
a microscript) which defines the local computational and communication 
behaviors. This level of detail is the "suppressed" and compiled so that we 
deal only with an object having a set of input and output ports. These I 0  
port details can also be suppressed but at least one port must remain 
"visible": after chunking the actor, the unsupressed ports are used to con- 
nect other actors. This process continues until a new, more complex actor 
is fully composed. The newly composed actor can be returned to the work 
space for further manipulation including enhancing or suppressing port 
details, spatial fixation (i.e., rotating, flipping, flexing, growing, etc.). Al- 
ternatively, the actor can be written to a library of actors to be used later. 

These ideas are best illustrated with a simple example: in this section we 
consider building a tree structure of actors. In the next section, "Applica- 
tions", we show a much more complex, hexagonal actor and its applica- 

tions. In Figure 4, the root of the subtree is already in the compostion 

Composition Space Work Space 

Figure 4. Tree composition in hypeware. 

Composition Space Work Space 

Figure 5. Rotation and chunking of work space actor. 

space and a triple chunk is being prepared in the work space. In each 
space, the lettered arrows represent output ports and the numbered ar- 
rows, input ports. The goal is to compose the work space and composi- 
tion space actors, creating a new actor. The user has only one simple 
syntax rule to observe: that is, unsuppressed inputs must be connected to 
complementary unsuppressed outputs or vice versa. Suppressed details 
obey this rule implicitly. (Actually, the composilion driver will inspect all 
details in the final analysis.) If we chunk the work space actor, connecting 
outputs (in the work space) to inputs (in the composition space), the com- 
position driver will discover only one possibility, namely b*]. (We 
qualify the transfer as above, to constrain the possibilites the composition 
driver will have to consider. The same effect could have been achieved by 
suppressing the composition space actor's input ports.) Figure 5 shows 
still another alternative in which the work space actor is first rotated by 
nI4 radians (counter-clockwise) at the root then chunked. 

APPLICATIONS 

To date, a broad class of manv alnorithms with different configuration . - 
demands have been tested in our design using the hypercomp;ter 
simulator. These include novel algorithms for pattern matchining (Ref. 
l l ) ,  sorting (Ref. 12), the multidiensional ~ o u r i e r  transform (Ref. lo), 
parallel arithmetic and matrix processing (Ref. 16). We anticipate that 
other applications will also enioy excellent performance on our architec- - - - .  
ture including image processing, field interaction problems (e.g., discrete 
hydrodynamic and Coulombic simulations), connectionist and artificial 
neural systems. In this section, we present a complex, hexagonal actor as 
an example for both matrix multiplication and LU-decomposition. We 
analyse this actor and suggest how it can be architected using hyperware. 

Matrix Multiplication and LU-decomposition 

The hexagonal systolic array due to kiserson (Ref. 18) is the basis of our 
hexagonal actor. Leiserson shows how this fixed computation and fixed 
communication structure can be used for multiplying two matricies, A, B 
such that C = A x B and for factoring a matrixA such that A=L x U where 
L and U are lower and upper triangular respectively. Like the systolic ver- 
sions, the primitive computational agents in our system is the inner- 
product-step actor, flavors of which are shown in Figure 6. Since a 



Figum 6 Inner-product-step actors. 

Figure 7. Hexagonal actor for mabix processing. 

hexagonal array does not map directly into an octagonal array, we use taro 
other primitive actors: one to forward intermediate results along the intt- 
rior of the array and one to forward external inputs-and final result out- 
puts from and to the world outside the actor. Except for the latter t a s 4  
tbe two actors are the same. These three primitive actors are shown com- 
posed (for matrix multiplication) in Figure 7 as the interior, unfdled cells, 
the striped cells and the shaded cells embedded in a 72 cell, 9 x  8 subar- 
ray. All other cells in this array are "dead", acting as data sinks. This com- 
plex actor can also be used for LU-decomposition as per Leiserson (Ref. 
18). 

Since the actor is vertically symmetrical, the actor can be built in hyper- 
ware quite easily: compose the center column and the left hand side as 
two separate actors. Compose the right hand side as a horiintal flip of 
the left hand side. Then, compose the center, left and right hand sides as 
one actor. 

CONCLUSIONS 

We have presented the central ideas of the design and architecture of the 
Hyperwmputer supercomputer concept. In this approach, we believe we 
have solved not only several problems in its own technical design but by 
paying careful attention to simple, feature principles, we have addressed 
a number of critical problems in parallel processing as well. For example, 
many researchers question the relative merits of fine-grain parallelism as 
opposed to course-grain parallelism for attackiig real-world problems. In- 
deed, each approach has its strengths and weaknesses. Our high level 
solution--computational holism--lies somewhere between of the two ex- 
tremes and allows us to capture the power of course granularity without 
losing the flexibility of fine granularity. The performance of the computa- 
tionally intensive multidimensional Fourier transform on the hypercom- 
puter is proof of this claim: see Reference 10. The level of parallelism is 
another major issue of concern: some researchers maintain that paral- 
lelism at the instruction level is simply too low level or too ineficient; al- 
gorithm parallelism at a higher level is preferred instead. Again, our 
solution attracts the benefits of both, one through the simple, uncon- 
strained nanopipeline and the other, through reconfiguration. There are 
other problems in parallel processing in general and massively parallel 
processing in particular (e.g., programming) which we also address but 
space does not permit us to debate the issues fully here. In summary, 

however, we have seen that our integrated approach offers much greater 
promise for high pcrformana om a diverse range of issues, computation- 
4 structural and architectural. 

ACKNOWLEDGMENTS 

Tbk work has been funded in parted by Applied Concepts, Inc.: we a p  
preciate i ts  generosity in supporting our work. We also thank the staff 
members of Applied Concepts, Inc, Sally Huns, and Maria Gonzalez- 
Coleman for their souit of encouranement and assistance. and Haldun 
~adimioglu and thc' Polytechnic parallel Processing ~ r o ; ~  for providing 
insightful technical criticisms and invaluable feedback throughout the 
evzution of many of the ideas presented here. 

REFERENCES 

1. Ma, Y.E., et 4 "Reconfiable Special-Purpose Computers", 
Second I n ~ O n d o n o l  Confnnce on Supe~omputing, May 1987 

2. Ma. Y.E.. Shca, D.G.. "Downward Scalability of Parallel Architec- 
turcs", 77tini ~ie&al Confnnce on ~ u b r c r n ~ u t i n ~ ,  May 1988 

3. Hancu, M.V., Smith, KC., "DYPP: A VLSI Dynamic-Graph En- 
semble Machine", 1988 Intemulional Confewnce on Supercomputing 

4. Koren, I., *A Reconfigurable Fault-Tolerant VLSI Multiprocessor 
Array", 8W Annual Symposium on Computerrchiitectun?, May 1981 

5. Gollakota, N., Gray, G., "Reconfigurable Cellular Architecture", 1984 
Intunah'& Cbnfnnce on Patulkl Aoccssing 

6. Snyder, L, lntrodudion to the Configurable Highly Parallel Com- 
puter", IEEE Computer, 11982 

7 .  Snyder, L., Architectures, Shared Memory and the Corollary 
of Modest Potential", Annual R a i m  of Computer Science, 1986 

8. Lusk, M.E., "A (Linear) Scheduler for the Hypercomputer 
Simulator", Depardnent ofElectncd Enginee~g and Computer 
Science Project Repod, Polytechnic University, May 1988 

9. Colwell, R., "A VLIW Architecture For a Trace Scheduling Com- 
piler", IEEE Tmnsactiolts on Computers, August 1988 

10. Coleman, R., Post, M., Waksman, A., "A Uniform and Recon- 
figurable Framework for tbe Multidimensional Fourier Transform", 
(companion paper), October 1988 

11. Coleman, R., Post, M., "Pattern Recognition and the Multidimen- 
sional Fourier Transform on the Hyperwmputer", Polytechnic Paml- 
lel PrOEessing Group, Polytechnic University, April 1988 

12 Coleman, R., Post, M., "Primary Computational Agents for Sorting 
on the Hypercomputer", Polytechnic Pamilel Pmcessing Gmup, 
Polytechnic University, November 1987 

13. Snyder, L., "Parallel Programming and the Poker Programming En- 
vironment", IEEE Computer, July 1984 

14. Notkin, D., et 4 "Experiences with Poker", Parallel Programming: Er- 
pericnce with Applicahollons, h ~ o n g s ,  and Systems, ACMJSIGPLAN 
Notices PPEALS, 1988 

15. Milutinovic, D., et al, The  Honeycomb Architecturen, IEEE Com- 
puter, April 1987 

16. Lee, C., "Primary Computational Agents for Parallel Integer Arith- 
metic On the Hypercomputer", Department of Electical Engineering 
and Computer Science Project Repod, Polytechnic University, May 
1988 

17. Agha, G., Actors, A MMol of Concurrent Computation in Distributed 
System, MIT Press, 1986 

18. hisetson, C.,Area-Ement VLSI Computation, Ph.D. Thesis, MIT 
Press, 1982 



A REDUCED DIAMETER 
INTERCONNECTION NETWORK* 

K. Efe 
Center for Advanced Computer Studies 
University of Southweatern Louisiana 

Lafayette, LA 70504 

ABSTRACT 

Many interconnection networks have been suggested a s  the  basis for 
parallel computing architectures. In this paper, we propose a network, 
based upon the  hypercube, which we call the multiply-twisted cube. 
This  network preserves many of the  desirable properties of the  hyper- 
cube, but  has a diameter which is only [ (n+ 1)/2] for a n  n-dimensional 
multiply-twisted cube, a reduction of nearly fifty percent compared to 
the ordinary hypercube. We discuss some of the  basic topological p r o p  
erties of multiply-twisted cubes and  present a routing algorithm which 
produces optimal paths. 

Keywords: Interconnection networks, hypercube, parallel processing. 

INTRODUCTION 
An important component of a parallel comr>uter is the interconnection 
network. T h e  designer is confronted with all overwhelming number of 
choices, including cross-bar, shuffle-exchange, butterfly, mesh, hyper- 
cube, hypernet and many others. Among these choices, the  hypercube 
has enjoyed popularity due t o  many of its attractive properties, in- 
cluding regularity, symmetry, small diameter, strong connectivity and 
relatively small link complexity. Other properties of the  hypercube can 
be found in [3, 5, 7, 9, 121. 

The hypercube topology has received much attention in the lit- 
erature due t o  its suitability for general purpose parallel processing 
12, 8, 10, 11, 131. As a result of this focused attention, variation0 of this 
topology have been discovered which improve upon the hypercube. For 
example, Esfahanian et al. [4] introduced a class of networks denoted 
TQ,, for n 2 3, obtained by exchanging any two independent edges 
in a shortest cycle of the n-dimensional hypercube Q,. Introducing 
such a "twist" reduces the diameter from n to  n - 1, preserving many 
desirable properties of the  hypercube. 

Recently, Shiau et al. [14] introduced a method of systematically 
exchanging multiple pairs of edges in an  n-dimensional hypercube, 
achieving a graph with diameter [2n/3] which has many of the  p r o p  
erties of the hypercube. In this paper, we improve these results by 
introducing an  n-dimensional "multiply-twisted" cube MQ, with di- 
ameter [ (n  + 1)/2]. We discuss some of the  basic properties of this 
topology and show that  it too has many desirable properties of the  
hypercube, including regularity, small diameter, and large vertex con- 
nectivity. We also develop a routing algorithm which guarantees a 
shortest path  between any pair of vertices in MQ,. 

PRELIMINARIES 
In this paper,  we use undirected graphs to  model interconnection net- 
works. We refer the reader t o  181 for fundatncnlal graph terminology. 

Let G = (V, E) be a finite, undirected graph. The  distance between 
vertices u and v, denoted d(u ,  v), is the length of a shortest path from u 

-~ - - - 

'This research waa funded by a grant from the Rcscarch Council of the Graduate 
School. University of hlissouri-Columbia. 

P. Blackwell T. Shiau W. Slough 
Computer Science Department 

University of Missouri-Columbia 
Columbia, MO 65201 

to  v. The diameter of G ,  denoted D ( G ) ,  is defined to be max{d(u, v) : 
u,  v E V ) .  The  graphs we consider here, strictly speaking, are labeled 
graphs. We will, however, often make no distinction between a vertex 
and its label. 

T h e  vertez connectivity of a graph G ,  denoted n(G),  is the  minimum 
number of vertices whose removal results in a disconnected or trivial 
graph. (A trivial graph is one with a single vertex and no edges.) 

The  labels we use are binary strings and,  by convention, an  n- 
bit  string is indexed with the  values 0 through n - 1, letting 0 index 
the  least-significant bit. The  notation bn denotes the  string with n 
repetitions of the bit b. G b  denotes the labeled graph obtained by 
prefixing every vertex label in the  graph G with b. 

Two binary strings x = xlxo and y = ylyo are pair-related, denoted 
r - y, if and  only if.(+, Y) E {(00,00), (10, l o ) ,  (01, l l ) ,  (11,Ol)); if x 
and  y are  not pair-related, we write x -/ y. 

Deflnition 1 The n-dimensional multiply-twisted cube, denoted MQ,, 
is the labeled graph defined inductively as  follows. M Q 1  is Ka, the com- 
plete graph on two vertices with labels 0 and 1. For n > 1, MQ, con- 
tains MQ;-, and MQ,!,-I joined according to the following rule: the 
vertez u = O U , - ~ .  . . uo from MQO,-I and the vertez v = 1vn->.  . . vo 
from MQ,?,-l are adjacent i n  MQ, if and only if 

1. u,-a = V,-Z if n is even, and 

Figure 1 shows Q,, TQ,, and MQ, for n = 3 and n = 4. For n < 3, 
all three networks are isomorphic. 

It followsfrom Definition 1 tha t  every vertex in MQ, with a leading 
0 bit has exactly one neighbor with a leading 1 bit and vice versa. From 
this fact and the recursive structure of MQ,, the reader may verify that  
MQ, is a connected, regular graph of degree n with 2" vertices. 

BASIC PROPERTIES 
In the ordinary hypercube, there is a simple rule which states when 
a n  edge is present, viz. a n  edge is incident t o  vertices u and v if and  
only if u differs from v in exactly one bit .  We can provide a similar 
character i~at ion for edges in a multiply-twisted cube, albeit the  rule is 
somewhat more complex. T h e  following lemma provides the  details. 
(See (151 for all proofs omitted from this paper.) 

Lemma 1 For  all n 2 1, (u,_, . . .uo ,  v,_ 1 . . . vo )  1s an edge of MQ, 
if and only if there eaists an  e with 

3. ut-2 = vt-2 if 1 i s  even, and 

When conditions 1 and  2 of Lemma 1 hold, we say tha t  u and  v have 
a leflmost daffering bit a t  position I - I .  When two adjacent vertices u 
and  v have a leftmoat differing bit a t  position d, we say tha t  v is the 
d-neighbor of u and that  the edge (u ,  v) is an  edgp of dimension d .  We 
refer t o  conditions 3 and 4 as the  patring condition. 



Figure 1: Q,, TQ,, and M Q ,  for n = 3,4 

In order t o  facilitate a discussion of the topological properties df 
MQ,, i t  is convenient t o  introduce a mechanism for identifying induced 
subgraphs. For this purpose, let r , ,p(G)  denote the subgraph of the  
labeled graph G induced by the set of all vertices with prefix a or P. 
We also use F,(G) as an  abbreviation for r,,,(G). 

An n-dimensional multiply-twisted cube contains a variety of sub- 
graphs which are isomorphic copies of multiply-twisted cubes of lower 
dimension. Lemmas 2 through 4 make this idea more precise. 

L e m m a  2 For all n 2 2 ,  r o ( M Q , )  2 MQ,-1 and r l ( M Q , )  2. 

M Q , - I .  Moreover, the isomorphisms are given by the function which 
removes the leading bit from every vertez label i n  a labeled graph. 

Lemma 3 For all k 2 1, r w , ~ o ( M Q l k )  - MQ1k-I  and ~ ' o I . I I ( M Q ~ ~ )  
2 MQlk-1 .  Moreover, the isomorphisms are given by the function 
which removes the bit at position (2k  - 2)  from each vertez label. 

L e m m a  4 For all k 2 1 ,  II.,p(MQat+1) 1 MQzk-1 for all a,@ i n  
( (001 ,  I l l ) ,  (011,101) ,  (000, l oo ) ,  (010,110)) .  Moreover, these womor- 
phisms are given by the function whtch removes bits ( 2 k - 1 )  and ( 2 k - 2 )  
from each vertez label. 

The following lemma is useful for arguing about  the diameter of 
multiply-twisted cubes. Roughly speaking, the lemma states that  two 
vertices u and v of a multiply-twisted cube are either contained in a 
smaller dimension multiply-twisted cube or t ha t  u has a neighbor, u', 
with the property that  u' and v are contained in a smaller dimension 
multiply-twisted cube. 

L e m m a  5 For all n >_ 2 ,  tf u and v are vertaces of M Q ,  then either 

1. u and v belong to a subgraph of M Q ,  w h ~ c h  is isomorphic to G ,  
where G = MQ,-1 if n is even, otherwise G = MQ,_J,  or 

2. u and v belong to a subgraph of M Q ,  which is isomorphic to G ,  
where C = MC),_I if n i~ even, otherwise G = MQ,-1, or 

3. u has a neighbor, u', where u' and v are m a subgraph of M Q ,  
which w womorphic lo G ,  where G = MQ,-I i f  n w even, oth- 
erwiae G = MQ,_2.  

We are  now in a position to  s ta te  and prove that  multiply-twi~ted 
cubea have relatively low diameter. 

T h e o r e m  1 For k 2 1 ,  D ( M Q l k )  = D(MQakt1)  = k + 1 .  

P r o o f .  To prove the claimed equalities, we show that  k + 1 serves an 
both a n  upper bound and a lower bound for the  diameter of each of 
MQlk and MQlk+l .  

To prove k + 1 is a n  upper bound, we use induction on k. For k = I, 
the  result is immediate. For the induction, assume D ( M Q n , )  5 i + 1 
and D(MQa,+l)  < i + 1 for 1 5 i < k .  Let u and v be vertices of 
MQok (or M Q z t + l ) .  Lemma 5 applies, yielding three canes. In csses 
( 1 )  or ( 2 ) ,  u and v belong to a subgraph isomorphic to  either M Q l k - ,  
or M Q l k - I .  In either case, the induction hypothesis applies, yielding 
d ( u ,  v )  5 k .  In case (3), a neighbor of u, u',  belongs to a subgraph 
isomorphic to  M Q a t - I ;  hence d ( u l ,  v )  < k by the induction hypol.heais. 
Since u and u' are adjacent, d ( u ,  v )  5 1 + d ( u l ,  v )  5 k + 1. 

To prove k + 1 is a lower bound, we first note thab the  characteri- 
sation of edges of a multiply-twisted cube given in Lemma 1 providea 
the  following observation. 

o b s e r v a t i o n  1 For any edge (u, v )  i n  MQ,, the number of even- 
indezed bits of u and v which differ is at most one. Furthermore, if 
there is some i with u l ,  # v l ,  then u , , - I . .  .uz,+l = v, - l . .  . v ~ i t l .  

Let u = oZk and v = la' be vertices of MQlk .  We show tha t  any path  
rr from u t o  v has length a t  least k + 1. Each edge ( w ,  y) of n causes 
the vertex label w t o  be transformed to  y in a manner consistent with 
Lemma 1. The cumulative effect of these changes is to cause each bit 
of u t o  be changed. There are k bits with even-numbered indices which 
must be changed. From Observation 1, any edge in .r can cauae a t  
most one of these even-numbered bits t o  change; hence, x has a t  least 
k edges. In addition, none of these k edges cause the most significant 
bit of u t o  change, so there is a t  least one additional edge in x .  Hence, 
.r has a t  least k + 1 edges. 

For MQlk+1 ,  a similar argument prevails. Let u = oak+' and v = 
ilk+' be vertices of MQlk+l  and  let n be any path  from u t o  v .  There 
are k +  1 bits of u with even-numbered indices which must change. Any 
edge of rr can change a t  most one of them; hence, n has  a t  least k + 1 
edges 

Vertex connectivity has been used as a measure of the  "robustnessn 
of a network[l], where, informally, a network is considered to  be robust if 
i ts performance does not degradate much in the  presence of processor 
faults. The  hypercube and the multiply-twisted cube have the name 
vertex connectivity, a s  the following lemma shows. 

L e m m a  6 For all n 2 1 ,  n (d fQ , )  = n. 

P r o o f .  The  proof is by induction on n. The removal of any vertex from 
M Q 1  yields the  trivial graph; hence n ( h f Q I )  = 1. For the  induction, 
assume that  n(MQ,-1) = n - 1. Removing the n neighbors of any 
vertex of M Q ,  produces a disconnected graph; therefore, n(MQ, )  5 n. 
We now show tha t  removing fewer than n vertices does not disconnect 
MQn. 

Let X be a set of n - 1 vertices t o  be removed from MQ,. Either 
all vertices of X are from r o ( M Q n ) ,  all are from r l ( M Q , ) ,  or X has 
vertices from each of ro (MQ, )  and r t ( M Q , ) .  We consider each case 
in turn .  

Suppose all vertices of S are from Fo(MQ,).  Further, nuppose the  
removal of the  vertices of X disconnects Fo(MQ, )  There are, there- 
fore, vertices u = Ou,_l. .  . uo and v - O V , _ ~ .  . . vo which are not joined 
by a path which lies exclusively in I'o(d!Q,); however, they are joined 
by a path  which can be seen as follows. Each of u and v have ( n  - 1)- 
neighbors, u' and v'. Since no vertex of X is from r l ( M Q , ) ,  there is 
a path from u' to v' which lies exclusively in r l ( M Q , ) .  This path, 
together with the edges (u, u ' )  and ( v ,  v ' )  demonstrate the existence of 
a path  from u t o  v .  Hence, the removal of the  vertices of X does not 



disconnect MQ,. A similar argument holds when all vertices of X are 
from I'l(MQn). 

Now suppose X has vertices from both ro(MQn)  and I'l(MQ,). 
In this case, each of ro(MQ,) and r 1 ( M Q n )  remain connected, by the 
induction hypothesis. There are at  least 2"-' - ( n  - 1) > 0 surviving 
edges with dimension n -  1 after the removal of the vertices of X; hence, 
the resulting graph remains connected. 

From a well-known result of Whitney [6, page 481 along with the 
fact that MQ, is n-regular, we obtain the following. 

Corollary 1 Every pair of vertices in MQ, is joined by eoactly n 
vertez-disjotnt paths. 

One reason which accounts for the popularity of the hypercube 
is that many other networks can be embedded, or nearly embedded, 
within it. It is, therefore, reasonable to ask what other networks can 
be embedded in the multiply-twisted cube. We briefly address this is- 
sue by noting that a ring with 2" vertices can be embedded in MQ, 
for all n 2 2. We restate this result in graph-theoretic terms as follows. 

Lemma 7 For a11 n _> 2, MQ, has a Hamiltonian cycle 

Proof.  We prove a statement which is somewhat stronger than the 
lemma; vn. for all n 2 2, MQ, has a Hamiltonian cycle with the edge 
(On, lon-'). We proceed by induction on n. Since MQp is a cycle with 4 
vertices, the basis holds. For the induction, assume the stated wer t ion  
holds for MQn-1. In MQ,, consider the two subgraphs I'o(MQ,) 
and r l ( M Q n ) .  By the induction hypothesis and Lemma 2, ro(MQ,) 
has a Hamiltonian cycle oo with edge (u, v) = (00"-', OIO"-a). Also, 
due to the isomorphism given by Lemma 2, a Hamiltonian cycle o l  in 
rl(MQ,) may be produced by complementing the first bit of each label 
in no. Note that (u', v') = (lon-',  110"-') is an edge of u1 and that, 
by Lemma 1, (u, u') and (v, v') are both edges of MQ,. By replacing 
(u,  V )  and (u', v') with (u, u') and (v, v') in a. and 01, a Hamiltonian 
cycle in MQ, is produced; moreover, this cycle contains the edge (u, u'j 
thereby meeting the requirements of the assertion. Hence, the lemma 
follows. 

SHORTEST PATHS AND ROUTING 
A parallel architecture based upon the multiply-twisted cube should 
support a mechanism which allows any two processing elements to ex- 
change data. This may be achieved by finding a shortest path from thr 
source vertex to the destination vertex, taking advantage of the hierar- 
chical nature of multiply-twisted cubes. In this section, we discuss an 
algorithm which produces a shortest path between any two vertices in 
a multiply-twisted cube. 

As a matter of convenience, we present the algorithm as a sequential 
algorithm. After this, we discuss some minor modifications which make 
the algorithm distributed 

In order to find a route between two vertices of a multiply-twisted 
cube, our algorithm makes extensive use of the topology of AlQ3. Sup- 
pose u = U ~ U ~ U O  and v = v2vlvo are nonadjacent vertices of AIQ3 
with u2 # v1. Since the diameter of MQ3 is two, there is a vertex w 
which is a common neighbor of u and u For example, the 2-neighbor 
of 000, 100, is a common neighbor of 000 and 110. This vertex is not 
unique; the I-neighbor of 000, 010, is also a common neighbor of 000 
and 110. We can summarize this information by noting the dimen- 
sions involved-a common neighbor of 000 and 110 may be obtained 
by choosing a d-neighbor of 000, where d is an element of {1,2). Due 
to the symmetry of MQ3, we can con~plement the leading bits of each 
of u and v to obtain a similar statement-a common neighbor of 100 
and 010 may be obtained by choosing a d-neighbor of 100, where d is 
an element of { l , 2 ) .  

The table shown in Figure 2 summarizes this common neighbor 
information for MQ3. If d is an e l e ~ e n t  of MOVE(o,P), then the 
d-neighbor of bo is also a neighbor of bp. 

Before presenting the details of the routing algorithm, we provide 
an example of how a path between two vertices may be produced. 

Figure 2: MOVE table used in routing. 

Example.  Suppose a path from 

is desired. (Note: The spacing between bita is present to aid readabil- 
ity.) As a first step, locate the leftrnost differing bit position of u and v ,  
which occurs a t  bit 8. Imagine the bita to the right of thia bit grouped 
into pairs. Starting at  the leftmost differing bit position, scan u and v 
from left to right, comparing a pair of bits from u with the correspond- 
ing pair of v, stopping at  the first pair which is not pair-related. In thia 
example, this occurs at  the second pair to the right of bit 8. We focus 
our attention on the three bits from u and v thus identified: 

Viewed as vertices from A4Q3, the bits under consideration represent 
nonadjacent vertices with differing leading bits. The MOVE table pro- 
vides a way to locate a common neighbor, but rather than use the values 
orovided by this table in an absolute manner, we use them an a rela- 
ive dimension-2 dictates the selection of the highest dimension from 

an ong the three dimensions under consideration, 1 selects the next 
lowest dimension and 0 eelects the loweet dimension. Since MOVE(O0, 
10) = (1, 2) there are two choices; suppose we use 1. Consequently, 
we select the 5-neighbor of u, yielding the first vertex of the path: 

By moving to wl, bits 6 through 11 remain unchanged and, in addition, 
the pair of bits to the right of bit 6 from wl and v are now pair-related. 
We repeat the scanning described above for wl and v ,  starting with the 
pair to the right of bit 4, which yields 

As before, MOVE(11, 11) provides two possibilities-1 or 2. Suppose 
we again choose 1. Selecting the 3-neighbor of wl yields the second 
vertex of the path: 

wp = 10 10 01 10 01 10 

Continuing, we obtain 

from which we select the 0-neighbor of wl, yielding 

At thin point there is no pair to the right of bit 8 which does not 
satisfy the pairing condition; however, the 8-neighbor of w3 is v, which 
completes the path. 

In the preceding example, the leftmost differing bit index, once 
found, never changes. In general, however, this does not always happen. 
If the highest of the three dimensions under consideration is used, the 
leftmost differing bit index in the next step "migrates" to the right- 
in fact, it will be one of the two remaining dimensions. After this 



migration occurs, all the bits to its left agree with the corresponding 
bits of the destination vertex. 

Another situation not illustrated by this example occurs when the 
leftmost differing bit leaves an odd number of bits to its right. When 
this occurs, imagine the bits paired from the right, leaving a single bit 
to the right of the leftmost differing bit. 

Figure 3 provides the details of the routing algorithm. The expres- 
sion "choice(S)" evaluates to an arbitrary element from the nonempty 
set S. 

procedute EmitDimensions(u, u) 

w := U 

C := LeftmostDifferingBitIndex(w, u) 
if (C is odd) a n d  (wt-1 # ut-1) t h e n  

d := choice({(, .! - 1)) 
emit(d); w := d-neighbor(w) 
i f ( d = l )  then!:=.!-1fl 

fl 
k := [.!/2J 
while (k >_ 1) do 

d := Wak-1w2k-2 
P := V2k-lvlk-1 
if (a + P)  t h e n  

d := choice(MOVE(a, B ) )  
case 

d = 0: 
emit(2k - 2); w := (2k - 2)-neighbor(w) 

d =  1: 
emit(2k - 1); w := (2k - 1)-neighbor(w) 

d = 2: 
emit(!); w := C-neighbor(w) 
if wlk-l # u p k - I  t h e n  

f : = 2 k - 1  
else 

l := 2k - 2 
fi 

fl 
k : = k - 1  

od 
emit(!) 

Figure 3: Routing in a Multiply-Twisted Cube. 

Theorem 2 For any two distinct vertices u and v in MQ,, 
EmitDimensions(u, UJ produces a sequence of dimensions which speci- 
fies a shortest path from u to u. 

To perform routing of messages in a distributed fashion, each proces- 
sor must be capable of performing "local" routing, whereby a processor 
contributes to the routing of a message by forwarding it to a processor 
one step closer to its destination. Thia decision can be made by inspect- 
ing an appropriate pair of bits in the source and destination labels, M 

in the sequential algorithm. In essence, each proctssor performs the 
loop of the routing algorithm as previously described. However, rather 
than aimply emit some dimension d, the mewage is forwarded to the 
processor situated at the &neighbor of the given processor; this fulfills 
the obligation of the processor in q u ~ t i o n .  As a practical consider- 
ation, in order to avoid rescanning bits, the values of l and k used 
in the sequential algorithm can be passed along with the source and 
destination. 

It is also worth noting that the routing algorithm presented has 
a certain bias in the way the dimensions are produced. There are, 

however, many other ways in which the routing can be performed. In 
particular, notice that a pair of strings a and P with a + P is sought 
by the loop of EmitDimensions in a left-to-right scan. This acanning 
order is more specific than necessary-it is sufficient to find any such 
pair to the right of the leftmost differing bit, so long as there are an 
even number of bits to their right. Of course, if no such pair exiats, 
routing along the dimension of the leftmost differing bit completes the 
routing. 

CONCLUSIONS 
We have shown how to construct a multiply-twisted cube which haa 
many of the properties of the hypercube, but hss diameter only about 
half aa large. This network is self-routing, in the sense that there ia a 
simple distributed routing algorithm which guarantees optimal paths 
between any pair of vertices. Thia fact, together with other properties 
auch as regularity, symmetry, high connectivity, and a simple recursive 
atructure, suggests that the multiply-twisted cube may be an attractive 
alternative to the ordinary hypercube for massively parallel architec- 
tures. 

REFERENCES 

[I] Becker, B. and H. Simon (1988), "How robust is the n-cube?" 
Information and Computation, 77, 162-178. 

[2] Chan, T. and Y. Saad (1986), "Multigrid algorithms on the hyper- 
cube multiprocessor," IEEE lbans. Comput., C-35, No. 11, 969- 
979. 

[3] Erdos, P. and J .  Spencer (1979), "Evolution of the n-cube," J. of 
Comp. and Math with Appl., 5, 33-39. 

[4] Esfahanian, A,,  L. Ni, and B. Sagan (1988), 'On enhancing hy- 
percube multiproceaaors," Proc. 1988 International Parallel Pro- 
ceasing, 86-89. 

151 Folds, S. (1977), "A characterization of hypercubes," J. of Discrete 
Math.," 155-159. 

[6] Harary, F. (1972), Graph Theory, Addison-Wesley. 

[7] Hart, S. (1976), "A note on the edges of the n-cube," J. of Discrete 
Math.," 157-163. 

[8] Hillis, W. (1985), The Connection Machine, MIT Press. 

[9] Mulder, M. (1980), "N-cube and median graphs," J. of Graph 
Theory, 4, 107-110. 

[lo] Pease, M. (1977), "The indirect binary n-cube microprocessor ar- 
ray," IEEE 'lians. Comput., C-26, No. 5, 458-.i73 

[ l l ]  Ranka, S., Y. Won and S. Sahni (1988), "Programming a hyper- 
cube multicomputer," IEEE Software, Sept., 69-77. 

[12] Saad, Y. and M. Schultz (1988), "Topological properties of hyper- 
cubes," IEEE Trans. Comput., C-37, No. 7, 867-872. 

[13] Seitz, C. (1985), "The Cosmic Cube," Comm. ACM, 28, 22-33. 

[14] Shiau, T. ,  P. Blackwell, and K .  Efe. (1988), "Multiply-twisted n- 
cubes for parallel computing," Proc. of 20th Symp. on the Inter- 
face: Computing Science and Statistics, to appear. 

[I51 Slough, W., K.  Efe, T.  Shiau, and P. Blackwell (1988), "A Reduced 
Diameter Interconnection Network,", Technical Report, Computer 
Science Department, University of Missouri-Columbia, 



THE PSMH : A PYRAMID OF FRACTIONAL DIMENSION 

Jean Hecquard R a j  Acharya 

Electrical Engineering & Computer Science Department 
SUNY a t  Buffalo, Bell Hall Amherst NY 14260 

Abstract this solution may waste links, as the cube's dimension 

This paper presents a new Interconnection Network, the Par- 
titionable Spanning Multibus Hypercube ( PSMH ). Our aim 
is to provide an architecture for applications with spatially 
distributed data. The data are embedded on the PSMH by 
hierarchical data structures, the n-dimensional binary trees. 
To reduce the scope of this article, we concentrate on a spe- 
cial case of the PSMH, designed for the manipulation and 
display of 3 0  objects. Based on the PSMH features, as well 

is higher than the problem's dimension. The aim of the 
PSMH is t o  find a trade-off between these 2  extreme 
cases. The plan of this article is as  follow. After a brief 
definition of the PSMH ( $1 ), we present a basic routage 
algorithm in $2 .  We then show in $3,  how we can com- 
pact the d a t a  on the PSMH, t o  reduce its size. As a 
consequence of this compaction, we finally introduce a 
neighbor finding technique ( $ 4  ). 

as on the properties oi the data structure, we first derive a 
routage algorithm, then show how we can pack the data, to 1. D E F I N I T I O N S  
reduce the PSMH size. 

We define a P S M H ,  as a D-dimensional lattice of width 
Keywords: image processing, pyramid, 3D.  w in each dimension, with N = WrD nodes. Each node 

is connected t o  B buses over each dimension, but  may 
select only 2 out of the D x B available ones. One is ded- 

0 .  I N T R O D U C T I O N  

From an architectural point of view, image processing 
tasks can be divided into 3  levels, a lower one, a higher 
one and an intermediate one. In the low level, we per- 
form operations such as thresholding or convolution, on 
a n  often very large amount of data ,  organized in a very 
regular and structured manner. This class of problems 
is clearly best processed by SIMD architectures. On tlle 
other hand, high level processing, i.e pattern recogni- 
tion, involves a much smaller set of data ,  for which no 
unique d a t a  dependency graph can be easily found. As 
a consequence, this processing stage frequently uses a 
very dense Interconnection Network ( IN ),  such as the 
binary Hypercube or even crossbar, with a set of more 
powerful processors operating in MIMD mode. Between 
these 2 processing stages, the transition is much less un- 
derstood : no clear scheme has emerged until now. Here 
again we can distinguish 2 main directions. The first 
one emphasizes the SIMD approach. An example of this 
is given by the C A P P  ( Content Addressable Parallel 
Processor '). This system is a 3  level pyramid in which 
the bot tom is a mesh dedicated t o  low level processing, 
while a n  intermediate level is constructed with a reduced 
mesh of more powerful processors, with the top  being a 
small set of symbolic processors. Clearly this scheme 
has the advantage of simplicity and speed. However, i ts  
lack of flexibility may waste a lot of processing elements 
( P E s  ), which becomes redhibitory in higher dimension. 
Another possible direction is to consider a flexible net- 

work, such as the binary Hypercube ( see for instance ). 
The  problem here is reversed. Instead of wasting PEs, 

Research supported by grants from Thomson ( France ), Bell 

icated to-reception, while the other is in charge of the 
emission. Both emission and reception can take place 
si~nultaneously. Each bus is a bidirectional wire, with 
no controller. To the usual global control scheme is sub- 
stituted a local scheme, where each PE is in charge of 
its segment of the bus. A node can either receive from 
the left or the right part of a bus, and partition it or 
not.  This definition leads to  a n e t w o r k  d i a m e t e r  of 
D, meaning that  any 2  P E s  can exchange messages in 
R(D)  time. This  is useful for operations where we need 
a rapid propagation of a n  information t o  a P E .  However, 
when all the d a t a  may be potentially moving, this bound 
doesn't hold anymore. We get a new bound by using a 
w i r e - c u t t i n g  a r g u m e n t  '. If we slice the PSMH in the 

D 
middle, we have % PEs,  i.e potential senders, on each 
side, while only MrD-' x B available buses. This gives 
us a ncw bound of o(%).  
As n by-product of the bus partitionability, the PSMH 
heavily rcly on divide-and-conquer methods. This  natu-  
rally leads ns to  the choice of hierarchical d a t a  structures 
to  embed tlle da ta .  Among them, the n-dimensional bi- 
nary trees ( or 2"-ary trees ) have been developed with 
the aim of obtaining a systematic way to represent n- 
dimensional objects. To reduce the scope of this article, 
we concentrate on the 3  dimensional case with the linear 
octrce ' ( cf figure 1 for the Linear Octree of a planar 
object ) .  In the rest of this paper we will consider a 
PSMH of dimension D = 2.  This choice is of intercst 
because it opens the way for a n  easy VLSI as well as 
WSI implementation. To embed our linear octree onto 
the mesh, we use the shuffle row major order, i.e the 
linear quadtree order ( cf figure 2 ). 

Aerospace, AHA ( NYS ) and NIH BR.SG. 



Fig ,  1 Example of Linear Octree 

For the sake of simplicity of presentation, we first assunle 
that  each voxel get a PE.  This  will be changed t o  one 
obel per P E  in S3 for the list compaction. 

Fig.  2 Embedding on the Mesh 

2. R O U T A G E  ALGORITHM 

Our aiin is now to get the basic operations of a regular 
pyramid on the TSMH. Clearly, any selnigroup operation 
can be performed on the PSMH with the same cost as on 
a pyramid, by using the recursive d o u b l i n g  '. Another 
basic requirement is t o  be  able to shift the d a t a  by 1 in 
any direction. In other words, we want to send a lnessnge 
froin one P E  to its neighbor a t  distance 1 in dircctioil x, 

y, or r. Although the wire-cutting argument of 51 tells 
us that  a sorting/routage algorithm should take O($), 
the c o d  of this operation will be  much less because the 
d a t a  are sorted. T h e  principle of the algorithm is t o  
partition the  d a t a  in disjoint sets, and t o  perform the 
routage within each of these sets in  parallel. Fo1lowir.g 
the definition of the linear octree, such sets can be easily 
created by 'unshuffling' the obels. T h e  result is what we 
call the o c t a l  p lanes .  An octal plane of level i for the 
axis axid, is the set I I ( i , a x i ~ )  = (0 E A / (.41 h A 2 ) ) r  

with Al : (axisi = 1, ng 2 i > I), A3 : (axisk = 0, i > 
k  2 I ) ,  where A is a linear octree of resolution ne and 
ax isn  is the k f h  bit of the axis-coordinate of a n  obel 0. 
II( i ,axis)  is the set of planes which are perpendicular 
to  a x i s  and whose distance t o  the origin on this axis is 
equal t o  ( 2 k  + 1)3'-'. For instance the n(1, axis)  is the  
set of planes a t  distance 2k + 1 of the origin over their 
respective axis. They correspond to the middle planes 
of all the octants of volume 8l ( cf figure 3 ). 

Fig.  3 Octal Plane II(1,x)  

The  algorithm proceeds one octal plane at  a time. For 
each octal plane of level i, all the octant of volume 8< can 
perform their intcrnal communications, i.e through the 
middle plane, simultaneously, as each octant corresponds 
to  a n  independent set of PEs. Now that  we have parti- 
tioned the data ,  what we have left is to  route the d a t a  
within each octant. We operate in bottom-up/top-down 
fashion. The  reason for this choice is twofold. Firstly 
this dividc-and-conquer approach will allow a partition 
of the buses. Secondly, by progressively moving the da ta  
we get more and more buses t o  work. T h e  algorithm is 
as follows : first, we recursively sort/balance the load 
over the octant.  Starting with the suboctants of volume 
8l ,  we sort the d a t a  in  raster order, then balance them 
so that  each row gets the same number of data .  T h e  
reason for sorting is that  i t  facilitates balancing. We 
then repeat this with the suboctants of volume 8', and 
so on, until the whole octant is balanced. Once a t  the 
top, we go down unsorting/unbalsncing, but  according 
to the destination index. The details of the routage will 
not be given here. T h e  interested reader may find the 



whole algorithm in '. Because we have a t  n o s t  4i active 
P E s  within each octant of volume 8', the cost is min- 
imal if we have B = ~4 buses per row/column. T h e  
algorithm is then of order 0( log3 (N)) .  

3. A P Y R A M I D  O F  F R A C T I O N A L  D I M E N -  
S I O  N 

Following the routage, we want to  compact tlle list to  
reduce the PSMH size. In fact, a n  interesting property 
of the octree is that  the number of obels is proportional 
to the object's surface 6. This means that  we should be 
able to expect a significant decrease in the  PSMH size if 
we compact the list. T h e  algorithm is mainly dictated 
by the constraints from the previous routage algorithm. 
They are twofold. Rule 1: no octant should interfere 
with another one, so that  we cap partition the buses. 
Rule 2: the load has to  be well balanced over the mesh. 
This last requirement, altllougl~ not vital , is important 
as it will minimize the bottlenecks, therefore lnaximizing 
the system's performances. 

Y 

Fig .  4 figure 1 octree's embedding 

To take advantage of the compactior~, we will now use 
only one P E  per obel. Clearly this is not a problcln 
when a bigger obcl needs to  communicate with a group 
of smaller neigltbors. The  other way is less easy, as 1 
P E  may have t o  handle several incoming messages. T h e  
solution is t o  make the neighbors cooperate to  present 
only one message. This cooperation is easy because these 
ncigltbors form a n  interval. We define as  interval a set 
of PEs  which are consecutive for a given order traver- 
sal. In the present case, we consider the raster order 
which we get from the bottom-up phase of, for instance, 
the routage algorithm. In the neighbor's case, the inter- 
val consists in fact of more than the neighbors, but  the 
other PEs are inactive and can be bypassed by the buses. 
The  problem is then reduced t o  either a broadcast or a 
semigroup operation within the interval. 

The colnpaction algorithm is composed of 2 parts. We 
first compute the new position of each obel and then 

move them t o  destination using a modified routage al- 
gorithm. The computation of the new positions is done 
in bottom-up/top-down fashion. Starting from the bot- 
tom of the octree, i.e with the octants of volume 8'' we 
try to  merge their sttboctants. Two suboctants can be 
merged if (a) the receiver has enough PEs left, ( b )  its 
communication quota is not exceeded. This quota is the 
number of PEs tha t  may communicate simultancously 
per octant. As we proceed one direction a t  a time, it 
corresponds to  the surface of a n  octant's side, i.e 4'. Be- 
cause we do not actually move the d a t a  until the second 
part,  merging only means that  we add to the commu- 
nication requirements. Once level i is done, we go up  
to level i + I ,  and so on. It  should be noticed tha t ,  to 
enforce Rule 1, each suboctant has t o  be considered as 
an unbreakable entity: we can't merge part of it. T h e  
cost of p ~ r t  1 is of order O(log(N)) .  

F ig .  5 figure 1 octree's packing 

We give an example of packing in figurcs 4 and 5. T h e  
figure 4 represents the embedding of figure's 1 octree on 
a 64 x 64 mesh. T h e  dashed areas correspo~td t o  the  PEs 
which would have been used with the originnl assump- 
tion of 1 PE/voxcl. Thc  4 mcshes of figure 5 are, from 



top  t o  bot tom, the level 1, 2, 3 a n d  4 of the packing. For 
the  sake of presentation we show the updated positions 
a t  each level although the real dgor i thm waits until t h e  
end t o  move. The dotted lines delimit the octants of 
volume, respectively, 8', 8', 8' and 8*, i.e also the bus 
segments. Once each obel knows i ts  final destination, the  
obels are routed t o  their final destination with a slightly 
modified version of the  previous algorithm. T h e  basic 
difference is t h a t  we d o  not work with one octal plane 
a t  a time, but  consider the whole mesh. Then,  while 
we still sort/balance the  d a t a  in  the  first phase, we only 
unsort in the second phase. Because we may have u p  t o  
.V d a t a  to  move, we get a cost of order O(N! log2(N))  
with B = N j  buses per row. 

4. NEIGHBOR FINDING 

After the compaction, the obels are still in shuffle row 
major order. However, we can't get their position by a 
s i~nple  computation. Hence we have to perform a neigh- 
bor finding operation before we can route any data .  We 
now present an algorithm that  performs this search for 
all the obels in  parallel. For the same reasons as previ- 
ously, we work one octal plane a t  a time, so  that  each 
octant can proceed independently. T h e  principle of the 
search is to  reverse the usual binary search approach. 
While the binary search goes through a list, looking for 
one value a t  a time, our search makes each P E  broadcast 
its value on a bus in  turn,  while the others are listening. 
For the sake of simplicity we assume tha t  we have half 
as  many available buses as we have of active PEs.  The  
idea is t o  s ta r t  with the median P E ,  which broadcasts its 
value on the median bus. Because all the other P E s  are 
listening, each of them now know where t o  look the next 
time. Then  the median P E s  of the  2 halves broadcast 
their values, and so on. After log steps, each P E  will 
have found what it  was looking for. 

The  neighbor finding algorithm is as  follows : we proceed 
in 4 stages for each octal plane. Let AR and As be re- 
spectively the receivers and  senders list for one octant of 
volume 8'. The  first stage consists of sorting/balancing 
the octant like for a routage. After this, both lists are 
spread over the octant ,  with a t  most N *  active P E s  on 
each row. The  second part performs a preliminary search 
by asking the first active P E  of AR on each row to go on 
the diagonal and broadcast i ts  value on the column in 
tu rn ,  following the binary search pat tern defined above. 
The result is that  all the PEs  of As get to  know on which 
row their neighbor should be in O(log(N))  time. The 
third stage is t o  send this group of obels on the row oi 
each ,is's P E ,  then to perform a search alnong the group. 
This is always possible because we may have a t  most 

1 1 
O ( , v )  groups of Md values to be  sent on each row of 

width w, = ,V: (where N ,  is the surface of the octant).  

Finally the fourth part unsorts/unbalanccs in order t o  
send the result back to the  original PEs. The global 
cost of this algorithm is the same as  for the  routage, i.e 
of order O ( l o g S ( ~ ) ) ,  with the assumption of B = N! 
buses. 

6. CONCLUSION 

We have presented a new Interconnection Network, the 
Partitionable Spanning Multibus Hypercube. I ts  aim is 
t o  offer a cost efficient solution t o  problems with spatially 
distributed data. To  reduce the scope of this article we 
concentrated on the 3-dimensional case. We introduced 
a divide-and-conquer routage algorithm which takes ad- 
vantage of the existing d a t a  ordering t o  reduce the algo- 
rithm cost. Because a static allocation map wastes the 
PEs, we derived a compaction algorithm which respects 
the constrajnt of the  routage algorithm. As a conse- 
quence we derived a neighbor finding technique, based 
on broadcasting techniques. Most of the operations that  
need t o  be performed on the PSMH take either a con- 
s tan t ,  logarithmic or polylogarithmic time, if we have 
B = ~4 buses per row/column. 

REFERENCES 

[l] Gargant in i  I. 1981 
Linear octrees for faat processing of 3 dimensional objects. 
CGIP 20,4 (Dec) 365-374 

(11 Heeqnard  J. a n d  Acharya R. 1988 
The Partitionable Spanning Multibus Hypercube 
Technical Report, SUNY at Buffalo, ECE Dept. 

[S] Hillie D. 1986 
The Connection Machine 
MIT Press 

(41 Kogge P.M. a n d  S t o n e  H.S. 1973 
A Parallel Algorithm for efficient solution of a general clasa 
of recurrence equations 
IEEE Trans. Computers, vol C-22(8), pp 786-793. 

[ S ]  Meagher  D. 1981 
Geometric modeling using octree encoding. 
CGIP 19,2 (June) 129-147. 

[B] Miller R. a n d  S t o u t  Q.F. 1988 
Parallel Algorithms for regular architectures 
MIT Preas: Series on Scientific Computation. 

[7] Weems C.C., Levi tan S.P., Hanson  A.R., 
Riseman E.M. 1987 

The image understanding architecture 
University of Massachusetts at Amheret, CS Dept. 
COINS T R  87-86. 



ROUTING LINEAR PERMUTATIONS THROUGH THE OMEGA NETWORK IN 

TWO PASSES 

John Keohane and Richard E. Stearns 

Computer Science Department 
State University of New York at Albany 

Albany, New York 12222 

ABSTRACT 

The problem of routing permutations through an R net- 
work connecting a set of processors is studied in the frame- 
work of linear algebra. The class of linear permutations is 
defined, and it is shown that any linear permutation can be 
routed through the R network in two passes. Furthermore, 
the address of the intermediary processor for the routing can 
be found in O(n4) time, where n is the size of the address of 
a processor. The class of linear permutations contains the 
class of Bit Permute Complement permutations, and the 
address of the intermediary processor for routing Bit Per- 
mute Complement permutations can be found in O(n) time. 

1. INTRODUCTION 
Lawrie [3] has proposed the R network, which can be 

used as a vehicle for establishing communication among a 
set of N = 2" processors, where each processor is identified 
with a unique n-bit binary address. The R network enables a 
source processor to establish communication with any other 
processor, which is c d e d  the destination processor, and we 
consider the case in which each processor acts as both a 
source processor and a destination processor. The commun- 
ication pattern may be viewed as a permutation of the 
addresses of the processors, where the address of each 
source processor maps to the address of its destination pro- 
cessor. 

Parker [6] showed that any permutation can be realized 
in three passes through the R network. The Benes network 
[3,4] consists of a reverse R network followed by an R net- 
work. Parker [6] also showed that any permutation can be 
realized in only one pass through the Benes network; how- 
ever, the Benes network has twice the hardware as the St net- 
work. We show that by finding the addresses of intermedi- 
ary processors, the class of linear permutations can be real- 
ized in only two passes of the R network. An important sub- 
class of the linear permutations is the Bit Permute Comple- 
ment (BPC) permutations studied by Nassimi and Sahni [5]  
and by Yew and Lawrie [7]. The class of BPC permutations 
includes three of Lenfant's five families of frequently used 
permutations [4]. An algorithm for routing BPC permuta- 

tions through the 0 network also appears in [7]; however, 
ours is distinct in both its technique and results. Moreover, 
if n is the number of bits in an address, our algorithm finds 
n formulas for the bits of the address of the intermediary 
processor in time linear in n. Our algorithm for the more 
general class of linear permutations is O(n4), and no such 
algorithm has appeared in the literature. Furthermore, our 
approach lies in linear algebra, in contrast to that used in [6] 
and (71. 

2. THE R NETWORK 

The R network for N =2= processors consists of n 
stages of NI2 switches. Each switch has two inputs and two 
outputs, so there are N wires entering and leaving each 
stage. Each collection of N wires may be labeled with n vec- 
tor of n bits so that the following conventions hold: for 
source processor sls ?... s, to communicate with destination 
processor dld ?...d,, the message must be put on wire 
~ ~ + ~ s ~ + ~ . . . s , d ~ d ~ . . . d ~  after the i-th stage of switches. For 
source processor s1s *... S, and destination processor 
d,d ?...4, we define the i-th window as the n bits 
~ ~ + , s ~ + ~ . . . s ~ d ~ d ~ . . . d ~ .  Clearly, there is a conflict between two 
sourcedestination pairs for the same wire if and only if for 
some i, 1 5 i 5 n, their i-th windows are identical. Thus, a 
permutation is conflict-free if and only if for each i, 
I 5 i 5 n, the i-th window of each sourcedestination pair is 
unique. 

Lemma 1. If a permutation P is obtained from a per- 
mutation P by complementing a subset of the bits of the 
addresses of all destination processors, then P is conflict- 
free if and only if P' is conflict-free. 

Proof. For 1 <_ i < n, the i-th windows of two source- 
destination pairs of P are identical if and only if the i-th win- 
dows of the two sourcedestination pairs of F" are identical 
for the same two source processors. 

3. LINEAR PERMUTATIONS 
In this section we define the classes of linear permuta- 

tions and Bit Permute Complement permutations and place 
the problem of routing them through the R network in the 
framework of linear algebra. In what follows, + denotes 
exclusive+r. Note that + is associative. 



Definition. Let sls 2...s, denote the address of a sour ,e 
processor, and let dld 2...4 denote the address of its destina- 
tion processor. A linear permutation is a permutation in 
which for 1 5 i 5 n, each di = SL~+S;~+...+S(~, where sc, 

denotes either sii, or its complement sji,. 

Definition. Let sIs 2...~, denote the address of a source 
processor, and let dld z...4 denote the address of its destina- 
tion processor. Let a be a permutation of {1,2, ..., n). A Bit 
Permute Complement (BPC) permutation is a permutation in 
which for 1 5 i 5 n, each di = s:~), where s i i )  denotes either 
s,(~) or its complement sr(i). 

Definition. Let sIs z... S, denote the address of a source 
processor, and let dld z...d, denote the address of its destina- 
tion processor. An uncomplemented linear permutation is a 
permutation in which for 1 5 i 5 n, each 
di = S. l i l  +s. ILZ +...+Sji4. 

Definition. Let sIs Z...~, denote the address of a source 
processor, and let d,d z...d,, denote the address of its destina- 
tion processor. Let T be a permutation of {1,2,..,n). A Bit 
Permute (BP) permutation is a permutation in which for 
1 < i < n ,  e a c h 4 = s  ~(1). . 

Let P be a linear permutation in which for 1 5 i 5 n, . . 
di = s. 161 +s. 11.2 +...IS;$. We define its uncomplemented version 

to be the permutation F" in which for 1 5 i 5 n, 
di =s.  +s. +...+s. 

J i l  J i 2  ]I,$. 

Theorem 1. A linear (BPC) permutation is conflict- 
free if and only if its uncomplemented version is conflict- 
free. 

Proof. Let P be a linear permutation in which for 
1 5 i 5 n, each 4 = S ~ ~ + S ~ , , + . . . + S ~ ' ~ ~ .  Because x = x+l, 

1+1 = 0, and x 4  = x and because exclusive-or is associative 
and commutative, each di can be rewritten as either 
s ~ ~ ~ + s ~ ~ ~ + . . . + s .  or sjL,+sjLz+ ...+s. +l. Thus, P may be 

'1% "4 
obtained from its uncomplemented version P' by comple- 
menting a subset of the bits of the addresses of all destina- 
tion processors. By Lemma 1, P is conflict-free if and only 
if P' is conflict-free. 

Thus, to show that all linear permutations can be 
routed through the R network in some number of passes, we 
need only show that the class of uncomplemented linear per- 
mutations can be routed in that many passes. The same 
observation holds true for BPC and BP permutations. 

It can be seen that the variables s1,s2, ..., S, and the con- 
stant zero combined with exclusive-or is the vector space of 
those variables and the constant zero over the field of 
integers modulo two. Exclusive-or is both associative and 
commutative. Furthermore, zero functions as the identity, 
and each vector is its own inverse. 

Because the variables sl,sZ, ..., S, and the constant zero 
form a vector space under exclusive-or, the class of conflict- 
free uncomplemented linear permutations can be character- 
ized in terms of linear independence. Let sls z... s, denote 
the address of a source processor, and let dld z. . .4  denote 

the address of its destination processor, where each di is a 
linear combination of the sj's. If D, ={dl,d2, ..., d,) is 
linearly independent, then for each actual destination 
address, the bits of the address of its unique source proces- 
sor may be recovered. If, however, D, is linearly depen- 
dent, more than one source processor must have the same 
destination processor. Thus we have a permutation if and 
only if D, is linearly independent. For 1 5 i < n-1, let 
Di = { S ~ + ] , S ~ + ~  ,..., sn,dI,d2 ..., di). For 1 5 i 5 n-1, if Di is 
linearly independent, we can determine the bits of the 
address of a unique source processor using a given wire after 
the i-th stage. If for some i, 1 5 i < n-1, Di is linearly 
dependent, then the i-th windows of at least two source- 
destination pairs are identical. Hence an uncomplemented 
linear permutation is conflict-free if and only if for 
1 5 i 5 n, Di  is linearly independent. 

4. A TWO-PASS ROUTING ALGORITHM FOR LINEAR 
PERMUTATIONS 

We present a two-pass routing algorithm for the class of 
uncomplemented linear permutations, which implicitly pro- 
vides an algorithm for routing all linear permutations in two 
passes. Let sls 2...s, denote the address of a source proces- 
sor, and let dld z...dn denote the address of its destination 
processor under some uncomplemented linear permutation. 
We present an algorithm for finding the address of an 
intermediary processor zlz2 ... Z, such that the permutations 
sIs 2...~, --+ zI% ... Z, and zl% ... z, -r dld z...d, are both 
conflict-free. For 1 5 i 5 n, q is either si or si+sj for some 
sj. For 1 < i 5 n, let Zi = { S ~ + ~ , S ~ + ~ ,  ..., sn,z1,z,, ..., zi), and let 
Di = { ~ i + l , ~ i + 2 ,  ...,~,,dI,d2,...di). The permutation 
sIs 2...~, -+ zl% ... Z, will be conflict-free if and only if, for 
1 5 i 5 n, Zi is linearly independent. Furthermore, if Di is 
linearly independent, we can determine the unique address 
of the original source processor sIs z... S, using a given wire 
after the i-th stage. Thus, if Z, is linearly independent, we 
can find the unique address of the intermediary processor 
z l q  ...z,, using the wire. If, however, Di is linearly depen- 
dent, there are at least two original source processors that 
must use the same wire during the second pass through the 
network. Thus, the two permutations are conflict-free if and 
only if for 1 < i 5 n, Zi and Di are linearly independent. 

The process of determining each zi is accomplished by 
examining Di. Since sls 2...~n -+ did z...d, is a permutation, 
D, is linearly independent. At each stage we find zi such 
that Di-] is linearly independent if Di is linearly independent. 
We finally find zl such that Z, is linearly independent if D l  
is linearly independent. For 1 < k 5 n-i, let vk = zi+k, and 
for 1 5 k 5 i, let v,-,+~ = dk. Thus, Di = {vj I 1 < j < n). If 
{si,vl,vz ,..., v,-~) is linearly independent, then q = si. If, 
however, {si,vl,v2 ,..., vn-]) is linearly dependent, then 
zi = si+sj, where sj is one of the terms appearing in v, = di. 
The choice of si is governed by Theorem 2 below. 

Lemma 2. Let V = {vI,v2 ,..., v,-~) be linearly indepen- 
dent, and let W = V (J {w) be linearly dependent. There 



exist ci, 1 5 i < n-1, such that 

Proof. Since W is linearly dependent, there exist ci, 
n-1 

1 < i < n, such that at least one ci # 0 and cnw + Ccivi  = 0. 
i-1 
n-1 

Since V is linearly independent, c, = 1. Thus, w = Ccivi. 
i-1 

Theorem 2. Let V = {v1,v2, ..., v,}, where 
V, = ~~,+s~,+...+s,~. Let V' = {si,vl,v2 ,..., v,-~}, and for 

1 5 j < k, let Wj = {si+sq,v1,vZ, ..., v,-~). If V is linearly 
independent and V' is linearly dependent, then for some j, 
1 5 j < k, Wj is linearly independent. 

Proof. Assume that for 1 5 j 5 k,  Wj is linearly 
dependent. Since any subset of V is linearly independent, 
we have that by Lemma 2, for 1 < j 5 k, there exist cj,,, 

"-1 

1 5 m 5 n-1, such that si+st, = -2 cj,mvm. Consider 
m-1 

However, 

k n-1 k 
If k is even, C si = 0. Thus, we have v, = C ( C cj,,) v,, 

j-1 m-1 j-1 
and the linear independence of V is contradicted. If k is 

k 

odd, C si = si, and we have 
j-1 

Because any subset of V is linearly independent and V' is 
linearly dependent, by Lemma 2 there exist constants dm, 

0-1 
1 _< m < n-1, such that si = C dmvm. Therefore, 

m-1 
n-1 k 

v, = C (dm+ C citm) vm, and the linear independence of V 
m-1 j-1 

is again contradicted. Thus, at least one Wj, 1 < j < k, is 
linearly independent. 

We have just shown that if Dn is linearly independent, 
then Di, 1 < i 5 n-1, and Z, are linearly independent. We 
now show that for 2 < i 5 n, if Zi is linearly independent, 
then Zi-l is linearly independent. We first need the follow- 
ing lemma. 

Lemma 3. Let V = {v1,v2 ,..., v ~ - ~ ,  si+sj, v ~ + ~  ,..., vn}, 
where j # i and for 1 5 k < n and k # i ,  either vk = sk or 
vk = sk+smk for some smk # st Let V' = {vI,v2 ,..., vi4, 
~~,v~+~,.. . ,v,).  If V is linearly independent, then V' is linearly 

independent. 

Proof. We show that if V' is linearly dependent, there 
must exist an infinite, nonrepeating sequence of vectors vh, 

m > l ,  where h # i  and ~ ~ = s ~ + s ~ + ~ ,  with xl=j .  
Assume V' is Linearly dependent. Since any subset of V is 
linearly independent, by Lemma 2 there exist ck, 1 k 5 n 

n 
and k # i, such that si.= C ckvk. The remainder of the 

k-1 
k t i  

proof proceeds by induction on m. 

Basis (m-1). Either vj = si or vj = sj + sx2 for some sxt. 
n 

~f v. = sj, then si + sj = vj + C ckvk, and the linear indepen- 
I 

k-1 

k t i  
dence of V is contradicted. Thus, vj = sj+sXZ. -Furthermore, 

x2 # i; otherwise, the linear independence of V is again con- 
tradicted. 

Induction. Assume there is a nonrepeating sequence 
vxk = sxk+sxk+l for 1 5 k 5 m-1, where xk # i for 1 < k 5 m. 

Note that 

Either vX, = S, or vXp = S, + s,+~ for some s%+~. If 
n m 

vXp = s,, then si+sj = Cckvk + C vxk, and the linear 
k-1 k-1 
k P  

independence of V is contradicted. Thus, v, = S,+S,+~. 
m 

Furthermore, if = i, then si + sj = C vxk, and the 
k-1 

linear independence of V is again contradicted. 

Assume vh = vXm4 for some i, 1 5 i < m-1. Then 

X, = k-i, and s, = sXp4. Hence, we have 

Again, the linear independence of V is contradicted. 

Theorem 3. If Zi = ,..., s n , z l , ~  ,..., Zi) is 
linearly independent, then 
Zi-l = {S~,S;+~ ,..., s,, zl,% ,..., z ~ - ~ }  is linearly independent. 



Proof. Either zi = si or zi = si+si for some sj # si. If 
= si, there is nothing to prove. If zi = si+sj, then Lemma 
applies with vk = zk for 1 5 k 5 i-1 and vk = sk for 

i+l 5 k < n .  

Theorem 4. The vectors zi, 1 5 i 5 n, can be found in 
O(n4) time. 

Proof. The linear independence of n vectors can be 
determined by Gaussian elimination in O(n2). For each of 
the n vectors zi, at most n-1 tests for linear independence 
must be made. 

5. A TWO-PASS ROUTING ALGORITHM FOR BPC 
PERMUTATIONS 

We present a two-pass routing algorithm for BPC per- 
mutations. As mentioned before, we need only demonstrate 
that the class of BP permutations can be routed in two 
passes. A similar algorithm appears in [7], but ours is dis- 
tinct and O(n). The algorithm of the previous section also 
applies to this case, but that algorithm is O(n2). Let S,S 2...~, 

denote the address of a source processor, and let dld 2...d, 
denote its destination processor under some BP permuta- 
tion, where di = for some permutation s of {1,2, ... n). 

Definition. An integer i starts a cycle of the permuta- 
tion a if #(i) > i for all k 2 1. 

Again we find the address of an intermediary processor 
zlz 2 . . . ~ ,  such that the permutations sls z... S, -+ z1z2 ... Z, and 
z,% ... z, -+ d,d ,... d, are conflict-free. For 1 5 i 5 n, zi = si 
if i starts a cycle of a, and zi = s~+s,(~) if i does not start a 
cycle of a. Again, let Di = ,..., z,,,dl,d2 ,..., di), and 
let Zi = { S ~ + ~ , S ~ + ,  ,..., s,,zl,z2 ,..., zi). Since for I 5 i 5 n, 
di = s,(~), D, is linearly independent. We again show that for 
2 < i 5 n, Di-l is linearly independent if Di is linearly 
independent and that Z, is linearly independent if Dl  is 
linearly independent. For 2 5 i 5 n, the linear indepen- 
dence of follows from the linear independence of Zi by 
Theorem 3. 

6. CONCLUSIONS 

We have studied routing the class of linear permuta- 
tions through the R network within the framework of linear 
algebra. Each linear permutation can be routed through the 
R network in two passes, and a formula for each bit of the 
address of the intermediary processor can be found in 0 (n4)  
time. Furthermore, for the subclass of BPC permutations, a 
formula for each bit of the address of the intermediary pro- 
cessor can be found in O(n) time. It remains an open prob- 
lem to show that either any permutation can be routed 
through the C l  network in two passes or there is a permuta- 
tion that requires three passes to be routed through the 0 
network. 

REFERENCES 

[I] G .  Birkhoff and S. MacLane, A Survey of Modem Alge- 
bra. New York: MacMillan, 1970. 

[2] J .  Keohane and R.E. Stearns, "Routing Linear Permu- 
tations Through the Omega Network in Two Passes", 
Technical Report 88-14, Computer Science Depart- 
ment, SUNY Albany, 1988. 

[3] D.H. Lawrie, "Access and alignment of data in an 
array processor", IEEE Trans. Cornput., vol. C-24, pp. 
1145-1155, Dec. 1975. 

[4] J.  Lenfant, "Parallel permutations of data: a Benes net- 
work control algorithm for frequently used permuta- 
tions", IEEE Trans. Cornput., vol. C-27, pp. 637447, 
July 1978. 

(51 D.  Nassimi and S. Sahni, "A self-routing Benes net- 
work and parallel permutation algorithms", IEEE 
Trans. Cornput., vol. C-30, pp. 332-340, May 1981. 

Let V = {vj 1 1 5 j < n), where v. I = d. 1 = s rO) . for [6] D.S. Parker, "Notes on shufflelexchange-type switching 
1 5 j < i-1, vi = si, and for i+l 5 j 5 n, vj = sj if j starts a networks", IEEE Trans. Cornput., vol. C-29, pp. 213- 
cycle of a and vj = sj+sXcj) if j does not start a cycle of s. 222, March 1980. 

Lemma 4. If i does not start a cycle of T, then V is 
linearly dependent. [7] P.C. Yew and D. Lawrie, "An easily controlled net- 

Proof. See [2]. work for frequently used permutations", IEEE Trans. 

Lemma 5. If i starts a cycle of a and V - {si) U {d;) is Cornpur., vol. C-30, pp. 296298, April 1981. 

linearly independent, then V is linearly independent. 

Proof. See [2]. 

Theorem 5. For 2 5 i 5 n, if Di is linearly indepen- 
dent, then Di-l is linearly independent, and if D l  is linearly 
independent, then Z, is linearly independent. 

Proof. See [2]. 

Theorem 6. The vectors zi can be found in O(n) time. 

Proof. Given a, the integers that start cycles in s can 
be found in O(n) time. Once the integers that start cycles 
are found, each of the n zi's can be found in constant time. 



PERFORMANCE OF THE ASP 

ON THE DARPA ARCHITECTURE BENCHMARK 

A Krikelis, R M Lea 

Aspex Microsystems Ltd 
Brunel University 

Uxbridge, United Kingdom, UB8 3PH 

The Associative String Processor (ASP) is a 
homogeneous, reconfigurable and programmable, 
massively parallel processor which offers step- 
function advantages in cost-performance and 
application flexibility, due to its unique 
architecture and its exploitation of state-of-the- 
art microelectronics. This paper briefly describes 
the ASP architecture, its implementation and 
reports the results of an evaluation of its 
applicability to image processing tasks. In order 
to provide a realistic demonstration of the above- 
mentioned advantages, a set of independently 
defined such tasks (viz. the DARPA Image 
Understanding benchmark) was chosen for the 
evaluation and the results are used to compare the 
performance of the ASP architecture with the 
performances of other parallel computer 
architectures when applied to the same computer 
vision tasks. 

INTRODUCTION 

Comparing different parallel processing 
architectures is a very difficult task. Most 
commercial purveyors promote their machines by 
quoting only the most favourable performances. 
Moreover, analysis of parallel algorithms and 
systems shows that there are always overheads, 
detracting from performance, which are rarely 
quoted. Indeed, it is commonly accepted that users 
can expect parallel processors to provide a speed- 
up of only O(logN), where N is the number of 
processing elements. 

The field of image processing in general, and 
computer vision in particular, provides a strong 
incentive for massively parallel processors; due to 
the large data volume, high data-rate and 
algorithmic complexity of its computational tasks. 
Indeed, researchers, involved in the areas of 
algorithm and system development for real-time 
image understanding, need high performance which is 
easy to use (including programming) and cost- 
effective. Not surprisingly, therefore, the image 
processing workers were among the first to attempt 
the establishment of a realistic benchmark for 
massively parallel processors. Early computer 
vision benchmarking attempts included the Abingdon 
Cross problem (1982) and the Tanque Verde benchmark 
suite (1984). 

A more recent attempt to construct a computer 
vision benchmark emerged from the DARPA Image 
Understanding community in 1986, when the 
University of Maryland defined a set of 
representative low and intermediate-level vision 
tasks [I]. High-level vision (such as recognition) 
were not included, because it was felt that 
proposed algorithms were too ill-defined to 
properly evaluate parallel architectures. 

The benchmark was intended to achieve an initial 
understanding .of the general strengths and 
weaknesses, for computer vision applications, of 
the growing number of parallel computer 
architectures and to project the need for future 
development of parallel architectures to support 
this field. 

This DARPA benchmarking activity has been the most 
successful to date. Moreover, a second DARPA Image 
Understanding benchmark suite, based on the 
experience of the first benchmark and defined by 
the University of Massachusetts in collaboration 
with the University of Maryland, has been recently 
announced [2]. 

This paper reports the results of the evaluation of 
the Associative String Processor (ASP) [3], a 
massively parallel processor emerging from research 
at Brunel University and being developed by Aspex 
Microsystems Ltd., for the first DARPA benchmark. 

THE BENClMNtK 

The first DARPA Image Understanding benchmark, 
defined in reference [I] and discussed in reference 
[ 4 ] ,  includes the following computer vision tasks. 

A. Edge detection within a 512 x 512 pixel image 

Al. 11 x 11 Laplacian 
A2. zero crossing detection 
A3. border following. 

B. Connected component labelling within a 512 x 
512 pixel image. 

C. Hough transform computation within a 512 x 
512 pixel image. 

D. Geometrical constructions for a set of 1000 
planar points. 



Dl. convex hull 
D2. Voronoi diagram 
D3. minimum spanning tree. 

E. Visibility for a set of 1000 opaque triangles 
in 3-D space. 

F. Graph navigation 

F1. Finding subgraphs of a given graph (100 
vertices, each with 10 edges) that are 
isomorphic to another given graph (30 
vertices, each with 3 edges). 

F2. Finding the minimum cost path between two 
vertices of an edge-weighted graph (1000 
vertices, each with 100 edges). 

As indicated in Figure 1, an ASP system (31 
comprises a dynamically reconfigurable parallel 
processing structure of conununicating ASP 
sub-strings, each supported with an ASP Data Buffer 
(ADB), an ASP Controller and an ASP Data 
Comnunications Network. 

Each ASP substring is a parallel processing 
computational structure, comprising a string of 
identical APES (Associative Processing Elements), 
as shown in Figure 2. Each APE is connected to an 
Inter-APE Comnunication Network (which runs in 
parallel with the APE string). All APES share 
comnon bit-parallel Data, Activity and Control 
Busses and a single feedback line (Match Reply,' 
MR), which are maintained by an external ASP 
Controller, which also maintains the LinK Left and 
LinK Right ports (LKL and LKR) of the Inter-APE 
Comnication Network. 

Each APE incorporates an n-bit Data Register and an 
a-bit Activity Register, an (n+a)-bit parallel 
Comparator, where the values of n and a are in the 
ranges 32-128 and 4-8 respectively, depending on 
the application class for which the ASP is 

Data Cmnmunicatims netmork 

RSP conlmllar 

Figure 1. ASP system 

communication netmork 

Figure 2. ASP substring 

optimised. Moreover, the APE includes a single-bit 
full-adder, 4 status flags (viz. C to represent 
arithmetic Carry, M and D to tag Matching and 
Destination APEs and A to activate selected APEs) 
and control logic for local processing and 
cmunication with other APEs. 

In operation, each ASP substring supports a form of 
set processing, in which the sub-set of active APEs 
(i.e. those which match broadcast data and activity 
values) support scalar-vector and vector-vector 
operations. The Match Reply (MR) line indicates 
whether none or some APEs match. Matching APEs are 
either directly activated or source inter-APE 
comnications to indirectly activate other APEs. 

Scalar data are directly broadcast or received by 
the ASP controller via the bit-parallel Data Bus. 
Input-output vector data could also be exchanged 
(viz. output dumped and input loaded in a single 
step) APE-sequentially via the Data Bus with the 
bit-parallel Primary Data exchanger (PDX) shown in 
Figure 2. However, the Vector Data Buffer supports 
a much faster APE-parallel exchange facility, in 
which the bit-serial Primary Data exchanger (PDX) 
performs the task at a very high data rate, thereby 
minimising loss of parallel processing efficiency. 
Similarly, but at a lower data-rate, the Secondary 
Data exchanger (SDX) provides a bit-parallel vector 
data exchange between the Vector Data Buffer and 
the external ASP Data Buffer (ADB), which is 
overlapped with parallel processing and, therefore, 
does not present a sequential processing overhead. 

The Inter-APE Communication Network implements a 
globally-controlled and dynamically-reconfigurable 
tightly-coupled APE interconnection strategy, which 
supports cost-effective emulation of comon network 
topologies with two modes of inter-APE 
communication: 

circuit-switching: asynchronous bi-directional 
single-bit comunication via 

multiple signal paths, dynamically configured 
(programmer-transparently) to connect APE sources 
and corresponding APE destinations of high-speed 
activation signals, implementing a fully- 
connected permutation and broadcast network for 



APE selection and inter-APE routing functions 

packet-switching: synchronous bi-directional 
multi-bit communication via a 

high-speed bit-serial shift register, routing M- 
tag patterns along each APE substring, for 
data/message transfer. 

In order to preserve continuity at the two ends of 
the Inter-APE Communication Network, the LKL and 
LKR (shown in Figure 2) allow activation or M-bit 
signals to be injected and sensed by the external 
ASP controller and act as the left and right 
neighbours of the leftmost and rightmost APE in the 
associative string processor respectively. 

The ASP concept is particularly well matched to 
both the opportunities and constraints of VLSI chip 
fabrication; owing to its high APE packing density, 
its highly compact inter-APE communications network 
and, especially, because its 1/0 requirement is 
independent of the string length. The feasibility 
of a 256-APE VLSI ASP chip was demonstrated in 1986 
and Aspex Microsystems are developing 256-APE VLSI 
ASP chips for ASP substring implementation [3]. 

Moreover, the ASP is highly amenable to 
defect/fault-tolerance; owing to its construction 
from a large number of identical APES, lack of 
location-dependent addressing and simple inter-APE 
interconnection. Consequently, as reducing feature- 
sizes and increasing chip sizes drive VLSI chip 
fabrication technology towards the prospect of ULSI 
chips and WSI devices, the ASP architecture offers 
consistency and becomes increasingly more cost- 
effective. Indeed, research at Brunel University 
has indicated the potential integrating complete 
ASP systems with 2,048-APE ULSI chips and 8,192-APE 
WSI ASP devices. 

EVALUATION 

In practice, ASP system configurations may be 
tailored to suit application requirements; the 
minimum number of APES being 256 (see above) and 
the maximum being limited by implementation cost. 

Two ASP system configurations were chosen for the 
DARPA benchmark evaluation [4]: 

DARPA ASP: Number of ASP substrings = 512 
Number of APES per substring = 512 
Data Register storage = 96 bits 
Activity Register storage = 5 bits 
Implementation complexity 

32 WSI ASP devices 
or 128 ULSI ASP chips 
or 1,024 VLSI ASP chips plus data 

communication network, ADB and 
ASP controller boards 

Clock rate = 20 MHz 

ASP : whichever ASP system configuration 
offers optimum performance for the 
particular benchmark task. 

Assuming a clock rate of 20 MHz, the benchmark 
evaluation results for these configurations are 
reported in Table 1. 

Comparison of the results of Table I with those of 
Tables 2 through 4 indicates the consistency of the 
performance advantage of the ASP. It is interesting 
to note the superiority of the two associative 
architectures. Unfortunately, the DARPA benchmark 
neglects volume and cost factors, for which highly- 
compact 1000MOPS/$1000 ULSI/WSI ASPS would excel. 

Brief details of other parallel computer 
architectures which have been evaluated according 
to the first DARPA Image Understanding benchmark 
are given below [4]. 

Medium-grain MIMD multiprocessors (see Table 2 
for the reported benchmark results) 

+ BB&N BUTTERFLY: 128 shuffle-exchange 
connected PEs; each 16 MIPS PE comprising a 
Motorola 68020 32-bit microprocessor, an AMD- 
2901 bit-slice processors for memory 
management, a custom-designed VLSI switch 
circuit supporting 32 Mbits/sec inter-PE 
communication and up to 4Mbytes of local 
memory with a 64Mbyteslsec bandwidth. The 
multiprocessor incorporates 512 1/0 channels, 
each supporting a data rate of 16Mbits/sec 
operating with a 16MHz clock. 

+ Caltech CUBE and MOSAIK: 256 and 16,384 
hypercube connected PEs; each 8 MIPS PE 
comprising Intel 80286/80287 32-bit 
microprocessors and up to 4.5Mbytes of local 
memory with a 32Mbytes/sec bandwidth. The 
multiprocessors are designed to operate with 
an 8MHz clock. 

Medium-grain systolic arrays (see Table 3 for the 
reported benchmark results) 

+ CMU WW-WARP and PC-WARP: 10 linearly 
connected PEs; each 10 MFLOPS PE comprising a 
wire-wrapped or printed-circuit board 255 
chip implementation of input queues, 
crossbar, 32-bit processing elements 
(including a floating point processor), 
register files, 32 Mbytes of local memory 
(with an 80Mbytes/sec bandwidth), address 
generator and microengine. Inter-PE 
communication PEs can be achieved at 80 
Mbytes/sec and the I/O data rate is 
COMbyteslsec. The linear arrays are 
controlled by an interface unit, comprising 
264 chips, which can communicate with the 
host system through two I/O clusters, based 
on Motorola 68020 microprocessors. The arrays 
are designed to operate with an 20 MHz clock. 

+ CMU iWARP: 72 linearly connected PEs; each 16 
MFLOPS PE being targetted for integration on 
a single chip being developed in 
collaboration with Intel Corporation. 



Fine-grain SIMD array processors (see Table 4 for

the reported benchmark results)

0 Columbia NON-VON: up to IM tree-connected

PEs; each PE being based on a custom-designed

VLSI 1-bit (or 8-bit in version 3) array

processor chip. In version 3, the tree

communication network also incorporates mesh

interconnection between its leaves. The array

processor is designed to operate with a 10MHz
clock.

0 Thinking Machines CONNECTION MACHINE: 65,536

mesh connected PEs; each PE comprising a l-

bit ALU, 8 status flags and 4Kbits of local

memory with a 4Mbits/sec bandwidth. 16 PEs

are implemented with a custom-deslgned VLSI

chip incorporating a 4 x 4 processor array

and one router of a 16Kbytes/sec packet-

switching hypercube-connected conTm/nications

network (overlaying the mesh and implemented

separately) and 4 16K-bit static RAM chips.

The array can support an I/O data rate of

30Kbits/sec/channel operating with a 10MHz
clock.

Fine-grain MIMD/SIMD array processor (see Table 4

for the reported benchmark results)

0 UMass IUA (Image Understanding Architecture):

266,304 three-level mesh connected PEs;

comprising a 64 x 64 array of custom-

designed VLSI CAAPP (Content Addressable

Array Parallel Processor) chips implementing

a 512 x 512 array of 1-bit PEs (each

incorporating 320 bits of local memory, with

a iMbits/sec bandwidth) at the lowest level,

a 64 x 64 array of Texas TMS 320 16-bit DSP

chips at the intermediate level and an 8 x 8

array of Motorola 68020 32-bit

microprocessors at the highest level.

Overlaying the mesh connected communication

network, the Coterie Network allows high

speed communication between remote processing

elements. Data I/O (at the lowest level) and

communication between the three processing

levels is achieved through dual-port video

RAMs. The entire array processor is designed

to operate with a 10MHz clock.

mU_SCRS

[i] A. Rosenfeld, 'A report on the DARPA Image

Understanding Architectures workshop', Proc.

DARPA Image Understanding workshop, Los Angeles

CA, February 1987, pp.298-301.

[2] C. Weems, E. Riseman, A. Hanson & A. Rosenfeld,

'An integrated image understanding benchmark:

recognition of a 2½D mobile', Proc. DARPA Image

Understanding workshop Vol. i, Cambridge MA,
April 1988, pp. 111-126.

[3] R. M. Lea, 'The ASP: a cost-effective parallel

microcomputer', IEEE Micro, October 1988, pp.
10-29.

[4] 'Performance of the ASP on the DARPA

architecture benchmark', Aspex Microsystems

Tech. Memo., May 1988.

A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

DARPA ASP ASp

0.80 ms

3.9 us

4.1 us - 5.5 us

6.5 us - 2.4 ms/cmp

140 ms

2.4 ms

ii ms

82 ms

0.1 - 128 ms

0.68 ms/iteration

15 us - 15 ms

0.70 ms

0.7 us

0.9 us - 5.2 us

6.5 us - 2.4 ms/cmp

140 ms

0.2 ms - 0.4 ms

II ms

82 ms

0.1 - 128 ms

0.68 ms/iteration

15 us - 15 ms

Table i. Specified ASP system and optimum

configuration for each task

A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

Table 2.

Butterfly CUBE

2.9 sec i00 ms

? ?

? ?

7.2 sec 14 ms

7.4 sec 1.8 sec

? ?

? ?

? ?

4.2 sec ?

? ?

? I0 ms

Medium-grain MIMD multi

2.5 ms

?

?

6 ms

i0 ms

?

?

?

?

?

1 ms

)rocessors

A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

WW Warp

430 ms/367 ms

170 ms/179 ms

n/a

5.6 sec

n/a / 2 see

9 ms/ 18 ms

n/a

n/a /160 ms

830 ms/400 ms

n/a

1.4 sec

PC Warp

350 ms

50 ms

i.i sec

980 ms

340 ms

9 ms

290 ms

160 ms

400 ms

1800 s/sec

69 ms

iWarp

7.8 ms

7.8 ms

690 ms

470 ms

60 ms

4.3ms

140 ms

43 ms

40 ms

19000 s/sec

25 ms

Table 3. Medium-grain systolic arrays

Non-Von _i IUA

msA1

A2

A3

B

C

D1

D2

D3

E

F1

F2

Table

2

?

?

1 sec

400 ms

?

?

40 ms

I00 ms

?

40 ms

3 ms

?

?

400 ms

700 ms

200 ms

?

2.2 sec

1 sec

?

50 ms

0.2 ms

?

0.2 ms

8 us

27 ms

15 ms

50 ms

0.4 ms/124 ms

70 ms/290 ms

?

I ms

• Fine-grain SIMD array processors

486



SIMULATION AND ANALYSIS OF ENHANCED SWITCH ARCHITECTURES 
FOR INTERCONNECTION NETWORKS IN 

MASSIVELY PARALLEL SHARED MEMORY MACHINES 

Yue-sheng Liu and Susan Dickey 
liuys@nyu.edu, dickey@nyu.edu 
Ultracomputer Research Laboratory 

Courant Institute of Mathematical Sciences 
New York University 

251 Mscer Street 
New York, NY 10012 

(212) 998-3339 
Absfract 

Differences in switch architecture can have a significant effect Ultracomputer project has developed operating system and applica- 
on both latency and throughput in interconnection networks. We tions software designed to avoid critical sections and scale to 
assess improvements in performance which can be obtained by thousands of processon 131151. Good network performance in the 
adding buffers to a crossbar switch, by changing the configuration presence of synchronization "hot spots" is required for the efticient 
of the buffers, and by adding the capability of combining messages implementation of such code. We have studied ways of combining 
to the buffers. messages as they traverse the network to avoid a hardware critical 

Four basic crossbar switch types are dexribed: section at memory and to prevent the degradation of performance 

unbuffered; k-input buffers, one per output port; one-input buflers, in the entire network 1181. 

one per input port; and one-input buffers, k buffers per output 
port. We review previous analytical work and simulation studies of 

NETWORK SIMULATOR 

some of these switch types and extend the analysis to the other Networks composed of 2 x 2 switches under various assump- 

types. An anaiytical model for simple "hot spot" tr&c is tions of switch architecture, PE request generation and memory 

presented and results are shown for different kinds of behavior arc modeled in the simulator. Output statistics include the 
message combining. average request latency, average bandwidth, average queue length 

per stage and total number of combines that occur. 
Keywords: interconnection Network, Crossbar Switch, Shared 
Memory Multiprocessor Switches with 2 two-input buffers, 4 one-input buffers and 2 

one-input buffers can all be simulated. Buffer size at switches can 

INTRODUCTION 
' f ie  basic system model under consideration is N independent 

processing elements (PEs) connected to M shared memory modules 
(MMs) through a logarithmic interconnection network. Examples 
of this architecture include the NYU Ultracomputer 141, the BBN 
Butterfly 1201, and the IBM RP3 1191. 

In this model, tr&c through the network consists of reques1.j 
from PEs to MMs and responses from MMs to PEs. Requests and 
responses are typically sent as messages of at most a few hundred 
bits, divided into packets of the same siie as the data path width 
from switch to switch within the network. Packets within the same 
message are pipelined. 

Overall system performance for very large numbers of proces- 
sors critically depends on the message throughput that can be 
achieved by the interconnection network. In practice, message 
throughput is limited not only by the theoretical bandwidth of the 
network but by its latency, the time from the generation of a 
request until a response is received. Though processors can be 
designed to tolerate some latency (61, a processor will eventually be 
unable to generate new requests until it has received the response to 
some previous request. 

Delta networks 1151 connect N = a n  PEs to M = bn MMs via 
an n-stage network composed of a x b switches. In this paper we 
study latency and throughput of square delta networks, with M = N 
and a = b = k ;  in particular we will concentrate on omega networks 
(a sub-class of square delta networks with perfect shuflle 
connections [I 11) composed of 2 x 2 switches. 

IJsing the fetch-and-add synchronization primitive, the NYU 

This work was supported in part by the Applied Mathematical Sci- 
ences Program of the U.S. Department of Energy under contract 
DE-AC02-76ER03077, in part by the National Science Foundation 
under grant DCR-8413359, and in part by I.B.M. under joint study 
agreement N00039-84-R-0605(Q). 

be varied. Meren t  clear-to-send protocols can be tested, and 
different c o m b i n g  alternatives corresponding to different hardware 
implementations can be specified. 

PE request generation can be modeled in two ways: (1) Rcn- 
erate a request with some fixed probability whenever permitted by 
the first stage of the network or by the capacity of a finite 1'1 
request queue; (2) generate a request with some fixed probability 
whenever a PE "wants to," which requires the simulation of an 
infinite request queue at the PE. In the fust case, the offered load is 
the probability of generating a request on any cycle when the I'li is 
not blocked. The effective throughput will be less than the offcred 
load. In the second case, messages accumulate latency in the requcst 
queue at the PE, but as long as that queue reaches a steady state, 
the effective throughput will be equal to the offered load. 

Our results show little difference between the two models of 
PE request generation, except when the network is very congested. 
With uniform traffic and a heavy offered load, both latency and 
eflective throughput are greater with an infinite requcst queue. 
When hot spot requests induce congestion, a system modeled with 
a finite PE request queue, operating at maximum offered load, will 
show increased latency without a corresponding increase in eflective 
throughput once the buffers are larger than a certain size 121. With 
an infinite PE request queue, the same throughput can he achieveti 
at a much lower offered load; in this case, latency decreases as 
switch buffer size increases. A system imposed limit on the J'li's 
maximum request rate might be desirable in a rcal system, to avoid 
loading the network above the capacity at which it functions well 

PE request generation can also simulate a processor which is 
allowed only a small number of requests outstanding bcforc it must 
quit generating requests. 

Memory behavior is modeled with both a cycle and an access 
time. The cycle time is used to determine whether or not the 
memory will accept a message; the access time is uscd in computing 
total latency from processor to memory. Cycle and access times 
may vary for loads, stores and other operations. The intervention of 



the memory makes delays on the foward and return paths asym- 
metric, and must be included for accurate system modeling. 

SWITCH ARCHITECTURES 
Consider a k x k crossbar switching component in a delta net. 

work. Its basic function is to forward messages from any of its k 
inputs to any of its k outputs. It may include buffers to hold mes- 
saps  in case of conflicts for the output ports or blockmg from later 
stages. These bu&rs may be associated with either input or output 
ports. 

In this section, performance comparisons of the different 
switch configurations are based on a traffic model in which 
addresses are uniformly distributed among the MMs, and the 
interarrival time of requests at the first stage of the network is 
geometrically distributed. The network is assumed to be an N x N 
square delta network, composed of k x k switches, with logt(N) = n 
stages. 

In the simplest unbuffered awitch design (see Figure la), a 
protocol must be used to kill messages in case of conflict. Lost mes- 
sages must be retransmitted. The probability of an output at a 
switch in the i" stage is pi = 1 -(I -pi _ ,lk)", where p,=p is the 
offered load on an input port to the network [IS]. This can be 
approximated by p, = 2kl((k - I)n + X l p )  (see 171). Thus for a 
square delta network with N PEs and N MMs, the throughput at 
each output port of the network is O(l/iogN), holding k and p 
constant. The overall bandwidth of the network is then 
O(N ilogN). 

Figure 1. (a) Unbuffered Switch. (b) k-Input Buffers, One per Oulpul 
l'ort. (c) One-lnpul BufTers, One per Output Port. (d) k-Input Buffers, k 
per Output Port. 

'The latency of a message, measured from the time a processor 
makes a request until it is satisfied, is difficult to estimate because of 
retransmission. Suppose the processor can actually generate requests 
at a rate b, independent of any responses it receives. Over time, if b 
is less than the maximum bandwidth of the network, retransmis- 
sions will accumulate until the offered load on the network p minus 
the rate r of rejected messages gives the desired b. At this point, the 
offered load should stabilize at p = b + r .  For a given b =p, the 
output probability equation for stage n can be solved for p ,  b/p 
will give the probability of a message being accepted, and p /b  the 
average number of trials until it is accepted. If we assume that the 
transit time in switch cycles of a message accepted by the network is 
n + m - I, where n is the number of stages and m is the number of 
packets per message, and that a rejected message is retransmitted 
after twice this amount of time (when no response or a negative 
acknowledgement is received), then the expected value of the round 
trip latency is 2 x b / b )  x (n + rn - I). 

A hardware buffer capable of accepting k inputs in one cycle 
can be used to construct a switch with one buffer per output port 
(see Figure Ib). This is the type of switch that has been most 
thoroughly analyzed in the literature, especially in 181. According to 
that analysis (see also [17]), if the queues at each switch may grow 
without bound, ("infinite buffers") then the average switch delay at 
the first stage is 1 + rn2p(l - llkm) / 2(1- mp) where rn is the 
number of packets in a message, and the average switch delay at 
subsequent stages is approximated by the expression 
I + (1 + 4mp / Sk)(m2p(l - Ilk) / 2(1- mp)). The initial 1 
cornsponds to the time required for a message to be transmitted 
through a switch without being queued (the switch service time). 
The average network traversal time (in one direction) is the sum of 
the individual stage delays plus the setup time for the pipe, i.e. 
(m - I). 

Note that the network has a capacity of l/rn messages per 
switch cycle per PE. That is, each PE cannot enter messages at a 
rate higher than one per m cycles, and, conversely, the network can 
accommodate any traffic below this threshold. Thus, the global 
bandwidth of the network is theoretically proportional to the 
number of PEs connected to it. 

Using the above formulas, Table 1 compares the analytical 
performance predictions for a 1024 PE network containing 
unbuffered switches with a network containing switches with k -  
input buffers. The advantage of buffered switches increases for 
heavier loads. 

Table 1. Round-trip Latency. 1024 PEs, analytical predictions, bulkred 
and unbuffered switches, different crossbar sizes. 

The configuration using k-input buffers is somewhat d i c u l t  
to realize in hardware. For a simpler hardware implementation, 
one-input buffers, one per input port, may be used. Outputs of the 
bufTers are multiplexed, and a buffer may be blocked on output by 
another buffer (see Figure Ic). In [9j this arrangement was called 
"buffers between the switches." Recent work 1161 has shown that 
the effective throughput of this type of switch cannot exceed .75 
messages per cycle per port, but that for rates under .75, the queues 
are stable and output rate equals input rate. Recurrence relations for 
the queue length probabilities have also been developed, and have 
been used to compute the data in Table 2. 

Switch Request rate 

'l'able 2. Expected Queue Length. Single stage. "infinite buffers," labels as 
in Figure I .  

Using only one-input buffers, the performance of the k-input 
buffers may be approximated using k buners per output port ( x e  
Figure Id). A packet leaves an output port whenever any of the k 
associated buffers has data; if more than one has data, arbitration 
must occur. In 191, this configuration was called "buffers within the 
switches" and showed better performance than the "buffers between 
the switches," especially for high load. 



By analyzing the k buffers associated with an output port as a 
siigle queueing system with a service rate of 1 per cycle, the 
expected waiting time in the first stage can be seen to be the same 
as that of the k-input buffer. However, the service discipline within 
the queueing system is no longer first come, first serve, so the vari- 
ance of the waiting time may differ. 1 5 s  in turn may affect the 
result at later stages. 

Table 2 compares analytical results for the three types of 
buffered switches, showing the expected queue length at the first 
stage, assuming "infinite buffers." 

Simulations for this section were carried out with one packet 
messages, a large buffer size per output port (40 packets), and no 
delay at memory. We use a finite PE request queue (in the simula- 
tions below, of size 0) as a more realistic model, since actual proces- 
sors cannot to generate requests indefinitely when blocked. All 
results given here are for a 1024 PE omega network composed of 
2 x 2 switches. 

Figure 2 shows the latency of different buffered switch types at 
different effective throughputs. As in the analytical results for a sin- 
gle stage, switches (b) and (d) show equivalent delay, while (c) is 
not as good, especially at higher loads. Even in a system where the 
average load is expected to be fight, the switch types with better 
performance at heavier loads may make the network more robust to 
bursty traffic. 

DELAY 
(cycles) 

17igure 2. Comparison of Three Buffered Switch Architectures. Simulation 
data, 1024 PEs. single-packet messages, buffer size 40 packets. 

"HOT SPOT" TRAFFIC AND COMBINING 
The above results assume that memory reference patterns an: 

perfectly uniform. As shown in (101, "hot spot" traffic a n  be par- 
ticularly damaging in a buffered network. We develop a model of 
hot spot traffic which gives an estimate of the maximum amount of 
such t r f i c  that can be handled for large numbers of processors, 
describe how combining memory requests can be used to mitigate 
the effects of hot spots, and show simulation results for different 
combining alternatives. 

A model for single "hot spot" traffic 
Suppose each PE issues two types of requests: hot spot 

requests directed to a particular MM and other requests uniformly 
distributed among all N MMs. Assume the uniform requests have 
request rate W, and the hot spot requests rate R .  Each PE issues 
p = W + R requests per cycle. The paths of the hot spot requests 
produce a traffic tree rooted at the hot MM, and spanning all the 
PEs as leaves. 

In 1141 it is shown that each switch node in a delta network 
with a single hot spot has the same traffic distribution on all its 
inputs. We denote the input probabilities as p,,, _ I where i is the 
stage of the node, and j is the number of stages the traffic at this 
input has conflicted with traffic directed to the hot spot. 

For an unbuffered network, if the switch node is in the "hot" 
traffic tree, the probability that a "hot" output has a message is: 

P,J= ~ - l ( ~ - r j - ~ j - ~ ~ - ~ - ( ~ - ~ ~ - ~ ) p ~ - ~ ~ - ~ / k l ~ ~  

and the probability a "cool" output has a message is: 

where, 

For nodes not in the "hot" traffic tree, 

p. = 1-(I - ~ , ~ - , / k ) ~  
I J 

Take a 4' x 45 delta network as an example. At the outputs of 
the last stage, traffic can be divided into 6 classes: p , , ,  the "hot" 
traflic, one output only; p4,5, traffic that codiicts with the "hot" 
traffic for 4 stages, and has 3 outputs; p,.,, 3 stages conflict, 12 out- 
puts; p2,,, 2 stages conflict, 48 outputsf P ~ , ~ ,  I stage conflict, 192 
outputs; and pops, traffic that has no confict with the "hot" trafXc, 
768 outputs. 

The effects of "hot" traffic on the other five classes of traffic 
are shown in Table 3, with throughput under uniform traffic as a 
comparison. 

~ 

/kGd-- T r a c  class 7 

'Table 3. Throughput in 4' x 4' Unbuffered Delta Network. 5% hot spot. 

For buffered networks, assuming infinite buffers, the network 
is non-blocking and every request is able to get into the network. If 
the network has a stable state for a given onered load, 

and 

P,.i = w, i > j , i =  1,2 ,..., n. 

For the network to be stable, we must have 

which severely restricts the amount of hotspot trafiic which can be 
handled without c o r n b i g  for large N. 

Combining messages 
The NYU Ultracomputer project has proposed combining 

fetch-and-add operations as well as loads and stores at the switches 
[1][4]. The fetch-and-add operation, useful as a synchronization 
primitive and in many parallel algorithms, is an indivisible add to 
memory; its format is F&A(X,e), where X is an integer variable 
and e is an integer expression. The operation is defined to return 
the (old) value of X and to replace X by the sum X + e. 

When two fetch-and-adds referencing the same shared vari- 
able, say F&A(X, e )  and F&A(X, f), meet at a switch, the switch 
forms the sum e + f ,  transmits the combined request F&A(X, 



e + f ) ,  and stores the value e in ita local memory. When the value 
Y is returned to the switch in response to F&A(X, e + f), the 
switch returns Y to satisfy one request, F&A(X, e), and Y + e to 
satisfy the other, F&A(X, f). 

S i  combined requests can themselves be wmbiied, any 
number of concumnt memory references to the same location can 
be satisfied in the time required for one shared memory access from 
a single PE. 

Different Combining Strategies 
The NYU Ultracomputer's current hardware design uses a 

systolic implementntion of "pairwise combining," in which a mes- 
sage may combine with only one other message at any given stage. 
Other researchers [l2][13] have shown that for very large intercon- 
nection networks, painvise combining may not be sufficient to 
prevent network degradation due to hot spots. They suggest "k-way 
combining," when k = 3 means a message may combine with two 
other messages at a stage. According to simulations in (131, 3-way 
combining has performance almost as good as unlimited combining. 

Our own simulations show acceptable performance for two- 
way c o m b i i g .  even for systems with 1024 processors. A simple 
extension of our current systolic queue design will give "two-and-a- 
half way" c o m b i g ,  in which a message may combine with two 
other messages as long as they each come from di i rent  input ports 
at that stag. Table 4 compares no combining with painvise, two- 
and-a-half way, and 3-way combining.The results for 3-way com- 
b i g  assume larger return path queues, as in [ 12). 

Table 4. Latency and Throughput for Different Combining Strategies. 
Simulation data, 128-PE network, single packet messages. 2-input queues. 
10% hot spot rate. 

For a 128-PE network, the differences among all three 
schemes are small. Three-way c o m b i g  with thc same return path 
bufier size is actually worse than two-and-a-half way combing,  
with latency of 31.3 cycles and throughput of 77.8% at 90% otTered 
load. We are currently running simulations of larger systems to see 
at what size system a more complicated combining scheme becomes 
worthwhile. 

OtTercd 
load 
70 
90 

FURTHER WORK 

-- 

Latency (cydles) 

We are continuing work on analytic solutions, in particular for 
the output distribution, and on finite buffers. We are interested in 
developing analytic models that include the effect of routing reversal 
at memory on the round trip performance. Better analytic solutions 
are needed to judge initial proposals for network design; simulations 
can be most usefully conducted only after a design has been ela- 
borated. 

- 

Throughput(%) 

We are also carrying out simulations under more complicated 
traffic models, with multiple hot spots and varying hot spot fre- 
quencies and locations. Since the usefulness of increased switch 
functionality is heavily dependent on the patterns of network load, 
further work must concentrate on characterizing that load. We are 
gathering traces from parallel programs to be used in conducting 
trace-driven simulations of the network. Our goal is to integrate the 
network simulator into a system simulation environment that can 
simulate increasingly complex models of processor and memory, as 
well as switch behavior. 

3 

21.5 
30.9 

S. Dickey. R. Kenner, M. Snir and I. Solworth, "A VLSl Combin- 
ing Network for the NYU Ultracomputer," Proceedings of the Inter- 
nalional Conference on Computer Design. pp. 110 - 113. October 7, 
1985. 

2__--2-1p 
21.0 
30.7 

3 

69.9 

o 
165 
167 

o 
7.2 

1 7 . 2  - 

S. Dickey and Y. Liu. "Simulation and Analysis of DifTerent Switch 
Architectures for Interconnection Networks in MlMD Shared 
Memory Machines", NYU Ultracomputer Note #141. June 1988. 

21.6 
.30.5  

I. Edler, A. Goulieb, C. Kruskal, K. McAuliffe, L. Rudolph, M. 
Snir, P. Teller, and I. Wilson, "Issues Related to MlMD Shared- 
Memory Computers: The NYU Ultracomputer Approach". Proc. o f  
the 12th Annual Ind. Conf. on Comp. Arch., pp. 126-135. 1985. 

2 

69.9 
82.8 

A. Gotllieb. "An Ovavinr of the NYU Ultracomputer Project". 
Experimental Parallel Computing Architectwes, I.  Dongarra, ed.. 
North Holland. pp. 25-95, 1987. 

2-112 

69.9 
84.4.84.7 

A. Gottlieb. B.D. Lubachevsky, and L. Rudolph, "Basic Techniques 
for the Efficient Coordination of Very Large Numbers of Coopwat- 
ing Squential Processors", ACM TOPLAS 5, pp. 164-189, Apr. 
1983. 

R. Kenner, S. Dickey and P. Teller. "The Design of Processing Ele- 
ments on a Multiprocessor System with a High-bandwidth, High- 
Latency Interconnection Network." to appear in Proceedings of the 
Hawaii International Conference on System Sciences, January. 1989. 

C.P. Kruskal and M. Snir, "The Performance of Multistage Inter- 
connection Networks for Multiprocessors". IEEE Tram. Cornp. C- 
32. pp. 1091-1098. 1983. 

C. P. Kruskal, M. Snir and A. Weiss. "The Distribution of Waiting 
l imes  in (;locked Multistage Interconnection Networks." Proc. 
1986 Intern. Conf. on Parallel Processing. 

M. Kumar and I. R. Jump. "Performance Enhancement in BufTered 
Delta Networks Using Crossbar Switches and Multiple Links," 
Jownal of Parallel and Distributed Computing. Vol. 1, No. I, 
August 1984, pp. 81-103. 

M. Kumar and G. F. Pfister. "The Onset of Hot Spot Contention." 
Proc. 1986 Intern. Conf. on ParaNel Processing, pp 28-34. 

D.H. Lawrie. "Access and Alignment of Data in an Array Proces- 
aor", IEEE Trans. Comp.. C-24 . pp. 1145-1 155. Dec. 1975. 

G. 1.e~. "Another Combining Scheme lo Reduce Hot Spot Conten- 
tion in Large Scale Shared Memory Parallel Computers," First 
International Supercomputing Conference. Athens, 198 7, pp. 68-79. 

G. Lee. C. P. Kruskal and K.G. Kuck. "The Effectiveness of Com- 
bining in Shared Memory Parallel Computers in the Presence of 
'Hot Spots'." Proc. 1986 Intern. Conf. on Parallel Processings. 
August 1986. pp. 35-41 

Y. Liu. "Delta Network Performance and 'Hot Spot' Traffic." NYU 
Ultracomputer Note #132, 1988. 

J . H .  Patel. "Performance of processor-memory interconnection net- 
works for multiprocessors," IEEE Trans. Cornp., C-30, pp. 771 -780, 
Oct. 1981. 

0. Perms and S. Dickey. "Some Properties of Clock-regulated 
Queues in 2 by 2 Switch Architectures." NYU Ultracomputer Note. 
in preparation. 

0. Perms and 1. Percus. "Elementary properties of Clock-regulated 
Queues," NYU Ultracomputer Note #138, May 1988. 

G.F. Pfister and V.A. Norton, " 'Hot Spot' Contention and Com- 
bining in Multistage Intercomection Networks". Proc. 1985 Intern. 
Conf. on Parallel Processing, pp. 790 - 797. 

G. F. F'fister el. al, "The IBM Research Parallel Processor Proto- 
type (RP3): Introduction and Architecture," Proc. 1985 Intern. 
Con/. on Parallel Processing, pp. 764-771. 

R. Rettberg and R. Thomas, "Contention Is No Obstacle to 
Shared-Memory Multiprocessing". CACM, Volume 29. Number 12. 
December 1986, pp. 1202-121 2. 



FAULT TOLERANCE OF ALLOCATION SCHEMES

IN MASSIVELY PARALLEL COMPUTERS

Marilynn Livingston"

Department of Computer Science

Southern Illinois University

Edwardsville, IL 62026-1653

Quentin F. Stout*

Dept. of Elec. Eng. and Comp. Sci.

University of Michigan

Ann Arbor, MI 48109-2122

Abstract

This paper examines the problem of locating and allocating large

fault-free subsystems in multiuser massively parallel computer

systems. Since the allocation schemes used in such large systems

cannot allocate all possible subsystems a reduction in fault toler-

ance is experienced. We analyze the effect of different allocation

methods including the buddy and Gray-coded buddy schemes

for the allocation of subsystems in the hypercube and in the

2-dimensional mesh and torus. Both worst case and expected

case performance is studied. Generalizing the buddy and Gray-

coded systems, we introduce a new family of allocation schemes

which exhibits a significant improvement in fault tolerance over

the existing schemes and which uses relatively few additional

resources. For purposes of comparison, we study the behavior

of the various schemes on the allocation of subsystems of 2 t8

processors in the hypercube, mesh, and toms consisting of 2 m

processors. Our methods involve a combination of analytic tech-

niques and simulation.

Keywords fault tolerance, allocation, hypercube computer,

mesh,toms, buddy system.

1 Introduction

Parallel computers incorporating thousands of processors must

be able to tolerate faulty processors and communication links

if they axe to achieve a usable mean-time-to-failure. In these

large systems, processor allocation is needed for both multiuser

environments, such as is provided with the NCUBE series of hy-

percubes, and for single user systems with multiple subtasking

capabilities. In such a computing environment the problem of lo-

cating and allocating large fault-free subsystems is computation-

intensive and, in practice, some allocation scheme which recog-

nizes only a subset of the existing subsystems is used. The allo-

cation scheme often has a dramatic effect on the fault tolerance

of the system, thus forcing a trade-off to be made between space

and computation time devoted to the allocation scheme versus

minimum acceptable level of fault tolerance of the system.

In this paper we examine allocation schemes for large sub-

cubes of a hypercube and large subsquares of a two-dimensional

mesh and torus, considering worst case and expected case fault

tolerance of the interconnection network, and the reduction in

fault tolerance caused by the fact that the allocation scheme

used cannot allocate all subsystems. We focus on the alloca-

tion of large subsystems because we believe that most massively

"Partially supported by Nationa.[ Science Foundation grant CCR-8808839

IPar tinily supported by National Science Foundation grant DCR-8507851

and an Incentives for Excellence Award from Digital Equipment Corporation

parallel maxhines are purchased in order to support large tasks

as opposed to hundreds of simultaneous users with small tasks.

For comparative purposes we analyze allocating a subcube or

subsquare of 2 TM processors in a machine of 22° processors.

In a d-dimensional hypercube there axe (_)2d-q subcubes of

dimension q, called q-subcubes, and each processor belongs to (_)

of them. Thus in a hypercube of 22° processors a faulty processor

makes 190 of the existing 760 18-subcubes faulty. The smallest

number of faulty processors which makes all subcubes contain-

ing m processors faulty in a hypercube containing n processors

is denoted by Qw(n,m). Analogously, the expected number of

processor faults which makes all subcubes of size m faulty is de-

noted by Qe(n, m), where we assume that faults are independent

and uniformly distributed. We find that Qe(n, rn) is significantly

larger than Q,o(n, m) and, in particular, Q,o(22°, 2 TM) = 8 while

Qe(22°,2 Is) _ 24.5. A discussion of these functions and their

analogs for the 2-dimensional mesh and torus is included in Sec-

tion 2.

Current hypercube allocation schemes do not allocate all

q-subcubes but instead employ some form of the buddy sys-

tem approach, where the only q-subcubes allocated are those

consisting of all processors determined by arbitrarily fixing the

high-order d - q address bits. There are only 24-q such q-

snbcubes and each processor is in exactly one of them. Using

Bto(n, m) and Be(n, m) to denote the worst case and expected

case number of faults needed to make all the buddy system sub-

cubes of dimension [lg rnJ faulty, one has B,o(2 _°, 2 TM) = 4 and

B_(22°, 2 TM) _ 8.3. Thus the use of the buddy system allocation

scheme results in a considerable reduction in fault tolerance. In

Section 3 we discuss the fault tolerance properties of the buddy

system along with severaJ variants including a double buddy sys-

tem (DB), a Gray-coded buddy system (G), and a double Gray-

coded buddy system (DG) defined for the hypercube, and the

2-dimensional mesh and torus.

In Section 3.3 we introduce a new family of allocation schemes

which generalizes both the buddy and Gray-coded buddy sys-

tems and exhibits improved fault tolerance with relatively little

increase in search time. The best of the schemes considered

in our simulation studies, denoted DA 2, allocates only 48 sub-

cubes of dimension 18 in a 20-dimensional hypercube, and yet

DA_(22°,2 ts) _ 15. Thus DA 2 achieves more than half of the

fault tolerance of the hypercube in which all 760 subcubes of

dimension 18 axe allocable.

For purposes of comparison, we include in Section 4 simula-

tion results for the hypercube with 22° processors and the various

schemes for allocation of subsystems possessing 2 is processors.

CH2649-2/89/0000/049150 i.00 ,c: 1988 IEEE

491



2 Subsystems 

Throughout, lg means logl. We use n to denote the total number 
of processors in the system, and for convenience of notation, 
suppose n is an even power of two. Let M ( n )  denote a t w e  
dimensional square mesh with grid points {(z, y) : 1 5 z ,  y 5 
m, where two grid points are connected if and only if their 
coordinates differ by one in exactly one coordinate position. The 
corresponding fi x Jii twedimensional torus will be denoted 
by I ( n ) .  It  has the same grid points as M(n), and includes 
the connections of M(n),  but in addition its boundary points 
(z , l )  and (z,JiT) are adjacent as are (1, y) and (fi, y) for 1 5 
z, y 5 fi. We will denote by Q(n) the d-dimensional hypercube 
with n = nodes which are the binary d-tuples and where two 
d-tuples are connected if and only if they differ in exactly one 
poeition. 

The mesh M ( n )  has (fi - f i  + 1) 2 subsquares of size 
Jiii x ,hi, the torus 7 ( n )  has n such subsquares, while the 
hypercube Q(n) has (3 - 2d-9 subcubes of dimension q, where 
d = Ign. Thus we see that both M(n)  and 7 ( n )  have 8(n1.5) 
square subsystems whereas Q(n) has 8(3d) = 8(nk3) subcubes. 

Let us now examine the worst caw, and expected case fault 
tolerance when all subsystem of a given size are allocable. De- 
note by Mw(n, m) the smallest number of faulty proceseors which 

The meah M ( n )  has (6 - fi + 1) 2 subsquares of size 
fi x fi, the torus 7 ( n )  has n such subsquares, while the 
hypercube Q(n) has (3 - 2d-q subcubes of dimension q, where 
d = lgn. Thus we see that both M ( n )  and 7(n)  have 8(n1.5) 
square subsystems whereas Q(n) has 8(3d) = 8(n'g3) subcubes. 

Let us now examine the worst case and expected case fault. 
tolerance when all subsystems of a given size are allocable. De- 
note by M,(n, m) the smallest number of faulty processors which 
make all subsquares of M(n)  with m processors faulty, and let 
M,(n, m) denote the ezpecied number of faulty processon, which 
muit occur before all subsquares with m processors are faulty, 
assuming that faults are independent and uniformly distributed. 
The expressions Tw(n, m) and T,(n, m) denote the correspond- 
ing quantities for the torus 7 ( n )  and Qw(n,m) and Q,(n,m) 
denote the corresponding quantities for the hypercube Q(n). 

It is straightforward to establish that the functions M(n, m), 
T(n, m), and Q(n, m) are monotone non-decreasing functions of 
n and monotone non-increasing functions of m. We state these 
results without proof in the following. 

Proposition 2.1 If n' > n, d' > dl m' > m, and n 2 m' then 

( i Mw(nl,m) > M d n ,  m), and Mw(n, m') l Mw(n, m), 

( ii ) M,(n',m) > M,(n,m), and Me(n,ml) < M,(n, m), 

( iii ) Tw(nl, m) > Tw(n, m), and T,(n, m') 5 Tw(n, m), 

( iv ) Te(nl,m) > T,(n,m), and T,(n,m') < Te(n,m), 

The values of Mw(n, m) and Tw(n, m) are relatively easy to 
determine. To illustrate for m = 4 4 ,  subdivide the f i  x fi 
meah into four rn x rn submeshes, designate a faulty pro- 
c a m r  p~ in one of the submeshes and designate its translate 
M hulty in each of the other submeshes. This results in every 
square submesh of size n/4 being faulty, and the same fault pat- 
tern also makes every square submesh of the torus 7 (n)  faulty. 
On the other hand, since the 4 subsquares are nonoverlapping, 
st least 4 faulty processors are required to cause them to be 
faulty. Using this reasoning, it follows that 

for any natural number i. 
In the case of the hypercube the function Qw(n, m) is much 

more difficult to compute. However, it is known [1,2] that Ow(n.n14) 

is the minimum positive integer r such that (Lr;iyl) 2 lg it 
which yields 

Qw(n, n/4) = 8. 

Thus, while in a square mesh or torus of 1024 x 1024 proces- 
sors, as few as 4 faulty processors can make every 512 x 512 
submesh faulty, in a 20-dimensional hypercube consisting of the 
same number of procesaore, a t  least 8 processors must become 
faulty before all 18-dimensional subcubes become faulty. As the 
number of processore increases, this difference becomes more 
pronounced since it has been shown [1,2] that 

1 
Qw(n,n/4) = Iglgn + -1glglgn + O(1). 

2 

We used simulation to investigate the expected number of 
faulty processors that make the analogous subsystems faulty. 
The 1024 x 1024 mesh and torus was approximated by the con- 
tinuous unit square, and the 512 x 512 submesh by a continuous 
3 x 3 square. In each trial, faults were successively generated 
randomly and uniformly in the unit square until no fault-free 
subsquare of size 4 x ) remained. The results of 100,000 trials 
yielded the following: 

~ , ( 2 ~ ' ,  218) % 13.54, and ~,(2", 2'') % 19.89 

For the 20-dimensional hypercube we used a simulation with 
10,000 trials and found that 

The program developed for this simulation, which will be de- 
scribed in Section 4, can also produce mean-time-tefailure d- 
ues by incorporating a given probability distribution for the 
faults. 

3 Allocation Schemes 

In comparison with the 2-dimensional mesh and torus, the hy- 
percube displays a high degree of fault tolerance with respect 
to large subsystems. However, this advantage is lost when only 
a small subset of the existing subsystems are allocable. In this 
section we will describe a few analytic results that indicate how 
the buddy system, and other allocation schemes, affect the fault 
tolerance properties of the hypercube, mesh, and torus. 



3.1 Allocation Schemes for Hypercubes 

Most allocation schemes for the hypercube employ the buddy 
system approach, where the only q-subcubes allocated in Q(2d) 
are those of the form alaz . .  .ad-, t . . . c, that  is, the high-order 
d - q address bits are fixed in each allocable q-subcube. There 
are 2d-9 of these subcubes and they form a partition of ~ ( 2 ~ ) .  
We will use BQw(n,m) and BQ,(n,m) to denote the worst case 
and expected case number, respectively, of faults needed to make 
all the buddy system subcubes of size m faulty. 

To obtain a good upper bound for BQ,(n,m), we consider 
the following model: balls are tossed a t  random into z identical 
boxes until each box contains a t  least one ball. Suppressing de- 
tails, we can show that the expected number of balls required is 

&, The balls correspond to faults, and the boxes repre- 
sent the disjoint subcubes allocated by the buddy system. Thus 
z = n lm.  The number of balls required is a slight overestimate 

Theorem 3.2 For n 2 m 2 2 and both n and m even powers 
of 2, 

( i ) GQw(n, n/4) = 4 4 ,  

( ii ) GQ,(n, n/2) 5 3: and lim,,, GQ,(n, n/2) = 33, 

( iii ) GQe(n7 m) I CTZ~ P ( Z , ~ ) * ~  r k m  I = n/m andp(z,s)(n = 
(;)-d:,)-v-;l,), ondlim,-a ,GQ.(n,n/r) = C:idr,r)* 

Multiple Gray-coded buddy systems combine Gray codes 
with the multiple index permutations of multiple buddy sys- 
tems. We will use D G  to  denote the double Gray-coded buddy 
system which allocates q-subcubes from pairs of (q- 1)-subcubes 
in which the first d-q+1 index positions have been fixed together 
with the pairs of (q - 1)-subcubes in which the last d - q + 1 in- 
dex positions have been fixed. Chen and Shin [4] have suggested 

of the number of faults required because a subcube with one or D G  as an improved allocation scheme for Q(n). 
more faults is slightly less likely to acquire another fault. R o m  To obtain corresponding analytic results for DB and DG, 
this model we have the following. we can use the same model but the analysis involves the consid- 

eration of many special cases. We have resorted to simulation to 
3.1 For 2 2 and both and even powers help us understand the performance of these schemes and will 

of 2, report the results in Section 4. 

( i ) BQw(n,m) = n l m ,  
3.2 Allocation Schemes for the Mesh and Torus 

( ii ) BQe(n,n/2) 5 3 and limd,, BQe(n,n/2) = 3, 
A buddy system for the allocation of square submeshes contain- 

( iii ) BQ,(n, m )  < n/m(ln 2lg(n/m) + O(1)). ing m nodes in M ( n )  is analogous to that described for hy- 
percubes. There are n l m  subsquares of dimensions fi x f i  
allocated and these are of the form ((2, y) : ( j  - 1)fi + 1 5 

Several allocation schemes which are more fault tolerant than z <  j f i , ( k - 1 ) f i t l  5 y < k f i } f o r l <  j , k <  &ii"G. 
the buddy system have been ~roposed.  For example, two "or- SO, for example, if m = n/4, there are only 4 allocable square 
thogonal" buddy systems, which we call double buddy systems submeshes containing n/4 processors. In the worst case we see 
(DB), can be used to allocate m-subcubes of the form a ~ a ~ . .  ad.,* that  only 4 faulty processors are needed to make every buddy 
.... and t . .  . * a,+, . . a d  . With twice the number of sub- system submesh of size n/4 faulty. Assuming the faults are ran- 

cubes allocated and roughly twice the overhead in the alloca- domly and uniformly distributed, the expected number of faulty 
tion algorithm we shall see an increase of approximately 25% in processors needed to make every buddy system submesh of size 
fault tolerance. In general, multiple buddy systems use multiple n/4 faulty can be found by considering the same model as that 
permutations of the index set {1,2,. . . , d l ,  and for each per- used for the buddy system for hypercubes. This gives an  ex- 
mutation x they allocate m-subcubes by fixing index positions pected value of approximately 85. The same arguments hold for 
~ ( 1 ) .  . . x ( d  - m )  and varying the remaining m indices. the torus, as we state in the following. 

Another class of allocation schemes for the hypercube involve 
the use of the Gray code numbering of the nodes of Q(n). Let Theorem 3.3 For n 2 m 2 2, and both n and m even powers 
gd denote the binary reflected Gray code map from {O.. .2* - 1) of 4 
to d-bit strings. A single Gmy-coded buddy system, denoted 
by G here, allocates q-subcubes that arise as pairs of (q - 1)- ( i ) BMw(n,m) = BTw(n,m) = n/m,  

subcubes of the form { a l . .  .ad-,+l c . . . * ,b l . .  . bd-q+l * . . . c), 

where Si!q+l(al.. and Si!q+l(bl.. . bd-q+l) are con- 
secutive mod 2*-q+'. An approximate analysis of the behavior 
of the Gray-coded buddy system can be obtained through the 
use of a model in which z identical boxes are arranged in a ring 
and balls are tossed at random into the boxes until no two adja- 
cent boxes are empty. Here z = 2d-9t1, which is the number of 
q-subcubes allocable by scheme G.  While it is straightforward 
to show that limd,, G Q , ( ~ ~ ,  2d-k) is trapped between 2kk In 2 
and 2kf '(kln 2$0(1 ) ) ,  we can obtain a more exact description. 
Let p (z , i )  denote the conditional probability that there are two 

The Gray-coded buddy system for M ( n )  and ?(n) is the 
same as the double buddy system DB here. M ( n )  is partitioned 
into square submeshes consisting of m/4 nodes each and G allo- 
cates a square submesh of size m when that submesh arises as a 
2 x 2 array of the smaller m/4 submeshes in the partition. Thus 
G allocates a total of ( 2 m  - I)* m-node square submeshes 
for M ( n )  and a total of 4n/m for T(n) .  

adjacent empty boxes, given that i balls have been tossed at  
random into the boxes. We have evaluated p(z,i)  which, in 
turn, gives an explicit expression for the limiting behavior of 
GQ,(n, m)  as stated in the following. 



When n/m is an integral power of 4 the buddy systems are al- 
d y  worst-case optimally fault tolerant for the mesh and torus, 
and hence also GM,(n,m) = GT,(n,m) = nlm. To obtain an- 
alytic estimates of GM,(n, m) and GT,(n,m), the same proba- 
bility model as used in the case of the hypercube can be utilized 
here. However, the number of configurations to handle becomes 
large and we have not carried the computations out but rather 
have resorted to simulation studies instead. In the study, we 
approximated M ( n )  and 7 ( n )  by the continuous unit square, 
and the x submesh by a continuous 3 x 4 square as 
we described in Section 2. The results of 100,000 trials gave 

3.3 A New Family of Allocation Schemes 

We will describe here a new family of allocation schemes for the 
hypercube and note that an analogous family can be described 
for the 2-dimensional mesh and torus. 

Let k 2 1, and consider an allocation scheme Ak that, for 
a given d and q, will d o c a t e  9-subcubes whose nodes are d- 
tuples in which the last q - k bits are arbitrary and the first 
d - q + k bits are the nodes of a k-subcube in Q(2d-q+k). For 
example, A2 will allocate 18-subcubes in Q(2") of the form 
ala2asa4 * . . .*  in which the last 16 components are *'s and 
where two of the ai have values 0 and 1 and the other two ai 
are equal to  r.  Thus, A2 allocates 24 subcubes of dimension 
18. The double A2 family, denoted by DA2, allocates a set of q- 
subcubes of Q(n) which consist of the set of q-subcubes allocated 
by A2 together with a corresponding set in which the first 16 
components are *'s and the last four components are chosen 
in an analogous way to the first four components for A2. In 
general, allocates (d-i+k)2d-q subcubes of dimension q in 
Q(2d) and DA2 allocates twice this number. In the families Ak 
and D A ~ ,  increasing k clearly increases the number of allocable 
subcubes and hence increases the fault tolerance, at a cost of 
increased search time. Analytic results for these families, similar 
to those for the buddy and Gray-coded buddy systems has not 
been done as yet. However, simulation studies we have done on 
these schemes show them to yield a significant improvement in 
the fault tolerance of the hypercube as we will see in the next 
section. 

4 Simulation Results 

We illustrate in the table below the results of simulation stud- 
ies of the buddy (D), double buddy (DB), Gray-coded buddy 
(C), double Gray-coded buddy (DC), the new allocation fam- 
ilies (A') and (A2), and their doubles (DA') and (DAZ). We 
include the results for the scheme (E) in which every subcube 
is allocable, as well as including the worst case results and a 
listing for the number S, of subcubes allocated by each scheme. 
These schemes were used in the allocation of subcubes in Q(220) 
of size 218. The values for Q,  shown in the table were obtained 
from 1000 trials. In each trial, a List of random faults sufficient 
to make every 18-subcube faulty was generated. For each allo- 
cation scheme X, the list was scanned to identify the first fault 
on the list that resulted in all of the 18-subcubes allocated by 
X being made faulty. Although we have not done so, we could 
easily modify our program to compute mean-time-to failure for 
each of the allocation schemes once a probability distribution for 
faults was specified. The expected case values in the table are 

based on the assumption that faulta are randomly and uniformly 
distributed with respect to the nodes of the hypercube Q(p). 

Table: Expected and Worst Case Behavior of Allocation 
Schemes 

5 Conclusion 

Our results show that simple allocation schemes such as those 
based on the buddy system lose much of the fault tolerance of 
the system, but that much of this loss can be regained by a more 
sophisticated allocation scheme such as the new family DAk that 
we described. Results of our simulations indicate, for example, 
that by using the allocation scheme DAZ on the hypercube of 
dimension 20, we can roughly double the fault tolerance of that 
provided by the buddy system. Moreover, very little overhead 
is involved in the implementation of DA2. As a final note, we 
observe that the hypercube is significantly more fault tolerant 
than the mesh or torus, and that the use of the buddy system 
for large subcube allocation reduces the fault tolerance to that 
of the mesh. 

References 

[l] B. Becker and H. Simon. How robust is the n-cube? Proc. 
27th Annual IEEE Syrnp. on Foundations of Comp. Sc:. 
(1986) 283-291. 

[2] N. Graham, F. Harary, M. Livingston, and Q. F. Stout. 
Subcube fault tolerance in hypercubes. (Submitted) 

[3] M. Livingston and Q. F. Stout. Fault tolerance of alloca- 
tion schemes in massively parallel computers. Proc. Third 
Conf. on Hypercube Concurrent Computers and Applica- 
tions, Pasadena, CA (1988). 

[4] M.-S. Shen and K. Shin. Processor allocation in an n-cube 
multiprocessor using gray codes. IEEE Duns. Computers 
C-36 (1987), 1396-1407. 



COMPUTER ARCHITECTURE FOR INTELLIGENT, REAL-TIME, 
NUMERIC AND SYMBOLIC PROCESSING 

R.K. Mahadevan and C.C. Carroll 
Computer Architecture Research Laboratory 

Department of Electrical Engineering 
University of Alabama 
Tuscaloosa, Alabama 

Abstract 

Numeric processing governed intelligently, per- 
mits achieving solutions at  a much faster rate 
than by normal procedures. An architecture that 
has knowledge of the processes it controls and 
the power to alter the course of the process using 
expert resources, enables quicker solutions of 
numeric and symbolic problems. Algorithms 
written in a mix of numeric and symbolic com- 
putation would perform better as  they parallel 
the expert mind more closely than exclusively 
numeric or exclusively symbolic algorithms. The 
architecture presented, while M I M D  massively 
parallel, is an optimum parallel environment for 
real-time applications ( O P E R A ) ,  and follows 
the idea of intelligent processing to create a 
coupled system to support real-time simulation 
and control tasks. 

1.0 Introduction 

Continuous simulation on computers, has been 
one of the modes to study the mechanics of var- 
ious physical systems. The first step is to repre- 
sent these systems as closely as possible in 
mathematical forms, to  create models. The study 
of the behavior of the system is then conducted 
by subjecting the described model to various ex- 
ternal influences and observing its response. T o  
understand certain models, a qualitative design, 
which uses little or no mathematical description 
and which has the least of assumptions in de- 
scribing the model in its component parts, is 
better than a quantitative model. In most mod- 
els, the understanding of both the physical and 

logical relationships provides a more fertile area 
for study. 

The complexity of certain applications, or the 
flexibilty needed by them for accurate results of- 
ten balks the speed and performance of existing 
machines. 

Thir research was funded in part by Elecrronics Associafes Inc. 
and The Alabama Research Imriture. The opinions expressed 
in rhis paper though, are wholly rhose of the authors. 

Besides having the knowledge of the type, size 
and scope of the simulation to be processed 
within the processing environment, the know- 
ledge of the systems resources and their capabil- 
ities is essential. There are occasions where an 
expert is willing to compromise a certain degree 
of accuracy to obtain a satisfactory result. This 
could be in the control of input-output actuators 
or sensors, in the replacement of a block of 
computation, by a fixed value, or in the rear- 
rangement of computation itself. There are also 
the situations where a certain set of computa- 
tions may be unnecessary or against the grain of 
the computation being performed. At times 
these irregularities are difficult to detect, or 
completely imperceptible, and may be more eas- 
ily detected by a run-time supervisor. There are 
also the expert applications themselves, that have 
a great numeric orientation; in which experts 
haie a great dependency on extensive math- 
ematical -compu&tion to arrive at conclusions. 
The University of Alabama's proposed OPERA 
architecture seeks to provide a good balance in 
hardware support to both of these applications 
[ l -41.  In the initial proposal the target lan- 
guages are the Advanced Continuous Simulation 
Language (ACSL, not as a preprocessor to 
FORTRAN, but on its own) and LISP. Further 
changes and expansions are being investigated. 

2.0 Software Considerations 

ACSL [5] as currently implemented, is a pre- 
processor to FORTRAN. It provides most 
functions necessary in continuous simulation, 
and special facilities for input-output functions 
that permit control and communication from and 
to the external world. The major modules of an 
ACSL program are the INITIAL, TERMINAL 
and DYNAMIC blocks. The INITIAL block 
serves to establish preprocessing conditions, by 
performing tasks such as setting up  initial values 
of variables. The TERMINAL block performs 
all output jobs and minor processing that may 
be necessary at the end of a run. The DY- 
NAMIC block is the main module that performs 

CH2649-2/89/OW/O495$01 .OO O 1988 l EEE 



the iterative computation on the model; period- 
ically communicating vital statistics to  the ex- 
ternal environment. ACSL has provisions to  
perform various integration algorithms, permit- 
ting the user to alter the algorithm between dif- 
ferent simulation runs. 

hlany of the ACSL simulation benchmarks have 
been executed at the University of Alabama us- 
ing C, LISP and assembly language. The advan- 
tage of parallel techni ues over their sequential 
versions was studied ? 6-13], and was found to 
be beneficial to the applications. The main 
strategies employed in creating the parallel ver- 
sions were, the decomposition of equations to  
create suitable parallel versions, and the direct 
application of parallel algorithms to the problem. 
Extensive simulation showed that neither one of 
these stategies was superior to the other, but that 
the combination of the two produced more fa- 
vorable results. During these simulations, the 
allocation was performed using a random allo- 
cation process to  arrive at the best fit. In the 
final form it is intended that the expert system 
select or suggest one of many allocation algo- 
rithms that will be available to the userC14-161. 
At certain points the deviation in accuracy had 
to be compromised, because of the greater ap- 
proximations that resulted because of parallelism. 
In situations such as these expert judgement was 
required to decide if the sacrifice in accuracy of 
computation would actually compromise the va- 
lidity of the result. O n  occasions where an 
enormous combination of runs had to be con- 
ducted to arrive at a result, an expert system 
could have restricted the problem space to only 
the actually necessary combinations to reach the 
target. The variations which could cause devi- 
ations in real-time control tasks may also be 
eliminated. The parallelism possible in the ex- 
pert system itself was studied to speed up expert 
resource use [4,17-201. 

3.0 Architectural Configuration 

The design of the architecture allows for hierar- 
chical levels of parallelism, that enable the ex- 
ploitation of parallelism in the application at 
different grain levels. Specifically, the environ- 
ment is designed to suit two levels of parallelism, 
the grain of which have been selected giving 
consideration to factors such as processing ele- 
ment capabilities, software decomposition facili- 
tated, and networking performances. 
Granularity at the expression level or construct 
level is termed fine, and granularity at the pro- 
cedure level or program level is classified coarse. 
T o  address the problem at the lower level of 
granularity the architecture provides processing 
elements capable of performing independently as 
nodes. These processing elements themselves 

are designed as complements of processors, each 
dedicated to a swecific detail of the node's total 
capability. Sixty four such processing elements 
are grouped to constitute a cluster. Fifty six of 
these processing elements are assigned to the 
task of processing, four are dedicated to com- 
munication and the four others remain in a hot 
stand-by mode to aid in reconfiguration. Sixty 
four such clusters are interconnected to make up 
the entire system. The clusters attend to the 
parallelism classed as coarse-grain. The selection 
of the number sixtv four is based on the inter- 
connection network delays and optimal 
parallelism considerations. This hierarchical 
treatment is applied in both the hardware and the 
software of the architecture. In many parallel 
architectures the parallel architectures the 
parallelism is controlled at an operating system 
level. This form of control is limited to a very 
low level, allowing control at program level to 
be emphasized. 

3.1 Processing Element 

The processing element is a module capable 
of performing any task independently and also 
being capable of performing a task in unison 
with any other processing elements involved. 
The major elements into which the processing 
element (PE) at the node can be broken down 
are; a symbolic processor, a numeric processor 
and data control [4,20]. The Mega-chip archi- 
tecture of T I  is currentlv chosen to rewresent the 
symbolic processor. Another heavily branch 
oriented virtual processor is also being recom- 
mended for the same purpose. The numeric 
processor which is a stand alone processor is 
implemented in a custom design. It is con- 
structed to perform high-speed 32-bit floating 
point operations such as, 32x32 bit multipli- 
cation in a cycle to produce a 55-bit result. Data 
control is a functional unit which encompasses 
all aspects that relate to data transfer. It includes 
the cache and cache-controller system, the array 
and table handling unit, and an external commu- 
nications unit which operates on its own. The 
design of this processing element is very mem- 
ory intensive. The idea which uras spurred by 
the design of the hlegachip achieves modularity 
in computational packages that permit the main- 
tenance of all code and data in PE memory, and 
thereby avoiding any run-time reference to  
main-memory. This alone stands to saves enor- 
mous amounts of computational time. The 
random-accessing of complex data-structures is 
implemented in hardware to speed up memory 
accesses. Accessing of array subscripted vari- 
ables for example, relative to accessing a simple 
data object is very tedious, and burdensome 
when the number of dimensions of the array in- 
crease. The hardware access scheme decreases 
the access time, and directly improves the facili- 



ties for problem definition of high-speed real- 
time models. Detection and diagnostics are 
minimal in the hardware level. 

A very efficient communication system which 
offers separate communication facilities for 
memory access and inter-processor communi- 
cation, is implemented internal to  the processing 
element. The numeric and symbolic processors 
may, and usually operate concurrently within the 
PE. The symbolic processor serves as the expert 
to monitor the process of the numeric algorithm, 
and/or accomplishes some symbolic processing 
of its own. The differences in data type between 
the two processors are handled by specialized 
interfaces. Partitioning of algorithms take place 
at two levels. First, into modules small enough 
to be contained in individual nodes throughout 
the process and second, as independent or semi- 
independent subprograms with limited coupling 
between them. Communication is conducted on 
a priority basis if the usage is not very intense. 
If traffic does become dense, a polling routine is 
employed. The 1 - 0  processor handles the 
error-detection and correction, encoding, decod- 
ing, serializing and deserializing of data. It has a 
small local memory addressable by other 
processors. 

4.0 Networking 

There are two levels of interconnection that 
are considered in this architecture. They are as- 
sociated with the intra-cluster and the inter- 
cluster level of communication. The network as 
was judged from an applications point-of-view 
necessitated tight coupling between elements, 
and is constructed using delta-networks [24]. 
At the cluster level of communication, the net- 
work is designed using a 64 x 64 delta-network 
which has buffers built into the switches to  re- 
duce blocking and increase throughput. At this 
level the communication is more in short and 
rapid bursts of messages and to maintain a real- 
time speed of communication, having a high 
transfer-rate across the network is essential. The 
delay caused by the inclusion of buffers is mini- 
mal but the the throughput of the network in- 
creased tremendous, which definitely justifies the 
inclusion of buffers. At the inter-cluster level of 
communication, the communication technique is 
varied a little to  accommodate the intra-cluster 
format. It is also extended to accommodate 
varying and larger formats in communication 
packets, restricted only by a maximum size. 
Buffering is not considered here because of the 
larger size of communication packets. A flag is 
used to prevent switch blocking at this level. 

Summary 

An architecture t o  provide for the expert con- 
trol, of numerical control was described. Simu- 
lations run to explore the possibility of the 
exploitation of parallelism have shown positive 
results, in both the area of numerical processing 
and expert symbolic processing. Research to 
study the positive blend of expert control in this 
architecture is being conducted. 

Example applications towards which such an 
environment is directed are real-time aerospace, 
nuclear system modelling, and simulation. An- 
other application class which is being considered 
is, expert systems which require a heavy load of 
numerical computing to analyze or synthesize 
their results. 

References 

1. Consortium for Supercomputer Research, 
Inc., " Consortium for Supercomputer Re- 
search,"Applications, PART-A : Scientific 
and Engineering, vol. 1, September 1987, pp. 
VI-15. 

2. Despain, A.M. and Patt, Y.N., "Aquarius-A 
High Performance Computing System for 
Symbolic/Numeric Applications," The Pro- 
ceedings of COMPCON S'85, 1985, p ~ .  
376-382. 

3. Kowalik, Janus S., Coupling Svmbolic and 
Numerical Computation in an Expert Svs- 
tem. Elsevier Science Publishers B.V., 1986. 

4. Amundsen, Micheal J., et al., "The Compact 
Lisp Machine, A 'LISP MACHINE I N  A 
SHOEBOX'," Proceedings of the IEEE 
Aeronautics Conference, vol. 4, 1982, pp. 
1309-1314. 

5. ACSL User GuideIReference Manual, 
Mitchell and Gauthier, Associates, 1981. 

6. Miranker, W.L. and Liniger W., "Parallel 
Methods for the Numerical Integration of 
Ordinary Differential Equations," Math, 
Comput., vol. 21, 1967, pp. 303-320. 

7. Burden, Richard L., Faires, Douglas J., and 
Reynolds, Albert C., Numerical Analysis, 
2nd ed., Prindle, Weber & Schmidt, 1981. 

8. Dorn W.S., "Generalizations of Horner's rule 
for polynomial evaluation," IBM 1.Res. and 
Develop. 6, 1962, pp. 239-245. 



9. Miranker, W.L., "A Survey of Parallelism in 
Numerical Analysis," ~ i a m  Review vol 11, 
No. 4, October 1974, pp. 524-547. 

10. Schedler G.S., "Parallel numerical methods 
for solution of equations," Comm. ACM 10 
off, 1967, pp. 286-2% 

11. Hambler, J.O., " Parallel Continuous System 
Simulation Using the Transputer," & u, Vol., 49, No. 6, December 1987, pp. 
249-253. 

12. Franklin, F.A.," Parallel Solution of Ordinary 
Differential Equations," I E E E  Transactions 
on Computers, Vol. C-27, No. 5, May 1988, 
pp. 413-420. 

13. Well Jr., B.E. and Carroll, C.C., " An Intelli- 
gent Processing Environment for Real-Time 
Simulation," ~ i r e a u  of Engineering Research 
Report No. 426-17, The University of 
Alabama, Tuscaloosa, AL, hlay 1988. 

14. Sinclair, J.B.," Efficient Computation of Op-  
timal Assignments for Distributed Tasks," 
Journal of Parallel and Distributed Comput- 
&, Vol. 4, No. 4, August 1987, pp. 342-362. 

15. Zhao, W., Ramamritham, W. and Stankovic, 
J.A., " Preemptive Scheduling Under Time 
and Resource Constraints," IEEE Trans- 
actions on Computers, Vol. C-36, No. 8, 
August 1987, pp. 949-960. 

16. Carroll, C.C. and Ananthram, I<.G., " An In- 
telligent Allocation Algorithm for Parallel 
Processing," Bureau of Engineering Research 
Report No. 417-17, The University of 
Alabama, Tuscaloosa, AL, January 1988. 

17. Patrick Henry Winston, Artificial 
Intelligence, 2nd ed., Addison-\Kresley, 1981. 

18. Akl, Selim G., Barnard, David T .  and Ralph 
Doran, "Design and Analysis, and Imple- 
mentation of a Parallel Tree Search Algo- 
rithm," IEEE Transactions on 
Pattern-Analysis and hlachine Intelligence, 
vol. point 4, No. 2, March 1982. 

19. Chu Y., Abrams M., " Programming Lan- 
guages and Direct Execution Computer Ar- 
chitectures," Computer, July 1981, pp. 22-32. 

20. Sussman, G.J., Holloway, J., Steel, Jr. G.L., 
and Bell, A. ,  " Scheme-79 Lisp on a Chip," 
Computer, July 1981, pages 10-21. 

22. Fenton, B.P., Grant, I.M. and Thiessen, 
D.R., "Multiple-line Signature analysis using 
Multiple Line Feedback Shift Register," IBM 
Technical Disclosure Bulletin,vol. 26, N o  12, 
May 1984, pp. 6358. 

23. Lala, Parag I<., Fault Tolerant and Fault 
Testable Hardware Desian, Prentice/Hall 
International, 1985. 

24. Kumar, M. and Jump, J.R., "Performance 
Enhancement in Buffered Delta Networks 
Using Cross-bar Switches and Multiple 
Links," Journal of Parallel and Distributed 
Computing 1, 1984, pp. 81-103. 

21. Sridhar, et al., " Analysis and Simulation of 
Parallel Signature Analyzers," paper 22.3, 
IEEE Test Conference, 1982. 



REGULAR PROCESSOR ARRAYS 

Allen D. Malony 

Center for Supercomputing Research ,.rid Development 
University of Illinois at Urbana-Champaign. 

ABSTRACT 
Regular is an often used term to suggest simple and uniform structure 
of a parallel processor's organiration or a parallel algorithm's opera- 
tion. However, a strict definition is long overdue. In this paper, we 
define regularity for processor array rtructures in two dimensions and 
enumerate the eleven distinct regular topologies. Space and time 
qmulation schemes among the regular processor arrays are con- 
structed to compare their geometric and performance characteristics. 
The hexagonal array is shown to have the most efficient emulation 
capabilities. 

Keywords: regularity, proce68Or arrays, emulation, interconnection 
networks 

INTRODUCTION 

The most widely debated topic in parallel processing research is 
how to interconnect multiple processors. The arguments take place 
across many direrent cost/performance criteria such as algorithm 
mapping, scalability, reconfigurability, communication efficiency, 
graph embedding, fault tolerance, and VLSI implementation. 

Mesh connected processor arrays were among the first processor 
interconnection structures proposed for parallel processing [I] [7]. 
Their distinguishing feature is the connection of processors only to 
immediate neighbors where the connection degree is uniform 
throughout the array. The original motivation for mesh topologies 
came from their ability to easily represent the natural data flow pat- 
terns found in many algorithms [S] 171 1131 [18] 1171 1271. 

The thought of interconnecting thousands of processors brought 
on a wave of new processor interconnection structures aimed a t  pr* 
viding cost-erective solutions to certain key scalability h u e s  such as 
mean internode distance, communication traffic density, connections 
per node, link visit ratios, and fault tolerance [21] 1281. The processor 
arrays proposed included the torus, X-tree, chordal ring, R-ary N- 
cube, cube-connected cycles, spanning bus hypercube, and dual bus 
hypercube, in addition to the standard bus, crossbar, ring, and tree 
architectures [28]. Although favored for their regular geometry, uni- 
form communication and simple extension, the mesh connected prc- 
cessor arrays were generally less desired because of the fact that inter- 
node communication delays increase aa the square root of the number 
of nodes in the system. 

Systolic array research approached the problem of designing 
processor arrays by concentrating on requirements for an eflective 
VLSI implementation of a parallel algorithm [ll] [9] [lo]. Chip area, 
time and power required to implement an algorithm in VLSI are 
dominated by the communication geometry of the algorithm (251. 
The effects of the area and time parameters of VLSI can be reduced to 
a large degree if very simple and regular patterns of interconnections 
between elements are used [16] (261. The regularity requirement 
imposed on interconnection atructures, in a broad sense, deals with 

This work was supported in part by the National Science Foundation under 
Granta No.  US NSF DCR84-10110, the U.  S. Department of Energy under Grant 
No. US DOGDE-FG02-85ER25001, the U.S. Air Force Offlce of Scientific 
Research Grant No. AFOSR-F49620-86-C-0136, and the IBM Donation. 

the layout of the communication geometry in a two-dimensional area 
[22]. Simple and regular interconnection geometries that are two- 
dimensional and plane filling lead to cheap implementations and high 
chip density. Alao, parallel algorithms with aimple and regular corn- 
munication and data flows are more appropriate for VLSI implemen- 
tation and will result in higher performance. 

The choice of processor array design to achieve good generalised 
communication performance conflicted with the simple processor 
arrays favored for specialized VLSI systems. If only the more sophis- 
ticated communication topologies were implemented in VLSI, then 
their communication efficiencies could be combined with the faster 
VLSI speeds. However, several recent resultn suggest that mesh- 
connected arrays' have comparable, if not better, general 
communication efficiency and performance when implemented in 
VLSI as compared to other networks (151 [Is]. In addition, there has 
been much work done on making regular mesh arrays more flexible 

131 [231 (41 121 1201. 
In this paper, we consider the question of what are the simple 

and regular processor array topologies? The primary contribution o t  
this work is the enumeration and analysis of the "regular" two- 
dimensional processor array topologies using a geometric definition of 
regularity. Several topologiea are shown that  have not appeared in 
the computer science literature previously. Our analysis of the regu- 
lar processor arrays is baaed on their ability to emulate the other 
members of the class. We consider both space emulation (processors 
of the host array are combined into "logical" nodes of the target 
array) as well M time emulation (the interconnection geometry of the 
target array is provided by time-multiplexing the links). 

REGULARITY 
Intuitively, the term regular implies simplicity and uniformity 

in space. A more quantitative geometrical definition of regularity can 
be formulated from the extensive mathematical literature on graphs 
[5] [a] [12] [24]. Although regularity can be defined for multiple 
dimensions, our dincussion is restricted to graphs that are two- 
dimensional, i.e. planar. A second requirement is that the graph have 
a simple description and be uniformly extensible following a basic set 
of construction rules. By the graph being uniformly extensible, we 
mean that the properties of the vertices and edges do not change as 
the number of nodes is increased; e.g., the length of an edge. Another 
requirement for regular graphs is that  the vertices have equal degree. 
The final requirement is that regular graphs be plane filling. That is, 
the infinite graph completely covers the two-dimensional plane. 

The requirements placed on regular graphs are not without 
mathematical precedence. Justification comes from the old geometri- 
cal problem of determining those convex polygon figures that  tessel- 
late the plane [5] 161. In particular, the problem ia to construct tilings 
of the plane where a single convex polygon of r sides is used. Based 
on Euler's theorem v - e + f = l  ( v  vertices, e edges and faces of a 
polygonal network of tiles) and basic Diophantine analysis, it  is a 
simple consequence that 3<r<B [5]. 

Although there are eighty-one types of isohedrai tilings in the 
plane [5], there are ONLY eleven topologically distinct types of Laves 



neb  [12] (.Lo called regular or Subnikov nets [24]) which are the 
"skeleton" graphs consisting of tile "vertices" (where three or more 
t i e s  meet), and tile "edges" where two tiles inkrsect. Figure 1 ahom 
the eleven Laves nets along with symbols denoting the valences of the 
verticer rs the kssellating r-gon is traced; e.g., 3'.4.3.4 describa a 
pentagon tessellation where the pentagon meeb 3 other tiles, then 3, 
4, 3, and finally, 4 other tiles. The geometry of the diistinct kMel1.- 
tion topologies can be described from this simple verkx valency On- 
tax. 

Tessellation structures embody the requirements set forth for 
regular graph#: they are two-dimensional, they have a simple descrip- 
tion (tile vertex valency myntu), all tiles used in a kMellation have 
the same number of edges (r-gon), they are uniformly extensible, and 
they are plane filling. If we -ink a tile to a p r o c e ~ ~ r  array node 
and the links to tile intersections (tile edges), the resultant inkrcon- 
nection topology will embody the same regular properties. 

The regular proceuor interconnection graphs can be generated 
by taking the d u d  of the L a v a  nets, i.e. the faces (tiles) are mapped 
to vertices, the tile vertices are mapped to  f a ,  and tile edger map 
to edges between the new vertices 161. Because the graphical duality 
mapping ir hmorphic ,  there are exactly eleven distinct regular pro- 
c e m r  array topologies. These topologies are .Lo known as the 

familiar neared neighbor topologie. because all vertices are of equal 
degree and each vertex connects to that many of i b  nearest neigh- 
bors. 

Deflnltion: A graph u regular if i t  is two dimensional, all vertices 
have equal degree and the dual of the graph is a kaaellation. 

Deflnitlon: A processor array is regular if its interconnection topo'- 
ogy is a regular graph. 

In the next section, we consider emulations among the regular 
processor arrays. In particular, we focus on the triangular (6'), the 
orthogonal (4') and the hexagonal (3') topologies. These have been 
defined to be strongly regdar because they form a set closed under 
duality: the triangular graph is the dual of the hexagonal and vice 
versa, and the orthogonal graph is the dual of itself [14]. 

R E G U L A R  P R O C E S S O R  A R R A Y  E M U L A T I O N  

Although the number of regular processor arrays is finite, i t  
would be cost inefficient to include each array in a parallel processing 
system and use an array only when there is an appropriate match 
between an algorithm's communication geometry and that array's 
topology. Instead, we would like to design the syskm with a single 
procuuor array that  offers good performance across a wide range of 
algorithms. The versatility of a processor array is measured not only 
by the range of algorithms for which it is specifically suited but also 
by the ease to which other algorithms can be mapped to its communi 
cation geometry [2], and the ability of the array to reconfigure i t  
communication geometry to that  of the algorithms or other array 
topologies [3] [4] (231. We evaluate the regular processor arrays baaed 
on their ability to emulate other regular arrays. 

E m u l a t i o n  Philosophy 

The goal of emulating a target regular array by a hod regular 
array is to reproduce the communication properties of the target 
array in the k mt. The emulation can take place either in space or in 
time. Space emulation structurally maps the host array to the target 
array by physically grouping host nodes into logical target nodes and 
activating the appropriate host links such that the communication 
topology of the target array is realised. If the target array cannot be 
embedded in the host array with a one to one node mapping, the 
space emulation will necenaarily result in a reduction of the effective 
sine of the emulated target array. 

Time emulation realires the communication properties of the 
target array by time multiplexing the host array links. Once a one to 
one node mapping is made between the target and the hoat, the max- 

imum number of host "minor" communication time cycles needed to 
realite the communication connectivity of one "major" target time 
cycle can be dekrmined. If the target array cannot be embedded in 
the h o d  array with a one to one link mapping (we already assume a 
one to  one node mapping), the time emulation will nece~ar i ly  result 
in an increase in the number of time cycles needed to execute an algo- 
rithm on the emulated target array. 

Space  E m u l a t l o n  

An optimal space emulation scheme should minimire the aver- 
age number of host nodes, used to emulate a node in the target array. 

Definition: The space emulation eficiency SU(N) of a space emula 
tion scheme used by regular array hf to emulate regular array N i 
the average number of nodes of M required to emulate one node ol 
N. If N contains n nodes, the she  of the emulated target array will 
be n / Sn(N) nodes. A lower bound on Sn(N) can be determined by 
calculating the numb of host array nod- needed to  match the node 
degree of the target array. An optimaf space emulation scheme 
achieves the lower bound of the average number of host nodes 
required for a node of the emulated target array. That in, no more 
than the number of host nodes needed to meet the node degree 
requiremenb of the emulakd target u r a y  are used. 

The proceu followed to  construct an emulation scheme begins 
by grouping adjacent nodes together to form logical nodes of the 
emulated target array. "Active" host links are then seleckd to realite 
the target communication geometry. During operation, nodes within 
a group coordinak their actions to correctly communicate data across 
the active links. Instead of enumerating all space emulations for a11 
regular host arrays ad nauseam, we instead concentrate on the 
strongly regular arrays. 

T h e o r e m  1: The triangular array can optimally emulate the hexago- 
nal array with a space emulation efficiency of four and the orthogonal 
array with a space emulation efficiency of two. 
P r o o E  The emulation schemea are shown in Figure 2. 

T h e o r e m  3: The orthogonal array can optimally emulak the hexag- 
onal array with a space emulation efficiency of two and the triangular 
array with a space emulation efficiency of one. 
Proof: The emulation schemea are in (141. 

T h e o r e m  8: The hexagonal array can optimally emulate the orthog- 
onal array with a space emulation e5ciency of one and the triangular 
array with a space emulation efficiency of one. 
Proof: The emulation schemes are shown in Figure 3. 

T h e o r e m  4: St,.,,,, (R)<SOdhlod (R)<Sk,,(R) where R is a 
regular array. 
Proof: Any space emulation scheme used by the triangular array to  
emulate another regular array can also be used by the orthogonal and 
hexagonal arrays since only one node is required by the orthogonal 
and hexagonal arrays to  emulate a node in the triangular array. 
Therefore, any emulation scheme used by the orthogonal and hexago- 
nal arrays for emulating another array must be a t  least as efficient as 
the optimal scheme that  would be used by the triangular array. A 
similar argument is applied to show Sodh,,,,,,,(R)SSk,,,,,,(R). 

Space  E m u l a t i o n  Schemes  

The space emulation schemea for the regular proceamrs arrays 
using the strongly regular arrays are shown in Figure 2 for the tri- 
angular host array and Figures 3 for the hexagonal host array [14]. 
Node groupings for the triangular host array are shown shaded. The 
dsllhed lines in the hexagonal host array indicak inactive links. 

Space  E m u l a t i o n  Efflcieney 

The apace emulation efficiencies of the schemes presented for the 
strongly regular arrays are shown in Tablen 1. An expected, the hex- 



agonal array shows the best efficiencies with nine of the schemes using 
an optimal emulation of one. The inability to achieve optimal 
schemes for 3'.8 and 3.8.3.8 is attributed to the rigid structure of 
thoae topologies. 

Notice that the triangular array was able to achieve more 
optimal space emulations than the orthogonal array. In part, this has 
to do with the orthogonal array's inability to realize triangular inter- 
connection paths present in some of the arrays such as 3&.8, 3'.4.3.4 
and 3.6.3.8. 

An interesting observation from the table in that 

S,,,.,d,(3.4.8.4) = 3, yet s t , , 4 ~ ( 4 ' )  = 2 and 
1 

Sdbwd(3.4-8-4) = 1 -. One quickly realizes that a better space 
3 

emulation scheme could be achieve for 3.4.8.4 using the triangular 
array if the orthogonal array was first emulated and then its emula- 
tion scheme applied to realize 3.4.6.4. This would result in an emula- 

2 
tion efficiency of 2 - instead of 3. 

3 

Space emulation analysis allows a simple measure of coat, 
SM(N), to be used for comparing the versatility of the different regu- 
lar arrays. Additionally, the pay back for adding additional links to 
the array can be easily discerned. Finally, algorithms be designed for 
one particular regular array can executed on another array with 
bounded performance degradation. 

T i m e  E m u l a t i o n  

Time emulations among the regular processor arrays are more 
complex to construct because a mapping from nodes of the host array 
to nodes of the target array must first be devised. We employed some 
convenient shortcuts that allowed us to develop a collection of time 
emulations for the strongly regular arrays as target topologies. 

Definition: The time emulation efieiency TM(N) of a time emula- 
tion scheme used by regular array M to emulate regular array N in 
the number of communication time cycles required in M to realize the 
data transfer between nodes possible in one cycle in N. Assuming the 
processor array speeds are equal, if N completes an algorithm in t 
time cycles, the time emulation scheme used by M will finish in 
TM(N) * t time cycles. 

Notice that if SM(N)=l,  TM(N)=l. We can make use of this fact to 
compute bounds on time emulations based time emulations already 
known. That  is, if TY(N)=tL and TN(0)=tz,  then TM(0)<tL*tl. 

Initial time emulations can be constructed by looking at  the 
space emulations with efficiency one. Since these already give a one 
to one node mapping, an optimal time emulation of the host array (in 
the space emulation) by the target array (in the space emulation) can 
be devised and its efficiency calculated by visually following the shor- 
test path to establish the single link connections of the underlying 
host array. For instance, we compute T3,,,,,,(3') to be three by look- 
ing at  the space emulation scheme of 3.4.8.4 by 3' and following the 
shortest path between connected hexagonal nodes using only the 
3.4.8.4 rinks. 

Following the above procedure, we were able to construct 
optimal time emulations of the hexagonal array for most regular 
arrays. The time emulation efficiencies are shown in Table 2. The 
parentheses indicate upper bounds determined by applying the above 
formulas to these optimal hexagonal and orthogonal time emulations. 
Other entries in the table come from visually mapping one processor 
array onto another as in the case of the square array onto 3l.4.3.4 
and 3'.4'. 

The interest in time emulations comes from the fact that the 
emulated target array is not reduced in sire. Instead, a more complex 
routing of data in multiple time steps is required to emulate the tar- 
get array's communication properties. However, we cannot ignore 
the time needed to route data in a space emulation scheme. In fact, 
we see that  there are cases where a time emulation will be actually 

faster than a space emulation; a time emulation of a hexagonal array 
using a triangular array will take three time cycles whereas the space 
emulation requires four. In other csses, the opposite is true; r,'r~,ider 
:he triangular array emulating the orthogonal array. 

C O N C L U S I O N  

Processor interconnection topologies incorporating communica- 
tion and spatial regularity will become increasingly important as 
VLSI dimensions continue to decrease. Although mesh processor 
arrays have known scalability limitations with respect to communica- 
tion [28], several recent reports suggest that the communication 
efficiency of two dimensional meshes is better than other interconnec- 
tion topologies when compared for VLSI implementation [15] [19]. 

The regular processor arrays described in this paper are 
geometrically defined based on nearest neighbor connections and 
space-filing properties. Interestingy, only eleven processor arrays of 
regular topology exist in two dimensions. We have enumerated these 
arrays as well as presented space and time emulation schemes. A 
natural extension of the work presented here concerns regular three 
dimension organizations. Research in this area will become more 
important and necessary as VLSI begins to offer three dimensional 
interconnects. 

R E F E R E N C E S  

[1] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnik, R.A. 
Stokes. The ILLIAC I V  Computer. I E E E  T r a n s .  Comp.,  Vol. c-17, 
1988, pp. 748-757. 
121 S.H. Bokhari. On the Mapping Problem. I E E E  Trans .  Cornput., 
Vol. C-30, March 1981, pp. 207-214. 
[3] Nags S. Gollakota and F.Gail Gray. Reconfigurable Cellular 
Architecture. Proc.  1 1 t h  In t .  Syrnp. C o m p u t e r  Arch., 1984, pp. 
377-379. 
14) D. Gordon, I. Koren and G. Silberman. Embedding Tree Struc- 
tures in VLSI Hezagonal Arrays. I E E E  T r a n s .  Comput. ,  Vol. C- 
33, Jan. 1984, pp. 104-107. 
[5] B. Grunbaum and G.C. Shephard. The Eighty-one Types of 
Isohedral Tilings in the Plane. Math .  Proc.  of  t h e  C a m b r i d g e  
Phil. Soe., Vol. 82, Sept. 1977, pp. 177-198. 
(81 B. Grunbaum and G.C. Shephard. Tilings with Congruent Tiles. 
Bullet ln of  t h e  Amer.  M a t h .  Soc., Vol. 3, No. 3, Nov. 1980, pp. 
951-973. 
171 W.H. Kautm, K.N. Levitt and A. Waksman. Cellular Intereonnec- 
tion Arrays. I E E E  Trans .  Comp.,  Vol. C-17, No. 5, May 1988, pp. 
443-451. 
(81 D.J. Kuck. ILLIAC I V  Software and Applications Programming. 
I E E E  Trans .  Comp., Vol. C-17, No. 8, Aug. 1988, pp. 758-770. 
[9] H.T. Kung. Let's Design Algorithms for VLSI Systems. Cal tech  
Conf. o n  VLSI, Jan. 1979, pp. 65-90. 
[lo] H.T. Kung. Why Systolic Architectures?, C o m p u t e r ,  Vol. 15, 
No. 1, Jan. 1982, pp. 97-107. 
(111 H.T. Kung and C.E. Leiserson. Algorithms for VLSI Processor 
Arrays. in In t roduc t ion  t o  VLSI Sys tems ,  by C. Mead and L. 
Conway, Addison-Wesley, 1980, pp. 271-292. 
1121 F. Laves. Ebenenteilung und Koordinationazahl. Z. Kristallogr., 
Vol. 78, 1931, pp. 208-241. 
[13] K.N. Levitt and W.H. Kautr. Cellular Arrays for the Solution of 
Graph Problems. C A C M ,  Vol.15, No. 9, 1972, pp. 789-801. 
[14] Allen D. Malony. Regular Interconnection Networks. Master's 
Thesis, Univ. of California, Los Angeles, August 1982. 
[15] Pinaki Marumder. Evaluation of Three Interconnection Networks 
for CMOS VLSI Implementation. 1988  I C P P ,  Aug. 1988, pp. 200- 
207. 
[16] C. Mead and L. Conway. Introduction to VLSI Systems. 
Addison-Wesley, Reading, Mass., 1980. 
[17] D. Nassimi and S. Sahni. Bitonic Sort on a Mesh-Connected 
Parallel Computer. I E E E  T r a n s .  Comput . ,  Vol. C-27, Jan. 1979, 
pp. 2-7. 



[l8] S.E. Orcutt. Implementation o j  Permutation Funetionr in 
ILLIAC IV-Type Computerr. I E E E  Trans .  Comp., Vol. G 2 6 ,  No. 
9, Sept. 1978, pp. 929-936. 
[l9] A.G. Ranade and S.L. Johnson. The Communication Efieiencg of 
Mcrher, Boolean Cuber and Cube Connected Cyeler for Wafer Scale 
Integration. Proc.  1987 Inter .  Conf. o n  Paral lel  Proe., Aug. 
1987, pp. 479-482. 
[20] D.A. Reed, L.M. Adams and M.L. Patrick. Stencilr and Problem 
Partitioningr: Their Influence on the Perjormance of Multiple Procer- 
nor Syrtemr. to appear in I E E E  Trans .  Comput.. 
[21] D.A. Reed and H.D. Schwetmsn. Cost-Performance Boundr for 
Multi-microcomputer Networkr. I E E E  Trann.  Comput. ,  Vol. C-32, 
No. 1, Jan. 1983, pp. 83-95. 
[22] J.E. Savage. Planar Circuit Complezity and the Performance of 

Target 
Topology 

F i g u r e  1 

Table 1. Space Emulation Efficiency 

- 
Optimal Emulation 

(host/target) 

I 1 

Table 2. Time Emulation Efficiency 

Tri. 
4 
3 
3 
3 
2 
2 
1 
2 
1 
1 
1 

Emulation Efficiency 
(host/target) 

Host 
Topology 

3'l 
33.42 

32.4.3.4 
3.4.6.4 
3.12' 

44 

VLSI Algorifhms. Proe. o f  t h e  CMU Conf. o n  VLSI Syntemn 
nnd C o m p u t a t i o n s ,  1981, pp. 81-87. 
[23] L. Snyder. Introduction to the Conjigurablc, Highly Parallel Com- 
puter. C o m p u t e r ,  Vol 15, No. 1, Jan. 1982, pp. 47-58. 
[24],A. Subnikov. K voproru o rtroenii Krirtallou. Bulletin Aead. 
Imp. Sel., Ser. 6, Vol. 10, 1918, pp. 755-779. 
[25] I.E. Sutherland and C.A. Mead. Microelectronics and Computer 
Science. Seientlfie American,  Vol. 237, Sept. 1977, pp. 21C228. 
(281 C.D. Thompson. Area-Time Complezity for VLSI. Proc. Cal- 
t ech  C o n f  o n  VLSI, Jan. 1979, pp. 405-508. 
[27] C.D. Thornpaon and H.T. Kung. Sorting on a Mesh-Connected 
Parallel Computer. CACM, Vol. 20, April 1977, yp. 283-271. 
[28] L.D. Wittie. Communicationr Structures for Large Networkr oj  
Microcomputerr. I E E E  Trans .  Comput. ,  Vol. C-30, No. 4, April 
1981, pp. 284-273. 

Fi u r e  2 
TRIANGULAR &ACE EMULATION 

Tri. 
4 
3 
3 
3 
3 
2 
2 
2 

2 213 
2 
1 

F i g u r e  3 
HEXAGONAL SPACE EMULATION 

Ortho. 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 

Emulation Efficiency in Cycle. 

Ortho. 
2 

2 113 
2 

2114 
1 113 
1 113 

2 
1 

1113  
1 
1 

Hex. 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Hexanonal 
1 
2 
2 
3 
6 
2 

Hex. 
1 

1 1 / 8  
1 
1 
1 

1113 
1 
1 
1 
1 
1 

Orthoaonal 
1 
1 

I$ I 

Triannular 
1 
1 

lil I 



Interconnection Networks for Fifth-Generation 
Computers 
Bernard L. Menezes 

Dept. of Elec. Eng. and Inst. for Advanced Computer Studies 
University of Maryland 

College Park, MD 20742 

Abstract: An important subset of Fifth Generation 
Computers are Expert Systems. Support for the database 
management subsytem of such a machine must include par- 
allel 110, a relational engine and an interconnection net- 
work. Properties of a multiple tree-based network called 
KYKLOS are presented and examined in the context of 
this application. It is shown that this structure effectively 
supports the parallel executions of database operations 
such as the join. A brief description of the hardware of 
a single 110 node is included. 

.1 Introduction 

Since the early part of this decade, it has been recognized 
that the present (fifth) and future generations of comput- 
ers would have to be adept at  processing knowledge about 
objects and the relationships between them. The logic base 
representing this knowledge is composed of a set of facts 
(the extensional database) and a set of rules (intensional 
database). Data-intensive logic base systems have a large 
extensional database and are characterized by the fact that 
they are expected to respond to all possible solutions to a 
query rather than only one solution as in AI-oriented logic 
processing systems. The two major components of such 

a logic base or expert system are the relational database 
management system (RDBMS) and the inferential subsys- 
tem. To facilitate parallelism in search, join, aggregate 
operations, etc., each relation in the extensional database 
is assumed to be fragmented across several I/O nodes. The 
concern of this paper is the provision of architectural sup- 
port for the parallel execution of queries directed at the 
RDBMS. In particular, the communication medium or in- 
terconnection network (ICN) linking the I/O nodes will be 
the principal focus. 

An ICN linking processors, memory modules and 110 
nodes in a system may, in addition, have dedicated switch- 
ing nodes as shown in Fig. l(a). These networks, called 
dynamic or switching topologies, were first proposed for 
telecommunication where a great deal of research was con- 
ducted on the feasibility of using such networks to ensure 
nonblocking communication paths between every pair of 
subscribers. A special class of these networks called mul- 

tistage interconnection networks (MIN's) has been inves- 
tigated in connection with their applicability to multipro- 
cessing systems. MIN's are parameterized by their spread 
and fanout, respectively designated s and f. On the other 
hand point-to-point networks do not have nodes dedicated 
to switching. An example of this class of networks is the 
hypercube (Fig. l(b)). 

The design of an ICN may be motivated by consid- 
erations that make no a priori assumptions of the appli- 
cation(~) to be run on the system. These considerations 
are typically topological: minimization of average or worst 
case interprocessor distances, for example. Indeed many 
of the general concerns of performance, cost and reliability 
may be expressed in graph-theoretic terms. Cost concerns 
translate to low node fanout and small bisection width if 
the network is to be laid out in VLSI. Finally, provision for 
multiple paths between node pairs would provide a level 
of fault tolerance. Algorithms are typically mapped onto 
this network. By contrast, a top down approach would 
select a network based on its suitability for one or more 
specific application(s). The methodology reported herein 
in similar in spirit to the bottom-up approach - a network 
is proposed, the graph-theoretic properties of the network 
alluded to are investigated and its utility in the RDBMS 
is explored. 

The paper is organized as follows. In Section 2, some 
of the ICN's proposed for the RDBMS are surveyed. The 
KYKLOS ICN is introduced in Section 3 and its main 
properties are summarized. Finally, the proposed RDBMS 
architecture is presented in Section 4. 

.2 Background 

There have been a plethora of papers on the utilization 
and comparison of various ICN's for parallel RDBMS's. 
Strategies for performing database operations in a hypercube- 
based multicomputer system with parallel 110 that involve 
data redistribution operations such as tuple balancing were 
presented in [BARU87]. In [BABA87], a cost-performance 
analysis of a switching network as a function of the number 
of stages was undertaken. In [HSIA87], several networks 



including the bus, tree and ring were compared. Both tree 
networks as well as the broadcast bus fared well in the 
comparison for a host of database operations. In addition, 
a tree architecture unlike the bus lends itself well to the 
sort-and-merge operation (in O(n) time) which is of impor- 
tance in database applications. Tree networks have other 
virtues: they are simple to build, are incrementally exten- 
sible, have small fanout and logarithmic delay between any 
two nodes in the case of the full m-ary tree. 

While a tree is an ideal architecture for a broadcast and 
for the sort-and-merge operation, there is another comu- 
nication paradigm that is frequently encountered in query 
processing of horizontally fragmented relations (i.e. rela- 
tions fragmented by rows). This is the N-broadcast which 
involves transmission of a message, mij from a node i to 
node j for every pair i, j. Clearly, half the messages would 
pass through the root resulting in a bottleneck. The other 
problem with the tree is poor reliability. 

There have been several approaches to the rectification 
of these problems. Adding links between nodes at  the same 
level in the tree to bypass traffic through the root - this 
strategy was implemented in the half-ring and full-ring X- 
Tree [DESP78] and in the Hypertree [GOOD81] (see Figs. 
2(a) and 2(b)). A scheme by Hayes (HAYE761 (Fig. 2(c)) 
provided 1 fault-tolerance (tolerance to any single node 
fault) by the addition of a spare node at  each level of the 
binary tree and the addition of extra links between every 
pair of adjacent levels. In addition, it was shown to be 
optimal with respect to the number of links added. 

The KYKLOS Network was an attempt to integrate the. 
concerns of performance and fault tolerance. This struc- 
ture makes use of two or more trees to increase the com- 
munication bandwidth and provide fault tolerance without 
increasing the fanout of the nodes in the original binary 
tree. In addition, a skew in the connections between the 
trees alleviates the root bottleneck problem. 

.3 The KYKLOS Interconnection 
Network 

sidering level -i nodes, 0 5 i < n, split into two groups 1.e. 

node 0 to node 2"-'-' - 1 in one group and nodes 2"-'-' 
to 2"-' - 1 in the second group (Fig. 3(c)). The jth node 
at  level -(i+l) is connected to the jth node in each of the 
two groups. Descendants of level -(i+l) nodes from left to 
right are thus ordered as a perfect shuffle. This idea can 
be generalized to a double tree with arbitrary branching 
factor where an m-way shuffle may be used to define the 
bottom tree of KYKLOS-11. Thus 

For 1 5 j < n; 

level -j node <-j, i>, 0 < i < mn-j 

is connected to level -(j-1) nodes: 
<-j+l, i>,  <-j+l, i+mn-j >,.. . <-j+l,  i + (rn - 

1)"-j > 
and to level -(j+l) node 

<-j-1, i mod rnn-j-l > 
Root node <-n,O> is connected to nodes: 

<-n+l, 0>, <-n+l,  1> ,... <-n+l, m-l>. 

The interconnection for the top tree is as in KYKLOS- 
I. 

.3.2 Properties 

The key properties of the KYKLOS network are (details 
of these may be found in [MENE88]): 

1) Network Cost (as measured by the number of non- 
leaf nodes) is a linear function of the number of leaf nodes. 
Also, the degree (fanout) of each non-leaf node is uniformly 
three or less. 

2) The maximum tr&c density under the uniform mes- 
sage distribution assumption in KYKLOS-I1 is O(N1.5) as 
compared with the O(N2) traffic density in the single bi- 
nary tree or KYKLOS-I. 

3) Average Communication Delay (leaf-to-leaf) is fur- 
ther reduced over that in the simple binary tree. 

4) Routing is straightforward. Also there are several 
routing strategies, each of which map to a different set of 
traffic or distance characteristics. 

5) Fault Tolerance is improved by virtue of the multiple 
The general form of KYKLOS is an interconnection net- 
work consisting of r sets of m-ary trees joined so that they tree nature of the structure. Further, conectivity in the 

case of KYKLOS-I1 is superior to that of KYKLOS-I. 
share a common set of leaf nodes [hfENE88]. Fig. 3(a) 
shows a KYKLOS of 4 ternary trees sharing the same set 
of leaf nodes. -4 The KYKLOS-based RDBMS 
.3.1 Interconnection Strategies Architecture 
KYKLOS-I Fig. 4 is a block diagram of the proposed RDBMS. The 

The simplest version of KYKLOS is the Simple dou- host processor is assumed to be a supercomputer connected 
ble tree (Fig. 3(b)) used for database ~roblems[SONG80]- to the roots of the KYKLOS-I1 network, The leaves, called 
Here, the bottom tree is a mirror image of the top tree. I/O nodes in this application, consist of a conventional 

. - 

moving head disk, associative disk cache, a sort engine, 
KYKLOS-11: T h e  shuffle-connected B o t t o m  Tree and a general-purpose microprocessor. An important com- 

ponent of the 1 / 0  node is the sort engine design utilizing 
The connection between any two adjacent levels of the an array of Content Addressable Data Manager (CADM) 

bottom tree (level -i and -(i+l)) may be visualized by con- chips manufactured by Advanced Micro Devices. 16 CADM 



chips (a total of 16K bytes i.e. (# of records).(key width 
+ pointer width) = 16KBytes) comprise the sorter, it is 

Ips was expandible to 256K. The choice of these CADM ch' 
based on its sort speedup of 15-50 over the VAX 11/780, 
and 1.5 over software sort on the CRAY X/MP-24 in addi- 
tion to performing search and set operations. The nonleaf 
nodes couple host and leaf (110) nodes and incorporate 
logic and buffering to support merge operations on data 
streams. 

The database is organized as a set of relations R, S, 
etc. which are the base relations upon which the leaf level 
operations of a query tree operate. Each of these relations 
is partitioned horizontally into fragments ri, si, etc. re- 
siding at  1 / 0  node i so that u2i1ri = R. Each fragment 
has associated with it a qualification which describes the 
common properties of tuples in that fragment. The frag- 
mentation scheme enables fragments of a relation to be 
accessed in parallel besides parallel processing of a query. 
Queries from the host are compiled into a set of relational 
algebraic operations at  the root node. The utility of the 
proposed configuration for the computation-intensive join 
operation is next exemplified. It is assumed that a join 
between relations R and S is to be performed. The results 
could be sent back to the host or may return to the leaves 
as a temporary relation for the next phase of a query such 
as a multi-way join. 

Suppose that relations R and S are partitioned on at- 
- - 

tributes a and b respectively, a # 6, and a join on at- 
tribute a is to be performed. A hash-based join [SHAS86] 
would necessitate repartitioning S on attribute a based on 
hash function h used to partition R i.e. if t E S, t is 
sent to h(t.a). The communication requirements for this 
phase can be modeled using the N-broadcast paradigm (i.e. 
each pair of processors needs to communicate). This is 
particularly well-suited to the KYKLOS-I1 network which 
shows an asymptotic improvement over the binary tree or 
KYKLOS-I. Once repartitioning takes place, the 
joins may be computed locally. If the tuples need to be 
sorted on an attribute other than the join attribute as is 
often the case, the sort engine at each I/O node could 

be used and the results merged using the two trees. The 
network in this example has been used for communication 
and for the merge operation. However, the nonleaf nodes 
may be used to perform some of the partial joins as in the 
semi-join algorithm described next. 

The semi-join algorithm involves a broadcast of the join 
attribute values from each node upon which a selection of 
joinable tuples between each pair of nodes is made. Let ri,, 
and sj,; denote the fragments of r; and s j  that participate 
in the join. The partial join between ri,, and sj,, may then 
take place at i, j, or a predetermined site in the network. 
To distribute the joins throughout the network, the sites 
for the partial joins could be assigned based on the set of 
mappings, vi, 0 < i < N : 

v,(l) =< -(k + I ) ,  1 mod 2n-k-1 > 
where i @I 1 = oklu,  i and 1 are n-bit binary strings, u 

is a n-k-1 bit binary string with Oh representing a string 
of k consecutive zeros, and n is the height of each tree in 
KYKLOS. 

Then the partial join between i and j takes place at  
v;(j). Note that v,(j) represent a non-leaf node address; 
the first element of the tuple represents level number and 
the second element represents a node within that level. 

An example of this allocation strategy for i=O is shown 
in Fig. 5. 

Two characteristics of this strategy are: 
1) Load Balancing The joins are uniformly distributed 

throughout the nodes of the network. Note that if r, w sj 
takes place in Tree 2, s, w r j  could take place in Tree 1 by 
an assignment which corresponds to v; with k defined by 
i $1 = ulOk. 

2) f i a f i c  Equalization The traffic of the inputs of the 
partial join is always rootward in each tree. Thus, there 
is almost a perfect balance in traffic through every link in 
the tree. 

In conclusion, an augmented binary tree such as KYK- 
LOS appears to be an attractive choice in the design of 
the RDBMS of an expert system because the operations in- 
volved in parallel query processing such as sort-and-merge, 
broadcast and N-broadcast are well supported with this 
structure. Finally, logarithmic internode path lengths, low 
fanout, fault tolerance and ease of interprocessor routing 
are desirable characteristics that further enhance its util- 
ity. 

Bibliography 
[BABA87] T.Baba et al, "A Network Algorithm for Re- 

lational Database Operations" in Database Machines and 
Knowledgebase Machines by M. Kitsuregawa and H.Tanaka, 
Kluwer Publishers, 1988. 

[BARU87] C.K.Baru and O.Frieder, "Implementing Re- 
lational Database Operations in a Cube-connected Multi- 
computer System", Proceedings of the Third Int. Conf 
on Data Engineering, Feb. 1987, pp. 36-43. 

[DESP78] A.M.Despain and D.A.Patterson, "X-Tree: 
A D e e  Structured Multi-processor Computer Architecture", 
Proceedings of the Fifth International Symposium on Com- 
puter Architecture, April 1978, pp. 144-151. Computer 
Architecture, Dec. 1973, pp. 21-28. 

[GOOD811 J.R.Goodman and C.H.Sequin, "Hypertree: 
A Multiprocessor Interconnection Topology," IEEE Trans- 
actions on Computers, C-30, Dec. 1981, pp. 923-933. 

[HAYE761 J.P.Hayes, "A Graph Model for Fault-Tolerant 
Computing Systems," IEEE Transactions on Computers, 
C-25, Sept. 1976, pp. 875-884. the University of Texas at  
Austin, Austin, Tx., May 1987. 

[MENE88J B.L.Menezes, " The KYKLOS Multicom- 
puter Network: Interconnection Strategies, Properties, and 
Applications" Ph.D. Dissertation, Univ. of Texas at  Austin, 
Austin, Texas 78712. 

[REED871 D.A.Reed and D.C.Grunwald, "The Perfor- 



mance of Multicomputer Networks," Computer, 20-6, June 
1987, pp. 63-73. 

[SHAS86] D.Shasha, "Query Processing in a Symmet- 
ric Parallel Environment", Proc. of the Sixth Advanced 
Database Symposium, Aug. 1986. 

[SONG801 S.W.Song, "On a High-Performance VLSI 
Solution to Database Problems", Ph.D. Thesis, Depart- 
ment of Computer Science, Carnegie Mellon University, 
Pittsburgh, Pa., 1980. 

[WU84] C. Wu and T.Feng, Tb torial: Interconnection 
Networks for Parallel and Distributed Processing, IEEE 



RELIABILITY CONSIDERATIONS IN LARGE-SCALE COMPUTING 
SYSTEMS* 

W. Najjar and  J.-L. Gaudiott  

tuniversity of Southern California Information Sciences Institute 
Department of EE-Systems, MC 0781 4676 Admiralty Way 

Los Angeles, CA 90089 Marina del Rey, CA 90292 

ABSTRACT: The technologrcal availability of large scale mul- 
tiprocessor systems raises new issues in the design of highly fault- 
tolerant architectures. The hardware redundancy inherently avail- 
able in such systems can be used for increased throughput, faster 
erecut:on and rmproved reliabrlity. This paper addresses the is- 
sue of scalabiliiy i n  the reliability analysis of large scale degrad- 
able homogeneous multiprocessors. It I S  shown that the amount 
of processor-hours a realistic sys tem can deliver i s  upper bounded 
independently from the number of processors. The results demon- 
strate that graceful degradatron in large-scale systems is not scal- 
able: an lncrease in the number of processors must be matched by 
a significant increase in the coverage factor in order to  m a ~ n t a i n  
the same performance and reliability levels. 

1 Introduction 

The advent of large-scale multiprocessing, where several hundred 
processors cooperate on the same computation, has placed the 
issue of fault-tolerance and reliability analysis for computing sys- 
tems under a new light. A large number of Processing Elements 
not only increases the processing speed, but also the likelihood 
that one or more elements will fail. Therefore, the overall system 
reliability becomes a key issue in the design, implementation and 
performance analysis of large-scale systems. Infact, the overall 
failure rate increases with the number of processors and with 
the complexity of the underlying interconnection network with 
respect t o  the failure rate of a single processor using a compa- 
rable technology. This increase is a t  least proportional to the 
number of processors and results in a decrease of the expected 
up-time of the system. The focus of this paper, therefore, is 
on analyzing the scalabi l i ty  of large-scale gracefully degradable 
computing systems. The main motivation behind this analysis 
stem from the following considerations: would the reliability of 
such systems impose a limit on the number of processors that 
can be put t o  cooperate on one problem? Our analysis shows 
indeed that the amount of reliable processor-hours a large-scale 
gracefully degradable system is upper-bounded. 

Traditional techniques of reliability and performability anal- 
ysis are used to  evaluate the asymptotic behavior of measures 
such as the mean- t ime- to- fa i lure ,  and the m i s s i o n - t i m e .  The 
concept of c o m p u t a t i o n a l  reliabil i ty,  as introduced by Beaudry 
[I] is used as a tool to evaluate the measure of reliable c o m p u -  
ta t ional  w o r k  as functions of the n u m b e r  o f  processors .  

2 System and Fault Models 

The model under consideration is that of a large-scale, homoge- 
neous multiprocessor. The computation is, initially, uniformly 
partitioned among N identical processing elements. The system 
is assumed to  support graceful degradation. Upon the detected 
failure of a processor its computational load is picked up by 
another processor or set of processors with near uniform load 
partitioning. A distributed fault-tolerance algorithm relies on 
the detection and isolation of faults and system recovery and 
reconfiguration. The ability of a system to gracefully degrade 
hinges on the c o m b i n e d  success of these step. The failure of any 
step can potentially result in a total system failure. The cumu- 
lative probability of success of these three steps is expressed by 
the coverage  f a c t o r  [2]. The analysis in this paper is based on 
the following simplifying and strongly optimistic assumptions: 

No communication costs among processors. 

Fail proof communication links. 

No overhead associated with recovery and reconfiguration 
procedures. 

Although these assumptions are unrealistic, they are justifiable 
in an analysis of asymptotic behavior. Based on such simpli- 
fying assumptions, this analysis will determine upper-bounds 
that are never reached in practice. The system is modeled 
by a continuous-time Markov chain (CTMC), shown in Figure 
1, [3, 41. Since our analysis will focus on gracefully degrad- 
able systems, we will not consider system repair and therefore 
the CTMC is acyclic. In this model P , ( t )  is the occupation 
probability of s t a t e  i ,  i being the number of failed processors, 
i = 0,.  . ., D - 1, F; where F is the state of total system failure. 

*This paper is bwed upon research supported by the National Science 
Foundation under Grant No. CCR-8603772 (USC/Department of Engineer- is the number of degradation states, as 
ing - Systems), and by the Office of Naval Research. Arlington, VA under a function of N .  c is the coverage factor, which is the prob- 
contra& No. '~00014-86-K-0311 (USC/Information sciences Institute). ability of successful recovery from a single failure. The state 



probabilities can be derived as: As the number of processors is increased, i.e., N > N,, we 

The reliability R(t) is simply the probability of bein in any one % of the states i = 0,. . ., D - 1. Therefore, R(t) = P,(t) and 
the mean time to failure (MTTF),  which is the expected time 
to first failure, is 

The Mission Time, MT, is defined for a given minimum relia- 
bility Rmin as the time interval during which the reliability is 
larger than Rmin i.e., R(MT) = &,,in. 

Unless otherwise noted, in the rest of this discussion, we 
will assume a fully degradable system. This means that the 
system allows graceful degradation for up to N - 1 failures, 
in other words, D = N - 1. The unit-time will be taken as 
1/X = MTTFl (i.e, the MTTF of a single processor) and a 
value of Rmin = 0.99. 

3 Time-Based Analysis 

The expression for M T T F  in Equation 1 indicatee that increases 
in N have diminishing effects on the value of the expected time 
to first failure. In fact, an increase from N to N + 1 processors 
results in a minimal increase in MTTF: 

since c < 1, the increase becomes insignificant for large values of 
N. The values of M T T F  are plotted in Figure 2 as a function 
of N for different values of c. The series in Equation 1 is not 
convergent but has a logarithmic behavior. Therefore there is 
no asymptotic limit to MTTF.  However, for all practical pur- 
poses, the mean time to failure can be considered constant for 
sufficiently large N given a value of the coverage factor. Let Nk 
be the value of N at  the knee of the curve in Figure 2, then 
MTTF(c, N)  = MTTF(c, Nk) for N > Nk. From the above 
analysis, we can conclude that the effects of the probability of 
successful recovery, as expressed by the coverage factor c, on the 
mean time to failure, MTTF,  increases with an increase in the 
number of processors. Also that, for larger systems, the mean 
time to first failure is a constant function of the coverage factor 
and is independent of the number of processors. 

The values of M T  are plotted in Figure 3 as a function of N 
for different values of c. These curves show that for a given value 
of c, there exists a value of N ,  denoted by Npr at which the M T  
is maximal. It is clear from these curves that for smaller values 
of N ( N  < N,) the inherent redundancy of the system provides a 
higher mission time. As N increases ( N  > N,) the higher failure 
rate dominates and reduces the mission time. Furthermore, as 
c is increased, the value of N, also increases. From this analysis 
we can deduce 

The peak value of M T  is significantly larger than that of a 
single processor. For example MT(Np,0.999) 2 93MT(1). 

observe a decrease in M T  that is inversely proportional to 
N,  MT(2N,c) = O.SMT(N,c). 

While the peak value of M T  for a multicomputer system 
can be significantly larger than that of a single proces- 
sor, the reverse becomes true for very large values of N,  
MT(1) = 10MT(1024,0.99). 

For N > N,, a 10 fold decrease in (1 - c) (the proba- 
bility of failed recovery) results in a 10 fold increase in 
the M T  for the same number of processors. For example, 
MT(128,0.999) = 10MT(128,0.99). In other words, the 
mission-time is inversely proportional to (1 - c). 

Because of the cumulative effects of the probability of suc- 
cessive recovery, the reliability of the system, after the ith fail- 
ure, is constrained by R(t) < ci. Let K' be defined such that 
cK' = &,,in. Let K be the integer value of Ii' 

Given the definition of M T ,  K' is the expected number of fail- 
ures in the interval [0, MT] constrained by the condition that 
D > K'. In other words, if the number of processors is large 
enough, K failures are sufficient to reach R(t) = Rmin. Rom 
this we can deduce that when the number of allowed degradation 
states is sufficiently large (i.e., D > K),  the necessary condition 
to reach the minimum reliability level (R(t) = Rmi,) and there- 
fore the mission-time is that K processors fail. Since the rate 
of failures is proportional to the number of processors, the time 
interval [0, MT] is inversely proportional to  N. On the other 
hand,forr << l a n d s  = 1-c, wecanuselogz ~ z l  1-z.  There- 
fore, for D > K M T  a *. This proportionality expression 
implies that in order to maintain a constant mission-time, any 
increase in the number of processors must be matched by an 
equivalent decrease in the probability of failed mcovey: (1 - c). 

4 Computation-Based Analysis 

In this section we present an evaluation of performance and reli- 
ability of large-scale degradable systems based on the notion of 
computational work. There is no formally defined unit of com- 
putational work. In this analysis we will use processor-hours as 
units of computational work. Another related unit of computa- 
tional work is machine instructions. Any computational task is 
characterized by a certain amount of computational work, mea- 
sured in processor-hours. When this task is executed over sev- 
eral processors, the execution time is reduced, but the amount of 
processor-hours required for that computation is kept constant 
if the speed-up is linear. For non-linear speed-ups the amount 
of required processor-hours increases due to  added overhead. 

Let Tn be the execution time of a given computation over n 
processors. Sn is the attainable speed-up defined by Sn = 2. Sn 
is equivalent to the number of effective processors (i.e the number 
of virtual processors fully utilized by the given computation). 
We define CW(N,t)  as the amount of e&ctive computational 
work a system will deliver for a given computational speed-up. 



Based on the model described in section 2, we define P H ( N ,  t )  
as the amount of processor-hours a system, with initially N pro- 
cessors, can deliver up to time t, as: 

For a computation that exhibits linear speed-up (i.e. Sn = n )  
we have: C W ( N , t )  = P H ( N , t ) .  Note that P H ( N , m )  is the 
mean computation before failure (MCBF) and C W ( N , t )  is the 
integral of the computational availability, ac ( t ) ,  as defined in 
(11. Both P H ( N , t )  and C W ( N , t )  are ezpected values of the 
processor-hours and computational work measures. 

R o m  this definition we can prove that  the amount of com- 
putational work a purely degradable system can deliver is upper 
bounded and that the upper bound is independent of the initial 
number of processors. 

Theorem 1 VN and c < 1 3 PH,,, such that 
P H ( N , t )  < PH,,,, Vt .  

Extensive proofs of this theorem can be found in [ 5 ] .  The con- 
clusion from Theorem 1 is that no matter how large the initial 
number of processors is, there is an upper bound on the amount 
of processor-hours that  are obtainable when c < 1. This upper 
bound is determined by c only and is reached asymptotically. 
PH,,, is therefore the upper limit on the mean computation be- 
fore failure (MCBF).  Therefore increasing the system size does 
not increase the amount of expected computational work the 
system can deliver before total failure. 

4.1 Reliable Processor-Hours 

The measure of reliable processor-hours, R P H ,  is defined as the 
amount of processor-hours available while the reliability is main- 
tained above a given minimum, i.e, 

MT D-1 
R P I I ( N , c )  = P H ( N ,  M T )  = 

The results of evaluating the R P H ,  according to Equation 5, 
are presented in Figure 4 for D = N - 1, for values of c in the 
range [1,0.99], and for Rmin = 0.99. The values of R P H ( N , c )  
are expressed in processor - hours where the unit time is taken 
as 1/X. Two observations can be made: 

1. for a given value of c ,  there exists a value of N ,  Nph(c), be- 
yond which an increase in N will not increase the amount 
of reliable processor-hours. 

2. the values of Nph and RPH,,, increase with increasing 
values of c .  

Theorem 1 states that the expected amount of processor-hours 
in the interval [O,oo] is upper bounded by PII,,,. These re- 
sults show that the expected amount of processor-hours in the 
interval [0, MT] is also upper bounded by RPII,,,. RPH,,, 
is therefore the maximum expected amount of computational 
work the system can deliver subject to the constraint of R ( t )  2 
R,,,. In the next section we present an analytical derivation of 
RPH,,,(c). The maximum value of R P H ( N , c ) ,  RPH,,,(c), 
can be derived analytically by using the expression for the ex- 
pected number of failures in the interval [0, M T ] ,  K ,  as RPH,,, 
RPII' = E. These results show that there is no increase in 

reliable computational work when N is increased above N,h for 
a given value of c. This confirms the results obtained in the 
M T  based evaluation. It appears, therefore, that for a given 
value of the coverage c there exists an  optimal value of N ,  No,,, 
that  would maximize the mission-time MT and the amount of 
reliable processor hours. 

4.2 Reliable Computational Work 

RPH evaluates the amount of reliable processor-hours poten- 
tially available from the system. The fraction of RPH that  is 
actually used by a computation depends on the speed-up Sn 
of the computation. Similarly to RPH we define RCIY as 
R C W ( N , c )  = C W ( N ,  M T )  RCW is therefore the amount of 
efective reliable computational work a system can deliver with 
respect to a given computation while R ( t )  > R,,,. In evaluating 
RCIY, we will take as example a sub-linear speed-up case where 
S, = &. The results, plotted in Figure 5, show that there 
exists a value of N denoted by N,  a t  which the value of RCW 
is maximal. Figure 6 shows the plot of both RPH and RClY 
versus N for c = 0.995 and S, = &. This implies that as the 
system size is increased over Nph,  the probability of a compu- 
tation not completing reliably decreases if the speed-up of the 
computation is sub-linear. This result has implications on the 
scalability of graceful degradation. For a large-scale gracefully 
degradable system to  be scalable, any increase in the system size 
should be matched by an increase in the quality of the recovery 
scheme, i.e., the coverage factor, in order to  maintain the same 
performability level. 

5 Summary and Conclusions 

In this paper we have addressed the issue of scalability in large- 
scale gracefully degradable systems. The objective being to as- 
sess the limitations that reliability considerations would impose 
the number of processors in a massively parallel. Traditional 
measures of reliability, such as mission-time and mean-time-to- 
failure, as well as measures of computational reliability have 
been evaluated as functions of the number of processors. It was 
shown that the mean-time-to-failure is, for all practical purposes 
and for large system sizes, a constant function of the coverage 
factor and is independent of the number of processors. The 
analysis of the mission-time shows that ,  for a given value of the 
coverage factor, there exjsts a value of the number of proces- 
sors a t  which the mission-time is maximal. As the system size 
is increased beyond this value, the mission-time becomes a de- 
creasing function of the number of processors. The measure of 
processor-hours was defined as the amount of potential compu- 
tational work. This measure was shown to be upper-bounded 
and the upper-bound independent of the initial number of pro- 
cessors. For computations with linear speed-up, it is shown that 
the amount of reliable computational work is constant for large 
system sizes. When the speed-up is not linear, this amount is 
a decreasing function of the number of processors. Therefore, 
for large system sizes and same technology, increasing the num- 
ber of processors results in a decrease of the expected amount 
of reliable computational work the system can deliver. It is 
therefore demonstrated that graceful degradation in large-scale 
fault-tolerant systems is not scalable. In order to preserve the 
same performance and reliability level an increase in the nurn- 
ber of processors should be matched by a decrease of the same 



magnitude in the probability of failed recovery. 

References 

[I] M.D. Beaudry. Performance-related reliability measures for 
computing systems. ZEEE Transactions on Computers, C- 
27(6):540-547, June 1978. 

[2] W.G. Bouricius, W.C. Carter, D.C Jessep, P.R. Schneider, 
and A.B. Wadia. Reliability modeling for fault-tolerant com- 
puters. IEEE h n s a c t i o n s  on Computers, C-20(11):1306- 
131 1, November 1971. 

[3] K.S. Trivedi. Probability and Statistics with Reliability, 
Queueing and Computer Science Applications. Prentice-Hall, 
Englewood Cliffs, N.J., 1982. 

(41 D.P. Sieworek and R.S. Swartz. The Theory and Practice of 
Reliable System Design. Digital Press, Bedford, Mass., 1982. 

[5] W. Najjar. Fault- Tolerance and Reliability Analysis of Large- 
Scale Multicomputer SystemsJuly. PhD thesis, University of 
Southern California, July 1988. 

Figure 1: Markov model of failures 
M r n F I N .  d 

Figure 2: M T T F  as function of N and c 

Figure 3: Mission Time as function of N and c,  ( D  = N - 1) 

Figure 4: RPH as function of N and c, D = N - 1 

I t : : : : : : : : : ,  
1 2 3 4 5 6 7 8 9 1 0  

lo62 N 

Figure 5: RCW as function of N and c for S, = & 

' i 1 i i i 6 i 4 1 b ' ' " ~ ~  
Figure 6: RCW and RPH as function of N,  c = 0.995 and 

S. = & 



Design Considerations for a Pyramidal Cellular Logic Processor 

Joseplt J. Pfeiffer. Jr. 

Depatlment of Computer Science 
New Mexico State University 

Las CNces. NM 

ABSTRACT 

A number of cellular array processors have been c~ccewfully congffuded 
over t l ~ ,  last several years. lo general, these processors have concentrated 
on interconnection topologies and processing ekment microarchitecturra to 
the exclusion of innmaion WI and high level language issues. Even in 
those cellular processors with explicit hardware support for particular 
operations (c.8. multiplication support in MPP), issues of aaual inmction 
set design and suport are secondary to low-level microarchitechml 
details. 

kvel, i~lleosity may pmccaing with higb-kwl, gnph atmcture procesv 
iag. issues of conccm to t l i s  project include data s t m a  conversion 
between low-level a d  high-level represcntatioos (Ref 4 ), graph Jtrudure 
representations suitable for parallel manipulation (Ref 5 ), m o d e l - b d  
reasoning (Ref 2 ), aod development of architectures for graph smcture 
manipulation. The ultimate goal is the development of a unified architec- 
ture capable of svuaural analysis of images at realtime rates. 

Continued advancement of cellular processors q u i r e s  cmkleration of the 
processor as a compooent in the overall context of execvting paralkl 40- 
ritbms, and so q u i r e s  consideration of issues including parallel high kvel 
languages, user-level assembly languages, and efficient microarchiteam. 
Additionally, high-bandwidth input and output must be combined with 
efficient data structure conversion hardware to provide a mechanism for 
communication of mid-level image data between tbe cellular processor rod 
external processors for mid-level aml high-level processing. 

+Ibis paper d e s ~ ~ i b e s  a project involving PL1 these levels, providing an 
integrated envbiment for pyramidal problem solving. The use of a lop 
down design approach, beginning with algorithms, then language develop 
menl, and finally architecture and microarchitecture, has resulted in an 
exceptionally clean a d  well-integrated processor for pyramid operations. 

1. Introduction 

While a number of parallel computers, such as ILLIAC IV, w m  
built by the late l%Os, the first modem cellular m y  pnxrssor con- 
structed was the ICL DAP (Ref 6 ). This processor included a number of 
hatures common to most of its succesors, including bit-serial processing 
elenlenis (Pb) and a grid intercomedon pattern. Also in common with 
rnm of its successors, it papsewd a number of special features; in tht 
cnse of DAP. the most notewocrl~y was the presence of rowlcdumn high- 
ways for communication of dala Uvoughout the array. 

While DAP was extremely fast for its time, it also suffered fmm a 
malady common to most of its successors: conimumcation of u ~ c t i o r r r  
aml dala between the host and the PE array was very cumbersome, result- 
ing in underutilization of the PE array. More recent processors have gen- 
erally shown similar strengths and weaknesses. In general, much more 
attention has been paid to interconnection topologies and PE designs than 
to hostPE array iutegration. 

A second w e a k s s  in cellular processors has been !heir 
Irput/Output systems. Typically, the 10 rates in these processors have 
been far below that necessary to maintain efficient processing in the PI!! 
m y .  Some systems (notably MPP) have addressed this problem through 
high-bandwidth I 0  subsystems, operating asynchronously (Ref I ). Even 
lhese systems, however, are weak in converting data between format8 
which are useful for the cellular processor and fonnats which are useful 
for the host. 

A current project under way at NMSU is the developnlent of an 
architaure for mnputer vision wbid  will s u m f u l l y  iotegraIe low- 

Figure 1: Integrated Computer VYon Architecfmre 

A view of the eventual system is shown in Figure 1. 

In this paper, we discuss a massively parallel component of the 
overall project: a pyramid procursor for perfonning low kvel image pro- 
cessing. The processor is designed from the ground up with the goal of 
providing a set of SlMn pyramid operaticas useful to programs written in 
a high level language, for eventual feature extraction. The approach tplres~ 
begins with a coasideration of the opefatiom requited to support typical 
vision operations, and embeds these operations in the C programming 
language as parallel constructs. A compiler for this extended C (called 
HCL. for Hierarchical Cellular Logic) deb the set of low-level pyramid 
operalions required for a pyramidal cellular processor. Finally, this 
i r ls t~dion set defines d~ microarchitecture of the PE's, and the capabili- 
I& of the controller. 

At h e  same time, study of mid-level processing algorithms, and 
analysis ol the properties of edges in an image, results in the definition of 
f ; l ~  parallel bardware for searching edge maps in order to create graph 
structures for high-level processing. 

This paper will consider each of these is.sues in turn. Section 2 
drrls with the parallel operations of HCL. Section 3 describes tbree candi- 
date instru~tion sets which were evaluated for PCLIP 11, supporting stack, 
enhanced stack, and two-operand instructions. Section 4 describes the 
micrarchitec~ure of PCLIP U, and tIw impact of the micmarchitectum on 
the IkJ choice of insmdion set. Sedion 5 discusses the I 0  subtrystem. 



2. HCL: A High-Level lanpqlt lor b w - L c P d  Image Pmcedq 

AIgoritbm development for pyramid proaglom in tbe esrly 1980's 
led to the ckhition of a notation for operatiom on pyrmids, callai 
Hierarchical Cellular Logic (Ref 7 ). Tbe distinguishing f e a m s  of th& 
notation are its pattern match opentors, tbe delinition of gmy-level oprr 
tian (such as addition) from binary opentog (such as  exclusive OR), ad 
*c ability to use the RSUICS of prior operations to seledively mask avbeetr 
of the pyramid Tbc notation was based m two pattern matcb opentar. 
and the full set of bitwise Bodean operators. These features were inspid 
by the chamaeristics of bit-serial parallel p r o e m  (Ref 8 ), aPd by the 
needs of pyrrntid algorithms. 

The se~ of openton ~~ wlrs formalized when the lsny age 
wss embedded in the C pmgnmming laripage, mulling in a pyramid 
programming language called HCL (Ref 3 ). An example of a ~a temed  
in HCL, calculating the Sobel edge detector, is sbowo in Pigun 2. 

dy - (nw pixel (in image) + 
ZKn pixel (l'n image) + 
negixel (in-hage) ) - 
(sw pixel(in image) + 
2 *<jixel (icimage) + 
aegixel (in-image) ) ; 

L I 
Figure 2: HCL Code C.ldating Crrdknt Cornpornat 

Development of the HCL compiler provided a set of fundamental pyrpmM 
operatiom, .ad uchitedutrl futurrs. required to suppon the 1an.gia.p. In 
b e  next s+cnioo, we d k m  iamudoo ret developmen( for HCL. 

3. Inshpctlm .Set Support for HCL 

The PCLlP Il instruction a t  impkmeaes preckly the khns  
nee&d to suppurl HC!. As the language ia based on SlMD exlemiws to 
C, the iosln~dion set has taken a focm very similar to conventional, aerial 
ia3trudioo sets, with the two diffmoces chat (I) uperatiom are. performed 
on parallel objects and (2) mere arc no provisions for flow of contrd. Tbe 
plocessor is being developed for use ss a specialized M o d  unit in rn 
image processor supporting a unified inmudion set for scalar and p d e l  
operations. In this environment, scalar data nod flow of control will k 
handled elsewhere, and so an not quired in the pyramidal processor. 
Three imuuction sets have in fact been &vetoped and evaluated: a pure 
stack n l a c h i ,  an enhaoced stack machine, aod a two operand machioe. 

His~orically, the stack machine was created first, as a "Version 0 
architecture which could be used to determine the muting and processing 
cbuaderistics of HLZ programs. The enhanced stack machine w u  
developed next as a nsuli of  simulation^ of be pure stack machioe, in 
order to reduce routing ovehad. The two operand iwtmctiw set w a ~  
then desigaed to simplify the micawontroller. This Ihird instruction set ia 
now being pursued for hrr(her development. 

Rather than discuss the three instruction sets and lbeir performaom 
in the order they were evaluated, bowever, it is more inqtruclive to presed 
the instruction sets first, a d  then compare them. ?hree quantitative meas- 
ures of the efficiency of the k m u i o a  set are shown for this bencbmart. 
The number of instructions acts as a measure of the worlr required for rhe 
innmdion dispatcher to process the code, while code size gives a measure 
of the bandwidth wtic% will need to be supported between the dispatcher 
and the pyramid. 7he execution speed is, of course, t k  critical measure of 
the efkctiveness of the architecture. This speed estimate is bawd on the 
PE micn~architecture, described in Section 4. A qualitative cornparkon of 
the micrucontroUer complexity is used. 

3.1. h h u c f b  Sa Dtrulptka, 

In the fdbwing rdim, the ~ I C C  insnudioo sets an described 
Along with each dewription, be code r e q a  to execute he HCL state- 
mcot is presented as an exmple. 

33. St& Mwhiac I dmc th  set 

The first inNuctim set developed is a nearly pure stack mschine. 
corrupted c d y  by the presence of imtrucrim popping the stack into the E 
regisur, and adding the C register to the top of stack. 'Ihe code required 
in this instruction set to implement the HCL statement is shown in Figure 
3. 

321. Enhanced Stack Mrhiac 
To obtain the he secondinstroa set, three enhancement8 m added 

to the stack ma* iacltructim set: 

Combined routing with push opcratioas 
Performing arithmetic on the top of stacl without q ~ g  push 
operalions 
Visible P register, wich this register added to the set of possible 
sources and destinations for register traasfer insin~cticm 

Code for this eohanced stack madoe is shown in Rgure 4. 

3.22. Two Operand Loatruction .% 

The third irrrmdim set simplifies the microcontrollw by moving 
responsibility for slack management from it to the instruction dispalcher. 
The code au~tple for the two operand instruction set is shown in figure 5. 

33. ldruction Set Cornpubma 

la this section, the the cdidate  instruction sets are compared on 
four criluia: wea~tlon nte, wmber of kstndm, code size, a d  mi- 
coaadler annpkxity. 

Size cyclea Instruction 
3 8 push ( 8 )  in-image 
5 16 and-match x lxx xxx xxx xxxx 
3 8 pushint 1 
3 8 push (8) in-image 
5 16 and-match x xlx xxx xxx xxxx 
1 8 lshft 
I 16 add 
3 8 p u ~ h  (8) in-image 
5 16 and-match x xxl xxx xxx xxxx 
1 16 add 
3 8 push (8) in-image 
5 16 and-match x xxx xxx lxx xxxx 
3 8 pushint 1 
3 8 push (8) in-image 
5 16 and-match x xxx xxx xlx xxxx 
1 8 lshft 
1 16 add 
3 8 push (8) in-image 
5 16 and-match x xxx xxx xxl xxxx 
I 16 add 
1 16 sub 

1 8 pop dy 

Figure 3: Pure Stack Mschim Code Sample 

33.1. Quantitative Comparisons 

'Ihe original motivatim for tbe design of the pure stack machine wur 
to completely separate data maniplation 6om data movement. This was 
to locate inaruction pairs that might profitably be combined into s u ~ g k  
instmaiorm. Analysis of tbe code sample (see Rgw 3) shows two such 
pdrs. First, as expected, thexe are a very large number of push sad 
pop imtruc(ions. S e d ,  nearly every push ioshuaion is followed 
immediately by a pattem match operatiom la additioa to these, the pattern 



Size Cycks Ifwmciioa 
4 16 push nu (8) in-image 
4 16 push n (8) in-image 
2 8 lshft 1 
I 16 adds 
4 16 add ne (8) in-image 
4 16 push sw (8) in-image 
4 16 push s (8) in-image 
2 8 lshft 1 
1 16 adds 
4 16 add se (8) in-image 
1 16 subs 
4 8 pop dy 

Figure 4: Edmnced Stack Machitbe Code 

Size Cycles Illsbuction 
6 16 mov nw (8) in-image Stack 
4 I clr (1) Stackt8 
6 14 mov n (7) in--ge Stack+9 
6 16 add c (8) Stackt8 Stack 
6 16 add ne (8) in-image Stack 
6 16 add sw (8) in-image Stack 
4 I clr (1) Stackt8 
6 14 mov s (7) in-image Stackt9 
6 16 add c (8) StacktB Stack 
6 16 add se (8) in-image Stack 
6 16 sub c (8) Stack+8 Stack 
6 16 mov c (8) Stack d~ 

Figwe 5: Two Opuand Code 

match operations are typically used to route dala from a paiticula neigh- 
bor, which does not require the full flexibility of the pattern match imhnc- 
tion. Not apparent in this cock sample is a fourth area for improvement: 
pattern matching algorithms (such as region 6lling) also show an excessive 
amount of communications between memory and the PE. 

The largast difference between the first two imtrudioo Jets is the 
combination of push and routing instructiom with arithmetic WG 
tions. In the code sample, this provides nearly all of the performawe 
improvemenl: folding the inst~ctiolls togelher teduced the instructioo 
m o t  and reduced PEmemory W c ,  while adding a lookup tabk for 
routing reduced the code size. 

Ihe performance measures for the second and thin1 insmdion eel? 
are nearly identical. Typical algorithms show very similar numben of 
insmrdions, awl processing rates. The code size for the two o p e d  
machine is much larger, however. These performance criteria are shown 
together in Wgure 6. 

St a& Machine 
Enhanced Stack Machine 

12 158 

'Ibe m i m k r  for tk ncad iatmctbn a t  ia m m  c u q h  
h r a f o r t h e ~ m e . d u e t o t h e ~ u f m ~ g ~ p r r a n  
lookup tables. lhis difference is not o e d y  m signilklot as the difference 
in tk size of the imtruction act. '& enhanced stack machine requires all 
oftheiaotrudionspresmtinthepuesl.clriosmdimset,rswellasim 
own enhawements. 

The two operand iomdioo set uses a sub~taotially simpler micro- 
cwtrokr. First, the stack maintenma hardware is not required. Sewnd, 
rn stack operations ate aimply special cases of two operand kitmctioos, 
the size of the inuruciion set is effectively d u d  to the size of the pure 
stack instmaion set. 

Extending this h d o n  set to a three o p e d  instruction is al.w 
being considered. The approach here is to continue development of the 
two o p e d  instruction set, while leaving space in the op code list for 
later impkmentation of the additional iostmcti0o9. 

& Ihc PCLIP Il Proccsslng Elemen4 

A microarchitecture ha? been developed for execution of the iosImo 
tiw set This microarchitecnue was developed with the single god in 
mirid of providing a maximally efficied hardware and microcode impk- 
memation of the pyramid imtruction sets describad above. 

Since tbe three instruction sets developed perform nearly identical 
operatiom, the PE microarchitectures are also be ikntical. The only 
differena between tbem in terms of operatimv supported is the psence 
of a visible P register in the seed and third. mi s  register is also 
quired for routing in the first instmuion set, although it is not visibk 
there. The major differem between the instruction set8 Lie in the 
addresing mechanisms used, a d  eo do not a f M  the PE design. 

The PI3 are required to support the operations defined by the 
inmudion at described above. This tnmlltcs into tInec spacific q&- 
mews: 

D i m  implementation of H a  patkm matching 
S u m  for C. E, and P =gistem 

Efficient bit-serial arithmetic 

'Ihe resulting microarchiteaure (Figuw 7) is in many ways a coo- 
venlional bit-serial PE, with op~imiurtions UI place for these reqllimneols. 

From Neinhbor PEs 

I Pattern Match I I 
I I 

Memory 

Processor 1 Processor 

I I Iv @ Memory To 

+o 
Neinhbor 

The first two bhuction sets require the micmconlroUcr to maintain 
the expression stack. Due to the bit-serial name of the insbuction set, two Figure 7: Processing Element Microarchitecture 
stacks are required. The Pyramid Stack, consisting of the actual operands. 
is stored in bit-addressed pyramid memory. The ConmUer Slack, holding Routing is provided by a pattern matching unit which directly implements 
the length of the operands in the operand stack, is stored in the controller. lhe AND-Match operation of Ha. The mmckr is provided with a vector 
The two stxk pointers (Controller Stack Pointer iuK1 Pyramid Stack of fourteen pattern elements, each containing a 0, 1, or x. Each o or 1 
Pointer) are aL3o maintained in the wotrolkr. is matched against its comspwdiog eleanent in the neigh- of the 



P&ro xp.nanekmeat&igrorsd Thcoutputofthcplctaam~cbcrb 
r 1 i f d d i c r ~ b x e l n n e m r n r t c h .  HCL'aORJiUcbclll.tsobe 
executed, by moctifytng the pattern contents aod the Wear to be per- 
formed by the boolean processors. 

Two inkpendent processors m each capable of evalualing any of 
the 256 boolean functions on lhne inputs. A typical use of the proasson 
woulcl be to generate sum and cam simultaneously in m ddition. Tbe 
q u ~ s  of the processors may also be ioJepeakoUy routed to my of the 
registers in the PE or to memory. 

This micrnarchitedure is able to perform simple two operaod arith- 
metic instructions, such as addition or subtraction, at a rate of two 
cyclesibit, with a memory utilization of 75%. 

5. Communications 

Attention ha5 been paid to two arem of commuoications. Pint, the 
invtru~zion dispatcher must be capable of sending iostructiom to tk 
pyramid micrucontroller, a d  scalar results and status information must be 
returned. Second, it must be possible to traosmit a massive mount of data 
into and out of h e  pyramid, and to effectively communicate this data witb 
other subprocesson. In this section, we will briefly describe the mechart 
isms provided in PCLIP II for thse classes of communications. 

5.1. Instruction @ad Scalar Data Commu&ation 

Cnnununication between the microcontroller end the instruction 
dispatcher is provided thrwgb two mechanisms. Pirst, an iapnuction 
quue  receives instructions from the dispatcher. The Iostruction Register 
is double buffered. to yermit fetching fmnl the queue with m, overhead. A 
second chawl  is used to communicate data back to the dispatcher. Tbe 
returned data can be eilher the contents of a Non Zero Result regisler a a 
Scalar Result Return register. To synclnonize the instrudim dispatcher 
with the microconholler and obtain this data, the iastruction dispatcher 
sends a "send NZR" or "send scalar"  don to Ibe miaoamtmlkr, 
and then waits for the regncsted data to be- available by M m p h g  to 
read the communicatioo chnmel. 

The NZR register reflects the CwteW of the P regir(en in the 
pyramid. One NZR bit comspHKfs to each kvel of the pyramid. Whew 
ever any enabled PE has a nonzero result, cbe NZR bit correspondit~g to 
hat PE's level in the pyramid is set to we. 

Tbe SRR register operates under cwtd of lhe micmontroUer. The 
lest  significant bit of the SRR is loadable with the contents of the P re@- 
ter of the rmt of the pymmid. This provides a mechanism for loading 
scalar results of algorithms into the controller, and from &re to the 
dispatcher and scalar pwessor. 

5.2. High Bandwidth Input/olltput and Mid-kvd Visioo Suppmt 

One of the primary design goals of PCLIP II is developing an 
environment in which I 0  may take place efficiently, ancl at rates capable 
of supporting real-time vision proasing. This includes two types of 10: 
ravter 10, lor m f k r  of image data in and out of the pyramid, and grapb 
~lructure 10, for transferring edge maps in a coniprrssed format suitable 
f a  use with graph structure processors. 

The raster 10 mechanism is very similar to that used by MPP, with 
simplifications permitted by !he development of Video RAM memory. 
Jnterieaved VRAM is used as- staging memory, with byte-.serial data pro- 
vided by a camera or other source. The VRAM shift registers m u.sed to 
convert this data to row-serial data for PCLIP 11. Shin registers built into 
the bottoln level of the pyramid are used to t rader  data between VRAM 
and the pyramid. These shih registers operate asyncbronowly with the 
pyranrid, permitting simultaneous 10 and processing. 

Maximum 10 rates me two g i g r b i t s / d  for raster 10, a up to 2.4 
gigabytea/sd for graph struuurc 10. l h a c  10 rates acak linearly with 
hveslment in 10 hardwue arid cycl-mealiag overhead in the processa, 
the initial implementatiw will only suppott 128 megabits/sed for mta 
10 God thRC gig8bytCdseCOnd for graph smcture 10. mse mes for 
graph structure I0 are peak mtes ~ssurning uurcalistically dew edge 
m a p ;  more realislic numbers an perhaps tea percent of this. 

This 10 Cmucture p v & s  an interface to high-level pmcessor~ 
which eluninatea the need for searching througb images to develop grspb 
representations of edge maps. Mead, the graph s l ~ & ~ ~ a  can be 
developed directly, resulting in superior performance on the high-level 
vision tmh. 

'Ibe desip of PCLIP II bas been mid4 from its very inception by a 
small number of bnsic principles. Ma* impmant of these has been a 
view of the processor as a canpooent in the overall context of a vislon 
computer, and a language-driven &sign 

This approach has been succeaaful in producing a design with a very 
dean, well integrated, and efficient hrmction set. For simple opemtiom. 
the processor is able to operate within a factor of two of the bandwidth of 
memory. In addition, communication witb ~4dh components of the heon 
pmcessor, eapecidly graph stiuchtn proasson for cognitive processing, is 
gnatly enhanced. 

(11 O i l m m , P . k , K . B . B ~ , M . H . D a v i s , R . W . L o n , a n d J . T .  
Burldey. "Msssively Parallel Razssor," GER-16684, W y e m  
Aerospace, Akron, Ohio, July, 1979. 

[2] Haaley, Roger T., Michael J. Coombs, and Eric Diehich, "An 
A l g o r i h  for Opo-World Resaoniog using Model Geoeration," in 
Proceedings of the Second Rocky Mountain Conference on Arhjiciol 
Intelligence, pp. 193-203, Boulder, Colorado, 1987. 

[3] Pfeiffer, Jmpb J. Jr., "HCL: a language fm low level imae  
malysis," Journal of Parallel and Distributed Computing, (in 
P-1. 

14) Pfeiffer, Joseph I. Jr., "Integrating high level and low level com- 
puter vision," in Proceedings of the I985 IEEE Computer Society 
Workshop on Computer Architecture for Pattern Analvsis and Irnagr 
Database Management, pp. 119-125, Miami Beach, FL, November, 
1985. 

[5] Pfeiffer, Joseph J. Jr. a d  Carol A. Sodertund, "Solid Modelling 
Data Structures for Computer Vision," in Proceedings of the 22nd 
Asilomar Conference on Signals, System, and Computers, Pac& 
Grove, W o m i a ,  November, 1988. 

[6] Reddaway, S. F., "DAP - A distributed array processor," in 
Proceedings of the First Annual Symposiwn on Computer Architec- 
ture, pp. 61-65, Florida, 1973. 

[71 Taninloto, Steven L., "A llierarchical cellular logic," University of 
Washington Technical Report 83-10-06. October, 1983. 

181 Tanimoto, Steven L. end Jo.wph J. Pfeiffcr, Jr., "Data Processing 
System Having a Pyramidal Array of Processors.," United States 
Patent Number 4,622,632, November 11,1986. 

The interfaces between the pyramid shiA registers and the VRAM 
are also capahle of searching t t ~  data passing dvou@ them for edge end- 
points, and generating the addresses of these endpoints. These endpoints 
are then tral~sferred to high-level, graph swctured p m s s o n .  In order to 
support vertical, horizrmtal, and diagonal edges, four I0 shin pla~ws are 
uJal in graph s t m a w  10. Mechanisms also exist for the high level pro- 
assors to transmit coordinates to lioe drawing hardware, wuch is able to 



MICROCODE GENERATION FOR THE CONTROL O F  A MASSIVELY 
PARALLEL COMPUTER 

Tom Phillips, J. Bret Michael, and Zahi Abuhamdeh 
School of Information Technology and Engineering 

George Mason University 
Fairfax, Virginia, 22030, U.S.A. 

ABSTRACT 

A software organization concerning the control of an 
SIMD machine is explained. It is argued that the bulk 
of an algorithm adapted to an SIMD architecture should 
be executed on a microsequencing controller which is 
directly connected to the SlMD machine. Typical 
systems have a main control unit which calls low level 
primitives on a controller which is directly connected 
to an SIMD machine. An algorithm can be 
autonomously run on a microsequencer directly 
connected to an SIMD machine. Two algorithms are 
appl ied  to  t h e  t w o  ma jo r  S IMD con t ro l l e r  
configurations and their performances are examined. 
To demonstrate how the software organization can be 
applied to a system, a compiler has been written, for 
the GAM Pyramid, that generates microco.de from a 
high- level language with parallel data structures. The 
microcode executes on a microcode sequencer unit 
which is directly connected to a pyramid architecture 
SlMD machine. 

Keywords: SIMD, Microcode Sequencer Unit. Compiler, 
Convolution Algorithm, MPP, GAM Pyramid. 

INTRODUCTION 

There are two major philosophies governing the 
control of SIMD machines. The first is  to divide control 
among two or more controllers which are connected in 
a hierarchical fashion. The lowest level controller 
(typically a microcode machine connected directly 
directly to the SIMD machine) executes primitive 
instructions such as addition or logical expressions and 
is not capable of supporting a large program; only 
small subroutines can be run.. Its parent controller 
executes higher level code and calls primitives residing 
on the low-level controller. There is usually some form 
of connecting hardware that eliminates controller wait 
time (such a queue in the case of the MPP [I]). 

The second paradigm is to execute most if not all code 
on a low-level controller connected directly to the 
SIMD machine. A higher-level controller would be 
used to process external 110 and/or act as a gateway to 
other systems. This approach requires a sophisticated 
controller capable of executing different instruction 
types in parallel. One way to accomplish this is to have 
the low-level  control ler  execute  very versa t i le  
microcode.  

The latter design is advocated. Examples of a possible 
implementation are given and an actual compiler for 

implementation arc given and an actual compiler for 
the CAM pyramid's microsequencer is presented. 

NOTATION 

The notations used to represent parts of  a hypothetical 
microcode instruction are described below. 

I n d i r e c t i o n  

Indirection is handled by: [r], where r is  the register 
used. Thus [r] represents the memory location pointed 
to by r. 

L o o p i n g  

DO rl,r2 TIMES block is executed until r l  = 0 
LOOP decrements r and loops back up if r l  > 0 
The DO looping structure will automatically use r l  as a 
looping variable, first loading r l  with r2, then looping 
until r l  = 0. 

P rogram Flow Con t ro l  

Program flow control consists of the following 
ins t ruc t ions :  

BR k = branch to x on the next clock cycle 
BRS = branch to subroutine on next cycle 
CASE r l , R  = branch to [rl+r2] on next cycle 
DRT = execute two R T s  on the next cycle 
RT = return from subroutine (pop PC from stack) 
CCASE rl,r2 = conditional case 
CBR k = conditional branch to k 
CBRS k = conditional branch to subroutine 
CDRT = CRTBT 
CRT = conditional return from subroutine 

A r i t h m e t i c  C o n t r o l  

Ari thmet ic  control  i s  based on a three-ALU 
configuration. See Figure 1. Formats are based on: 

ADD source, source. destination 

Any source may be represented by a register or  a 
constant (k) that would appear in the microcode 
ins t ruc t ion .  

LADD rl,r2.r3 = left add (may use indirection on any 
r eg i s t e r .  
RADD rl,r2.r3 = right add (may use indirection on any 
r e g i s t e r )  
CADD r = center add (may use indirection on r) 



Figure 1. Three ALU Configuration. 

Condition Codes 

The controller should have various condition lines 
such as ALU results (e.g., overflow, zero, etc.) or status 
lines (e.g., host ready, SIMD status, and so on). 

CCSEL = condition code select (e.g., CCSEL 5 would select 
condition code 5 as the condition for conditional 
b ranches) .  

Mutual  Exclusion 

Parallel Sets: 
(BR,BRS,CBR,CBRS,RT.CRT,DRT,CDRT,CASE, 
CCASEI. (CCSELI. &ADD]. [RADDI, (CADD), 
(D0,LOOP). (SIMD control instructions) 

Elements from the same set are mutually exclusive and 
cannot be included in the same microcode instruction. 

SYSTEM COMPARISONS 

Two routines written for the MPP (a 128 x 128 bit-serial 
array) are now presented to show the differences 
between using a hierarchical control system and a 
single microsequencer to execute large portions of code 
(note that the hypothetical microsequencer is assumed 
to have a sufficient amount of data memory and/or a 
large register set). 

The first routine is that of convolution (see Program 1). 
It is important to note that every line of code involves 
manipulating the SIMD machine. Therefore, if it were 
to be executed by itself, it would make sense to contain 
it within one machine that controls the SIMD computer. 

Program 2 shows how the convolution routine 
(residing in a hierarchical control system) would be 
called from a hypothetical FOR loop which executes one 
thousand times. Parameters are passed from the high- 
level controller to the low-level controller on each line 
within the convolution routine. That means that the 
actual convolution routine resides on the high-level 
controller while simple instructions such as ADD and 
SHIFT reside in the low-level controller. 

In contrast, Program 3 demonstrates that no overhead 
at all is required to execute the convolution routine one 
thousand times. The DO instruction uses register 
seventeen to loop one thousand times. This looping 
structure takes no extra cycles. Thus, the entire 
routine may reside on a microsequencer, freeing the 
host and eliminating a need for complicated inter- 
communications hardware. 

Program conv(row~index.col~index); 
type 

sarray = Parallel Array[0..127.0..127] of 0..131071; 

p m d u r e  conv33( a: sarray; var temp: sarray; k.s: integer); 
v a r  

ashift : sarray; 
begin 

temp:=abk:  
ashift := shiFt( a. 1.0): 
temp := temp + ashft l s; 
ashift := shift(a, -1.0); 
temp := temp + a s h a  s; 
ashlft := shiR(a. 0, 1); 
temp := temp + a s h a  l s; 
ashf i  := shiR(a. 0. -1); 
temp := temp + ashfft l s; 
a s h a  := shift(a, 1. -1); 
temp := temp + a s h a  s; 
ashift := shlRla, -1, 1); 
t a p  := temp + ashft l s: 
ashift := shlft(a. 1, 1): 
temp := temp + ashft s;  
ashif€ := shIft(a. -1. -1); 
temp := temp + ashft s; 

end; 

Program 1. Convolution Example. 

k := 8; 
s := -1; 
Section := 1; 
for (i = 1 to 1000) 

conv33(a,b.k.s) 
end. 

Program 2. Convolution--Two Stage 

a := 1; 

k := 8; 
s:= -1; 
section := 1; 
load-register-18-with 1000 
DO 17,18 TIMES instruction 

instruction1 
instruction2 

. . . 
LOOP instruction N 

Program 3. Convolution--Single Stage Method. 

The second example involves Program 4, the power 
factor routine [2]. There is considerably more code 
than convolution, yet it shares the same portability as 
convolution. 

The first few lines (the nested ifs) can be seen as 
initialization code. A normal variable, stage, must be 
checked before any instructions can be given to the 
SIMD machine. However, once the initial tests are 



Program Test(row~lndex.col~index); Therefore, this entire routine could reside on  a 
type microsequencer  connected di rec t ly  to  an S IMD 

p118 = Parallel Array[O..127.0.. 1271 of 0..255; m a c h i n e .  

iarray = parallel arraylo.. 127.0.. 1271 of 0..65535; 

procedure powergen(var power:pli8; var tn2, gamma, 
stage:lnteger: va r  id:pli8); 

v a r  k t k  : p118; 
twotoi, twotox : integer; 
1, x : integer: 

begin 
if stage = 1 then power := 0 

else be@ 
d stage = gamma then 

where Id >= tn2 do 
power := power + 1 

else 
begin 
x := gamma - stage; 
twotax := 1; 
fort:= 1 t o x d o  

twotax := twotax 2; 
k := id div t w o t w  
power := 0; 
twotoi := 2: 
twotoi := t n2  div twotoi; 
i := 1; 
while i c stage do begin 

tk := k mod twotoi; 
where (tk >= (twotoi div 2))  do 

power := power + r 
twotoi := twotoi 2 ;  
i : = i +  1; 
x := x div 2; 

end; 
end; 

end: 
end; 

Program 4. Power Factor Example. 

complete, it is possible to start executing the bulk of the 
code (in the case that stage 01 and stage o gamma). 

The first two lines simply do integer calculations. Then 
a FOR loop appears with a scalar multiplication inside. 
The FOR loop can be a DO loop, and the integer 
calculations are initialization code for any machine 
(although both could be done in one cycle on the 
proposed microsequencing control unit). Next there 
are more integer calculations followed by an array 
manipulation. A clever compiler (or  observant 
programmer) could mesh these instructions into an 
optimum piece of code executing in minimum time. A 
hierarchical controller system would still need to pass 
parameters from the high-level controller to the low- 
level even if the sequential code and parallel code were 
execu ted  concurrent ly  ( i .  a communica t ions  
overhead will always exist). Finally a WHILE statement 
appears that is  basically a FOR loop in disguise. The 
microsequencer could simply put a DO loop with a CBR 
(testing if i is zero or negative) in the first microcoded 
instruction. Other code inside the WHILE can be 
optimized in a similar fashion to that already presented. 

CAM PYRAMID COMPILER 

In an effort to implement the microcode paradigm, we 
developed a compiler that generates microcode from a 
high-level language with parallel data structures for 
the GAM Pyramid. The microcode executes on a 
microcode sequencer unit based on AMD 2900 chips and 
is connected directly to a pyramid architecture SIMD 
machine (the GAM Pyramid [3]). 

CONCLUSIONS 

Two algorithms were applied to the two major SIMD 
controller configurations and their program flow was 
examined. The results of this examination showed that 
the bulk of  an algorithm adapted to  an SIMD 
architecture can be executed on a microsequencing 
controller which is directly connected to the SIMD 
machine, thus eliminating the need for expensive 
and/or complicated in ter -communicat ions  hardware  
which would normally be used. This  means a 
microsequencer could execute large routines and even 
entire programs with little o r  no host interaction, 
leaving the host free to dd external 110, act as a user 
interface,  o r  solve unrelated problems while the 
microsequencer solves parallel problems using the 
SIMD machine. A compiler that generates microcode 
from a high-level language with parallel  da t a  
structures for the GAM Pyramid is  being used to 
demonstrate the feasibility of this approach. The 
microcode executes on a microcode sequencer unit 
which is directly connected to a pyramid architecture 
SIMD machine. At this time, however, the GAM 
pyramid has received an additional level (it now has six 
levels)  and the microsequencer  is  temporar i ly  
disconnected until the new interfaces are thoroughly 
tested.  

REFERENCES 

[ I ]  Theory of MPP Hardware  Operat ion.  Goodyear 
Aerospace Corporation, Akron, OH, 1983. 

[2] Reeves. Anthony P., and Gutierrez. Maria. "On 
Measuring the Performance of a Massively Parallel 
P rocesso r . "  P r o c e e d i n g s  o f  t h e  1988 
I n t e r n a t i o n a l  C o n f e r e n c e  o n  P a r a l l e l  
P r o c e s s i n g ,  1988. 

[3] Schaefer. D. H.. Ho, P., Boyd, J., Vallejos, C., "The CAM 
Pyramid." Pa ra l l e l  C o m p u t e r  Vis ion,  L. Uhr, Ed., 
Academic Press. Boston, 1987, pp. 15-42. 

The authors would like to thank Ping Ho of Science 
Applications Research. Lanham, MD for writing and 
benchmarking Program 1, the convolution example. 



ABSTRACT 

A MULTI-UYERED C-NETWORK FOR MASSIVELY PARALLEL COMPUTATION 

Teresa Haynes Rice 
East Tennessee State University 
Johnson City, TN 37614, USA 

Ratan K. Guha 
University of Central Florida 

Orlando, FL 32816, USA 

A new network design, the Multi-layered G- 
network, is proposed. The Multi-layered G- 
network is obtained by interconnecting copies of 
the G-network in parallel. The design is 
suitable for large interconnection networks and 
has the following desirable characteiistics: 
efficient routing, small number of links and 
simple connections. Moreover, the routing 
performance is not altered by a faulty link or 
node - an important consideration in any fault 
tolerant design. 

Keywords: G-network, Fault-tolerance, Speedup, 
Degree, Cycle, Subgraph. 

INTRODUCTION 

This paper presents the Multi-layered G-network 
obtained by interconnecting copies of the G- 
network (Ref. 1-2) in parallel. The design is 
suitable for large interconnection networks and 
has the following properties: efficient routing, 
small number of links, simple connections and a 
high level of fault tolerance. 

THE CONSTRUCTION 

Each layer of this network is a copy of the G- 
network where the 7 special nodes in copy i are 
labeled l i ,  2i, . . . ,  y . .  Here i ,  0 5 i 5 h-1, is 

the layer number. Between each pair of special 
nodes, there are two nodes of degree two adjacent 
to both of the special nodes. Each special node 
a. is connected to a Observe that the 

(i+l)mod h' 

nodes a O ,  al, . . . ,  ah-l induce a cycle subgraph. 

One layer of the Multi-layered G-network with 7 - 
4 is shown in Figure 1, with connections to 
other layers indicated by dotted lines. Each 

layers, giving a total of 2hrL-h7 links. There 

2 are h(7 -7) degree two nodes and h7 degree 27 
nodes. 

ROUTING AND FAULT-TOLERANT PROPERTIES 

The maximum number of routing steps (hops) 
required between any two nodes in the same layer 
is four since each layer is a G-network (Ref. 1 -  
2). This fact is independent of the number of 
processors in the network. 

Theorem 1 
The maximum number of hops required between any 
two nodes in the Multi-layered G-network is 
Lh/zJ +4. 
Proof 
In the worst case situation a source node can 
reach a special node in the same layer in one 
hop. From that special node it takes at most 
b/q hops to reach the layer containing the 
destination node. It then takes at most three 
additional hops to reach the destination node. . 
We note that the routing performance dependent 
only on the number of layers h. Given a fixed 
number of layers, h, the maximum number of 
routing steps required is constant. The 
following theorems demonstrate the network's 
fault tolerance by showing that this 
characteristic remains unchanged when any single 
link or node fails. 

Theorem 2 
Any single link can fail in the Multi-layered C -  
network and the maximum number of routing s t e p s  
required remains Lh/2J+4. 
Proof 
Every node can still reach a special node. If 
the faulty link has both its endnodes in the same 
layer, then an argument similar to the one in the 
proof to Theorem 1 yields the result. If the 
faulty link is between layers, then in the worst 
case situations routing between layers still 

2 
layer has r2 nodes and 27 -27 links. An 
additional 7h links are required to connect the ~ R E ~ D ~ N G  PAGE BLANK ** 



requires L1/21 hops and the combination of 
routing steps on both the source and destination 
layers total at most four. 8 

Theorem 3 
If any single node in the Multi-layered G-network 
fails, the maximum number of routing steps 
required for any two active nodes to communicate 
remains b/2J +4. 
Proof 
If a tiegr-c,e two node fails, each active node is 
either a special node or still has two links to 
special nodes, and each pair of special nodes on 
the same layer is still joined by at least one 
path of length two. If a special nodes fails, 
each active degree two node can still reach a 
special node in one hop and each pair of active 
special nodes on the same layer is still joined 
by two paths of length two. Hence in either case 
routing between any two active nodes can be 
accomplished as before. 

CONCLUDING REMARKS 

Using the appropriate choices for y and h and 
comparing the Multi-layered G-network to the 
popular interconnection networks: the Illiac 
Mesh, the Barrel Shifter and the Hypercube in 
terms of the number of links and the maximum 
number of routing steps between any pair of 
nodes, it is observed that the C-network has 
fewer links than each of the others while 
providing better routing. For example, when the 
number of nodes in the network is 4096 with y - 
32 and h = 4, the Multi-layered G-network has 
8064 links and requires at most six hops for any 
pair of nodes to communicate; whereas, the 
Illiac has 8192 links and requires at most 63 
hops, the Barrel Shifter has 47104 links and 
requires at most 6 hops, and the Hypercube has 
24576 links and requires at most 12 hops. Thus, 
in this example, the Multi-layered G-network has 
fewer links than each of the others and gives the 
speedups in routing performance over the Illiac, 
Barrel Shifter and Hypercube networks of 63/6, 
6/6, <~nd 12/6, respectively. (Note that the 
Multi-l'ivrred G-network requires at most four 
hops between any pair of nodes when h - 1.) In 
general, it can be shown that as the number of 
processors approaches infinity, the speedup of 
the G-network over each of the others and the 
difference in the number of links approaches 
inf inity. 

Moreover, we have shown that the Multi-layered G- 
network can withstand the occurrence of a faulty 
link or node and the maximum number of hops 
required between any pair of nodes remains 
unchanged. Recall that the maximum degree of 27 
is independent of the total number of processors. 
Hence the Multi-layered G-network possesses the 
following desirable properties: fault tolerance. 
low cost, fast routing, and simple connections 
with a maximum degree dependent only on the 

Figure 1. One layer of the Multi-layered G- 
network with i -  4. 

REFERENCES 

1. Rice, T. H., R. K. Guha, R. C. Brigham, and 
R. D. Dutton, "The G-network and Its Inherent 
Fault Tolerant Properties", Technical Report CS- 
TR-88-10, Department of Computer Science, 
University of Central Florida. 

2. Rice, T. H . ,  "On k-7-Insensitive Domination". 
Ph.D. dissertation, University of Central 
Florida. 1988. 

number of processors per layer 



A SEQUENCED HYPERCUBE TOPOLOGY FOR A MASSIVELY-PARALLEL 
DATABASE COMPUTER 

Naphtal; Riahe, Domn Tal, Qiang Li 

School of Computer Science 
Florida International University- 

The State University of Florida at  Miami 
University Park, Miami, Florida 33199 

Abstract 

The architecture of a massively parallel multi-processor 
and multi-disk database computer is presented. The inter- 
processor communication network has a hypercube topol- 
ogy. The architecture requires selection of linear ordering 
of the nodes of a network of processors. A method is de- 
veloped and presented here which can arrange the nodes 
in sequences efficient for management of data. Among the 
features of the produced sequences is that  the size of the 
sequence can grow as the size of the hypercube grows, with- 
out changing the existing sub-sequences. 
Keywords: Massively parallel architecture, Interprocessor 
network, Hypercube, Sequencing, Database computer. 

1. Introduction 

The  massively parallel database machines offer a way, 
perhaps the only way, to  meet the ever increasing demands 
of information processing. Most of the contemporary ap- 
proaches seek to achieve this goal by increasing the size of 
the processor, memory and disk, and also by employing a 
large number of processors. The primary purpose of doing 
so is t o  increase the parallel processing power and the paral- 
lel secondary storage accessing power. However, in the over- 
all structures of the typical systems, the processing units 
are one group, and the secondary storage units, possibly 
with some preprocessing power, are another. The process- 
ing unit group and the secondary storage group are con- 
nected by communication channels. The system's forma- 
tion is still "Processors-I/O Channels-Secondary Storage". 
The  traditional I f 0  channel bottleneck is still present. This 
problem remains no matter how many processors we add 
to the machine, because the throughput is dominated by 
the relatively poor performance of the disk and channel. 
One can see the analogy between the processor/disk split 
and the processor/memory split that  leads to  the von Neu- 
mann bottleneck. 

This research has been supported in part by a grant from the 
Florida High Technology and Industry Council. 

These shortcomings have motivated the proposal of a 
new architectural concept called Linear-throughput Seman- 
tic Database Machine (LSDM). We discuss here only those 
concepts of LSDM relevant to  this paper, and more details 
can be found in (71. LSDM consists of thousands proces- 
sors coupled with disks. Each processor-disk unit consists 
of one or a few fairly powerful processors, a dedicated mem- 
ory module and a small capacity disk, e.g., a 20 megabyte 
disk. The processor-disk units are linked into a tightly cou- 
pled network. 

The processor-disk units comprising the machine work 
simultaneously on different segments of the same query and 
on concurrent queries as well, offering two levels of paral- 
lelism. The hosts receive streams of users' requests. Each 
request is dispatched to the processor having the best con- 
trol of the relevant fragments of the database. The pro- 
cessor then decomposes the request into smaller operations 
and communicates them to subcontracting processors. The  
processors related t o  a request can communicate with each 
other to  get the data  necessary to  carry out the operations 
concurrently. With the completion of a request, the results 
are sent to  the host nodes and eventually back to the users. 

Our database machine uses the Semantic Binary 
Database hlodel [5 ] .  The Semantic Binary Database Model 
represents information of an application's world as a collec- 
tion of elementary facts of two types: unary facts catego- 
rizing objects of the real world and binary facts establish- 
ing relationships of various kinds between pairs of objects. 
The purpose of the model is to provide a simple natural 
data-independent flexible and non-redundant specification 
of information. 

In order to fully utilize the parallel processing power 
of the proposed architecture, it is essential to  have an ap- 
propriate data  structure so that the processor-disk units 
have balanced load. In our implementation of the Seman- 
tic Binary Database Model, we store the entire database, 
including all indexing information, in one logical file. (The 
file is organized in a B-tree like structure.) The file is par- 
titioned into segments of the size that can be stored in 
small disks. There is no logical difference between one seg- 
ment and another. This important property allows us to  



Figure 1: Hypercubes 

partition the database based solely on the consideration 
of maximum parallelism. In addition, the data  is stored 
with some small but intelligent duplications which greatly 
increase the locality of data  accessing[6]. This implies a 
much lower da ta  traffic between the processor-disk units, 
resulting in a higher degree of parallelism. 

The  n-cube topology has been chosen to connect the 
network. The n-cube [2,4,1,9] is defined as  follows: Each of 
the 2" nodes is labeled from 0 to  2"-' by a unique binary 
string of length n. Two nodes are connected iff they differ 
in exactly one bit position. Figure 1 shows a 3-dimensional 
and a 4-dimensional hypercube. 

2. The sequencing problem 

2.1 D a t a b a s e  m a c h i n e  sequenc ing  p r o b l e m  

An essential problem is how to map a linear file onto the 
hypercube topology which is non-linear. Practical consid- 
erations, such as heavy data  flow between consecutive file 
fragments, dictate that any two nodes of the network con- 
taining consecutive file fragments should be directly con- 
nected in the network. Therefore, we need a Hamiltonian 
path or loop (i.e. a path going through every node exactly 
once) in the hypercube so that the i-th partition of the file 
can be associated with the i - th  node of the path. This is our 
Requirement I .  In addition, when more than one database 
is stored in the hypercube architecture in an overlapped 
fashion (i.e., each database is partitioned among all the 
nodes), the databases should be stored in non-coinciding 
paths to  avoid unbalanced data  traffic load. Therefore, 
many paths are needed. 

There are many sequences that satisfy Requirement I .  
At least one such sequence is guaranteed to exist because 
every hypercube has a Hamiltonian path since the hyper- 
cube satisfies the known criterion for Hamiltonian cycle: 
the graph does not contain the so-called theta-subgraph. 
As we shall show later, there are very many sequences which 
satisfy Requirement I. We shall describe another require- 
ment in term of sub-hypercubes. 

Let H be a hypercube of dimension d. Let f be a part of 
a bit-string (binary number) of length d, i.e. for some posi- 
tions in the bit-string it assigns bit values. For example, f 

gives the second and the fifth bits of an 8-dimensional hy- 
percube node as follows: ?0??1???, where ? stands for 0 
or 1. The sub-hypercube defined by f is the set of all nodes 
of H having the pattern f .  There are as many nodes in the 
sub-hypercube as  there are the possibilities to  fill the ques- 
tion marks. Notice, that  the nodes can be relabeled so that  
the sub-hypercube would itself be a hypercube. Its dimen- 
sion is the number of question marks in f .  For example, 
the nodes 

form a 3-subcube for f =O??O? in the 5-cube; for f=OO??? 
the sub-hypercube is: 

Now we shall define a hierarchy of sub-hypercubes. Con- 
sider, for example the hierarchy of sub-hypercubes of the 
3-cube as defined by the tree of f-patterns in Figure 2. 

In the above example, we first varied bit #2, then #1, 
then #3, and received a hierarchy of sub-hypercubes con- 
sisting of 1 cube, 2 square, 4 segments, and 8 points. There 
are as many such hierarchical families of sub-hypercubes as 
there are orders in which to vary the bits. A more formal 
definition follows. 

Let p be a permutation of position numbers from 1 to 
d. E.g., p = (2,1,3) in the above example. The hier- 
archical family specified by p is the set of the following 

- I cube 

R - 2 squares 

Segments 

po~nts 

Figure 2: A Sub-hypercube Hierarchy 

sub-hypercubes of dimensions 1 to  d. For every D, for 
every f-pattern assigning constant bit values to positions 
p[l],p[2], ...,p[ d - Dl, the sub-hypercube specified by f is in 
the family. E.g., for the above example, the family consists 
of: 

r the 2-dimensional sub-hypercubes specified by the f -  
patterns assigning constant bits to  position p[ l ]  = 2, 
i.e. to  patterns ?O? and ?I?; 

r the 1-dimensional sub-hypercubes specified by the f- 
patterns assigning constant bits to positions p j l ]  = 2 
and p[2] = 1 ,  i.e. to  patterns OO?, lo?, Ol?, and lo?; 



and so forth. 

Requirement L of the sequence is that when a hierarchi- 
cal family of sub-hypercubes is given, every sub-hypercube 
of the family should comprise a contiguous sub-sequence. 
This requirement has several purposes. First, the hyper- 
cube can be expanded without changing the existing logi- 
cal sequence. Second, since a sub-hypercube can be easily 
identified in the sequence as a consecutive sub-sequence, 
data  backup, trouble shooting and module replacement are 
much easier. Third, because of the simple mapping between 
the sub-hypercubes and the sequence, the connections be- 
tween the positions in the sequence are expected to follow 
a systematic pattern, which will facilitate the analysis and 
simulation of the system. 

There can be many sequences, depending on which sub- 
hypercubes are required to  be consecutive in the sequence. 
For example, for the hierarchical family with p = (1,2,3), 
the sequence is: 

for the family with p = (2,3, I ) ,  the sequence is: 

In the first sequence, the nodes of the square 000 001 011 
010 are consecutive, and in the second they are not. It is 
the opposite for the square 000 001 101 100. ( A  square is 
a 2-dimensional sub-hypercube.) 

2.2 G e n e r a l i z a t i o n  o f  t h e  sequenc ing  p r o b l e m  

The sequencing problem in a hypercube has more gen- 
eral applications. Many applications need to map sequen- 

it is adapted t o  our hypercube problem, we would have Re- 
quirement 1 satisfied, as well as a portion of Requtrement 2. 
The Gray Code would be consecutive for only one hierar- 
chical family of sub-hypercubes, while we need to be able to 
have an arbitrary family as a parameter to  sequencing. We 
call the family which happens to  be consecutive in the Gray 
Code, "The natural family". For 5-dimensional hypercube, 
the natural family is specified by p = (1,2,3,4,5).  As an- 
other example, the followings are two of the sequences gen- 
erated for a 4-cube with p = (1 ,2 ,3 ,4 )  and p = (3 ,1 ,4 ,2 ) :  

In the above sequences, every 4 nodes form a 2-cube, and 
every 8 nodes form a 3-cube. 

We have solved the general case of the problem. Our 
sequencing algorithm follou.5. The proof of its correctness 
is in 181. 

A parameter to the algorithm is an array p of position 
numbers which is a specification of a hierarchical family of 
sub-hypercubes. 

We shall describe our algorithm in terms of a binary 
tree T. The tree T has the following properties. It is a 

full binary tree; each node of T has a label. The root has 
label "1". For any node, its label is greater by 1 than that 

tial data  structures into a hypercube. Some applications, 
involve sequential operations between nodes of a hyper- && FIgure 3a 
cube, e.g., scanning. Sometimes, several logical sequences The Tree For 

are needed a t  the same time. a 4-cube 

The following is a general definition of the requirements. 
Let H be a d-dimensional hypercube. Let p be a spec- 
ification of a hierarchical family of sub-hypercubes. Let 

, . , , .  L = 2d - 1. A sequence N(O), N(1), ... , N(L)  of all the , . . . . . . .  , , , ! , , : : : ; :  . . , . , .  , . . . . . '  , . . . .  . , .  , . . . . . . .  . . .  : : : : : :  . . . .  : nodes of H is sought, satisfying: + i i + i i i , + i + , i , i i  , . . . . . .  

l . F o r a l l i i n O . . L - l , N ( i ) a n d N ( i + l ) a r e a d -  - O o s z r  2 :  2 O = "  8 ; ; -  ' 8 Ftgure3b 
jacent in H. Also, N(L) is adjacent to  N(0). 0 - N  L 2 2 2 I n  sequence 

Generated For I i ~ ~ ~ ~ F - - - "  
2. For every sub-hypercube S of dimension D in - - - - - - - - - - - - - - -  p*(3.1.4.2) 

W O N - -  

the family specified by p, for some i, the sub- o ~ ~ a a ~ % 2 ~ z ~ z ~ z ~ z  - ~ n x y ~ n V - v n v ~ ~ y o  
sequence N ( i ) ,  N(i  + I ) ,  ..., N(i  + 2D-') is the 

n n  n n ~ g ~ % 4 g g ~ = ~ =  - - - -  
sub-hypercube S. 

of its parent. All the leaves have the label "d", where d is 
the dimension of the hypercube. All the nodes at the same 

3. The sequencing method level have equal labels. Figure 3a shows an example of the 
tree T for d = 4. 

A problem equivalent to a subset o i  our problem has We will use the 2d - 1 nodes of the tree, plus one ad- 
been solved in the Control Theory. That  solution is known ditional node, to  generate the 2d nodes of the hypercube 
as the Gray Code 131 for sequencing of binary numbers. If sequence. In the algorithm, a variable N is used. The 



initial value of N is the first binary number, N(O), in the 
sequence to be generated. The rest of the binary numbers 
of the hypercube are generated while traversing T in the 
inorder order. When a node of T is visited, one bit of the 
contents of N is flipped. If the label of the tree node is a 
number a, then the bit position to be flipped is pli]. Every 
change in the value of N generates the next binary number 
in the output sequence. The bits are numbered from left to  
right. For example, if N = 00011,p = (1,3,2,4,5),i  = 3, 
then p(i] = 2; we flip bit #2 to  receive the next N = 01011. 
Since the output sequence will be a cycle, the first binary 
number N(0) can be an arbitrary node of the hypercube. 

1. N := 0 (Let 0, i.e. a string of d zero-bits, be 
the first number in the sequence, without loss of 
generality.) 

2. repeat 
(a)  Get the next node from T according to 

the inorder traversal. Let i be the label 
of the node. 

(b )  N := N XOR 2d-p[i1 (flip the p[i]-th bit 
of N to get the next hypercube node 
number in the sequence). 

until all the nodes of the tree have been tra- 
versed. 

Ezample. Using the tree of Figure 3a, the algorithm gener- 
ates the sequence shown in Figure 3b for the sub-hypercube 

family defined by p = (3,1,4,2) .  
Our program implementing thr  algorithm does not 

physically create a tree, but rather performs analytical cal- 
culation. The algorithm is linear in the number of nodes of 
the hypercube. 

4. Discussion 

The  proposed system can lend itself to  a stand alone 
database computer as well as a backend connected to hosts. 
Several processors can be identified as the hosts or inter- 
faces to  user hosts. 

One of the primary goals of our architecture is to 
achieve a high throughput and approximate linearity of 
the throughput in the degree of parallelism. The degree 
of parallelism is the number of processor-disk units. The 
throughput is measured as the average number of transac- 
tions per time unit. The linearity is to  be achieved for a 

typical transaction load comprised of a large number of rela- 
tively small, localizable queries and transactions. Under the 
current design (several thousands of processor-disk units), 
a conservative estimation of the throughput is more than 
3000 simple queries per second per thousand processor-disk 
units, provided that the host interfaces have the same or 
higher throughput. 

Currently, we are implementing our architecture on a 
network of 32-bit INhIOS transputers and 20 megabyte 

Winchester disks. 

Acknowledgement 

The  authors gratefully acknowledge the advice of David 
Barton, Nagarajan Prabhakaran, Istvan Ereny. 

References 

[ I ]  S. Heller. Directed Cube Network: A Practical Investi- 
gation. Technical Report 253, MIT, 1985. 

[2] K. Hwang and F. Briggs. Computer Architecture and 
Parallel Processing. McGraw-Hill, 1984. 

[3] R.M. Klein. Digital Computer Design, pages 33-34. 
Prentice-Hall, Inc., Englewood Cliffs, NJ., 1977. 

[4] F.P. Preparata and J .  Vuillemin. The cube-connected 
cycles: a versatile network for parallel computation. 
Communications of the ACM, 24(5):300-309, May 1981. 

151 N.  Rishe. Database Design Fundamentals: A Structured 
Introduction to Databaae and a Structured Database De- 
sign Methodology. Prentice-Hall, Englewood Cliffs, NJ, 
1988. 

[6] N. Rishe. A File Structure for Semantic Database. 
Technical Report SCS T R  88-001, Florida International 

University, 1988. 

[7] N. Rishe, D. Tal, and Q. Li. The architecture for a 
massively parallel database machine. The Euromicro 
Journal, Aug 1988. In press. 

(8) Naphtali Rishe, Doron Tal, and Qiang Li. A Sequenced 
Hypercube Topology for a Multi-disk Multi-procesaor 
Database Computer. Technical Report 88-006, Florida 
International University, Miami, FL., 1988. 

[9] L.G. Valiant and G.J. Brebner. Universal schemes for 
~ a r a l l e l  communication. In STOC, ACM Conference 
Proceedings, Milwaukee, 1981. 



AN ARCHITECTURE FOR THE IMPLEMENTATION OF A 
PARALLEL MARKER PROPAGATION SYSTEM 

Howard Schneider 
Department of Psychiatry 

Cite' de la Sante' de Lava1 Hospital 
Laval, Quebec H7M 3L9 Canada 

ABSTRACT 

An architecture is proposed which allows the con- 
struction of massively parallel (i.e., multi-billion 
node, multi-trillion linked) marker propagation sys- 
tems. The nodes used in this architecture allow the 
best intersection of markers to be found by compar- 
ing the contents of the INTERSECTION REGIS- 
TER with the descending values on the CONTROL 
WORD BUS. The physical implementation consists 
of a silicon structure which is composed of 20,000 
functional planes of silicon-based circuitry, inter- 
connected by 5 billion vertical interconnecting 
wires. Any node can be linked directly with any 
other node. 

INTRODUCTION 

The parallel marker propagation system is an ex- 
tremely elegant and powerful means of parallel 
computation. The parallel marker propagation sys- 
tem, also known as the semantic network, allows 
knowledge to be represented in such a way that  a 
data base can be quickly searched for items with 
desired qualities regardless of the size of the data 
base. Through the process of spreading activation 
an  intersection of markers quickly occurs a t  a node 
corresponding to the inputs presented to the sys- 
tem. 

A portion of a parallel marker propagation system 
is  shown in Figure 1. In this simplified example, 
the preprocessed outputs of an  image detector are 
attached to the parallel marker propagation sys- 
tem. In this illustration the image detector is fo- 
cused on a simple screw. The features of this image 
activate nodes in the parallel marker propagation 

system which correspond to these features. Mark- 
ers are propagated from these nodes resulting in a 
better intersection a t  the node corresponding to the 
simple, single slot screw than a t  the nodes corre- 
sponding to the Phillips screw or the worm reduc- 
tion gear. A node which reflects the context of the 
situation, in this case building a certain gadget, is 
also activated and markers are propagated from it. 
As a result even better intersections occur a t  the 
nodes corresponding to "put in upper comer" and 
"turn." Not only has the parallel marker propaga- 
tion system allowed the rapid identification of the 
image viewed by the image detector, but i t  has 
quickly retrieved the appropriate information that  
the object in question should be put in the upper 
corner of the gadget being built and should be 
turned. 

Since described by Quillian (1986), parallel marker 
propagation systems have been developed further 
by many researchers. Readily available references 
include Brachman (1979), Fahlman (1979), and 
Touretzky (1986). However, very little work has ac- 
tually been done on ways of actually implementing 
large-scale parallel marker propagation systems. 
Hillis (1985) writes that  "the Connection Machine 
architecture was originally developed to implement 
the marker-propagation programs for retrieving 
data From semantic networks (Fahlman 1979)." 
While the Connection Machine architecture does al- 
low interconnection of processors (i.e., "nodes") to 
one another, i t  greatly sacrifices efficiency for flexi- 
bility. The computational power of the individual 
processors in the Connection Machine vastly ex- 
ceeds the requirements of the nodes in almost any 
type of parallel marker propagation system. As 
well, one would optimally like to have direct con- 
nections between nodes instead of the indirect con- 
nections established through the intercommunica- 
tions network of the Connection Machine. 



Figure 1. Parallel Marker Propagation System Recognizing a Visual Object 

vidc~, 
f e n t u n  
r21np* u (:ONNECTION hlATRtX 

DUFFER - 
/ snrwdrivsr 
\ 

CONTEXT screw - 
metal 

ARCHITECTURE 

This paper describes an architecture which imple- 
ments a parallel marker propagation system with 
several billion nodes and several trillion connec- 
tions between the nodes. The reason in describing 
such a futuristic architecture is not to say that this 
is the way a massively parallel marker propagation 
system will one day be implemented, but to point 
out that such a massively parallel system has the 
potential of actually being built. I have long been 
interested in massively parallel (i.e., multi-billion 
node) marker propagation systems as both a means 
of explaining certain brain functions and as the ba- 
sis of a machine which will possess many of the 
skills humans have (Schneider-1987). As such, it is 
important to show that such massively parallel sys- 
tems are indeed realizable. 

The internal structure of the nodes used in the ar- 
chitecture being described is shown in Figure 2. 
The node corresponding to the best intersection of 
markers can be found by comparing the contents of 
the INTERSECTION REGISTER with descending 
values on the CONTROL WORD BUS while keep- 
ing the IF CONTROL WORD MATCHES THE IN- 
TERSECTION REGISTER THEN SET THE COM- 
PARE REGISTER line high (i.e., true). In such a 
scheme the first node to set the COMPARE REGIS- 
TER represents the node with the highest value in 
the INTERSECTION REGISTER, i.e., the node cor- 
responding to the best intersection of markers. If 
for example, the IF COMPARE REGISTER IS SET 
THEN OUTPUT A PULSE FROM THE NODE line 
is high, propagation of markers can then originate 
from this node. 



Figure 2. Node Structure 

D17S TO/FROM NODE ( I S )  

NODE NODE (01;T) 

- AIITOMATIC' 
CLOCK- TEST 

CIRCUITRY 
for LINK 
FORMATION 

PULSE DRIVER 
CONTROL P-Register 

break contact 4 
\ - I - - AUTONOMIC 

CONTROL - - 4 

- COMPARE Register 

- 
- SET R 

I I I I I l l ! l -  
PERMANENT R ~ , ~ i s t r r  
: ~morphous 
&icon switches) 

- CONTROL WORD 0 1  
4 COMPAnE REGISTER I S  S E T 4  I 

) IF CONTROL WORD MATCHES THE INTERSECTION REGISTER -1 
THEN SET THE COMPARE REGISTER I * IF THE COMPARE REGISTER IS SET THEN OUTPI!T A PULSE 

FROM THE NODE 7 I 
rn IF THE COMPARE REGISTER IS SET THEN WRITE CONTROL 

WORD INTO THE PERMANENT REGISTER -i 
) IF CONTROL WORD MATCHES THE PERMANENT REGISTER- 

THEN SET THE COMPARE REGISTER U 
PHYSICAL IMPLEMENTATION 

The physical implementation of the architecture is 
shown in Figure 3. The silicon structure shown in 
Figure 3a provides the several hundred meters 
squared of silicon-based circuitry required to imple- 
ment a system with five billion nodes and five tril- 
lion links. The structure is composed of twenty 
thousand planes, the geometric term notwithstand- 
ing, of functional silicon-based circuitry. These 
planes are connected by five billion vertical inter- 
connecting wires running the height to the struc- 
ture thus allowing any node to be linked to any oth- 
er node. Most of the surface area on each plane is 
used for wiring and for linking nodes. By applying a 
voltage somewhat higher than that used to propa- 
gate markers the insulating amorphous silicon 
layer between the intersection of two selected wires 

internal bus 
k gates for 

/ performing 
COMPARE 
operations 

is nonreversibly transformed into conducting crys- 
talline silicon thereby linking the two wires. 

Although the technology to produce wafer-scale sili- 
con circuitry connected in the third dimension is 
only in its infancy, there is much commercial incen- 
tive to believe that the technology to produce a 
working silicon structure as shown in Figure 3 will 
exist within the next decade. Metal-organic chemi- 
cal vapor deposition and molecular beam epitaxy 
are two currently available technologies which in 
conjunction with other integrated circuit fabrica- 
tion technologies allow one to build up layers of 
functional planes. A structure could be built up 
whereby planes of silicon circuitry are separated by 
insulating planes. By etching down to the layer be- 
low or by preventing deposition of the insulating 
plane in certain predetermined regions of each 



plane and depositing a metal in this region, vertical 
interconnection wires could link the entire struc- 
ture. I t  is interesting to note that  by using a molec- 
ular beam epitaxy process, integrated circuits with 
over two thousand layers have already been suc- 
cessfully constructed by Bell Laboratories (1986). 

Interspersed among the planes of functional silicon 
circuitry are designated autonomic planes. The sili- 
con structure is a heterogeneous substance com- 
posed of materials with different temperature coef- 
ficients. Not only is i t  necessary to remove the 
excess heat produced so that  no part of the struc- 
ture is damaged by an excessive temperature, but i t  
is also necessary to remove the heat in a fashion 
such that the temperature gradients which may 

arise are tolerable ones. One function of the auto- 
nomic planes is to control such heat production and 
removal. These planes also serve to monitor the 
control bus going to every node and will disconnect 
a group of nodes from the bus should a problem be 
detected. This prevents, for example, a defective 
grounded bus line from rendering the entire system 
nonfunctional. The autonomic planes serve numer- 
ous other functions which allow successful opera- 
tion of the silicon structure shown in Figure 3. For 
example, long lengths of vertical interconnecting 
wires less than a micron apart will induce false sig- 
nals in each other. Thus, a t  every autonomic plane 
the positions of the wires relative to each other are 
switched. 

Figure 3. Physical Implementation of the Architecture 



In summary, an  architecture is proposed here 
which allows the construction of massively parallel 
(i.e., multi-billion node, multi-trillion linked) mark- 
er  propagation systems. 

REFERENCES 

Bell Laboratories (1986) The World's Fastest Semi- 
conductor Built From the Atoms Up, Technology 
Review 89(8):2&21. 

Brachman, R.J. (1979) On the Epistemological Stat- 
us of Semantic Networks. In Findler (ed.) Associa- 
tive Networks, New York: Academic Press, pp. 3-50. 

Fahlman, S.E. (1979) NETL: A System for Repre- 
senting and Using Real-World Knowledge, Cam- 
bridge: MIT Press. 

Hillis, W.D. (1985) The Connection Machine, Cam- 
bridge: MIT Press. 

Quillian, M.R. (1968) Semantic Memory. In Minsky 
(ed.) Semantic Information Processing, Cambridge: 
MIT Press. 

Schneider, H. (1987) Simulation of Parallel Marker 
Propagation Systems, Pmeedings of the 1987 Sum- 
mer Computer Simulation Conference, pp. 674-680, 
San Diego, CA: Society for Computer Simulation. 

Touretzky, D. (1986) The Mathematics of Inheri- 
tance Systems, Los Altos, CA: Morgan Kaufmann. 



LN-TREE: A FAULT-TOLERANT TaEE AR- 

K. Y, Sritlivas~ and A. K. Sood 

Dqmment Of Computer Sciawr and E q p m q ,  Univtnity Of Toledo 
DqmmartOfComplterSci~,GmrgeUaoonUmvcrsity 

Tree shucmm have been widely used in the design of disoibuted 
systans. One distinct advantage of the tree architamre is the O(1ogN) 
sp&d of information exchange bctween any two nodcs of an N node 
system. Further, the tne architectures can naturally map several 
important class of problans that can be described as divideand- 
conquer algorithms. In this paper we pramt the analysis and dcsign of 
a highly reliable tree structure; the LN-tree. Tht LN-tree is fonned by 
augmenting the simplex binary tree with redundant nodes and links. 
?he reliability of the pmposed stmcme is evaluated and compared 
with previously proposed augmented tree architaxum. The results of 
comparison show that the LN-tree is. more rdiable than the ail% 
fault-tolerant tree shuchrres. 

Keywords: Fault-Tolerance, Reliability, Hierarchical Archi-. 

A tree by &finition is a minimally axurated graph. Although the tree 
can naturaUy map several important clars of problems, it is susceptible 
to single node or link fail-. For instana, the failure of a single node 
or a link may invalidate the operation of the whole tree. Chtqueatly, 
several mearchem have addread the problem of providing redundancy 
to the basic tree in terms of extra links and nods with a view to 
increasing the fault-tolerance of the basic tree. Two basic approaches 
have bem proposed in the literatme. The two approaches differ in 
t m  of what constitutes an acaptable I d  of performance in the 
evmt of faults. Some of the pioneering work in the design of fault- 
tolerant tree shuchrres has been done by Hayes [Hay 761. Thc 
following ddimtions allow us to fomally desaibe the two approscbes 
pxwmtcd in the literature for the design of fault-tolerant tm 
structures. Without loss of pcmhty, we mtcict faults to node 
failures. 

Let Sbethesystemgraph. A k-faultFinSisthcranwalofk nodes{ 

SF is ccmeckd. Undn thc above Minition of fault- tderaoct, it is 
paasible to dcsign fault-tokmt trct arwhma d d y  !bmugb the 
a c k l i t i o n o f r c d u o d a n t l i n h r t o t k ~ p l a t r e e ~ . T h i s ~  
permits ~~ degradation in the event of faults. Tbc gahm is 
colrsidcrcd open or repairable. H u m ,  performance ckgdatim is 
allowed during periods of outages (wde failures). Under the abavc 
amumptions, a temporary dqdation in pcrfamana is conaidered 
acceptable as long as the reliability of the complete tree ranains high. 

In the second approach pqmcd by Hayes [Hay 761, a more strinpt 
mnstraint is placed on sF for S to be C&M fault-tolerant with 
rcapca to S O .  In this approach it is assumed that S is k-fault- tolaaat 
with respect to SO if, for every k-fault in S, the graph SF has a 
subgraph isomorphic to S O .  Here the objective is to prame the 
original tree structure fully, in spite of faults: by ~ ~ n g  the tm 
with the standby nodes and links. At least theorcfically this that 
the overall system pcrfonnaoa suflers no degdation in the cvmt of 
faults. ?he chid concern of this design approach is augmenting the 
basic tree structure for fault-tolerance while k+ng the m n n k  of 
redundant nodes and links to a minimum for the required l m l  of 
fault-tolerance. Hayes [Hay 761 first posed the above problan and 
proposed an algorithm for gamating optimal k-fault-tolerant structlrr*i 
for a dacs of symmetrical hierarchical tms. 'lhe work of Hayes was 
cxtmdcd by Kwan et al, [Kwan 811. 7he algorithm proposed by Kwan 
et al, is not only optimal with resped to the number of d m d a n t  
nodes and links, but also with re- to the fan-in of the nods. 

Raghavendra et al, [Rag 831 have pmposcd two a u g m d  cI& 
stmctum neither of which is optimal in the ~cnsc dcdined by Hayes. 
Both schema can tolaate multiple faults, as long as the faults ocna in 
diffexmt parts of the tree. In the first scheme propoeed, there is a sjmn 
node for each level &.the tree. This structure can tderate up to m node 
failurs (for a tree of level m) as long as each l d  has no more than 
om node failure. We shall refer to this tree as the RAEctree. 'lhe 
second scheme pupmed by qhavcndra et al, [Rag 831 is an extagion 
of the firat schane. In this schane a spare node is providcd for every 2' 
nodes for some value of i. 'Ibcrc is a variety of schcrnes paasible 
dcpcnding upon the value of i chosen (the value of i may be diffmnt 
for  cad^ level of the tree). Harsan et al, [Has 861 have proposed a 
modular fault-tolerant binary tree structure. Tbc approach uses modular 
fault-tolerant building blocks to wmtmct the wmplete bmry we. 
Each module is a onefault-tolerant building Mock which consti- a 
threenodetwolcvel~forthecompletebinarytree. Inthispaper 
an will refer to this tne as the moduletree. 

xlq2.. ... ~ k } * ~ . M l i n k s c a n c m d t o t b e a e n o d c s a L  I,thispapaweprcscntthedesignandd@Sofa-fault-dm 
removed. ' n e  Wting syJtw graph - f~d@ will be l ho td  by m; the L N - m .  The LN-tree is formed by augmenting the 

simplex binary tree with rcdmdmt links and nodes. Thc M-tree 
maintains a rigid tne s t N c h n t  in the cant of faults. In the following 
eection an rneaent the a r c h i m  of the LN-trct. In section 3 we 
pra#nt the kability anal@s for the pmpod architcdum. Finally, we 

A simplex s y k m  SO is a non-redundant systrm that can not tolerate 
present dusiorrs in 4, 

any faults. 

In the first approach [Des 781, [Hor 811, [Grey&1], it is aasumcd that S 
is k-fault-tolerant with respect to SO if, for mry k-fault in S, the graph 

PRECEDING PAGE BLANK NOT FILMED 



2. DESCRIPIlON OF THE TOPOLOGY 

In~s&onwcproposcaschaneforaulpnmtingthesimplatree 
with rcdrmdant nods and links. We will refer to the propwed 
d t e c r u r r  as the LN-tree (tree with redundsnt l ids  and oodcs). 
Coaddcr a simplex binary tree of m levds, m>l .  Obsem that each 
I d  i (i>l) of the simpla tree can bc partitioned into 2'-' putitions 
each having two 6. in the pmpascd architcchm &  ad^ pair of 
wdes is replaced by a fault-tolerant module. 'Ihc strudure of a IS Dode 
LN-tree is shown in Fig. 1. Each fault tolerant module comb of three 
nods and the required switching circuitry to dfcd d g u r a t i o n  in 
the e ~ l t  of faults. The struchne of the proposed fault-tolerant module 
is ptacnted in Fig. 2. Each fault-tolerant moduk has two inpd and 
forrroutput l inks .AUl inksarcagnrmcdtobe~ .  Atanygivcn 
time only two of the thrcc wdes of the module arc adivc. Tbc two 
i n p a l i n c s t o t h c m o d u l e ~ s w i t c h t d t o t h c d y a c t i w ~  
through a 2x3 cnxs bar switch, NW1. Tbc six out* of the three 
wdes are switched thrmgb a 6x4 aoss bar switch (NW2) to the 
outputofthemodule.BothNWlandNW2are~Ucdbyoneof 
the active nodes. The three nodcs are also cormected to a diagmntic 
bus. A v i d  token ring is BU up on the diagnontic bus to rupport 
distributed sdf  diagnosis. At any given time the highest numbered 
t d v c  nodc in the module is the module contrdler (nodc having conad 
aver the switching networks NWl and NW2). 

In a hierarchical systean such as the tree. it is xasonable to apea that 
the mp1cxity of nodcs in cfiffcnnt lnda of the tree will bc differart. 
H-, we fed that the partitioning pmpoaed in the dcsip of LN-tree 
is natural. Each fault-tolerant module of the LN-tree can bc 
implemented as a VLSI eystcm madc up of three homogaraxe 
processing elements and the d a t e d  d g r n a t i o n  cinxitry. 
Compare this to the partitioning d in the moduletree, whert each 
fault-tdaam module is made up of nods beloaging to two adjacent 
lcvds of the tree along with the mmiated mmfiguration circuitry. If 
wdes of different lmls  arc log~cally diffacat, the partitioning 
proposed in the design of moduletree may Itad to VLSI 
implcmmtation problans. Another advantsge of the proposed sheme 
isthatthemadmumdtgracofanynodeis3(~dcnngonlythcdata 
links conncdcdto each nodt). This d e g r e e o f d v i t y i n  our 
h e  is much lowcr than the moduletree ~~IOEIC maximum is 
5 (the maximum degree in the RAE-tree is 7). 

Tbe remmdant aodes in the LN-tree arc not active unless there is a 
fault. Tbe propascd shumm can tolerate multiple node failurcs as 
loogasthcfailcdnodtsklongtodiffmatpartsofthe~. Further, 
the number of node failurea a i d  can tolerate dcpcnds on the I d  
oumbtr. For m e ,  lnda ant and two of thc LN-tree can each 
tokratt a nodc failure. L e d  i of the LN-tree, 2<i Sm, can tdaatc at 
meet 2'-' node faiiurcs (d module in I m l  i can tolerate a fault). As 
a U t h e ~ t n o d e s ~ u a c d i n ~ m o d e , t h e p a f ~  of 
the LN-tree irr same as that of the simplex binary tree. 

3. RELIABmTY ANALYSIS 

In this &on we evaluate the &ability of the LN-tree. We perform 
reliability analysis under the following assumptions: 

1. The rdiability of linlcr is large compared to the reliability of 
nodes. Further, it is ammcd that the rdiability of a fault- 
tolaant module is a function of node reliabilities only. 

2. The stnrchve under faults is coasidered functional if the 
functional nodcs can be reconfigured to maintain a rigid tnt 
mumre of specified depth. 

S i n a k v e l o n e c m ~ a ~ n o d t f a i h a c , & r e l i a b i l i t y d k v d  
one, R ,  is givcn by: 

w k e  R is the reliability of a angle no&. If A is the failure rate of a 
a&, ttwn R =e-''. W d e r  l m l  i, l < f  sm,  of the LN-tree. Lerd i 
d the LN-tree is madt up of 2'-2 fault-tolaant modules. If RuoDvrr 
is the rdiability of a fault-tdcsant module, then, the debility of I d  
iof t f i tLN-treeisgi~lby 

an & of the 2'-' fault-tolerant moduks of Levd i (i>l) mut  &vt 
for levd i to awivc. Each fault-tolerant modulc has three noda and 
can tolerate a angle nodc failure. H-, thc &ability of a fault- 
tdaaat module, RuaWLE is given by the f m  @on: 

Sina cach l m l  of the syatan has to Blwive for the d r e  systrm to 
survive, wc have 

I R'+ZR (1-A) fo r  r l  

a 
Rsys 1 ( R 2 + 2 R ( 1 - ~ ) ~  n Iti for  m.1 

i - 2  

L t h e ~ a w J y i S m b a v e u R l m e d p a f a c t ~ . I f t h e  
probability of r a m a y  .fta tbe occmuux of a fault is C, 
theLlyBtanrdiabilityrmderimpafcdcowagccoaditionsisgivenby 

r R2+2'C(1-R) f o r  r l  

rvha t~k  iathcytanrdiability I m Q i m p a f c c t ~ o o n d i t i o n s  
a n d ~ f  isthedabili  o f i cvd i , i> l  oftbcLN-bdtundaimpcrfcd ' 8 ' .  oovessgc conditions. Ri is g~ven by 

wfien is the rdiability of a fault-tolerant module t d e r  
imperfect coverage coditions and is given by 

3. Ihe failure procas (of nodcs) is a Poiason procas. 



We corrridcr a four levd LN-tree for rdiability computations. Undcr 
the amqtions of Woct mvaagc and lmiform node reliability 
(failwe rates of all the nodes assumed to be identical), we study the 
cffect of individual node reliability on the system reliability. The 
reliability plot of the LN-tree is given in Fig. 3. For purpases of 
canparison we have also included the PQtinent data for the simplex 
tree, moduletree and the RAE-tree. In Table 1 we present the 
confribution of the reliability of & level to the sr~tcm reliability for 
the LN-tree. It is noted that the reliability of the LN-tree is higher than 
that of the moduletree and the RAEtree. 

In ordcr to study the effect of coverage, we evaluate the systan 
reliability undcr imperfect wverage conditions. The reliability plot 
rmder impcrfcct amrage conditions is given in Fig. 4. In Table 2 we 
present the reliability of each level of the LN-tree under imperfect 
cavcrage conditions. It is noted that the reliability of the LN-tree is 
higher than that of the moduletree and the RAE-tree even lmdcr 
imperfect cowage conditions. In Table 3, we prcscnt the variation of 
system reliability with respect to the wverage factor. It is noted that the 
rdiability of the LN-tree is not very sensitive to the variations in the 
amrage factor for the valus of C considered. A 10 percat 
drop in the coverage factor results in a systan reliability deterioration 
of about 4.2 percent. 

In a hierarchical system such as the t ru ,  it is rtaPonaMe to e -  the 
nodcs of different levels to have different failure rates. For example, 
one would npect the root node to have a low failure rate, as all 
tramadom to the tree is through the root node. Again, as the kaf 
nodes perform very bmic operations in a typical wee architecture, it is 
reasonable to enxct a low failure rate for the leaf nods (reliabilitv of 
a node is a function of the complexity of the node). We study the 
reliability of a non-hcnnogcneous tree under the assumption that each 
level of the tree is made up of homogeneous nodes. The r d t s  are 
presented in Table 4. The values of failure rate and coverage c h m  
for each level is presented in Table 5 (the failure rates presented is for a 
node belonging to the particular level). It is observed that in order to 
achieve high reliability for LN- trees, it is nccessaty to balance the 
reliabilities in each level of the tree. Spedfically, the reliability of 
oodcs in the highest level of the tree will have to be higher than the 
other nodes in the tree since the system reliability is limited by the 
reliability of the highest level of the tree. 

The binary tree has long been r e a g m d  as a natural intemmne&on 
structure for describing several hierarchical computations. We have 
presented a new fault- tolerant binary tree archit-: the LN-tree. 
7he LN-tree maintains a rigid tree stntaure even under node failurcs. 
In the design of the LN-tree we have used Hayes dehition of fault- 
tolerance.. Although the proposed stntaure is not optimal with rcspact 
to the amstraints defined by Hayes, the LN-tru of m levels can 
tolaate multiple node failures as long as the failed nodes are in 
different parts of the tree. The LN-tree has been designed using fault- 
tolerant building Mocks. As fault detection and r d g u r a t i o n  is local 
to each fault-tolerant module, simple fault dcteaion and 
mdiguration is possible. The reliability of the LN-tree was evaluated 
and compared with other comparable mhitectures pmpascd in the 
litclature. 

REFERENCES 

[Avi71] A. Avizienis, "Fault-Tolerant Computing-An overview," lEEE 
Cornputex, V01.4, pp. 5-8, Jan. 1971. 

[AviE?] A. Avizienis, "The Four-Univnse Information System Model 
For The Study Of Fault-Tolerance," m 1 2 ,  pp. 6-13, 1982. 

I&n3] C. Berge, Graphs and Hypergraph. North Holland, 1973. 

[Deal781 DapaUl, A et al.,"X-Tree: A Tree Structured Multi- 
Cunputu Architecture," Proc. 5th Annu. Symp. Cornput. kcbit., 
pp. 144-151, Apr. 1978. 

[Grey841 Grey et al., "A Fault-Tolerant Architecture for Network 
Storage Systems," -14, pp. 232-239, 1984. 

-1 A. S. M. Hassan et al., "A Modular Approach To Fault- 
T d m t  hnary Tree Architecturs," FKX-IS, pp. 344-349, 1985. 

[Hap861 A. S. M. Hassan et al., "A Fault-Tolerant Modular 
Architecture For Binary Trees," IEEE Trans. on Cornp., pp. 356-361, 
April 1986. 

[Hay761 J. P. Hayes, "A Graph Model For Fault-Tolerant Computing 
Systems," IEEE Trans. on Comp., 25(9), pp.875-884, June 1976. 

[HorBl] Horowitz et al. ,  'The Binary Trees as an Interconnection 
Network: Applications Multipnxssor Systems, and VLSI," IEEE 
Trans. Comput., vol. C-30, no 4, pp. 247-253, April 81. 

[Kwa81] C. L. Kwan et al., ''Optma1 Fault-Tolerant Realization Of 
Sane Classes Of Hierarchical Tree Systems," FTCS11, pp. 176- 178. 
June 1981. 

[RAGE?] C. S. Raghavendra, 'FAULT TOLERANCE IN 
COMPUTER COMMUNICATION ARCHITEcTURJiS," Ph.D 
D i m t i o n ,  Dept. of Computer Saence, University of California, Los 
Angeles, 1982. 

[Rag831 C. S. Raghawdra et al., "Fault-Tolerance In Binary Tree 
Architecturrs," FKS 13, pp. 360-364, 1983. 

[Rag851 C. S. Raghavcndra et al., "Reliable Loop Topologies for 
Large Local Computer Networks," IEEE Trans, on Comp., pp. 46- 
55, Jan. 1985. 

[TriM] K. S. Trivd,  "Reliability Evaluation for Fault-Tolerant 
Systam," in Mathematical Computer Performance and Reliabil~ty, 
North Holland, pp. 403-414, 1984. 



Tabla I. R a l i a b i l i t y  of a tour  imvml LW-trw. 

1 - 0 . 1  c -  1.0 

Tabla 3. Var ia t ion  o f  a y a t r  r a l l a b i l i t y  w i t h  rmmpct t o  covaraqm. 

1 - 0 t - 0.2 

Tabla 2. R a l i a b i l l t y  of a t a r ?  Iavml LI-trmm under im-rfact coverage. 

A - 0.1 c - 0.98 

Tabla b .  R m l i a b i l i t y  o f  a non-hmganeoua LN-tram. 

Tabla 5.  Fau l t  covmraga and f a i l u r e  r a t s  for aach Iava l .  

Laval 

1 

2 

3 

4 

Cover aga 

1.00 

1 .oo 

0.98 

0.95 

Fai  l u r a  rat. 

0.0001 

0.0100 

0.0100 

0.0001 



Figure 1 .  A four l e v e l  LN-tree. 

' igure 3 .  R e l i a b i l i t y  p l o t  of  an 
LN-tree under p e r f e c t  coverage.  

Figure 2 .  Faul t - to lerant  
module ~!c;ed i r l  an TN--tree. 

REUABIU~Y ROT mR A FOUR LEVEL LN-TREE 
UNDER IMPERFECT COVERAGE CONDITIONS 

LAMBDA=O.I, CQ.98 

Legend 
D- 

Figure 4 .  R e l i a b i l i t y  pJot  of an 
LN-tree under imperfect  coverage.  



PRECEDlNG PAGE M 4 K  NOT FiiMED 

A SLIDING MEMORY PLANE ARRAY PROCESSOR* 

M.H. Sunwoo and J.K. Aggarwal 

Computer and Vision Research Center 

The University of Texas at Austin 

Austin, TX 78712 

Abstract 
Complicated gate logic circuits for multiplexing and special purpose 

In this paper, we describe a new mesh-connected array processor 
for low level vision tasks. Several disadvantages of existing mesh- 
connected array processors, such as (i) communication overhead between 
processing elements (PEs), (u? data input/output (VO) overhead, and (iiQ 
complicated interconnections are alleviated. The new Sliding Memory 
Plane (SliM) array processor achieves higher speeds than existing mesh- 
connected array processors. In this architecture inter-memory 
communication as well as inter-PE communication can take place without 
interrupting PEs. In other words, during computation. the contents of all 
register cells on the sliding memory plane can be shifted simultaneously 
and in the same direction to the neighboring cells. In addition, the 
duplicated VO planes can provide buffering capability. Since 
communication, VO and computation occur at the same time, the 
communication and VO overhead will be greatly diminished. The 
performance of the SliM shows remarkable improvement over existing 
machines. The SliM array processor is a fine-grained bit-parallel SIMD 
architecture. 

1. INTRODUCTION 

Several disadvantages of existing mesh-connected array processors, 

RAM (Random Access Memory) and processors are needed [2]. In 
addition, if the size of window is larger than 3 x 3, or if other types of 
windows (circular. diamond, rectangular, etc). which are frequently used 
in low level vision 111-121, are employed. communication overhead may 
become worse. 

In order to alleviate these disadvantages (communication overhead, 
&ta ID overhead, complicated interconnections), and to achieve higher 
speeds than existing mesh-connected array processors, the new massively 
parallel SliM array processor is proposed in this paper for low level 
vision tasks. In this architecture inter-memory communication as well as 
inter-PE communication can take place without interrupting PEs. In other 
words, during computation, the contents of all register cells on the sliding 
memory plane can be shifted simultaneously and in the same direction to 
the neighboring cells. In addition, the duplicated YO planes can provide 
buffering capability without interrupting PEs. Since communication, VO 
and computation occur at the same time, communication and VO 
overhead can be overlapped with computation, and communication and 
110 overhead are significantly diminished. Moreover, four communication 
links for each PE are sufficient, instead of the eight, thus greatly 
simplifying connectivity. The SliM array processor is a fine-grained bit- 
parallel SIMD architecture. 

such as communication overhead behveen processing elements (PEs), The remainder of this paper is organized as follows. In section 2. 
data input/output (UO) overhead, and complicated interconnections limit the SliM array processor is introduced. The overall scheme and the 
efficient implementation of low level vision tasks. In order to alleviate structure of a PE are presented. In section 3, the analytical model of the 
these disadvantages, and to achieve higher speeds than existing mesh- SliM is established and compared with those of existing machines. In 
connected array processors, a new Sliding Memory Plane (SliM) array section 4, the applications to low level vision tasks are discussed. The 
processor is proposed for low level vision tasks. performance evaluation based on the analytical model is described. The 

M~~~ operations needed in low level computer vision tasks are performance of the SliM for low level vision tasks shows remarlcable 

neighborhood operations which transform the value of each pixel into a improvement over existing machines. Finally, section 5 contains 

new value calculated from itself and its neighboring pixels. Such cOmlUding remarks. 

operations can be accomplished with a high degree of concurrency by 
using mesh-connected array processors which are well suited to the 
structure of image data (sparial characteristic) [I]. Many mesh-connected 
array processors have been proposed [2]. Examples of such architectures In this section, we describe the new archiwkture for low level 
include MPP [3-51, CLIP [6-81, DAP [9], LIPP [10], ee .  vision, and compare its features with those of existing meshconnected 

These array processors have major limiting factors towards speed- array processors. 

up. During processing, almost all communications are localized. In other 
words, a great deal of local communication occurs between neighboring Overal' 'fitern 

PEs. This communication overhead is a significant problem on existing 
mesh-connected array processors [1][5][10].~~oreover, when the size of a The logical block diagram of the Sliding Memory Plane (SliM) 
window (neighborhood operator) is larger than 3 x 3, this overhead may array Processor is shown in Fig. 2.1.1. The Processor plane consists of N 
scriouslv demade ~erformance. x N p ~ ~ % ~ r s .  The sliding memory plane S consists of N x N register . " .  

To reduce communica~on the LlPP architecture was The lop row of the memory plane is connected ' the 

proposed [lo]. Howcvcr, this scheme has sevcral drawbacks. bottom row to fonn a wrap-around mesh connection scheme. Similarly. 
the leftmost column is connected to the righimost column. The processors 

'The nsurch was suppolled in pan by IBM. can process the data in the sliding memory plane S. 



In the SliM array processor, as in most mesh-connected array Again, while the ALU processes the new pixel shifted into s, another 
processors. grid like communication links among PEs are used for inter- neighbaring pixel can be shifted into s. and ID operation can occur 
PE communication. These grid communication links are also used for through register d'. These operations can be executed by all PEs at the 
inter-memory communication in order to reduce communication same time instant. Each operation can be controlled separately by the 
overhead. The I/O planes, D and D', are exclusively used for input and UO conwl subunit, the sliding memory plane control subunit or the 
output, whercas the sliding memory plane, S is used for data processor control subunit. Thus. UO overhead and inter-PE data 

communication (parallel data movement). The VO processor (IOP) can communication overhead can be overlapped with computation. All pixels 
load the input data in a row-parallel (or column-parallel) manner into the are moved into the neighboring location register cells at the same time 
YO shift register plane D or D'. Of course if sensory anay is used for D and in the same direction. In addition, direct inter-PE communication can 
or D', image-parallel VO can be achieved. After being loaded. the data in 
D or D' is shifted into the sliding memory plane S in one unit cycle time 
(parallel shift). 

Plane 

be provided like in existing array processors. 

I 

Data In 7 d .  .sA '-l- 
- Data Out 

n 
From Neighbors - 9 

W 
S 

Fig. 2.2.1 A Processing Element 

The other major components of a PE consist of an ALU, a shift 
register (SH), a condition register (C), four registers (T's) and a small 
memory module which is used for local data storage. The 8-bit ALU 

Fig. 2.1.1 Sliding Memory Plane (SCM) Array Processor provides boolean functions as well as arithmetic functions. SH performs 
arithmetic and logic shifts. C provides conditional operations and control 

The role of the Host is to control the CU and the IOP. The CU of the MUX for neighboring communication. s stores the data transferred 
consists of three subunits: the I/O control subunit, the Processor control from neighboring PEs. For direct inter-PE communication, ALU stores 
subunit and the sliding memory plane control subunit. The CU can the dau to be transferred into s register. During this communication. 
broadcast not only instruction set to processors but can also broadcast ALU can perform other operations. The memory is a one-byte wide 
control signals to the sliding memory plane at the same time instant. The RAM. 
CU controls the data movement in S. Most operations in image processing are performed on grey-level 

While processors process the data in S from D, the IOP can unload rather than binary data [7-81. Hence. the SliM array processor uses bit- 
the output data from D', load another input data into D'. The output data parallel processing rather than bit-serial processing, because the former is 
in D' are those which were previously processed and shifted from S. bctter suited to low level vision and the speed of bit-parallel is faster than 
While processors process the data in S from D', the IOP can unload the that of bit-serial. Each register cell contains one pixel. The 
output data from D, load another input data into D, alternately. This communication link between neighboring PEs is, however, one-bit wide 
buffering capability allows 110 to be overlapped with computation. The so that area of VLSI can be efficient. The thick lines represent bit- 
details of a PE will be described in the next subsection. parallel paths, while the thin lines reprcscnt bit-scrial paths. 

2.2 A Processing Element 

A PE shown in Fig. 2.2.1 consists of a ALU (Arithmetic Logic 
Unit), ils local memory, registers, multiplexers (MUXs) and a 
demultiplexer (DMUX). The register s is an element of the sliding 
memory plane S shown in Fig. 2.1.1. Similarly, d and d' are elements of 
the 110 planes D and D'. s is connected to the neighboring registers 
(North. East, West or South) via a multiplexer. Thus, a PE is also 
connected to its four neighboring PEs. d and d' are connected only to 
their left and right neighboring registers. This scheme provides inter- 
memory communication as well as i~ter-PE communication as described 
below. 

The SIiM is different from existing mesh-connected a ~ a y  
processors, in that the Sliding memory plane (S) provides parallel data 
movement during computation, and the I/O planes. D and D', provide 
data buffering capability. In the SliM, additional communication links for 
NE, SE, NW and SW neighbor cells are not needed, because these 
contents can be accessed after two sliding memory plane shifts. Thus. 
the SliM can significandy reduce the serious disadvantages of existing 
array processors, that is, inter-PE communication overhead, UO overhead 
and complicated interconnections. In general, communication time may 
be invisible, because computation time is longer than communication 
time. 

Since the movement of sliding memory plane is programmable and 
flexible, any shape and any size of window may be employed on the 

While the ALU processes the pixel in s from d, a neighboring pixel sliding memory plane with very litde or no communication overhead. In 
can be shifted into s, and I/O operation can occur through d register. contrast, the existing array processors may suffer from performance 



degradation. If the window size is larger than 3 x 3 or the shape of 
window is not square, performance degradation bccomes worse. 

3. ANALYTICAL MODEL 

Neglecting the time for program loading to the CU. the total 
processing time (TA) consists mainly of three time components : data UO 
time (Trio), computation time (Tcp), and inter-PE communication time for 
data exchange (Tpp). These times are functions of algorithm length (L), 
image size (0 and the number of the PEs employed (N). If the size of the 
image is larger than the size of the array processor, then the size of a 

subimage becomes N. The total number of subimages (n,) is . Thus, I+ I , , 
the total time to process a whole image can be expressed by 

The VO time using column parallel (or row parallel) for a 
subimage is expressed by 

where nil, is the number of columns in a subimage, and rilo is the YO 
control subunit cycle time for one column. Of course if D and D' are the 
actual sensor arrays, then aU pixels can be loaded in one cycle. 

The computation Lime for a subimage is expressed by 

where ni is the number of instructions to execute a specific algorithm. 
and ti is the processor instruction cycle time. 

The inter-PE communication time for a subimage is expressed by 

where nb is the number of bits to be transferred to neighboring PEs while 
executing the algorithm, n, is the number of neighboring communications 
for a specific algorithm, and t, is he communication time for one bit 
between neighboring PEs. Since the width of communication link is one 
bit, the number of bits to be transferred must be considered instcad of the 
number of bytes. 

Therefore, the total time for a whole image is again expressed by 

Since the SliM has buffering capability, VO can be overlapped with 
processing. The total processing Lime reduces to 

if n,Tcp + ~,TPP 2 n,Ttlo 
otherwise (2.3.4). 

In addition, the SliM has inter-memory communication capability during 
computation. Thus, communication can be overlapped with computation. 
This further reduces total processing time. The total time TA can be 
expressed as follows 

~,TcP if ~JCP + ~,TPP 2 n,Ttlo and n,Tcp 2 ~JPP 
TA = n,Tpp if n,Tcp + n,Tpp 2 n,Tm and n,Tcp < n,Tpp (2.3.5). 

n,TIlo otherwise t 
As shown in (2.3.5), the total time of the SliM can be expressed by 

one of three time components. In general, computation time is larger .than 
I10 time or inter-PE communication time. Hence, on the SliM the total 
time is composed of only pure computation time, if the above conditions 
are satisfied. In contrast, the total time may be expressed by Eq. (2.3.3) 
in existing mesh-connected array processors. In some tasks, inter-PE 
communication cannot be fully overlapped, and some portions of Tpp 
may still exist Then, TA is expressed by n,Tcp + (1 - p)n,Tpp, if 
n,Tcp + (1 - p)n,Tpp 2 pn,Tpp, where p is the overlapped portion of Tpp 
with TcP. 

4. APPLICATIONS AND PERFORMANCE EVALUATION 

The SliM is suitable for low level computer vision tasks, where 
there are excessive data exchanges between neighbors, because it can 
perform neighborhood operations with Little or no communication 
overhead. For instance, 2-D convolution, median filtering, average value, 
template matching, thresholding, zero-cmssing, etc., are suitable 
applications for the proposed architecture. Edge detection can be 
performed by using 2-D convolution algorithms. Gradient. Laplacian, 
difference of Gaussians, and Sobel operator are some of examples. After 
convolution of image with these operators, edges can be efficiently 
detected by the SliM. Parallel algorithms for 2-D convolution and 
median filtering are illustrated 

4.1 Convolution 

A parallel 2-D convolution algorithm [I21 is highly suited for 
implementation on the SliM architecture. For a image convolution using 
3 X 3 window, 9 multiplications. 8 additions, and 8 inter-PE 
communication steps are required on existing meshconnected array 
processors. Since the time to shift contents of the sliding memory plane 
is much less than the time to execute one multiplication, the parallel data 
movement can be completed within Ihe computation time. If the SliM is 
employed 9 multiplications, and 8 addilions, are needed, regardless of 
the size of image. Intcr-PE communication overhcad is ovcrlappcd, and 
VO overhead can also be overlapped if the computation time is larger 
than the VO time. Therefore, the total processing time for a whole image 
consists of computation time (i.e.. 9 multiplications and 8 additions). 
The 3 X 3 convolution window and the movement of the sliding memory 
plane are shown in Fig. 4.1. If the movement starts at the center pixel 
and ends at the southwest pixel through a clockwise direction, the 
movement of the contents in the sliding memory plane is 0 + S + E + 
N + N + W + W -+ S 4 S. The direction of the movement is a 
Hamiltonian path which scvts at any node and visits every node only 
once. Any kind of window shape and size can be employed with little or 
no communication overhead 

Fig. 4.1 3 x 3 Square Window and Movement of Sliding Memory Plane 

Before we discuss performance issue, we briefly describe the 
figures of MPP. Then, we make assumptions for performance evaluation 
of the SliM. In MPP, one memory access and several operations can be 
executed together within one cycle (100 ns). The actual memory access 
time is about 50 ns [4]. Thus, several operations can be merged into one 
instruction [3-41. The performance evaluation of the SliM is based on 
the following conservative assumptions. Fist, memory access time (1 
byte) is 100 ns, and is defined as a nominal cycle time. Only one 
memory access without any operation can be executed in one cycle. 
Two operations can be merged into one instruction if there is no conflict, 
and this instruction can be executed within one cycle. Thus. I, is 100 ns. 
In practice, the time for I-bit memory access is equal to thc time for 1- 



byte memory access. We assume most of the operations like addilion, 
shift, compare, etc.. to be executed within a half cycle except several 
operations like multiplication, division, etc. Second, 8-bit passing to a 
neighboring PE is completed within one cycle time. Third, a 
multiplication of two 8-bit integers requires 8 additions and 7 shifts. If 
two operands are from regism, 8 cycles are needed. But if two operands 
are from memory and the result is stored into memory, 12 cycles are 
needed. 

To simplify the performance evaluation, !he size of the SliM is 
assumed to be greater than or equal to the size of the image. In addition, 
assume that window coefficients are broadcasted from the CU. Since 
Sliding, i.e.. inter-PE communicauon, can occur during execution of 
operation. Sliding and operation statements are put on the same line. In 
the following description of Ihe algorithm, wherever there are more than 
one statement on the same tine, then these statements can be consid~cd 
to be overlapping. The general algorithm is shown as follows, in which s 
represents a register on the Sliding memory plane S and T is a set of 
registers in a PE. 

T t s*wo; s t a neighboring pixel; /+ Sliding */ 
for i t 1 until window-size - 1 do 

T t T + s*wi; s t a neighboring pixel; /* Sliding *I 

As shown above, window-size multiplications and window-size - 1 
additions must be required. If the window size is 3 x 3 and the number 
of bits per pixel is 8, it requires 9*n, + 8 cycles, where n, is the number 
of cycles for two 8-bit integer multiplication. If we assume n, to be 8,  
the total time is 8.0 Net. 

4.2 Median Filtering 

In general, median filtering requires a sorting algorithm after all 
neighboring pixels are collected. Since the sorting algorithm itself may 
take long and sorting and collecting neighbors cannot occur 
simultaneously, median filtering is a time consuming lask. 

A new parallel 2-D median filtering algorithm is similar to the 
parallel 2-D convolution algorithm with respect to the window operation 
and the movement of the sliding memory 'plane. The ordered singly 
linked list is used for median filtering. Each PE has its own list After 
shifting the sliding memory plane. each PE can access its neighboring 
pixel, and insert it into its list in order. While this insertion is taking 
place, the sliding memory plane can be shifted. If the time for ingrtion 
into the list is larger than the h e  for shifting. communication overhead 
is overlapped, and only the time for creating the ordered singly linked list 
of neighboring pixels is needed. After making the list, the median value 
in each list can be easily found simultaneously. The total processing lime 
thus consists of only the time for making the list In contrast with the 
widely used median filtering algorithms which consist of collecting and 
soning procedures, sorting procedure is not required, and collecting 
procedure is invisible in the new algorithm. The worst case is in which 
every time the pixel received from a neighbor is greater than the pixels 
in the tist. For a 3 x 3 window and &billpixel, the estimated time is 12.7 
psec in the wont case. 

Performance evaluation for other fads. i.e.. Gassusian, zcro- 
crossing, threshold. average value. Sobel operator, etc.. shows remarkable 
improvement over existing mesh-connected array processors. Due to page 
limitation, llie details are omitted. 

5. CONCLUSION 

As discussed, remarkable performances can be achieved by the 
SIiM. There are several reasons why the performance of the SliM is 
better than that of existing machines. First. inter-PE communicalion and 

I/O overhead can be overlapped with computation. Second, bit-par~llel 
processing is faster than bit-serial processing. Third, on existing machines 
PEs store pixels into memory, after pixels are received. During 
processing, the pixels stored in memory must be accessed lor 
computation. This memory access overhead is signilicant. In contrast, the 
S plane on the SliM contains the pixels which can be transfemd to 
neighbors, and directly accessed by the ALU. Moreover. a set of registem 
(n can be efficiently used Thus, overhead for memory access can be 
reduced. 

In summary, the proposed m y  processor, the SliM array 
processor, for low level vision alleviates the drawbacks of existing array 
processors. Pdormance degradat~on due to t h e  drawbacks is minimized 
to allow higher throughput than existing m y  processors. The SliM is a 
fine-grained bit-parallel SIMD architecture. The simplicity and the 
regularity of the architecture, and the s!xaighdonvard control suategy 
make this architecture highly suitable for M S I  implementation. 

Acknowledgement 

We would like to thank Dr. N. Nandhakumar for his valuable 
suggestions and comments. We thank V. Chaudhary for reading and 
commenting. 

REFERENCES 

F.A. Gerritsen, "A Comparison of the CLIP4, DAP and MPP 
Processor-Array Implementations." Computing Structures for Image 
Processing. Edited by M.J.B. Duff. Academic Press, pp. 15-30, 
1983. 

TJ. Fountain, "A Survey of Bit-Serial Array Processor Circuits," 
Computing Structures for Image Processing, Edited by MJ.B. Duff, 
Academic Press. pp. 1-13. 1983. 

K.E. Batcher, "Design of a Massively Parallel Processors," IEEE 
Trans. Compur. Vol. C-29, pp. 836-840, Sep. 1980. 

K.E. Batcher, "Bit-Serial Parallel Processing Systems," IEEE Trans. 
Compur. Vol. C-31, pp. 377-384. May 1982. 

T. Kushner, A.Y. Wu, and A. Rosenfeld, "Image Recessing on 
MPP," Pattern Recognirion, Val. 15, No. 3, pp. 121-130, 1982. 

M.J.B. Duff. "Review of the CLIP image processing system," in 
Proc. National Computer Conference. 1978. pp. 1055-1060. 

TJ. Fountain. "Plans for the CLIP 7 Chip," Integrated Technology 
for Parallel Image Processing, Edited by S. Levialdi. Academic 
Press. pp. 199-214. 1985. 

TJ. Fountain, K.N. Matthews, and MJ.B. Duff, "The CLIWA 
Image Processor," IEEE Trans. PAMI Vol. 10, No. 3,  pp. 310-319, 
May 1988. Academic Press, 1986. 

S.F. Reddaway, "DAP - A Distributed Processor Amy." in Proc. 
Firsf Annual Symposium on Computer Architecture, 1973, pp. 61- 
65. 

T.S. Ericsson, and P-E. Danielsson. "LIPP - A SILW 
Multiprocessor Architecture for lmage Processing," in Proc. 10th 
Annual Int. Symp. Compuf. Architect., 1983, pp 395-400. 

A. Rosenfeld and A.C. KaL, Digital Picture Processing, Acade~nic 
Press. 1982. 

S.-Y. Lee and J.K. Agganval, "Parallel 2-D Convolution on a Mesh 
Connected Amy F'rocessor," IEEE Trans. PAMI, Vol. PAM-9, pp. 
590-594. July 1987. 



A S t u d y  o f  t h e  G e n e r a l i z e d  H u l t i p l e  Bus-Connected P a r a l l e l  C o m p u t e r  

Chia-Jiu W a n g  
U n i v e r s i t y  of C o l o r a d o  

D e p a r t m e n t  o f  E l e c t r i c a l  a n d  C o m p u t e r  E n g i n e e r i n g  
C o l o r a d o  Springs. CO 90 9 3 3 - 7 1 5 0  

C. Wu a n d  V i c t o r  P N e l s o n  
A u b u r n  U n i v e r s i t y  

D e p a r t m e n t  o f  E l e c t r i c a l  E n g i n e e r i n g  
Auburn. AL 36819 

ARslmcr 
The advancement of optical interconnection and micro- 
electronics packaging technology have made i t  possible 
to use optical fibers as media to carry information 
between processors. In this paper. we study an archi- 
tecture called the generalized multiple bus-connected 
parallel computer (GMBPC). The GMBPC is suitable for 
optical interconnection and wafer scale packaging appli- 
cations. A special case of the GMBPC operating as a data 
flow rnachine has been studied and fabricated by Hughes. 
The GMBPC operates as a message passing MIMD machine in 
this investigation. The performance of the GMEPC is 
modeled by generalized stochastic Petri nets (GSPN). To 
lessen the exponential distribution assumption used in 
the GSPN model. Monte Carlo simulation technique has 
been used to predict the performance probabil istical ly. 
For application. two-dimensional fast Fourier transform 
algorithms for the GMBPC are derived. The perforace of 
solving multi-dimensional Poisson's equation by 
relaxation and fast Fourier transform methods on the 
GMBPC with different parameters of GMBPC and problem 
sizes has also been analyzed. 

Keywords: Message passing. Petri nets. Monte Carlo simu- 
lation. Normalized Processing Power. Posisson Equation. 

1. INlRommIoN 
As the number of interconnected processing elements 
increases. the interconnection among them plays an in- 
creasingly important role in influencing the perfor- 
mance of the multicomputer system. A network configura- 
tion is considered ideal if i t  possesses a direct conmu- 
nication link between any two interacting processing 
elements. To provide a reasonable communication band- 
width. various mesh-connected types and inmy other 
schemes are described 11-53. Among the interconnection 
schemes bus systems are inexpensive and easy to imple- 
ment but have limited bandwidth. fanout and lack fault 
tolerance. Meanwhile, computer architectures are driven 
by available technologies and application needs. 
Recently the optical interconnection technolog [6] has 
shown that the optical fiber can be used to transmit 
optical signals between two silicon VLSI chips recessed 
into a silicon carrier. A small gallium arsenide 
transceiver chip electrically connected to the -1 chip 
is employed to convert the electrical signals from the 
silicon chip into into light signals and vice versa. 
Optical interconnects offer the combination of large 
badwidth and large fanout. The bus-connected structure 
suffers from limilted bandwidth and fanout. The fanout 
limitation can be improved to some extent by consuming 
larger silicon area to construct drivers with higher 
driving capability. but the bandwidth limitation of the 
bus-connected structure is not easy to overcome unless 
other material rather than electrical wires is used to 
carry signals. 

Therefore. the combination of optical interconnects and 
the bus-connected structure seems to be a promising 
approach to construct a parallel computer, because the 
properties of optical interconnects can remove the limi- 
tations in the bus-connected system and keep the merits 
of the bus-connected structure. In this paper we inves- 
tigate a generalized multiple bus-connected parallel 
computer (GMBPC) assuming the buses are made of optical 
fibers. In section 2 the GMBPC is introduced. The stoch- 
astic performance modeling of the GMBPC is presented in 
section 3. Application examples such as the two-dirnen- 
sional (2D) fast Fourier transform (FFT) and the multi- 
dimensional Poisson's equation are given in section 4. 
Conclusion and discussion are given in section 5. 

2. GmERALIzED llllLTIF'LE Bus- PARAUEL crmurms 
The generalized multiple bus-connected parallel computer 
(GHBPC) is defined as a four-tuple denoted as GMBPC = 
(N. K. L.  D) where N and K represent the total number of 
processing elements (PE's) and the total number of buses 
in the GMBPC respectively. L is the number of processing 
elements within a bus, and D represents the dimension. 
The relation between N. K. L .  D can be formulated as L = 
N'~, K = ( N ' ~ ) ~ ~ D .  Figure 1 shows a case of GKBPC = 
(64. 48. 4. 3). A special case of the GMBPC operating as 
a data flow machine has been studied and fabricated by 
Hughes. h o w n  as Hughes data flow mu1 tiprocessor for 
real-time radar signal processing [7]. The GMBPC is 
assumed to be a message passing MIKD mchine throughout 
this paper. In order to get a symnetrical structure. we 
always select N and D properly to make L an integer. 

3. fxtmwsTIC KmLING 
The behavior of the GMBPC is modeled as a generalized 
stochastic Petri net (GSPN) graph. From the GSPN graph 
the performce of the GMBPC is derived analytically. 
The Monte Carlo simulation technique is also used to 
investigate more cases which can't be easily modeled by 
the GSPN model. 

3.1 CSPN Hodel of the UBPC 
The generalized stochastic Petri nets (GSPN) have been 
used to model computer systems. The results of this 
modeling scheme have been verified by experiments and 
reporeted in mny literatures [8.9.10]. We apply the 
GSPN modeling scheme to model the behavior of the CMBPC. 
In order to apply the GSPN modeling ,principles. the 
states of each PE in the GMBPC are classified as 
follows: 1) Active: The PE is executing programs in its 
own private memory, 2) Communicating: The PE is exchang- 
ing messages with other cooperating PE's through buses. 
3) Queued: The PE is waiting to access a bus. 
Modeling the GMEPC at the message-passing level corres- 
ponds to the identification of processing periods (of 
average length 1A) which require no bus access. and 
data transfer periods (of average length 1/p) which do 
require bus access. 



3.2 Modeling Unit Structure and Asslrmptions 
Since the GMBFC is a regular and symmetrical structure. 
we apply the GSPN model to a GMBPC having only one 
dimension. In other words a one-dimensional GMBPC is 
used as an unit structure for performance modeling. 
Another reason of modeling the unit structure rather 
than the entire GMBPC is to keep the reachability set 
from becoming unmanageably large. reducing computational 
complexity. The modeling unit structure is shown in 
Figure 2. It is assumed that the workloads are uniformly 
distributed among all PE's. resulting in uniform 
~rocessing loads and communication loads. The data - 
processing period follows an exponentially distributed 
random variable with rate A ,  and the message transfer 
period also follows an exponentially distributed random 
variable with rate p. 

3.3 Perforance Estimation 
For a GMBPC = (64, 48. 4 .  3 ) .  the corresponding GSPN 
graph of the modeling unit structure is shown in Figure 
3. This GSPN model comprises 13 places and 12 
transitions. The uniform workload assumption implies 
thath 1 = $ = % = h 4 = X a n d p 1 = p 2 = = = p 4 = p .  

The immediate transition rate r is determined by bus 
acquisition mechanisms. Since all the transition rates 
can be categorized into three groups. each group 
representing a specific function of the GMBPC, the 12 
transitions can be reduced to 3 transitions. The number 
of places can also be reduced by combining places PI. 

Pq. P7, P10 into one place. representing active state. 

By the same method we can reduce the rest places except 
PI3 into two places. representing the communicating 

- - 

state and the queued state. The simplified &PN model is 
shown in Figure 4. With the simplified model the 
perfornmnce of larger size GEiBPC can be modeled and 
estimated bv placing laraer number of tokens in the 
place PI. Because the bus is assumed to be made of 

optical fibers, the bus speed is expected to be much 
higher than PE data processing speed. We consider three 
cases which are Alp = 25, Wp = 50 and Alp = 100 
respectively. The performance is measured by a index. P. 
called normalized processing power. which is the ratio 
of the average number of active PE's over the total 
number of PE's in r .le system. Table 1 presents P versus 
L for the three cases. The data shown in 

L 2 4 6 9 1 0 1 1 1 2  
A/p=100 P 0.99 0.99 0.98 0.98 0.96 0.98 0.96 
Alp50 P 0.98 0.98 0.97 0.97 0.97 0.97 0.97 
Alp=% P 0.96 0.95 0.95 0.94 0.94 0.93 0.93 

Table 1. P vs. L for CMBFC's with El (N=L) 
Table 1 demonstrates that even L = 12, the processing 
power still remains above 90% for the three cases. This 
is a verv eood performance but it represents only a one- - -  . 
dimensional case. In the following-we apply the Monte 
Carlo simulation scheme to estimate the GMBPC perform- 
ce with higher dimensions and more PE's within a bus. 
The GSPN model will become very complex and difficult to 
solve when modeling a multidimensional GMBPC. 

3.4 Monte Carlo Simulations 
In Monte Carlo simulations we analyze the following 
cases : 
1) one dimension GMBPC with L up to 50 PE's per bus, 
2) two dimension GMBPC with L up to 50 PE's per bus. 
3) three dimension GMBPC with L up to 50 PE's per bus. 
4) the data processing period and the data transfer 
period are exponentially distributed random variables 
with different average values. 
5) the data processing period and the data transfer 
period are uniformly distributed random variables with 
different average values. 
In Monte Carlo simumlations we assume all the I/O ports 
of the PE can be enabled concurrently. The transputer 
[ I l l  and the FAIM-1 [12] are two examples which show 

that all the 110 ports of a PE can be enabled simultane- 
ously. Tables 2. 3 and 4 show the simulation results for 
three cases with different distribution functions. 

N 22 42 62 lo2 20' 30' 40' 502 
WplOO P 0.99 0.94 0 94 0.90 0.84 0.79 0.74 0.69 
? J p W  P 0.94 0.90 0.88 0.82 0.74 0.65 0.57 0.52 
Alp25 P 0.89 0.84 0.79 0.72 0.56 0.45 0.38 0.32 

Table 2. P vs. N for a GMBPC with D=2 
(data processing and transfer periods follow the 
exponential distribution function.) 

N 22 q2 62 lo2 202 302 402 .502 
Wp100 P 0.99 0.95 0 94 0.91 0.85 0.80 0.75 0.70 
Alp50 P 0.94 0.92 0.89 0.83 0.74 0.65 0.58 0.52 
Alp25 P 0.89 0.85 0.80 0.72 0.57 0.46 0.38 0.32 

Table 3. P vs. N for a GMBPC with D=2 
(data processing and transfer periods follow the uniform 
distribution function.) 

23 43 63 203 303 403 503 
Alp100 P 0.99 0.92 0 91 0.85 0.77 0.70 0.63 0.57 
W@ P 0.94 0.87 0.74 0.74 0.64 0.52 0.44 0.37 
Wp=25 P 0.89 0.77 0.58 0.62 0.42 0.30 0.23 0.18 

Table 4. P vs. N for a GMBPC with D=3 
(data processing and transfer periods follow the 
exponential distribution function.) 
The data obtained from Monte Carlo simulations agree 
quite we1 1 with the data from GSPN model in the same 
situations. 

4. APPLIUTIONS 
The GMBPC has been studied in solving two-dimensional 
and three-dimensional Poisson's equations. Algorithms 
designed for the GMBPC machine in solving 2D F R  
problems are also derived. 

4.1 Definitions and Assumptions 
1. The I/O ports of each PE can be enabled concurrently. 
2. The conmunication time is modeled by t + t 

st corn per 
data transfer. where tst is an overhead due to address 

calculation. control of data flow and synchronization 
and any other overhead for accessing the bus. t 

corn 
varies as the GMBPC structure varies. For the reason of 

simplicity, tst is assumed to be a constant. (Based on 
- ~ 

the data provided in [ l l ] ,  tst is asssumed to be 5MXXls 

throughout this paper.) tbvte represents the one byte 
-< - - 

transfer time over the optical serial bus. 
3. Each datum is a single precision floating point 
complex number with 8 bytes in length (four for the real 
part, four for the imaginary part) for the FFT algorithm 
and a double precision floating point real number for 
the Jacobi method.. 

4.2 a 2D FFT problm for the -PC 
We first introduce the FFT algorithm 1131 designed for 
the two-dimensional GMBPC, then the algorithm for the 
three- dimensional GMEiFC will be presented. 

2 2 2 
Alg. 1 : 2D n -point FFT on the GbBPC=(L .2L.L.2). n>L . 
step 1) partition n2 points into L~ domains. so that - 
each domain has n/Lz complete sets of one-dimensional 
data. Each set of data is ready for 1D n-point FFT 
processing. 
step 2) assign a domain to a PE consecutively. so that 
each PE will have an unique data domain. 
step 3) All PE's simultaneously perform ID n-point FFT 
on their assigned data domains, i.e. performing 1D 

n 

n-~oint FFT n L L  times each PE. 

step 4) Each PE partitions the transformed data into L 2 

2 2  2 groups with (n /L ) ( l / L  ) data in each group. 
step 5) All the PE's on the same row swap L groups of 
data between each other, then all the PE's on the same 



column do the same data swap afterwards. (Although all 
rows and columns can swap data at the same time through 
the dedicated row and column buses. column (row) data 
swap can not start until after the end of row (column) 
data swap because some data are not available.) 

step 6) Egch PE performs n/L2 times 1D n-point FFT. 
step 7) Finish. 
In step 5 the data swap is to redistribute partially 
transformed data to the appropriate PE's for another 
dimension 1D FFT processing. Based on the above 
algorithm, we calculate the speedup of solving 2D FFT 

2 
problems on a two-dimensional GMBPC = (L .2L.L.2). The 
comnication time for each data transfer is Tsc = tst + 

2 2 tbvte8(n /L )l/L. The total comnication time is 

2 
2L(L-l)Tsc. A single PE performing a 2D n -point FFT 

- - 

needs execution time 2nTm, where TFFT represents a 

n-point FFT execution time on a single PE. TFFT is 

proportional to the execution time of 5n(log2n) 

arithmetic operations for complex input data. Assume t 

represents the average one arithmetic operation time. so 
TmSn(log n)t . The speedup S is 2 D 

md-2n~&(&~d2+2~(~-l)Tsc). 

The above speedup equation is shown in Figure 5. 
2 3 2 Alg. 2: 2D n -point FFT on the GMBPC=(L .3L .L.3). n>L 

3 
- 

step 1) partition n2 points into L~ domains, so that 
each domin has n/L3 complete sets of one-dimensional 
data. Each set of data is ready for 1D n-point FFT 
processing. 
step 2) assign a domain to a PE consecutively. so that 
each PE will have cn unique data domain. 
step 3) All PE's simultaneously perform ID n-point FFT 
on their assigned data domains. i.e. performing 1D 

n-point FFT n/L3 times each PE. 
3 

step 4) Each PE partitions the transformed data into LJ 
2 3  3 

groups with (n A )(lA ) data in each group. 

step 5) For the PE's on the same shared bus. LZ groups 
of data in each PE are swapped between each other. This 
applies to all PE's and buses in the GMBPC. For a GMBPC 
having three dimensions (x.y.z) the data swap within 
either x.y or z dimension can be done simultaneously. 
but at any time only one dimension data swap is allowed 
because of the unavailability of some data. 

step 6) Each PE performs n/L3 times 1D n-point FFT. 
step 7) Finish. 
Based on the above alzorithm, we calculate the speedup - 

3 2 
of solving a 2D FFT problem on a GMBPC = (L .3L .L.3). 
The communication time for each data transfer is T sc = 

2 3 
tst + tbyte8(n /L )1A. The total communication time is 

3L(L-l)Tsc: The speedup S is 

m&3-2n~Fd(2n~F+3+3~(~-l ITsc). 
Figure 5 presents the speedup versus N for different 
dimension GMBPCs in solving a 2D FFT problem. Two bus 
speeds. 800Mbits/sec and 80Mbits/sec are considered. 
800Mbits/sec is a realizable bus speed via optical 
interconnects [6] in the very near future. (Throughout 
the rest of this paper. a bus with speed = 8OOMbits/sec 
implies this is an serial optical bus.) It shows that 

2 
for a 2D 4096 point FFT problem a GMBPC with D=2, bus 
speed=800Mbi ts/sec has slightly better performance than 
the one with D=3. bus speed&OOMbits/sec for N < 1000. A 
UCBW with D=3 and bus speed&OMbits/sec has worse per- 
formance than one with D-2 and bus speed&COMbits/sec. 

It concludes that there are a number of parameters such 
as the structure of GMBPC. bus speed. PE data processing 
speed, cost of interconnection network and problem sizes 
to be considered to achieve the desired speedup. 

4.3 Solving the Poisson Equation on the QlBPC 
In the following we solve a three-dimensional Poisson's 
equation on GMBPC with different parameters. 
w l e  1: Solving a three-dimensional Poisson's 

3 2 
equation with n points in size on the GMBW =(L . 2L. 
L. 2) and n > L. The Jacobi iterative solution technique 
[14.15] is used in this example. Although the Jacobi 
method has not been used in practice, it is the basis 
for understanding the fast converging methods and 
represents the same complexity of communication. It is 

3 
assumed that n points are equally partitioned into L 

2 

processors. Therefore each PE has equal amount of work 
in computation. The amount of data for each transfer 

2 
between two adjacent PEs is n /L. The comication time 

2 
per data transfer is TSc= tst + tbyte8n A. Since all 
the I/O ports in the PE can be enabled concurrently, the 
total communication time per iteration is [2(L-2)+2]TSc. 

Based on the INMOS IMS T800 data book [ll]. the computa- 
tion time per point per iteration is t comp 

= 2915ns 

[14]. The total computation time for the n3 points is 

3 
TcoV = n t camp. The cost of communicating convergence 
checking informtion on the GMBW is insignificant 
because it involves only one number from each PE in each 
dimension, and is hence neglected. The speedup S is 

Speedup analysis for this case is presented in Figure 6. 
m l e  2: Solving a three-dimensional Poisson's 

3 3 equation with n points in size on the GMBPC =(L . 2L2. 
L. 3). and n>L. The Jacobi method is also used in this - 

3 
example. Since the n points are evenly partitioned into - 
L' processors. the amount of data for each transfer 

2 2 between two adjacent PE's is n A . The communication 
2 2 time per data transfer is Tsc= tst + tbyte8n A . Since 

all the 110 ports in the PE can be enabled simultaneous- 
ly. the total comnunication time per iteration is 
[2(L-2)+2]Tsc. The computation time required for each 

-. 

point is still tC-. The total computation time for n 
3 

3 - points is Tcomp= n tcomp. The speedup S is 

3 ~ ~ o ~ 3 E d  Tcomp'(Tcomp /L~+~(L-I )tsC) 
Figure 6 presents the speedup versus the number of PE's 
in GMBPC's with k2. or 3 and different bus speeds. It 
has shown that given N PE's in total. a GEIBPC with D==. 
bus speed&OOMbits/sec, or D-3. bus speed&OMbits/sec 
produces the same performance; and the performance of a 
GMBPC with D=3. bus speed=800Mbits/sec is only slightly 
better than the just mentioned two cases. Therefore the 
choice of the D depends on the cost of interconnection 
network and desired speedup. 
In the following we solve the same Poisson's equation 
but using Fast Fourier Transform method E16.171 rather 
than Jacobi method. 
W l e  3: Solving a two-dimensional Poisson's equation 

with n2 points in site and zero Dirichlet boundary 
conditions by FFT method on the GMBPC. First, transform 
the Poisson's equation from real space to Fourier space. 

Second, perform 4n2 arithmetic operations. Lastly. 
transform the data in Fourier space back to real space. 
The speedup for the GIIBPC with D=2 and D=3 are : 



ORIGINAL PAGE IS 
O f  POOR Q U A L M  

2Dms2DGM = 

(4nTFn+dt P ) / [ ~ ~ T F ~ / L ~ + ~ ~ I ~ ~ ~ ~ L ~ + ~ L ( L - I ) T ~ ~ ]  

where Tic= t +t 2 3 
st by te8(" lL ) 

2Dms3m = 
2 

( 4nTFFT+4n t P )/[4nTFf13+4n2t P /L3+6~(L-1 )Ti;] 

2 4 where Ti; = tst+tbyte8(n /L ) 

The speedup conparison between different dimension 
GKEPC's in solving a 2D Poisson's equation by FFT method 
is presented in Figure 7. It shows that an 
optical-interconnected C;HBPC with D=2 has better 
performance than a non-optical-interconnected CMBPC with 
D-3. It also indicates that when D=2 the speedup seems 
to get flat much faster than when D=3 that provides more 
comunication paths. 
5. m a u s m  AND DISCUSSION 
A bus-connected multiple parallel computer has been 
studied in this paper. The bus-connected parallel 
computers are inexpensive and easy to implement, and the 
limited bandwidth and fanout can be eliminated by using 
optical buses. The GSPN model and Monte Car10 simula- 
tions show that a CMBPC can achieve 70% of its full pro- 
cessing power even N=2500 and D-2. A speedup comparison 
in solving a 2D FFT problem and a 30 Poisson's equation 
on -PC's with different dimensions 1-s st~ornl that an 
optical-interconnected GMBPC can indeed generate spcedup 
closing to the number of PE's in a GMDX. The relation 
between speedup. L. and D studied in this paper and the 
cost of interconnection network can provide a guide for 
the doslgn of CMBPCs as message passing machines. 
A m 8  - The author C. Wu likes to thank Auburn 
University Grant-in-Aid program. 
REFERENCES 
! l ]  R M i l l e r  e t  a1 . ' ?cnw ta t i ona l  G m e t r y  on a Mash C o n n ~ t r d  
Computer.' Proc. 1981 I n t ' ? .  Conf. P a r a l l e l  Procesrlnq, pp. 66-13. 

[ I ]  R. V d d e r .  . Campbell md G.  Tucker, 'The H u q h  data f l o r  , ;. ' 
cul t rprocessor . '  proc.  3f the 5 t h  l n t ' l  Conf. on D i s t r i h t d  Sys. 25o.w 
1 9 1  r A .  b r s a n  e t  a1 'A  Class o f  G m l r a l i z d  Stochast ic  Pmtr i  

I I E E  ' - l r s  :omouters. . I -  ' 1 8 7  :o 50-13 F ' ~ r c  1 .  The m?3PC = (64 .  49, 4 ,  3)  
ngur. 5 S+.O~,,P CO,,~WI.O~ belwe~n dlfarenl dimonwbn 

: ' 3 :  Y 1 4011oy. ' :e~?~r?dnce kna'ysrs 3 s l r q  j t ~ c h a s t i c  l e t - i  C#IBPC h .olvlr,g a 20 111 prob!em 

' le ts . '  iEEI '-an8 Co,nputars. 3ep '9e?.  
[ " I  :NMOS. :-ansourer i e f  Yanual. :r?nti;e l(al1. 1988. 
[ ' ? I  J V Anderson e t  a l  . 'T+e i r c l i t e c t u r e  o f  F l l i l - I , '  IEEE 
Ccmcuter. Jan 1987. 20 55-65. 1300.00 , 1500.W 

[ I ? )  Gorin. 4 L e t  d l  . 'Ccmput~np the ! w - D i m s i o n a l  Discrete 
Fmrir"r r i d n ~ f ~ ~ m  cn the ASPEV P a r j l l e l  :;neuter I r c h i t e c t u r r , '  
opoi 11t" :oni P a r r l ' e i  Drocess~nq,  1931. p p .  9?1-923. 
: '1]  %?a. ? a .  e: a1 , ' ? tenc ! l s  and Problea Pa r t im rnqs  Their 
:~fl.ercs an '*e :*ric"-dncs c f  ' J u l t ~ p ' e  ? r ccesso~  Systems.' IEEE 
- 3"s :.np>:ems, : - ; 5  ,981 
[ ' 5 ]  J r teqa,  . Y jna ? ; Io.y! . '5~ l i : !cn st  P a r t i a l  D i f f e r e r t i a l  

E~uat 'ons :n 'Yector and P a r a l l e l  Cimpurers.' Sill Revre.. 1985. 
1 ' 5 )  Hoc<ney, P # . , ' A  Fast > I rec t  E.olut!cn o f  Doisson's Equa t im  

u s i n g  rcvr;?" a i a l y s l s . '  J. >f :'e ACY.!955. I?. pp. 9 5 - 1 1 ?  
qochney, 2 W , 'Cha r r c te r i z i nq  Cc-outrrs and Optiniz!nq !he 

fACR(I) Po,sson-Solve. ?n P a r a l l e l  Jn1:omwtsr . '  IEEE  Trans 
C:xw:?rs, , 3 8 3 ,  '-;: ;p ?I:-:$% m m m p q  
7- i- I I -  bus 

- - 

active active 

- 
acztve active 

Figure 3. The GSPN for a d e l i n g  unit structure 
of a m P C  = (64. 48. 4. 3) 

Figure 4. The simplified GSPN for a one- 
dimensional CMnPC = ( N. 1.  N. 1 )  

llurnbcr of PE's 



Neurocomputing with Optical Pipeline Networks 

Zhiwei Xu 
Department of Electrical and Computer Engineering 

Rutgers University, Piscataway, NJ 08854. 

Kai Hwang 
Department of Electrical Engineering 

University of Southern California, Los Angeles, CA 90089. 

Abstract 

With the recent advances in neural networks, there has 
been a great deal of research in neurocomputer architec- 
tures based on electronic and optical technologies. This 
paper presents techniques for realizing connectionist style 
neurocomputations on Opcom, an optical computer archi- 
tecture based on the pipeline networking concept. Special 
attention is paid to the efficient implementation of learning 
and search procedures. 

1 Introduction 

With the recent advances in neural networks [4,7], there 
has been a great deal of research in architectural studies 
of neurocomputers, based on electrical orland optical tech- 
nologies [2]. The authors have recently proposed an optical 
computer architecture, called Opcom [12], which is based 
on the pipeline networking concept [5] and maps nicely into 
the characteristics of optical interconnections and gate ar- 
ray structures [6]. The primary operation mode of Opcom 
is massively parallel and pipeline processing at the gate 
level. 

In this paper, we extend our research in [12] to the 
area of neurocomputing. More specificly, our interest is in 
connectionist style computations in digital neural networks 
[1,3,9]. Special attention is paid to the implementation of 
the two most important functions of any neural network: 
learning and search (retrivial). 

The architecture of Opcom is described in Section 2. 
The implementation of neural networks in Opcom and the 

' This rnearch was supported in part by an NSF grant DMC-84- 
21022, by an AFOSR grant 86-0008, and by a Henry Rutgem Research 
Fellowship, 

search process is discussed in Section 3. The implementa- 
tion of a supervised learning procedure, the Pocket Algo- 
rithm [I], is shown in Section 4. Our research results are 
summenzed in Section 5. 

2 The Architecture of Opcom 

We will only briefly discuss features of Opcom that are 
relevant to this paper. Details of architecture, instruction 
set, and optical implementation can be found in [12]. 

The functional architecture of Opcom is shown in Fig.1. 
The Host provides an interface to the outside world and 
can be implemented using any micro- or mini-computer. 
The Array of Cells is a rectangular array of optical cells. 
Each cell, as shown in Fig.2, can be viewed as a NOR 
gate cascaded with a D flip-flop. Such a cell provides 
one bit storage and processing power and can be imple- 
mented by an optical bistable device [8,11]. The Intercon- 
nect Unit provides dynamically reconfigurable interconnec- 
tions among the c d s .  It can be implemented by computer 
generated holograms or optical crossbar networks [6,10,11]. 

I IT- 1 
I 

- Connection L-.. 

L - "~ r ray  of. Cells 
Figure 1. The Logical Arttlitecture of Opcom 



new q = Fq + c(x + y) - -- - 
new q = cq + c(x + y) 

Figure 2. The Functional Description of a Cell 

The Control Unit executes instructions of Opcom. Only 
two instructions are needed in this paper. The execution 
of a "CONNECT p" instruction will reconfigure the Inter- 
connect Unit to set up inter-cell connections as specified by 
p. A "START n" instruction will enable all cells involved 
for n clock periods. There are no conventional data trans- 
fer or arithmetic/logic operations in Opcom. Instead, any 
computation is carried out in the following fashion: First, 
a optical circuit is constructed by executing a CONNECT 
instruction; then the execution of a START instruction 
propagates operand data through the circuit to generate 
the desired result data. Thus the basic operation mode 
of Opcom is massively parallel and pipelining at  the gate 
(cell) level. 

3 Implementation of Neural Net- 
works in Opcom 

Because there are many different definitions of neural net- 
works and neurocomputing, we will define below what we 
mean by "connectionist style neural computations" [1,3,9]. 
A neural network consists of a number of neurons inter- 
connected by unidirectional synapses. A network is cyclic 
(also called feeiback) if it contains directed cycles, other- 
wise it is acyclic (also called feedforward). We will focus 
on feedforward networks in this paper, although the tech- 
niques presented can also be applied to feedback networks. 

Each synapse from neuron n; to neuron n j  has an inte- 
ger weight w;j. Each neuron nil a~ shown in Fig.3, has an 
activation (also called state) q, which can have values -1, 
0, or 1. The activation ai is determined by the following 
equations: 

1 i f S i > O  

Si = Cy=, wijaj q = T(Si) = 
-1 i fS ;<O 

A neuron can be implemented in Opcom using a bit 
slice circuit aa shown in Fig.3. Using ones-complement bi- 
nary number system, each wij (and S;) can be represented 
by an T-bit binary number w ~ ~ w ~ ' . . . w ~  (and S[S[-' ... S:), 
if the range of possible integers is from -2'-' to 2'-'. 
Each activation a j  can be represented by two bits a:a:, 
with 0=00, -1=10, and 1=01. A multiplication operation 
wijaj can be realized by a three-gate circuit in a bit-sliced 
fashion. In fact, the k-th bit of the product is equal to 
wfjai + wha,?, which needs one OR gate and two AND 
gates. Consequently, a bit-sliced multiplier can be imple- 
mented as shown in Fig.4 using three optical cells of Fig.2. 

Figure 4. The Multiplication Circuit 

Figure 3. An Optical Circuit for Implementing a Neuron 



In (121, we presented an integer adder that needs 11 
optical cells. The n products fiom the bit slice multipli- 
ers can be surnmerized using n - 1 adders organized as 
a (log2n)-stage adder-tree to produce Si. The threshold 
function T(Si) can be implemented with 4 optical cells as 
shown in Fig.5. A simple calculation shows that a neu- 
ron with n inputs can be implemented by ( r  + 14)n - 5 
optical cells. A neural network with m neurons can be 
implemented using O((r + 14)mn) cells. 

A basic function performed by any neural network is 
search. That is, given some (maybe partially specified) 
input, find an output that best matches the input. In a 
feedforward neural network, such an output can always be 
produced by propagating the input through the network. 
If the longest path in the network has length L, the prop- 
agation time will be rL(4 + logl n )  clock periods, where r 
is the word length of integer and 4 + log, n is the number 
of stages of cells in Fig.3. 

Due to the acyclic property, a feedforward network can 
perform N searches in a pipelined fashion: First, the Con- 
trol Unit executes a "CONNECT p" instruction, where 
p is the interconnection pattern of al l  the O((r + 14)mn 
optical cells involved. The Interconnect Unit is recon- 
figured to provide all inter-cell connections. Secondly, a 
"START t" instruction is executed, where t has the value 
4L + L log, n + rN .  This instruction enables a search to 
be performed very r clock periods. 

4 Learning in Opcom 

Another basic function of a neural network is learning. 
That is, we need to set the weight attached to each synapse 
by applying some training examples to the neural net- 
work. Many learning schemes have been developed in the 
past, including supervised procedures, reinforcement pro- 
cedures, and unsupervised procedures. For a survey of 
various learning procedures, the reader is referred to 131. 

In this paper, we show how the Opcom architecture 

can efficiently implement a supervised learning procedure, 
called the Pocket Algorithm [I], which has been success- 
fully integrated into the design of connectionist expert sys- 
tems. The basic idea of this algorithm is as follows: Ini- 
t i d y ,  al l  weights are zero. A number of training examples 
are applied to each neuron in a network. For each training 
input E, the neuron's actual response is compared with 
the desired output C. If they do not match, the weights 
are updated by adding the product C E. For a detailed 
description of the Pocket Algorithm, the reader is referred 
to [I]. 

This learning procedure for each neuron can be imple- 
mented by O((r + 24)n) optical cells as illustrated in Fig.6. 
Because of the feedback connections in Fig.6, no pipelin- 
ing is possible. That is, a training example can not be sent 
to the optical learning circuit until the previous training 
example has propagated through the entire circuit. This 
problem can be solved by using the pipeline networking 
techniques presented in [5]. We first insert some optical 
cells as noncompute delays into each cyclic path in Fig.6 
to ensure that all cyclic paths have the same length q. 
Then we use the same circuit to carry out the learning 
procedures of q neurons in a pipelined fashion. This is 
possible because in the Pocket Algorithm, neurons learn 
their weights independently. With this scheme, if there 
are N training examples, a network of m neurons can finish 
learning in O(qrN) clock periods using mlq  optical learn- 
ing circuits of Fig.6, where T is the integer word length. 

Figure 5. The Threshold Circuit 

Circuit , f 3 q-+-+{E] compare 

Figure 6. Sketch of an Optical Learning Circuit 



5 Summary of Research Results 

Three topics of research naturally arise in building a 
neurocomputer that efficiently supports search and learn- 
ing: new instruction sets, innovative architectures, and 
proper technologies. In this paper, we present our solu- 
tion to each of the three problems. The conventional data 
transfer and arithmetic/logic instructions found in a tra- 
ditional sequential computer are not suitable for efficient 
implementation of neurocomputing. In contrast, our CON- 
NECT instruction supports massive, reconfigurable inter- 
connections and the START instruction enables massively 
parallel and pipeline operations. All these are properties 
essential in a neural network or a connectionist model. 

The Opcom architecture also matches with a neural 
network model. There are no separate memory and CPU 
as in most traditional computers. Instead, Opcom can be 
viewed as a set of dynamically interconnected optical cells, 
each has one bit processing and storage capability. Note 
that a neural network is defined as a set of dynamically 
interconnected neurons, each has limited processing power 
(some threshold operation) and storage capability (state or 
activity). Advances in optical technology promise reconfig- 
urable interconnections, massive parallelism, and gate level 
pipelining, which make the Opcom architecture feasible. 

A traditional computer hss millions or even billions of 
gates. However, most time only a very small portion of 
the hardware is involved in operation, while the major por- 
tion of hardware is idle. On the contrary, we have shown 
in this paper that due to the mode of massively parallel 
and pipeline operation at gate level, Opcom can have a 
much higher hardware utilization rate. This, coupled with 
the fast switching time of optical devices (in the order of 
nanoseconds), could lead ro very impressive performance. 
In fact, using a single circuit of Fig.6, which has a gate 
count smaller than a microprocessor, a network of 1000 
neurons could be implemented to learn 1000 training ex- 
amples in less than a second. 

References 

[I] S. I. Gallant. "Connectionist Expert Systemsn. 
Comm. of ACM, 31(2):152-169, 1988. 

[2] R. Hecht-Nielsen. "Neurocomputing: Picking the Hu- 
man Brainn. IEEE Spectrum, 25(3):36-41, 1988. 

[3] G. E. Hinton. "Connectionist Learning Proceduresn. 
1987. Tech. Rept. CMU-CS-87-115, Carnegie Mellon 
University. 

(41 J. J. Hopfield and D. W. Tank. "Computing with 
Neurd Circuits: A Modeln. Science, 233(8):62&633, 
1986. 

[5] K. Hwang and Z. Xu. "Pipeline Nets for Compound 
Vector Supercomputingn. IEEE Ronr. on Computers, 
TC-37(1):, Jan. 1988. 

[6] B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. 
Sawchuk, and T. C. Strand. "Architectural Implica- 
tions of a Digital Optical Processorn. Applied Optics, 
23(19):3465-3474, 1984. 

[7] R. P. Lippman. "An Introduction to Computing with 
Neural Netsn. IEEE ASSP,4-22, April 1987. 

[8] N. Peyghambarian and H. M. Gibbs. "Optical Bista- 
biity for Optical signal Processing and Computingn. 
Optical Engineering, 24(1):68-73, 1985. 

[Q] D. E. Rumelhart and J. L. McClelland (Eds.). Par- 
allel Diatributed Processing: Ezplorationa in the Mi- 
crortructu~er of Cognition. MIT Press, Cambridge, 
Mass., 1986. 

[lo] A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, 
and A. Varma. "Optical Crossbar Networksn. IEEE 
Computer, 388-392, Aug. 1987. 

[ l l ]  A. R. Tanguary, Jr. "Materials Requirements for Op- 
tical Processing and Computing Devicesn. Optical En- 
gineering, 24(1):2-18, 1985. 

[12] Z. Xu, K. Hwang, and B. K. Jenkins. "Opcom: An 
Architecture for Optical Computing Based on Pipeline 
Networking". Proc. of Twentieth Annual Hawaii Int'l. 
Conf. on Syrtem Sciencer, 1:147-156, Jan. 1987. 



SECTION IV: LANGUAGES 

Part 1 : Oral Presentations 



PRECEDING PAGE BLANK NOT FILMED 

Massively Parallel Data Optimization 

Kathleen Knobe* J o a n  D. Lukast Guy L. Steele J r . i  

Abs t r ac t  The Connection Machine is accessed through a front end, 

An optimizing compiler for a data parallel programming lan- 
guage can significantly improve program performance on a mas- 
sively parallel computing system by incorporating new strategies 
for allocating array elements to  processors. We discuss techniques 
for automatic layout of arrays in a Fortran compiler supporting 
Fortran 8x array features and targeted to the Connection Ma, 
chine computer system. Our goal is primarily to  minimize the 
costs of moving data between processors and secondarily to min- 
imize memory usage. Improved array layout may allow commu- 
nications operations to  be eliminated or to be replaced by more 
specialized communications operations having lower cost. We ex- 
hibit and discuss thoroughly a typical example of a code fragment 
that can be improved by a factor of 2 in memory consumption 
and a factor of 20 in speed. 

1 Introduction 

An optimizing compiler for a data parallel programming language 
can significantly improve program performance on a massively 
parallel computing system by ii~corporating new strategies for 
allocating array elements to  processors. 

We have designed and implemented a Fortran compiler for 
the Connection Machine@ computer system at COMPASS on be- 
half of Thinking Machines Corporation. Work on improvements 
and extensions is currently in progress. The data optimizations 
described here are under design for incorporation into a future 
version of the compiler. 

The language implemented is Fortran 77, extended by Fortran 
8x array features, including some features (FORALL and vector- 
valued subscripts) now listed in the "removed extensions" section 
of the latest ANSI proposed standard for Fortran [3]. These 
features suit the data  ~a ra l l e l  computing style, which associates 
(at least metaphorically) one processor with each data element. 

The Connection Machine system [6,12] supports the data par- 
allel style by providing thousands ol'hardware processors that can 
operate on as many data elements simultaneously. A full Con- 
nection Machine system includes 65,536 physical processors, each 
with its own memory. Each processor can perform all of the usual 
arithmetic and logical operations on integers and floating-point 
numbers stored within its own memory. Parallel data structures 
are spread across the processors, with a single element stored in 
each processor's memory. 

'Compass, Inc. (formerly Massachusetts Computer Associates, Inc.) 
'University of Massachusetts at Boston and Compass, Inc. 
tThinking Machines Corporation 

which provides the programming environment. The front end 
holds scalar data,  and also controls execution of the data p a r d e l  
program. Program steps involving parallel data are passed over 
an  interface to the Connection Machine, where they are broadcast 
for simultaneous execution by a.ll the processors. 

Interprocessor communication is implemented by a high- 
speed routing network. In a send operation, each processor con- 
tains data  to be sent and a pointer to a processor (possibly itself) 
that is to receive it. In a g e t  operation, each processor contains 
a pointer t o  a processor containing data  to be copied back to the 
first processor. A send is faster than a ge t ,  but a g e t  allows 
data  from one processor to be copied to many other processors 
a t  once. 

The Connection Machine Model CM-2 singles out certain pat- 
terns of commu~~ication for special hardware and microcode sup- 
port. Cartesian grids of any number of dimensions can be embed- 
ded within the boolean hypercube structure used by the router. 
Array elements that are neighbors along any dimension are al- 
located to  processors that are neighbors within the hypercube 
structure. As a result, a single-position shift along any axis of 
such a grid can be performed much faster than the general case 
of the send instruction. Such operatiol~s are called NEWS op- 
erations (for North-East-West-South); the simplest one is called 
simply get-from-news. 

Complex operations on Cartesian grids are also directly sup- 
ported as single Connection Machine instructions. These include 
spread and scan. A spread operation can take any row of a ma- 
trix and copy it into all the other rows. A scan operation takes a 
combining operation (such as add, max, or l o g i o r )  and performs 
a parallel prefix computation [9,7] on each row of a matrix. For 
example, scan-with-add computes running totals for each row. 
Both spread and scan generalize to columns instead of rows and 
to any number of dimensions. 

As a rough rule of thumb, if a 32-bit addition ( to  be performed 
by all 65,536 processors) takes 1 time unit then 

a 32-bit NEWS transfer takes 4 units 

a spread takes 25 units 

a send takes 80 units 

a g e t  takes 180 units 

One unit is approximately 16 microseconds. These figures are 
only useful rough estimates; actual times depend to some extent 
on the virtual processor configuration. 

Our goal is to minimize the cost of interprocessor communi- 
cation. Appropriate allocation of data to  processors frequently 



allows a general communication operation (such as send) to  be 
replaced by a faster one (such as get-from-news) or eliminated 
altogether. 

L I l ( 1 : N )  

2 Examples 

As an example of the optimization issues addressed here, consider 
this code fragment: 

Figure 1: Ndive Layout of Some Arrays 

(This fragment is loosely based on a fragment of a vectorized tri- 
diagonal solver subroutine. For emphasis we have written out all memo, 
subscripts explicitly.) 

The simplest and most nai've way to arrange the data is t o  
" 1 

lay out each array with one element per processor, starting a t  
processor zero. See figure 1. This is the "canonicaln layout used 
by the compiler in the absence of other criteria. This places L l i  
and each U in the same set of processors so they align, but B  is 
spread across the processors in a manner that does not necessarily 
bear any useful relationship to theother arrays. Alignment of L 1 1  

Figure 2: Aligned Layout of Some Arrays 

and each U with the sections of B  requires motion. 
This strategy requires a total of 8 memory slices: one for B, 

one for each U, one for L 1 1 ,  and a temporary used to  hold a moved 
copy of L l l  or B ( i . l : N )  in each of statem6nts 30-60. The tptal 
communication cost depends on which of two strategies is used 
for statements 30-60. If L 1 1  is moved to align with B ( i . l : N ) ,  memory 

and then the result of the multiplication is moved to Ui, a total 
of 9 send operations will be required (1 for statement 20, and 2 
each for statements 30-60). If B ( i ,  1:N) is moved to  align with 
L i l  and U i ,  then only 5 send operations are required in all. The 
time for motion will thus be either 720 or 400 units. 

In summary, the total cost of lines 10-60 for the ngve allo- 
cation strategy is 

Total time for operations = G 

Total time for motion = 720 or 400 
Total number of memory slices = 7 

Figure 3: Sequential Layout of Some Arrays 
An obvious hypothesis is that aligning the one-dimensional 

arrays with some row of B, say the first, would reduce communi- 
cation (figure 2). This eliminates one communication step (that statements, and no temporaFy locations are required. on the 
between L l l  and B ( 1 , I  :N)) ,  but is not the best possible improve- other hand, the multiplication of by in line now requires 
ment. Observe that each send operation can be replaced by a separate computational steps. The cost of lines is 
sequence of NEWS moves, copying values from row to  row of B, 
giving Total time for operations = 10 

Total time for operations = G 
Total time for motion = 80 or 40 

Total time for motion = 0 
Total number of memory slices = 10 

Total number of memory slices = 7 Another possibility is the layout shown in figure 4.  Here B  
is laid out in parallel and each U is aligned with the appropriate 

In this  articular case it might be better '0 "Y 0" the first section of B. copies of ~ 1 1  are still required, so one extra memory 
dimension of the array B  as a serial axis rather than a parallel slice is needed for a temporary. 
axis; that is, successive elements of B  along that dimension will - 
occupy successive locations within the same processor rather than Total time for operations = 6 
the same location within different processors. See figure 3. In this Total time for motion = 40 or 80 
manner no communication is required for any of the assignment Total number of memory slices = 7 



3 Overview of Solution rocessors 

memory P 
Figure 4: Skewed Layout of Some Arrays 

rocessors 

memory I- 
Figure 5: Compressed Layout of Some Arrays 

This layout has the same time and space possibilities as in figure 
2, with the NEWS costs of the two motion strategies reversed. 
But this layout leads to  an even better one. 

Note that the U arrays are now in disjoint processor sets and 
can share a single slice of memory (figure 5). Then the four 
multiplications can be collapsed into a single multiplication to be 
carried out for all of U2, U3, U4, and U5 simultaneously, resulting 
in 

Total time for operations = 3 
Total time for motion = 40 or 80 
Total number of memory slices = 3 

This example illustrates a need to  optimize the static layout 
of user-declared arrays. Sometimes dynamic layout is required, 
as in the following example. 

DO 10 J=i,M 
TEMP(1:N) = A(J,l:N) 
A(J,l:N) = B(J.l:N) 
B(J,l:N) = TEMP(1:N) 

10 CONTINUE 

In this case it is desirable not t o  assign TEMP t o  one fixed set of 
locations. Its uses on different iterations do not interact (there 
is no dependence among them), so TEMP may be allocated to  a 
different set of operations on each iteration. In other words, the 
compiler can in effect rewrite the code to  behave something like 
this 

DO 1 0  J=l,M 
TEMP(J,I:N) = A(J.1:N) 
A(J,I:N) = B(J.1:N) 
B(J,l:N) = TEMP(J,l:N) 

10 CONTINUE 

Data optimization processing takes place after the Internal Rep- 
resentation (IR) of the source code has been created to  expose all 
source level computations and after this IR has been optimized. 
IR requiring exact locations, such as for data motion or context 
setting, has not yet been exposed. The algorithms take machine- 
specific time and space cost functions as parameters and can 
therefore be applied to a variety of machines by using different 
cost functions. 

The first phase of dataoptimization is the Align phase, which 
determines preferred relative alignments among occurrences of 
named array sections based on dependences. Resolving conflicts 
among these preferences indicates a need for data  motion. The 
Inter phase determines the best location for intermediate results, 
tracking multiple copies of array sections produced by conflict 
resolution in Align and by Inter's own processing of previously 
analyzed statements and subexpressions. 

When Align is unable to  allocate sections according to  their 
preferred relative alignment, motion is required. The Motion 
phase determines what data  is to be moved, which motion in- 
structions are needed and their initial placement in the gen- 
erated code. A Mini-Vectorizer is then activated to perform 
vectorization-like transformations on the code introduced by pre- 
vious phases. The exact allocation of array occurrences is now 
determined and code is exposed in the IR for context setting and 
motion. Standard global optimization is then performed on the 
newly added code. 

The major compiler phases that are unique to da ta  optimiza- 
tion are Align, Inter, Motion, and the Mini-Vectorizer. These are 
discussed in more detail in the remainder of this paper. 

4 Align 

The align phase determines the allocation of occurrences of 
named arrays and their sections. Align analyzes usage patterns 
in the source, noticing situations where the best allocation of 
one array occurrence depends on the allocation of another array 
occurrence. We call these situations preferences. 

An I d e n t i t y  P re fe rence  is between corresponding dimen- 
sions of a definition and use of the same array and indicates a 
preference to align identical elements of the array in the same 
processors for the two occurrences. 

A Confo rmance  P re fe rence  is between corresponding di- 
mensions of occurrences of different arrays that are operated on 
together and indicates a preference to  align corresponding ele- 
ments of distinct arrays in the same processors. 

An Independence  Ant i -Preference  is associated with a 
single dimension of an array occurrence (not a relationship be- 
tween them) and indicates a preference to store the distinct ele- 
ments along that dimension in different processors. 

The three characteristics above refer to allocation across pro- 
cessors. There is, of course, a Un iqueness  R e q u i r e m e n t  that 
each dimension must have a unique effect on the storage of the 
array elements over the entire memory space of the machine but 
this effect could well be with respect to the storage within pro- 
cessor memory. Therefore, even with this requirement, the value 
in a particular dimension may legitimately have no effect on the 
allocation of an array across processors. 



These preferences are discussed below with their implications 
for the Connection Machine. Some implications for other archi- 
tectures are presented as well. 

Identity Preference: This preference is between corre- 
sponding dimensions of a definition and a use of the same ar- 
ray if there is a true dependence between them. Note that the 
allocation of a definition and use of the same array may be de- 
termined independently if there is no true dependence between 
them. (Also note that output dependences and anti-dependences 
have no impact on allocation.) 

The identity preferences in our example are shown below 

and 
10 B(1:5,1:N) = B(1:S.i:N) * S 

On the Connection Machine, an identity preference means 
that if the allocation of the array a t  the definition is not iden- 
tical t o  the allocation a t  the use, motion will be required. On 
a MIMD machine this preference might be used when partition- 
ing an application among the processors. On a MIMD machine 
an identity preference means that if the definition and the use 
are not executed on tlie same processor, there is a cost for syn- 
chronization, and, if the hlIMD processors have local rather than 
shared memory, there is also a cost for data motion. 

Conformance Preference: This preference is between cor- 
responding dimensions of two arrays that are operated on to- 
gether. The conformance preferences in our example follow: 

In the assignment t o  U 2  there is a conformance preference be- 
tween the second dimension of B and the only dimension of Lit. 
If these two dimensions are not allocated identically, motion t o  
align will be required. Restrictions may be associated with each 
conformance preference. For example, the conformance prefer- 
ence in the statement 30 holds only when the first subscript of B 
is 2. Statement 40 has the same preference between the second 
dimension of B and Lli ,  but the restriction holds when the first 
subscript of B is 3. 

On the Connection Machine system, motion will be mini- 
mized if dimensions associated by conformance preferences are 
allocated so that  corresponding elements align. On a machine 
with memory bank contention, a conformance preference means 
that delays will be minimized if we allocate these two sections 
or at  least the corresponding elements of the sections in distinct 
memory banks. On a MIMD machine with local memory, a con- 
formance preference means that the two sections or at  least the 
pairs of elements determined by this correspondence must reside 
in the same processor to minimize data motion. 

Independence Anti-Preference: Both the identity prefer- 
ence and the conformance preference attempt to reduce motion. 
This anti-preference attempts to preserve maximum parallelism. 
Without this preference, the other preferences can always be re- 
solved by storing large sections or even entire arrays in a single 
processor. While such a resolution will result in no data motion, 
it may reduce parallelism and increase memory requirements. 
(In our example, loss of parallelism occurs if we break the inde- 
pendence anti-preference on the first dimension of B and store 
this dimension serially within the processor memory, as shown 
in figure 3. With this allocation, a single operation on all of B 
must be transformed into five operations, one on each row of B.) 
The independence anti-preference is a characteristic of a, specific 

dimension occurrence if that dimension contains a potentially 
parallel subscript, that  is if the subscript is not scalar. The in- 
dependence anti-preference is included so the algorithm will not 
always decide to minimize motion a t  the expense of memory and 
parallelism but will make an explicit choice based on cost by 
associating a cost with each independence anti-preference, 

The relationships described above are represented as arcs in 
a graph whose nodes are dimensions of occurrences of arrays and 
array sections. Such a graph can be consistent or in conpict. It 
is consistent if all the preferences can be satisfied. I t  is in conflict 
if  references contradict each other. In the above example the 
 reference graph contains a conflict. The second dimension of B 
must align with L11 where the first subscript of B is 1 and also 
where it is 2. If the first dimension of B is stored across the pro- 
cessors, the conformance preferences cause a conflict. If the first 
dimension is stored down processor memory, the independence 
 reference causes a conflict. The graph is therefore in conflict. 

If the preference graph is consistent, no motion need occur 
a t  runtime. Conflict resolution involves either the introduction 
of motion or, if a dimension is to be stored down the processor 
memory, additional memory requirements and possibly loss of 
parallelism. When a conflict is broken, a preference arc is re- 
moved from the preference graph. Removal of a conformance or 
identity arc implies the necessity of data motion. To enable the 
Motion ~ h a s e  to insert this motion, Align records information 
about the removed arcs. Removal of an independence arc results 
in increased storage requirements per processor and possible re- 
duction in parallelism, but no data motion is required. 



Align processing begins by building the preference graph for 
each basic block. If the graph is in conflict, this will involve 
conflict resolution. Sometimes resolving a conflict can be ac- 
complished in several ways which may differ significantly in their 
cost. Costs are associated with the arcs in the graph and Align 
attempts to find the least cost resolution. Costs may include the 
cost of motion, the cost of memory, and the cost of lost paral- 
lelism. 

When the block is made consistent, Align processing then pro- 
ceeds up the control tree, a hierarchical representation of the con- 
trol flow of the program with basic blocks a t  the leaves. At each 
stage in a bottom-up control tree walk, the consistent graphs for 
the subnodes of a control node are combined by taking their union 
and then including arcs representing the relationships that cross 
between the subnodes. When joining control nodes, new identity 
preferences may be introduced. Conformance preferences and in- 
dependence anti-preferences occur strictly within control nodes. 
Conformance preferences arise only within statements and there- 
fore no additional conformance preferences can be introduced by 
joining the preference graphs of the control nodes on the way up 
the control tree. 

Since the subgraphs (graphs for the children of the control 
node) are known to be conflict free, conflict resolution is per- 
formed incrementally by processing only the new identity prefer- 
ence arcs added between the subgraphs. 

Since small local graphs are processed and then incrementally 
combined, the processing time is significantly faster than that of 
an equivalent global algorithm. Since it starts at  the leaves of 
the control tree and works outward, the algorithm gives priority 
to preferenres arising in inner loops. 

The conflict in our example may be broken in a number of 
ways. Two are indicated below: 

1. Store the first dimension of the B array down the processors 
so that one copy of L11 can align with all the appropriate 
sections of B (figure 3). This resolution breaks the indepen- 
dence preference. 

2. Store B across the processors and align L i l  with B( i  , l : N )  
and each of U2, U3, U4, and US with the corresponding sec- 
tion of B (figure 4). This removes the conformance prefer- 
ence hetween L11 and the sections of B. 

Option 1 uses more memory but incurs no loss of parallelism 
and results in no motion for execution of lines 10-60. This option 
results in 

Total time for operations = 10 
Total time for motion = 0 
Total n~lmher of memory slices = 10 

This may be the optimal result. On the other hand, the ad- 
vantages of this option may well be offset by the necessity of 
either motion to  serialize B from its parallel definition or execut- 
ing the assignment defining B once for each value of the subscript 
in dimension 1. In any case, adoption of this strategy will be un- 
enlightening for the rest of the paper. Option 2 will be assumed. 
The effect of this decision will be that for each statement the 
LIIS and the B sertion are now aligned. hlotion will be required 
to  align these with L11. 

'There are a number of possibilities for this motion. At a 
minimun~, L11 will Ije moved to align with each LHS at a cost of 

1,  2, 3, and 4 NEWS moves, respectively. The total motion time 
is ten times the unit cost of a NEWS move. At worst, each B 
section will be moved to  align with L11, the operation performed 
there, and the result moved back to align with the LIIS. This 
would require a total of 20 NEWS moves. This option results in 

Total time for operations = 6 
Total time for motion = 40 or 80 
Total number of memory slices = 7 

5 Inter 

Once allocation of occurrences of named arrays has been deter- 
mined, the compiler must deal with the proper allocation of array 
temporaries arising from operations, that is, it must decide where 
the operations will be performed. If Align was able to satisfy all 
preferences, then all operands in a statement as well as the des- 
tination of an assignment will have the proper alignment. In this 
situation the optimal location for each operation will be obvious. 
In many cases, however, some conflicts will have arisen, causing 
Align to break preference arcs. If the operands are not aligned, 
two or more possible locations for temporaries will exist. 

The Inter phase, which chooses optimal locations for array 
temporaries, uses a dynamic programming algorithm over an ex- 
pression tree. The locations considered are those of the named 
sections in the same statement. For each temporary, Inter consid- 
ers each of these locations along with the cost of moving operands 
to  each location to align them for operations. Let M(L1, L2)  de- 
note the cost of moving an array from location L1 to location 
L2. This rost is determined by the Connection Machine instruc- 
t i o n ( ~ )  needed to effect the move. Then, for each operation $ 

and each location L, the cost of performing x $ y in L, denoted 
C(z  $ y), is the minimum cost, over all considered pairs of loca- 
tions L1 and L2, of computing x in L1 and then moving it to L 
added to the cost of computing y in L2 and moving it to L. That 
is, 

For an assignment statement x = y where x is in location L,, 
the cost is given by 

C(y,  L) + M ( L ,  L,) 

The statement level cost equation drives the computation for 
interior nodes of the right-hand side y. 

Note that when an operand is moved (copied) from one lo- 
cation to  another, an  additional copy of it is available for use in 
subsequent statements. Inter keeps track of these multiple copies 
in determining minimum costs. The algorithm for tracking copies 
uses a mechanism similar to that of value numbering. A copy re- 
mains valid until an assignment to any of the elements in the 
original array section is made. Tracking of inultiple copies can 
be done arross rontrol flow as well as within basic blocks. 

To return to our example, let us assume that Align has de- 
cided to allocate B across the processors and to align L11 with 
B(1 , l :N) in location L1 and each Ui with the appropriate section 
of Il in location L,. Then statement 20 requires no alignment. 



The operation will take place in L1. For statement 30, the cost 
is given by 

The locations to consider for L are L1 (holding Lii) and Lz 
(holding U 2  and B(2,l :N)). For L = L1, the cost is 

To perform the multiplication in L1 would require moving 
B(2.1:N) t o  L 1 ,  at a cost of one NEWS move. The total cost of 
the assignment would then be 2 NEWS moves. For L = L 2 ,  the 
cost of performing the operation in L is one NEWS move and 
the cost of moving the result t o  L2 is 0. Thus the total cost is 
one NEWS move. This option is clearly preferable. 

AS a result of the choice just made, there will now be two 
copies of L11, the original in L 1  and a new one in L 2 .  For state- 
ment 40, there are now three possible locations: the two locations 
holding Lli, and also Lg,  which holds U3 and B(3,I:N). An anal- 
ysis similar to the one performed above will determine that the 
lowest cost will be obtained by performing the operation in L3. 
In order to do this, L11 will be copied to Ls The cost of moving 
L11 from its original location to  L3 is 2 NEWS moves while the 
cost of moving from the copy a t  Lz  is 1 NEWS move. Thus this 
copy will be used. 

As the algorithm continues for the remaining statements, each 
multiplication will be carried out in L, ,  with the most recent copy 
of Lll a t  L,-l being copied at  a cost of 1 NEWS move. 

At the end of the Align phase, the cost of our example de- 
pended on an arbitrary choice of locations for the intermediate 
operands. Inter assures the best choice and, in fact, does better 
than this by tracking multiple copies. 

Total time for operations = 6 
Total time for motion = 16 
Total number of memory slices = 7 

Although it is not relevant to our example, we describe an 
additional optimization performed by Inter. The cost of com- 
putation for a complex arithmetic expression may sometimes be 
reduced if reordering of operations is permitted. When such re- 
ordering is permitted, a set of adjacent addition and subtraction 
nodes can be viewed as an n-ary addition, with some operands 
preceded by a unary minus. The same is true for a sequence of 
multiplication and division operations. Inter will exploit this fact 
by regrouping operands to  minimize the cost of motion among 
them. Operands in the same location are combined before join- 
ing them with other operands. For example, if statement 30 in 
our example had instead been 

then Lli would first be multiplied by B(1,l:N) in location L 1 .  
The result would then be copied to L2 for multiplication by 
B(2,l :N) and assignment to U2. 

6 Motion 

After Align and Inter have determined where each occurrence 
of an array or section will reside, the Motion phase determines 
which references require motion, the position of the motion code 

in the IR, the type of motion required aad the amount of data 
to  be moved. 

Motion is required: 

when Align had an identity or conformance preference that 
it had to break (breaking an independence anti-preference 
does not require motion) 

when Inter decides t o  move a named section 

when Inter decides to move an intermediate result 

Motion will attempt to collect motions in a basic block to the 
same place within the block so that they can be combined to  
minimize cost. For example, two disjoint sets of values may be 
more cheaply sent together than separately. Also one motion 
may totally subsume another. If this is the case, only the larger 
need be performed. An identity preference may exist because 
data  independence of the subscripts cannot be proved at  compile 
time. In such cases, Motion may insert a scalar test, which will 
be executed a t  runtime and possibly save the cost of motion. 

In our example, the motions of Lll is of the right form to  be 
converted to  a spread but it is not moved far enough for conver- 
sion to be cost effective. For this example Motion simply inserts 
motion code after the definition of Lil, having no additional ef- 
fect on the costs. 

7 Mini-Vectorizer 

Upon completion of the previous phases, a number of opportuni- 
ties for vectorizer-like transformations that further improve per- 
formance are uncovered and are handled by this phase. These 
transformations are with respect to motion code and therefore 
cannot be performed until allocation and motion have been de- 
termined. The following transformations are processed by this 
phase. 

Motion is associated with a particular loop in a loop nest. 
If loops are interchanged the total cost of the motion may 
be affected, sometimes significantly. 

If a loop itself is not vectorizable and a series of definitions 
or uses of individual elements in an array remain, motion 
between the front end and the Connection Machine is re- 
quired. The direction of the motion depends on whether 
the references are uses or definitions. The mini-vectorizer 
may be able to  transform the motion from elemental m s  
tion within a loop to array motion outside the loop even if 
the operations are not vectorizable. 

If all arrays are stored in locations determined by their 
shapes, the only factor determining when arrays can share 
a slice of memory is their lifetimes. With the allocation 
scheme based on preferences, even if two arrays are live a t  
the same time, they can be allocated to  the same memory 
address if they share no processors. 

The same operation performed on distinct sections of the 
same array or on different arrays that do not share proces- 
sors can sometimes be ccnverted to  a single operation on 
all sections at  once. 

The last case above occurs in our example. The four sections 
of B are being multiplied by different copies of Lii. In order to  
convert this t o  a single multiply, we must prove that 



r The four locations (set of processors) for the operations 
are distinct. (They may, however, have array elements in 
common such as Li 1.) 

r No two LHSs may contain the same array element. 

r The same operation is used on each section. 

We allocate a single memory address for all copies of Lii, 
a single memory address for U2, U3, U4, and U5, and perform a 
single multiplication. This transformation saves seven slices of 
memory and three multiplications. 

The algorithms described above have produced two possibil- 
ities for this code sequence, with costs of 

Total time for operations = 10 
Total time for motion = 0 
Total number of memory slices = 10 

and 

Total time for operations = 3 
Total time for motion = 16 
Total number of memory slices = 3 

Recall that the numbers for the ndive allocation strategy were 

Total time for operations = 6 
Total time for motion = 720 or 400 
Total number of memory slices = 7 

On this fragment data layout optimization can either 

r improve memory usage by a factor of 2 and execution speed 
by a factor of 20 or more or 

r increase memory requirements and time for arithmetic op- 
erations while eliminating all data motion. 

8 Generalized Common Subexpressions 

Generalized common subexpression elimination is an optimiza- 
tion performed by the Inter phase. It is not relevant to our 
example and therefore was not presented above, however, it can 
have a significant effect on the cost of motion for for a num- 
ber of applications and on a variety of machines and is therefore 
included here. 

If a SIMD operation is performed on a section or sections 
and subsequently the same operation is performed on different 
sections of the same array(s), the two operations can be com- 
bined. This is not exactly a common subexpression because the 
sections may not be the same, but, except for the context (the set 
of enabled processors), the operations are, in fact, identical. By 
adjusting the context, the expressions can be combined. The op- 
erations involved may be either local per processor computations 
or they may involve motion operations. Finding common motion 
operations is the more interesting (and cost effective) case. 

Consider the following assignment: 

Neglecting boundary conditions, the nature of this assignment 
may be captured in the following schematic form: 

By rewriting northwest(A) as north(west(A)) and then noting 
that north distributes over +, we get 

Viewed this way the two occurrences of A + weat(A) can be 
thought of as a kind of common subexpression, but our infor- 
mal notation, because it glosses over the boundary conditions, 
hides the fact that different sets of values are involved. If we 
cast this back into correct Fortran (using a temporary variable 
because Fortran 8x arbitrarily does not permit one to subscript 
an expression), we find that they are not quite common subex- 
pressions after all: 

TEMP = A(2:NP2:N) + A(1:N-1,P:N) 
A(2:N92:N) = TEMP + TEMP(?,?) !wrong 

A solution of this general form will work, but only if the common 
subexpression is generalized to contain the union of the set of 
values required by all uses. Thus TEMP will contain more values 
than either of its uses requires: 

TEMP = A(~:N,I:N) + A(1:N-1,I:N) 
A(2:N,2:N) = TEMP(l:N,2:N) + TEMP(l:N,I:N-I) 

This is worthwhile when the cost of computing the union of two 
(or more) sets of values will be cheaper than computing each set 
separately. This frequently occurs in codes where various shifted 
sections of a single array are to  be combined. 

To notice opportunities for this optimization we need to  re- 
move attention from the specific elements being operated on and 
focus instead on the array names of the operands and on their 
offsets. Specifically, A $ B and A' $ B' are general common 
subexpressions if 

w A and At are sections of some array, and B and Bt are 
sections of some array 

r the relationship between the corresponding subscripts of A 
and A' is the same as the relationship between the corre- 
sponding subscripts of B and B' 

flow analysis indicates that the arrays involved have not 
been altered in the interim 

If the operation is a motion operation as opposed to a local 
computation, then B and B' may be viewed as the target set of 
processors. 

9 Related Work 

There is a great deal of other literature on compiling Fortran 
for parallel computers. Much of this work addresses techniques 
for extracting parallelism from programs that may have been 
written in a sequential style, for example [2,5,8]. We use some of 
these parallelizing techniques in our "mini-vectorizer" phase, but 
regard them as complementary rather than central to our work. 

Allen and Kennedy [2] further point out that appropriate pro- 
gram transformations may not only improve opportunities for 
parallelism but reduce synchronization overhead. This happens 
not to apply to our particular practical problem, because the 
SIMD nature of the Connection Machine architecture obviates 
the need for explicit synchronization, but might well be relevant 



t o  an adaptation of our data layout techniques to an architecture 
with asynchronous parallelism. 

We pursue questions of data structure transformation rather 
than program transformation. Our main goal is to determine 

data  layouts that minimize communications overhead in architec- 
tures with non-shared memory, once opportunities for parallelism 
have already been made explicit. The IVTRAN compiler [10,11] 
addressed similar concerns of array layout; our work differs in 
considering a richer space of layout possibilities and in handling 
a larger set of communications primitives spanning a spectrum 
of functionality/speed tradeoffs. 

Crystal [4] also deals with questions of data layout. It ac- 
cepts and transforms programs in a language based on recursion 
equations, and targets systolic architectures. Crystal also em- 
phasizes the detection of common subexpressions so that results 
computed in one processor may be shared with other processors. 
However, Crystal apparently finds only standard cse's that are 
costly. The notion of generalized common subexpressions covers 
more cases. 

10 Summary and Conclusions 

In an earlier paper (11 on the Connection Machine Fortran com- 
piler, it was demonstrated that the Connection Machine is a 
natural target for compilation of Fortran 8x array constructs. 
However, careful attention to  allocation of data across proces- 
sors according to usage patterns is necessary in order to  exploit 
the full benefits of the Connection Machine architecture. Naive 
allocation strategies give rise to the need for large amounts of 
expensive motion code in order to align data  for parallel opera- 
tions. 

The compilation approach presented in this paper performs 
analysis of usage patterns and determines the allocation strat- 
egy for each occurrence of an array section. The potential per- 
formance impact of this compilation technology is measured in 
orders of magnitude rather than percentages. The problem as 
well as the solution apply to any SIMD machine with local mem- 
ory. Aspects of the analysis apply to a variety of architectures 
where the presence of data  in the right place at  the right time 
can significantly improve performance. 

References 

[I] Albert, Eugene, Knobe, Kathleen, Lukas, Joan D., and 
Steele, Guy L., Jr .  Compiling Fortran 8x array features for 
the connection machine computer system. In Symposium on 
Parallel Programming: Experience with Applications, Zan- 
guages and Systems. ACM SIGPLAN (Jul 1988). 

[2] Allen, John R., and Kennedy, Ken. Automatic loop inter- 
change. In Proceedings of the ACM SIGPLAN 84 Sympo- 
sium on Compiler Construction. Association for Computing 

Machinery (June 1984), 233-246. 

[3] Draft Proposed Revised American National Standard Pro- 
gmmming Language Fortmn, ANSI X3.9-198x edition. 
American National Standards Institute, Inc. (Washington, 
D. C., 1987). 

[4] Chen, Marina C. A parallek language and its compilation 
to  multiprocessor machines or VLSI. In Proceedings of the 
Thirteenth Symposium on Principles of Progmmming Lan- 
guages. Association for Computing Machinery (St. Peters- 
burg Beach, Florida, January 1986), 131-139. 

[5] Gottlieb, R., Kimball, K., Jaskiewicz, T., and Swift, R. A 
new way to  speed up a supercomputer. Electronics 58, 30 
(July 1985), 56-58. 

[6] Hillis, W. Daniel. The Connection Machine. MIT Press 
(Cambridge, Massachusetts, 1985). 

[7] Hillis, W. Daniel, and Steele, Guy L., Jr. Data parallel 
algorithms. Communications of the ACM 29, 12 (December 
1986), 1170-1183. 

[8] Irigoin, F., and Triolet, R. Supernode partitioning. In Pro- 
ceedings of the Fifteenth Symposium on Principles of Pro- 
gmmming Languages. Association for Computing Machin- 
ery (San Diego, January 1988), 319-329. 

[9] Kruskal, C. P., Rudolph, L., and Snir, M. The power of 
parallel prefix. IEEE 3)nnsactions on Computers C-34, 10 
(October 1985), 965-968. 

[lo] Millstein, Robert E. Control structures in Illiac IV Fortran. 
Communications of the ACM 16, 10 (October 1973), 621- 
627. 

[ l l ]  Presberg, David L., and Johnson, Neil W. The Paralyzer: 
IVTRAN's parallelism analyzer and synthesizer. ACM SIG- 
PLAN Notices 10, 3 (March 1975), 9-16. 

[12] Connection Machine Model CA4-2 Technical Summary. 
Thinking Machines Corporation (Cambridge, Massachu- 
setts, April 1987). 



Testing Shared-Memory Parallel Programs 

A n d r e w  H. S u n g  

Abstract 

C o m p u t e r  Sc ience  Department 
New Mexico  Tech 

Socorro, NM 87801 

The  problem of testing shared-memory, synchronous 
parallel programs is addressed. We use a simple, Pascal- 
based general purpose parallel language for SIMD 
machine programming and investigate the testing 
problem in this context. A scheme for classifying PRAM 
programming errors is proposed. Several approaches of 
designing testing coverage criteria for PRAM programs 
are presented. Various testing coverage metrics are 
defined and their properties are discussed. Also presented 
is a complete parallel program testing methodology which 
incorporates test generation tools for serial programs. 
This methodology allows easy implementation of testing 
procedures for parallel programs. 

Keywords: Software Testing, Testing Coverage Criteria, 
Parallel Programming, SIMD, Shared-Memory Machines, 
PRAM, Programming Errors. 

1. Introduction 

With the  increasing availability of parallel computers and 
supercomputers, the timely development of methodologies 
for building and validating parallel software is of crucial 
importance. Clearly, the tremendous computing power 
offered by parallel machines can be fully utilized only if 
we can effectively implement and validate the  software 
for such machines. However, while much has been done 
on programming systems and environments for parallel 
computers and supercomputers, little research has focused 
on validation techniques for parallel programs. 

The software validation problem for parallel machines is 
harder than and different from tha t  for supercomputers. 
For  vectorized/ concurrentized programs executed on  
supercomputers, validation is easier as we can generally 
assume a correct vectorizing/optimizing compiler and 
validate the vectorized code by validating the serial 
source code or  t o  choose already validated serial code t o  
begin vectorization with. Except for possible round-off 
errors (due t o  the fact that  vectorization and 
concurrentization of serial code might lead to different 
round-off error accumulation and therefore give different 
answers), this simple approach should be sufficient given 
that  the serial software validation techniques are fairly 

well established and have been used extensively. 

For  parallel programs which are executed on machines 
containing a large number of processors, the validation 
problem is more difficult due t o  the  lack of obvious 
approaches. In this paper we address the issues involved 
in the validation of parallel programs for shared-memory 
SIMD machines. Specifically, we investigate the problem 
of testing programs for the most powerful model of SIMD 
parallel computers, the shared-memory, Parallel Random 
Access Machine or  PRAM [2,15]. Our aim is t o  take an 
approach generat enough t o  be applicable t o  a variety of 
high-level programming methods for SIMD machines. 
PRAM is chosen because it  is a general model for 
developing and analyzing synchronous parallel programs 
[2,151. 
We propose a scheme for classifying errors. Two aspects 
of PRAM programming, processor activation (the 
sequence of sets of processors activated-PAS) and 
processor coordination (the sequence of 
read/write/computation activities of active 
processor-PCS) are formally described, and PRAM 
programming errors are characterized in terms of them. 
Thus, PRAM programming errors are classified as either 
processor activation errors, processor coordination errors, 
o r  computation errors. This error classification scheme 
refines the widely used concept of computation and 
domain errors for serial programs and provides a 
framework for analyzing parallel programming errors. 

We then propose a hierarchy of testing coverage criteria 
for PRAM programs based on input-driven structures 
like processor activation, processor coordination, read- 
write sequence, etc. Coverage criteria based on 
flowgraphs and dataflow information are also discussed. 
The  relative strengths of these criteria are analyzed. 

Finally, we present a methodology for implementing 
testing procedures for PRAM programs. This 
incorporates a parallel t o  serial translator, a path finder, 
and a serial program testing tool. The idea is t o  choose 
a n  appropriate coverage criterion, interactively analyze 
the test result and select the next path t o  be tested, and 
use the translator and path finder to assist in test d a t a  
generation. As the translator and path finder translate 
descriptions of paths within a parallel program t o  



descriptions of paths within an equivalent serial program, 
serial program test generation tools are utilized t o  
generate tests. Using this methodology, parallel program 
testing and debugging tools can be implemented 
economically. 

The rest of the paper is organized as follows: In section 2 
a general purpose parallel programming language for 
PRAM programming (with minor modification, it can 
also be used for interconnection SIMD machine 
programming) is presented. Section 3 deals with 
classification of PRAM programming errors. In section 4 
we define families of testing coverage criteria for parallel 
programs. In section 5 a methodology for testing parallel 
programs is proposed. 

2. A Language for SIMD Programming 

A general purpose high-level language for SIMD machines 
should provide means t o  express parallelism, and t o  
represent d a t a  organization and transfer. The rest of this 
section discusses those additional features with brief 
explanations. 

2.1 Data Representation and Organisation 

In a PRAM, all processors (or PEs)  are connected t o  the 
global o r  shared memory. A master processor which 
controls all P E s  is called the control unit (CU). There 
are three types of variables: P E  or local variables, bound 
locally t o  each PE;  shared or global variables, bound t o  
the shared memory and accessed by all PEs; and CU 
variables, bound t o  the CU. Parallel data  objects which 
reside in PEs' local memory or  P E  objects are identified 
by the keyword pe preceding the data  type in their 
declarations, and variables in the memory of CU (CU 
objects) are declared as usual. The keyword shared is 
used in front of the global data  in the shared memory. 

2.2 Control of Parallelism 

PEs  are requested statically using a network declaration. 
The language does not concern itself with the actual 
number of processors available. A simple par <range> 
do <statement> construct is used to represent the 
activation of different subsets of PEs  whose data  are 
referenced in the statement. Those activated P E s  execute 
the statement following do in parallel. 

Conditional selection of P E s  is specified by where 
<predicate> do <statement> {elsewhere 
<statement>), where the predicate involves parallel 
da ta  in PEs. All the PEs where the predicate evaluates 
to  true execute the statement following do while the P E s  
where it is false execute the statement following 
elsewhere, with the statement in the do clause executed 
before tha t  in elsewhere. The elsewhere clause is 
optional. 

2.3 Data Transfer through Shared Memory 

All d a t a  transfers among P E s  and between P E  and the 
CU are achieved through writing into and subsequent 

reading from the shared memory. 

This completes the list of our extensions to  Pascal. The 
programming language has been used t o  code a 
representative set of parallel algorithms from the 
literature. Two example programs are given below (see 
ref. (21 for algorithms). 

Program 1 
procedure OR (n : integer; v a r y  : boolean); 
{Find the OR of n bits in O(1) time on CRCW 
PRAM with common write. ) 

const 
max = 256; 

network 
pe [l..max] : PRAM; 

m r  
i : integer; 
x : pe boolean; 
M : shared array [l..max] of boolean; 

begin 
{Initialization, read input n bits 
into first n cells of shared memory) 

(1) par i := 1 to n do 
begin 

(2) x[i] :=M[i]; 
(3) where x[i] = 1 
(4) do M[l ]  := 1 

end; 
(5) y := Mil]  
end; 

Program 2 
procedure MAX (n,m : integer; var maxi: integer); 
{Find the maximum of n integers in O(1og n) time 
using EREW PRAM. Assume n = 2m. ) 

const 
p = 256; 

network 
pe [l..p] : PRAM; 

va r 
i, incr, step : integer; 
temp, big : pe integer; 
M : shared array [1..2*p] o j  integer; 

begin 
{Initialization, read n inputs into first n cells of 
shared memory, and set all other cells to  -00 } 

(1) par i := 1 to n do 
(2) big[i] := M[ij; 
(3) incr := 1; 

(4) /or step := 1 to m do 
begin 

(5) par i := 1 to n do 



begin 
(6) templi] := M[i+incr]; 

(7) big[i] := max (big[i], templi]) 
end; 

(8) incr := 2*incr; 

{g) par i:= 1 to n do 
(10) M[i] := big[i] 

end; 
(11) maxi := M[l]  
end; 

Note tha t  there are three models of PRAM-Exclusive 
Read Exclusive Write (EREW), Concurrent Read 
Exclusive Write (CREW), and Concurrent Read 
Concurrent Write (CRCW)-according t o  whether 
concurrent reads and writes are allowed; and there are 
three submodels of CRCW PRAM, depending on how 
write conflicts are resolved [2,15]. Programs 1 and 2 
above work on different models. We will, however, not 
be concerned with the difference between the models. 

3. Errors in PRAM Programs 

The widely used classification of computation and 
domain errors [7] for serial programs is not directly 
applicable t o  parallel programs. In the following 
sections, we identify two classes of errors characteristic of 
parallel programming for PRAM, namely, incorrect 
selection and activation of PEs  and erroneous reading or  
writing sequences. 

Suppose * denotes any aspect of a parallel program P .  
We use SPEC(P,*(d)) t o  denote the correct * of P on 
input d according t o  the specification of P. 
(Equivalently, SPEC(P,*(d)) is the * of the hypothetical, 
correct version P of P on input d.) Further, let 
IMP(P,*(d)) denote the implemented or  actual * of P on 
d, obtainable through an analysis and/or execution of P. 
Intuitively, P contains an error whenever SPEC(P,*(d)) 
differs from IMP(P,*(d)) for any instance of * on some 
input d. (When P is understood, we use SPEC(*(d)) for 
SPEC(P ,*(d)) and IMP(*(d)) for IMP(P,*(d)).) 

3.1 Processor Activation Error 

Let P be a parallel program with input domain D. 
Suppose that  P takes t steps t o  process d E D, using q 
logical PEs. (Note t h a t  q and t are usually functions of 
the input size. Program 2, for example, takes q = n PEs  
and t = 4m + 3 = O(log2n) steps t o  find the maximum 
of n numbers, assuming n = and ignoring the  
initialization step.) An input d causes P t o  activate a 
fixed sequence of PEs. More specifically, let PAS(d) = 
<A ,, A2, ... , A t > ,  a t-tuple, be the "Processor 
Activation Sequence1' of P on input d, where each Ai (1 
5 i 5 t )  is a subset of {c,1,2, ...,q) and contains the 
indices of active PEs  a t  step 1 during P's execution on d 
(assume that  the CU is indexed with c, and the q PEs  are 
numbered 1,2, ...,q). We call each of this subset an 

'Lactivation snapshot". Further, let PA(d) = {A I A is a 
component of PAS(d)) be the set of all activation 
snapshots of P on input d. 

One prominent class of errors in SIMD programming is 
caused by processors being incorrectly 
activatedldeactivated, i.e., a wrong set of P E s  being 
active a t  some step during the  execution of the program. 
The discrepancy between SPEC(PAS) and IMP(PAS) 
characterizes this type of errors. T h a t  is, a program is 
said t o  contain a "processor activation error" whenever 
SPEC(PAS) # IMP(PAS), i.e., SPEC (PAS(d)) # IMP 
(PAS(d)) for some d E D. 

As an example of a processor activation error, consider 
statement (3) of program 1 erroneously written as 
"where x[i] <> I", this causes the  incorrect subset of 
P E s  t o  be activated a t  statement {4), and thus is a 
processor activation error. 

3.2 Proceasor Coordination Error 

Another notable feature of PRAM programming is 
processor coordination. Since the  processors of a PRAM 
communicate through a shared memory, readings and 
writings are coordinated t o  achieve interprocessor 
communication; in addition, there are algorithms which 
specifically exploit the concurrent write features of 
PRAM. Let P, D, t ,  q be the same as above. Define 
PCS(d), the "Processor Coordination Sequence" of P on 
input d, as <C1, C2, ... , C t > ,  where each Ci, called a 
"PC snapshot", is as follows: (1) If the  i t h  step in the  
computation is a reading step, i.e., active P E s  perform 
reading from the shared memory, then Ci = [s,, s2,  ..., 
s,] such that  s, G A ;  for 1 5 < r  and uj,, sj = Ai ,  
indicating that  r groups of P E s  are reading from r 
disjoint shared memory locations in parallel. P E s  in the 
same group are reading simultaneously from the same 
location in shared memory. (2) If the i t h  step in the  
computation is a writing step, i.e., active P E s  perform 
writing into the shared memory, then Ci = {sl, 62, ..., 
s,) such that  sj C A, and u;-,sj = Ai,  indicating tha t  
r groups of P E s  are writing into r disjoint shared 
memory locations in parallel. P E s  in the same group 
write simultaneously into the  same shared memory 
location. (3) If the i t h  step performs an operation other 
than read or write, then Ci = lo,, a2,  ..., a,l such tha t  
a j  E A i ,  i.e., each a, is the index of a single P E ,  and 
{a,, a2,  ..., a,) = A;, i.e., Ci and A; contain the same 
subset of PEs. In short,  within a PCS(d), [-,-, ..., -1 
denotes a read step and {-,-, ..., -) denotes a write step, 
with P E s  performing simultaneous reads or  writes 
grouped together, and I -,-, ..., - 1  denotes a computation 
step. Also, let PC(d) = {C I C is a component of 
PCS(d)) be the set of all P C  snapshots for input d. 

Difference between SPEC(PCS), the correct processor 
coordination sequence and IMP(PCS), the actual 
coordination sequence indicates errors. Specifically, we 



say P contains an "processor coordination error" if 
SPEC(PAS) = IMP(PAS) but SPEC(PCS) # IMP(PCS), 
i.e., SPEC(PAS(d)) = IMP(PAS(d)) for all d E D and 
SPEC(PCS(d)) # IMP(PCS(d)) for some d E D. Thus, 
processor coordination errors are attributed solely t o  
erroneous PE coordination or  erroneous reads or writes, 
since the P E  activation sequence is correct during P's 
computation on d. 

As a n  example, suppose statement (4) of program 1 were 
erroneously written as "do M[i] := l", then the active 
PEs would write t o  different locations in the shared 
memory while simultaneous writes are intended; this is a 
processor coordination error. 

3.3 Computation Error 

The dichotomy of pro-r activation error and 
processor coordination error for PRAM programs can be 
interpreted as a refinement of the concept of domain 
e r ron  for serial programs [7]. The other type of errors of 
serial programming, i.e., computation errors, can surely 
occur in parallel programs too. We say P contains a 
"computation error" if SPEC(PCS(d)) = IMP(PCS(d)) 
for all inputs d E D but P(d)  # ~ ( d )  for some d E D, 
where P(d)  and ~ ( d )  are, respectively, the outputs of P 
and P on input d. Computation errors are, therefore, 
caused solely by incorrect assignment statements, 
incorrect arithmetic operations, etc., when P is given 
some input d, because both the sequence of PE 
activations and sequence of processor coordinations are 
correct during the computation of P on d. (Note that  
SPEC(PCS) = IMP(PCS) implies SPEC(PAS) = 

IMP(PAS).) 

As a n  example of a computation error, suppose statement 
(4) of program 1 were mistakenly written a s  "do M[l]  := 
Ow, then error is caused by writing an incorrect value into 
M[l]  and thus a computation error. 

One desirable property of our classification is that  it  
makes the three categories of errors mutually exclusive. 
Also observe that,  according t o  this classification, 
programs that  are functionally correct cannot contain 
computation errors; however, this does not necessarily 
imply tha t  such programs are free of processor activation 
errors o r  processor coordination errors. Consider this 
example of a performance bug: Suppose statement (4) of 
program 2 were mistakenly written as "jor step := 1 to n 
do", the program will still correctly output the maximum 
value for every input, and so the error will not be 
detected by merely checking the output values. 
Nevertheless, the program contains an obvious error, and 
in our classification, a processor activation error. 

4. Parallel Program Testing Criteria 

An essential component of a program testing 
methodology is a test coverage or adequacy criterion. An 
ideal criterion should have the following properties: (1) 
applicable, in the sense tha t  coverage of the criterion can 

be effectively monitored; further, a test set satisfying the 
criterion can be effectively constructed. (2) reliable, in 
tha t  a test set satisfying the criterion has high 
probability of detecting errors. (3) cost effective, in that  
the cost of generating and running a test set satisfying 
the criterion is acceptable; this implies that  the criterion 
requires only a reasonable number of test cases. 

In this section, we present several approaches of defining 
test coverage criteria for parallel programs and discuss 
their properties. 

4.1 Flowgraph Based Criteria 

Three commonly used measures for serial program testing 
are statement, branch, and path coverage. T o  apply 
these as well as some other structural testing coverage 
criteria t o  parallel programs, a flowgraph representation 
of parallel programs is needed. For this purpose, we can 
use any graphical representation for parallel programs 
based on a reasonable extension of serial program 
flowgraphs. We say statement i is "executed" by P E  j, if 
statement i involves a variable of P E  j. For  example, if 
the input t o  program 1 is "00101", then statement (4) of 
program 1 is executed by P E  3 and 5 simultaneously. 

T o  apply the statement, branch, and path testing criteria 
to  parallel programs, we consider a parallel statement 
"covered" if and only if it has been executed by a t  leayt 
one PE.  Thus, the test data  of one input "1" can 
minimally satisfy statement coverage testing of program 
1; however, the input "0" does not exercise statement (4) 
and therefore does not satisfy statement coverage. The 
test set consisting of two input data, "0" and "I", 
satisfy branch coverage of program 1, etc. The 
advantage of these simple criteria is their consistency 
with the corresponding serial testing criteria; that is, like 
any structural testing criterion for serial programs, the 
"structure" of a parallel program can be analyzed from 
its control flowgraph alone. Thus, many testing tools 
developed for serial software can be utilized for parallel 
software with minor modification. 

4.2 Input Based Coverage Criteria 

With the presence of new programming language 
constructs and a variable number of active PEs  in 
parallel programs, the criteria defined in section 4.1 for 

parallel programs are apparently not adequate. As the 
execution of a PRAM program entails various P E  
activation/deactivation and interprocessor 
communication through shared memory, testing coverage 
criteria which explicitly require test cases t o  exercise such 
events would probably be more effective. 

4.2.1 Path Coverage Testing 

Let P be a parallel program with s executable elementary 
statements, numbered 1 through s. (An elementary 
statement is one that  can be executed in one step.) 
Define Path(d), the path of P exercised by input d ,  to  be 



(1,,A ,)( 12,A2) ...( lt,At), where 1 < li <_ s (1 I i I t), and 
li represents the ID of the statement being executed a t  
the i t h  step; Ai is the i t h  coordinate of PAS(d), 
denoting the set of active P E s  a t  the i t h  snapshot during 
the computation of P on d. This definition of path of 
parallel programs is compatible with tha t  of serial 
programs; however, as it  represents an actual path 
traversed on a specific input, all infeasible paths are 
excluded. 

Once paths are defined for parallel programs, the 
corresponding path testing criterion can be formulated as 
follows: Select enough test cases t o  exercise all paths. 
This criterion is not practical as most programs contain 
an infinity of paths. 

4.2.2 Criteria Based on PAS and PCS 

Based on the concept of processor activation and 
processor coordination, a family of testing coverage 
criteria can be defined. These criteria, along with the 
path coverage criterion of the previous section, are based 
on input-driven structures of the program and are not 
based solely on  the program or its specification. 

(1) PCS (Processor Coordination Sequence) Testing: 
Select test set T c D such that  {PCS(d) I d E D) c 
{PCS(d) I d E T). 
P C S  testing requires tha t  every possible processor 
coordination sequence during P ' s  execution over all 
input points be exercised a t  least once. 

(2) PAS (Processor Activation Sequence) Testing: Select 
T c_ D such tha t  {PAS(d) ( d E D) C   PAS(^) ( d E 

TI.  
PAS testing requires that  every possible processor 
activation sequence during the computation of P 
over its entire input domain be driven a t  least once. 

(3) P C  (Processor Coordination) Testing: Select test set 
T c D such that  {PC(d) I d  E D) c {PC(d) Id  E T). 
P C  coverage testing requires tha t  every possible 
processor coordination during the execution of P 
over all input points be invoked a t  least once. 

(4) P A  (Processor Activation) Testing: Select T D 
such that  {PA(d) 1 d E D) c {PA(d) 1 d E T). 
P A  testing requires that  every possible processor 
activation snapshot during the computation of P 
over its entire input domain be tested a t  least once. 

(5) P / S  (ProcessorJStaternent) Testing: Select T D 
such tha t  {E(d) I d E D) c {E(d) 1 d E T), where 
E(d) the executability matrix, is a q x s matrix such 

by processor i, when P is run on  input  d. P / S  
testing requires a test set T containing enough test 
d a t a  such tha t  if i t  is possible for processor i t o  
execute statement j when P is given some input d E 
D, then there is a d E T which drives processor i t o  
execute statement j. 

For  two testing coverage criteria C1 and C2, C1 (strictly) 
subsumes C 2  o r  C1 > C2, if every test set T tha t  
satisfies C1 also satisfies C2 but not vice versa. C l  and 
C 2  are incomparable o r  C 1  <> C2, if neither one 
subsumes the other (161. The following lattice diagram 
shows the  relative strengths of the path testing criterion 
and criteria (1) - (5) above. 

4.2.3 Criteria Based on Read and Write 

Reading from and writing into the shared memory are 
conspicuous features of PRAM programs. So an 
alternative approach t o  define test coverage criteria based 
on  input-driven structures is t o  concentrate on the 
read/write events of PRAM programs. Let RWS(d) = 
< X I ,  X P ,  ... , Xt>, where each Xi, called a 
"ReadjWrite snapshot", is as follows: If the i t h  step in  
the computation is a read or  write step, then Xi = Ci = 
the i t h  coordinate of PCS(d); otherwise, Xi = 0. That  
is, RWS(d) concentrates on  the read/write portions of 
PCS(d). Let RW(d) = {X I X is a component of 
RWS(d)) be the  set of all R / W  snapshots. Similarly, 
RS(d) and WS(d) consist of, respectively, the read and 
the write portions of PCS(d); R(d) and W(d) are 
respectively the set of all reads and the set of all writes. 

Corresponding t o  the definitions above, a hierarchy of six 
test coverage criteria can be formulated. Their relative 
strengths are indicated in the diagram below. Compared 
with the criteria in section 4.2.2, the relationship are P C S  
> R W S  and P C  > RW, most other p a i n  of metrics are 
incomparable. 

tha t  4.3 Data Flow Based Testing 

E(d)[ij] = 1, ifX(d)  [ i j ]  2 1 
Useful da ta  flow testing metrics will likely be necessary 
components of complete testing methods for parallel 

0, if X(d) [ i j ]  = 0 
programs, especially because the  correctness of parallel 
programs depends on correct da ta  flow interactions even 

where X(d)' the matrix' is a matrix such more critically than serial programs do. In this section, tha t  X(d)[i,j] = number of executions of statement j 



we present three simplifying measures to apply the da ta  
flow based, serial program testing metrics t o  parallel 
programs. 

4.3.1 Criteria Based on PE Variables 

In this approach, we consider each P E  variable in a 
parallel program as a single variable rather than a 
collection of variables bound t o  different PEs; thus, P E  
variables can be treated in the same way as arrays of 
serial programs. In program 2, for example, definition of 
P E  variable "big" a t  statement (7) is considered live a t  
{lo}, definition of variable "temp" a t  (6) is live a t  (71, 
etc. With this unification of PE variables, liveness of 
each (CU and PE)  variable definition a t  each statement 
can be determined statically. Therefore, algorithms tha t  
were designed for computing this for serial programs (see 
(141) can be used t o  obtain the  same information for 
parallel programs; and anomaly detection tools based on 
d a t a  flow information for serial programs can be utilized 
for parallel programs with minimal modification. 

With the concept of liveness of definitions extended t o  
parallel programs, concepts such as "data environment", 
"data context", and "ordered elementary da ta  context" 
for serial programs (131 can be similarly extended t o  
parallel programs. With theses extended definitions, da ta  
flow based static testing coverage metrics for serial 
programs can be applied directly t o  parallel programs. 

4.3.2 Criteria b e d  on CU Variables 

In this approach, we concentrate on the data  flow 
activities of CU variables and ignore tha t  of P E  
variables. In most parallel programs, CU variables are 
used t o  control the execution of loops which contain 
parallel statements o r  t o  store results of computation. 
Exercising a particular program path t o  test a particular 
da ta  flow activity of CU variables inevitably exercises 
and tests other constructs. 

For  example, a for loop index (CU) variable is defined 
(initialized) before the loop is first entered, it is used 
(incremented) a t  the end of the loop, and used (in a 
predicate) t o  decide if traversal is t o  be continued a t  the 
beginning of the loop. Therefore, a metric such as 
"requiring that  the definition-use chain of length 2 of 
every for loop index variable be tested a t  least once" 
necessarily forces the body of the for loop t o  be tested a t  
least once. 

4.3.3 Combined Criteria 

Static program analysis methods based on combining 
d a t a  flow and control flow information have been 
proposed recently in ref. 191. The approach is t o  use a 
program dependence graph t o  model the data  and control 

dependences between program instructions. Taking the 
simplifying measures of unifying P E  variables o r  
concentrating on  CU variables, we can extend the concept 
of program dependence graph and apply i t  t o  parallel 

programs. Thus, algorithms and tools based on  program 
dependence graphs and developed for serial programs [lo] 
can be used for parallel programs too. Testing coverage 
metrics based on combination of d a t a  dependence and 
control dependence, e.g., requiring each control 
dependence and each d a t a  dependence to be tested a t  
least once, can also be defined. 

There are obvious advantages of using static d a t a  flow 
metrics for measuring testing thoroughness for parallel 
programs: these metrics are  essentially the same as tha t  
for serial programs, and therefore d a t a  flow analysis tools 
for serial programs can be readily used. The major 
disadvantage, however, is that  these strategies are rather 
weak. F o r  examples, i t  can be shown that  the metric of 
testing all live definitions from the data  environment of 
every instruction or block of 1131 is incomparable with 
the branch coverage criterion; the example CU variable 
based metric in section 4.3.2 is strictly subsumed even by 
branch coverage. For  many parallel software 
applications requiring high level of reliability such as in 
real time systems, such structural metrics are not 
adequate. 

6. Practical Teating Strategies 

In this section, we present a parallel program testing 
methodology which incorporates the coverage met r in  
defined in section 4. A preprocessor consisting of a 
translator which translates parallel programs into serial 
programs and a path finder which, for a path of a 
parallel program, finds the corresponding path in the 
serial program is the major component of this 
methodology. The testing procedures also incorporate a 
serial program test data  generation mechanism. 

6.1 Flowgraph Based Coverage Testing 

T o  perform a statement (or branch) testing of a parallel 
program P, a set of paths S = {pi, p2, ..., pr )  is first 
selected to cover all statements (or branches) of P. P and 
S are then input t o  the translator and path finder. The 
outputs  are an equivalent serial program P, and the 
corresponding paths j: = {j,, $2, ..., jk). Once f' and 5 
are obtained, a preferred serial program test generation 
method can be used to derive the desired test set T = 
{dl, d2, ..., dk}. Then, the test da ta  can be executed 
with P. With proper instrumentation (for example, 
inserting counters a t  each decision t o  decision or  d-d path 
to monitor branch coverage [8j), the above procedure can 
also be carried out  incrementally. 

T o  carry out  path testing, it  is necessary t o  first apply an 
equivalence relation t o  partition the infinite set of paths 
into finite equivalence classes. (For example, using 
Howden's boundary-interior method [6] extended t o  
parallel programs.) Then the preprocessor can be used t o  
guide test da ta  generation until a representative path 
from each class has been covered by a test case. 



The method described above can also be used t o  conduct 
testing with a static da ta  flow coverage criterion like the 
ones described in section 4.3. 

6.2 Input Based Coverage Teating 

The input based structure coverage criteria of section 4.2 
are not directly applicable as they may require an infinity 
of test cases. T o  perform a testing t o  cover a particular 
input based structure Q (e.g., Q = PCS, then Q coverage 
testing is P C S  testing), i t  is therefore necessary t o  find a n  
appropriate equivalence relation among instances of Q t o  
reduce the corresponding infinite criterion t o  a finitary, 
satisfiable one. (Formal methods of defining equivalence 
d e s e ~ e s  further investigation, even though it seems 
unlikely t h a t  a generic and meaningful equivalence 
relation among parallel program paths can be found, due 
t o  the large variety of da ta  structures, control structures, 
and interprocessor communication patterns t h a t  can be 
present. T o  reduce the domain of Q into finite classes, a 
useful equivalence relation will have t o  be defined from 
the specification and the program by the tester.) 

After an appropriate equivalence relation is found and 
applied t o  a n  infinite input based criterion Q, it becomes 
finitary and thus satisfiable, because a test da ta  which 
coven an instance of Q covers all equivalent instances. 
Let's use Q, t o  denote this practical Q coverage criterion. 
The testing of a parallel program P can then proceed 
according t o  the  following procedure: 

(1) P is instrumented t o  monitor the coverage of Q,. 
An equivalent serial program P is then produced by 
the translator. 

(2) Choose an input d from P's input domain, say 
randomly. 

(3) Execute d with P (or 6). The result is analyzed t o  
determine the path and the instance of Q which 
were exercised by d. 

(4) Determine the next path p of P t o  be traversed. 
This path, of course, is to exercise an instance of Q 
which has not been covered by previous test data. 

(5) Input p and f' t o  the path finder t o  produce the 
corresponding serial path 6 of P. 

(6) A preselected serial software test data  generator is 
used with P and 6 t o  generate the next test case d. 

(7) Repeat steps (3) - (6) until the criterion Q, is 
satisfied. 

The method described above for input based coverage 
testing incorporates the essential aspect of Kundu's 
method of generating tests for serial programs I l l ] ,  
namely, reversing the roles of path selection and test d a t a  
generation. 

6.3 Input Space Partitioning 

In program 2, say, we can define equivalence in terms of 
the degree of parallelism exhibited during execution. As 
an example, the input "n=l, m=O" causes the for loop 
beginning a t  statement (4) to  be skipped altogether and 
thus no parallelism is exhibited. The input "n=2, 
m=l" causes the /or loop t o  be traversed exactly once 
and hence the  par statement a t  (5) executed with two 
P E s  exactly once, thus a minimal parallelism is exhibited. 
The input "n=4, m=2" causes the for loop t o  be 
traversed twice and hence the par statement a t  (5) will 
be executed twice by four PEs, thus a "nonminimal" 
parallelism is exhibited. All inputs with n 2 4 can be 
classified as equivalent in terms of exercising nonminimal 
parallelism, and thus the three described test data  would 
suffice. Usually, however, more thorough testing is 
needed, and the partition method can be refined t o  a 
desired level t o  include more test cases. 

Consider program 1 for another example. The algorithm 
has O(1) time complexity and therefore the method of 
partitioning based on exhibited parallelism is not 
applicable. Then we may consider the  input of n bits a s  
representing a n  integer, and define two inputs t o  be 
equivalent if they are congruent modulo a certain 
number, e.g., consider inputs x and y t o  be equivalent iff 
x y mod 20 if 20 test cases are planned. This is one 
form of random testing. 

6.4 Use of Serial Programs 

Much research effort has gone into building compilers 
which detect parallelism in serial programs and generate 
parallel codes for the target parallel machine. 
Conversely, a parallel-tc-serial translator can be 
implemented t o  make some of the tools developed for 
serial programs useful in the parallel domain. 

For  synchronous parallel programs, the same input 
should always produce the same output ,  therefore they 
can be translated, one-bone ,  into serial programs. As 
the serial program gives exactly the same result for every 
input point as the corresponding parallel version, one is 
functionally correct if and only if the other is. Thus the 
parallel program can be validated by testing either the 
original o r  the translated serial program. For  example, a 
"parallel program mutation testing system" may be 
implemented by simply combining a translator and a 
serial program mutation system [3]. This is a 
straightforward and readily adoptable testing 
methodology. 

This method, however, has several drawbacks. Firstly, it 
does not consider the structural aspects unique t o  parallel 
programs, hence could ignore some of the likely sources of 
errors. Secondly, as explained in section 3, programs 
which contain errors might still perform the correct 
input-output transformation. As it is hard t o  obtain 

Simple heuristics can often be used t o  partition the input timing information about the parallel program by 
space into "equivalence classes" for test data  selection. simulation, this method would fail to  detect most of the 

565 



errors that  are not evidenced by incorrect output  values. 

6.6 Preprocessor: Translator & Path Finder 

We have implemented the preprocessor for the execution 
and testing of parallel programs written in the Pascal- 
based parallel language. The preprocessor consists of two 
components-the translator and the path finder. The  
translator takes parallel programs as its input, and 
produces corresponding serial programs as well as da ta  
files for the path finder. The path finder takes a set of 
path specifications for a parallel program as its input and 
produces the corresponding paths in the translated serial 
program. Implementation details of the preprocessor is 
discussed in (41. 

6. Conclusion 

We have presented a scheme for classifying PRAM 
programming errors and proposed various approaches of 
deriving testing coverage metrics for shared-memory 
parallel programs. 

The approaches based on extending the serial methods 
can be used t o  define testing metrics which are easily 
understood and applicable. On the other hand, they tend 
t o  define weak metrics due to  the fact tha t  they overlook 
the features unique t o  parallel programming. 

The criteria based on input-driven structures, combined 
with the proposed translator/path finder approach t o  
testing provide a viable methodology. The advantages of 
this methodology are [l] practical-the preprocessor, 
consisting of the translator and path finder, is easy t o  
implement and runs in linear time, [2] economical--serial 
program test generation tools, which 
programmers/testers are already familiar with, can be 
"plugged in", thus our software investment in 
testingldebugging tools for serial programs can be 
utilized in a parallel environment, and [3] immediately 
usable-it can be readily used while various programming 
methodologies and new techniques for parallel program 
validation are developed. 

Testing has been the m w t  widely used method for 
validating serial software and there is a growing 
attention t o  the theory and techniques of testing (51. In 
view of the increasing applications of parallel computing 
and the lack of erective methodologies for validating 
parallel software, the presented approaches and methods 
provide useful directions for further research and 
development. 

References 

131 Budd, T.A., Mutation Analysis: Ideas, Ezamples, 
Problems and Prospects, in B. Chandrasekaran and 
S. Raddichi, eds., Computer Program Testing, 
North-Holland (1981) 129-148. 

[4] Fang, M. and A.H. Sung, A Preprocessor jor Testing 
Parallel Programs, Computer Science Technical 
Report, New Mexico Tech, 1988. 

.[5] Hamlet, R. et al., Special Section on Software 
Testing, Comm. of the ACM, vol. 31, no. 6 (1988) 
662-695. 

[6] Howden, W.E., Methodology for the Generation of 
Program Test Data, IEEE Trans. on Computers, vol. 
C-24 (1975) 554-560. 

[7] Howden, W.E., Reliability of the Path Analysis 
Testing Strategy, IEEE Trans. on Software 
Engineering, vol. S E 2 ,  no. 3 (1976) 208-215. 

(81 Huang, J.C., An  Approach to Program Testing, 
ACM Computing Surveys, vol. 7, no. 3 (1975) 113- 
128. 

[Q] Korel, B,  The Program Dependence Graph in Static 
Program testing, Information Processing Letters, vol. 
24 (1987) 103-108. 

[lo] Korel, B. and J. Laski, A Tool lor  Data Flow 
Oriented Program Testing, in SoftFair 11 - 2nd Conf. 
on  Software Development Tools, Techniques, and 
Alternatives (1985) 34-38. 

[ll] Kundu, S., SETAR - A New Approach to Test Case 
Generation, INFOTECH State of the Art Report, 
Software Testing, Infotech Intl. Ltd (1979) 163-186. 

[12] Laski, J.W., On Data Flow Guided Program Testing, 
ACM SIGPLAN Notices, vol. 17, no. 9 (1982) 62-71. 

[13] Laski, J. and B. Korel, A Data Flow Oriented 
Program Testing Strategy, IEEE Trans. on Software 
Engineering, vol. S E Q ,  no. 3 (1983) 347-354. 

[14] Muchnick, S.S. and N.D. Jones, Program Flow 
Analysis : Theory and Applications, Prentice-Hall, 
1981 

[15] Quinn, M.J., Designing Efficient Algorithms jor 
Parallel computers, McGraw-Hill, 1987. 

[16] Rapps, S. and E.J. Weyuker, Data Flow Analysis 
Techniques jor Program Test Data Selection, Proc. 
of 6th Int'l Conf. on Software Engineering (1982) 
272-278. 

[I] Allen, J.R. and K. Kennedy, A Parallel Programming 
Environment, Computer Science Dept. Technical 
Report TR84-8, Rice Univ., July 1984. 

[2] Baase, S, Computer Algorithms, 2nd Edition, 
Addison-Wesley, 1988. 



On the Expansion, Analysis, and Mapping of Conventional Programs into 
Code for Bit Level Proceesor Arrays 

Jose A. B. Fortes t 

School of Electrical Engineering 
Purdue University 

West Lafayette, Indiana 47907 

Abetract 
Massively parallel bit level processor array architec- 

tures are becoming increasingly popular due to their sui- 
tability for VLSI implementation as well as because they 
can take advantage of parallelism a t  all levels of granular- 
ity (down to bit-level). However, the programming of 
such machines requires from the user the ability to under- 
stand and exploit low level parallelism and considerable 
familiarity with the low level details of the processor 
array architecture. This paper discuasen a possible aolu- 
tion to this problem via the usage of a software package 
capable of taking a program expressed in a conventional 
sequential language and mapping it into code executable 
by the processor array. It describes a first attempt a t  
implementing such a tool and discusses in detail all of its 
components and the techniques used. Based on past 
experience with this experimental tool, aspects of a 
planned new version of the same tool are also discussed. 

I. Introduction 
Existing and proposed solutions to the problem of 

using bit-level processor arrays to execute conventional 
programs for sequential machines are described and dis- 
cussed in this paper. An existing software package, RAB 
(Reconfiguration Algorithm for Bitlevel arrays) [lo] [12], 
developed a t  Purdue, is described in detail as well as 
experience with its usage. A new planned version of RAB 
is briefly described with emphasis on the differences with 
respect to RAB and how it will incorporate lessons 
learned with RAB. 

Processor arrays with simple l-bit processing ele- 
ments have become a pervasive form of massively parallel 
processing architecture. A non-exhaustive list of commer- 
cially available machines of this type includes DAP[l], 
MPP[2], the Connection Machine [3], and GAPP(41. Com- 
monly perceived advantages of these architectures are, 
among others, their suitability for large and dense VLSI 
implementations, the ability to support parallelism a t  all 
levels of granularity (down to the bit level) and the fact 
that they match many algorithms and data structures of 
interest (e.g., image processing and arrays of data). How- 
ever, as for other novel parallel processing architectures, 
the programming of processor arrays often requires con- 

siderable thought and skill if highly efficient codes are 
sought. This is particularly true when complex tasks are 
to be implemented using concurrent low-level operations, 
as in the case of the bit-level processor arrays mentioned 
above. Several approaches to this problem have been 
used which include: 

subroutine libraries accessed through a standard 
high-level language which have been optimized for a 
particular architecture, as in the DAP processor [I]; 

parallel languages, which are often architecture or 
machine dependent 151; 

microcoded ,routines to handle standard word level 
operations in a general way, without using bit level 
optimizations. 

These approaches lack portability among different 
machines and sometimes ignore optimizations possible a t  
the bit level. I t  is often difficult to prove the optimality of 
a given mapping using these methods. An alternative 
approach (to that of putting the programming burden 
solely on the programmer) is to use software capable of 
transforming a program expressed in a familiar sequential 
programming language into processor array code. Such 
large program is akin to an optimizing compiler in the 
sense that it must detect and exploit parallelism but, in 
addition, it must be able to reexpress high-level computa- 
tions as combinations of low-level bitwise operators and 
data movements. In the past, related research efforts have 
been pursued in this direction 161 and several methodolo- 
gies, which were intended for word level processor arrays, 
are potentially applicable to bit level arrays. This paper 
reports on the techniques used in the major components 
of RAB, a large program developed for the purpose men- 
tioned above. It also discusses aspects of a second version 
of RAB, yet to be implemented, and the improved tech- 
niques and approaches to be used in it. 

A block diagram relating the main components of 
RAB is shown in Figure 1 and is briefly explained next. 
The input to RAB consists of C programs which describe 
word level algorithms. These algorithms correspond to 
nested for loops with static behavior. RAB first expands 
the computations in the input program into bit level 
operations. This expansion phase uses a library of macro 
expansions to replace each word level computation with a 
bit level im~lementation of the arithmetic o~erations. 

i ~ h i s  work was supported in part by the National Science This phase is followed by data dependence and 'broadcast 
Foundation under Grant DMC-8419745 and in p u t  by the analysis using a technique called Dependence Arc Set 
Innovative Science and Technology Office of the Strategic Analysis[7]. The result of this analysis is a formal descrip- 
Defense Initiative Organiration and was administered through tion of the internal structure of the bit level algorithm. 
the O5ce of Naval Research under contract no. 00014-85-k- This structural information is used to generate an algo- 
0588. rithm transformation which yields a restructured algo- 

rithm suitable for mapping onto a bit level processor 



array. The mapping may be a full design of an algorithm- 
ically defined array or full (~ar t ia l )  mapping for a fixed 
(variable) size array corresponding to the fourth level of 
modules in Figure 1. The last two modules, code genera- 
tion and code optimization, comprise the phase in which 
code is generated for a particular target architecture and 
optimized using a standard compaction technique. 

The separate phases of RAB, shown in Figure 1, are 
now described in more detail. 

II. RAB - Reconflgurstion Algorithm fo r  Bit-Level 
a r r ays  

II.1 P r o g r a m  Specification 
RAB accepts a subset of the C language as input. 

This subset consists of nested for  loops with static 
behavior, which are likely candidates for mapping into 
processor arrays given their repetitive and regular struc- 
ture. Pointers and function calls cannot be used, and the 
nested loops must meet the following requirements: 

- the lower and upper bounds of the outermost loop 
must be integer constants. 

- the bounds of the nested loops must be linear 
expressions of the outer loop variables or integer 
constants. 

- the step of each loop must be one. 
- no two loops can have the same nesting level. 
- arrays of any dimensions are allowed; the range of 

each dimension must be an integer constant. 
- the boolean expression of a conditional statement 

must be a linear expression of the outer loop vari- 
ables. 

- all subscript expressions used when referencing ele- 
ments of arrays must be linear expressions of the 
outer loop variables. 

Algorithms which satisfy these requirements include 
matrix-matrix and matrix-vector multiplication, FIR and 
IIR filtering, convolution, and many others used in digital 
signal and image processing. Many algorithms which fall 
outside this class can be transformed to satisfy the above 
constraints using such techniques as loop fusion and nor- 
malization [8]. 

The following is an example of a program which 
satisfies the requirements listed above: 

) '  
This program computes a sequence of outputs y[jl] as the 
convolution of a sequence of inputs x(jl+jz-11 with 
weights w[j2]. 

IT.2 Bi t  Level Expansions 
This first stage of RAB implements a source-to- 

source mapping 19) of the word level 'C' code into an 
equivalent bit level form. To some extent it represents a 
devolution [9] in that a higher level language feature is 
replaced by its meaning in terms of lower level language 

features. Several expansions for a given arithmetic 
expression are possible, but only a small library of expan- 
sions is currently implemented. These expansions exist for 
addition, multiplication, division, and subtraction, and all 
possible pairwise combinations of these operations. An 
example of a bitlevel expansion for the convolution algo- 
rithm is given below. 

In the expansion shown above, the two statements in 
the body of the loop compute the carry and sum bits of 
the weighted aum implemented by the convolution pro- 
gram. All variables have been expanded/renamed so that  
each denotes a bit of the corresponding original word 
level variable. The two additional loops result from the 
need for operating on different bits of variables being 
multiplied in the original program. 

It is possible to expand a word level 'C' program into 
two forms: one form can actually be directly compiled 
into executable code allowing the user to see the bit level 
expanded version of the program running; the other form 
(an example of which is shown above) is directly input to 
the analysis stage, where dependence analysis is per- 
formed on the expanded code. 

One of the main advantages of the expansion process 
is that it exposes lower level operations to the view of the 
optimizer, allowing for more improvement to the gen- 
erated code. This is somewhat analogous to the optiiiza- 
tions that are possible to an intermediate form in a typi- 
cal optimizing compiler. 

11.1 P r o g r a m  Analysis (Dependence Analysis) 
The techniques used in the mapping phase of RAB 

require specific structural information about the expanded 
program. They assume that the algorithm is characteriaed 
by its index set Jn  (i.e., the set of n-dimensional vectors 
whose entries correspond to the value of each loop index 
for the iterations executed by the nested loop program) 
and a matrix of dependencies D where every column 
corresponds to the vector difference between the indices of 
dependent compltations. In other words, if a computk 
tion with index jEJn (or, equkalently, c-utation at j) 
depends on a computatio_n at  j'EJn then j-j' is a c o l u q  
of D. A computation-at j dependcon a computation at  j' 
if data generated a t  j' is used a t  j (this is called a 'true' 
data dependence or-flow dependence) or the same data is 
generated at  j and j' (called output dependence) or data 
used a t  j is modified a t  j' (called anti-dependence). The 
mapping phase of RAB is concerned only with true data 
dependencies but the analysis phase can detect all three 
types of dependencies. Currently, RAB requires the user 



to remove all dependencies other than flow dependencies 
from the expanded program or from the output of the 
analysis phase. This could also be done automatically 
through variable renaming and expansion[8] but is not 
currently implemented in RAB. The analysis phase is 
based on Kuhn's Dependency Arc Set Analysis (DASA) 
technique [7] and is discussed in more detail next. 

DASA is used to detect dependencies between state- 
ments referencing arrays. In order for a dependence to 
exist between two statements referencing arrays, the fol- 
lowing conditions must be satisfied: 

1. the array references in the two statements must 
have the same name. 
2. given that condition 1 is satisfied, the functions 
which specify the subscripts of the array references 
must take the same value for some index value(s). 
3. the index value(s) for which condition 2 is 
satisfied must belong to the iteration space. 

The analysis module is invoked when the parser detects 
that condition 1 holds and DASA is used to verify condi- 
tions 2 and 3. 

DASA utilizes five relations (represented as convex 
sets) to gather information about the dependence arcs and 
to determine whether conditions 2 and 3 are satisfied. 
Dependencies are considered in relation to the Cartesian 
product of the loop indices and the nesting level of the 
dependence. Two of the five relations, T and H, charac- 
terize the control structure of the loops surrounding the 
tail statement (i.e., the point where data is generated) 
and the head statement (i.e., the point where data is 
used) of the dependence, respectively. Two other rela- 
tions, Sg and S,, respectively, correspond to the indexing 
function of the generated and used arrays referenced in 
the head and tail statements. The fifth relation, Fth, 
represents the lexicographical ordering used to execute the 
nested loop program. These relations are represented as 
convex sets in a matrix format that is easily implemented 
and manipulated in software. As an example, it is shown 
below how such relations are represented for the variable 
cy in the convolution example; the explanation of this 
representation follows its description. The following is 
actual output from RAE3 when used in the debugging 
mode. 

FOR GEN VAR: cy INDEX: [jl][j2][j3][j3] 

FOR USAGE VAR: cy INDEX: [jl ] [j,] [j3] [j4-11 

ORIGIN& MATRIX 

In the above representation, e_ach_ row corresponds to an 
inequality of the form [at bh][jt j h F s  b where at and ah 
are vectors that-multiply the index jt of the tail statement 
and the index of the_ head statement; b is some con- 
stant. Because jt and jh are implied, each row shown 
above represents only at (the first four entries) ah (the 
second four entries) and b (the last entry). The first eight 
rows represent the upper and lower bounds for the loops 
surrounding the tail statement; the following eight rows 
do the same for the head statement (In this example the 
upper bounds for jl,  j t ,  j3 and j4 are 30, 25, 10 and 20, 
respectively; the lower bounds are a11 1.) The next eight 
rows represent the fact the indices used to reference cy in 
the tail and head statements differ only in j4 (by one). 
The last row represents the lexicographical ordering in 
terms of the index jl. Another three similar matrices are 
also considered by DASA where the lexicographical order- 
ing is represented in terms of two, three and four loop 
indices. These matrices are not shown here. 

If a solution space results from the convex analysis of 
the intersection of the relations, T, H, Fth, and Sg com- 
posed with s;', then a dependence exists for the condi- 
tions defined by the forward relation Fth. For example, 
the set of inequalities shown above is inconsistent but 
that where the lexicographical ordering is represented in 
terms of the four loop indices is consistent and detects 
that a dependence is associated with the variable cy (the 
associated dependence vector is shown in the next para- 
graph). Further details about DASA can be found in 171 
and [g]. DASA is also used to analyse data broadcasts. A 
broadcast is required when a data item is used by more 
than one computation a t  the same instant of time. To 
avoid a broadcast it suffices to schedule those computa- 
tions to be executed a t  different instants of time so that 
the data item can be "buffered" in one computation and 
later passed to the other. This is similar to a data depen- 
dence except for the fact that the dependence is 
"undirected", i.e., the order in which computations use 
the data can be reversed. According to the above con- 
siderations, the vector difference between computations 
that use the same data item is referred to as a buflering 
vector  and DASA is used to detect such vectors as well as 
dependency vectors. The synthesis phase of RAE3 takes 
into account the fact that either the detected buffering 
vector or its complement can be used to identify a valid 
mapping. 

As an example of the final output of the analysis 
phase, the dependence matrix for the expanded convolu- 
tion is as follows: 



Column 1 of this dependence matrix corresponds to the 
used variables cy[j 1 ] [j2] [j3] [j4 -11 and the input variables 
w[jz][j3], columns 2 and 3 correspond to the used vari- 
ables sum[jl ] [j3+j4-11, and the last three columns 
corresponds to the input variables w[jz][j3] and 
x[jl+j~--lI[j4--ll. 

The distance vectors for the generated data items are 
used in the synthesis phase to preserve the semantics of 
the program; the buffering vectors (or their complements) 
for the input data items are included in the dependence 
matrix in order to assign different execution times for the 
computations requiring the same variable. The next sec- 
tion describes the methodology used to generate an algo- 
rithm transformation for a variable size array. 

'=o 

11.4 Time and Space Mappings 
The synthesis phase of RAB utilizes a well known 

transformation methodology sometimes referred to as the 
data dependency method[l6]. This methodology generates 
a transformation matrix, T which maps the index points 
of the bit-level algorithm into the space-time domain (i.e., 
processors and instants of time). The first row of T, 
T E Z ( ' ~ I ,  (Z  denotes the set of integers) corresponds to the 
time mapping; the last two rows, denoted S E Z ( ~ ~ ) ,  
correspond to the the space mapping. 

Time Mapping 
The linear time mapping, T 6 z("") maps the index 

set of the algorithm into the unidimensional time space, 
r:Jn--t t.  Given- .rr, the time of execution of a computa- 
tion indexed by j is: 

0 0 1 0 - 1 0  

1 -j3 o o 1 

- - 
where - disp n = min{ndi, di E D 1 and 
0 = -min{nj: j E Jn )  + 1. 

for j3 = 1, ..., N3 given N3 < N4. 

The constant 0 in (1) forces the first computations to be 
executed at  time t=l. The parameter disp n represents 
the number of parallel arithmetic computations executed 
in each processing element. In RAB the value of disp n is 
restricted to one because this is representative of the 
array used with RAB (GAPP) and some other available 
architectures (i.e., MPP, DAP, CLIP). Given that 
disp n = 1, the total execution time of an algorithm is 

where Ni and Li correspond to the upper and lower 
bounds of the index ji respectively and 6 represents the 
number of clock cycles needed for the execution of the 
body of the nested loop program. To insure that the ord- 
ering determined- by T is valid, the restriction that 
ndi > 0 for all di E D is imposed. This insures that all 
dependencies are respected, i.e., a data item is never used 
before its generation. 

The time transformation T is found by trying to 
minimize the function (2) which is monotonic with respect 
to the entries of n. Due to the monotonicity of the func- 
tion, a heuristic approach similar to the one presented in 
[ll] is used to generate T. The absolute value of the 
entries of .rr are progressively increased (starting from 
zero) and all possible combinations of their signs are con- 
sidered with the exception of those obtained by negating 
previously generated n's. The validity of each of the n is 
checked and the valid time transformations are ordered 
according to the execution time . Possible r's, which 
might result from further increases in the absolute value 
of the entries of a particular n, need not be considered 
because the monotonicity property mentioned above 
insures that they result in execution times larger than the 
known minimum. The ordered list of n's is also used to 
generate space transformations as discussed next. 

Space Mapping 
The space mapping determines what processor is 

used to execute any given computation at the instant of 
time determined by the time mapping. It must be selected 
so that processors can exchange any data item within the 
time interval that separates its generation and usage. A 
structural model of the target processor array is used in 
this phase and it consists of a q-dimensional index set Lq 
(q= 1 or 2) and a matrix of interconnection primitives P. 

Each point 2 E Lq corresponds to the relative location 
of a processing element in the systolic array. The matrix 
of interconngction primitives such that i f j  E P thenfor 
any k' E Lq, k' is connected to f' = k' + Fj f  e' E Lq and e is 
connected to an input-output port if k" d Lq. In other 
words, Lq and P define the topology of the processor 
array. In addition to this, RAB needs additional informa- 
tion for other phases. For timing purposes and to evaluate 
6 in expression (2), it uses the longest time 7 taken by any 
basic operation executed by the processors of the array (in 
many arrays all basic operations take the same time to 
execute). The time 6 results from counting the number of 
basic operations used for the bit-level computations in the 
body of the expanded loop program and multiplying it by 
7 .  The set R of resources available in each processing ele- 
ment is used in the microcode optimization phase as dis- 
cussed in section 11.5. 

For the GAPP (6 x 12) processor array chip the 
index set is given by 

and the matrix of interconnection primitives is 

The set R of shareable resources available in each process- 
ing element of GAPP consists of its four I-bit registers, 
one RAM port and one ALU, and the worse case execu- 
tion time T of a basic operation is assumed to be three 
clock cycles (one clock cycle to place data in proper regis- 
ters and execute a "full add" operation, and two clock 
cycles to place data in the proper register for communica- 
tion purposes). 



In mapping an algorithm into a systolic array, the 
main goal is to insure that the data communication 
between processors can be accomplished using the given 
interconnection primitives. In s ther  words, if a computa- 
tion performed by processor & at  time t l  depends on 
data generated by processor t2 at  time tZ,  then there 
must be a_compgsition of interconnection primitives that 
connects e2 to in time t l  - t2. The composition of 
interconnection primitives is given by the matrix 
K E z ( ~  m). To insure that a direct path is taken for the 
movement of data, the entries in a column of K are res- 
tricted to have the same sign. Given these parameters, 
the spatial transformation S must satisfy the following set 
of diophantine equations 

. . 

where S E Z ( ~ X ~ ) ,  D E Z ( ~ X ~ ) ,  P E Z ( ~ X ' ) ,  and 
K E  z(=xm). 

The sum of column i of the K matrix represents the total 
number of data movements for the corresponding data 
item associated with column i of t& dependence matrix. 
This sum is bounded above by mdi, where r represents 
the ratio between computation and communication delays 
in the array. This upper bound represents the time 
between computations that is available for communica- 
tion according to the schedule defined by T. Only one 
intercommunication primitive for each unique data link is 
included in the P matrix, i.e., even if a data link is bi- 
directional only one primitive corresponding to one of the 
directions is included in P .  Consequently, the matrix of 
interconnection ~rimitives used with RAB for the GAPP 
architecture contains only the first three columns of the P 
matrix. 

If no solution exists to (3), another 7r is selected from 
the ordered list with minimal increase in execution time. 
If solutions exist to (3), the transformation matrices (com- 
posed of an S and the corresponding T) are ordered 
according to the AT (area x time) criteria. The first 
transformation matrix in the ordered list for which a 
conflict does not occur is chosen. A conflict occurs when 
two or more computations are mapped into the same PE 
to be executed a t  the same tige. In-other words given 
two comqutati~ns indexed by j' and j", a conflict occurs 
when T j' - T j" = 0 or 

~ ( 7  - y)- 
- - (4) 

where j' - j" represents the conflict vector. The conflict 
vectors are generated using an analysis scheme similar to 
the one used with the generation of buffering vectors for 
input variables. If the conflict vector exists within the 
given iteration space, the corresponding T is disregarded 
and the next transformation matrix in the ordered list is 
checked. The procedure is continued until a conflict-free 
algorithm transformation can be found for the partial 
mapping of the bit-level algorithm into the variable size 
array. The conflict-free transformation matrix for the 
example convolution algorithm is (for NI=Nr=N3=3, N4:S) 

T =  [::;;I 
for time = 276 and space = 21 PE's. This transforma- 
tion optimizes AT where area corresponds to the number 

of PE's since only one GAPP chip is required. A different 
mapping for the same convolution program which results 
from using a different expansion and time and space map- 
pings is reported in [12]. 

II.6 Code Generation and Optimization 
The current version of RAB does not have code gen- 

eration implemented in software. The designer must hand 
code the algorithm generated in the mapping phase. 
However, RAB provides a capability for compacting the 
microcode in order to minimize its running time. This is 
done by detecting what processor instructions can run 
simultaneously without violating data dependencies and 
machine dependencies. While data dependencies result 
from the structure of the algorithm (see section 11.3) 
machine dependencies (also called resource dependencies) 
result from the existence of limited resources in each pro- 
cessing element. A given statement S, is machine depen- 
dent on a statement Si if Si precedes Sj and Si uses 
resources required for the execution of Sj. 

Machine dependencies can be divided into two 
categories: explicit machine dependencies and implicit 
machine dependencies. Explicit machine dependencies 
result from the apparent limitations of the architecture. 
For example, statement S. is explicitly machine depen- 
dent on statement Si if both statements require a write to 
two different RAM locations and the given architecture 
only has one RAM port. Implicit resource dependencies 
are inherent in the semantics of the instructions. For 
example, in a GAPP array, the ALU of each P E  always 
executes a "full add" operation every clock cycle, regard- 
less of the instruction being executed. Aa a consequence, 
the architecture of each P E  exhibits implicit resource 
dependencies with the use of the calculated variables sm, 
bw, and cy (which denote sum, borrow, and carry respec- 
tively). Thus, if a statement explicitly uses a calculated 
variable, then it will always depend on the previous state- 
ment. 

A n  optimizer specialized for the GAPP array per- 
forms code compaction using a modified version of a tech- 
nique developed by Ramamoorthy ([13], [14]) known as 
Precedence Partitioning. The straight-line microcode is 
parsed in a sequential manner placing used and generated 
variables in a symbol table. If a used variable is encoun- 
tered, the optimization function checks the symbol table 
to see if this variable has been generated in a previous 
statement resulting in a data dependence (in this case all 
types of dependencies are checked, i.e., flow-, output- and 
anti-dependencies). The resources required for the paral- 
lel execution of two statements are also pairwise checked 
if they are data independent. If the required resources 
exceed the resources available, then a machine depen- 
dence exists between the two statements. The dependen- 
cies are represented in a ((v-1) x v) connectivity matrix, 
where v is the number of statements in the straight-line 
code. The element cij = 1 if statement j is dependent on 
statement i and 0 otherwise. The precedence partitioning 
algorithm uses this matrix to partition the set of compu- 
tations into independent, blocks by locating columns con- 
taining zeros, allocating the corresponding statements to a 
block and deleting the row corresponding to the allocated 
statement. The partitions are executed serially but the 
statements within the same partition block are executed 
in parallel. An example of the precedence partition for 



straight line code is given below. An example using 
GAPP instructions would require detailed knowledge 
about the GAPP architecture, which is beyond the scope 
of this paper. 

For the following straight line code 
( l ) A = B + C  
( 2 ) D = A + E  
( 3 ) F = D + E  
( 4 ) G = H + I  

the connectivity matrix is given by 

The following partitions result from this matrix: { 1, 4 }, 
( 2  t , { 3 1 .  

m. Past Experience and Future Work 
Experience and insights provided by the development 

and usage of RAB showed some of limitations of the 
approaches used for the purposes described above. How- 
ever, it also revealed opportunities for new improved 
techniques that can be applied to the problems that RAB 
attempts to solve. RAB was developed as a first attempt 
to demonstrate the viability of a tool that uses algorithm 
transformations to support the systematic mapping of 
high-level programs into bit-level processor arrays. The 
techniques used represent the state-of-the-art in that field 
as of 1985. Since then significant progress has been made 
in this area. Additionally, several idiosyncrasies of RAB 
limit the possibility of easily incorporating such new tech- 
niques, considering different processor array architectures 
and testing the validity of the concepts in a wide range of 
programs. Finally, as expected, experience with RAB 
revealed many insufficiencies of the known techniques and 
generated many new interesting questions that must be 
addressed if a truly useful tool with an acceptable level of 
generality is to be implemented. This prompted the 
author and his co-workers to start the development of a 
new software package which improves on RAB in the fol- 
lowing regards: 

Bit-level ezpansions: Currently, the optimality and 
generality of the mappings provided by RAB is greatly 
affected by how bit-level expansions are derived from 
word-level operations. This is due to the very large 
number of expansions that are possible for any single 
word-level operation. Because RAB needs to have a copy 
of each possible expansion explicitely stored (i.e., the 
expansions are stored and not generated when needed), it 
is infeasible to consider every possible expansion. In addi- 
tion, assuming that all possible expansions were available, 
RAB has no means of knowing or estimating which 
expansion yields in the best design or mapping. As a 
consequence, RAB needs to to be fully executed for every 
single possible expansion in order to guarantee optimality. 
This is also too expensive in practice. 

To deal with the problems mentioned above, 
automatic programming and program transformation 
techniques are being considered which allow for the on- 
line generation of expansions from a reduced number of 
"basic" stored expansions. The "derived" expansions are 

the result of applying transformations to the basic expan- 
sions by exploiting properties such as commutatitivity, 
distributivity and associativity of the bit-level operations. 
In order to estimate or identify the best expansion, some 
dependence analysis is performed and attached to each 
expansion. By analysing relevant characteristics of data 
dependences, it is possible to arrive at  relative perfor- 
mance of different expansions and, furthermore, guide the 
generation of additional expansions with improved 
characteristics. The knowledge of the dependence struc- 
ture of the expansion used is also beneficial in the analysis 
phase, as discussed later. 

RAB was intended solely for numerical computing. It 
is possible to use the same approach for symbolic process- 
ing, image processing or other specialized application as 
long as the expansions are provided for the basic opera- 
tions that characterize the "algebraM of the application. 
These expansions will be included in the new version. 

Program Analysis (Dependence Analysis): Currently, 
RAB analyzes the full expanded program by using the 
DASA technique which yields structural and dependence 
information about the program as a convex set. The ine- 
qualities that define this convex set are then used to 
derive a matrix where each column is a dependence vec- 
tor. This process has two disadvantages. First, the 
analysis is unnecessarily complex in the sense that no 
attempt is made in RAB to exploit the fact that the 
"complex" expanded program is the result of a "simple" 
known expansion applied to a "simple" program. 
Secondly, information about the structure of the program 
is lost in the process of generating the matrix of depen- 
dencies. In addition, in order to be able to use a matrix 
representation for dependencies, it is often necessary to 
"fuse" loops or consider only those expansions where loops 
are "fused". The problems mentioned above are avoided 
in the new approach in the following ways. The depen- 
dence analysis of the expanded program is obtained by 
combining the results of the dependence analysis of the 
original word-level program and the dependence analysis 
of the expansion. The computational cost of this approach 
is smaller than that of analysing the full program. With 
regard to the generation of the dependence matrix, this 
feature will remain in the new approach only for the pur- 
pose of interaction with the user. However, for purposes 
of optimization in the synthesis phase, convex set infor- 
mation is used instead. In addition, loop fusion is not 
needed explicitly, and, instead, constraints in the form of 
inequalities are sufficient to convey how loops are 
arranged. 

Mapping and design phase: Currently, RAE3 is fairly 
inflexible in the type of constraints that it can take into 
account for mapping and design purposes. The same can 
be said about the optimization criteria. This is due to the 
fact that different constraints are represented differently 
and, to a certain extent, built into the code. The same 
can again be said of the objective functions to be optim- 
ized. The new approach provides a unique form for the 
representation of any type of constraint (in essence, a set 
of inequalities) and optimization procedures that are 
independent of what the constraints and objective func- 
tions are (within certain limits which have to do with the 
convexity of the objective function and the space of feasi- 
ble solutions). Therefore, constraints and optimization 
criteria can be easily added, deleted or changed. By hav- 



ing the expansion, analysis and synthesis phases of RAB 
use the same convex set representation, a more modular, 
efficient and coherent mapping and design procedure will 
ho~efullv result. In cases where svecialized o~timization 
procedures are used often (e.g., to optimize execution 
time) this approach can be complemented by software 
modules which implement such procedures or related 
heuristics. For example, several different nested loop pro- 
grams were processed by RAB and this revealed that the 
search spaces for the optimal time and space mappings 
were extremely large, and the execution time of this code 
was excessive. This led to the consideration of projection 
techniques for space mappings that are now described. 

With projection techniques, an n-dimensional itera- 
tion vector v is employed in determining the space map- 
ping [17]. The iteration vector is the right null s c t o r  of 
the space transformation matrix S, that is S v  = 0. I t  can 
be interpreted geometrically as the direction of the pro- 
jection of the index set ogto t h e  processor space. Two 
computations indexed by i and j are m_appe_d into the 
same processing element if and only if i = j + crv, for 
some integer a. For a given processor space, it is unique 
if the following two conditions are imposed: 

1) The greatest common divisor of the elements of 
v must be one, 
2) the leading element of v must be positive. 

For a given iteration vector v that satisfies these condi- 
tions, many S matrices may be defined that form a basis 
for the same processor space. Searching for an iteration 
vector that defines the space mapping rather than an S 
matrix avoids this redundancy. The topology of the pro- 
cessing element space remains fixed, and only the label- 
ling of each processing element is different. If the linear 
schedule 7r has been determined, the iteration vector v 
must satisfy rvT  # 0, if the mapping matrix T is to be 
nonsingular. This follows from the fact that if muT = 0, 
the r matrix will be in the row space of S. Hence, compu- 
tations to be executed a t  the same time will be mapped 
into the same processing element. The number of process- 
ing elements can be used as a measure of the optimality 
of a given space mapping. 

Code generation and optimization: Future work will 
focus on a retargetable code generation module for RAB. 
A first step in this effort is an intermediate language that 
is appropriate for a variety of highly parallel processor 
arrays. The basic problems of instruction selection, regis- 
ter allocation, storage allocation, and machine-dependent 
optimizations that are important to code generation for 
uniprocessors are also important to code generation for 
processor arrays. Additional complexity is present in that 
the code generator must separate the program into serial 
and parallel segments. The instructions to execute the 
parallel segments must use the parallel execution 
resources of the machine efficiently. In uniprocessors, 
some optimisation of machine code is almost always possi- 
ble by looking a t  only a small portion of a program, but 
this characteristic does not hold for parallelization of 
machine code. It is necessary to look at  a large part of the 
whole program to insure that the parallelized version of 
the program is correct and equivalent to the serial ver- 
sion. 

References 

R.W. Hockney and C.R. Jesshope, Parallel Com- 
puters: Architecture, Programming and Algo- 
rithms, Adam Hilger Ltd.: Bristol, 1981, pp.178- 
192. 

K.E. Batcher, "Bit-Serial Parallel Processing Sys- 
tems," IEEE Trans. on Computers, Vol. C-31, No. 
5, pp. 377-384. 

W.D. Hillis, The Connection Machine, MIT 
Press: Cambridge, MA, 1985. 

R. Davis and D. Thomas, "Systolic Arrax, Chip 
Matches the Pace of High-Speed Processing, Elec- 
tronic Design, Oct. 31, 1984. 

A.P. Reeves, "F'arallel PASCAL and the Massively 
Parallel Processor," in The Massively Parallel 
Processor, ed. J.L. Potter, MIT Press: Cambridge, 
MA, 1985. 

J.A.B. Fortes, B.W. Wah, and K.S. Fu, "Systematic 
Approaches to the Design of Algorithmically 
Specified Systolic Arrays," IEEE Int. Conf. Acous- 
tics, Speech, and Signal Processing, 1985, pp.300- 
303. 

R.H. Kuhn, "Optimization and Interconnection 
Complexity for Parallel Procefsors, Single Stage 
Networks, and Decision Trees, PhD dissertation, 
Dept. of Comp. Sci., U. of Ill. at  Urbana-Champ., 
1980. 

M.J. Wolf:{ "Optimizing Supercompilers for Super- 
computers, PhD dissertation, Dept. of Computer 
Science, U. of Illinois a t  Urbana-Champaign, 
October, 1982. 

D.B. Loveman, "Program Improvement by Source- 
to-Source Transformation," J. ACM, Vol. 24, No. 
1, pp. 121-145, January 1977. 

V.E. Taylor, "RAB: A Tool for Systematically Map- 
ping Numerical Algorithms into Bit-level Processor 
Arrays," M.S.E.E. Thesis, School of Electrical 
Engineering, Purdue University, W. Lafayette, Indi- 
ana, December 1986. 

M.T. O'Keefe and J.A.B. Fortes, "A Comparative 
Study of Two Systematic Design Methodologies," 
1986 Int. Conf. Parallel Proc., St. Charles, IL, 
pp.672-675. 

V.E. Taylor and J.A.B. Fortes, "Using RAB to MAP 
Algorithms into Bit-Level Systolic Arrays," 2nd. 
International Conference on Supercomputing, May 
1987, Sta. Clara, California, pp.227-236. 

C.V. Ramamoorthy, "Connectivity Considerations 
of Graphs Representing Discrete Sequential Sys- 
tems," IEEE Transactions on Electronic Computers, 
October 1965, pp. 724-727. 

C.V. Ramamoorthy and M.J. Gonzalez, "A Survey 
of Techniques for Recognizing Parallel Processing 
Streams in Computer Programs," 1969 Fall Joint 
Computer Conference, Vo1.35, Montvale, N.J., 
A F P S  Press, pp.1-15. 



A. Schrijver, Theory of Linear and Integer Arrays," IEEE Trans. on Computers, Vol. C-35, No. 
Programminn. John Wilev and Sons: Chichester. 1, January 1986, pp. 1-13. - . - -  
UK, ~ 8 6 .  

1171 S.K. Rao, 'Regular Iterative Algorith,~;ns and their 
D.I. Moldovan and J.A.B. Fortes, "Partitioning and Implementations on Processor Arrays, PhD disser- 
Mapping Algorithms into Fixed Size Systolic tation, Stanford University, 1985. 

bit-level 

I 
dependence /broadcast 

analysis 

full design full mapping partial mapping 

microcode 
expansion 

microcode 

fixed size variable size 
array 

Figure 1. Flow diagram of RAB. 



COMPILING COLLECTION-ORIENTED LANGUAGES 

ONTO MASSIVELY PARALLEL COMPUTERS 

Guy E. Blellochl 
Gary W. Sabot' 

(extended abstract) 

November 28. 1988 

Abstract: 

This paper covers some issues and techniques for compiling 
collection-oriented languages for use on parallel and vec- 
tor machines. Collection-oriented languages are centered 
around data structures which represent collections of el- 
ements and include operations for manipulating the col- 
lections. Many of the collection-oriented languages, such 
as PARALATION LISP, CONNECTION MACHINE LISP (CM- 
LISP), and SETL, allow the creation of nested couections, 
collections whose elements are themselves collections. Nested 
collections are most conveniently manipulated through the 
nesting of parallel constructs, which is analogous to the 
nesting of serial loops. However, parallel and vector ma- 
chines operate most efficiently when operating on long vec- 
tors of atomic values (flat collections). This paper describes 
techniques for translating nested parallelism into flat paral- 
lelism. 

This paper discusses a compiler that translates a sub- 
set of PARALATION LISP into the instruction set of a virtual 
machine. The instructions of the virtual machine are simple 
vector instructions which could be further translated to a 
broad class of architectures including vector machines, sin- 
gle instruction parallel machines, and multiple instruction 
parallel machines. Another translator has also been imple- 
mented that translates the virtual machine instructions to 
instructions for the Connection Machine (CM-2), a mas- 
sively parallel single instruction computer. The quicksort 
example in this paper has been executed on the CM-2. 

Keywords: paralation lisp, scan, parallel prefix, com- 
piler, Connection Machine. 

1 Introduction 
Collection-oriented languages, such as PARALATION LISP 
(81, CM-Lisp [ll], SETL [9], NIAL (71, APL [5,6] or APL2 
111, are based on data structures which represent collections 

of elements, and operations for manipulating the collections 
as a whole, such as multiplying two arrays or taking the in- 
tersection of two sets. The collections can be unordered, 
such as zetr in CM-lisp and s e b  in SETL, or ordered, such 
as field8 in PARALATION LISP, zectorr in CM-LISP tuples in 
SETL and arrays in NIAL, APL and APL2. The techniques 
discussed in this paper are relevant to both ordered and un- 
ordered collections. We believe that the collection-oriented 
languages are excellent languages for cleanly implementing 
a broad set of applications. 

Conventional von Neumann languages, such as Pascal 
and Fortran, also support collections, usually in the form 
of an array data type. However, the operators of collection- 
oriented languages are different because they focus on ma- 
nipulating collections as a whole. For example, multiplying 
all elements of a collection by some constant, sorting the 
elements, or summing all the elements into a single value 
are basic collection-oriented operations. Because the opera- 
tions of collection-oriented languages operate on whole col- 
lections of elements, these languages tend to be much higher 
level than conventional languages. This typically leads to 
code that is clearer, easier to write and more concise'. Also, 
because the code does not include specifics on how to imple- 
ment the various operations, it leads to code which is more 
easily mapped onto a broader set of architectures. On the 
other hand, collection-oriented languages have historically 
been hard to compile to run as efficiently on serial machines 
as conventional languages, and have therefore never gained 
great acceptance. 

In this paper we cover some issues and techniques for 
compiling collection-oriented languages onto parallel and 
vector machines. We are particularly concerned with the 
languages that allow nested collections. In such languages, 
each element of a collection can itself be a collection. Of 
the above mentioned languages all but APL allow such 
nested collections. The compilation techniques mostly in- 
volve translating operations on nested collections into a flat 

'MIT Artificial Intelligence Laboratory and Thinking Machines Cor- 
poration. Author's current address: MIT A1 Lab, Cambridge, MA 
02139 'Unfortunately, APL has given the computer community the impres- 

'Harvard University and Thinking Machines Corporation. Author's sion that collection-oriented languages are difficult to interpret. This is 
current address: Thinking Machines Corportion, 245 First Street, Cam- not the fault of the semantics of the language but rather of the cryptic 
bridge, MA 02142 syntax. 



form---operations on vectors of atomic values. When op- 
erating on nested collections, there are often two types of 
concurrency available: the concurrency available from the 
operation itself when applied to one of the nested collec- 
tions, and the concurrency available since the operation can 
be applied to each collection independently. By translating 
into a flat form we can take advantage of both types of con- 
currency in a homogeneous way using a simple vector model 
with very little runtime support. 

Although the techniques discussed in this paper could be 
used for many collection-oriented languages with nested col- 
lections, the techniques will be presented in the framework 
of a compiler for PARALATION LISP [&?I. PARALATION LISP 
consists of a new data structure and a small set of operators 
that are added into COMMON LISP. The data structure, the 
field, is an ordered collection much like an array, but related 
fields are grouped into paralations to describe and exploit 
locality. The parallel computation operator, elwise, can be 
applied to any COMMON LISP code, and executes the code 
over all of the elements of a set of fields. elsirre can be 
nested. The remaining two operators perform general com- 
munication between paralations. The first operator, match, 
encapsulates a communication pattern into a mapping. The 
second operator, <-, transfers a field according to a map- 
ping. 

The compiler translates to a language called Scan-Vector 
Lisp (SV-LISP). This language is a subset of COMMON LISP 
with the addition of a set of instructions for manipulat- 
ing vectors of atomic values. These vector instructions can 
be broken into four classes: the elementwise instructions, 
the permutation instructions, the scan instructions, and the 
vector-scalar instructions. The elementwise instructions ex- 
ecute an elementary arithmetic or logical operation, such 
as +, -, *, or ,  and not, over the indices of the input vec- 
tors. The permutation instructions permute the elements of 
a vector based on another vector of indices. The scan in- 
structions execute a prefix operation on a vector; the name 
scan comes from APL. The vector-scalar instructions are 
used to create vectors and to extract scalar elements from 
a vector. 

Figure 1 illustrates the organization of the compiler dis- 
cussed in this paper. The discussion of the compiler is bro- 
ken into two main parts: the mapping of PARALATION LISP 
data structures onto SV-LISP data structures and the trans- 
lation of PARALATION LISP code onto SV-LISP code. Fig- 
ure 2 illustrates how the compiler fits into a larger system 
that compiles into the instruction set of an actual target 
machine, the CM-2. The particular vector instructions of 
SV-LISP were chosen because they can be further translated 
to a large variety of architectures. This allows the front end 
of the compiler to be ported to many computers, including 
vector machines such as the CRAY or Convex machines, 
single instruction parallel machines such as the CM-2, and 
multiple instruction parallel machines such as the Alliant. 
We have implemented a simple back end that compiles to 
the CM-2 instruction set. 

Source Language: Paralation Lisp 

]-(Section 1 Operations (Section 3.2) 

(Section 5.1) (Section 5.2) 

u u 
Target Language: Scan-Vector Lisp 

l ~ a t a  Structures (Section 4.l)l I Operations (Section 4.2) 

Figure 1: Organization of the compiler. To translate PARA- 
LATION LISP onto scan-vector lisp both the data structures 
and the operations must be translated. 

PARALATION LISP 

& This paper 

SV-LISP with Segmented Instructions 

u See 131 

SV-LISP without Segmented Instructions 

4 A COMMON LISP compiler 

Vector and Host Machine Instructions 

u See I31 

CM-2 Instructions 

Figure 2: This figure shows the organization of the full com- 
piler that translates PARALATION LISP into CM-2 instruc- 
tions. This paper focuses on the first step. 

The purpose of implementing this compiler was to ex- 
periment with the ideas of compiling nested pardelism and 
to see what issues are involved in compiling a collection- 
oriented language onto a vector model. The compiler is 
therefore by no means complete: it only supports a small, 
but important, subset of PARALATION LISP. The compiler, 
however, produces very efficient output code. The CM-2 
code generated by the quicksort example described in Sec- 
tion 2 is only a factor of two slower than the fastest sorting 
routine for the CM-2, and is faster than a version written 
in  LISP[^^]. 

We will discuss some of the important techniques used 
by the PARALATION LISP compiler, including the compila- 
tion of nested parallel conditionals, and the compilation of 
nested parallel communication. The compilation of a quick- 
sort algorithm will be used as the central example. The 
most interesting and important elements of the compiler 
are : 

The representation used for the PARALATION LISP 
collections, fields. 



l The creation of two versions of each function, one to 
be called at top level and one to be called nested inside 
the PARALATION LISP elwise form. 

l The stepping-up and stepping-down manipulations 
which am used when entering and leaving the 
PARALATION LISP apply-to-each form. 

l The implementation of the if statement. 

After a illustrative example (quicksort), the remainder 
of this paper defines the source language and the target 
language in detail and then describes the transformations 
performed by the compiler. 

2 Quicksort Example 
This section is an overview of the issues addressed by our 
compiler that uses quicksort as a concrete example. 

The basic idea of quicksort [4] is to start with a sequence 
(an ordered collection) of values. If the sequence is already 
sorted, it returns the sequence; and if not sorted, it executes 
the following steps: 

1. Pick a random pivot value from the sequence 

2. Determine for each element whether it is less than the 
pivot or greater-or-equal to the pivot. 

3. Split the set into two sequences such that all elements 
less than the pivot are in one set, and all elements 
greater-or-equal to the pivot are in the other. 

4. Call the quicksort routine recursively on each sequence. 

5. Append the two sequences returned from the recursive 
c d .  

There are two ways in which we can parallelize this rou- 
tine. Firstly, when we split the set in two, we can execute 
the recursive call on each set independently and therefore 
in parallel. Secondly, the process of selecting a pivot, and 
then splitting based on the pivot can be executed in paral- 
lel. Ideally we would want to take advantage of both these 
kinds of parallelism, which are discussed in Section 2.1. 

To take a closer look, we can step through the execution 
of the actual PARALATION LISP quicksort code. Only the 
results of the program will be discussed in this example; 
the language constructs are explained from a more general 
point of view in the next section. The program is written 
in a verbose style to facilitate line by line analysis (that is, 
temporary results are saved in named variables even though 
they are only needed once). 

;; count the number of unique values in a field 
;; of keys 

1 (defun valuo-count (keys) 
2 (length (<- keys :with #'arb 
3 :by (collapse keys)))) 
4 

6 ;; sort a rot of koys 
6 (defun qsort (keys) 
7 (if (> (value-count keys) I) 
8 (lot* ( (pivot-value 
9 (elt keys (random (length keys)))) 
10 (&id0 (eluiae ((key keys)) 
11 (if (< key pivot-value) 
12 0 
13 1))) 
14 (sub-data 
16 (collect keys 
16 :by (match #f(0 I) side))) 
17 (sorted-sub-data 
18 (elwise (sub-data) 
19 (qsort sub-data)) )) 
20 (expand rorted-sub-data)) 
21 keys)) 

The value-count function defined in lines 1-3 takes a 
collection of keys and uses a paralation library function to 
count how many unique values occur in it. When there is 
only 1 unique value, all of the values are the same, and 
are therefore properly sorted. This is the base case (the 
termination condition) of the recursive qsort function. 

qsort begins by checking for its base case in line 7. If 
there is only 1 kind of value in keys, it does not need to be 
sorted, and line 21 returns keys as the result. In general, 
the test for the base case fails, and a random pivot-value 
is then picked. For example, if qsort is called on: 

value-count would have returned 7, and perhaps 9 would 
be selected as the random pivot value. Next, lines 10-13 
calculate a flag value, side. Each value compares itself to 
the pivot value, returning 0 if it is less than the pivot and 
1 otherwise: 

side = [O 1 0 i 1 0 i] 

In the next step, lines 14-16, paralation library functions 
are used to split the keys into two collections based on the 
two distinct values (0 and 1) in side. Each collection is 
nested in a larger collection: 

sub-data = [ [ 7  2 61 [9 11 19 1211 

At this point, although a nested collection is being used, 
they do not seem necessary. A flat vector of the split num- 
bers, along with some representation of the lengths of the 
subcollections, captures the state information equally well. 
In fact, that is the basis of our compiler's representation of 
nested collections. Simply put, a collection of collections 
can be represented by two collections: one containing the 
data and another containing the lengths of the subsets. For 
example, sub-data can be represented with the following 
two flat vectors: 

[7 2 6 9 11 19 121 

C3 41 



In the next step, it becomes clear why it is desirable to 
hide this representation from the user: Lines 17-19 contain 
a parallel recursive call that creates yet another level of 
collection nesting. For example, the recursive q r o r t  call 
that operates on the left half might cause a split based on 
a pivot value of 7 while the other call might split based on 
a pivot value of 12: 

call 1's sub-data = [ [2] [7 61 I 
call 2's sub-data = [[9 111 [I9 1213 

Viewed together from the macroscopic viewpoint, the 
two parallel recursive calls operate on a collection of col- 
lections of collections, and the nesting of collections grows 
a level deeper with each recursion, even as the number of 
qso r t  invocations that are executing in parallel doubles. A 
programmer using a collection oriented language does not 
have to be concerned about such details, any more than a 
C programmer must worry about allocating automatic (lo- 
cal) variables on a stack. Our compiler, and programmers 
using vector models directly, must deal with these issues 
explicitly. 

Inductively assuming that qso r t  works, we can return 
to line 20 of the top level call to t t  qsort. It uses a library 
function to transform a collection of sorted subcollections: 

sorted-sub-data = [ [ 2  6 71 [9 11 12 1931 

into the final result by flattening the collection of collections 
into a single collection. 

qsort result = [2  6 7 9 11 12 191 

2.1 Two Kinds of Parallelism 
The parallelism involved in a pivoting and splitting can triv- 
ially be exploited in parallel by a vector model. The paral- 
lelism involved in the parallel recursive calls to qsor t ,  al- 
though apparent to the programmer, cannot be directly ex- 
pressed using flat vector operators. By flattening the nested 
collections, we can take advantage of both kinds of paral- 
lelism on flat parallel hardware. 

We now consider how this quicksort can be implemented 
to run in parallel. We consider two types of parallelism. 
First, the value-count routine, the comparison of the pivot-  
value, the c o l l e c t  and the match can all be implemented 
in parallel as discussed later in Section 5.2. We call this 
the intraroutine pamllelism. This type of parallelism seems 
natural for vector or SIMD architectures. The second kind 
of parallelism occurs on lines 18-19 where quicksort is called 
recursively twice. Each of these calls can run in parallel. We 
call this the interroutine patallelism. It seems more suited 
to coarse-grained MIMD architectures. 

If we took advantage of intraroutine parallelism but ig- 
nored interroutine parallelism, the code would execute rapidly 
in the first stages, where the vectors of data to be sorted are 
large, but would become very inefficient in the final stages 
of quicksort. There would be many invocations of quick- 

sort that would have to be run separately, and each would 
be operating on a vector that was small compared to the 
number of processors available. The original PARALATION 
LISP compiler and the CM-LISP compiler both took this 
inefficient, but easy to implement, appmach. 

On the other hand, one can imagine an implementation 
on a coarse grsined machine that only took advantage of the 
interroutine pardeism. Such an approach would be efficient 
in the later stages of quicksort, but it would be inefficient 
in the early stages. Small numbers of processors would be 
responsible for operating on relatively large vectors. 

An important goal of the compiler discussed in this pa- 
per is to take advantage of both kinds of parallelism in a 
efficient and simple way and map them onto a strictly SIMD 
model. The compiler does this and compiles the quicksort 
into a routine which has an expected complexity of O(1gn) 
calls to a set of simple data parallel operations such as per- 
mute, scan, and elementwise arithmetic and logical opera- 
tions. 

3 Source Code: Paralation Lisp 
This section summarizes the PARALATION LISP language; 
for more details the reader should see [8]. PARALATION LISP 
consists of a new data structure, three primitive operators, 
and a set of other operators built on the primitive operators, 
all added to COMMON LISP. 

3.1 Data Structures 
The data objects permitted in PARALATION LISP are all the 
standard COMMON LISP data objects with one additional 
object, the field. The field, is a linear-ordered collection of 
elements. A field can be heterogeneous and the elements can 
be any PARALATION LISP value-including another field- 
thus allowing nested collections. Here are some examples of 
fields. 
A homogeneous field: 

A nested homogeneous field: 

A heterogeneous field: 

XF(7 IF (4  N i l  3) T "horse") 

A structure field: 

3.2 Operators 
The three additional primitive operators are an iteration 
operator and two field operators. The iteration operator, 
elwise, is used to iterate any PARALATION LISP code, in- 
cluding another elwise, over all elements of a field. The two 



primitive field operators, match and <-, perform communi- 
cation among the elements of fields: match encapsulates a 
communication pattern into a mapping, and <- transfers a 
field according to a mapping. Several other operations are 
supplied by PARALATION LISP but can be defined in terms 
of match and <-. All the COMMON LISP sequence functions 
can also be used on fields. 

The operators of PARALATION LISP that are needed for 
the compilation examples are outlined below. The ideas 
behind paralations and mappings, which are both important 
concepts of the language, are not discussed because they are 
not germane to a discussion of compiler issues. 

Elwise: The elwise operator is used to apply a body over 
each element of a field, or set of fields. 

(elwise bindings 
body) 

executes the body for each element of each field in the bind- 
ings and execute the body. So, for example, the form: 

(elwise ((a A) 
(b B)) 

(+ a b))  

will pairwise add the elements of A and B and return a 
field of the results (the body in this example is simply a 
function call to +). Each binding of an elwise must be from 
the same paralation; the result returned by elwise is a new 
field in that same paralation. The elwise body can include 
any valid PARALATION LISP form. 

M a t c h  a n d  Move: The match operation takes two key 
fields as arguments; one from a source paralation and one 
from a destination paralation. It returns a mapping. A 
mapping can be thought of as a bundle of one-way arrows 
that connect certain sites of the source paralation to certain 
sites of a destination paralation. Two sites are connected if 
their key field values are equal. A mapping is an encapsu- 
lated communication pattern. 

The <- (move) function accepts a mapping and a field 
from the source paralation of the mapping as its arguments. 
<- simply pushes this source data field into the tails of the 
mappings arrows, causing a field in the destination parala- 
tion to pop out at the other end of the mapping. The ele- 
ments in this field are calculated based upon what arrived 
over the arrows. When several arrows leave a single source 
site, a concurrent read takes place. When many arrows col- 
lide at a single destination site, the multiple incoming val- 
ues are reduced into a single value by repestedly applying 
a user-specified, tw~argument  combining function. (Com- 
bining will not be needed for the examples presented in this 
paper, but it is an important part of the paralation model.) 
Finally, when a destination site receives no incoming val- 
ues, a value is taken from a user-specified default field in 
the destination paralation. 

match creates mappings which describe communication 
patterns; <- makes use of mappings, and includes the func- 
tionality of both concurrent read and combining. We now 
outline some of the operations that can be defined on top 
of the match and <- operations. 

Vref: The vref operation 'Lsumsn the elements of a field 
according to any binary operator. So, for example: 

(vref #F(7 4 1 11 2 6) :with 'max) 

* 11 

Collapse a n d  Collect: The collapse operator takes a set 
of keys and generates a mapping in which all elements with 
equal valued keys are mapped to the same position. The 
collect operator takes a mapping and a field and appends 
all the elements which are mapped into the same position 
into a subfield. This can be implemented using a <- with 
a combiner of concatenate. The collect operator returns a 
field of fields. As an example of collect and collapse consider 
the following operation: 

( l e t  ((A #F(% a1 az a3 a, a d )  
(B #F(ko k1 ko k, kl k l ) ) )  

( co l l ec t  A :by (col lapse  B)) ) 

* XF(UF(a0 a d  XF(al a 4  as) PF(a3)) 

Expand: The expand operator takes a field of fields and 
appends all the subfields into a single field. So, for example, 
expand applied to the result field given above returns: 

(expand (co l l ec t  A :by (col lapse  B) ) )  

=+- tF(a0 a2 al a4 as as) 

3.3 Restrictions 
The compiler implements a small enough subset of PARA- 
LATION LISP that the subset is more concisely described by 
what it does include rather than what it does not include. 

The subset only supports homogeneous fields and the 
data type of each elements of a field must be either an inte- 
ger, boolean, field or structure. Since the elements can be 
fields, the subset supports nested fields. Many other data 
types, such as floating-point numbers or characters, would 
be easy to add but were left out for the sake of simplicity. 

The subset supports the following sequence operations 
onfields: e l t ,  length ,  s o r t ,  reduce, and concatenate. 
Other sequence operators would be easy to add but these 
were the only ones we needed for our test code. 

The subset supports the three primitive operations of 
PARALATION LISP, elwise, match and <-. However, it only 
knows how to match integer and boolean keys. The sub- 
set supports most of the operations on integer and boolean 
values inside an elwise. It also supports nested operations 
on fields. For example, any of the above mentioned se- 
quence functions can appear in an elwise. The only con- 



ditional the subset supports is the if special form, and it 
places the restriction that the results returned from both 
the then-expression and the else-expression must be of the 
same type. The reasons for these restrictions are discussed 
in [3]. 

4 Target Code: Scan-Vector Lisp 
We now describe the target code of the compiler, SV-LISP 
(Scan-Vector Lisp) (31. SV-LISP is a small subset of COM- 
MON LISP with the addition of a new data type, the poec- 
tor, and a set of instructions for manipulating this data 
type, the poector indtructions. The pvector data type-a 
vector of atomic values-is much more primitive than the 
field data type of PARALATION LISP since it neither allows 
nested collections nor collections of structures. Likewise, 
the pvector instructions-which include pairwise adding the 
elements of two pvectors or permuting the atomic elements 
of a pvector-are more primitive than the match and <- 
instructions of PARALATION LISP. 

Section 4.3 describes segmented versions of all the pvec- 
tor instructions. The segmented versions break a vector 
into contiguous segments and operate independently within 
each segment and are used by the compiled code for ma- 
nipulating nested fields. All the segmented versions of the 
pvector instructions can be translated into a small number 
of calls to the unsegmented versions [3]. This translation is 
implemented as a second phase of the compiler. The com- 
piler first translates into SV-LISP with segmented pvector 
instructions, and then translates this into SV-LISP with 
only the unsegmented pvector instructions (see Figure 2). 

Translating PARALATION LISP to SV-LISP rather than 
directly onto a parallel machine, such as the CM-2, has some 
important advantages. First, it separates the novel tech- 
niques of compiling collection-oriented languages onto a set 
of vector instructions from standard compiler techniques. 
The novel techniques, such as flattening nested parallelism, 
are used when translating from PARALATION LISP into SV- 
LISP while the standard techniques, such as compiling re- 
cursive routines, are used when translating from SV-LISP 
into actual machine instructions. Second, SV-LISP is rela- 
tively easy to port to new machines. Assuming a COMMON 
LISP compiler exists for a machine, PARALATION LISP can 
be ported to that machine simply by implementing a sub- 
routine for each of the pvector instructions, and interfacing 
these subroutines into COMMON LISP. 

The pvector data type and the pvector instructions of 
SV-LISP were selected because they can be implemented 
efficiently and straightforwardly on a broad variety of par- 
allel and vector machines (31. The pvector data type can 
be mapped onto a parallel machine by placing one element 
of the vector in each processor of the machine. If a vector 
is longer than the number of processors, multiple elements 
can be placed on each processor. The pvector instructions 
can then manipulate the pvectors in parallel: each processor 
manipulates one value. 

4.1 Data Structures 

COMMON LISP Data Types 

Integers, Booleans, Structures 

Additional Data Types 

Integer-Pvectors, Boolean-Pvectors 
I 

Figure 3: The data types of SV-LISP. 

SV-LISP has five data types. Three of these come from 
COMMON LISP: integers, booleans and structures. Two of 
them are new: boolean pvectors and integer pvectors. Pvec- 
tors are arbitrarily long linear-ordered collections of atomic 
values. The values are booleans in boolean pvectors and 
integers in integer pvectors.' Every pvector can have a dif- 
ferent length and the only operations that can create or 
manipulate the pvector data types are the pvector instruc- 
tions discussed in Section 4.2. If one was to implement 
a complete PARALATION LISP rather than the subset dis- 
cussed in this paper, SV-LISP would need to be augmented 
with some other types such as floating-point numbers and 
floating-point pvectors. 

4.2 Operations 
Figure 4 lists the operations of SV-LISP. These operations 
are broken into two classes, operations from COMMON LISP 
and the pvector instructions. The COMMON LISP opera- 
tions are defined in the COMMON LISP reference manual 
[lo]. In this section we define the pvector instructions. 

7 

COMMON LISP Operations 

Special Forms and Macros: 
if, defstruct, defun, l e t ,  let*, progn, s e t q  

Scalar Arithmetic and Logical Operations: 
+,- ,and,  o r , = , < ,  ... 

Pvector Instructions 

Elementwise Instructions: 
p+, p-, p-and, p-or, p= , p<,  p-select, ... 

Permutation Instructions: 
permute, select-permute 

Scan Instructions: 
+-scan, max-scan, min-scan, or-scan, and-scan 

Vector-Scalar Instructions: 
insert, extract, distribute, length 

Figure 4: The operations of SV-LISP. 

'The term pvcctor in used instead of vector so as not to confuse it 
with the COMMON LISP vector data type-a Linear-ordered collection 
whose elements can be of any type. 



E l e m e n t w b e  Ins t ruc t ions :  Each elementwise instruction 
operates on equal-length vectors, producing a result vector 
of the  same length. T h e  element i of the result is a n  ele- 
mentary arithmetic or logical primitive-such as +, -, *, o r  
or  not-applied t o  element i of each of the input vectors. 
For example: 

P e r m u t e  Ins t ruc t ions :  The permute instruction takes 
two vector arguments-a data  vector and a n  indez  vector- 
and  permutes each element in the da ta  vector t o  the location 
specified i n  the  index vector. For example: 

A (data vector) = [a0 a1 a2 a3 a4 as as a,] 
I (index vector) = [ 2 ~  0 , 71 
C + permute(A, I) = a4 a0 as a2 a1 a5 a,] 

I t  is an error for more than one element t o  cont.ain the  same 
index; by definition a permutation is a one-to-one mapping. 
SV-LISP also includes a select-permute instruction which 
permutes elements between vectors of different lengths by 
masking out certain elements and placing defaults in  certain 
positions. 

S c a n  I n s t r u c t i o n s :  A scan instruction executes a scan 
operation on a vector? Scan is exceedingly useful in par- 
allel algorithms and can be implemented very efficiently i n  
parallel hardware 121. 

The  scan operation takes a binary associative operator 
@ with identity 0, and a n  ordered set [ao, a l ,  ..., a,-l] of n el- 
ements, and returns the ordered set [O, ao, (a0 @ a l ) ,  ..., (a0 $ 

al  $ ... $ a,-z)]. For example: 

SV-LISP only includes +, maximum, minimum, or and and 
as operators for the scan instructions. 

Vec tor -Sca la r  I n s t r u c t i o n s :  SV-LISP includes four in- 
structions that  take both scalar and vector arguments. T h e  
extract instruction extracts a scalar value from a vector 
based on a scalar index. The insert instruction inserts a 
scalar value into a vector based on a scalar index. The 
distribute instruction generates a vector with a scalar copied 

aThe term acan is taken from APL [5]. Many other terms have 
been used for this operation but acan seems to be the first and most 
concise. The term prefiz computation is often used in the computer 
science theory community. 

across the  whole vector. The  length instruction returns the 
length of a vector. For example: 

4.3 Segmented Pvector Instructions 
A vector can b e  partitioned into contiguous segments of ele- 
ments by keeping a second vector which specifies the length 
of each segment. For example: 

Vector = [ 5 1 3 4 3 9 2 6 ]  
Segment Descriptor = [2 4 21 

A = [5 11 [3 4 3 91 [2 61 
B = [l O ]  [2 0 3 11 [ O  11 
I = [O 3 11 
S (segment descriptor) = [2 4 2) 

+-scan(A, S) = [0 51 [0 3 7 l o ]  [0 21 
perrnute(A, B ,  S) = [ l  51 [4 9 3 31 [2 61 
extract(A, I ,  S )  = [5 9 6 )  

Figure 5: Examples of the segmented versions of the pvector 
instructions. 

The segmented versions of the pvector instructions take ex- 
tra arguments that specify how the vectors are segmented and 
operate independently within each segment (see Figure 5 ) .  The 
segmented version of the permutation primitive bases its indices 
relative to the beginning of each segment so values permute within 
a segment. The segmented version of the scan instructions restart 
at the beginning of each segment. The segmented version of the 
elementwise operations are unchanged. 

5 Translation 
We now discuss how PARALATION LISP is translated into SV- 
LISP. In keeping with the rest of the paper, we first describe data 
structures and then describe operations. 

5.1 Data Structures 
In collection-oriented languages, different mappings of the high- 
level collections onto the target architecture can give rise to orders 
of magnitude differences in the efficiency of code on the architec- 
ture. A compiler must therefore pay special attention to how the 
mappings effect the efficiency of code. This section discusses how 
the compiler maps the collections of PARALATION LISP, fields, 
onto the primitive data structures of SV-LISP, pvectors. The 
mapping discussed allows a particularly efficient manipulation of 
nested fields by the vector instructions of SV-LISP. The rep- 
resentation of nested fields is based on segments as introduced 



in Section 4.3 and allows the generated code to operate over all 
subfields in parallel. 

All fields are constructed from the pfieM structure-a COM- 
M O N  LISP structure type with two slots. The first slot stores a 
segment-descriptor, which describes the length or segmentation of 
the field (see Section 4.3).' The second slot stores the actual val- 
ues. This slot contains a pvector if the field contains only atomic 
values, contains another pfield if the field is nested, and contains 
a user-defined structure if the field is a field of user-defined struc- 
tures. We now discuss each of these cases. We only consider 
homogeneous fields since the subset of PARALATION LISP we are 
considering only supports homogeneous fields. 

Simple Field: To represent a simple field-a field whose ele- 
ments are all atomic-we use a single pfield structure. The first 
alot contains a definition of a single segment. The second slot 
contains a pvector with the values of the field. For example: 

segdes: 161 

We use a pfield structure instead of using a pvector directly since 
it allows us to chedc if two equal length fields belong to the 
same para la t i~n .~  Using the pfield structure is also useful for 
the stepping-up and stepping-down manipulations discussed in 
Section 5.2. 

Nested Field: We represent a nested field-a field whose ele- 
ments are themselves fields-by nesting the pfield structures and 
using segments of a single pvector to represent each subfield. For 
example: 

pfieu 
segdes: [31 

I pfieu 
values: segdes: [2 3 11 

values: Cooo aol a10 a11 a12 a201 

In this example, the segdes slot of the inner pfield describes the 
segmentation of the values slot. This technique can be applied re- 
cursively to represent a nesting of arbitrary depth. A field nested 
n deep can be represented with n segment-descriptor structures 
and n pfield structures. 

As mentioned in the introduction, the purpose of represent- 
ing nested fields with a single value pvector is to get both the 
parallelism on operations within each bottom level field and the 
parallelism over all the bottom level fields. 

'In the actual compiler the segment-descriptor contains several d o  
scriptions of the segmentation, each useful in different contexts. For the 
purposes of this paper, we assume the segment-descriptor only contains 
the lengths of each segment. 

'Since the segment-descriptor is actually a structure, we can check 
if two fields are from the same paralation by seeing if the two segment- 
descriptors are eql. 

St ruc ture  Field: We represent a structure field-a field whose 
elements are each a user defined structure-by pulling the struc- 
ture out f om inside the field. For example: 

segdes: C31 

In this example, the field of three uv-structures is mapped onto a 
single uv-structure whose slots contain a pvector with the values 
of all three of the original uv-structures. 

Figure 6 illustrates a final example of a field with both nesting 
and structures. 

A mapping is represented by a pair of pvectors that capture 
the site to site equality relationship defined by the original key 
fields supplied to match. The pvectors are canonicaijzed to make 
the use of the mapping by <- more efficient [a]. 

Figure 6: An example of how a nested field with structures is 
represented. In the example, the zyr-struct and the uv-struct 
are user-defined structures. 

P F ~ U  
segdes: 121 

5.2 Operations 

values: 

We now discuss the manipulations necessary to translate code 
from the subset of PALALATION LISP into SV-LISP. We break 

zytstructure 
x: 120 211 
y: [Yo 111 

segder: E3 11 

the discussion into four parts: compiling two versions of all code, 
one parallel and one serial; compiling the elwise form; compiling 
conditionals; and implementing the PARALATION LISP collection 
operations. 

Compiling Two Versions 
When a function is defined in PARALATION LISP, it must work 



both if called at top level (not within an  elwise), and if called 
within an  elwise. Consider the following example: 

(defun plus-timea (a  b) 
(*  a (+  a b ) ) )  

Called a t  top level Called within an elwisc 

(plus-timas 6 2) (e lwise  ( ( a  tF(2 1 6 ) )  

3 36 (b  tF(3 5 2)))  
(plus-times a b)) 

3 tF(1O 6 48) 

the value of the variable b is implicitly copied across the three 
elements and added to each. When translating from PARALATION 
LISP to SV-LISP, the translator inserts code that execute this 
copy a t  run time. The particular code inserted depends on the 
type of value that needs to be copied. If the value is a scalar, the 
distribute pvector primitive (see Section 4.2) is inserted. Figure 8 
illustrates an example of this manipulation. If the value is a 
structure of scalars, a distribute primitive is inserted for each slot 
of the structure. If the value is a field, a d ia t r ibute-segment  
operation is inserted that creates a nested field with the original 
field in each element. The type of a variable can often be inferred 
a t  compile time so that the correct code can be inserted a t  compile 

itiver p-+ and p-*. Figure 7 shows an example of the translation v 

In the first case, the compiler uses a serial version of p lus  -t h e r  - 

of a PARALATION LISP routine into the two SV-LISP routines. 

while in the second case the compiler uses a parallel version of the 
routine. The serial version uses the standard COMMON LISP + 

(defun plus-times (a  b c) 
(+ a (* b c))) 

(elwise ((a A)) 
(+ a b)) 

(defun s-plus-times (a b c) 

(t a ( *  b c))) 

(defun p-plus-times ( a  b c) 

and + operations while the parallel version uses the pvector prim- 

Figure 7: Compiling both a parallel and a serial version of 
a routine. The parallel version replaced all function calls with 
their parallel versions. 

The compiler keeps two versions of every user-defined function 
and every function supplied by PARALATION LISP. To generate 
the parallel version of a new function, the compiler replaces each 
function call within the routine with its parallel version, and also 
executes some manipulations on the special forrxls. The mcst 
interesting of these manipulations is for the i f  special form a11d 
will be discussed in Section 5.2. The l e t ,  l e t *  and progn special 
fonns requjre no manipulations. 

Compiling Elwise Forms 
The compiler applies several manipulations to translate an elwise 
form. First, it executes the same manipulations required when 
creating a parallel form of a function as discussed in the last sec- 
tions. Second, it inserts code that copies all the free variables-- 
variables that appear in the body but not in the binding list- 
across the elements of the elwise. Third, it inserts code that 
steps-down all the values bound in the binding list, and steps-up 
the result of the body. 

We first discuss copying free variables. In PARALATION LISP, 
if a variable appears in the body of an elwise but not in the 
binding list, the variable is implicitly copied across the elements 
of the elwise. For example, in the form: 

( l e t  ( ( b  3 ) )  
(a lwise  ( ( a  tF (4  1 2 ) ) )  

(+ a b ) ) )  
3 PF(7 4 6 )  

(simp-elwise ((a A)  
(b (distribute b (pfield-segdes A)))) 

(+ a b)) 

Figure 8: An example of the code inserted for copying free 
variables. All free variables are removed by this manipulation. 
The simp-elvise form is a version of elwise that does not 
accept free variables. 

time (in the above example b must be a scalar since we are adding 
it). If the type cannot be inferred a t  compile time, the compiler 
inserts code that executes a type dispatch a t  run time. 

We now discuss stepprng-down and stepping-up. Stepping 
down and up are crucial to the implementation of operations 
on nested fields. Stepping-down consists of stripping off the top 
pfield from each value being bound in the elwise bindings, and 
setting a variable c d e d  the current-segdes to this value. So for 
a nested field, each time the field is passed inside another elwise 
another of its pfield structures is stripped off. Stepping-up is 
the inverse of stepping-down. When leaving an elwise stepping- 
up consists of tagging on a pfield structure to the result returned 
from the body of the elwise and restoring the value of the current- 
3egdes. Figure 9 illustrates the code inserted by these manipula- 
tions. 

(simp elwise ( ( a  A) 

(b  B ) )  
(+ a h ) )  

v 
(let ( ( a  (pfield-values A)) 

(b (pfield-values R ) )  
(current-segdes (pficld-segdes A))) 

(make-pfield 
:segdes current-segdes 
:values ( p - i  a b)) )  

Figure 9: An example of the  stepping-down and stepping-up 
manipulations. 



To see how stepping-down and stepping-up are used, we con- 
sider an example. Consider the following code: 

( l e t  ( ( f  ield-of -f i e l d s  
#P(#F(7 4)  tF(1l) #F(8 1 17) ) ) )  

(elwise ( ( f i e l d  f i e l d - o f - f i e l d s ) )  
(elwise ((value f i e l d ) )  

(+ value value)) ) 

Based on the representation discussed in Section 5.1, the original 
field is represented as: 

field-of-fields = 

pfield 
segdes: 231 1 
values: 1 ' X d e t x  [2 1 31 1 values: ['I 4 11 8 1 171 

When entering the outer elwise, the stepping-down code strips off 
the top pfield leaving: 

field = segdes: C2 1 31 

And when entering the inner elwise, the next pfield is stripped off 
leaving: 

value = [7 4 11 8 1 171 

Now when p-+ is applied to value, the result is: 

When exiting the inner elwise the stepping-up code appends a 
pfield back on returning: 

And when exiting the outer elwise another pfield is appended 
returning: 

segdes: [3] 

Which is the representation of the desired result: 

XF(#F(14 8)  tF(22) XF(16 2 34)) 

many sets of data, into a new function over one larger set of 
data-the data sets all appended together. The effect of stripping 
off a pfield by the translated elwise is to remove a level of dividing 
boundaries and thaeforc effectively appending the data sets. So, 
in the example, inside the inner elwise there are no longer any di- 
viding boundaries--& the original values are appended into one 
long vector. 

C o m p i l i n g  C o n d i t i o n a l s  
When creating a parallel version of a function, the functions in the 
body can be simply converted to calls to their parallel versions. 
On the other hand, the special forms do not obey the normal rules 
of function application and therefore cannot simply be replaced 
by a parallel function (for example, the i f  form only evaluates 
the second argument if the f i s t  evaluates to T). In this section 
we briefly discuss how the parallel version of the i f  special form 
is implemented by the compiler discussed in this paper. A more 
complete discussion can be found in [3]. 

The problem with the i f  special form is that some elements 
will take one branch while others will take the other branch. At 
run time, M long as there are some elements that want to take 
each branch, both branches must be executed. Since only a small 
number of elements might take one of the branches, it would be 
inefficient to execute the code in that branch over all elements 
(this assumes that it is cheaper to operate on shorter vectors, 
which is the case if multiple elements are placed on each physical 
processor). This can be particularly bad for nested conditionals. 
The compiler, therefore inserts code that packs the elements that 
take each branch into pvectors that only contain the elements 
which take that branch. After both branches are executed, the 
results are merged. 

Figure 10 shows an example of the translation. 

(if flag 
(funcl a) 
(func2 b)) 

(if (or-reduce flag) 
(if (or-reduce (p-not flag)) 

(recursive-flag-merge flag 
(let ((a (recursive-pack a flag))) 

(funcl 8)) 
(let ((b (recursive-pack b (not flag)))) 

(f-2 b))) 
(funel 8)) 

(func2 b)) 

Figure 10: Translating the parallel version of the i f  special 
form. If the flag is IIL in all of the segments, only func2 is 
executed. If the flag is T in all of the segments, only f unc l  is 

In this example, the code that executes the addition runs executed. If some flags are T and other N I L  then the respec- 
in parallel over dl elements therefore taking advantage of the tive segments are packed before execution and merged after 
parallelism within each subfield and also the parallelism among execution. 
the subfields. This technique works regardless of the depth of 
the nesting and regardless of the complexity of the operations 
executed within the elwise. O p e r a t i o n s  

One way of thinking about what is going on is that the com- There are several PARALATION LISP operations that need to be 
piler converts an elwise, which is a mapping of a function over implemented. We only need to implement the unsegmented ver- 



dons beeawe we can use the same translator that generates par- [2] Guy Blelloch. Scans as primitive ~aral le l  operations. In 
allel versions of the routines to  generate parallel versions of the International Conference on Parallel Processing, pages 355- 
PABALATION LISP operations. The operations we have imple- 362, IEEE Computer Society, 1987. 
mented include length, e l t  , match, <- , expand, co l lec t  and [3] Guy E. Blelloch. Scan Primitives and Parallel Vector Mod- 
collmpse. The length and e l t  sn implemented with primitives 

els. PhD thesis, Artificial Intelligence Laboratory, Mas- 
length and extract. We now show the code needed to implement sachusetts Institute of Technology, Cambridge, MA, October 
expand, omitting the other8 due to space limitations. 

1988. 

(dofun expand ( f i e l d )  141 C. A. R. Hoare. Quicksort. Computer J., 5(1):10-15, 1962. 
( l e t  ( (ch i ld - f ie ld  (pfield-values f i e l d ) ) )  

(make-pfield [5] Kenneth E. Iverson. A Programming Language. John Wiley 

:values (valnea (pfield-values ch i ld - f ie ld ) )  k Sons, Inc, New York, 1962. 

: segdes 
(make-segment-descriptor 

: lengths (vo::+-reduce 

[6] Kenneth E. Iverson. A dictionary of APL. APL Quote Quad, 
18(1):5-40, September 1987. 

( sepent - leng ths  [i'] Trenchard More. The nested rectangular array as a model of 
(pfield-segdes ch i ld - f ie ld ) )  d a t a  In APL79 Conference Proceedings, pages 55-73, ACM, 

(segment-head-f l ags  1979. 
( p i  ield-segdes f i e l d ) )  1)) ))  

[a] Gary W. Sabot. The Paralation Model: Architecture- 
Independent Parallel Programming. The MIT Press, Cam- 
bridge, Massachusetts, 1988. 

6 Summary [9] J. T. Schwartx, R.B.K. Dewar, E. Dubinsky, and E. Schon- 
In this paper we have presented techniques for mapping the nested berg. Progmmming with Sets: An Introduction to SETL. 
execution of parallel constructs into flat parallel models. Since ac- Springer-Ve'rlag, New York, 1986. 
tual parallel hardware is usually flat in nature, these techniques 
are useful to implementors of high level collection oriented lan- 
guages. These languages express parallelism in a natural way that 
a t  f i s t  does not appear to be supportable by massively parallel 
machines. These techniques form a bridge from the convenience 
and power of nested collections and operations to the speed and 
simplicity of machines like the CM-2. 

References 
[I] APL2 Programming: Language Reference. IBM, first edi- 

tion, August 1984. Order Number SH20-9227-0. 

[lo] Guy L. Steele Jr., Scott E. Fahlman, Richard P. Gabriel, 
David A. Moon, and Daniel L. Weinreb. Common Lisp: The 
Language. Digital Press, Burlington, Massachusetts, 1984. 

[ l l ]  Guy L. Steele Jr. and W. Daniel Hillis. Connec- 
tion Machine LISP: fine-grained parallel symbolic pro- 
cessing. In Proc. 1986 ACM Conference on Lisp 
and Functional Programming, pages 279-297, ACM SIG- 
PLAN/SIGACT/SIGART, Cambridge, Massachusetts, Au- 
gust 1986. Also available as Thinking Machines Technical 
Report 86.16. 

[12] Thinking Machines Corporation. The Essential *Lisp Man- 
ual. Cambridge, Massachusetts, 1986. 



Implementation and Use of an Image Processing Algebra 
for Programming Massively Parallel Machinest 

J.N. Wilson G.R. Fischer G.X. Ritter 

Center for Computer Vision Research 
Rm.  E301 CSE Building 

University of Florida 
Gainesville. F L  32607 

ABSTRACT 

Image Processing problems are often ideally suited to 
implementation on massively parallel machines. Providing a 
machine independent image processing language that  can be 
readily targeted a t  massively parallel machines can be of great 
benefit in aiding researchers to  use such machines. Such a 
language can free the user from having to learn the details of 
directly programming such a complex machine. We discuss the 
implementation and use of such a language, the AFATL (Air 
Force Armament Laboratory) image algebra, on a massively 
parallel machine. We introduce the problem of specifying 
image processing algorithms in a machine independent way, 
introduce the image algebra, provide an overview of how image 
algebra constructs are implemented in Connection Machine 
*lisp and provide examples of the use of image algebra for a 
variety of image processing operations. Finally, we discuss the 
generality, level of portability, and the efficiency of the existing 
implementation. 

INTRODUCTION 

h4asslvely parallel computers offer great potential benefits 
to  end users. Sometimes, however, users who could benefit 
directly from the use of such massively parallel machines are 
reluctant to  use them. In some cases the decision not to  use a 
massively parallel machine is driven by the high cost of such 
architectures, but in other cases the primary motivation for not 
using massively parallel machine is a lack of understanding of 
the computing paradigm on which such architectures are based 
or  a reluctance to  tackle the problem of adapting current p r e  
grams and programming techn~ques to a radically different 
archltect~lre To confr~qe the iwue even further, c(ifTera1,' 
massively parallel machines have different architectures, con- 
straints, host systems, and so forth, making the porting of p r e  
grams prepared for massively parallel machines difficult. 

One approach to  solving this problem is to develop a gen- 
eral purpose high-level language that  expresses massively pard- 
lel computations in a machine independent way. This solution 
suffers from the problem of being architecture class specific. 
Programs in such a language will not in general express a l p  
rithms in a way that  easily permits them to  be ported to  
different classes of architectures such as  sequential or pipeline 
machines. 

t This work supported in part by the U.S  Air Force and D A R P A  under contrlc: 
FD863%84-C-0295, and wss  conducted using the computational rMourcrJ of the 
Northeat  Parallel Architectures Center ( W A C )  at Syracuse University, which is 
funded by D A R P A ,  under contract Lo Rome Air Development Cenler [RADC), Gr~ffiss 
AFB. h'Y 

 RECEDING PAGE RANK NOT FILMED 

CH2649-2/89/0000/0587$01.OO @ 1988 lEEE 

One can overcome this oroblem of architecture class 
dependence in a specific applicabion domain by developing a 
high level application specific language that  is architecture class 
independent. In this paper we discuss implementation and use 
of such a language, the AFATL (Air Force Armament Labora- 
tory) image algebra [1,2,3], on a massively parallel machine. 
T h e  architecture independence of this algebra is a result of its 
formal mathematical structure and method of development. 
Implementations of the image algebra have been developed for 
three kinds of processor architectures: sequential, vector paral- 
lel, and massively parallel. We discuss a massively parallel 
implementation in this paper. 

In the next section, we introduce the image algebra. We 
follow that  with an overview of a Common Lisp implementa- 
tion of the image algebra on the CM2 Connection Machine. 
We then provide examples of the use of this image algebra 
implementation. We summarize with a discussion of t h ~  gen- 
erality, level of portability, efficiency, and extensibility of the 
existing implementation. 

IMAGE ALGEBRA 

T h e  image algebra was designed to provide a mathemati- 
cal system to  support implementation, comparison, and analysis 
of image processing transformations. A number of architecture 
specific image processing notations have been developed in 
recent years [4] ,  but programs developed in such languages are 
not easily ported t,o other architectures. Other image process 
ing notations have been based on mathematical models of 
images 151, but most have not been demonstrated to be capable 
of describing certain cla.sies of image processing transforma- 
tions. The  AFATI, image algebra (henceforth referred to  sim- 
ply a s  image algebra) was developed with the intent of avoiding 
these pitfalls. The  algebra was developed after carrying out  a 
study of over 200 image processing algorithms. The  operands 
and operations employed in these algorithms were analyzed to 
d r t ~ r m i n e  the fundamental components upon which they are 

built. T h e  image algebra was then developed by extracting the 
relevant components discovered during that  study. 

The  image algebra has been shown to be sufficient to 
express all image transformations over images with finitely 
many gray-values 161 as well as all image transformations 
described by finite program schemes [7] Informally stated, 
these results mean that  the Image algebra can express any 
usable image transformation Of greater interest, however, is 
the algebra's coherent set of operands and operations and the 
ease with which the algebra can be used to descr~be image 



transformations. In the rest of this section we describe the 
image algebra briefly, concentrating on those components m m t  
relevant to our discussion of m-ively parallel implementation 
of the algebra. 

An algebra consists of a set of operands together with a 
set  of finitary operations on those operands. We briefly 
describe the operands and operations comprising the image 
algebra in the following paragraphs. In the limited space p r e  
vided, we are unable to give a complete presentation of the 
image algebra. The  interested reader should refer to 121 for a 
more complete discussion. 

T h e  operands of the image algebra are values and values 
sets, coordinates and coordinate sets, images, and generalized 
templates. Informally speaking, a value set can be any set  that  
might be used for image pixel values such as the reals ( R ) ,  
integers (Z), binary representations of subsets of the integers, 
and so forth. T h e  coordinate sets of the image algebra are s u b  
sets of R n ,  that  is, they are subsets of real n-space. In imple- 
mentations of the image algebra, we restrict our attention to 
finite coordinate sets such as rectangular subsets of integral 
cartesian space ZZ. We use symbols X and Y to  represent coor- 
dinate sets, with elements x and y respectively. An image is 
simply the graph of a function from a coordinate set  into a 
value set. T h e  set  of all real valued images over coordinate set 
X is denoted R X .  

T h e  fundamental operations on images in R X  are, for the 
most part, pixelwise induced operations on the reals. T h a t  is, 
functions / : R - r R  and g : R x R + R  induce similar functions 
R~ 4 R~ and R X ~ R X - + R x ,  also denoted by f and g ,  and 
defined by 

/ ( a )  = I(x ,c(x) ) :  4x1 = f ( 4 ~ ) ) )  
9 ( a , b )  = { (x ,c(x) ) :c(x)  = g(a(x) ,b(x)} .  

For example, sin(a) = {(x,sin(a(x))): x E X ), and 
a*b = { (x ,a (x )*b (x ) ) :xM) .  

In addition to  these pixel-wise operations on images, 
several unary operations on images and image dot  product serve 

to map real images into real values. The image sum operation, 
E, is defined on image a € R X  as 

Ea = E a(x).  
x E X  

Besides these unary and binary operations on images, the 
Image Algebra supports what are called generalized template 
operations. Each of these operations takes as operands an 
image and a generalized template. The generalized templates 
formalize and extend the concept of mask or template entities 
used in neighborhood image processing algorithms. 

Roughly speaking, if one wants to compute a generalized 
template operation on a real-valued image over coordinate set 
X, giving as its result a real-valued image over coordinate set 
Y, one uses a real-value template in the set ( R ~ ) ~  (the set of 
functions from coordinate locations in Y into real-valued images 
in X. T h a t  is, if template t is an element of (RX)Y ,  then if 
y€Y, t ( y ) ~ ~ X ,  that  is, t ( y )  is an image on X. For convenience 
sake, we write t, to  mean t ( y ) .  The image assigned to a result 
location is used b weight each of the values in the source image 
and then gather those values together to yield the result image 
value a t  that  location. The  weighting and gathering of values is 
specified by an operation taking an image and template as its 
operands and yielding an image result. 

Although there are three fundamental image template 
operations in the image algebra, we consider only one of them, 
generalized convolution, in this paper. The  other image- 
template operations provided by the image algebra are multipli- 
cative mazimum and additive mazimum. Additive maximum 
generalizes the gay-scale morphology to  non-rigid structuring 
elements [8], and multiplicative maximum provides a pseude  
linear operation with characteristics that  are currently under 
exploration. 

Given an image a on coordinate set  X, and a template 
t E (RX)Y ,  we define the generalized convolution of a with t ,  
written aQt as follows: 

aQt I c where c€RY and for all y in Y,  c ( y )  = C(a*ty) .  

In Figure 1, we show an image a ,  that  will be convolved 
with template t to  yield a result image c ,  that  is, 

c = at 
Figure 2,  shows how the generalized convolution operation is 
applied to determine the the value of c a t  the pixel location y , .  
First one obtains the image ty,, then one multiplies this image - .  
pointwise with the source image a .  The sum of the pixel values 
in this image are added together, the result providing the value 
01' cfy,). 

image a 

Figure 1. 

formation of 
image c 

t ~ l  
image a 

Figure 2. 

Note that  in using a template operations to compute the 
result value a t  a pixel location, such as yl in Figure 2, one need 
only consider multiplication a t  the locations in the support of 
the image ty l ,  that  is, the locations where t y ,  is non-zero. The  

support of tyl,  denoted S(ty l ) ,  is highlighted in Figure 2. Thus,  

C(a* ty l )  = C a(x). One can think of the template, then, as 
S(tyl) 



mapping each result image location into its source support. In 
this sense, then template operations of the image algebra are 
backward driven, since the result pixel location is first mapped 
to  a support, then an operation involving the support and the 
image operand is performed to  yield the result pixel value. 

Many different formulations of neighborhood operations 
have been developed and implemented in computer systems. 
Such formulations may provide an operation similar to the 
image algebra image-template operation but restricted in some 
sense. One type of restriction is so prevalent we have given it a 
special name. A template t is said to  be translation invariant if 
given x, y, and z satisfying x, xf i  EX and y, yfi EY we have 
ty(x)  = t y + z ( ~ ~ ) ,  i.e. when translating the result location argu- 
ment of the template, the template image yielded is identical 
(up to the same t,ranslation). Translation invariance is not 
required of image algebra templates. As shown in Figure 3, the 
example template t of Figures 1 and 2 may assign to  point y:, 
an image completely different from that  assigned to  point yl. 

F+R, 
y2 --+A 23 

formation of 
image c 

t ~ p  image a 

Figure 3. 

One important generalization of templates is to  provide 
for the definition of families of templates where each particular 
element can be distinguished by parameter values. If P is a set 
of parameter values, a real-valued parameterized template t 
with paramet,ers in P is a function of the form 

t :  P + (R")'. 
T h e  parameterized templat,e maps its parameter into a normal 
template. T h e  ability to define parameterized templates is of 
great benefit in describing complex image processing and vision 
algorithms. We discuss parameterized template definit,ions 
further in the next section. 

The  subalgebra of the image algebra providing only the 
operations of generalized convolution, image multiplication, and 
image sum is isomorphic to linear algebra (91. Removal of the 
requirement for translation invariance provides the capability to  
express non-linear transformations such its warpinffi with 
image-template operations. The conceptual power of such tem- 
plate operations comes from the distinction drawn between the 
template operation, e.g. generalized convolution, and the assign- 
ment of images to result locations by the template 

MASSIVELY PARALLEL IMPLEMENTATION 
T h e  image algebra described briefly in the preceding sec- 

tion, while not in any way limited to implementation on mas- 
sively parallel processors, can easily exploit the power of such 
computer architectures. The  obvious paradigm for parallel 
implementation of the image algebra is to equate coordinates in 
coordinate sets with processors in the machine architecture. 
Unary and binary image operations can then be implemented in 
a SIMD fashion. The  implementation of image template opera- 
tions, on the other hand, is somewhat more complicated. 

Let us consider a model for implementing the expression 
a@t. Our  paradigm above indicates tha t  each coordinate, 
whether in the source or result coordinate set ,  will be associated 
with some processor. As noted in the previous section, the tem- 
plate operations are backward driven, so we will consider the 
set  of result processors as controlling the template operation. 
Consider the processor associated with result location y. This 
processor will need to compute the support o f t  a t  y, S(t,), then 
for each location x in S(ty) it must compute a(x)*ty(x) and sum 
these values to  determine the result value a t  y. If template t is 
translation invariant then such an operation is clearly SIMD. If 
t is more complex then SIhfD implementation becomes more 
difficult. 

We now discuss a language interface for providing the 
image algebra to users. Let us first note that  the image algebra 
is not a programming language. In comparison to  scalar arith- 
metic, one can consider the image algebra to  be the arithmetic 
of images. We have implemented a subset of the image algebra 
as an extension to Common Lisp [lo]. Our  massively parallel 
implementation of the image algebra has been conducted on a 
CM2 Connection Machine using *lisp [l l] .  This provides us 
with several key benefits: we have the benefit of working in the 
rich development environment provided by Common Lisp; and 
all image algebra constructs described in this paper have been 
able to  undergo parallel development in a uniprocessor imple- 
mentation carried out  in Kyoto Common Lisp on various Sun 
workstations. This  exemplifies the architecture independence of 
the image algebra. Aside from execution speed, there is no way 
of distinguishing what underlying architecture the image alge- 
bra algorithmist is using. 

Our  implementation has undergone several stages and is 
rontinuing to  evolve. In t,he current implementation a seamless 
extension of Common Lisp is provided by execution of an image 
algebra read function. The  user interface provided by this func- 
tion can distinguish between forms that  employ image algebra 
constructs and execute appropriate code to  implement those 
image algebra operations. The  new da ta  type image is pro- 
vided by this interface. While images are represented in the 
CM2 implementation as *lisp pvars, the user of the image alge- 
bra need not be concerned with this detail. Common Lisp 
arithmetic forms are extended to have appropriate meanings 
when operating on images. Image algebra operations with no 
analogues in Common Lisp are provided via defined functions. 
It is interesting to note that  many of these funct,ions are already 
directly available in *lisp, indicative of the close relationship 
between the Connection Machines model of computation and 
the image algebra. Parameterized templates are defined with a 
form analogous to  defun and are used in image-template 
operations. As  implementation of unary and binary image 
operations 1s relat~vely stra~ghtforward, we will concentrate in 
the rest of thls section on definition and use of templates 



As noted in the previous section, a parameterized tem- 
plate is a function mapping a parameter value into a template, 
which is a function from coordinates into images. One can, 
however, more compactly specify a template by considering 
only the support (non-zero portion) of the image it yields. This  
view leads to a significantly more efficient implementation and 
permits more compact specification of templates. Parameter- 
ized templates are declared much like Common Lisp functions 
with the special form def template. The def template 
form specifies the template name, its parameter names, the 
result location coordinates, and a template body which con- 
structs  the support of the template when given bindings for 
parameter values and result coordinate location. The  special 
form welght is evaluated to yield a single pixel in the support. 
T h e  forms tha t  may appear in a template body under our 
current image algebra implementation are limited. Scalar arith- 
metic functions may be used, as  well as predicate functions, do, 
if, let, let*, when, and weight. The syntax for template 
definitions is given below: 

deftemplate template ( {var>* ) 
[ (coordinates {var>* ) ) 1 
body 

T h e  parameter names for the template are contained in the list 
following the template name, this is followed by an optional 
coordinate specification giving a sequence of names correspond- 
ing to the result location's coordinates, arid the template t d y  
containing forms to assign weights to the support fallows. 

Templates are used In the context of image-template 
operations. T h e  generalized convolution operation, 0, has the 
following form: 

gcon image (template {paranteler>*) 

Note that  the template argument is evaluated with its parame- 
ters, indicating that  the specific template associated with the 
parameter values has been comput,ed. The weight special 
form has the following form: 

weight ezpression ( Cezpressiori>* ) 

and assigns the value of first expression to the source lmage 
support location addressed by the c w r d ~ n a t e s  given in the list 
of expressions 

Perhaps a simple example will help illustrate the use of 
def template. Consider a t.rans1ation invariant templat,e 
with no parameters whose support contains the result pixel 
location, its immediate right neighbor, and its immediate left 
neighbor, each with weight 113. Such a templare can be 
defined as follows: 

(def template smooth 0 
(coordinates (yo yl)) 
(weight 1/3 (yo yl)) 
(weight 1/3 ((I+ YO) yl)) 
(weight 1/3 ((1- YO) ~1))) 

Note that  this templat,e has an empty parameter list. 
Hence there is only one template in the fanlily described by this 
template definition. Note also the coordinatc specification nam- 
ing the horizontal and vertical cwrdinat.es in the result image 
coordinate set. These pseudevariables, yo and yl, will take 
on values corresponding to result irnage coordinates when the 
template is evaluated. In this simple example, the first 
weight form assigns weight 113 to the source coordinate point 
in the same location a s  the result coordinate. The  second and 

third weight forms assign 113 to the Bource coordinate points 
corresponding to the nearest right and left neighbor locations to 
the first support location This template might be used in a 
generalized convolution operation to horizontally smooth an 
image a as follows: 

(gcon a (smooth)) 

The user interface presents image-template operations and 
templates in a fashion that  is completely analogous to  their 
image algebra definitions. The  implementation of image- 
template operations on the CM2 is not, however, directly analc- 
gous to this interface. Let us look a t  how the generalized con- 
~ o l u t i o n  of an image and template is implemented. Consider 
t l l ~  evaluation of 

(gcon image (template arg)) 

In our CM!?implementation, template will have been 
declared by evaluating a def template form. Deftemplate is 
a macro yielding a defun of a like named function as i t s  result. 
This  function takes the following parameters: 

(1) any parameters declared in the deftemplate 
specification, 

(2) parameters specifying with image-template operation is to  
be performed, and 

(3) an image 

Evaluation of the gcon form will dispatch the template 
function with the appropriate parameter values. In this case, 
the dispatched function is roughly equivalent to 

(template arg 'gcon image) 

The template function constructed as a result of evaluat,ion of 
deftemplate computes the result image pvar in parallel on 
the CM2. T h e  image-template operation determines what 
weighting and combining operations to  perform as well as deter- 
mining what value to  use as a result upon finding an empty s u p  
port. T h e  evaluation of weight forms executes a weighting 
and combining operation. The  result returned by ttie template 
function is the computed image pvar. 

Several alternative implementations that  more directly 
represent the semantics of the image algebra were considered 
but found to be too complex to  efficiently implement on the 
Connection Machine. While the algebra specification of an 
image-template operation looks like a forward-directed opera- 
tion, the template is implemented in a more backward-directed 
fashion, computing result locations by iterating over the s u p  
port. 

It is of interest to note that  template bodies need not 
necessarily be transparently SIMD in nature. Consider the fact 
that  do forms with initial and exit specifiers depending on the 
result location may be specified. This means that  t,he number 
of elements in a template's support may vary from result loca- 
tion to  result location. This has required the implementation of 
a general parallel do (*do) structure. The final example in the 
section following uses precisely such a template. 

IWAMF'LES OF USE OF IMAGE ALGEBFU ON 
THE CM 

In this section we provide a few simple examples of the 
definition of templates in the Common Lisp image algebra nota- 
tion and the use of these templates with the generalized convc- 
lr~tion operation. It must be noted that  the image algebra con- 
sists of much more than just a few convolution operations and 



complete algorithms for such applications as tracking and 
identification of objects can be implemented using the imagf. 
algebra 

T h e  first example we present is the smoothing template of 
the last section. T h e  source template is as follows: 

(deftemplate smooth 0 
(coordinates (yo yl)) 
(weight 1/3 (yo yl)) 
(weight 1/3 ((I+ YO) yl)) 
(weight 1/3 ((1- YO) yl))) 

T h e  actual *lisp code generated for this template is listed here 

(*DEFUN SMOOTH (#:SMOOTH-SOURCE-IMAGE-13 
#:SMOOTH-SOURCE-WEIGHTING-OP-135 
#:SMOOTH-ACCUMULATION-OP-136 
#:SMOOTH-OFF-SOURCE-RETURN-VALUE-134) 

(*ALL 
(*LET 
((#:SMOOTH-TARGET-IMAGE-132 

( !  ! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134)) 
(X (SELF-ADDRESS-GRID!! (! !  0))) 
(Y (SELF-ADDRESS-GRID!! (!! 1)))) 

(*SET #:SMOOTH-TARGET-IMAGE-132 
(*FUNCALL 
#:SMOOTH-ACCUMULATION-OP-136 
#:SMOOTH-TARGET-IMAGE-132 
(*FUNCALL 
#:SMOOTH-SOURCE-WEIGHTING-OP-135 
( ! !  0.333) 
(PREF-GRID ! ! 
#:SMOOTH-SOURCE-IMAGE-133 
(ROUND!! (I-!! X)) (ROUND!! Y) 
:COLLISION-MODE :MANY-COLLISIONS 
:BORDER-PVAR 

( !  ! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134))))) 
(*SET #:SMOOTH-TARGET-IMAGE-132 
(*FUNCALL #:SMOOTH-ACCUMULATION-OP-136 
#:SMOOTH-TARGET-IMAGE-132 
(*FlJNCAI T 

#:SMOOTH-SOURCE-WEIGHTING-OP-135 
( ! !  0.333) 
(PREF-GRID ! ! 
#:SMOOTH-SOURCE-IMAGE-133 
(ROUND!! X) (ROUND!! Y) 
:COLLISION-MODE :MANY-COLLISIONS 
:BORDER-PVAR 

( !  ! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134))))) 
(+SET #:SMOOTH-TARGET-IMAGE-132 
(*FUNCALL #:SMOOTH-ACCUMULATION-OP-136 
#:SMOOTH-TARGET-IMAGE-132 
(*FUNCALL 
#:SMOOTH-SOURCE-WEIGHTING-OP-135 
( ! !  0.333) 
(PREF-GRID ! ! 
#:SMOOTH-SOUF(CE-IMAGE-133 
(ROUND!! (I+!! X)) (ROUND!! Y) 
:COLLISION-MODE :MANY-COLLISIONS 

:BORDER-PVAR 
( ! !  #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134))))) 

#:SMOOTH-TARGET-IMAGE-132))) 

F ~ g u r e  4 shows an image of an sr71 airplane, sr71. Figure 5 
shows the result of evaluating the expression 

(gcon sr71 (smooth) ) 

Figure 4. 

Figure 5. 

T h e  Second example demonstrates a t ranslat~on varlant 
template In w h ~ c h  the support may be empty for some target  
p~xe l  locat~ons T h e  template we present can be used to  cause 
all p~velz w ~ t h ~ n  a glrtan r ~ r t a n g r ~ l a r  reglons In an lmage to take 
on the value 0 T h e  r r c t a ~ ~ g u l a r  reglon t o  be se t  to zero 1s 

s p c c ~ f ~ e d  bq ternplat? paranirters 

ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



(deftemplate matte (x-low x-high y-low y-high 

(coordinates (x y)) 
(when (or (> x x-hlgh) 

(< x x-low) 
(> y y-high) 
(< y y-low)) 

(weight 1 (x y)))) 

Note that  when evaluating the result of a generalized con- 
volution operation if the template support is empty a t  some 
location y, then the result value a t  y will be 0. Any p r o c e m r  
not executing a welght operation in evaluating a template will 
have empty support and hence be assigned this value. The 
matte template yields an empty support a t  each location inside 
the specified rectangle. Figure 6 shows the result of evaluating 
the expression 

(gcon sr71 (matte 32 64 64 96)) 

Figure 8. 

The third example shows the definttton of a template that  
can be used to  achlele rotation of a source image We demon- 
strate thls technique w ~ t h  a simple nearestne~ghbor ro ta t~on  tn 
~ h l c h  the nrarest point to the tdeal rotation source is chosen 
arid p l a e d  111 the target Image A more approprtate and physl- 
cally accurate ~nterpolation of the source gray-value could be 
described b, suitable n~odification of the template definit~on 
Thr template dehiiition a ds follows 

(def template rotate (1 j theta) 
(coordinates (yo yl)) 
(weight 1 ( (+  (+ (- yo 1) (cos theta)) 

(+ (- yl j )  (sin theta)) 
1) 

(+ (- (* (- yo 1) (sin theta))) 
(* (- yl j )  (COS theta)) 
j)>)) 

) The definition of the rotate template assigns to each result 
location a single support pixel which is the nearest neighbor to 
the inverse of the rotation specified. This, once again, brings up 
the backward-driven nature of the template definit,ion. The 
template tells use where to find the source values associated 
with a result location. Other warpings, such a.5 projective 
transformations can be specified with template operations in a 
similar manner. 

Figure 7 shows the result of executing the following 
<.\pri.ssiort: 

(gcon sr71 (rotate 64 64 0.436)) 

Figure 7. 

Our final example demonstrates the versatility of tem- 
plates by providing a translation variant shrinking ternplate 
definition. The  support at  direrent points in this ternplat,e have 
different positions, weights, and numbers of elements, as deter- 
mined from the template arguments. Each result pixel y is 
assigned a support containing the location yp, where p is 
specified as a parameter to the t,einplate. The template 
definition is as follows: 

(deftemplate power-shrink-y (power) 
(coordinates (x y)) 
(if (/= y 0) 

(do ((1 (expt (- y 0.5) power) 
(I+ 1))) 

( 0  1 (expt (+ y 0.5) power))) 

(weight I (x (expt y power)))))) 

T h e  *Ilsp code generated for this t ~ n ~ p l a t e  IS shown here 

ORIGINAL PAGE 
BLACK AND WHITE P99TnGRAPH 



(*DEW POWER-SHRINK-Y 
(#:POWER-SHRINK-Y-SOURCE-IMAGE-150 
#:POWER-SHRINK-Y-SOURCE-WEIGHTING-OP-152 
#:POWER-SHRINK-Y-ACCUMULATION-OP-153 
#:POWER-SHRINK-Y-OFF-SOURCE-RETURN-VALUE-151 
POWER) 
(*ALL 
(*LET 
((#:POWER-SHRINK-Y-TARGET-IMAGE-149 

( !  ! #:POWER-MINK-Y-OFF-SOURCE-RETURN-VALUE-151)) 
(X (SELF-ADDRESS-GRID ! ! ( ! ! 0) ) ) 
(Y (SELF-ADDRESS-GRID ! ! ( ! ! 1) ) ) ) 

(IF!! ( I=!!  Y ( ! !  0)) 
(*LET 
((#:DO-PASSED-MIT-P-155 T! !) 
(I (EXPT!! ( - ! !  Y ( ! !  0.5)) ( ! !  POWER)))) 

Figure 8. 

(BLOCK NIL 
(TAGBODY 
#:DO-LOOP-TAG-BODY-154 
(*SET #:DO-PASSFD-MIT-P-155 
(AND!! #:DO-PASSED-MIT-P-155 
(NOT!! (> ! !  I (EXPT!! (+ ! !  Y ( ! !  0.5)) 

( ! !  POWER)))))) 
(IF (NOT (*OR # : DO-PASSED-MIT-P-155) 

(RETURN-FROM NIL) ) 
(*WHEN #:DO-PASSED-MIT-P-155 
(*SET #:POWER-SHRINK-Y-TARCET-IMAGE-149 
(*FUNCALL 
#:POWER-SHRINX-Y-ACCUMULATION-OP-153 
#:POWER-SHRINK-Y-TARGET-IMAGE-149 
(*FUNCALL 

#:POWER-SHRINK-Y-SOURCE-WEIGHTING-OP-152 
( ! !  1) 
(PREF-GRID ! ! 
#:POWER-SHRINK-Y-SOURCE-IMAGE-150 
(ROUND ! ! X) 
(ROUND ! ! I) 
:COLLISION-MODE :MANY-COLLISIONS 

Figure 9. 

.BORDER-PVAR 
SUMMARY 

#:POWER-SHRINK-Y-OFF-SOURCE-RETURN-VALUE-~~~))))) 
(*SET I (I+! ! 1))) 

(GO #:DO-LOOP-TAG-BODY-154))))) 
#:POWER-SHRINK-Y-TARGET-IMAGE-149))) 

Note tha t  this code has implemented the MIMD do of the 
template by iterating enough times to cover the range (expt 
(- y 0.5) power) to (expt (+ y 0.5) power) for any 
processor with address y. Figure 8 shows a simple line drawing 
of a skull, and Figure 9 contains the result of application of the 
following expression involving that  image: 

(gcon skull (power-shrlnk-y 1.1)) 

As noted in the introduction, one can make massively 
parallel computers accessible to researchers in a specific applica- 
tion area by providing a domain specific user interface that  will 
execute efficiently on such machines without requiring 
knowledge of the underlying architecture. In the case of the 
image algebra, this has been achieved by carefully choasing a 
set of operands and operations that,, while capable of expressing 

all image processing transformations, is not dependent on the 
particular attributes of any special computer architecture or 
class of architectures. A t  the same time, the image algebra is 
clearly well suited to implementation on massively parallel 
machines such as the CM2. 

The  particular choice of Common Lisp for this implemen- 
tation has provided great portability for user programs. T h e  
image algebra has been a s  easy to  implement on uniproceswrs 
as on massively parallel machines. The only differences discer- 
nible to  the user are the dramatic difference in speed of execu- 
tion of the developed algorithms and the different behaviors of 
systems when error conditions arise. 



The current Connection blachine implementation, while 
relatively efficient, can be improved in several ways. Many of 
the constants appearing in template bodies could be assigned to 
pvars using *let. Templates could be implemented as lunc- 
tions tha t  generate optimized versions of themselves when 
dispatched from particular image-template operations. A 
variety of d a t a  flow analysis techniques and peephole optimiz* 
tions could be used to improve the code generated for tem- 
plates. One example of where da ta  flow analysis might pay off 
is in the substitution of front end control flow for distributed 
control and termination on execution of do's with constant 
bounds. Another is in combining the weighting and combining 
operations into single *lisp operations, rather than sequences of 
operations. 

Despite the rudimentary nature of the current implemen- 
tation, the results we have seen are quite promising. Inter- 
preted execution speed of image algebra code compares favor- 
ably with hand coded versions of similar algorithms and the 
implementation can be easily modified to  add further func- 
tionality. Work continues on expanding the subset of the image 
algebra currently supported. 

REFERENCES 
1. G.X. Ritter and J.N. Wilson, "The Image Algebra in a 

Nutshell," pp. 641-645 in Proceedings oJ the First Interna- 
tional Conference on Computer Vision, IEEE Computer 
Society, London (June 1987). 

2. G.X. Rit ter ,  .l.N. Wilson, and J .L.  Davidson, "Image Alge- 
bra: an Overview," UF-CIS Technical Report TR-8805,  
Dept. of Comp. and Info. Sci., 1Tniv. of Florida, Gaines  
ville, FL (May 1988). 

M. Duff and S. Levialdi, edit., Languages and Architec- 
tures for Image Processing, Academic Press, New York, 
NY (1981). 

B. Lay, "MORPHOLOG: An Image Processing Software 
Package," pp. 46S468 in IEEE Computer Society 
Workshop on  Computer Architecture for Pattern Analysis 
and Image Database Management, Xl~ami Beach, FL 
(1985). 

G.X. Ritter, M.A. Shrader-Frechette, and J.N. Wilson, 
"Image Algebra: A Rigorous and Translucent Way of 
Expressing All Image Processing Operations," In Proc. of 
the 1987 SPIE Tech. Symp. Southeast on Optics, Elec - 
Opt. ,  and Sensors, Orlando, FL (hlay 1987). 

G.X. Ritter and J.N. Wilson, "Image Algebra: A Unified 
Approach to  Image Processing," in Proceedings of the 
SPIE Medical Imaging Conference, Newport Beach, CA 
(February 1987). 

J. Serra, Image Analysk and Mathematical Morphology, 
Academic Press, London (1982). 

P .  D.  Gader, "Image Algebra Techniques for Parallel 
Computation of Discrete Fourier Transforms and General 
Linear Transforms," Ph.D. Dissertation, University of 
Florida, Gainesville, F1. (1986). 

G.L. Steele, ' c o m m o n  Lisp: The Language, Digital Press, 
Maynard, MA (1984). 

Thinking Machines Corporation, "*Lisp Reference Manual 
Version 4.0," unnumbered technical report (April 1986). 

3 G X R ~ t t e r  and P D Gader, "Image Algebra Techniques 
for Parallel Image Processing," Journal of Parallel and 
Dtstributed Cornputzng 4(5) (hlarch 1987), 7-11 



MPP PASCAL 

Tim Busse 

Computer Sciences Corporation 
ABSTRACT 

MPP Pascal is one of the high level 
languages available on the Massively 
Parallel Processor (MPP) at NASA's 
Goddard Space Flight Center. The MPP is 
a SIMD computer that obtains its computa- 
tional power by employing 16,384 bit- 
serial processing elements to solve a 
single problem. MPP Pascal is a subset 
of the language Parallel Pascal, which 
extends the Pascal language by providing 
constructs for explicitly expressing 
parallelism in the form of array opera- 
tions and functions. Access to several 
of the MPPvs unique hardware features is 
available through language constructs 
that map directly onto the architecture 
of the machine. This paper presents the 
language MPP Pascal and discusses the 
imp1 ementat ion decisions pertinent to 
mapping parallel constructs onto the MPP. 
These issues are presented in order to 
provide insight into the design and 
development of future language systems 
for massively parallel computers. 

INTRODUCI'ION 

The emergence of parallel computing has 
produced a variety of architecture 
designs capable of peak processing rates 
many times greater than that of the 
fastest sequential machines. Each new 
architecture requires new programming 
techniques to achieve the potential 
processing rates of that machine. 
However, to achieve peak processing 
rates, the parallelism of the problem 
must match the parallelism of the machine 
at the time of execution. Mapping a 
problem to a machine requires both 
suitable algorithms and suitable program- 
ming languages for expressing those 
algorithms. Without an appropriate 
algorithm, the computational power 
present through parallel processing is 
lost. 

By design, high level programming 
languages mask the underlying hardware 
architecture to provide a machine 
independent method of representing 
algorithms. To support high level 

languages, compilers must be capable of 
manipulating instruction sequences to 
produce efficient code for parallel 
machines. 

However, compiler technology does not 
offer the capability to transform 
programs written in a high level language 
into efficient executable code for 
parallel computation. Decomposing a 
problem so the inherent parallelism 
matches the machine is difficult even for 
experienced programmers. Current 
compiler technology cannot decompose 
serial code effectively. Even when an 
algorithm is expressed in a parallel 
language, compilers are not capable of 
efficiently partitioning data and mapping 
communications. 

Attempts at creating parallel programming 
languages and environments have not 
succeeded in eliminating the limits of 
compiler technology. This inherent 
problem prevents the parallelism of the 
problem and the parallelism of the 
machine from being in balance at execu- 
tion time. 

To create the proper balance between a 
programming language and the Massively 
Parallel Processor (MPP), MPP Pascal was 
designed to take advantage of the 
hardware features of the MPP. This paper 
discusses the language MPP Pascal and 
issues pertinent to its implementation. 
A brief overview of the MPP is presented 
prior to discussing the language and 
implementation. 

THE MACHINE 

The MPP is a single-instruction/multiple- 
data stream (SIMD) computer consisting of 
16,384 simple, bit-serial processing 
elements (PEvs) . Each PE has 1,024 bits 
of local memory and the ability to 
communicate with its four nearest 
neighbors. The PE8s can be logically 
thought of as a 128 by 128 array. The 
array of PEvs is controlled by the array 
control unit, which is comprised of three 
separate processors that run asynchro- 
nously: the PE Control Unit (PECU), the 



Main Control Unit (MCU) and the Input 
Output Control Unit (IOCU) (Figure 1). 

The PECU broadcasts instructions to the 
PE1s, which operate in lockstep on data 
held in their local memories. Since the 
PE1s do not have the ability to modify 
memory addresses issued by the PECU, each 
instruction in the array is performed on 
a bit-plane operand (16,384 bits). All 
arithmetic and relational operations are 
implemented as subprograms, and need to 
be built from basic single bit instruc- 
t ions. 

Connected to the PECU through a set of 
control register queues is the Main 
Control Unit (MCU). The MCU coordinates 
all processors in the MPP, and invokes 
operations in the PECU by issuing 
requests through the register queues. 
The MCU was designed for high speed, 16- 
bit integer calculations, and is similar 
in architecture to a reduced instruction 
set computer (RISC). As the master 
controller, the MCU communicates with the 
other processors and initiates all 
processes. Moreover, all scalar opera- 
tions are carried out in the MCU. 

When the MCU requests an 1/0 operation, 
the IOCU responds by initiating a data 
transfer either between the array and 
staging memory, or the staging memory and 
the host Vax computer. The stager is a 
permutation device with a large internal 
memory. Its primary function is to 

rearrange data as it moves between the 
host memory and array, so the internal 
data representations are correctly 
formatted for the target memory. This 
process is commonly referred to as 
corner turning. 

The MPP is connected to a host Vax 
computer, which provides the entire 
program development environment. Access 
to the MPP is controlled by programs 
running in the Vax, and all 1/0 opera- 
tions during program execution are 
handled by the front end. 

THE LANGUAGE 

MPP Pascal evolved from the language 
Parallel Pascal as it was designed by 
A. P. Reeves [I]. Parallel Pascal 
introduces extensions to standard Pascal 
for advanced architectures (i.e., vector 
and parallel computers) by providing 
language constructs for explicitly 
expressing parallelism in the form of 
array operations and functions. 

Original efforts at NASA's Goddard Space 
Flight Center focused on implementing 
Parallel Pascal, as defined by Reeves, on 
the MPP. Various problems with the 
implementation of Parallel Pascal led to 
a machine specific version of the 
language, called MPP Pascal. 

MPP Pascal is a subset of the language 
Parallel Pascal. The semantics of 
several Parallel Pascal constructs are 
redefined to match the parallelism of the 
machine. In addition, a new keyword was 
added, and several language constructs 
removed. The differences between the two 
languages are directly attributed to the 
architecture of the MPP and provide 
direct access to hardware features that 
were masked by Parallel Pascal. 

The most significant modification to 
Parallel Pascal is the semantic defini- 
tion of the keyword parallel. 1n 
Parallel Pascal, the keyword parallel can 
only be used in conjunction with data of 
type array, and is treated as a compiler 
directive informing it of the intended 
use of an array. 

In MPP Pascal, the keyword parallel array 
refers to a primitive data item that 
matches the parallelism of the MPP 
exactly (i.e., a 128 by 128 array) (Table 
1). A parallel array may have an 
associated type of integer, real or 
Boolean, and is manipulated by the same 
primitive operators as other Pascal 
primitive data types (+, -, *, /, div, 
mod, and, or, not, <, >, <=, >=, = < > r  
:=) and primitive functions (abs, exp ,  
In, sqr, sqrt, trunc, round, odd, pred, 
succ, sin, cos, arctan). The operators 



TABLE 1 : Syntax for MPP Pascal Extensions 

Parallel Arrays 
type <identifier> = parallel array [{<index type>.) 

0..127,0..127l of <element type>; 

Stager Arrays 

type <identifier> = stager array [{<index type>,) 

0..127,0..127] of <element type>; 

Where Statement 
where <mask expression> do <statement> 

or 

where <mask expression> do <statement> 

otherwise <statement> 

act on parallel arrays on an element by Other constructs shared by both MPP 
element basis. For example, the addition Pascal and Parallel Pascal are array 
of two parallel arrays result in a manipulation functions. In the case of 
parallel array, where each element is the MPP Pascal, these functions are only 
sum of the corresponding elements of the defined for parallel array data items. 
operands. The reduction functions (sum, prod, max, 

min, all, any) operate on a parallel 
array and produce a scalar result of the 
appropriate type (Table 2). The trans- 
formation functions (shift, rotate) move 
data elements to neighboring locations. 

TABLE 2: Predefined Functions for Parallel Arrays 

Reduction 
sum arithmeticsum 
prod arithmetic product 
all boolean and 
anY boolean or 
rn arithmetic maximum 
min arithmetic minimum 

Permutaion 
shift end-off shift, zero fill 
rotate end-around shift 

Given the semantic meaning of parallel 
array, it is not possible to access 
individual elements through indexing 
operations. Therefore, the where-do- 
otherwise construct was introduced to 
provide a mechanism to selectively 
process elements of a parallel array. 
Similar to the if-then-else construct, 
which causes conditional execution, the 
where-do-otherwise statement causes 
conditional assignment. All assignment 
statements in a where block selectively 
store data based on a logical bit-plane 
mask. 

A syntactic construct that was added to 
the language MPP Pascal, which is not 
part of Parallel Pascal, is the keyword 
stager. Similar to the keyword parallel 
in Parallel Pascal, the keyword stager in 
MPP Pascal can only be associated with 
arrays, and is treated as a compiler 
directive indicating the memory location 
of the specified variable. The only 
valid functions for stager arrays are 
get, put, swap and transfer. These 
functions move data between the staging 
memory and array memory or between 
staging memory and disk files maintained 
by the host Vax computer. Stager arrays 
cannot not be part of any arithmetic 
expressions. The stager can be viewed as 
either temporary memory or as an 1/0 
buffer. 

As mentioned previously, various data 
types and statement constructs were 
omitted from the initial implementation 
of MPP Pascal. These items were not 
needed to support the scientific applica- 
tions that were being developed on the 
MPP, and could, therefore, be implemented 
at a later date. The pointer and set 
data types were omitted along with 
operations and operators that were 
specifically included for use with data 
of these types. In addition, the case 
statement and recursion are not sup- 
ported. 

THE IKPLEKENTATION 

The architecture of the machine suggests 
a decomposition of the executable image 
that maps well to the environment of the 
MPP. The language system is comprised of 
three integrated components: the primi- 
tive library, the 1/0 run-time library, 
and a compiler that generates code for 
the MCU. Each of these components 
corresponds to the three processors 
available in the MPPfs array control 
unit (Figure 2) . 
The primitive library contains the set of 
subprograms required to support the 
arithmetic, relational and function 
operations for parallel array data. All 
parallel operations are implemented 
through these primitives . The sub- 
programs associated with these parallel 
operations execute in the PECU. To 
perform the sequence of parallel opera- 



two step process. The first step 
translates MPP Pascal into Parallel 
Pcode, and the second step transforms 
Parallel Pcode into MCU assembly lan- 
guage. 

Parallel Pcode is an intermediate 
language for a hypothetical stack 
machine. Parallel Pcode is an extended 
version of Pcode, which is the inter- 
mediate form produced by the original 
Pascal compiler. In fact, the MPP Pascal 
compiler is a modified version of the 
original Pascal P4 compiler. The 
original compiler was modified to accept 
the parallel constructs of MPP Pascal and 
produce the new intermediate form. The 
compiler performs all syntax analysis. 

The second step in the compilation 
process is code generation. The Parallel 
Pcode is processed and converted to 

Figure 2. Architechrre of MPP Pescal assembly language. The MCU assembler 
representation of a program includes 
calls to the primitive library, 1/0 

tions specified by a program, a series of 
primitive subprogram calls are invoked. 
As mentioned previously, the MCU in- 
itiates PECU operations, and therefore, 
must be programmed to initiate array 
operations that correspond to the 
semantics of the user program. 

library, and 'scalar instructions. 
Experience showed that the speed of the 
MCU was insufficient to keep the array 
busy when short operands are involved in 
a sequence of parallel operations. The 
overhead associated with calculating 
address and executing the primitive call 
exceeded the time rewired to ~erform the 
operation. To eliHinate mich of the 

To improve efficiency, parallel arrays of overhead required to calculate addresses type integer are stored and manipulated 
based on their required bit length. In for parallel operations, all address 

calculations are done at either compile Pascal, the program can specify a 
subrange of acceptable values for integer time or at the beginning of an executable 

process. variables. MPP Pascal uses this capa- 
bility to reduce memory requirements in 
the array and reduce execution time. 
Given the bit-serial nature of the 
array, processing time is greatly reduced 
for shorter integer representations. 

The 1/0 run-time support library provides 
the subprograms needed to perform 1/0 
operations in the MPP. Subprograms are 
available that transfer data between the 
MPP and host Vax computer (get and put), 
as well as providing routines to move 
data between the array and stager 
memories (transfer and swap). All 1/0 is 
initiated by the MCU and responded to by 
the IOCU. The asynchronous processing 
capability of the three array control 
units allows for I/O, array and scalar 
operations to execute simultaneously. 
MPP Pascal utilizes this capability by 
initiating PECU and IOCU processes and 
continuing with MCU computations. 

The final component required for execut- 
ing a program on the MPP is the control 
program, which resides in the MCU. The 
MCU program is the only component that 
varies from program to program. A 
compiler transforms MPP Pascal programs 
into assembly language for the MCU in a 

This modification to the language 
Parallel Pascal led to the elimination of 
recursion and argument passing by value. 
The difference in execution time between 
code generated by the MPP Pascal and 
Parallel Pascal compilers on the MPP can 
be attributed mainly to the reduction in 
address calculations. The overhead 
associated with address calculations even 
affects the computational speed of 
complex operations, such as floating 
point arithmetic. Thus, recursion is not 
addresses are allocated statically by the 
code generator. 

The differences in computation time 
between Parallel Pascal and MPP Pascal 
justify the changes made to the language. 
The potential power of the MPP is easier 
to harness with the modified language, 
since the architecture is not hidden by 
the language. Originally, much effort 
was put into writing a compiler that 
generates efficient code for the machine. 
However, the compiler itself could not 
compensate for the speed of the scalar 
MCU processor. Therefore, the language 
needed to be modified to help reduce the 



overhead associated with a high level 
language such as Parallel Pascal. 

CONCLUSION 

The implementation of MPP Pascal utilizes 
the architecture of the machine to 
provide an efficient mapping from program 
syntax and semantics to program execu- 
tion. Moreover, it combines the func- 
tionality of a high level language and 
the characteristics of the architecture 
to provide an efficient implementation 
environment for applications. 

Other computer architectures would, in 
general, require a different implementa- 
tion or language constructs than those 
needed for the MPP. MPP Pascal demon- 

strates the close association needed 
between hardware and a programming 
language for generating highly efficient 
executable code for a parallel computer. 
Until programming tools are capable of 
utilizing parallel hardware technology, 
language implementations similar to the 
one described for MPP Pascal will be 
prevalent in high speed scientific 
computing. 

REFERENCES 

[l] A.P. Reeves. "Parallel Pascal: An 
Extended Pascal for Parallel 
Computers. I* Journal of Parallel and 
Distributed Com~utinq, vol. 1, pp. 
64-80, 1984. 



A FORMAL MODEL FOR SIMD COMPUTATION 

M.D. Rice S.B. Seidman P.Y. Wang 

Center for Parallel Computation 
Department of Computer Science 

George Mason University 
Fairfax, Virginia 22030-4444 

ABSTRACT 

A formal model for SIMD computation is presented that captures 
the essential operating features of current SIMD computers, yet 
which allows for extensions and variations of existing 
architectures. The fundamental components of the model are a 
host computer, a set of processsing elements P, a set of control 
units C, a set of inpuVoutput controllers 20, and a set of external 
devices D.  Each component sends or receives data or 
instructions totfrom other components. The communication 
patterns among the model components are described by six 
networks, each of which governs the communication between a 
single pair of components. The networks are represented as 
functions or collections of functions with formally specified 
mathematical properties that have natural interpretations in the 
context of SIMD computation. Using the functional approach, a 
set of four assumptions for SIMD computers is proposed, and 
consequences of these assumptions are explored. 

Keywords: SIMD computation, computational model 

1. INTRODUCTION 

During the past forty years, the von Neumann model of 
computation has been used to describe a wide variety of 
sequential computers. The major components of this model are 
an arithmetic-logic unit, a control unit, memory, and an 
input/output system. The simplicity and generality of the von 
Neumann model is largely responsible for the creation of 
programming languages and systems software that can be 
transported between computers with different underlying 
architectures. 

Parallel computers can be obtained by replacing the individual 
components of the von Neumann model by multiple units that 
may interrelate in different ways. For example, a parallel 
computer with multiple ALUs can have memory that is shared 
between all of the processors or is distributed among them. 
Input and output may be performed by only one distinguished 
processor or by all of the processors. Communication between 
the processors may be accomplished by explicit interprocessor 
channels, or through a bus or switching network. 

pwcEDlNG PAGE BUN& NOT MyED 

Rather than attempting to extend the von Neumann model to 
parallel computers in general, these computers can be classfied 
by considering the way in which data and control flow in a 
parallel computation. From this perspective, the fundamental 
distinction is between single-instruction, multiple-data-stream 
(SIMD) computers and multiple-instruction, multiple-data- 
stream (MIMD) computers. In SIMD computers, the execution 
of a program can be regarded as the execution of the same 
instruction on a number of independent data streams. The 
Connection Machine System, the Distributed Array Processor, 
and the Massively Parallel Processor are examples of such 
SIMD machines. In MIMD computers, the processors typically 
execute mutually independent programs on independent data 
streams. The Intel iPSC hypercubes and INMOS Transputer 
networks are examples of MIMD computers. 

In this paper, a formal model is proposed for SIMD 
computation. At a minimum, such a model must include a 
control unit to manage the computation, a collection of N 
processing elements, and an interconnection network that allows 
data to be routed between processors. In a seminal paper (Ref. 
7), SIMD computers are modeled in just this way. Although 
Siege1 uses his model to investigate important relationships 
between the organization of the processing elements and the 
structure of the interconnection network, the model does not 
easily handle parallel input and output, nor is it able to describe 
SLMD computers with more than one control unit. 

The intent of the SIMD model is to capture the essential features 
of computation on currently available SIMD machines, while 
allowing for potential extensions and variations of current 
architeciures. -using the model, it is possible to represent the 
fundamental concepts of SLMD (or data parallel) computation, 
including virtual processor topologies, processor selection 
(masking), and data routing between processors. Furthermore, 
the semantics of any high-level SIMD programming language 
can be expressed in terms of the model, which thus supports the 
development of machine-independent software. 

2. BASIC ORGANIZATION OF THE MODEL 

The SIMD computational model is defined formally as a 
collection of basic components and networks: 
?% = <H,C,P,D,U),Ns. The basic components of the model 



I HOST I 

macroinstructions T 

0 Network 

Intercomec tion 
Network 

Figure 1. Mode! of SIMD organization 

are the control units C = {CUO,...,CUK-I), the processing 
elements  P = { P E o  ,..., P E N - I } ,  the devices D = 

{ D O ,  ..., DM-1 ), and the inputloutput controllers U) = 

{IOCo, ..., IOCL-1). A host computer fi executes a high-level 
language program by sending corresponding macroinstructions 
to one or more control units in C. Each control unit generates 
microinstructions and sends them to processing elements in P, 
inputloutput controllers in U), or (inputloutput) devices in D. 
In the model, the host computer is restricted to the storage and 
compilation of high-level programs. The inputloutput 
controllers are viewed as interfaces that control transfer of data 
(including buffering) between the processing elements and the 
devices. Figure 1 shows the basic organization of the model. 

The communication patterns among the components of the 
model are described by a collection of six networks, collectively 
known as N: the instruction network a, the inputloutput 

processor (IOP) network P, the inputloutput device (IOD) 
network y, the controller network 6, the device network q, and 
the interconnection network Z. For example, the 
interconnection network describes how data may be passed 
between the processing elements in P. The instruction network 
similarly describes how microinstructions are sent from the 
control units in C to the processing elements in P. 

In the model, each of the networks a, P, 6, and q is represented 

as a function, while the networks y and C are represented as 
collections of functions. If a network is seen as a collection of 
functions, it will be useful to regard it as a relation. Choosing 
functions for a, p, 6, q, and Z corresponds to an instantiation 
of the model, which produces a particular SIMD machine. The 
choice of y depends on other considerations that will be 
discussed later. This functional view of networks was first 
presented by Siege1 (Ref. 7). The use of functions to represent 

i r 



networks allows mathematical formalisms such as functional 
notation and commutative diagrams to be applied to the 
description and analysis of the SIMD model. 

As a first illustration of the functional approach to networks, 
consider the instruction network. This network is a function a 
from the set P of processing elements to the set C of control 
units. Each PEi in P is then associated with the control unit 

CU, = a(PEi) in C which sends it instructions. For a given 

control unit CUj in C, all processing elements in wl(CUj) are 
assumed to receive the broadcast instruction at the same instant. 

3. COMPONENTS AND NETWORKS 

3.1 Basic Components 

The utility of the model will depend in large part on the particular 
properties of the units that make up each component of the 
model. A control unit in C generates a sequence of 
microinstructions for each macroinstruction. These 
microinstructions can be instructions to the processors, 
inputloutput controllers, or devices. It is assumed that 
microinstructions are broadcast simultaneously by a control unit 
to its targets, and that the broadcast occurs concurrently with the 
interpretation of program instructions. In the model, it is 
possible for different instructions to be broadcast at a given time 
by different control units. That is, synchronization across 
control units is not assumed. Each control unit contains the 
logic necessary to determine the IOD network configuration y for 
any program instruction. The role of y will be discussed in 
more detail below. 

a 
microinstructions PE, 

v 

Microinstruction 

Conditional Mask 

IOP Network Interconnection 
Network 

Figure 2. Organization of a Processing Element 

The organization of a typical processing element in P is shown 
in Figure 2. Microinstructions are sent to the processor on the 
instruction network a. The interconnection network Z and the 
data transfer registers input DTR and output DTR are used for 
interprocessor data transfer. If 0s C, and PEi and PEj are 
elements of P with PEj= o(PEi), then data in the output DTR of 
PEi is transferred to the input DTR of PEj in one instruction 
cycle. We require that o(il) # o(i2) whenever il # i2, so that no 
data collisions can take place during a single instruction cycle. 

Each element of P is given a unique address, which is contained 
in the self-address register. The inputloutput registers are used 
for transferring data between the PEs and the inputloutput 
controllers. The local registers have been depicted as a group 
since the issues of intermediate data storage and DTR to memory 
transfers will not be discussed here. The activities of the 
microinstruction register, the ALU, the DTRs, and the 
inputfoutput register are assumed to be concurrent. 

A processing element may ignore a microinstruction, depending 
on the status of the two mask flags. The conditional mask flag 
uses program data to control data-dependent operations, while 
the absolute mask flag uses the contents of the self-address 
register to control address-dependent operations. 

The inputloutput devices in D represent any memory outside the 
processing elements that is used for data storage or retrieval. A 

device that receives an instruction from a control unit in C will 
execute that instruction. Device instructions will generally 
involve data transmission on the IOD network, but they may 
also specify such file operations as "open" or "close". The 
interpretation of device instructions will proceed concurrently 
with memory accesses, activity on the IOD network, and other 
processing activities. 

Each inputloutput controller in 20 contains the logic needed to 
perform two tasks: the interpretation of instructions received on 
the controller network 6 and the distribution of data to and from 
the devices and processing elements. Interpretation of 
instructions and data transfer between devices and processing 
elements takes place concurrently. 

The collection of functions denoted by y can be regarded as a 
relation that associates a set of devices in D with each 
inputloutput controller in U). We will see below that the form 
of the relation y is restricted by properties of the relation between 
the processing elements in P and the devices in D. Each 
inputJoutput controller must include sufficient logic to compute 
the relation y from a high-level description of the relation 
between processing elements and devices. 

3.2 Networks 

Four of the networks of the SIMD model can be specified as 
single functions: the instruction network a ,  the input/output 
processing element (IOP) network P, the controller network 6,  
and the device network 11. Each of these corresponds to a 
natural partition of the elements making up one of the 
components of the model. 



Recall that the instruction network is defined by the function a :  
P+C where a processor p~ P is controlled by, and receives 
microinstructions from, the control unit a ( p ) ~  C. If we assume 
that every processor is controlled by some control unit, then the 
set P of processors can be naturally partitioned as the union of 
the sets {a-l(c) : cc  C), where a-l(c) is the set of processors 
that are controlled by control unit c. 

The assumption that every processor is controlled by some 
control unit is equivalent to the assertion that the function a is a 
total function. If a is partial, only designated processing 
elements would receive microinstructions for further distribution 
to the remaining processing elements. In this case, the partition 
can only be applied to the subset dorn a of P, which consists of 
those processors that are controlled by control units. Here, 
dom f and range f denote the domain and range of a function f. 

The IOP network is defined by a function P: P+ZO, where 
input and output for a processor PEP is controlled by 
inpuVoutput controller P ( ~ ) E U ) .  If every processor is directly 
controlled by an inputloutput controller, then the processors in P 
can be partitioned as the union of the sets {P-l(i) : ~E'LO}, 
where inputtoutput controller i handles the data transfers 
involving the processing elements P-l(i). 

The assumption that every processing element is controlled 
directly by an inputloutput controller is equivalent to assuming 
that p is total. This may not be a reasonable assumption in 
general, since certain computers (e.g. GAPP systems) have only 
a particular subset of their processing elements directly 
connected to inputloutput units. In such machines, the 
interprocessor network C is used to shift data between this 
subset and other processing elements. 

The controller network is defined by a function 6: U)+C. As 
we have seen above, if 6 is a total function, it partitions U) as 
the union of the sets {6-l(c) : CEC} where a control unit c 
controls each member of 6-l(c) by broadcasting instructions to 
it. 

The device network is similarly defined by a function 11: D+C. 
If q is total, the sets {q-'(c) : CEC} partition D ,  where once 
again a control unit c controls each member of q-l(c) by 
broadcasting instructions to it. This network represents a 
relationship between control units and devices that cannot be 
derived solely from topological considerations. q may be 
regarded as representing an aspect of system software, rather 
than hardware. 

To focus on networks that represent realizable SJMD computers, 
we will make the following assumptions: 

(1) a: P + C is a total function 

(2) range a u range 6 = C 

(3) p is a surjection 
(4) P-l6-' 2 a-1 

Each of these assumptions corresponds to an important feature 
of the SIMD computational model. As previously noted, 
Assumption 1 is equivalent to saying that each processor 
receives microinstructions from a control unit. Assumption 2 
states that every control unit must be connected to at least one 
inputloutput controller or one processing element. Similarly, 
Assumption 3 states that every inpuVoutput controller handles at 
least one processing element. Finally, Assumption 4 is 
equivalent to saying that if a control unit sends microinstructions 
to a processing element, then some inpuVoutput controller that it 
handles must also be connected to that processing element. 

The above assumptions are sufficiently powerful to imply 
interesting and not immediately obvious properties of machines 
that are represented by the computational model. For example, 
Assumption 4 states that for any control unit c, P-l(S-l(c)) 2 
a-l(c), which implies that dom P 2 dom a. Since Assumption 
1 states that a is a total function, it follows also that P is a total 
function. 

Now suppose that p is a processing element controlled by some 
control unit (i.e. p ~ d o m  a) .  Then p~ a-l(a(p)) ,  which is 
contained in P-l(6-l(a(p)) by Assumption 4, so that 6(P(p)) = 

a(p). Thus Assumptions 1 and 4 together yield a = 6P. 

The idea underlying Assumption 4 can be restated in the 
following manner. If an inpuVoutput controller is connected to a 
processing element, then the control unit handling the 
inputloutput controller must also handle that processor. This can 
be formalized as (4') a-I  2 P-l6-l. Just as Assumption 4 and 
the totality of the function a imply that a = 6P, Assumption 4' 
and the totality of the function P can be shown to imply that a = 

6P. It is also true that Assumption 3 and a = 6P imply that 
range a = range 6. We have therefore obtained the following 
results: 

m: (a) If a is total, Assumption 4 implies a = 6P. 
(b) If p is total, Assumption 4' implies a = 6P. 

m o s i t i o n  2: Assumptions 1-4 imply that a and 6 are 
surjections. 

Since the considerations underlying Assumptions 4 and 4' are 
so similar, it is natural to investigate the circumstances under 
which they constitute the same assumption. This turns out to 
be the case when the functions a and p have the same domain, 
which happens when a processing element receives 
microinstructions from some control unit if and only if it is 
directly handled by some inputloutput controller. The proof of 
this result, along with other consequences of the assumptions, 
can be found in Ref. 5. 

3.3 Parallel Input and Output 

The discussion of the networks of the computational model has 
so far omitted the inputloutput device (IOD) network 
represented by y. The IOD network associates inputtoutput 
devices in D with inputtoutput controllers in U). It mediates 
the transfer of data, by means of the controllers, between the 
devices in D and the processing elements in P.  The IOD 



network arises naturally out of the relationship between devices 
and processing elements that is determined by such high-level 
language inputloutput instructions as "read or "write". Such 
instructions specify which devices are to be associated with 
which processing elements, and thus provide an inputloutput 
relation R between processing elements and devices. This 
inputloutput relation can be used to derive the IOD network y, 
which is naturally represented as a relation between the 
inputloutput controllers and the inputloutput devices. 

In particular, a high-level inpuVoutput instruction that states that 
certain processing elements should receive data from or write 
data to a given set of devices corresponds to a relation R 
contained in P x D, where ( p , d ) ~  R if device d transfers data to 
or from processor p. We can now define the IOD network y as a 
subset of U) x D : y = {(i,d) : 3 p~ P with ( p , d ) ~  R and P(p) 
= i}. 

If 2S denotes the set of all subsets of a set S, the relation R can 
be viewed as a function r: ~ + 2 6 ,  where the set r@) contains d 
if and only if ( p , d ) ~  R. From this perspective, the definition of 
y can be expressed more simply as Hi) = r(P-l(i)), or still more 
simply as y = rp-l, where y(i) is the set of devices that transfer 
data using the inpuVoutput controller i. 

These ideas are illustrated by the network configurations shown 
in Figure 3, which is derived from the following high-level 
language directives: "read data from device 2 into even 
processors with positive index, and write copies of the data from 
odd processors to device 0 and device 1". For this 
configuration, the IOC network is defined by P ( P E ~ I + ~ )  = IOCl 
for i 2 0, P(PE2i) = IOC2 for i > 0, and P(PE0) = IOCo. 

The IOD network is y(IOC0) = 0, y(IOC1) = {Do,Dl}, and 
y(IOC2) = {D2}. y(i) = 0 is to be interpreted as "no data is sent 
to or received from any device through controller i". 

File 1 File 2 File 3 

Figure 3. A Sample IOD Network 

While the IOD network y governs the relationship between the 
inpuVoutput devices and the inputloutput controllers, the devices 
themselves are managed by the control units. This connection is 
under the control of the device network q. Thus there are 
complex interrelationships between y and the other networks of 
the model. A detailed discussion of the way in which the IOD 
network y relates to the other networks of the model is found in 
Ref. 5. 

3.4 Interconnection Network 

The interconnection network is represented by a family of 
functions C = { o  : P+P}, where each function o represents a 
transfer of data (that can be performed in one instruction cycle) 
between the DTR registers on different processors. The model 
makes the following assumptions about the interconnection 
network: (i) each o~ C is assumed to be a bijection (a one-to- 
one, onto mapping) from P to P ,  and (ii) using appropriate 
masks, the collection Z can generate all permutations on P .  The 
assumption that each member of C is a one-to-one function 
avoids the need to store data in additional registers during the 
instruction cycle. Since P is finite, o being one-to-one implies 
that o is also onto. 

Recall from Figure 2 that each processing element has absolute 
and conditional mask flags, as well as input and output DTR 
registers. Using these flags, each processor can be classified (at 
any particular moment) as either active or inactive. Each 
member function os C uses the following rule to determine the 
contents of a processor's input DTR. If p is active, 
D T R 1 d p ) ( i n p u t )  t DTRp(outpur); if p is inactive, 
DTRfdP)(input) t DTR4p)(output). For processor j, DTR; 
denotes the post-instruction contents of the register and DTRj 
denotes its pre-instruction contents. The symbol t denotes 
assignment. The rule can be justified as follows: Before any 
interconnection function in 2 is executed, each processor p 
performs an operation that copies its output DTR to its input 
Dm. Every processing element, whether it is active or inactive, 
is eligible to receive a value in its input DTR. If the processing 
element is active, it will send a value from its output DTR; 
otherwise, no value will be sent. 

The importance of the assumption on permutation generation is 
that masked interconnection functions can be used to construct 
virtual processor topologies from the existing interconnection 
network. The provision of such topologies must include the 
corresponding parallel data routing capabilities. As an example, 
we will show how the cube functions associated with the 3- 
dimensional hypercube shown in Figure 4a can be used to 
simulate the shift operations (SHIFT EAST, SHIFT WEST, 
SHIFXNORTH, and SHIFT_SOUTHJ needed for the2x4 grid 
shown in Figure 4b. 

Figure 4a. A Hypercube Network 



Figure 4b. A 2 x 4 Gr id  

Every application of an interconnection network function must 
be associated with a mask which indicates whether each 
processing element will be active or inactive. Such masks will 
be very space-intensive, since each requires N bits. A useful 
subset of masks (first introduced by Siegel in Ref. 7) requires 
only 2*log2N bits for each mask. A mask in this subset is 
represented as a string of characters CoCl ... Ck-1, where k = 

log2N, and each Ci is drawn from {0,1,X). A processor is 
active if its binary representation matches the mask, where 0 
matches 0, 1 matches 1 ,  and X matches either 0 or 1 .  The 
application of a mask to a function will be &noted by appending 
[mask] to the function. 

The grid shift operations can now be obtained in terms of the 
3-dimensional cube functions as follows (composition is left to 
right): 

S H E T  EAST = cubeg[XXX] cubel[XXO] 
SHIFTTWEST = cubeg[XXX] cube, [XX 11 
SHIFl-NORTH = SHIFT-SOUTH = cube2 

If the Siegel subset of masks is enhanced by complementation, 
cube functions can be used to express data routing for a wide 
variety of topologies, including grids and toruses of all 
dimensions and binary trees. These results are established in 
Ref. 5. Siegel has shown in Ref. 6 that the cube functions do 
satisfy the permutation hypothesis. 

4. SIGNIFICANCE O F  T H E  MODEL 

4.1 Instantiation 

We will now show how the model can be instantiated to produce 
a typical SIMD computer, the Thinking Machines Corporation 
CM-2. This computer contains a large number (between 8,192 
and 65,536) of processing elements, along with at least one 
VAX or  Symbolics host computer. Program instructions are 
sent from one to four host computers to at most four sequencers, 
which in turn generate microinstructions and distribute them to 
the processors. The CM-2 is equipped with a high-speed 
input/output device called a data vaulr. The interface between the 
data vault and the processors is governed by eight input-output 
controllers. 

-t Devices: the data vault (M = 1) 

J ~ ~ t l O u t p u t  Controllers: eight input-output controllers 
(L=8) 

The first four networks of the instantiated model are defined as 
follows: 

1- Network: 
Pi + CU[i/16384] for i = 0, ..., N-1 

Input/Output Processing Network: 
Pi IOC[i/81921 for all i 

Controller Network: IOCi + CU[j,/2] 

D v i c e  Network: CUi -t Do for all i 

The form of the input/output device network y will depend on 
the specific input or output high-level language instructions that 
are coded. Since the processing elements of the CM-2 are 
organized as a hypercube, the interconnection network Z 
corresponds to the cube functions that have been described 
above. All functions of this network are clearly bijections, and 
Siegel has shown in Ref. 6 that it can be used to generate all 
permutations. 

The CM-2 instantiation satisfies the assumptions proposed 
above. Since the function a is a total function and a surjection, 
Assumptions 1 and 2 are satisfied. It is clear that P is a 
surjection, as required by Assumption 3. Assumption 4 is 
straightforward to verify; it states that whenever a control unit is 
connected to a processing element, then it must also be 
connected to an inputJoutput controller that handles that 
processing element. 

4.2 Programming Language Development 

The programming languages (FORTRAN 8X, C*, Parallel 
Pascal, and *LISP) that are currently available for SIMD 
computers owe their syntax and semantics to their familiar 
sequential ancestors: FORTRAN, C, Pascal, and LISP. While 
the semantics of each of the serial languages is based on a 
sequential model of computation, its parallel version contains 
extensions that handle data parallel instructions based on a 
specific underlying model of SIMD machine organization. Since 
each language contains different extensions, its utility for general 
data parallel programming could be correspondingly limited. 
For example, it is difficult to use some of these languages to 
express parallel input and output. Also, it is often an involved 
process to develop high-level code for arbitrary processor 
topologies. Just as the von Neumann sequential computational 
model fostered the development of transportable sequential 
programming languages, the model proposed here should do the 
same for data parallel programming languages. 

To instantiate the model, the following choices are made: The model has been used as the basis of the syntax and 
semantics of the data parallel programming language DAPL 

Control Units: As many as four control units (15K14), (Refs. 3,4), which is currently under development. It also 
identified with the CM sequencers forms the context for the formal semantics of the SIMD 

algorithmic language described in Ref. 9. DAPL is an object- - Elements: N processing elements (N = 2i, based language which provides the programmer with a number 
i = 13, 14, 15, or 16) of basic geometric structural types that can be combined into the 



data structures representing the virtual topologies needed for data 
parallel application development. The language also associates 
natural communication operations with the geometric structures, 
so that a programmer can use high-level language constructs to 
route data between virtual processors. 

As a preliminary target machine for DAPL, a 1024 processor 
SlMD computer has been simulated by Klein and Rice (Refs. 1, 
2). The simulation, which is based on the computational model 
presented in this paper, was specified in CSP and developed in 
Occam on a network of INMOS Transputers. An instruction set 
that included parallel instructions for inputloutput, broadcasting, 
masking, routing, assignment, and arithmetic operations was 
implemented. An interactive menu system permits the user to 
specify and execute a single data parallel instruction or execute a 
program consisting of such instructions. This menu also allows 
the user to select the dimension of the hypercube interconnection 
network (1 5 dim 10) and to perform basic inputloutput 
operations on sample data sets. 

5. EXTENSIONS AND CONCLUSIONS 

An important advantage of the SIMD model presented here is 
that it can be extended to future developments in SIMD 
machines. One particular example is the possibility that a 
parallel computer may be partitioned into several SIMD 
machines, which are controlled in a MZMD fashion. Such a 
MSIMD machine, which has been proposed by Siegel (Ref. 8). 
can be included straightforwardly in our model, since each 
control unit CUi E C controls a disjoint set of processors. For a 
second example, if shared memory is to be added to a future 
SIMD machine, the model could be extended to include the 
shared memory units SfZ={Mo, ..., MT.~}, and the shared 
memory nerwork p: P+SFt,  which associates each processor 
with the shared memory unit that it can access. 

The SIMD computational model presented in this paper adopts a 
functional approach. The model's components are sets 
representing the processing elements, control units, inputloutput 
devices, and inputloutput controllers of a modeled machine. 
These components are related by a number of networks, each of 
which is represented as one or more functions. Assumptions 
about the components of a SIMD computer can be translated into 
assumptions on the sets and functions of the model, and the 
implications linking these assumptions can be investigated. 

The model is sufficiently complex to model all current SIMD 
computers, including such features as multiple control units and 
multiple input-output devices. It is easily extensible to future 
SIMD machines, including MSIMD computers and SIMD 
computers incorporating shared memory devices. A particular 
SfMD computer is modeled by choosing parameters that 
determine the size of the model's fundamental sets and by 
defining networks that express the relationships between those 
sets. Finally, the model has recently been used to support the 
design of a programming language for SIMD computers, and it 
has served as the target for the simulation of general SIMD 
machines. It is reasonable to hope that this computational model 
is a step toward one that will be as significant for SIMD 
computation as the von Neumann model has been for sequential 
computation. 

Acknowledgement 

This research was partially supported by a grant from the 
Software Productivity Consortium and the Virginia Center for 
Innovative Technology (#SPC-88-001). 

REFERENCES 

1. Klein, C. S., "Simulation of a SIMD Computer on a 
Transputer Network", George Mason University Department 
of Computer Science, Technical Report TR-4-88, 1988. 

2.  Rice, M. D. "User's Manual for Transputer-Based SIMD 
Simulator", George Mason University Department of 
Computer Science, Technical Report TR-6-88, 1988. 

3. Rice, M. D., S. B. Seidman, and P. Y. Wang, "A High- 
Level Language for Data Parallel Computation", Proceedings 
of CONPAR 88, British Computer Society, 1988. 

4. Wang, P. Y., S. B. Seidman, M. D. Rice, and T. E. 
Gerasch, "An Object-Method Programming Language for 
Data Parallel Computation", Proceedings of the 22nd Hawaii 
International Conference on System Sciences, January 1989, 
to appear. 

5 .  Rice, M. D., S. B. Seidman, and P. Y. Wang, "A 
Functional Model for SlMD Computation", George Mason 
University Department of Computer Science, Technical 
Report TR-7-88, 1988. 

6. Siegel, H. J., "Analysis Techniques for SIMD Machine 
Interconnection Networks and the Effects of Processor 
Masks", IEEE Transactions on Computers, C-26 (1977), 
pp. 153-16 

7. Siegel, H. J., "A Model of SIMD Machines and a 
Comparison of Various Interconnection Networks", IEEE 
Transactions on Computers, C-28 (1979), pp. 907-917. 

8. Siegel, H. J., L. J. Siegel, F. C. Kemmerer, P. T. Mueller, 
Jr., H. D. Smalley Jr., and S.D. Smith, "PASM: A 
Partitionable SIMDIMIMD System for Image Processing and 
Pattern Recognition", IEEE Transactions on Computers, C- 
30 (1981), pp. 934-947. 

9. Rice, M. D., "An Algorithmic Language for Data Parallel 
Computation", preliminaty manuscript. 



ABSTRACT DATA TYPES FOR SIMD HYPERCUBE MACHINES 

Farokh B. Bastani and Dar-Ren Leu 

Department of Computer Science 
University of Houston-University Park 

Houston, TX 77004 

ABSTRACT 

While massively parallel processing promises a high perfor- 
mance implementation for various applications, it also ex- 
hibits the difficulty of programming in a modular way. Pro- 
grams for conventional programming models can be struc- 
tured as a hierarchy of clients and servers that can be in- 
dividually implemented using fine grained parallel proces- 
sors; however, the clients and servers in this approach are 
separate entities and, hence, create a von Neumann bottle- 
neck that is unacceptable for fine grained parallel systems. 
In this paper, we present methods of merging distributed 
clients and servers to allow efficient parallel operations. In 
particular, we propose parallel primitives as well as nor- 
malized representation schemas for efficiently implement- 
ing various abstract data types. The mapping strategies to 
reduce communication cost for various abstract data types 
on the hypercube structure are also discussed. 

Keywords: Abstract Data Types, Distributed Represen- 
tation, Mapping Strategies, Multiple Entry Data Struc- 
tures, Performance Analysis, SIMD Hypercube Machines. 

INTRODUCTION 

Fine grained parallel supercomputers hold great promise 
for achieving potentially dramatic speed ups in computing 
power. To realize the full capabilities of these machines for 
various applications (robotics, expert systems, simulation, 
databases), ingenious and fundamentally new kinds of data 
parallel algorithms must be devised. These include memory 
based models for databases, parallel pattern matching and 
constraint resolution for expert systems, and direct model- 
ing of physical systems for simulation purposes. 

functional components, and processor networks for inter- 
face components. However, the clients and servers in this 
approach are separate entities, thus creating a von Neu- 
mann bottleneck that is unacceptable for fine grained par- 
allel systems. 

In this paper we investigate efficient implementation of ab- 
stract data types on SIMD hypercube machines. To achieve 
high performance in parallel programs, the requests of var- 
ious clients of an abstraction should be processed in par- 
allel. One way to overcome the von Neumann bottleneck 
is to merge the clients with the servers of an abstraction. 
We first explore the essences of this implementation theo- 
retically, and then realize it for various abstract data types. 
In particular, we propose parallel primitives as well as nor- 
malized representation schemas for efficiently implementing 
different abstract data types. Since the performance of an 
abstract data type component may vary considerably de- 
pending on the placement of its data elements on the phys- 
ical processors, the mapping strategies to reduce communi- 
cation cost are also discussed. These abstract components 
can serve as building blocks for implementing other paral- 
lel components, such as parsers, constraint resolvers, and 
pattern recognizers. 

A THEORETICAL EXPLORATION 

In this section we investigate the essential elements in im- 
plementing a high performance abstract data type compo- 
nent on SIMD hypercube machines. 

An abstract data type component is a collection of functions 
that implement some mathematical objects, such as lists, 
queues, and sets. Internally, an abstract data type, A, is a 
tuple 

A maior problem which impedes the widespread use of fine A = (D.  F )  - . . ,  
grained parallel architectures is the difficulty of program- 

where D is a data structure that can be expressed as a state ming these machines in a modular way. Conventional dis- 
machine, and F is a collection of functions that operate tributed and coarse grained parallel programming models 

do not scale up to fine grained parallel systems. Programs upon D. The data structure, D, is also a tuple 
- 

for the former systems can be structured as a hierarchy of D = (0, R )  clients and servers that can be individually implemented 
using fine grained parallel Processors (Ref. 11, such as in which 0 denotes the collection of data elements for stor- 
broadcasting sequential processors (BSP) for high perfor- ing states of D and R denotes the relations among these 
mance abstract data type components, systolic arrays for elements. Thus, 0 can be expressed by 

PRECEDING PAGE BtANK NOT FlLMD 

CH2649-2/89/0000/0609$0 1.00 O 1 988 l EEE 



O = { o , ( l < i < n )  computation pattern of f. Then g is defined as follows. 

where n is the total number of data elements in 0, and R 
is a function defined on o,, 1 5 i 5 n. For data intensive 
applications on SIMD machines, R can be defined as a col- 
lection of relations {r, 1 1 5 i 5 n) such that, for element 
oi, the associated relation r, denotes the absolute position 
of o, in D or the relative relations between o, and other 
elements ol,  j # i. In this case, D can be expressed as a 
collection of o; and r,; i.e., 

where n may be very large. 

A data structure, D, may be represented in several ways on 
SIMD machines. To search for the best representation of a 
data structure, we first notice that an SIMD machine such 
as the Connection Machine (Refs. 2-3) may contain up to 
tens of thousands of processors, and at a given time can 
operate only on data elements of identical type. In order to 
fully exploit the underlying architecture of SIMD machines, 
a data structure must be represented in a distributed way 
by having one processor per data element. This represen- 
tation is called a distributed representation which can also 
be defined by a mapping function h from D to the network 
of processing elements, say {PE,), i.e., 

h:(o, ,r ,)  4 PE, for l l i 5 n  and l <  j 5 N  

where N is the total number of PE's. Distributed repre- 
sentation~ can facilitate concurrent operation upon a large 
set of data and, hence, achieve the maximum degree of par- 
allelism for the implementation of an abstract data type. 

However, a distributed representation for D by itself does 
not guarantee that requests from multiple clients can be 
processed simultaneously. To achieve this, the clients and 
servers of an abstraction must be merged so that a PE 
which acts as a server for an abstraction can also act as a 
client of that abstraction. This is implemented via a kind 
of distributed representation called a normalized represen- 
tation which is defined by the above mapping function with 

where f is a one-to-one function. That is, the address of 
PE which is allocated to o;, by using h, can be computed 
simply from o; or even i .  The ability to normalize the data 
structure is the key to the parallel processing of multiple 
client requests. 

In addition to multiple entry data structures based on nor- 
malized representations, we have to provide parallel prim- 
itives for an abstraction so that multiple requests can be 
processed simultaneously. First, consider the computation 
pattern of a basic parallel primitive f .  The computation 
pattern of f is used to denote the effect of f by showing 
the operation points and data flow patterns in the network 
of PE's. The data flow patterns in a computation pattern 
are also called a communication pattern. Let g denote the 

where N is the total number of PE's, and g, is the compu- 
tation pattern by tracing the effect of applying f to PEi .  

A computation pattern g is said to be regular if all of the 
gi's have the same pattern; otherwise, it is irregular. In 
terms of the number of phases in g and the change in com- 
munication pattern across different phases, the useful par- 
allel primitives on SIMD machines can be classified into five 
types (see Figure 1). They are 

(A) Single phase, single P E  (local processing). This is the 
simplest type of primitives. A set of PE's perform the 
same operation (i.e., f,) upon their own local data el- 
ements. No communication is required for this type of 
primitives. 

Single phase, two PE's. A set of data elements are 
moved or copied from original locations (a set of PE's) 
to new locations (a new set of PE's). The computation 
pattern here may be regular or irregular. The messages 
transferred can be regarded as requests from a set of 
clients to a set of servers. If required, the servers may 
return some results to the clients. 

(C) Multiple phases, identical pattern (multiple PE's). 
The computation pattern for this type of primitives 
consists of k phases, where k is determined statically 
or dynamically, and k > 1. The computation pattern 
is identical in each of the k phases. 

(D) Multiple phases, deterministic pattern (multiple PE's). 
This type of primitives performs a series of operations 
in a deterministic fashion (usually, tree-like fashion) on 
a hypercube structure. Thus, the computation pat- 

tern for this type of primitives is regular, but changes 
from phase to phase. The set of active PE's is not de- 
fined and thus we may have many different primitives 
for this type. Two simple examples are aggregate and 
broadcast. Aggregate is used to collect some summary 
information from a set of PE's, while broadcast is used 
to duplicate a data element to a set of PE's. 

Basic Parallel Primitiuea 

Single Phase Multiple Phases 
(Multiple PE's) 

Single PE Two PE'r 
( r ) : ioca l  (8):tranater 

processing 

Idantical Delermlnlatic Random Pattern 
Pattern Pattern (E):mulll-step 
(C):shltt (0):reduction tranaler 

Figure 1. Classifications of basic parallel primitives. 



(E) Multiple phases, random pattern (multiple PE's). The 
computation patterns here are irregular. The addresses 
and the number of intermediate PE's  are determined 
dynamically. Since more than one message may pass 
through some PE's, this type of primitives implements 
the concept of pipelining in transferring messages to 
destinations. 

It should be noted that primitives of types B and E may 
make heavy use of random communication feature of the 
underlying architectures, and primitives of type D take ad- 
vantage of the hypercube structure of PE's. The above 
primitives form a basis for constructing higher levels of 
primitives to efficiently implement an abstract data type. 
A useful primitive may be a combination of several of the 
above operations. 

PRACTICAL IMPLEMENTATION 

In this section we discuss practical methods to implement a 
high performance abstract data type component on SIMD 
hypercube machines. In terms of r,, we first classify ab- 
stract data types on SIMD machines into the following 
three categories: 

(1) Unrelated collections: For an unrelated collection, we 
have 

r ; = 0 ,  1 I i I n .  

This means that there is no relation among different 
data elements. Thus, 

D =  {o, 1 1  5 is n). 

Examples of unrelated collections are sets, bags, search 
tables, and symbol tables. 

(2) Crystalline collections: Here, for component A = 
( D , F ) ,  each element, o,, has an absolute position in 
D. In this case, r, is defined by storing the logical in- 
dices of o, in r,; i.e., 

Examples of crystalline collections are lists (with in- 
dices), vectors, matrices, etc. 

(3) Amorphous collections: Here, for component A = 
(D, F), the position of o, in D is determined by the 
position of o, relative to other elements o,, j # i. In 
this case, r, is defined by storing in r, the addresses of 
neighboring elements of o, in D; i.e., 

where 1 5 jl,. - .  , jk 5 n; &o,, , 1  5 m 5 k ,  denotes the 
address of element oj,,, ; and o,, , . - . , ojk are neighbors 
of o, in D. Examples of amorphous collections are lists, 
trees, graphs, and semantic networks that use pointer- 
based representation. 

For an abstract data type A = (D, F) with D = {(o,, r,)), 
the simplest one of its distributed representations is to al- 
locate a distinct P E  for each (o,, r,) in any convenient way. 

This representation can be created efficiently and allows 
clients to access any point of its data structure directly; 
however, it may need a traversal of the whole data struc- 
ture, which is time-consuming, to locate a specified ele- 
ment. A suitably normalized form of an abstraction allows 
its elements to be locatable efficiently. Two approaches are 
possible for the normalized representation of abstract data 
types in SIMD machines, and are described in the following. 

(1) Based on vectors with indexed access. If the data el- 
ements of an abstraction are identified by unique sets 
of indices, then the locations of the data elements (i.e., 
the addresses of the PE's  allocated for those data ele- 
ments) can be uniquely determined from these indices. 

(2) Based on vectors with hashed access. If the data ele- 
ments of an abstraction are identified by unique keys, 

then we can apply a parallel hash function on these keys 
to determine the distinct addresses of all data elements. 
This approach requires a predetermined hash function 
along with a collision resolution scheme. 

Several type-independent primitives are useful for many ab- 
stract data types and are described below. 

(1) a(op) (Ref. 4): The symbol a denotes ApplyToAll; it 
applies the same op to all of the data elements at a 
time; it is a Usingle phase, single P E n  operation. 

(2) Copy: This primitive is used to copy data elements from 
one set of PE ' s  to another set of PE's; it is a "single 
phase, two PE'sn operation. 

(3) Multiple copies: This primitive will copy data elements 
from one location ( P E )  to multiple locations (PE's)  
(e.g., broadcast); it is a "multiple phases, deterministic 
patternn operation. 

(4) /(op) (Ref. 4): The symbol / denotes insert; we also 
denote this by reduce(op); it reducee a set of elements 
using op and returns a scalar value; it is a "multiple 
phases, deterministic pattern" operation. 

In the following subsections, we discuss the data represen- 
tation and primitive operations for unrelated, crystalline, 
and amorphous collections, respectively. 

Unre la ted  Collections 

An unrelated collection may be in either a random or a nor- 
malized representation. The random representation is cre- 
ated through the parallel evaluation of "predicatesn upon 
a collection of data elements having a distributed repre- 
eentation. An unrelated collection will be in a normalized 
representation if it is created through the use of parallel 
functional operations such as the union, intersection, and 
difference operations for sets. The characteristics of unre- 
lated collections are that their data elements are identified 
by distinct keys, and thus their normalized representation 
are based on vectors with hashed access. 



Two useful primitives for unrelated collections are de- 
scribed in the following. 

Normalize: It is used to transform an unrelated collection 
in a random form to the normalized form, and is a "multiple 
phases, random pattern" operation. 

Search: It is used to search for a set of keys in parallel. It 
is also a "multiple phases, random pattern" operation. 

Before mentioning any algorithm, we introduce the follow- 
ing notations: 
p denotes the address of the current PE, 
var is a variable in the host, 
var(p) is a local variable in PE(p),  
vectw[O..S - l](p) is a local vector of size S in PE(p), 
u.-n .- denotes a local assignment within a P E ,  
"c" indicates data movement from one PE to another, 
and 
" ("P) + " indicates an inter-PE data movement which has 
specified the operation op to be performed by the desti- 
nation PE. 
The last two notations are implemented via four net- 
work primitives, namely, send,  receive, EmptyQueue, and 
ResetQueue. The functionalities of these four primitives 
are explained below. 
(1) send: It is used to assemble packets for each active PE, 

and then pump them into the interconnection network. 
(2) receive: It enables a PE to fetch the packet at the 

head of its input queue if that queue is not empty. 
(3) EmptyQueue: It is used to check the existence of any 

received packet in the input queue for each PE. 
(4) ResetQueue: It is used to discard all packets remaining 

in queues or in the network. 

As an example, consider the parallel retrieval of attributes 
of a set of keys from a search table. In BSP, this must 
be done in several cycles. In each cycle an identifier is 
broadcast to the processors one of which returns the desired 
attribute (Figure 2a). To retrieve these in parallel we must 
first obtain a normalized representation of the search table, 
which is based on vectors with hashed access. The code for 
parallel fetch is as follows (see Figure 2b): 

P rocedure  ParallelFetch (client : Boolean; 
id, idc : KeyType; n : Natural; 
status : StatusType; var  attr : AttributeType); 

va r  j ,  source : O..n - 1; 
idp : KeyType; 
PacketType : {retrie~e~attributes}; 

begin 
if client(p) t h e n  { 

j(p) := h(;dc(p)); 
send ("retrievew,idc(p),p) to PE(j (p)) ;  } 

while NOT EmptyQueue(p) d o  
if NOT EmptyQueue(p) then { 

receive (PacketType(p), idp(p), source(p)); 
if PacketType(p) = "attributes" then 

{ store the received attributes in attr } 

(a) Sequential retrieval 

search table: 

clients: 

(b) Parallel retrieval 

Figure  2. Retrieval of attributes from a search table. 

elsif PacketType(p) = 'Lretrieven then 
if status(p) = F R E E  then 

send ("attributesn, "id does not ezist") 

t o  PE(source(p)); 
elsif id(p) = idp(p) then 

send ("attributesn, attributes(p),p) 
t o  PE(source(p)); 

else { 
j(p) := (p+  1) mod n; 
send ("retrieve", idp(p), source(p)) 

t o  PE(j (p)) ;  11 
end;  

Here, client(p) specifies whether PE(p) has a key idc(p) 
the attributes of which need be fetched; n is the total num- 
ber of processors. The search table is represented by two 
variables, id denoting keys and attributes, at each PE. 
If PE(p)  has a key stored in it then its status is set to 
O C C U P I E D  in which case id(p) contains the key and 
attributes(p) contains the assiciated attributes; otherwise, 
its status is set to F R E E ,  indicating that PE(p) does not 
(yet) have a key. 

Each client uses a hash function h to determine the address 
of P E ( j )  to which it will transmit its request for idc using 
the send primitive. When a PE receives a packet, it first 
checks the type of that packet, PacketType. If PacketType 
is "attributesw, then this PE should store the fetched at- 
tributes in attr; otherwise, PacketType is "retrieve" and 
this packet is a request for some key. When a PE receives 
a request for key idp, then (a) if its status is F R E E  then 
it sends the message 'id does not existn to the client; (b) if 
its status is OCCUPIED and idp = id then it sends the 
associated attributes, attributes, to the client; otherwise, 
it forwards the request for idp to the adjacent PE which 
has address ((p + 1) mod n). Each P E  repeats this process 
till its input queue is empty; this is indicated by a TRUE 
value for EmptyQueue. It should be noted that the con- 



ditions expressed in a while statement are used only for 
determining the termination time of that while loop; they 
are not used for selecting the set of active PE's to execute 
the instructions within the loop. 

Crystall ine Collections 

A crystalline collection may have one of two possible repre- 
sentations, namely, index-based and normalized represen- 
tations. In the index-based representation of a crystalline 
collection, each data element has an index to indicate its rel- 
ative position in the data structure, irrespective of where it 
may actually be allocated. The normalized representation 
of crystalline collections are based on vectors with indexed 
access. In the normalized representation, the data elements 
of an abstraction are sequentially allocated in contiguous lo- 
cations so that the physical address of a data element can 
be directly computed from its logical indices. Crystalline 
collections have two distinguishing characteristics, namely, 
(1) the alignment of data elements of two instances of an ab- 
straction for efficient binary operations, and (2) the stream 
processing of data. 

The following primitives are useful for crystalline collec- 
tions. 

S h i  ft(dataloperati0n): This is applicable for crystalline 
collections in a normalized form. It moves data or oper- 
ation forward, backward, or along a ring. The notation 
shift(operation) means that the processor adjacent to the 
current one is activated. This primitive is a "single phase, 
two PE'sn operation. 

Align: It will move a set of data elements from one set of 
PE 's  to a new set of PE's. One example is to transpose a 
matrix. This primitive is also a "single phase, two PE'sn 
operation. 

P re  f izlpost f iz(op): This primitive will compute in paral- 
lel all prefixes or postfixes of vectors using the specified op. 
It is a "multiple phases, deterministic patternn operation. 

Normalize: This primitive is used to transform a crystalline 
collection from the index-based representation to the nor- 
malized representation, and is a "single phase, two PE'sn 
operation. 

Enumerate: A crystalline collection may be created in a 
temporary representation which is neither an index-based 
nor a normalized form. In this temporary representation, 
the data elements are allocated sequentially, but discon- 
tiguously. Enumerate is used to transform a crystalline 
collection from this temporary representation to the index- 
based representation. This primitive is a "multiple phases, 
deterministic pattern" operation. 

Compact: This primitive is used to transform a crystalline 
collection from the temporary representation (see enumer- 
ate) to the normalized representation in which ail data el- 
ements are allocated sequentially and contiguously. It is a 
"multiple phases, identical pattern" operation. 

As an example, consider the multiplication of two matri- 
ces, C = A x B, where the dimensions of A, B, and 
C are L x M ,  M x N, and L x N, respectively. Let 
n = Vosz (ma%(& N))1 + [log, MI ,  m = flogz MI ,  and 
M' = 2"'. Thus the total number of processors required 
is 2n, Initially, the elements of matrix A are stored in pro- 
cessors in row-major order, and matrix B in column-major 
order. That is, the element a,, of A is stored in the proces- 
sor which has address p = i x M' + j ;  and for the element 
bjk of B, p = k x M'+ j. After multiplication, element c,k of 
the resulting matrix will be stored in C[k](i), the kth entry 
of vector C in processor i which has address p = i x M'. 

The idea for solving this problem is to shift bjk to appro- 
priate processors so that the multiplication of a,, and bjk 
can be performed in parallel. Then the element cik can 
be obtained by using the reduce(+) primitive. The binary 
representation of p is denoted by pq-l,o, which can be split 
into i = pq-l:,,,, and j = P,,,-~:O. The program segment 
for the matrix multiplication is as follows 

begin 
L' := maz(L,N);  
L" := min(L, N); 
k(p) := p,-,:rn; 
k'(p) := k(p); 
if 0 < k(p) < L' then  

fo r  t := 1 to L' d o  { 
if 0 5 kl(p) < L" then { 

temp(p) := A(P) x B(p); 
reduce(+) (0, m - 1, temp); 
if pm-l:o = 0 then 

CIk(p)l(p) := temp(p); 1 
k(p) := (k(p) + 1) mod L'; 
shi  j t  (L', MI, B);  
if L > N then  

k1(p) := k(p); 1 
end;  

The shift primitive is defined by 
Procedure  Shif t  (L', M '  : Natural; 

va r  A : MatrizType) 
v a r  newp : O..n - 1; 
begin 

newp(p) := [p + (L' - l)M1] mod (L'M'); 
A(newp(p)) + A(p); 

end ;  

and reduce(+) is defined by 
Procedure  Reduce(+) (s,e : Natural; 

v a r  A : MatrizType) 
va r  i : Natural; 

temp1 : MatrizType; 
begin 

fo r  i := s t o  e d o  { 
templ(p(i)) +- A(p), (pi = 1); 
A(P) := A(P) + templ(p), (pi = 0); 1 

end;  



The complexity of this algorithm is O(maz(L,N) x 
log(M)). If the number of processors is sufficiently large, 
i.e., q 2 [log L] + [log MI  + [log N1, a much more efficient 
algorithm (O(1og maz(L, M I  N)) for matrix multiplication 
can be devised. 

Amorphous  Collections 

An amorphous collection may be in either a pointer-based 
or a normalized representation. In the pointer-based repre- 
sentation, each node of a graph associated with the pointers 
to other nodes is allocated a PE. The normalized repre- 
sentation for amorphous collections are based on indexed 
vectors or hash tables depending upon how their nodes are 
identified (unique ordinal numbers or unique names). Two 

normalized forms for graphs are possible. The first one is 
to allocate PE for each node in a graph in a way that the 
physical address of the PE for each node can be computed 
from the id or name of that node; it is still in a pointer- 
based form. The second normalized form is generated from 
the adjacency matrix of a graph; that is, we assign a dis- 
tinct PE to each element of an adjacency matrix according 
to the logical indices of elements. A graph in the second 
normalized form can be regarded as a crystalline collection, 
and no explicit pointers are required. 

Amorphous collections are 
characterized by their communication-oriented algorithms. 
For graph components (including trees), communication is 
usually restricted to those pairs of nodes having a pointer 
between them. A node in a list component, however, may 
communicate with different nodes in the same list; thus, 
parallel primitives for list components are different from 
those for other amorphous collections. Some useful primi- 
tives for amorphous collections are described below. 

ReversePtr: It is used to reverse the direction of pointers 
in a graph, and is a "single phase, two PE'sn operation. 

AdvPtr: It is used to advance the temporary pointers in 
a list to point from one node to another node in the same 
list. It is a "single phase, two PE's" operation. 

Send*: This primitive will move data from one node to 
another via zero or more intermediate nodes for a set of 
nodes in a graph. It is a "multiple phases, random patternn 
operation. 

Convert: This primitive is used to transform a graph in 
pointer-based representation to the normalized form using 
adjacency matrix. It is a "single phase, two PE'sn opera- 
tion. 

For list components in pointer-based representation, we 
need some higher level primitives which use more than one 
type of basic primitives discussed before. They are: 

Reducejop): This primitive reduces a list in a binary tree 
fashion and returns a scalar value. 

P re  fizlpost fiz(op): This primitive computes in parallel 
all initial prefixes/postfixes of a list using the specified op. 

Normalize: This will convert a list in pointer-based repre- 
sentation to  a normalized representation. Naturally, a list 
must be enumerated first before being normalized. 

As an example, consider the problem of comparing two lists, 
11 and 12, to determine whether 11 < 12,l l  = 12, or 11 > 12. 
(The comparison is done in alphanumeric order.) These two 
lists are kept in pointer-based representation throughout 
the computation. This example is used to demonstrate the 
simultaneous processing of more than one list component. 
Let list denote the variable storing the elements of lists, 
and nezt denote the pointer used within lists. Suppose 11 
and 12 are the id's of the PE ' s  a t  the head of two lists, 
respectively. Initially, all the elements of these two lists are 
stored in distinct PE's. The first step here is to connect 
the corresponding elements in these two lists by pointers 
called rival. The alphanumeric comparison (denoted by 
8) is then performed by each P E  after obtaining the data 
from its rival. The final comparison of the two lists is then 
computed and the result is stored at the head P E  of each 
list. The program segment for this comparison is described 
in the following. ' 

begin 
MatchLiats (11,12, nezt, rival); 
if rival(p) # N I L  then 

tmplist (rival(p)) +- list (p); 
Result List (p) := list(p) tmplist (p); 
ReduceLiat (@) (next, Result List); 

end: 

Here, MatchLists matchs up the corresponding elements 
of two lists, ResultList stores the result of the comparison 
of the corresponding elements, and ReduceList computes 
the final result of the comparison of these two lists. Before 
defining MatchLists and ReduceList, we first introduce 
three basic primitives, namely, ReversePtr, AdvPtr, and 
send*. Let A denote the pointers in a list, and B be a 
variable of the same type. Primitive ReversePtr is defined 
as follows. 
P rocedure  ReversePtr (A : PtrType; var B : Ptrl'ype); 
begin 

if A(p) # N I L  then  
B(A(P)) P; 

end ;  

Thus, ReversePtr is used to establish a set of pointers in 
B, which are the reverse of those in A. For a list in pointer- 
based representation, it is frequently useful to have a tem- 
porary pointer in each node to point to another node (not 
the next one) in the same list. Let A be this temporary 
pointer. Initially, A in each node points to the next node. 
Then, a t  each step, A is updated by the value of A in the 
node to which the current node points using A. AdvPtr 
primitive is used to advance A for this purpose, and is de- 
fined by 



P r o c e d u r e  AdvPtr (var  A : PtrType); 
v a r  tmp : PtrType; 
begin 

tmp(p) := N I L ;  
ReversePtr ( A ,  tmp);  
if tmp(p) # N I L  t h e n  

A ( ~ ~ P ( P ) )  + A(p);  
end ;  

Using ReversePtr and AdvPtr primitives, primitive 
ReduceList is defined below. 

P r o c e d u r e  ReduceList(op) (next : PtrType; 
v a r  list : ListType); 

va r  jump, r jump : PtrType; 
begin 

jump(p) := next(p); 
while  jump(p) # N I L  d o  { 

ReversePtr(jump, r jump);  
if rjump(p) # N I L  t h e n  

list ( r jump(p))  (z) list ( p ) ;  
AdvPtr ( jump) ;  ) 

end ;  

Here, jump denotes the temporary pointers to be advanced, 
and using jump, list is reduced to a scalar value in a binary 
tree fashion. The final result after applying op to list is 
stored a t  the head of l is t .  

Here, primitive send* is used to copy the id of the current 
node, via a mailstop, to the destination node. The address 
of the destination node is stored in the mailstop, and the 
address of mailstop is known to the source node. Through 
the use of send*, we can establish the pointers in the destil 
nation nodes to point to the source nodes. The procedure 
for send' is defined as follows. 
P r o c e d u r e  send* (mailstop, destination : PtrType; 

va r  A : PtrType); 
v a r  received : Boolean; 

letter : PtrType; 
begin 

received(p) := FALSE; 
if mailstop(p) # NIL t hen  { 

letter(mailstop(p)) t p;  
received(mailstop(p)) + TRUE;  ) 

if received(p) t h e n  
if destination(p) # NIL t h e n  

A ( d e ~ t i n a t i o n ( ~ ) )  t letter(p); 
end; 

In terms of send' and AdvPtr, we can define the parallel 
operation MatchLists. Let mailstop in each node of lists 
be used to store the address of the P E  which holds the ad- 
dress of the rival P E  of that node, and jump be temporary 
pointers to be advanced. Initially, we let the rival at the 
head of both lists point to each other. Then we set up the 
rival in parallel for other nodes in the lists through the use 
of jump. The procedure for MatchLists is defined in the 
following. 

P r o c e d u r e  MatchLists (11,12 : O..n - 1 ;  next : PtrType; 
v a r  rival : PtrType); 

v a r  mailstop, jump : PtrType; 
begin 

rival(p) := NIL;  
mailstop(p) := NIL;  
rival(p) := 12, ( p  = 11); 
rival(p) := 1 1 ,  ( p  = 12); 
jump(p) := next(p); 
while  jump(p) # N I L  d o  { 

if ( jump(p)  # N I L )  a n d  (rival(p) # N I L )  t hen  

mailstop(jump(p)) t rival(p); 
if mailstop(p) # N I L  t h e n  

send* (mailstop, jump, rival); 
AdvPtr ( jump) ;  ) 

end ;  

It should be noted that the jump of a node will be N I L  if 
it can not point to a node in the same list. Since next is 
N I L  for the last node in a list initially, AdvPtr will handle 
jump properly. 

MAPPING STRATEGIES 

Since abstract data types are represented in a distributed 
way on SIMD hypercube machines, the interactions among 
data elements play an important role in determining their 
performance, that is, the performance of an abstract data 
type may vary considerably depending on the mapping of 
data elements on to the physical processors. In this section 
we discuss the mapping strategies to reduce communica- 
tion cost for various abstract data types. The rich commu- 
nication structure of a hypercube interconnection network 
makes this mapping feasible. 

The major factor in selecting a mapping for an abstraction 
is the communication pattern embedded in that abstrac- 
tion; it illustrates the characteristics of both its normalized 
representation and the associated parallel primitives. The 
possible communication patterns can be classified into four 
categories, namely, neighbor communication, group com- 
munication, dynamic communication, and random commu- 
nication. By neighbor communication, we mean that com- 
munication occurs only in the neighboring processors of a 
logical structure such as a graph. That is, only the pairs of 
processors which represent an edge may allow communica- 
tion to occur between them. The communication pattern 
for graphs in pointer-based representation usually belongs 
to this type. For some abstract data types such as list 
and matrix, communication may occur within a group of 
data elements in a fixed binary tree pattern. Examples 
are the broadcast and reduce(op) operations for a matrix 
component. The above two categories of communication 

patterns can be considered as fixed communication. By 
dynamic communication, we mean the communication pat- 
tern which is regular, but subject to change after each step. 
One example is the communication pattern for the compar- 
ison of two lists in pointer-based representation. Random 
communication pattern means that no regular communica- 



tion pattern is available. Unrelated collections usually have 
a random communication pattern. 

If the communication pattern for an abstraction is regular 
(i.e., a neighbor, group, or dynamic communication), its 
data elements should be arranged in a way that the pair of 
communicating processors are just one hop apart. This will 
reduce the communication cost to a minimum. However, 
the mapping of a general graph to a hypercube structure is 
NP-complete (Refs. 5-6). Only a highly regular and sparse 
graph may have a suitable mapping in a hypercube if this 
graph is in a pointer-baaed form. 

Another important factor in selecting a mapping is the lo- 
cality of data elements within an abstraction. This factor 
will dominate when there is no regular communication pat- 
tern available, such as in a set, or when a suitable mapping 
for a regular communication pattern is unavailable, such 
as in an arbitrary graph. For this kind of abstract data 
types, it is better to place data elements in a smaller cube 
in a way that all the relevant (i.e., communicating) data el- 
ements are close to one another. For example, the physical 
processors corresponding to a mapping are constrained to 
lie within a small hypercube when the number of elements 
in a data abstraction is small. It is well known that in 
an r-dimensional hypercube, the farthest distance between 
any two nodes is r and the average distance is only r/2. 
The mapping based on the locality also benefits the overall 
memory utilization and conserves hardware resources. 

For detailed mapping strategies of various abstract data 
types on hypercube interconnection structure, readers 
please refer to (Ref. 7). 

SUMMARY AND CONCLUSIONS 

It is difficult to write parallel programs in a modular way 
qn fine grained parallel systems. Conventional distributed 
and coarse grained programming models exhibit the bottle- 
neck of processing client requests sequentially. In this paper 
we investigate the parallel implementation of abstract data 
types on SIMD hypercube machines. 

To achieve high performance in parallel programs, the re- 
quests of various clients of an abstraction should be pro- 
cessed in parallel. Three major factors are important in 
implementing an abstract data type on SIMD machines, 
namely, a suitably normalized representation, parallel prim- 
itives, and mapping. The normalized representation of an 
abstraction, which is the key to the parallel processing of 
multiple client requests, is based on multiple entry data 
structures such as indexed vectors and hash tables. Parallel 
primitives, which are constructed to facilitate parallel op- 
erations on an abstraction, are based on the characteristics 
of underlying architectures. Parallel primitives associated 
with the normalized representation usually make extensive 
use of communication for exchanging information among 
PE's, and thus a mapping strategy must be selected to re- 
duce the communication overhead. Two major factors in 
selecting a mapping are the communication pattern and lo- 

cality of data elements. A suitable mapping of the normal- 
ized representation onto the underlying network of PE's  
can greatly improve the performance of an abstract data 

ty pee 

In summary, an abstract data type on SIMD machines must 
be in a normalized representation so that its distributed 
clients and servers can be merged to achieve high perfor- 
mance parallel programs. Parallel primitives must also be 
provided for facilitating the parallel processing of client re- 
quests. To improve the performance, a suitable mapping 
for the normalized representation of an abstraction should 
be used to reduce the communication cost. 

REFERENCES 

1. F. B. Bastani, W. Hilal, S. S. Iyengar, "Efficient Ab- 
stract Data Type Components for Distributed and 
Parallel Systems," Computer, Oct. 1987, pp. 33-44. 

2. W. D. Hillis, The Connection Machine, MIT Press, 
Cambridge, Mass., 1985. 

3. W. D. Hillis, G. L. Steele, jr., "Data Parallel Algo- 
rithms," Comm. of ACM, Vol. 29, No. 12, Dec. 1986, 
pp. 1170-1183. 

4. J. Backus, "Can Programming Be Liberated From the 
Von Neumann Style? A Functional Style and Its Al- 
gebra of Programs," Comm. of ACM, Vol. 21, No. 8, 
Aug. 1978, pp. 613-641. 

5. G. Cybenko, K. N. Venkataraman, D. W. Krumme, 
"Hypercube Embeddipg is NP-complete," Proceed- 
ing of the first SIAM Conference on Hypercube Multi- 
processors, Oak Ridge National Laboratory, 1986, pp. 
148-160. 

6. A. Wagner, D. G. Corneil, "Embedding Trees in a Hy- 
percube is NP-complete," Technical Report 197187, 
Dept. of Computer Science, University of Toronto, 
1987. 

7. D. R. Leu, F. B. Bastani, "Parallel Implementation of 
Abstract Data Types on SIMD Hypercube Machines," 
Technical Report, Dept. of Computer Science, Univer- 
sity of Houston, 1988. 



AN OPTIMALLY PORTABLE SIMD PROGRAMMING LANGUAGE 

Russ Tuck 
Computer Science Department, Duke University, and 

Computer Science Department, University of North Carolina at Chapel Hill * 

ABSTRACT 

Existing programming languages for SIMD (Single-Instruction Multiple 
Data) parallel computers make implicit architectural assumptions. These limit 
each language to architectures satisfying its assumptions. This paper presents a 
theoretical foundation for developing much more portable languages for SIMD 
computers. It also describes work in progress on the design and implementa- 
tion of such a language. 

An optimally portable programming language for a set of architectures is 
one which allows each program to specify the subset of those architectures on 
which it must be able to run, and which then allows the program to exploit 
exactly those architectural features available on all of the targed architectures. 
The features available on an architecture are defined to be those the archi- 
tecture can implement with a constant-bounded number of operations. This 
definition ensures reasonable execution efficiency, and identifies architectural 
differences which are relevant to algorithm selection. - 

An optimally portable programming language for SIMD computers, called 
Porta-SIMD (porta-simm'd), is being developed to demonsmte these ideas. 
~ased on c++, it currently runs on theConnec60n ~ a c h i n e  andPiel-Planes 4. 

Keywords: Portable. SIMD Parallel, hogramming Language. Porta-SIMD, 
Taxonomy. Pixel-Planes, Connection Machine, C++. 

INTRODUCTION 

Portable high-level languages for von Neumann computers are major accom- 
plishments in computer science. These languages have radically improved the 
quality, cost, reliability, and availability of software. However, the greater 
architectural diversity of SIMD (Single-Instruction Multiple-Data) computers 
has so far kept them from fully benefiting from such languages. Each existing 
SIMD language contains architectural assumptions which make it suitable for 
programming only a certain subset of SIMD machines. 

Optimal portability is a new concept which can guide the development of 
much more portable SIMD programming languages. It is based on the recog- 
nition that some differences among SIMD architectures significantly influence 
algorithm selection. These shouldnot be completely hidden from the program- 
mer. 

The programmer makes an algorithm's architectural assumptions explicit 
by expressing the algorithm as a program for a particular set of architec- 
tures. These architectural assumptions precisely define the program's portabil- 
ity. The D r o m m e r  may then take full advantage of all architectural features 
comma; to 21 members bf that set, and no more. Selecting a small set of very 
similar architectures limits a program's portability, but allows it to take full 
advantage of specialized features the members share. Selecting a large diverse 
set of architectures produces a program that is very portable, but may not take 
full advantage of some of the architectures. This selectable wadeoff between 
breadth and power provides optimal portability. 

'This wok war rupporIcd by the Pixcl-Planu Project. Hmry Fuchr and John Poulton. P.1.a. 
and 11s gnnu: National Sacncc Foundation grant UMIP-8601552. Dcfcnac Advanced Resenrch 
Projects Agmcy order IWO. OIfim of Naval Rerurch contnct UN0014-86-K-0680; and by the 
GRIP Project. Frederick Brockr. P.I.. undu Natiorul Inrtituteo d Health grant (IRR M170. Ac- 
cess to a Connecr~cm M.chmc w u  pmv~dd by h e  Advanced Canputrng Research Fac~l~ty at 
Areonne ?la~onaI Laboratones. under nnntr NSF-ASC-8808327 and M)E-W -31 109-tNC.38 
~uthor'a phone md c l c c ~ m i c  ;ddress:"(919) 962-1755 or (919) 684-51 10: tuck@cr.unc.edu or 
m@cs.duke.edu. 

This is entirely consistent with Chandy and Misra's (Ref. 8) ideas on algo- 
rithm portability. They advocate developing algorithms that are progressively 
more tightly bound toparticular architectures. untilan algorithm is specialized 
sufficiently to provide the desired performance. They provide a language- 
independent notation for expressing algorithms during development, which 
must be translated into a language for a particular architecture before execu- 
tion. With an optimally portable language, this would not have to be a different 
language for each target architecture. Avoiding the necessity of learning and 
remembering details of a different language for each architecture is a signifi- 
cant time and cost savings. 

In practice, an optimally portable language for a set of architectures needs 
both a definition and a taxonomy of that set  These provide a precise way to 
specify the architectures on which a program must run. They also conaibute 
to improved understanding of the architectures, and their algorithms and lan- 
guages. Both a definition and a taxonomy of SIMD architectures are given in 
the section "A SIMD Taxonomy for Programmers." 

Existing SIMD programming languages are not optimally portable. They 
are built on a variety of inflexible architectural assumptions, including spe- 
cific processor interconnection networks and the presence or absence of fea- 
tures like local addressing of memory. The section tilled "Existing SIMD Lan- 
guages" surveys these languages. 

I am currently working on the design and implementation of a new o p  
timally portable language for SIMD computers: Porta-SIMD @renounced 
porta-simm'd). Its overall structure is modeled on the proposed SIMD tax- 
onomy for programmers, allowing it to present to the programmer an appro- 
priate programming model for any subset of SIMD architectures. It is intended 
to demonstrate the feasibility of designing, implementing, and using optimally 
portable languages. The ongoing design and implementation of Porta-SIMD 
are discussed in the section "An Optimally Portable Language." 

OPTIMAL PORTABILITY 

Optimal portabiliry is best defined in terms of a few supporting definitions. 
An abstract architecture is the set of fundamental data types and operations 
provided by a computer, without regard to how the dm and operations are 
represented. It does not include implementation details such as the the amount 
of memory present in a machine, or the number of processors in a parallel 
machine. Except where explicitly stated otherwise, I will use architecture as 
a synonym for abswact architecture. 

The members of a set of architectures are equivalent if and only if their in- 
tersection is identical to their union. The union of a set of architectures is an 
architecture containing all data types and operations contained in any mem- 
ber of the set. The intersection of a set S of architectures is an architecture 
constructed as follows: 

1. Let architecture u be the union of S .  To each member A, of S add each 
data type and operation in u which A; can simulate with a constant num- 
ber of its own data elements and operations. 

2. Take the intersection of the sets of data types and operations of all mem- 
bers of S, as augmented by the previous step, to create the intersection 
architecture. 

The intersection of a set of architectures will also be called the sharedarchitec- 
lure of the set. These definitions imply that any member of a set of equivalent 
architectures can simulate the operation of any other member, and the number 
of native operations they execute will be within a constant factor of each other. 



A particular computer may be considered to implement only a single set of 
equivalent architectures. This set must be the set of architectures equivalent to 
the architecture defined by the computer's lowest-level publically dbcumented 
programming interface. For most sequential computers, that interface is as- 
sembly language. For some SIMD computers it is a library. 

A program is portable across a set S of architectures if and only if it can 
be compiled and correctly executed on the shared architecture of S .  Such a 
program can therefore be compiled and correctly executed on every member 
of S. The architecture on which a program is intended to run is called the 
program's target architecture. A program is said to use a data type or operation 
if and only if it contains a direct or indirect reference to a language feature that 
provides a capability equivalent to that data type or operation. 

A programming language L is op~imallyportable for a set S of architectures 
if and only if all of the following are true: 

L requires each program p to specify some architecture A,, E S as its tar- 
get architecture. (A default target architecture may be implicitly specified 
in the absence of an explicit specification.) 

L doe. not allow p to use any data type or operation not in A,. 

L allows p to use any data type or operation in A,. 

This definition implies that p is portable across any set SI S such that A, 
is the shared architecture of 4. including the maximal such set, S,. Therefore, 
p cannot be portable across a larger set of architectures without giving up the 
use of one or more data types or operations. In addition, p cannot use additional 
data types or operations without adding to A,. This would potentially reduce 
p's portability by removing architectures from S,. 

A few points in the definition of optimal portability deserve discussion. It 
is difficult, perhaps impossible, to find a simple set of rules to accurately and 

However, if the automatic muting software were hidden beneath the lowest- 
level publicauy documented programming interface, the archilecture would be 
considered by the above definitions to provide communication between arbi- 
trary pain of PEs. 

There are several reasons to define a machine's architecture by its lowest- 
level publically documented programming interface, rather than by its hard- 
ware. A programmer has no access to the hardware except through this in- 
terface. Hardware documentation is not always publicly available; it IS often 
less complete and precise than the programming interface, largely because pro- 
gramming interfaces must be well documented in order for important software 
to be developed. Machine builders are free to implement a single architec- 
ture with different hardware designs, transparently to the programmer. These 
identically programmed machines should be considered to have the same ar- 
chitecture (from a programmer's perspective). 

It is difficult to define precisely which data types and operations a program 
uses. The important feature of the definition of me above is that usage is de- 
fined with respect to the source code. not the compiled object code. This pre- 
vents the comviler from making features not available in the tarnet architecture 
available to Ihe program by &nerating code to simulate themuwith arbitrary 
numbers of data elements and operations. (Of course, a compiler generating 
code for an architecture equivalent to A, may generate a constant number of 
data elements and operations to simulate data types and operations of A,.) 

Prohibiting compilers from simulating data types and operations not present 
in A, ensures portability with useful performance, notjust theoretical portabil- 
ity. This does notrestrict the function ofprograms, since p may simulate such 
data types and operations itself. The implementers of L may even provide, as 
a convenience to programmers, a package written in L to do this simulation. 

A SIMD TAXONOMY FOR PROGRAMMERS 
impartially determine the programmer-visible architecture of every computer. 
Computer systems have many layers of architecture, and features are some- A programming language is optimally portable only for a specific set of archi- 
timesimplemented in the"wrong" layer conceptually to improve performance. tectures. Therefore, any optimally ponable SIMD programming language will 
However, identifying such features isa matter of judgement which is not easily require a definition of SIMD architectures. 
reduced to simple rules. Great care has been taken in constructing the defini- 
tions above. but they are not perfect. Definition of SIMD Architectures 

It is important to construct a good test for whether an abstract architecture 
can usefully simulate some &la type or operation. Any Turing-equivalent An architecture A is a SIMD architecture if and only if all of the following are 
machine may simulate any architecture, but not always with useful perfor- true: 
mance. The constant-bounded crileaion above for operations and data en- 
sures masonable performance and fits well with intuitive notions of equiva- -4 has a host computer which handles ordinary scalar computations and 

lent architectures. It also makes equivalence transitive. (Suppose architecture flow control, and which broadcasts instructions, one at a time, to all PEs 

A, can simulate architecture A, in o d A z ,  A,,) operations, and equivalence (Processing Elements). 

is denoted by "=". Then Ai = Aj and A, = At implies ~ P ( A , v A , )  5 A has n > 1 identical PEs which all execute, simultaneously, each in- 
op(Ai, Aj)op(Aj , A t ) ,  which implies A, = Ak because op(A, ,  A,) and struction broadcast by the host. 
op(Aj , A k )  are. C ~ S C L I I L S . )  Logarithmic and polynomial bounds do not have 
this imwrtanl oroDertv. Each PE is able to evaluate basic arithmetic and logical expressions. . .  . 

In some cases. a sing1e machine may be described by lW0 Or I believe every useful SIMD architecture also has the following properties: 
more quite different absuact architectures. As long as they are equivalent, 
they are equally valid descriptions. For example. a bit-serial SIMD machine 
may be described as having operations on bits, on multi-bit integers, or on 
floating-point numbers. Operations on the multi-bit data types can be simu- 
lated by a constant number of bit-serial operations. The constant (which may 
be over 1000) depends on the nature and size (in bits) of the simulated data 
type. but does not depend on the values stored in data elcments of that type. 
The architectures are equivalent. This is consistent with the common practice 
of building implementations of a single architecture with varying execution 
speeds. 

Another example is a SlMD machine with a 2-dimensional grid interconnec- 
tion network which allows communication in parallel between pairs of adja- 
cent PEs (Processing Elements), using its lowest-level publically documenled 
programing interface.. With an additional layer of software to do automatic 
routing, it might also be described as providing communication between ar- 
bitrary pairs of PEs. 'Ihe number of operations required to simulate arbiuaq 
communication with this network depends heavily on the dynamically chosen 
communication pauem. A lower bound for the worst case is the diameter of 
the network, which is at least the square m t  of the number of PEs. Since a 
SIMD architecture does not specify a maximum number of PEs, this is not a 
constant bound. Therefore. the two descriptions are not equivalent, and only 
the first is pan of a valid abstract architecture for this machine. 

1. Each PE is able, in response to broadcast instructions, to independently 
choose whether to ignore instructions to modify its memory. (PEs exe- 
cuting all instructions are enabled, while those ignoring instructions to 
modify memory are disabled. PEs can be considered to have an enable- 
bit which is 1 only in enabled PEs.) 

2. Each PE is able to compute its unique PE number 0 5 p < n - 1, given 
sufficient time. 

3. Each PE has its own private memory. 

Property 1 can be simulated with a constant number of ordinary arithmetic 
and logical operations. Architectures that do not have this property are there- 
fore equivalent to those that do, and can be considered to have it. This property 
takes many different but equivalent forms in various machines, with it being 
possible to ignore different subsets of an instruction set. 

Property 2 certainly holds for all architectures which have a connected com- 
munication graph, and which allow any single PE to be distinguished in any 
way. Italso holds for all architectures with parallel input, since the data being 
read can be the PE numbers. Properly 2 holds if an architecture can load into 
each PE a different element of a set of distinct values, by any means, since 
this set can be the PE numbers. If there is a SIMD architecture which does not 



have this propeny, I do not think it is very interesting because the PEs cannot 
be given unique predetermined data on which to operate. That is the whole 
purpose of a SIMD architecture. 

The only claimed exception to property 3, that I am aware of, is an alter- 
native set of architectures where PEs access a global memory space rhrough a 
network of some kind (e.g., (Ref. 20, pp. 326-327)). I believe that any such 
architecture is equivalent to a local-memory architecture in which the PEs are 
connected to each other by the same network that connects thePEs to the global 
memory. 

Specifically, the BSP (Bumughs Scientific Processor) (Ref. 20. pp. 326- 
327,410-422) is the only non-local memory architecture I know of. It is equiv- 
alent toa large subset of the CM (Connection Machine) architecture (Refs. 18, 
10, 1). (Both architectures are discussed briefly in a later section.) The BSP 
can simulate the CM simply by assigning a distinct ponion of global memory 
to each PE for private use, and accessing memory assigned to other PEs only to 
simulate communication. Similarly. the CM can simulate the BSP by using its 
communication primitives to access memory, treating all the private memory 
as a single global memory space. Both simulations take constant time, so the 
BSP's global memory and arbitrary PE to memory interconnection network 
is equivalent to the CM's local memory and a subset of its communication 
primitives. The only difference between the architectures is that the CM has 
somewhat more powerful mechanisms for resolving simultaneous accesses to 
a single memory location. 

If any of these properties is not true of all SIMD architectures, then the 
taxonomy below is considered to have an additional dimension for each such 
property. Because all architectures currently classified by this taxonomy have 
the same coordinates along these dimensions. those coordinates will not be 
mentioned further. 

Taxonomy of SIMD Architectures 

An optimally portable SIMD programming language must recognize and han- 
dle the full diversity of SIMD architectures that exist within this definition. A 
taxonomy of SIMD architectures will be crucial to this task. Although many 
architectural differences can be almost completely hidden by a high-level lan- 
guage, others fundamentally influence the programmer's algorithm selection. 
To be most useful for portable language design, the taxonomy should exclude 
the former and focus on the latter. The differences that do not influence al- 
gorithm selection can be uniformly hidden from the programmer by language 
a b s a t i o n .  However, an optimally portable language must make the remain- 
ing differences visible to the programmer, in lhe form of language features 
which exploit the target architecture. 

Previous SIMD taxonomies have been constructed with different goals, and 
consider some architectural features which need not be visible to a program- 
mer. Examples include work by Hwang and Briggs (Ref. 20, chapters 5-6). 
and a tutorial by S e i ~  (Ref. 32). Fountain (Ref. 13) and Genitsen (Ref. 16) 
compare certain SIMD implementations at a level appropriate for system de- 
signers and architects, rather than programmers. An extended absvact by 
Jamieson (Ref. 21) considers matching algorithms with all kinds of parallel 
architectures, not just SIMD. Karp (Ref. 22) presents a taxonomy resbicted to 
"those aspects that affect coding style," but considers only MIMD (Multiple- 
Instruction Multiple-Data) architectures. These taxonomies not suited for de- 
signing an optimally portable SIMD language. 

Beginning with the most important, the architectural differences that can 
significantly influence algorithm selection include: 

Topology - the labeling and adjacencies of the PEs; 

Communication -whether each PE can readfwrite data tolfrorn (0) no other 
PE, (1) a globally-selected adjacent PE, (2) a globally-selected location 
in a locally-selected adjacent PE, or (3) a locally-selected location in a 
locally-selected adjacent PE; 

Collision Resolution - whether multiple writes to the same location under 
communication types (2) and (3) are resolved by (0) serializing the ac- 
cesses, or (I) combining them by applying an arithmetic or logical opcr- 
ation; 

Local Addressing - whether local PEs' memories can be addressed (0) only 
by a single globally computed address, or (I) also by addresses computed 
locally at each PE; 

Global Logical-Or/Multiplc-Response Resolver - whether the host can de- 
termine in a constant number of operations (0) neither of the following, 
(1) if any PE has a non-zero value in a cerrain field of memory (global 
logical-or), or (2) the identity of at least one PE having a non-zero value 
in a certain field of memory, if such a PE exists (multiple-response re- 
solver); 

Parallel 110 (Input/Output) - whether it is (0) impossible or (1) possible for 
all PEs to transfer data to and from a mass storage subsystem in parallel; 

PE to Host I/O -whether the host can obtain data from (0) no PE. (1) only 
a subset of PEs, or (2) any selected PE. 

These architectural differences define a discrete 7-dimensional space. A 
SIMD architecture can be characteri~ed by a 74uple  giving its location in 
this space. All the dimensions except the first, topology, have a finite set of 
values enumerated in their descriptions above. As new SIMD architectures 
are developed, it may be necessary to add new dimensions to this taxonomy to 
accomodate newly invented architectural features. 

Topology and communication are very closely related. Without inter-PE 
communication, all topologies are equivalent. However, a SIMD architecture 
without inter-PE communication may still use a particular topology. The 2D 
topology of Pixel-Planes (discussed bclow) is a good example. The ( x ,  y) 
labeling and adjacency of PEs are necessary to evaluate bilinear expressions, 
and to map computed values from PEs to pixels. 

In both communication and local addressing, local selection subsumes 
global selection, since it is trivial to make the same local selection at all PEs. 

Communication type (3) provldcs local addressing as a side effect. It would 
be conceptually cleaner to eliminate this communication option and allow it 
to be simulated by communication type (2) and local addressing. This was 
not done because the simulation takes operations proportional to the maxi- 
mum number of access to any one PE, and because communication type (3) 
is a single operation of the CM and BSP. However, both these machines es- 
sentially perform the same simulation in hardware or microcode. This is an 
example of an operation moved down a layer in the architecture for perfor- 
mance reasons. It exposes a limitation of the methods used here to delineate 
programmer-visible architectures. 

Global logical-or has several equivalent varianu. These include the similar 
"global logical-and", and the related spccial case "all enables off", which is 
the inverse of global logical-or applicd to the bit wh~ch determines whether 
local memory is write-protcctcd. 

This taxonomy has not yet bcen extended to include two architectural fea- 
tures. The first is cut-through routing of data between PEs. Cut-through mut- 
ing allows some PEs to send data to non-adjacent PEs, provided the intervening 
PEs do not send data. The Princeton Engine (Ref. 9) and the ASP (Associative 
String Processor) (Ref. 23), both 1D architectures, use this. 

The second feature is performing parallel-prefix as a single operation. The 
CM provides this capability, though the microcode must simulate it in a number 
of operations logarithmic in the number of PEs involved. (This can be proven, 
since each PE can only combine two values in a single operation.) This is 
another example of an operation moved down a layer in the architecture for 
performance reasons. 

This taxonomy of SIMD architectures specifically excludes a variety of dif- 
ferences which may be very important to computer architects, but which need 
not influence algorithm selection. Among these are word length, memory 
structure and size, special hardware for floating-pointoperations, and details 
of scalar and parallel machine instructions. These are all routinely hidden by 
the abstractions of ordinary high-level languages, and handled by compilers. 
Of course, the hiding is sometimes imperfect, and it is possible to write non- 
portable programs which depend on word Icngth, byte order, or other machine- 
specific details. However, a few simple coding rules are generally sufficient 
to avoid these problems. Ncithcr the problems nor the solutions differ fun- 
damentally between sequential and SIMD-parallel architectures. SIMD lan- 
guages should be able to hide these architectural differences as well as, but not 
necessarily bet~er than, sequential languages. 

Figure 1 represents as a tree the space of SIMD architectures defined by the 
proposed taxonomy. The labcls on the left identify Ihe dimension of space 
represented by each level of branching. The label at each interior tree node 
identifies the location of the subuee rooted at that node along one dimension 
of architectural space. Leaf nodes represent selected published SIMD archi- 
tectures. Subtrees containing no selected architectures are not shown. The 



Oldfield Pixel- Pixel- Nickolls MPP Illiac Blitzen BVM G F l l  BSP a 
et al. Planes Planes /Cole DAP IV 

4 5 

Figure 1. SIMD Architectures 

space available is not sufficient for the entire set of SIMD architectures, so I 
have included as representative a variety as possible. Additional references 
are always welcome. 

This taxonomy has the desirable characteristic that it is easy to determine 
thatcatain architectures are subsets of others. This is useful because programs 
for a particular architecture. are portable to all supersets of that architecture. 
The e n u m e d  dimensions all obey a strict subset ordering. Therefore, one 
architecture is a subset of another if they have the same topology and if each of 
the remaining elements of the fist 5-tuple is no greater than the corresponding 
element of the second 5-tuple. For example, the MPP (2D, 2, 1.0. 1, 1.2) is a 
subset of BLITZEN (2D, 2. 1, 1. 1, 1,2), but not of Pixel-Planes 4 (2D, 0, 0, 
0.0,O.O). 

In a few special cases, an architecture may fail this criterion and yet be a 
subset of another. Examples include the following: 

For topologies with a constant number of neighbors per PE, local and 
global selection of neighbors for communication are equivalent. Col- 
lision resolution by serialization or combination are also equivalent for 
these topologies. Of the topologies discussed below. 1D . 2D, and CCC 
have a constant number of neighbors per PE, but Hypercube, Arbitrary 
Permutation, and Complete do not. 

Communication type (3) effectively provides local addressing type (I). 

Global logical-or effectively provides arbitrary PE to host I D  (2). 

An architecture which has parallclI/O to a random access storage device 
which the host can also manipulate, but does not have PE to host 110, can 
simulate arbiwary PE to host 110. A second architecture differing from 

the first only in having PE to host YO and lacking parallel YO is therefore 
a subset of the first 

In each case, the result is that adjacent points in architectural space are related 
by the equivalence rather than the subset relation. 

Survey of SIMD Architectures 

Most of the remainder of this section surveys the SIMD architectures appearing 
in figure 1. It shows how they fit within the space of the proposed taxonomy. 
giving evidence that the taxonomy is reasonably complete. For simplicity, 
each architecture is described as if it were the equivalent canonical architecture 
defined by its location in architectural space. The proofs of equivalence are 
generally not difficult, but will not be presented here. The architeems will 
be treated in order from left to right across the tree of figure 1. Each heading 
includes the coordinates of the architecture it describes. 

A tremendous variety of topologies is possible for SIMD machines. In prac- 
tice, though, a few simple topologies are used by most SIMD architectures. 
The simplest. 1D (I-dimensional), is a property of SIMD architectures. Al- 
though it will not be mentioned in their descriptions, all the other topologies 
contain it in addition to their advertised features. A ID topology simply labels 
each of n PEs with a unique integer 0 < x 5 n. PE z has two neighbors, 
r - 1 and x + 1. Boundary conditions can be defined so PEs 0 and n - 1 
are neighbors (forming a ring), or so their missing neighbors (PEs - 1 and n) 
always provide null values (forming a line segment). Since these architectures 
are equivalent, they will not be distinguished. 

The most common topology is 2D, which labels each PE with an ordered 
pair (x ,  y)  such that0 < z < X. 0 < y < Y ,  and n = S Y .  Each PE has 
four or eight neighbors, differing by plus or minus one in one or both dimen- 



sions. Boundary conditions can be defined to provide wrap-around (forming 
a torus), or null boundary values (forming a rectangular sheet). The archi- 
tectures using all the topologies allowed by these choices are equivalent, so 
they will not be distinguished. The remaining topologies will be discussed as 
necessary with the architectures using them. These include Cube-Connected 
Cycles, Arbitrary, and Complete graphs. 

Oldfield~WilliarnslWwmanlBrilC (ID, 0, 0, 0, 2, 0, 2)-J. V. Oldfield, 
R. D. Williams, N. E. Wiseman, and M. R. 9136 propose a CAM (Content 
Addressable Memory) with sufficient processing power at each row to qual- 
ify as a SIMD architecture (Ref. 26). (Simulation of arithmetic operations and 
the enable-bit is rather laborious, but possible with a constant number of opera- 
tions.) There is nocommunication between PEs, but the ID topology provides 
row addresses. There is no local addressing or parallel YO. 

Pixel-Planes 4 (2D, 0, 0, 0,0, 0, 0)-Pixel-Planes 4 (Refs. 15, 14, 12) is de- 
signed for high-performance interactive graphics applications. It has a simple 
2D topology. There is no communication between PEs, but the PE coordinates 
(x ,  y) are used to compute bilinearexprcssions of the form az + by + c at each 
PE (for scalar floating-point values a, b ,  and c). Although there is special hard- 
ware to evaluate these expressions quickly, they can be computed in constant 
time without it. These expressions can be used to display polygons and spheres 
very quickly. There is no local addressing, global logical-or, parallel 110, or 
PE to host YO. However, images can be displayed on a video monitor, with 
each PE providing the data for one pixel of the image. 

Video display of data in most architectures is done by parallel output to 
a frame buffer. The fact that data can be seen, but not otherwise externally 
accessed due to the absence of 110, is a minor anomaly of Pixel-Planes 4. Be- 
cause it cannot influence algorithm selection, there is no nced to recognize it 
in the taxonomy. 

Pixel-Planes 5 (ZD, 0, 0,0, 1, 1, 0)-Pixel-Planes 5 (Refs. 17, 12) is designed 
to provide greater spced and flexibility in order to interactively display more 
complex and realistic images. With regard to the taxonomy, it differs archi- 
tecturally from Pixel-Planes 4 only in providing global logical-or and parallel 
110. 

However, it has hardware support for biquadratic expressions in x and y, in 
addition to bilinear expressions. It also has a MlMD host. Both of these dif- 
ferences provide significant constant-bounded speedups. In addition, multiple 
sets of PEs can be combined in a single system. A program may choose to treat 
them as separate machines controlled by different processes in the host, or as 
a single large machine controlled by a single logical process. This is similar 
to the partitioning allowed by the Connection Machine. 

Nickolls/Cole (2D, 2, 1, 0,0, 1, 1)-P. M. Nickolls and T. W. Cole (Ref. 25) 
present a fault-tolerant 2D processor array for image synthesis. It has a 2D 
topology, with globally selected neighbor communication. It does not provide 
local memory addressing or global logical-or. It also provides parallel 110 and 
allows the host to obtain data from certain PEs at the edge of the PE array. 

The distinguishing feature of this machine is not visiblearchitectually. It isa 
programmable interconnection network that allows defective PEs and network 
connections to be configured out of the machine by deleting rows or columns 
containing the defective hardware. 

MPP (2D, 2, 1,0,1,1,2)-The MPP (Massively Parallel Processor) (Ref. 29) 
has a 2D topology and allows each PE to communicate with a locally chosen 
neighbor. There is only global memory addressing. Global logical-or and 
parallel 110 are provided, and the host can obtain data from any PE. 

DAP (2D, 2,1,0, 1,1,2)-The Active Memory Technology DAP (Distributed 
Array Processor) (Ref. 27) - formerly the ICL DAP - architecture appears 
identical to that of the hlPP, at the level under discussion. (However, I have 
not been able to verify support for global logical-or.) 

Illiac IV (2D, 2, 1, 1, 0, 1, 2)-The Illiac IV (Ref. 19) is an early SIMD ar- 
chitecture. Its 2D topology provides communication between each PE and its 

immediate neighbors. with local neighbor selection. The PEs have local ad- 
dressing of their memories. Global logicalar is not provided. There is support 
for parallel UO, and PE to host 110 from any PE. 

BLITZEN (2D, 2, 1, 1, 1,1, 2)-BLITZEN (Refs. 6, 11, 7) builds on many 
ideas from the MPP. Its architecture differs primarily in providing local ad- 
dressing of PE memory. The architecture is almost identical, at this level, to 
that of the llliac IV, differing only in supporting global logical-or. 

BVM (CCC, 2, 1, 0, 0, 1, 1)-The BVM (Boolean Vector Machine) (Ref. 
38) arranges PEs in a CCC (Cube-Connected Cycles) network (Ref. 30). Each 
PE can communicate with its choice of its three neighbor PEs. Only global 
memory addressing is provided. Global logical-or is not provided. Parallel 
VO is supported, and the host can read data directly from a single distinguished 
PE . 

CF11 (Arbitrary Permutation, 1, 0, 1, 1, 1, 2)-The GFl l  (designed to 
achieve 11 GFLOPS) (Refs. 5.4) can provide multiple arbitrary permutations 
for inter-PE communication. Each permutation is defined by a directed graph 
which specifies the PE from which each PE receives data, with exactly one PE 
receiving data from each PE. A particular permutation is globally selected for 
each communication operation between PEs. 

Local addressing, global logical-or, parallel b0, and arbitrary PE to host I10 
are all supported. 

BSP (Complete, 3,0, 1,0,1,2)-The BSP (Burroughs Scientific Processor) 
(Ref. 20, pp. 326-327, 410-422) architecture provides a complete intercon- 
nection graph, and allows each PE to determine locally with which neighbar 
to communicate, and which memory location to use. Since the complete graph 
makes neighbors of every pair of PEs, this provides completely arbitrary lo- 
cally controlled inter-PE communication. Collision resolution is by serializa- 
tion. 

Local addressing, parallel 110, and arbitrary PE to host UO are all supported. 
Global logical-or is not 

As discussed above, although the BSP's memory is physically global, its 
architecture is fully equivalent to the description just given. 

CM (Complete, 3, 1, 1, 1, 1, 2)-The Thinking Machines CM (Connection 
Machine) (Refs. 18, 10, 1) architecture provides a complete interconnection 
graph, and allows each PE to determine locally with which neighbor to com- 
municate, and which memory location to use. Since thecomplete graph makes 
neighbors of every pair of PEs, this provides completely arbitrary locally con- 
trolled inter-PE communication. Collision resolution can be by serialization 
or combination. 

Local addressing, global logical-or, parallel ID, and arbitrary PE to host110 
are all supported. 

There is a discrepancy between the CM's architecture, which provides a 
complete graph connecting PEs, and its hardware, which provides a hyper- 
cube (also known as a binary n-cube). This is a result of its system software 
and the definitions given earlier in this paper. As previously discussed, Lhose 
definitionsrwuire a machine's architecture to be eauivalent to the lowest-level 
publically documented programming interface. For the CM, that interface is 
currently Paris (Parallel Instruction Set) (Ref. 1). Paris's operations provide the 
commu~ication system described above, but they are currently implemented 
by a physical hypercube with routing hardware. Paris operations can take time 
proportional to the number of PEs, so the architecture and hardware are not 
equivalent. 

Evaluating The Taxonomy 

It is probably not possible to prove that a taxonomy of SIMD architectures is 
complete, in the sense of adequately classifying all possible architectures that 
will ever be imagined. A more reasonable test of such a taxonomy is twofold: 

Does it adequately classify each SIMD architecture in the literature? 

Does it adequately classify every SIMD architecture which could be 
formed by taking different combinations of features from SIMD archi- 
tectures in the literature? 



The previous paragraphs have begun the work of showing that the proposed 
taxonomy satisfies the first of these criteria. 

The nature of the proposed taxonomy makes the second criterion trivial to 
establish. once the first has been established. The taxonomy defines a multi- 
dimensional orthogonal space without holes, with a one-to-one and onto re- 
lation between dimensions and architectural features. This ensures that any 
combination of features corresponds to a single defined point in the architec- 
tural space. 

EXISTING SIMD LANGUAGES 

The research reported in this paper is primarily concerned with procedural 
languages, with a level of abstraction similar to C, C++, Pascal, or Fortran. 
Languages of this type both allow and require the programmer to express an 
algorithm unambiguously. Except for eliminating obviously redundant opera- 
tions arising from the way an operation is expressed, the compiler for such a 
language is not involved in algorithm selection. 

Some other families of languages allow the programmer to express the com- 
putation in a less algorthmic form, leaving the language implementation more 
latitude in choosing an exact algorithm. Some claim that the relative alno- - - - 
rithm independence of the program allows greater portability among diverse 
parallel architectures. This is most often claimed with regard to modest paral- 
ielism on MIMD (multiple-insauctionmultiple-data) architectures. i ow ever, 
the way the problem is stated by the programmer can have a perhaps subtle but 
nevertheless profound effect on the algorithm ultimately used. In my opinion, 
this effect often ties such programs to a particular architecture as effectively 
as a procedural program expressing the same algorithm. I am not aware of 
any work on the use of non-procedural languages to programm SIMD archi- 
tectures. Non-procedural languages will not be discussed further. 

Survey of SIMD Languages 

A careful search of the literature has found no SIMD programming languages 
satisfying the definition of optimal portability. Most existing languages for 
SlMD computers include implicitarchitectural assumptions. These limit them 
to some subset of the architectural space defined in the previous section. Some 
languages are not portable at all. To my knowledge, only one language. Fortran 
8x, has been implemented on more than one SIMD machine. However, none 
is a complete implementation, and it is not clear how similar the subsets are. In 
the brief survey of SIMD languages below, languages other than Fortran 8x are 
grouped by machines. Very low-level languages are not considered, leaving 
no languages to discuss for some machines. 

Illiac IV Languages-Three main languages were developed for the llliac IV: 
GLYPNIR (Algol-like). CFD (Fortran-based), and IVTRAN (Fortran-based). 
(Ref. 19) All require the programmer to use and understand low-level hard- 
ware features and limitations. They are not m e  high-level languages. A mon: 
portable Pascal-based language called Actus (Ref. 28) was also developed. 
Actus is limited by its assumption of 2D grid communication. 

MPP Languag-The MPP's implementation of Parallel Pascal also fails to 
insulate programmers from hardware details. contrary to the language defini- 
tion. Even as defined. Parallel Pascal is suitable only for architectures with a 
2-dimensional rectangular inter-PE commvnication network. (Ref. 29) 

CM Languages-Likewise, C* and Connection Machine Lisp, twoadmirably 
well-designed high-level languages for the CM, assume the presence of the 
CM's powerful, expensive. and almost unique support of arbilrdry inter-PE 
communication. (Refs. 10,3 1.33) 

BVM LanguageBVL-0 (Boolean Vector Language 0) (Refs. 36, 37) is a 
C-like language for the BVM. It was designed to be the only language for the 
BVM, so it includes some very low-level machine-specific features. It assumes 
the presence of a CCC network, and does not provide for features not present 
in the BVM, like local addressing. Although it could be adapted for use on 
other architectures with a constant number of adjacent PEs, programs written 
to use the BVM's CCC network would have to be rewritten. 

BSP Languag-The BSP Fortran Vectorizer (Ref. 20, pp. 417422) com- 
bines some automatic vectorization of ordinary Fortran with some vector- 
oriented language extensions. Some of these extensions assume the presence 
of the BSP's arbitrary communication. 

Fortran 8x-A language consisting of Fortran 77 with some VAX extensions 
and some proposed Fortran 8x array extensions and a few machine-specific 
features was proposed in 1984 (Ref. 24). but not implemented (Ref. 3). More 
recently, a subset of Fortran 77. with proposed Fortran 8x array exknsions 
(including some "removed extensions"). has been implemented for the CM 
(Ref. 3). FORTRAN-PLUS for the DAP 500 is an imulementation of Fortran 
77, minus VO facilities, plus some proposed Fortran 8;array extensions (Refs. 
27.2). It is not yet clear how compatible these implementations are. 

The proposed Fortran 8x standard (Ref. 35) is the most portable language 
yet implementedfor SIMDarchitectures. Although it is notoptimally portable, 
its "removed extensions" are a step in that direction because they can be im- 
plemented on those architectures that support them efficiently. They include 
vector-valued array subscripts. which require arbitrary communication. Still, 
Fortran 8x requires communication and uses 2D grid communication heavily, 
so it cannot be implemented on all SIMD architectures. 

Existing Languages Fail 

Each of these languages contains embedded assumptions about the architcc- 
ture or architectures on which programs will run, violating the first pan of the 
definition of optimal portability. The discussion of each language commented 
on these assumptions. Every language discussed allowed the use of one or 
more features not present in all architectures, and most failed to allow the use 
of some feature present in some architecture. Therefore, they all failed to sat- 
isfy the second or third part of the definition of optimal portability. 

AN OPTIMALLY PORTABLE LANGUAGE 

A programming model is a complete description of the visible features and be- 
havior r i a  computer system, as seen by a program. One reason existing SIMD 
languages are not optimally portable is each one provides only a single pro- 
gramming model, reflecting a fixed set of architectural features and assump- 
tions. The second programming model provided by Fortran 8x's "removed 
extensions" is a small step away from this problem, but Fortran 8x still em- 
bodies many architectural assumptions. 

An optimally portable SIMD language must support a family of program- 
ming models corresponding to the architectures defined by a taxonomy like the 
one proposed above. Each model is specified by the coordinates of its point in 
architectural space. Thus, each model embodies the architectural requirements 
of the algorithms expressed in that model. 

Porta-SIMD is a new language which will provide these programming mod- 
els. Its design and prototype implementation are being carried out to demon- 
strate the feasibility and power of optimally portable SIMD languages. It is 
not intended to be the only or ultimate such language, but to stimulate the 
development and use of optimally portable languages. For this reason, some 
compromises have been made in aesthetic details of the language, and in per- 
iormance, in order to proceed in a timely manner with limited resources. 

These considerations contributed to the choice of C++ (Ref. 34) as the base 
language for Porta-SIMD. There was no need nor time to invent new syntax 
and semantics for the scalar and sequential sections of SIMD programs. and 
much to be gained by using a language with which programmers were already 
familiar. SIMD parallel datatypes and operations can be expressed as classes 
and overloaded operators in C++, extending the language cleanly without mod- 
ifying thecompiler. This would not have been true with Fortran. C, or Pascal. 

Porta-SIMD defines a set of classes, one per data type, for each program- 
ming model, and a model for each point in Ihe architectural space defined by 
the faxonomy proposed above. The models are derived (using C++ inheri- 
tance) from the base model, which implements the "least common denomina- 
tor" SIMD architecture (ID, 0, 0, 0, 0. 0, 0). C++'s coming multiple inher- 
itance will be used to derive an arbitrary model from the base model and an 
additional model for each architectural dimension along which the arbitrary 
model has features above the base model. This will prevent the implementa- 
tion effort from exploding combinatorially with the size of archilectural space. 



/ *  Define programming model: (2D, 0,0,0,0,0,0) * /  
#include <simd-int-2d.h> 
simd-mach-2d mach; 

/ *  square accepts the upper left and lower right 
* corners of a square. Returns 1 in each PE 
* inside the square, 0 in each PE outside. 
* / 

simd-int-2d square(int xl, int yl, int x2, int y2) 
i 
simd-int-2d inside (mach, 1) ; 
simd-int-2d ximach, 16), y (mach, 16) ; 
inside = 1; 
x. coord-x ( ) ; 
y. coord-y ( )  ; 

inside & =  (x > xl) : 
inside 6 =  (y > yl); 
inside & =  (x < x2); 
inside h= ( y  < y2) ; 
return(inside); 

i 
display (-square (2,6,24,57)) ; 

1 

Figure 2. Example Porta-SIMD program. 

Parallel expressions are evaluated at each active PE according to the normal 
C++ rules. 

A parallel language needs parallel control structures, as well as parallel data 
types. It is sufficient to extend the semantics of the if statement to allow a 
parallel value in the test expression. An element of this value is used by each 
PE to to determine whether to execute the body of the if or the else clause 
following the test. Unfortunately, C++ does not provide a means to extend 
the semantics of control structures, like it does for data types. This semantic 
extension could be accomplished by a conceptually simple Porta-SIMD to C++ 
pre-processor which replaced parallel i f  statements with small blocks of code 

values and redundant copies are sometimes necessary, reducing execution effi- 
ciency. Although this would probably be unacceptable in a production-quality 
language implementation, it is acceptably small for the current purposes. It is 
certainly possible to write an optimizing compiler for Porta-SIMD, but this is 
well beyond the scope of the current research. 

Initial development was done on Pixel-Planes 4, a 256K PE machine in reg- 
ular use at UNC. The base model (ID, 0.0, 0. 0.0, 0) was ported to a 16K 
PE CM-2 in five days, including the time required to learn Paris. This was 
done in the ACRF (Advanced Computing Research Facility) at Argonne Na- 
tional labs. The Pixel-Planes 4 model (2D, 0,0.0,0,0,0)  is now running on 
both Pixel-Planes 4 and the CM. Integers of all sizes are supported. However, 
floating point types have been deferred while effort focuses on the central ar- 
chitectural and language design issues. Other models are in various stages of 
development. A port to the Pixel-Planes 5 simulator is planned for the near fu- 
ture. No performance tuning or detailed measurements have been attempted. 
but this early prototype obviously provides lots of room for improvement. A 
few brave early users are already providing valuable and encouraging feed- 
back. 

CONCLUSIONS 

The exuaordinary architectural diversity of SIMD computers is too important 
to algorithm selection to completely hide from programmers. Optimal porta- 
bility is a new concept for managing this architectural diversity. It provides 
specific criteria for identifying the architectural features a programmer needs 
to see. It allows the programmer to precisely specify the portability of each 
program. This lets the programmer judge the proper tradeoff between acheiv- 
ing broad portability and taking full advantage of a particular architecture. Ex- 
isting languages usurp this decision with predetermined architectural assump- 
tions. 

Porta-SIMD is being implemented to demonstmte the power and feasibility 
of optimally portable languages. It takes advantage of C++ classes and op- 
erator overloading to reduce the implementation effort. Although only a few 
programming models have been implemented so far. Porta-SIMD is already 
running on Pixel-Planes 4 and a CM-2. This is probably the first language to 
be implemented identically on more than one SIMD computer. 

Althoughoptimal portability has been applied here to SIMD architectures, 
it is potentially valuable for any diverse but related class of architectures. 

to enable and disable PEs appropriately. Unfortunately, writing such a pre- ACKNOWLEDGEMENTS 
processor (or deriving one by modifying a C++ compiler) is a difficult and 
time-consuming task in practice. For now, a few macros are used to express Profs. Frederick Brooks and Henry Fuchs have given me valuable advice, 
parallel if statements, instead. For example. if p is a parallel variable, support, and encouragement. Greg Turk has been a valuable sounding board 

if (p )  for ideas and problems. He and Brice Tebbs were willing to use Porta-SIMD 

a; very early, and have given me valuable feedback. It is a privilege to be part 

else of the Pixel-Planes team. I appreciate the people and facilities of the ACRF, 

b; especially Rick Stevens, who helped me get started on their CM. 

is instead written as 

IF (p) 
a; 

ELSE 

b; 
END IF 

A more dclailed language description is beyond the scope of this paper. A 
sample program is shown in figure 2. 

Choosing to implement Porta-SIMD primarily asC++ classes has both wel- 
come and unwelcome consequences. The primary benefit is avoiding the need 
to write a compiler. The amount of work this saves cannot be ovcrempha- 
sized. Another benefit is that the Porta-SIMD prolotype is itself very easy to 
port: C++ is widely available, and the prototype has been written in a coding 
style which carefully separates machine-independent from machine-dcpcndent 
code. The primary disadvantage is that the evaluation of parallel expressions 
proceeds operator by operator, withoutany overview of the expression. This is 
because the code implementing each parallel operator ha.. no way to know any- 
thing about its place in the expression. The result is that extraneous temporary 

REFERENCES 

1. Connection Machine Parallel Instruc~ion Set (Paris): The C Interface 
(Version 4.0). Thinking Machines Corporation, Cambridge, MA, 1987. 

2. DAP 500 Introduction to FORTRAN-PLUS Programming. Active Mem- 
ory Technology Limited. Reading, UK, 1987. 

3. Eugene Albert, Kathleen Knobe. Joan D. Lukas, and Guy L. Steele. Jr. 
Compiling Fortran 8x array features for the Connection Machine computer 
system. SICPLAN Notices, 23(9):42-56, September 1988. (Proceedings 
of the ACM/SIGPLAN PPEALS 1988). 

4. John Beetem, Monty Denneau, and Don Weingarten. GFll .  Journal of 
Slatistical Physics, 43(5/6), June 1986. 

5. John Beetem, Monty Denneau, and Don Weingarten. The GFI I super- 
computer. In lEEE Proceedings of (he 12th Annual International Sympo- 
sium on Computer Architecture, pages 108-115, June 1985. 



6. Donald W. Blevins, Edward W. Davis, and John H. Reif. Processing Ele- 
ment and Cusrom Chip Architecture for the BUTZEN Massively Parallel 
Processor. September 1987. 

7. Donald W. Blevins and R. A. Heaton. The BLITZEN PE array chip fea- 
ture set. In Second Symposium on the Frontiers of Massively Parallel 
Computarion, October 1988. 

8. K. Mani Chandy and Jayadev Misra. Architecture independent program- 
ming. In Third International Conference on Supercomputing. Vol. 3. 
pages 345-351, International Supercomputing Institute, Inc., 1988. 

9. D Chin, J Passe, F Bernard, H Taylor, and S. Knight. The Princeton En- 
gine: a real-time vidco system simulator. ICCE, May 1988. 

10. Thinking Machines Corporation. Connection Machine Model CM-2 Tech- 
nical Summary. Technical Report HA87-4, Thinking Machines Corpora- 
tion, April 1987. 

11. Edward W. Davis and John H. Rcif. Architecture and operation of the 
BLITZEN proccssing clcmcnt. In Thirdlnternational Conference on Su- 
perconrputing. Viii. 3, pagcs 128-137, lntcrnational Supcrcomputing In- 
stitute, Inc., 1988. 

12. John Eyles, John Austin, Henry Fuchs, Trey Greer, and John Poulton. 
Pixel-Planes 4: a summary. In Proceedings of Eurographics '87 Second 
H'orkshop on Graphics Flardware, 1987. 

13. T. J. Fountain. A survey of bit-serial array processor circuits. In M. J. B 
Duff, editor, Computmg Struclures for Image Processing, chapter 1 ,  Aca- 
demic Press, Inc., Orlando, F'L, 1983. 

14. Henry Fuchs, Jack Goldfcathcr, Jeff P. Hultquist, Susan Spach, John D. 
Austin, Frederick P. Brooks. Jr.. John G .  Eyles, and John Poulton. Fast 
spheres, shadows, lcxtures, transparencies, and image enhancements in 
Pixel-Planes. Computer Graphics. 19(3):111-120, July 1985. (Proceed- 
ings of SIGGRAPH '85). 

15. Henry Fuchs and John Poulton. Pixel-Planes: a VLSI-oriented design for 
a nstcr graphics cnginc. VLSI Design, 2(3):20-28, 1981. 

16. F. A. Gerritsen. A comparison of the CLIP4, DAP, and MPP processor- 
array implementations. In hl. J. B Duff. editor, Computing Structures for 
lmage Processing, chapler 2, Academic Press, Inc., Orlando, FL, 1983. 

17. Jack Goldfcather, Jeff P. Hultquist, and Henry Fuchs. Fast constructive 
solid geometry display tn the Pixel-Powers graphics system. Computer 
Graphics, 20(4): 107-1 16, July 1986. (Proceedings of SIGGRAPH '86). 

18. W. Daniel Hillis. The Connection Macline. MITPress Series in Arti/rcial 
Intelligence. The MlT Press, Cambridge. MA, 1985. 

19. R. Michael Hord. The Illiac IL': The First Supercompurer. Computer 
Sctcnce hess. Inc., Rockville, MD, 1982. 

20. Kai Hwang and Faye A. Briggs. Contpurer Architecture andParalle1 Pro- 
cesang. hlcGraw-Hill Book Company, New York, 1984. 

21. Leah H. Jamicson. Features of pmllcl algorithms. In Second Interna- 
tional Conference on Supercompuring, Vol. 1 .  pages 476-478, Interna- 
t~onal Supcrcompu~ing Instttute, Inc., 1987. 

22. Alan H. Karp. Programming for parallelism. Computer, 43-56. May 
1987. 

23. A. Krikelis and R. hf. Lea. Low-level vision tasks using parallel string 
architcxtures. In Parallel Processrng for Conlpuler Vision and Display, 
January 1988. 

24. A FORTRAN Conrpller for the Massrvely Parallel Processor. Mas- 
sachuse~ts Computer Assoctates, lnc., Fehruary 1984. CADD-8402-2101. 

26. J. V. Oldfield, R. D. Williams. N. E. Wiseman, and M. R. Br3C. Content- 
addressable memories for quadtree-based images. In Proceedings of Eu- 
rographics '88 Third Workthop on Graphics Ilardware, 1988. 

27. D. Parkinson, D. 1. Hunt, and K. S. MacQueen. The AhTT DAP 500. In 
Spring COMPCON 88: digest of papers, pages 196-199, The Computer 
Society of the IEEE, IEEE Computer Society Press, February 1988. 

28. R. H. PerrotL A language for array and vector processors. ACM Trans- 
acrionson Programming Languages andSystems, l(2): 177-195, October 
1975. 

29. J. L. Potter, editor. The Massively Parallel Processor. MlT Press Series 
in Scientijic Compuration,The MIT Press, Cambridge, MA, 1985. 

30. Franco P. Preparata and Jean Vuillemin. The Cube-Connected Cycles: a 
versatile network for parallel compuration. Communicnrions of the ACM, 
24(5):300-309, May 1981. 

31. John R. Rose and Guy L. Steele Jr. C*: An Extended C Language for 
Data Parallel Programming. Technical Report PL87-5, Thinking Ma- 
chines Corporation, April 1987. 

32. Charles L. Seitz. Concurrent VLSl architccturcs. IEEE Transactions on 
Computers, C-33(12): 1247-1265, Deccmber 1984. 

33. Guy L. Steele Jr. and W. Danicl Hillis. Connection Machine Lisp: Fine- 
Grained Parallel Symbolic Processing. Technical Rcpr t  86.16, Thinking 
Machines Corporation. May 1986. 

34. Bjarne Svoustrup. The C+ + Programming Language. Addison-Wesley 
Publishing Company, Reading, MA. 1986. 

35. Accredited Slandards Committee X3 - lnforrnation Processing Systems 
Technical Committee X3J3 - Foman. X3.9-19Rx: Drafi ProposedRevised 
American Narional Standard Programming Language Fortran (Version 
104). American National Standards Institute, April 1987. 

36. Sherry J. Tomboulian, Mary Mace, and Robert A. Wagner. Language 
report and description for BVL-0. April 1985. Unpublished paper. 

37. Russell R. Tuck, 111. Issws in the Design of an Op~imizing Code Gener- 
atorforBVL-0. Master's thesis, Duke University, Durham, NC. 1987. 

38. Robert A. Wagner. The Boolean Vector Machine (BVM). In IEEE 1983 
Conference Proceedings of the 10th Annual Internadonal Symposium on 
Computer Architecture, pages 5946 ,  1983. 

25. P. hl. Nickolls and T. W. Cole. A fault-tolerant 2-d prxessor array for 
image analysis. In Parallel Processing for Compuier Vision and Display, 
January 1988. 



ABSTRACT 

A GENERIC FINE-GRAINED PARALEL C 

L. Hamet J. Dorband 

NASA/Goddard Space Flight Center1635 
Greenbelt, MD 2077 1 

With the present availability of parallel processors of vastly 
different architectures, there is a need for a common language 
interface to multiple types of machines. Otrr parallel C compiler, 
currently under development, is intended to be such a language. 
This language is based on the belief that an algorithm designed 
around fine-grained parallelism can be mapped relatively easily 
to different parallel architectures, since a large percentage of the 
parallelism has been identified. The compiler generates a FORTH- 
like machine-independent intermediate code. A machine-de- 
pendent translator will reside on each machine to generate the 
appropriate executable code, taking advantage of the particular 
architectures. The goal for this project is to allow a user to run 
the same program on such machines as the Massively Parallel 
Processor, the CRAY, the Connection Machine, and the CYBER 
205, as well as serial machines such as VAXes, Macintoshes and 
Sun workstations. 

Keywords: Fine-Grained Parallelism, Portability, Operator 
Overloading, Massively Parallel, SIMD, MPP, C, Data Parallel. 

INTRODUCTION 

As thevariety andavailability of parallel machines increases, the 
need for a portable parallel compiler becomes critical. To be 
effective, however, this compiler must be able to take full 
advantage of each machine's unique architecture. Two concepts 
are necessary to achieve these goals: modularity or layering and 
fine-grained parallelism. 

A modular compiler design allows machine-dependent charac- 
teristics to be separated from the machine-independent (generic) 
characteristics. The object code generator (or P-code translator) 
is the lone machine-dependent piece of the compiler, conse- 
quently, parsing may be done once, with the output submitted to 
various versions of the machine-dependent layer, one version for 
each unique machine. 

Fine-grained parallelism assigns the task of extracting parallel- 
ism within code to the programmer. The user-defined parallel- 

U . S .  Government Work. Not protected by 
U.S.  copyright. 

ism may be mapped to any architecture, since it may be easily 
assembled into a serial implementation or a parallel implemen- 
tation of any desired degree. A parallel description of a program 
is much easier and straightforward to assemble into a serial 
description than a serial description into a parallel one. 

It may seem as though it is an unreasonable task to expect a 
skilled programmer, let alone an unskilled one, to extract paral- 
lelism from an algorithm when it is recognized that this is such 
adifficult task for a compiler. The members of the MPP Working 
Group have shown that both skilled and unskilled programmers 
alike may easily extract fine-grained parallelism. In reality, 
extracting fine-grained parallelism is no more difficult than 
recognizing what code must be repeated within a loop in serial 
code. 

PROGRAMMING MODEL 

The C language implementation supported here is based on a 
model of computation where there is one serial processor (the 
control unit) and many independent SIMD parallel processors 
(ALUs controlled by the control unit). Serial data is stored in the 
control unit memory (S) and parallel data elements are stored in 
the memory (P) of the parallel SIMD processors. The same 
operation is performed simultaneously on parallel dataelements. 
The only exception to this occurs if a processor is masked out of 
the operation. Parallel control smctures using this mask capa- 
bility provide a means of restricting operations performed within 
a parallel processor to only those operations that apply to the data 
in that processor. 

Figure 1. Logical View of SIMD Processing Model 

Programming such a model (Figure 1) can beviewed as program- 
ming a single controller that has two memories, P and S. If data 



from S is used with data from S, the result remains in S. If data 
from Pis used with data in P, the result remains in P. However, 
if data from S is used with data in P, the result must remain in P. 
Totally independent operations need not be concerned with the 
fact that there are many P memories. This model is an oversim- 
plification, since it does not account for inter-processor interac- 
tions. 

Most operations performed by a SIMD processor do not involve 
data from different processors, but the need for inter-processor 
interaction does arise. Inter-processor communication and data 
reduction operations facilitate the ability for parallel data ele- 
ments to interact . Data reduction operations produce a single 
result from data in many parallel processor memories (P) and 
store the result in S. 

Consider more closely Figure 1, containing two views of SIMD 
processing: a simplified model and a complete model. The 
simplified model consists of a control unit and two memories, S 
and P. The data in S is considered serial data and data in P is 
considered parallel data. The complete model differs in that it has 
multiple P memories. If the complete model is run with all but 
one processor masked out, it will give the same result as the 
simplified model (with the exception of inter-processor commu- 
nications). The results from the simplified model should be the 
same as a serial processor, where S and P make up the memory 
of the serial processor. 

In the simplified model, the control structure should act the same 
whether the condition is based on results in P or results in S. The 
complete model has multiple Pmemories; the data in each should 
be manipulated only by those instructions that are pertinent to it. 
This means that some processors must be turned off based on 
conditions computed in them. These conditions result in a 
determination that the corresponding conditionally executable 
code is not pertinent. Actually, only code that effects the user 
detectable state is masked. This includes assignment statements 
and conditional expressions (?:). 

The preceding has several subtle implications. 1) Code within 
control structures, where the conditional result is in P, must be 
executed as long as thecondition is true for at least one processor. 
2)  More subtly, however, if the condition is not true for any 
processor, then the code must not be executed. The subtlety is 
that although no processors' memory (P) will be modified by the 
code within the parallel control structure, data in S might be 
modified by executing this code. However, this violates the 
above constraints of the simplified model, and consequently 
must be prevented from occurring. 

LANGUAGE DESCRIPTION 

The popularity and flexibility of C made it the natural choice as 
the language to be implemented in such a manner. Parallelism is 
achieved through operator and control structure overloading (to 
be furtherexplained). This preserves the Kernighan and kitchie' 
look of C, yet allows a wide range of levels of parallelism to be 
implemented, depending on the targeted machine. The paralleli- 

zation of C is based on experience learned in the development of 
MPP Parallel Forth2. The only syntactical addition to the 
language is the storage class PARALLEL. 

The language has been altered slightly to accommodate the 
parallelism. Due to the different architectures of the machines 
using this compiler, the storage class REGISTER has been 
eliminated. On the other hand, for the sake of bit serial proces- 
sors,the ability to specify number of bits in adeclaration has been 
expanded to all variables, not only to fields within a structure or 
union. Depending on the machine architecture, however, the 
programmer may get more precision than requested, but never 
less. All cases of precision increases will be consistent and 
documented for each version of the compiler. 

COMPILER DESIGN 

The C compiler is divided into four components: the scanner1 
parser, intermediate code generator, intermediate code transla- 
tor, and virtual machine. The scannerlparser and intermediate 
code generator are machine-independent; the translator and 
virtual machine must be rewritten for each machine type. 

The scannerlparseris an SLR(1) parser, written without the use 
of the U N P  utilities yaccm and lexTM, due to Macintosh 
memory partitioning limitations. (The Macintosh I1 is the first 
machine for which a version of the compiler is being written.) 

The intermediate code generator generates postfix P-code. This 
style was chosen because of its speed and minimal size. Further- 
more, because it is English-based, it is not difficult to read. Since 
the intermediate code generator is really only a postfix converter, 
this module remains machine-independent. 

The translator converts the P-code to aFORTH-like "assembly". 
FORTH, a stack-oriented language, was chosen because of its 
speed and register simplification. Furthermore, based on prior 
experience with the Massively Parallel Processor, FORTH has 
been demonstrated to be a logical and efficient language to run 
as a virtual machine for SIMD architectures; each processing 
element memory is treated as a stack. 

The virtual machine is a simple FORTH engine, actually coded 
in C, which executes the "object module" output from the 
translator. 

Although we have implemented both the translator and virtual 
machine as machine-dependent modules, the translator could be 
generalized so that it would be machine-independent, requiring 
only recpmpilation with a modified include file. However, we 
opted against this, avoiding as much unnecessary overhead 
(speed loss) as possible. 

OVERLOADED OPERATORS 

There are no operators added to the parallel C; all existing 
operators are overloaded. The version of each operator routine 
called by the translator is determined by the types of the oper- 



ands. Unary operators are trivial; there is a version for each 
parallel and serial type. For binary operations, if both operands 
are serial or both parallel, the result corresponds. Standard C 
conversion rules still apply to both serial and parallel (dways to 
the greater precision, signed to unsigned, and integer to floating 
point.) Added to these rules, however, is serial to parallel 
conversion when these two types of operands are operated on 
together. A serial to parallel conversion is equivalent to a 
broadcast of the serial value. 

OR over all values of the parallel operand, with the serial operand 
being set to the resulting value. 

Each complex assignment operator is treated uniquely. The 
addition-assignment (+=)is implemented with a cumulative sum 
added to the serial operand; the subtraction-assignment (-=) 
subtracts the cumulative sum from the serial operand. Multipli- 
cation-assignment (*=) and division-assignment (/=) are treated 
comparably, with a cumulative product. 

The bit shift operators (<< and >>) take on interesting results Bitwise AND-,OR-.and XOR-assignments (&=, I=, and "=) an 
when done in parallel. For these operators, where the left implemented as expected: a cumulative AND/OR/XOR is done 

operand is the value and the right operand is the number of bits over all values of the parallel operand* with the serial operand 

by which to shift, the unusual case occurs when the number of being set to the resulting value. 
bits by which to shift is parallel. If the operand is a variable, 
different processors may contain different values. The operation Modulus-assignment (%=) and shift-assignment (>>=. <<=) are 

is implemented with a parallel mask, where, after each bit shift, undefined for the serial-parallel case. 

the which have completed the required number of COwROL STRUCTURES 
shifts are masked out, until all have completed. 

All control structures in the compiler apply to both serial and 
logical Operators (&& and ''1 uith p d l e l  conditions. Each structure is in parallel if the 

parallel versions of the if-else structure (See Overloaded Control test expression evaluates to parallel. 
Structures). Parallel addressing operators (* and &) are unde- - - 
fined, as parallel pointers are not implemented in the current For SIMD machines, all structures must use a parallel mask, to 
implementation of the compiler. mask out processors which have failed the test condition. A bit 

in the mask is set or cleared based on the value of the test 
Parallel Pointers 

expression in the corresponding processor. 

Although parallel pointers are '0' implemented in this version of parallel control structures consist of the same structures as serial 
the serial pointers to parallel are legal. 

control structures: if-else,while, for, and switch. For code to be 
mua be declared in two P m .  The parallel data object mu" be excued in a parallel conml s m c ~ ,  least one parallel 
declared as a type, then the pointer variable is declared as a 

processor must require it. 
pointer to that type, in a separate declaration. To illustrate, 

typedef parallel int A; 
A *ptr; 

is legal, whereas the declaration 

parallel int *ptr; 

would be recognized as a parallel pointer declaration, and flagged 
as an error. 

Parallel Assignment Operators 

Assignment operators (=, +=, \.=, &=, etc.) do not observe the 
standard conversion rules, because the resultant type must be the 
type of the left operand - the one receiving the final value. 
Serial-serial and parallel-parallel left-right operand p e s  are 
trivial; no serial-parallel conversion is necessary. Parallel- 
serial requires a standard serial to parallel conversion. Serial- 
parallel, however, yields interesting results. 

Up to this point, no operations involve the data in different 
parallel processors. When parallel data is assigned to a serial 
variable, a data reduction operation must be performed. This 
involves data in all the parallel processors. A simple assignment 
(=)of aparallel to a serial is implemented as a bitwisecumulative 

In a parallel 'for' loop, either the initialization or incrementation 
expressions (or both) may be serial, as long as the test expression 
is parallel. 

An example of a parallel 'while' loop is the C code: 

parallel int a,b; 
long c = 0; 

while (a >5) { 
b *= a; 
a-; 
c++; 

1 

resulting in the statements inside the loop being executed for 
each pnxessor where that element of the array a is greater than 
five. Since c is a serial variable, it will be incremented each time 
the loop is executed, thus counting the maximum times the loop 
is executed for any processor. 

INTER-PROCESSOR COMMUNICATION 



Inter-processor communication allows data from different proc- 
essors to interact. This is performed by adding an integer value 
(n) to a pointer to a parallel value (i.e. *(para+n) ). The data 
(*para) in processor m+n modulo the number of processors will 
be moved to processor m. However,this does not in any way 
imply the time it takes to perform the move. It is totally 
architecture dependent. 

COMPILER CONSTRUCTION 

Whereas the scannerJparser is standard SLR(1) and the code 
generator is a straightfonvard postfix converter, the interesting 
design issues pertain to the translator. The most notable points 
are the symbol table setup and serial and parallel memory 
allocation. 

The symbol table is "a linked list of linked lists". All variables 
are chained in a list in the order encountered in the code. Each 
variable is, in turn, the beginning of a definition chain. Since C 
allows loosely formatted type definitions, the only consistent 
method to create a definition, for type checking purposes, is to 
chain the "pieces" of the type definition. A piece can be a base 
type (e.g., int, char, float) or a modifier (e.g., pointer, array 
dimension, parallel). Type checking is done by walking the 
chain. 

Memory allocation is handled with four constants, defined by the 
virtual machine. These are LP, GP, PLP, and PGP - local 
pointer, global pointer, parallel local pointer, and parallel global 
pointer, containing the starting address of serial local variables. 
serial global variables, parallel local variables, and parallel 
global variables, respectively. The translator keeps track of the 
last space allocated in terms of offsets for each of those constants. 
Variables are thereafter referred to by address in the object code 
generated by the translator. Because the translator is FORTH- 
like, the virtual machine is composed of FORTH "words", 
functions executed when named. The virtual machine defines 
LP+, GP+, PLP+, and PGP+, to add these constants. Conse- 
quently, addresses appear as an offset, followed by one of those 
words. (Remember that FORTH uses postfix format.) The lone 
requirement of the virtual machine is that a block of memory be 
explicitly allocated before manipulated. Therefore, allocation 
statements may appear throughout the generated object code. 
Two more FORTH words are defined by the virtual machine - 
ALLOC and PALLOC, for serial and parallel memory alloca- 
tion. 

Parallel variables are actually allocated both parallel and serial 
memory. A serial longword (four bytes) is allocated to contain 
two word-length values: parallel starting address and size. Hence, 
parallel variables are referenced just as serial variables. The 
information in the serial longword is used at execution time to 
locate the parallel variable. 

tions are implemented serially.) Furthermore, a program need 
only be retranslated, as opposed tocompletely recompiled, to be 
run on a new machine. Consequently, a natural use of this type 
of compiler is to use a serial machine as a simulator for a parallel 
machine. This would offload much of the traffic on more costly 
parallel machines during parallel code debugging. 

Another possible use for this type of compiler is in conjunction 
with the newest computational strategy: network computing. 
Each node of the network would have its own version of the 
machine-dependent portion of the compiler. An entire program 
would be run through the machine-independent section of the 
compiler, then each piece of the program would be translated by 
the machine-dependent portion corresponding to the machine on 
which that section is to be run. 

IMPLEMENTATIONS AND FUTURE PLANS 

The first complete version of this compiler is currently being 
implemented in Macintosh Programmer's Workshop (MPW) C 
on an Apple Macintosh 11 workstation, toexecute serially. Since 
the code itself is written in C, using only the simplest library 
routines (to ensure portability), it will be trivial to port the same 
code to other serial workstations. The next target is the Sun. 

For parallel machines, a new version of the translator and virtual 
machine must be written. The first type of parallel architecture 
for which a version will be written is an array processor, such as 
the Massively Parallel Processor or other commercially avail- 
able SIMD processor. After this implementation there are plans 
for a vector processor version, such as for a CRAY. 

SUMMARY 

By isolating the machine-dependent and machine-independent 
pieces of a compiler, we have created a compiler which reflects 
a high degree of portability: the same code may be run on very 
different machines (architecturally) with only partial recompila- 
tion. Because the programmer extracts the parallelism, the 
degree to which this parallelism is utilized becomes a completely 
machine-dependent issue. Consequently, each architecture is 
utilized to its fullest, without any code modification. 

REFERENCES 

1. Kernighan, B. W., and Ritchie, M. D., The C Program- 
ming Language, Prentice-Hall, lnc., Englewood Cliffs, 
NJ. 

2. Dorband, J. E., MPP Parallel Forth, Frontiers of Mas- 
sively Parallel Scientific Computation, NASA CP-2478, 
September 1986, pp. 275-283. 

POSSIBLE USES 

This compiler will have versions on both serial and parallel 
machines. (On serial machines, parallel structures and opera- 



MPP IMPLEMENTATION 
OF ABSTRACT DATA PARALLEL ARCHITECTURES 
FOR DECLARATIVE PROGRAMMING LANGUAGES 

John T .  O'Donnell* 
Department of Computing Science 

University of Glasgow 
Glasgow G12 8QQ, Scotland 

ABSTRACT 

Declarative programming languages require complex data 
structure operations that are often inefficient on sequen- 
tial machines and MIMD multiprocessors. It is some- 
times possible to implement declarative data structures ef- 
ficiently on a data parallel architecture. This method is 
illustrated by the implementation of a new data parallel al- 
gorithm for functional arrays on the Massively Parallel Pro- 
cessor (MPP). Functional arrays cannot be implemented 
efficiently on conventional architectures without severely 
restricting the way a program may access the array. Con- 
ventional unrestricted algorithms typically require O(1og n) 
time to update an array and also to access an element. The 
MPP algorithm performs these operations in a constant 
time of about 100 microseconds. 

Keywords: declarative language, functional language, data 
parallel architecture, functional array, massively parallel 
processor. 

INTRODUCTION 

Declarative programming languages (including pure func- 
tional and pure logic languages) have several semantic p r o p  
erties that seem to make them well suited for parallel eval- 
uation. Considerable progress has been made in detecting 
potential parallelism in declarative programs and exploiting 
that parallelism on multiprocessors. This work is surveyed 
in Ref. 6. 

Declarative languages have another form of potential par- 
allelism that is not well suited for MIMD multiprocessors. 
This is the parallel execution of the numerous primitive op- 
erations that are needed in order to perform complex data 
structure operations. 

of complex data structure operations. Examples include 
operations on abstract data types, combinat or graphs and 
functional arrays. In sequential von Neumann machines, a 
large amount of execution time is spent exchanging data 
between the central processor and the memory in order to 
execute some of these operations. 

It is often possible to avoid the penalty associated with 
declarative data structure operations by exploiting their 
inherent parallelism. A natural way to do this is to de- 
fine an a b ~ t r a c t  data parallel architecture which supports 
the necessary data structure operations. It is then possible 
to implement the abstract architecture directly in hardware 
or to emulate it using an existing SIMD machine. 

This paper illustrates the approach by presenting a fast im- 
plementation of functional arrays, a typical and very impor- 
tant declarative data structure. hnctional arrays are dif- 
ficult to implement efficiently on sequential and hII1ID ar- 
chitectures without restricting the way they are used. The 
next two sections define functional arrays and show why the 
basic operations on them are slow when implemented on a 
sequential machine. The following section then describes 
an abstract data parallel architecture that implements the 
functional array operations efficiently. This abstract archi- 
tecture has been emulated on the NASA hlassively Parallel 
Processor (MPP), and the remaining sections discuss the 
emulation and assess the performance results. 

There are several interesting relationships among functional 
arrays, parallelism and nondeterminism. Hudak discusses 
these in Ref. 3. For more discussion of architectures for 
functional programming, see Refs. 9 and 10. Steele and 
Hillis describe a complete programming language that ex- 
ploits data structure parallelism in Ref. 8. 

FUNCTIONAL ARRAYS 

One reason that declarative languages are usually slower 
than conventional imperative languages is their heavy use l h h r a t i v e  programming languages do not allow side ef- 

fects. Therefore it is impossible to modify existing data 
structures; instead of changing an old object the program- 
mer must construct a new one which is similar to the old 

* Present address: Computer Science Department, Indiana object except for some specified differences,  hi^ paradigm 
University, Bloomington IN 47401 USA. 



is used throughout declarative programming, and arrays for 
functional languages provide a typical example. 

Imperative languages provide two primitives for operating 
0x1 arrays: indexing and assignment. The indexing opera- 
tion takes an array and index value and returns the array 
elenlent with that index. The assignment operation takes 
an array, index and new value, and replaces the old value of 
the indexed element with the new value. The assignment 
is disallowed in a functional language because the old ag- 
gregate value of the array (the set of all index-value pairs) 
no longer exists. 

Functional arrays replace the assignment operation with 
an update operation which constructs a new array without 
changing the old one. The indexing operation remains the 
same. Any algorithm using arrays can be expressed with 
i~idexixlg and update just as easily as with indexing and as- 
signment. However, functional arrays are more general and 
some algorithms are easier to implement using them. For 
exaniple, the lexical environment for a programming lan- 
guage interpreter can be represented as a functional array 
using variable names as indices. 

The incrernental update takes n operations to replace all 
the values of an array containing n elements. In contrast, a 
similar operation called the monolithic update can change 
all the array elements simultaneously (Ref. 11). In this 
paper we consider only the incremental update operation. 

We define an array A to be a function which takes an integer 
index and returns the value of the indexed element. The 
element may have an arbitrary type a ,  although all the 
elements of the array must have the same type. The type 
of A is thus 

A : i n t - + a  

We may fetch the ith element of A by applying A to i. This 
paper uses the standard notation for function application. 
For example, f x is the result of applying f to x,  while f x 
y 2 is the result of applying f to three (curried) argumer~ts 

x, y and z .  Therefore A i applies the array A to the index 
i ,  looking up the ith element. This is equivalent to the 
expression .4[i] in conventional programming languages. 

In general an array A will not contain a value for every 
index. If A is undefined at index i then A i is I (the bot- 
to111 element in the value domain, representing an undefined 
value). There is a constant empty array called nil which is 
unbound for all indices. Thus for any index i, nil i = 1. 
The nil array serves as the basis from which all other arrays 
1111ist be constructed. 

The update function takes three arguments: an old array A 
wllost. t.lements are of type a ,  an index z and a value x of 
type Q. It returns a new array A' whose elements are also 
of type a .  The type of update is 

update : ( i n t - r a )  + int -+ a -+ ( int-+a)  

The new array is identical to the old one except tliat thr 
element with index i has the value x. The update fi~riction 
is defined by two equations. For an arbitrary array A. 

(update A i x )  i = x 

(update A i x) j = A j ,  for I # 7 

In other words, since an application of update produces a 
new array, we define update by specifying what happens 
when that new array is applied to an index. If the ncw 
array is applied to i then the result mnst 1)c s: otherwise 
the result is the same value that the original array wodtl 
give. 

The lookup function takes an array A mliosc elc111r.rits have 
type a and an index z ,  and it returns the value of the ~ t h  
element. The type of lookup is 

lookup : ( in t - -+a)  -+ int -+ a 

Since lookup simply applies the array (which is itself a func- 
tion) to the index, there is no need for an explicit Iook~ip 
function in the programming language. However, we will he 
considering the implementation of the language rat her than 
programs written in it, so it is useful to have an explicitly 
named lookup subroutine. Its value is defined by 

lookup A i = A z 

SEQUENTIAL IMPLEMENTATION 

It is useful to consider the difference between functional 
arrays and conventional arrays, and then examine why it 
is difficult to implement functional arrays efficiently 011 sc- 
quential machines. 

An imperative language treats an array as a block of menl- 
ory, and the values stored in the memory words may change 
over time. Consider the following program which prints -25. 
By the time the print  statement is executrd the original 
value of 1002 that was stored in .4[2] is gone forever. 

A[100] := 1100 
A[2] := -25 
pr in t  A[2]  

When this algorithm is written in a functional style, the 
program constructs a sequence of distinct arrays '4,  for 
z 5 0 < 100, and each of these values 1s iln~liutal)lr~ (Both 
the imperative and functional programs would normally be 
written using loops rather than a long seqtieiicc of state- 
ments; the functional equivalent of a for loop is tail Iecur- 
sion.) 



A. = update nil 0 1000 
Al = update A. 1 1001 
A2 = update A1 2 1002 

Aloo = update Agg 100 1100 
Alol = update Aloo 2 -25 

At this point, lookup Alol  2 evaluates to -25, but Aloe still 
exists (as do all the other arrays) and lookup Aloe 2 still 
evaluates to 1002. 

It is possible to use imperative arrays in an almost- 
functional language using I-structures (Ref. 1). Several 
dataflow languages do that. However, we will be consider- 
ing pure functional arrays. 

The most obvious way to implement lookup A i x is to make 
a new copy of A, storing x into the ith element instead of 
the value of A i .  This allows lookup always to execute as fast 
as fetching a value from an imperative array. The problem 
is that update would take both time and space proportional 
to the size of the array. Since an array must be constructed 
one element at a time by a sequence of updates, the cost 
would certainly be prohibitive. 

Another approach, which is equally obvious and almost as 
bad, is to build a linked list of "exceptions" to an array. 
Thus update A i x would allocate a new word that contains 
i and x and points to the representation of A. This makes 
update take a small constant amount of time and space, as 
it should, but the average lookup time is now proportional 
to the array size. 

Various representations are possible which build balanced 
tree structures to represent a functional array. These rep- 
resentations typically cost O(1ogn) time for lookup and 
update.  The space complexity of update is also O(1ogn). 
Although far better than either of the first two algorithms, 
this still means that functional array operations are very 
expensive. 

A better alternative is to analyze the functional program. 
If it is possible to prove that after evaluating update A i 
x the original array A will never be needed again, then 
the compiler can implement the update with a destructive 
assignment. Sophisticated automatic compile time analysis 
algorithms have been developed to do that (Ref. 4). This 
approach works very well in many cases. In particular, 
when an imperative program is rewritten in a functional 
language without a complete reworking of the algorithm, 
the functional arrays will be used as if they were imperative 
arrays, and only one version of each array (the result of the 
most recent update to it) needs to be retained. Analysis 
algorithms can usually tell the compiler to use imperative 
arrays in such cases. 

Although compile time analysis is extremely useful, it does 
have two drawbacks. First, the analyzer may not under- 
stand the program well enough to determine that impera- 

tive array operations would be safe. The second problem 
is more fundamental: some programs use functional arrays 

in a truly functional style where imperative array opera- 
tions would be incorrect. No compile time analysis tool 
will be able to help in that situation. One way out would 
be to teach functional programmers not to exploit the full 
power of functional arrays unless they are willing to toler- 
ate extremely slow execution. But this is surely inferior to 
the best approach: using data structure parallelism to im- 
plement all functional array operations in a small constant 
amount of time, with no restriction whatever on the way 
the arrays are used. The next section shows how to do that. 

ABSTRACT ARCHITECTURE 

This section describes an abstract data parallel architec- 
ture for functional arrays. This architecture implements 
both lookup and update in a small constant amount of time, 
independent of the size of the array. An update always re- 
quires a constant amount of space. 

It is essential for an efficient implementation of functional 
arrays to share as many array elements as possible. There- 
fore if the array A contains n elements, including A i, then 
A' = update A z x must allocate only one new word of data 
in order to hold the value of A' i. The other n - 1 elements 
of A and A' are shared. Without sharing, too much time 
and memory would be spent copying data needlessly. How- 
ever, the sharing must be done in a manner that does not 
slow down the lookup operation. In particular, the lookup 
algorithm should not traverse a list of updated array ele- 
ments. 

The abstract architecture shares common array elements 
without slowing down access to any individual element. 
The basic idea is that every array element is stored with 
some additional inforniation that tells it exactly which ar- 
rays contain it. The lookup operation then associatively 
asks every array element to decide on its own whether it 
belongs to the particular array being searched. These de- 
cisions are all made in parallel. Then lookup can quickly 
find the indexed element using another associative search. 
During an update many words in the array must change 
their representation, but all of those changes can be made 
in parallel. 

It is important to distinguish between the value of an array 
element x = A i and the memory word w that represents it. 
We will call x an array element and w will be called an array 
word with index i .  The algorithms must share array words 
when possible, but it is meaningless to talk about sharing 
array elements. The containment set of an array element x 
is the set of arrays that contain the word representing that 
element, and it is written cs x. For example, cs (A i )  is the 
set of arrays whose representation contains the word that 
stores the value of A i .  

Suppose there is an array A and the program then modifies 
the array data structures by creating a new array A' = 



updateA i x. It is useful to consider the data structure 
representation both before and after the update is executed. 

A new word is needed to store the value of A' i. (We 
ignore an optimization which avoids creating a new word if 
it happens to be the case that A' i = A i.) The new word 
represents a completely new array element, and it cannot 
be shared with any other array, so 

cs (A' i) = { A ' } .  

However, every other word of A' is shared with the corre- 
sponding word of A. For any j in the domain of the arrays, 
where j # i ,  let Cj be the value of cs ( A  j )  before the update 
is executed. Then after the update is executed, 

c3 (A' j )  = c3 ( A  j )  = { A ' )  U Cj. 

Thus the word that represents A j also represents A' j, and 
its containment set includes A, A', and all other arrays that 
had already been in the containment set of A. 

how these values are recomputed, and the lookup algorithm 
shows how they are used. The following section gives a de- 
tailed example illustrating containment sets, containment 
intervals and array reference numbers. 

A processing element is a hardware unit containing the 
memory, arithmetic and logic needed for a word. The archi- 
tecture provides several basic operations (these are typical 
of SIMD architectures). 

for each cell 

This executes a sequence of statements in paral- 
lel in all the processing elements. The notation 
"cell.field" refers to a local field within a process- 
ing element. 

select-available 

This operation finds one processing element that 
is not currently in use and sets its select flag. 

The key problem in the data parallel algorithm is finding a select-minimum (field) 
good way to represent the containment set of every word. 

This considers the value of field in every pro- This representation must be able to specify any set of arrays 
that might contain the word using a constant amount of cessing element whose select flag is currently set. 

It determines which of those processing elements 
space. arthermore,  an update operation may change the 

has the smallest value of field and leaves it un- 
containment sets of many words, and all those words must 

changed. All other processing elements clear their 
be able to recalculate their containment set in parallel using 

select flag. 
a constant amount of time. 

An array reference is an integer value that represents a 
pointer to an array. In effect, the arrays are all numbered, 

and references to arrays always use those numbers. The 
array reference of nil is -1, and update generates an array 
reference for the new array that it creates. If a is the array 
reference of an array A, then we define a function aref by 

The algorithm represents each containment set with a con- 
tainment interval. A containment interval is a pair of inte- 
gers L and Cr, where L gives the lower bound of the interval 
and U gives the upper bound of the interval. A contain- 
ment interval represents the set of all arrays whose array 
reference number lies between L and U. If w is a word with 
bounds L and U then 

cs w = {aref L ,  aref L + 1 ,  . . . , aref U )  

An update operation generally must recalculate the array 
reference numbers of some of the arrays, and many of the 
coritainnlent intervals must also be changed. An array does 
not have a constant array reference number. A pointer to 
an array must be represented by an integer variable which 
holds the current value of the array reference number, but 
that value may change over time as various update oper- 
ations are performed. The update algorithm below shows 

This returns the contents of the selected process- 
ing element. (If several are selected, the logical or 
of their contents is returned.) 

store (field = value, . . .) 

The values are stored into the corresponding fields 
in every processing element whose select flag is set. 

The data parallel update and lookup algorithms are de- 
scribed below. Each processing element contains the fol- 
lowing fields: 

type specifies whether the word is empty or contains 
an array element. 

T gives the element type if the word contains an array 
element. 

h' holds the index of the array element. 

V holds the value of the array element. 

L gives the lower bound of the containment interval. 

U gives the upper bound of the containment interval. 

select is a flag used during associative searches to mark 



the processing elements that contain an array element 
whose containment interval includes the index argu- 
ment to the lookup function. 

a t e m p  is a temporary integer used by lookup to resolve 
which word to use if several words have the right index 
and containment interval. 

The data parallel algorithm for update first recalculates the 
containment interval in every processing element that holds 
an array word. Then it allocates an available word of mem- 
ory, and stores the new array element in it. Finally it re- 
turns a reference to the array that has just been created. 
The argument a is the array reference number of the array 
that is being updated. 

update  a i x 
for each cell 

if ce1l.L > a then ce1l.L := ce11.L + 1 
if ce1l.U 2 a then cell./T := ce1l.U + 1 
if ce1l.T = aref and ce1l.V > a 

then cel1.V := ce1l.V + 1 
selec t-available( ) 
store (L = a + 1, U = a + 1, 11' = i, 17 = x )  
return (are f  a + 1) 

It is important to note that every array reference number 
that is greater than a must be incremented, regardless of 
where it is stored. If there are any of these in the control 
processor's memory it must update them one by one. Nor- 
mally there will be only a few registers to check, because 
most of the array references will be in the heap which is 
checked in parallel. 

The lookup algorithm begins by finding all the words with 
the specified index value that are contained in the array 
being accessed. Since it is possible for several words with 
the same index to be in the containment intenal, lookup 
then finds the most recent one by selecting the n~atching 
word with the smallest value of U - L. Finally it fetches 
the array element from that word and returns the result. 

lookup a i 
for each cell 

c e l l . ~ e l e c t  := (cel l . type = e l e m e n t )  
and ce1l.L 5 a 5 cell.lT 
and ce1l.h' = i 

ce1l.temp := (ce1l.U - ce1l.L) 
select-minimum ( t e m p )  
if  elect-ezi~ts 

then return (fetch()) 
else return undefined 

EXAMPLE OF EXECUTION 

It is useful to work through how the algorithm builds a set 
of functional arrays. Initially there is only one enipty array 
called nil, whose array reference number is -1. The only 
way to construct any other array is to update nil. After 
executing 

A = update nil 3 a  

there is one array word with index 3 and value a. The 
containment set of this word is {A). A reference to A is 
represented by 0, and we write this as A E 0. Both L and 
U are 0, and the containment interval is written as 0 x 0. 

[3] = a 

{A) 
O x 0  

A z O  

Now the program executes 

B = update A 4  b 

which creates a new word and adjusts the containment in- 
terval of the previous word. Since A = 0  the upper bound 
of the word with interval 0 x 0  is incremented, but the lower 
bound is not. This produces the following representation. 

[3]=a [4]=b 

{A,B) {B)  
0 x 1  1 x 1  

A x 0  B z l  

Another array can be constructed similarly by 

C = update B 5 c 

So far each array has been created by updating the previous 
array, leading to a simple pattern of containment intervals. 
The situation becomes more complex when a new array is 
created by updating some earlier array, rather than the last 
one. For example, 

produces the following data structure representation: 

[3]=a [4]=b [5]=c [4]=d 

{ A , B , C , D )  {B,C ,DI  t C )  {D) 
0 x 3  1 x 3  3 x 3  2 x 2  

A = O  B z l  C x 3  D = 2  

The array reference number of C has been changed from 
2 to 3, and the new array D now has 2 as its reference 
number. 

Suppose that we now evaluate lookup D 4. Since D 2, 
the word that holds [5]=c is not selected (its containment 
interval is 3 x  3, which does not include 2). The word that 
holds [3]=a is not selected because its index doesn't match. 



Now there are two selected words, holding [4]=b and [4]=d. 
The most recently created of these words is the one hold- 
ing the correct value, and lookup finds it by choosing the 
selected element with the narrowest containment interval. 
The word holding [4]=b has interval 1 x 3, so the word hold- 
ing [4]=d with interval 2 x 2 is chosen instead. Tllercfore 
lookup D 4 evaluates to "d" as it should. However, if we 
evaluate lookup B 4 the result is "b". 

MPP IMPLEMENTATION 

The Massively Parallel Processor (AIPP) is a large scale 
SIMD machine (Ref. 7). This section describe how tlle 
data parallel functional array algorithms were impleliivntc~tl 
on the MPP. and the next section discusses tliclir pelfor- 
mance. 

The MPP system consists of several major cornpollc~lts. A 
host processor provides a file system and network comn~u- 
nications. The main control unit is a sequential computer 
that can perform co~nputations on its own as well as con- 
trolling the operation of the array unit. The array 1 ~ 7 1 a t  

contains 16,384 processing elements. Each one has 1024 
bits of memory as well as a small bit-serial arithmetic and 
logical unit. (The MPP also has a staging rlleIliorq. n~hicli 
was not used for this work.) 

Most of the functional array systern fulls 111 tlie main rolit~ol 
unit and the array unit, the host processor only performs 
I/O support. The functional program object code executes 
in the main cor~trol unit (Currently there is not a complete 
functional language implementation for the main cont~ol 
unit; those algorithms were xvritten by haritf in asserllbly 
language.) When the user program needs to access a filnc- 
tional array it calls a lookup or update subrouti~ie in the 
main control unit. These subroutines then com~nunicate 
with the array unit, passing it the input parameters and 
receiving the result. The array unit executes tlie parallel 
pasts of the algorithm. The portions of lookup and update 
masked for each cell are executed in the array ~lni t ,  and 
the rest is extv-uted ill the main coiltrol ull~t .  The ma~ll  
control unit and array unit work together to irnplc~llrrlt the 
'Lselect-nlini~nu~~l" operation 

The array unit has subroutines for bit serial arithrrictic. 
The lookup and update subroutines in thc allay co~ltiol 
unit call these lowest level subroutines iri sequelice. C'OII- 
ditional operations work by disabling those piutessilig elr- 
ments where the condition is false. For example, when tlie 
array unit executes 

if ce1l.L > a t hen  ce1l.L := ce1l.L + 1 

it first calls an arithmetic comparison subroutine that 
niasks off all processing elerllents where ce1l.L 5 a .  Tlirw 
it calls an increment subroutine which perfor~lls cel1.L 
:= ce1l.L + 1 only in the appropriate procrssing ele~rtents. 

M P P  PERFORMANCE RESULTS 

The MPP implementation of functional arrays is written in 
the main controller assembly language MCL and the pro- 
cessing element assembly language PRL. All integer repre- 
sentations were 16 bits. The MPP performance monitor ( a  
highly accurate clock which produces very repeatable re- 
sults) gave the following timings for the lookup and update 
operations: 

lookup A i takes 105.5 microseconds for all values of A 
and i. 

update -4 i x takes 114.9 microseconds for all values of 
A, i and x. 

The correspomiding times for imperative array lookup and 
assignment operations are typically on the order of one mi- 
crosecond, so the functional array operations are still much 
slower. A number of points must be considered in order 
to evaluate these results. First we will colrlpare the MPP 
functional array system with other pure functional array 
~mplementations; then we will compare it with imperative 
arrays. 

.4s discussed in an earlier section, the other algorithms that 
support functional arrays either execute slowly or work only 
for some programs. The algorithm given in this paper is the 
fastest general implementation of pure functional arrays. 
The 111ost important attribute of the data parallel algorithm 
is that lookup and update always take constant time and 
space. This doesn't just give a constant factor speedup; it 
reduces the time complexity and space complexity of the 
algorithm, compared with other general implementations 
of functional arrays. 

There are three main reasons why the MPP i~nplementa- 
tion of functional arrays is slower than standard imperative 
arrays. 

1. hlost of the slowdown is caused by the fact that all the 
arithmetic and data movement operations on the MPP 
use bit-serial algorithms, while conventional machines 
perform arithmetic on a word of data in one clock cycle. 
Since the hIPP algorithms were using 16-bit wide data, 
this accounts for a factor of 16 loss in performance. 

2. The second most important cause of the slowdown is 
that each update and lookup operation require several 
arithmetic operations. In particular, it is necessary to 
compare the L and U fields with a broadcast value 
on both lookup and update: update  nus st also spend 
time incrementing L and U fields in some of the cells; 
update must also increment some of the array reference 
numbers; lookup needs to find the minimum value of a 

set of cell fields in order to find the most recent element 
with the specified index. Conventional array accessing 



also requires some arithmetic operations, but not as 
many. 

3. The third and least significant cause of the slowdown is 
that the MPP algorithms required a number of instruc- 
tions that constitute pure overhead. These include 
the instructions needed to communicate between the 
Main Control Unit and the Processing Element Con- 
trol Unit, along with the subroutine calls and register 
initializations that take place in both control units. 
Sequential machines implement array accesses without 
any corresponding overhead. 

Clearly it would be possible to remove each of these sources 
of overhead through special-purpose hardware. In partic- 
ular, a dedicated functional array machine could be built 
that contained several word arithmetic units in each pro- 
cessing element. However, it would probably be better to 
build a general-purpose programmable data parallel archi- 
tecture with sufficient arithmetic and logical units in each 
processing element. This would give almost as good per- 
formance for functional array operations, and it would also 
be able to execute a wide range of other data structure 
algorithms. 

The general functional array algorithm given here could be 
used in a system that also tries to use destructive array 
updates whenever program analysis proves that to be safe. 
This might be the ideal solution, because it would reduce 
the overhead due to array operations, and yet it would still 
allow programmers to use arrays in a completely general 
manner without worrying too much about efficiency. 

COMMUNICATION 

The algorithms for lookup and update given above do not re- 
quire any communication among the processing elements. 
They rely almost entirely on arithmetic and logic opera- 
tions that are executed independently, in parallel, in all 
the processing elements. The only communication takes 
place between the control processor and the array unit, and 
the MPP hardware supports all the necessary capabilities. 
The lookup algorithm uses the MPP's ability to calculate 

the logical or of a bit in every processing element using a 
purely combinational logic network, requiring only a few 
microseconds per bit. 

Many declarative data structure operations are not so sim- 
ple; they require communications among processing ele- 
ments in addition to communications between the control 
processor and the array unit. A good example of this is 
the addition of storage management to the functional ar- 
ray system. 

The algorithms given above allocate a word of memory for 
each update operation, but they never deallocate a word. 
Whenever an array becomes inaccessible, some of the in- 
dividual array words may also become inaccessible. When 
this happens the system should (eventually) reclaim that 

storage so it can be reused. The easiest way to reclaim 
storage for the data parallel functional array algorithm is 
through garbage collection. Another strategy similar to ref- 
erence counting is also possible, and has several advantages, 
but its implementation is considerably more complex. 

The garbage collection algorithm for functional arrays is 
similar in style to the lookup and update algorithms. It 
spends most of its time performing parallel arithmetic 
within the processing element array. However, the garbage 
collection algorithm can require a lot of execution time be- 
cause it has to traverse references from all accessible data 
words. It would be better to reclaim storage automatically, 
in constant time, as soon as it becomes inaccessible. Such 
algorithms require a large amount of communication among 
the processing elements. 

A central issue in designing data parallel algorithms is 
matching the hardware's interconnection network to the re- 
quirements of the algorithm. Machines have been built or 
proposed with nearest-neighbor connections (the MPP), a 
combinational tree network (Apsa), and a hypercube (Con- 
nection Machine). 

Many declarative data parallel algorithms, including ref- 
erence counting for functional arrays, can be implemented 
with a combinational tree-structured interconnection net- 
work. When this kind of network is able to support an 
algorithm without communication bottlenecks, it has very 
significant advantages: 

The tree network can easily be scaled up to very large 
numbers of processing elements. 

Since the network is combinational, and does not re- 
quire messages to pass through a number of latched 
nodes, its latency is extremely low. This leads to fast 
communication. 

The Apsa system (Ref. 5) uses a combinational tree net- 
work for declarative data parallel algorithms, including 
functional arrays. 

Many algorithms, of course, require too much communica- 
tion to work well in a tree network. Sorting and Fast Fourier 
Transform are typical examples. More powerful intercon- 
nection networks, such as the hypercube or cube connected 
cycles, are necessary for these applications. The Connec- 
tion Machine (Ref. 2) supports these algorithms well. 

There is a tradeoff between the power of an interconnection 
network and its latency and scalability. For ~xample,  a 
hypercube does not scale up to large numbers of processing 
elements as well as a tree does. Furthermore, a multistage 
network with latches in each stage is considerably slower 
than a purely combinational network. 

Because of these tradeoffs, we should not simply use the 
most flexible data parallel architecture for all algorithms. 
In some important cases (such as functional arrays) the 



performance can be improved by using a much cheaper ar- 
chitecture. Therefore it is very desirable to determine the 
kinds of network needed for a wide variety of algorithms, 
giving better insight into these tradeoffs for specific prob- 
lems. 

It would be helpful for costly machines with rich intercon- 
nection networks to support simple communication algo- 
rithms efficiently. For example, a multistage hypercube 
machine executes some algorithms more slowly than a com- 
binational tree machine. Yet with a very small increase 
in cost, the hypercube machine could also support com- 
binational tree operations. We need to know more about 
data parallel algorithms in order to make such decisions 
correctly. 

CONCLUSION 

Declarative programming languages rely on several com- 
plex data structure operations that execute slowly on von 
Neumann architectures. One way to improve the perfor- 
mance of declarative languages is to use fine grain paral- 
lelism to implement the data structure operations directly 
in the memory. Although this technique does not exploit 
large grain parallelism in the user's program, it can im- 
prove the speed of all programs that use the declarative 
data structures. Furthermore, it should be possible to com- 
bine some coarser grain parallelism with the data structure 
p~~rallc~lis~xi. 

This paper lias shown how data structure parallelism can 
irilprove the performance of functional array operations. 
Since declarative (including functional) languages do not 
allow side effects, array assignment operations usually re- 
quire a large amount of copying. By incorporating simple 
arithmetic and logic capabilities in each word of memory, 
all the functional array operations can be executed in a 
constant amount of time and space. These operations are 
still slower than array accesses in imperative languages run- 
ning on conventional hardware, but most of this slowdown 
is caused by the bit-serial architecture of the data parallel 
machine. The performance could be improved considerably 
with the use of special purpose hardware. However, a gen- 
eral purpose data parallel architecture (such as the MPP 
or the Connection Machine) is very useful for prototyping 
the declarative data structure algorithms, and the flexibil- 
ity of a general purpose machine makes it possible to exploit 
several other forms of parallelism in the same program. 

REFERENCES 

Arvind, R. S. Nikhil and K. K. Pingali. "I-Structures: 
Data Structures for Computingn, Graph Reduction, 
Lecture Notes in Computer Science 279, Springer- 
Verlag, 1986, pp. 336-369. 

W. Daniel Hillis, The Connection Machine, Cam- 
bridge: The MIT Press, 1985. 

P. Hudak, "Arrays, Non-Determinism, Side-Effects 
and Parallelism: A Functional Perspective", Graph 
Reduction, Lecture Notes in Computer Science 279, 
Springer-Verlag, 1986, pp. 312-327. 

P. Hudak and A. Bloss, 'LThe Aggregate Update Prob- 
lem in Functional Programming Systems", 12th ACM 
Symposium on Principles of Programming Languages, 
1985, pp. 300-314. 

J .  T. O'Donnell, "Parallel VLSI Architecture Emula- 
tion and the Organization of APSA/MPPV, Frontiers 
of Massively Parallel Scientific Computation, Proceed- 
ings of the first symposium (September 1986), NASA 
Conference Publication 2478, 1987, pp. 75-84. 

S. L. Peyton Jones, The Implementation of Func- 
tional Programming Languages, Englewood Cliffs NJ: 
Prentice-Hall International, 1987. 

J. L. Potter (ed.), The Massively Parallel Processor, 
Cambridge: The MIT Press, 1985. 

G. L. Steele Jr. and W. D. Hillis, "Connection Ma- 
chine LISP: Fine-Grained Parallel Symbolic Process- 
ing", Proceedings of the 1986 ACM Conference on Lisp 
and Functional Programming, pp. 279-297. 

P. C. Treleaven, "Computer Architecture for Func- 
tional Programming", Functional Programming and its 
Applications (ed. J Darlington), Cambridge University 
Press, 1982, pp. 281-306. 

S. R. Vegdahl, "A Survey of Proposed Architectures for 
the Execution of Functional Languages", IEEE k n s -  
actions on Computers, Vol. C-33, No. 12, December 
1984. 

P. Wadler, "A New Array Operation", Graph Reduc- 
tion, Lecture Notes in Computer Science 279, Springer- 
Verlag, 1986 



SECTION IV: LANGUAGES 

Part 2: Poster Presentations 



PERFORMANCE ANALYSIS OF INTERCONNECTION NETWORKS 
FOR MASSIVELY PARALLEL MULTICOMPUTERS 

Hassan Z. Abdalla and Scott F. Midkiff 

Bradley Department of Electrical Engineering 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061 

ABSTRACT 

This paper presents a performance arialysis niodel and 
describes a network analysis prograrn that can be used to 
estimate end-to-end delay and maximum system through- 
put for massively parallel multicomputer networks. The 
model explicitly accounts for both message processing and 
transmission delays. The model is general eriougti to al- 
low analysis of message and virtual cut-through switching, 
point-to-point and multiple bus topologies, unidirectional 
and bidirectional links, and varying traffic locality assunip- 
tions. The model and prograrn allow the analytical evalu- 
ation of network and node design alternatives, as 
illustrated by an application example. 

Keywords: Interconnection Networks, Multicomputer De- 
sign, Performance Analysis, Queueing Models. 

INTRODUCTION 

Advances in VLSl technology have made multicomputer 
networks a promisirig approach to parallel processing. 
Multicomputers contain multiple processing nodes that 
operate concurrently and share inforrnatiori by passing 
messages over links tliat connect the nodes. Each node 
contains a functional processor (FP) that executes compu- 
tational tasks and a comcnunications processor (CP) that 
handles message transfers. Since the network is rarely 
completely connected, messages may pass through one 
or more intermediate nodes frorn source to destination. In 
a massively parallel multicomputer, this may lead to sig- 
nificant communicatioris delay sirtce messages rnay need 
to pass through many intermediate nodes and traffic on in- 
dividual links may beconie quite high. Therefore, the 
communication delay [nust be carefully corisidered in the 
design of large multicornputer ~ietworks. 

The space of intercorinectiori networks can be represented 
by the cartesian product of four sets of design features: 
operation mode, control strategy, switching niethodology, 
and network topology (Ref. 1). The operation rnode of 
multicomputer networks, at least at the macro level, is 
asynchronous and does not directly affect the performance 
analysis. Multicomputers exhibit a distribuled, rather than 
centralized, control strategy. Traditionally multicomputers 
have employed message switching, although virtual cut- 
through switcliirig (Ref. 2) also holds promise. A variety 
of topologies have been implemented or proposed includ- 
ing point-to-po~nt topologies such as the mesh and 
hypercube, and rnultiple bus topologies such as the span- 
ning bus hypercube. 

This paper describes a performance analysis model and a 
PC-based network analysis program tliat allow an accurate 
and efficient analysis of large multicornputer network de- 
signs. The analytic model can be used to determine and- 
to-erid message transfer delays and ttie maxinium system 
throughput. 

Traditional performance analysis niodels for coniputer net- 
works have focused on local and wide-area networks. Be- 
cause these networks exhibit long transmission times due 
to long messages and relatively low transfer rates, the 
performance models ignore coniniunication processing 
delay in favor of transmission delays. Recent research has 
focused on perforrnarrce modeling and analysis of point- 
to-point multicomputer networks (Ref. 3). Multicomputer 
networks are characterized by high link transfer rates and 
relatively short messages. Therefore, message processing 
time is a significant and often dominating component of 
delay and cannot be ignored. The performance model 
proposed in Ref. 3 is l irr~ited to point-to-point networks with 
bidirectional physical links arid message switching. The 
performance model described in this paper generalizes the 
model of Ref. 3 and can model both point-to-point and 
n~ult iple bus topologies and both packet and virtual cut- 
through switching. The model may also be used to analyze 
networks with bidirectional or unidirectional links. 

PERFORMANCE ANALYSIS MODEL 

Assurnptlons 

The perforniance analysis model makes ttie following as- 
surnptior~s. 

1. Co~nposite traffic arrival at each node is Poisson dis- 
tributed. 

2. Message le~igt l is,  arid hence transmission times, are 
exponentially distributed. 

3. Network topologies are synimetric. 

4. Nodes are [dentical, at least up to the links and CP. 

5. The message generation and destination distributions 
are ideritical at all nodes. 

6. Node message queues have infinite storage capacity. 

PRECR)INQ PAGE BLANK NOT FILMED 

I 4423s LRllllRYII IMI 



Message 
Processing 

I Link t 
h ,-A 1, 

Transfer h L-h OUT 

Note that hlN = LOUT 

Figure 1. Queueing model for a single node 

Given assumptions 3, 4, and 5, traffic conditions are the 
same at all links and nodes. Assumptions 1, 2, 5, and 6 
allow the analysis to be tractable and are reasonable for 
large, well-designed nrulticomputer networks with varying 
message sizes. Assumptions 3 and 4 are true for many. 
but certainly not all, popular topologies. 

Node Model 

Nodes consist of an FP, a CP, and a communication con- 
troller (CC) or port for each link. Arriving messages are 
received at a CC and placed in memory for processing by 
the CP. Messages from links and the local FP forin a 
queue at the CP. The CP processes each message and 
passes it on to the local FP or to a CC. The CC transfers 
outgoing messages to the next node when the link is free. 
Figure 1 shows a queueing model for a single node 
adapted from Ref. 3. Message processing time at the CP 
is fixed and arrivals are Poisson, so the CP stage is mod- 
eled as an MID/? queue with arrival rate A,, given by 
A,, = A, + DA,. j., is the mean message generation rate 
by the FP, dL is the mean message arrival rate on one link, 
and D is the number of links. 

Let l/pc, be the CP processing time. Then T,,, the wait and 
service time at the first stage, is 

The departure distribution from the MIDI1 queue, and 
hence the arrival distribution at each link queue, is very 
close to Poisson (Ref. 3). With this approximation and ex- 
ponential message transfer times, the link stage is mod- 
eled as an MIMI1 queue with service rate pL determined 
by the mean message length and link bandwidth. For a 

. . 

OUT 

OUT 

balanced network, the arrival rate at each of the MlMfl  
queues is the same and the total delay through the second 
stage, TL , is 

The total delay at a single node is T, = Tcp + T,. 

End-to-End Message Delay 

The end-to-end delay experienced by a message from its 
source to its destination is determined by delays at each 
node, T,, and T, , and the distance or number of hops 
travelled. The expected number of hops, N,, depends on 
topology and the distribution of source-destination pairs. 
Common destination assumptioris are uniform, where all 
nodes in the network are equally likely to be the destina- 
tion, and sphere of locality, where the destination is within 
fixed distance d from the source with probability 4 and is 
at a distance greater than d with probability 1 - 4 (Ref. 4). 

For example, consider a WD torus topology with uniform 
traffic distribution. The WD torus is a D dimensional nearest 
neighbor mesh of width W with end-around connections 
(Ref. 5). Each node is connected to its neighbors by 
point-to-point links. The mean internode distance for the 
torus with W even is (Ref. 4) 

The factor N/ (N  - 1) occurs since nodes do not send mes- 
sages to thernselves. Similar results exist for W odd. 

In message switching, a message must be completely re- 
ceived at each intermediate node before it can be for- 



warded. If a message takes N, hops from source to 
destination, it encounters N,+ 1 message processing de- 
lays and N, link delays. Using Equations 1 and 2, the ex- 
pected end-to-end delay for a message switched network 
is 

Cut-through switching (Ref. 2) is similar to message 
switching except that messages do not have to be received 
completely before being transmitted out of the node. After 
the header is received, the outgoing link can be selected, 
and if the link is free, message transmission may start im- 
mediately. If the selected link is busy, the operation fol- 
lows that of message switching. The probability of finding 
a free link is the probability of an idle MIMI1 queue, 1 - p, 
where p = I , /p,  is the link utilization factor. Out of Nh - 1 
intermediate nodes, the expected number of cuts, N,, is 
Nc = (Nh - l ) ( l  - p). 

Analysis parameters are automatically calculated for the 
general W D  torus and W D  spanning bus hypercube 
topologies. Note that many common networks, e.g. the 
two-dimensional mesh with wrap-around and the binary 
hypercube, are forms of these two topologies. Other 
topologies can be analyzed by specifying Nh, y . and p. 

APPLICATION EXAMPLE 

To illustrate the effectiveness of the model and the Network 
Analyzer as a design arid analysis tool, we consider a hy- 
pothetical multicomputer network design problem. As- 
sume a multicomputer system with the following 
characteristics: 

network size of N = 1024 or 4096 nodes, 

average message length of 512 bytes, 

uniform traffic distribution, 
When a cut is made, the node service time, conditioned on 
the wait time at the link being zero, less the header transfer message switching, 
time is saved. Let a be the ratio of header length to total 
average message length, including the header. Using N, 1/p,, = 0.1 milliseconds, and 
from above, the end-to-end delay for cut-through switching 
is 1, not to exceed 1000 messageslsecond. 

(1 - a)  
Tcr = TMS - (N, -1)(1 - P)CTCP + - 1 (5) 

We consider using a W D  torus versus a WD spanning bus 
hv~ercube (Ref. 5) .  The delay in each network is given by 
~4;ation 4.' The average number of hops, Nh, is given by 

Values for 1, and A,, needed to compute T,,,, and T,, are Equation 3 for the torus and by Equation 8 for the spanning 
determined for a given network from Nh and A,,. R, is a bus hypercube. 
function of the application executing on the multicomputer. 
If N is the number of nodes and N, is the number of links W - 1  
in the network, then the traffic on each link, A,, is Nj, = D(- W 1 (8) 

The CP traffic, A,,, is 

For a WD torus with uniform traffic, A,=(WJ,,)/4 and 
A,, = (1 + DW/4)AFp. 

Network Analysis Tool 

To assess design alternatives, the "Network Analyzer" 
program, based on the performance model, was developed 
to serve as a computer-aided design and analysis tool. 
The program accepts a specification of a network and 
message distribution and computes end-to-end delay times 
that can be plotted as a function of A,,. Parameters can be 
changed easily to perform a what-if analysis. The program 
is written in PASCAL for the IBM PC. 

The program allows seven parameters to be specified: 

1. network topology, 

2. CP processing time, 

3. link bandwidth. 

4. mean message length, 

5. header length, 

6. switching technique, and 

7. traffic pattern. 

The design objective is to select the most economical net- 
work design, without compromising network performance, 
for cost function C = BW x N,, x N,. BW is the link band- 
width. N,, is the number of connections per node, and N, is 
the total number of links in the network. 

The cost of a N = W D  node spanning bus hypercube is 

and the cost of a N = W D  node torus network is 

As indicated in Equation 10, for a given bandwidth B W ,  
network width W, and dimension D, the spanning bus 
hypercube oflers a 2W cost advantage over the torus. For 
W = 4, a spanning bus hypercube with BW = 40 
megabitslsecond has half the cost of a torus with BW = 10 
megabits/second for the torus. Using W = 4,  D = 5 
produces a network with N = 1024 nodes and D = 6 
produces a network with N = 4096 nodes. 

Figure 2 shows message delays for the spanning bus 
hypercube and torus for N = 1024 nodes and N = 4096 
nodes. The performance of the spanning bus network is 
clearly superior. Even in the 4096 node spanning bus 
hypercube, low delays can be expected in the spanning 
bus network with A, as high as almost 1600 
messages/seconds. This can be cornpared to the 4096 
node torus which begins to saturate at around 1300 
messageslsecond. For W = 2 , costs are equal and the 
spanning bus hypercube is still superior, although its per- 
formance is less than for W = 4 due to increased internode 
distances. 



20 

16 
TORUS 0- 5 BY- 10 HBPS 

8 - - - - - . - - -0 TORUS b- 6 BU- lO MBPS - A. . . . . . . . .A SPANNING BUS 0. 5 BU. 40  MBPS 

; 12 
6--- -e SPANNING BUS D- 8 BY. 10 nws 

5 

% "  
4 

0 
0 400 800 1200  1 6 0 0  

LFIPfeOA (PF\CKETS/SEC 

Figure 2. Performance of torus and spanning bus networks 

CONCLUSIONS 

Communication delay must be carefully considered in the 
design of multicomputer networks since it may contribute 
significantly to the overall system performance. General 
performance analysis models are needed to evaluate dif- 
ferent network design alternatives. This paper presented 
a general network model for a wide class of multicomputer 
networks that explicitly considers both message process- 
ing and transmission delays. The model can be used to 
analyze networks using either message or virtual cut- 
through switching, bidirectional or unidirectional links, and 
point-to-point or multiple bus topologies. The Network An- 
alyzer program uses the model to analyze alternative de- 
signs under different work load assumptions. 

ACKNOWLEDGEMENTS 

This work was supported in part by a "Digital Faculty 
Prograni/lncentives for Excellence" grant from the Digital 
Equipnlent Corporation. 

REFERENCES 

1. T. Feng, "A Survey of Interconnection Networks," 
Computer, Vol. 14, No. 12, pp. 12-27, Dec. 1981. 

2. P. Kermani and L. Kleinrock, "Virtual Cut-through: A 
New Computer Communication Switching Technique," 
Computer Networks, Vol. 3, pp. 267-286, Sept. 1979. 

3. D. A. Protopapas and J. N. Denenberg, "A New Model 
for Performance Analysis of Large Scale Multicomputer 
Networks," Proc. 6th Phoenix Conf. on Computers and 
Communications. 1987. pp. 451-456. 

4. D. A. Reed and D. C. Grunwald. "The Performance of 
Multicomputer Interconnection Networks," Computer, 
Vol. 20, No. 6, pp. 63-73, June 1987. 

5. L. D. Wittie, "Communication Structures for Large Net- 
works of Microcomputers," IEEE Trans. on Computers, 
Vol. C-30, No. 4, pp. 264-273, April 1981. 



PARALLEL HASHED KEY ACCESS ON THE CONNECTION MACHINE 

Paul B. Anderson 
Planning Research Corporation 

McLean, VA 22 102 

ABSTRACT 

This paper discusses retrieval of a number of keys in 
parallel from a single hash table. The algorithm is a 
data  parallel (Ref.  1)  adaptation of a familiar 
sequential method. Changes were made to suit the 

. s ingle  instruction stream, multiple data stream 
Connection Machine (Ref. 2). Running time is 
proportional to the maximum run of collisions rather 
than the average number. The algorithm was 
developed a s  a por t ion of  a large  X-ray 
crys ta l lography application for  the Connect ion 
Machine (Ref. 3). The generality of the scheme may 
make  i t  useful fo r  o ther  massively parallel  
app l i ca t ions .  

Keywords: Hashing, Searching, Parallel Algorithms. 
Connection Machine, SIMD, MIMD. 

INTRODUCTION 

The algorithm is based on three assumptions: 

1. The algorithm must be suitable for efficient 
implementation on the Connection Ma- 
c h i n e .  

2. The hash table contains no duplicate keys. 
3. The algorithm is to make use of the 

maximum number of processors otherwise 
needed for the application, but no more. 

These assumptions appear to be reasonable for other 
uses of the algorithm. 

THE PARALLEL ALGORITHM 

The basic concept behind the implementation is the 
sequential hash table algorithm as described in Ref. 4 
using a fixed size table and linear probing. Insenion 
in the parallel version follows the algorithm given 
below. The keys are denoted by K and the parallel 
hash function by h .  One key is stored in each active 
processor and the table has one entry in each 
processor, active or not. 

11. [Hash] Evaluate hash function on all keys 
K and save indices in parallel variable i .  

12. [Store key] Store keys K in hash table at  
indices i. Note that for collisions, only one 
of the colliding keys stored in a given table 
entry (processor) will survive. 

13. [Check storage] Retrieve stored keys from 
table indices i and compare in parallel 
with keys K .  Disable all processors with 
keys that match the retrieved keys. These 
keys have been successfully stored in the 
table .  

14. [Termination?] If no active processors 
remain, the algorithm terminates. Other- 
wise continue on to step 15. 

15. [Next probe point] Increment indices i. F o r  
those processors with i values beyond the 
table size, set i to 0 .  Repeat from step 12. 

The running t ime of  this algorithm is  clearly 
dependent on the maximum number of times steps I2 
through I5 are executed. That is, the running time is 
proportional to the maximum run of collisions. This is  
in contrast t o  the normal sequential hash algorithm 
where overall performance depends on the average 
collision run length. 

Retrieval from the parallel hash table follows a 
similar algorithm. 

IMPROVEMENTS 

The  basic scheme of  parallel hashing can be 
improved in several ways. Some of these ways have 
b e e n  i n v e s t i g a t e d  in  C o n n e c t i o n  M a c h i n e  
implementations. The methods are: 

rehashing collisions. 
use of a larger table, 
primary and secondary tables, and 
c h a i n i n g .  

The first variation is a parallel analog to the rehash 
method described in (Ref. 4 ,  page 521). In this 
method, collisions are resolved using a secondary 
hash function which determines, for each key, a 
sequence of secondary hash locations.  These 
locations are examined for an insertion point or,  
during retrieval, for a search key. The method does 
improve performance of the algorithm but has a basic 
limitation in the sense that it is dependent on the 
quality of the hash key and on the actual data. As in 
the non-parallel case, the method comes close to 
approximating a perfectly uniform hash distribution. 



A larger hash table can greatly improve performance 
by lowering the load factor. However, this is  
frequently not possible in the non-parallel case 
because the table is sized to fit the maximum allowable 
space. On the Connection Machine, the clear choice 
for the table size is  one element per processor. Since 
it i s  difficult to change the number of processors 
available with current (Spring 1988) software, this 
technique is not generally feasible. 

A variation on increasing the table size called twin 
hash tables has  been implemented. In the 
implementation, two parallel variables are allocated 
per processor, one as the primary hash table and the 
other as a secondary hash table. Initial hashing uses 
the primary table. Collisions in the primary table are 
stored in the secondary table. Tertiary and higher 
collisions are also stored in the secondary table. This 
results in good performance with little increase in 
the size and complexity of the basic algorithm. Keys 
are spread out among the two tables resulting in a 
lower overall load factor. Experience with the 
algorithm suggests that much of the benefit expected 
from using a table twice as large is obtained in this 
imp lemen ta t ion .  

The final variation involves chaining (Ref. 4, page 
513). Chaining is a popular method of organizing 
hash tables. In typical implementations a short, fixed 
length table is used as a vector of list heads. Keys are 
hashed to the list heads and collisions are chained 
together. This results in effectively dividing the 
linear search time by the size of the vector of list 
heads. There are problems implementing chaining 
using the current Connection Machine +Lisp software 
(Ref. 5) due to the need to allocate memory uniformly 
across all processors. The primary and secondary 
table method can be seen as a hybrid between fixed 
table hashing techniques and chaining techniques. 

Average 
0.5 

Run of 0.4 
Collisions 0.3 

0.2 

I 

1P/o 20% 30% 40% W / o  

Load Factor 

Figure 1. Average Collisions Versus Load Factor. 

Maximum 15.0 .- 
Run of 

Collisions 10.0 # -  

"." . 
10% 20% 30% 40% 50% 

Load Factor 

Figure 2. Maximum Collision Run Versus Load Factor. 

PERFORMANCE 

The algorithm has been analysed using a simulation 
technique which permits comparison of algorithm 
performance with uniform hashing under multiple 
conditions. The results of these simulations are 
shown in Figures 1 and 2. In these figures, the twin 
table method is labeled as Pri-Sec and appears both in 
raw form and with normalization. Normalization is 
needed to compensate for the fact that the twin table 
method uses twice the space of the other method and 
hence should be compared to tables of twice the size 
or equivalently with half the load factor. 

Figure 1 shows the average number of collisions, the 
usual performance measure of hash tables. In terms 
of this metric, the twin table method appears better in 
raw form but when normalized, does not appear to 
offer any advantages. In Figure 2, the use of primary 
and secondary hash tables is shown to be better than 
or roughly equal to the best of the other methods. 
Although not shown in the figures, the twin table 
method deteriorates at higher normalized load factors 
because the secondary table fills long before the 
primary table. This is an obvious property of the 
algorithm and may preclude its use in some situations. 

Operationally, we have measured the algorithm in 
practical use and have concluded that the twin table 
method is superior to both the single tablc and rehash 
methods. The twin table method is simple in its 
parallcl implementation and maps well onto the 
Connection Machine architecture. 

GENERALITY 

The algorithm described is a dependent on the 
Connection Machine's SIMD architecture. However, it 
is possible to modify the algorithm to execute on 
MIMD architectures with private processor memories. 
Retrieval uses the sequential algorithm essentially 
unchanged but insertion requires some processor 
coordination to eliminate race conditions. 



REFERENCES 

1. Hillis, W. D. & Steele, G. L., "Data Parallel 
Algorithms". Communications of the ACM 29, 12 
(Dec 1986), 1170-1 183. 

2. Hillis, W. D., The Connection Machine. MIT Press, 
Cambridge, Mass., 1985. 

3. Anderson, P. B. & Flippen-Anderson, J. L., "A 
Crystallographic Application for the Connec- 
tion Machine". In Proceedings of the Third 
International Conference on Supercomputing, 
Boston. May 1988. 

4. Knuth. D. E., The Art of Computer Programming. 
Volume 3, Sorting and Searching .  Addison- 
Wesley, Reading Mass., 1973, page 518. 

5. Thinking Machines Corporation, The Essential 
*LISP Manual. Thinking Machines Corporation, 
Cambridge, Mass., 1986. 



Abstract 

Object-Oriented Prototypes of Parallel Architectures for the 

Performance Evaluation of Algorithms 

Herb Barad 
Electrical Engineering Dept. 

Tulane University 
New Orleans, LA 701 18-5674 

email: barad@ bourbon. tulane.edu 

This paper describes a methodology for constructing proto- 
types of parallel architectures. The prototypes model the func- 
tionality of the components of the architecture to any specified 
level of detail. The prototypes are programmable, thus bench- 
marks of algorithms can be executed. The prototypes are also 
flexible, thus allowing the "tine-tuning" of the architecture to 
enhance the performance. 
In particular, this paper covers a specific working case study. 
A working prototype of a pyramid architecture has been con- 
structed to 7 levels (5461 processors and 53564 interconnec- 
tions) and is used to evaluate the mapping of a wide range of 
computer vision algorithms (i.e. low -level image proceising 
throueh high level symbolic comvutations) on such an architec- 
ture. Y ~ h e r e s u l t s  hdicate that archi tecm is not 
only useful for low level image processing tasks, but that seg- 
mentation and even higher level symbolic computations can be 
performed efficiently. Results are presented for a pyramid im- 
plementation of a split-and-merge segmentation algorithm. 

1. Introduction 
The design of parallel architectures often requires a prototype 
or test bed in which to develop and simulate algorithms. A test 
bed also provides an environment for collecting performance 
benchmarks. 
The method of constructing the SCOOP1 architecture uses an 
object-oriented methodology and allows for the modeling of 
the architecture at various levels of detail: architecture level, 
processor level, processor component level, gate level, and so 
on. The methods for constructing the prototype provide great 
flexibility. A prototype built using these methods is easily 
reconfigured and allows for the construction of other 
architectures of interest. 

The prototype constructed for this research is configured as a 
pyramid that is modeled at the processor level. By changing as 
little as a single method the prototype can represent a SCOOP 
architecture of another topology. By changing the description 
of the processors (or ports), the prototype can represent 
architectures constructed from different components. Thus, the 
SCOOP pyramid is a useful tool for researchers who wish to 
prototype, benchmark, and design algorithms for their 
proposed architectures. 

2. Motivation 
There are problems when attempting to integrate different 
levels of vision tasks on the same architecture. Many 
architectures are suited for a particular class of tasks. 
Massively parallel twodimensional mesh-connected arrays are 
well suited for low level local operations, but their SIMD 
nature does not efficiently support more complex algorithms. 
MIMD mesh-connected arrays still suffer from lack of global 
communication and global control. 
Figure 1 emphasizes another difficulty in attempting to 
integrate various tasks into a system. Suppose there tasks A 
and B are to be processed. Further, suppose that two separate 
architectures are used-each one is designed to efficiently 
execute task A and task B, respectively. If the communication 
between processes A and B (i.e. between subarchitectures A 
and B) takes longer than the processing of tasks A and B, then 
the overall process is now ID-bound. That is, an inter- 
architecture bottleneck is formed as data is pushed fiom one 
architecture to the other. The effects of this bottleneck become 
even more severe when we consider that the overall process 
might be an iterative process between tasks A and B. 

m u l b  from 

Architectom for Architecture for 

furtha 

Figure 1. Separate architectures for separate tasks. 

A prime motivation of this work is the desire to integrate all 
levels of the vision process onto the same architecture to avoid 
such a bottleneck that would result in reevaluation of the data. 
If higher-level analysis showed that further lower-level 
processing is needed (goal directed processing), then switching 
back and forth between separate specialized architectures 
results in a bottleneck. Therefore, it becomes important to be 
able to efficiently perform different tasks at different levels of 
abstraction on a unified architecture that would allow a smooth 
transition between these levels. 
Another motivation is to develop a methodology to construct 
prototypes of proposed architectures. It is often difficult to 
build the full-sized architecture to be studied and often a 
scaled-down hardware prototype is not a suitable 

1. The acronym SCOOP stands for "Southern California Object-Oriented representation of the final architecture. Software prototypes 
Prototype." have several advantages over scaleddown hardware 

PRECEDING PAGE BLANK NOT 

- 
prototypes: 

1. The time needed to design, build, and debug the 
prototype is considerably less in software than in 
hardware. 



2. The software prototype can better assist the software 
developer of algorithms for the prototype since the 
software prototype can represent an architecture of a 
larger size. 

3. Software prototypes are much cheaper to build. 
4. Software prototypes can be easily modified to reflect 

architectures of other topologies, or even architectures 
composed of radically different types of hardware 
(e.g. optical). 

Of course, the major drawback of the software prototype is that 
the actual time to execute an algorithm is much longer than the 
hardware prototype. Several microseconds of processing in 
hardware may require minutes of simulation. Thus, the 
software prototype is ideal for designing algorithms, analyzing 
the architecture, and performing benchmarks, but extremely 
poor for processing data in a production environment. 

3. Structure 
Figure 2 shows the class hierarchy of the structure of the pro- 
cessors modeled. This pyramid is constructed so that proces- 
sors at higher levels are more powerful than the processors at 
the lower levels, thus suggesting the class structure. 

LowLevelProcessor TopLevelProcessor 

Figure 2. Class hierarchy of processors 

The construction of the pyramid involves the creation of 
thousands of Smalltalk objects. There are objects to represent 
each of the processors, the ports between the processors, and 
objects to represent the architecture as a whole. There are also 
objects to represent the different values and parameters during 
the.simulation: pixel values, results from operations, Boolean 
flags, and so on. The process of building the pyramid begins 
with the sending of the message createpyramid: to the 
driving simulation object class (a subclass of Pyramid class). 
The argument of the message is the number of levels for the 
pyramid. The method starts out by instantiating a new instance 
of a Pyramid (a bare skeleton) and then starts a long process of 
creating instances of Processors, TopLevelProcessor, 
LowLevelProcessor, and UnidirectionalPort. Each of these 
will be connected properly to its neighboring processors 
through the pons. 

The actual simulation starts by creating an instance of the class 
representing the simulation. For example, an instance of class 
Convolution is created for the simulation of a convolution of 
the image by a kernel. The instance of the simulation sends a 
message to the classes Processor, LowLevelProcessor, 
TopLevelProcessor, and UnidirectionalPort to create 
instances of each of these. These objects are then 
interconnected in a fashion that represents the topology of the 

architecture. The pyramid is created by connecting each level 
of processors together and then interconnecting the levels. An 
interconnection is created by assigning a common instance of 
class UnidirectionalPort to the processor's instance variables 
that represent the correct port connection to its neighbor. For 
example, the processor45, 5, 5)' is connected to its northern 
neighboring processor-(4, 5, 5) by assigning an instance of 
Un~directionalPort to processor-(5, 5, 5) instance variable 
toNorth and also assigns the very same UnidirectionalPort to 
processor-(4, 5, 5) instance variable fromSouth. This is 
continued until the entire architecture is constructed and 
interconnected. To repeat, the prototype is built by creating an 
instance of each element of the architecture and then by 
interconnecting those elements to form the topology of that 
architecture. 

4. Results 
Figure 3 represents object table usage as a function of real- 
clock time (not simulated time) for a 7 level pyramid 
simulation of a particular image segmentation algorithm called 
the Ohlander-Price-Reddy method 111. 

In addition to object table usage, a prototype requires memory 
for each of the objects themselves. Figure 4 represents 
memory usage as a function of time for a 7 level pyramid OPR 
simulation. 

The pyramid is constructed (i.e. all processors and ports in 
place) by 4.5 minutes. This is the most intensive use of objects 
during the preparation for the simulation. In fact, it is the most 
intensive use of objects throughout the entire simulation. The 
consumption of object table space increases rapidly and almost 
linearly during the pyramid construction stage. This happens 
during the execution of the method createpyramid: when 
sent to the class Pyramid. The 5.461 processors and 53,564 
ports consume almost 150,000 objects during the construction. 
These results are expected because a large number of similar 
objects are created during the conmction phase. Both 
Figure 3 and Figure 4 represent the construction phase and the 
simulation startup phase. The simulation continues with 
approximately constant object table usage and memory usage 

for the next 600 minutes until completion of the segmentation. 

300uuu 1 

1) pyramid constructed 

Figure 3. Object table usage in 7 level SCOOP pyramid 

For the following times, N is the size of the bottom level, p is 
the number of data bands, R is the number of regions, G is the 
number of gray levels, and k is the size of the neighborhood 
used in merging. The following times are for 1 iteration. 

2. Prqesx,r-(x,y,l) refers to the processor at location x,y on level 1. 



ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 

pyramid wnsmcted 

0 F . , . , . 1 . 1 . , . , 
0 20 40 60 80 100 120 

time (mlns) 

Figure 4. Memory usage for a 7 level SCOOP pyramid 

The communication for accumulating the bin counts takes 
O(N) steps. The time to send the histograms up takes O(RpG) 
steps. The histogram analysis requires O(RpG) steps (serially). 
Broadcasting the threshold rule takes O(logN) steps. Table 1 
lists the times needed (order of magnitude) for the different 
subtasks of a single iteration of the OPR segmentation 
algorithm using serial, 2-D mesh-connected network3, and 
pyramid architectures. 

histomam threshold analysis 

serial R ~ N ~  N~ RPG k 2 ~ 2  

2-D MCN RpN N RPG k2 

pyramid N+RpG logN RPG k2 
Table 1. Perfcnmance for OPR iteration 

There is quite a speed up for certain tasks in the pyramid (more 
noticeable as N becomes large). One takes advantage of using 
a powerful processor as the top processor in the SCOOP 
pyramid. When the histogram is loaded into this processor for 
analysis, it can analyze the histogram at a very fast speed so 
that the resulting threshold will be obtained very quickly. The 
histogram is still the dominant task in the OPR algorithm and 
the SCOOP Pyramid manages to speed it up quite a bit. Note 
that all the results are for just one OPR iteration. The number 
of iterations is dependent on the data, and the effects of the 
speed-up is compounded if there are many iterations (i.e. as the 
complexity of the data increases). 

Figure 5 shows an example of a segmented image using the 
Ohlander-Price-Reddy segmentation algorithm on an image. 
The results are good considering the input data was 64x64 pix- 
els, 3 data bands, each 6-bits deep. This image is typical of the 
results obtained using the prototype. 

5. Conclusion 
In summary, a working software prototype of a pyramid 
architecture has been constructed. An object-oriented 
methodology is used for constructing the model of the 
architecture. The SCOOP pyramid is then used as a test bed to 
perform simulations of a wide range of computer vision tasks. 
The motivation behind this is to explore the potential of the 
pyramid architecture as a single, unified architecture to 
perform a wide range of vision tasks. 

3. The 2-D M e s h C o ~ e c t e d  Network (MCN) histogram compulation 
leaves a distributed histogram along the first column of processors. An 
additional N steps are required to have them "iunneluiT' to a single 
processor for analysis. 

The software prototype offers great flexibility. The structure or 
the size of the architecture can be changed with a small effort. 
The methods of building prototypes used in this work can assist 
future work in architecture studies. Prototypes of other 
architectures, including optical architectures, can be built and 
studied. These SCOOP models can serve as a set of test beds 
for performing benchmarks on different algorithms. 

Figure 5. Segmentation results on 64x64 image 

References 
Ohlander, R.. Price, K .  and Reddy, D. R., "Picture Segmentation 
using a Recursive Region Splitting Method," Computer Graphics 
and Image Processing, no. 3, pp. 3 1 S 3 3 3 .  1978. 

Cantoni. V. and Levialdi, S., PAPIA: A Case History, in Parallel 
Computer Vision, Academic Press, Inc., Uhr (ed.), pp. S 1 3 ,  San 
Diego, 1987. 

Schaefer. D.H., Ho, P., Boyd, I., and Vallejos, C., The CAM 
Pyramid, in Parallel Computer Vision. Academic Press, Inc., Uhr 
(ed.), pp. 15--42, San Diego, 1987. 

Tanimoto, S.L., Ligocki, TJ., and Ling, R., A Prototype Pyramid 
Machine for llierarchical Cellular Logic, in Parallel Computer 
Vision, Academic Press, Inc., Uhr (ed.), pp. 43-83, San Diego, 
1987. 

Weems. C., Lawton, D.. Levitan. S., Riseman, E., Hanson. A,. and 
Callahan, M.. "Iconic and Symbolic Processing Using a Content 
Addressable Array Parallel Processor." Conference on Computer 
Vision and Pallern Recognition, pp. 5 9 8 6 0 7 ,  F E E  Computer 
Society. IEEE Computer Society Ress, San Francisco. June. 1985. 

Levitan, S.P., Weems. C.C.. Hanson, A.R.. and Riseman. E.M.. 
The UMass Image Understanding Archilecture, in Parallel 
Computer Vision, Academic Press, Inc., Uhr (cd.), pp. 2 1 S 2 4 8 ,  
San Diego, 1987. 

(71 Pope, S.T., Goldberg, A., Krasner. G., and Bay, D.. The Smalltalk- 
80" Programming System: Reference Guide and Release Notes, 
ParcPlace Systems, Palo Alto, CA. revision 2.2c, 1987. DE 
Version -Release 1. 

[81 Law. A.M. and Kelton. W.D., Simulation Modeling and Amlysis, 
Mffiraw-Hill Book Company. Mffiraw-Hill series in industrial 
engineering and management science. San Francisco. 1982. 

191 Goldberg, A. and Robson. D.. Smalltalk-80: The Language and its 
Implementation, Addison-Weseley, Menlo Park, CA, 1983. 

1101 Barad, H.S., "The SCOOP Pyramid: An Object-Oriented Prototype 
of a Pyramid Architecture for Computer Vision," Ph.D. Thesis, 
University of Southern California, Los Angeles, December. 1987. 

[I I ]  Uhr. L., Ilighly Parallel, Hierarchical, Recognition Cone 
Perceptual Structures, in Parallel Computer Vision, Academic 
Prcss, lnc., Uhr, pp. 249-292, San Diego, 1987. 



PRECEDING PAGE BLANK NOT FILMED 

CHARACTERIZING THE ADVANTAGES OF 
MASSIVELY PARALLEL COMPUTING 

R. M. Hord, T.A. Kraay, E.P. McMahon 

MRJ, Inc. 

ABSTRACT 

In August 1986, the Advanced Development Center of Perkin- 
Elmer, operated by its subsidiary, MRJ, Inc., took delivery of 
thc first commercial Connection Machinem (CM) computer pro- 
duced by Thinking Machines Corporation of Cambridge, MA. A 
second 16K machine was delivered in March 1987 and was up- 
graded to a CM-2 in January 1988. A Data Vault and Frame 
Buffer have also been added. Although this paper talks of our 
experience with the CM, we should note that our company and 
staff have experience with a wide range of advanced computers 
including Cray, the Massively Parallel Processor at GSFC, the 
Martin Marietta GAPP (Geometric Arithmetic Parallel Proces- 
sor), the DAP from Active Memory Technology, Butterfly 
(BBN), FPS array processors, and the Illiac IV. Hence, our 
opinions are meant to apply to massively parallel processing in 
general. 

The intent at MRJ has been to develop applications on the CM 
for various Government defense and space customers by first 
performing research and feasibility studies. then implementing 
operational applications. We were aware before our commitment 
that there was an attitude in the computer science community that 
only a relatively small percentage of computer applications were 
suitable for implementation on a massively parallel SIMD archi- 
tecture, problems that ate sequential in nature or parallel to a low 
degree. It has been observed over our two plus years of experi- 
ence that the applications relevant to our chosen business areas 
don't exhibit this characteristic. The diversity of our applications 
is reported elsewhere at this conference, and we can comment 
that virtually all of the applications we've seriously examined do 
lend themselves to massively parallel approaches. The CM was 
selected by MRJ instead of alternative parallel processors pri- 
marily because massively parallel processing offered the possi- 
bility of obtaining significant breakthroughs in various algorith- 
mic solutions to problems. 

The technical literature of parallel processing is replete with re- 
ports of efforts to obtain a speedup factor of k through the use of 
k processors. For some applications, particularly those involv- 
ing no interprocessor communications, this k speedup factor is 
obtained in a straightforward way. Examples include processing 
k pixels, searching k documents, tracing k rays, and computing 
k parametric cases in parallel. 

On a massively parallel, suitably connected computer, in addi- 
tion to the quantitative difference in processor count from coarse 
grain machines, there is also a qualitative difference. That qualit- 
ative difference occurs because k, the number of processors, 
starts to approximate N, the characteristic size of the problems 
addressed. 

One of us (Kraay) has devised new algorithms that allow the 
CM to achieve or closely approximate speedup factors of k(=N). 
A simple example is the MAX function, which is O(N) on se- 
quential machines but O(1) on the CM. Another example is the 
FFT, instead of O(N log N) for a serial machine, the CM algo- 
rithm is O(log N). A third example is matrix inversion. By using 
N processors for a matrix of size N x N, the O(N3) sequential al- 
gorithm becomes O(N2); or if NZ processors can be employed, 
inversion becomes an O(N) activity. Execution times have been 
achieved for these algorithms that are better than published times 
for supercomputers costing significantly more than the CM. 

It is not just sufficient to achieve the best order implementation; 
the scaling constant must be minimized also. This constant is 
generally strongly dependent on the efficiency of data communi- 
cation which, in turn, is dependent on the specific hardware and 
the creative use made of it in an implementation. 

These algorithms and others are at the heart of solutions for dif- 
ficult large problems. The order advantage made possible by 
massively parallel processing and CM connectivity makes the 
commercial success of these machines and algorithms inevitable 
as ever larger problems are being pursued in science and engi- 
neering; more and more computational problems are real-world 
three-dimensional instead of one- and two-dimensional abstrac- 
tions. Three-dimensional applications grow as the cube of a line- 
ar dimension S, so as S doubles, the number of data items in- 
creases eightfold. Having an algorithm, whether matrix solving, 
FFT, or some other, characterized by a lower order measure, 
gives rise to a growing advantage with problem size. Hence, 
these improved algorithms can result in orders of magnitude ad- 
vantage over essentially sequential serial supercomputers. 

Another consideration makes fine-grain data level parallelism 
more attractive than coarse-grain parallelism, and that is the po- 
tential for growth. We believe orders of magnitude in perfor- 
mance can be gained by straightforward methods such as exten- 
sions of the dimension of the hypercube structure, inc~easing the 
memory and power of each processor, and faster clock speeds. 
Exotic and expensive technologies are not yet necessary to 
achieve enormous increases in performance. Furthermore, the 
same algorithms we're developing for the CM-2 are directly ex- 
tensible to these machines of the future. 

The cost of programming and training cannot be ignored in con- 
tract applications. Our focus is on applications rather than in di- 
rect research and necessity has been the mother of our invention 
of new algorithms. The achievements gained by algorithm devel- 
opment under our corporate internal R&D programs have been 
applied in later contract work, and all our developers have access 
to superior algorithms just as would conventional scientific pro- 
grammers have access to a scientific subroutine package. The 



unique creativity nbeded to produce new parallel algorithms is 
not generally required for development work. Most of OW work 
has been in development and we have demonstrated that plroduc- 
tivity on a massively parallel computer is about the same as pro- 
ductivity in conventional scientific programming the sune crea- 
tivity, program design capability, expertise in the appropriate 
fields, and discipline are required. There is, of course, a learning 
c w e ,  and there are those who acquire the skill of using massive 
parallelism better than others, but we find analogous differences 
with FORTRAN or C development programmers. 

Our experience has been that developing programs on the CM is 
significantly easier than efforts reportedly involved on MIMD 
~ G s e - ~ r a i n  parallel processors with the attendant result that 
there is a com~etitive advantage in develo~ing the a~ulication as 
well as in exe'cuting the appl&ation. M R ~  h& a mi& strategy 
with regard to programming languages and approaches. For 
primitive operations such as FFT and sort, routines that will be 
executed many times and used by many programs, coding by 
hand from scratch in PARIS is standard. Less computationally 
intensive programs cause us to study our choice: PARIS code 
runs faster, C* makes more cost effective use of the hardware 
because the VAX supports multiple development workstations, 
and *LISP provides a richer software development environment. 
Factors affecting the choice include project schedule in relation 
to hardware availability, need for access to the Data Vault and 
Frame Buffer, and available staff skills. For our kind of work it 
is very important that the application implernenter be lmowledge- 
aMe about the application itself as well as about how the coding 
is accomplished 

In summary, we have made a corporate commitment to and are 
meeting our business goals in pursuing the application of mas- 
sively parallel processing. 

John Cocke received the 1988 ACM Turing Award. In his prize 
lecture, "The Search for Performance in Scientific Processors," 
he said, "Of the three contributors [algorithm, computer, ma- 
chine organization] algorithm improvements are the most i m p -  
tant. An idea that changes an algorithm from NZ to NlogN opera- 
tions . . . is considerably more spectacular than an improvement 
in machine organization, where only a constant factor of run 
time is achieved." 

Wc believe he is right. We also believe our algorithms that 
Cocke would admire have been made possible by the advent of 
the CM. 



A SYSTEMATIC APPROACH FOR DESIGNING 

PIPELINED DATA PARALLEL ALGORITHMS 

Chung-Ta King 
Department of Computer and Information Science, New Jersey Institute of Technology, 

Newark, NJ 07102 

Wen-Hwa Chou, Lionel M. Ni 
Department of Computer Science, Michigan State University, 

East Lansing, MI 48824 

ABSTRACT 

Pipelined data parallel computations achieve a high degree of 
parallelism by partitioning the data set among the processors and 
operating on the data blocks in a pipelined fashion. The resulting 
algorithms are very suitable for execution on multicomputers. A 
systematic procedure for designing pipelined data parallel algo- 
rithms is introduced. This procedure starts with a nested-loop 
program, manipulates the dependencies between the loops, and 
groups related loops to obtain pipelined and data parallel opera- 
tions. Using this procedure, it is possible to parallelize a nested 
loop automatically. 

Keywords: Parallel processing, pipelining, algorithm design, 
data parallel algorithms, program restructuring 

INTRODUCTION 

A data parallel computation divides the set of data among 
multiple processors. Parallelism is achieved by simultaneously 
operating upon large sets of data, rather than using multiple threads 
of control. The resultant algorithms are termed data parallel algo- 
rithms (Ref. 2) .  In terms of programming, programs with loops to 
handle static and regular data structures are suitable for data paral- 
lel computation. 

Pipelined dota parallel algorithms are a subset of data paral- 
lel algorithms, which, in addition to data parallelism, exploit 
processor-level pipelining among the multiple processors (Ref. 3,4). 
Pipelined data parallel algorithms are targeted at medium- to large- 
grain parallel computers, especially multicomputers (Ref. 1). 

Multicomputers with a few hundred processors are common. 
Thus, they hold the promising potential for massive parallelism. 
However, the need for explicit data exchanges between processors 
to communicate has become the major system bottleneck. Pipelined 
data parallel algorithms reduce the effect of communication over- 
head by regulating data flows in the system so that data can be 
processed and transmitted between processors in a pipelined 
fashion. 

An Example 
A pipelined data parallel algorithm for matrix multiplication 

is shown in Figure 1 (Ref. 4). Assume that the underlying mul- 
tiprocessor supports an interprocessor connection of a mesh. 
Matrices A and B are partitioned along columns and rows. The 
host first loads submatrices of A into the corresponding processors 

in the mesh (see Figure 1). Then, submatrices of B are piped into 
the mesh from the host. During each iteration, the following opera- 
tions are performed in the processors: 

(1) receive a submatrix of B from the north; 
(2) send the submatrix to the south; 
(3) perform the submatrix multiplication, c#) + AijxSjk; 
(4) receive a C submatrix from the west; 
(5) add the received C submamx to the result in (3); 
(6) send the resultant C subrnauix to the east. 
Through processor-level pipelining, it can be seen that the 

activities in the processors are data-driven and highly overlapped. 
In addition, the communications between processors are accom- 
plished by regular and local data flows. These properties make the 
resultant pipelined data parallel algorithm very efficient. 

Pipelined data parallelism is a very general concept for algo- 
rithm design. To apply this concept to general applications, it is 
necessary to have a systematic procedure of designing this kind of 
algorithms. Major theme of this paper is thus such a systematic 
procedure. The basic technique used is the grouping of loop 
instances. 

Organization of the Paper 
A general procedure for designing pipelined data parallel 

algorithms is first outlined in Section 2. Then, the grouping prob- 
lem is defined in Section 3, followed by various grouping tech- 
niques in Section 4. Our conclusion is given in Section 5. 

B I O  Bl l  8 1 2  813 Frornthe 
host 

-B20 B21 822 8 2 3  

To the 
e l 3  e l 2  C11 C I O  host 

Figure 1. Data flows in pipelined mamx multiplication 



A SYSTEMATIC DESIGN PROCEDURE Matrix B 

In this aection a systematic design procedure is outlined. Due 
to the similarity of pipelined data penllelisrn and systolic arrays, 
initial stages of our proccdum are identical to those used in syn- 
thesizing systolic arrays (Ref. 7). However, additional stages are 
r e q u i d  to contml the granularity of rho algorithm in order to bal- 
ance the communication overhead on a multicomputer. 

A nested-loop program is shif-invariunt if data dependencies 
between loops do not change with the loop indices. The typical 
loop for matrix multiplication is shift-invariant: 

fo r i  c O t o 3 &  
f o r j  t O t o 3 d o  

for k t 0 to 3 do 
Cij 4- Ci, + au bkj; 

Using the above program as an example, the design pro- 
cedure is outlined as follows: 

(1) Transform all variables Into pipetined variables 
The restructuring involves eliminating broadcast effects and 

enforcing the single-assignment rule (Ref. 6). After restructuring. 
the matrix multiplication loop looks l i b  the following, with neces- 
sary initialization omitted: 

for i t 0 to 3 do 
for j t 0 to 3 do 

fork t O t o 3 d o  
t ai j-13 ; 

bijt t bi-1 jC ; 
Cijk C Cijb-1 + aijkbijk ; 

( 2 )  Derive the computational s&rudure 
If the nested-loop pmgram has n levels, then the computa- 

tional structure, Q,  of the program is a d i d  graph on an n -  
dimensional Cartesian space. Each vertex in Q represents one loop 
instance and has a coordinate (co, ..., c,-,) if the corresponding 
loop instance has a loop index (c0, ..., c,,-~). 

There is an arc (dependence vectors) from one vertex vi to 
the other v, if the loop corresponding to v, references a variable 
which is generated in the loop componding to vi. Note that, for a 
shift-invariant nested loop, all vertices in the corresponding compu- 
tational structure have the same set of dependence vectors. It 
follows that such a computational structure Q can be defined by 
the two-tuple (V, D), where V denotes the set of all vertices in Q 
and D is the set of dependence vectors. 

The computational structure componding to the restructured 
matrix multiplication program is shown in Figure 2. 

(3) Group or project vertices in Q 
In conventional systolic array synthesis techniques, a space- 

time projection is sought at this step to pmduce systolic effects 
(Ref. 7). All vettices in Q are projected along a particular direction 
which represents the time-axis, i.e., the progress of time (Ref. 6). 
However, projection is just a special case of grouping. In group 
ing adjacent vertices in Q are merged together to form larger ver- 
tices. By controlling the size of the groups, we can control the 
granularity of the algorithm. 

In Figure 2, the grouping along j with size 4 (i.e., a pmjec- 
tion) and along i and k with size 2 respectively will result in a 
contracted structure as shown in Figure 3. As will be shown later, 
for many computational structures, certain grouping schemes will 
i n d u c e  extra dependencies between the groups. This implies 

Figure 2. The computational structure of nlatrix n~ultiplication 

extra communication in the resultant algorithm. Details of the 
grouping will be discussed in Section 3 and 4. 

(4) Obtain node programs 
In Figure 3, if one group is allocated to one processor in a 

multicompuier, then the processor at location (r'x), when 
W* $ Sl, will execute the following program: 

l t O t o 3 b y 2 d o  
I* communicate with neighboring processors *I 

for j t I to 1+1 do 
for i t 2i' to 2(i'+l) do 

for k t W to 2(k'+l) do 

Figure 3. The contracted structure of matrix multiplication 



aijk 4- ai j-1.k ; 
bi;k bi-lj& ; 
Ci;k 4- Ci jk-1 + aukbijk ; 

In practice, the exact values of design parameters, such as the 
size of groups, are unknown at this step. Thus, the coconsats intro- 
duced in the above program should be replaced by variables which 
correspond to the design parameters. 

(5) Determine design parameters 
The design parameters are determined by taking into account 

input data sizes and machine characteristics. Optimal parameters 
are obtained by balancing the computation with the communication. 
An accurate estimation will require an accurate analytic model such 
as the one introduced in (Ref. 4). 

THE GROUPING PROBLEM 

Let Z ,  I,  and I+ ,  denote the set of integers, non-negative 
integers, and positive integers, respectively. The input to the group 
ing problem is a computational structure Q (V,  D )  obtained from a 
shift-invariant nested-loop program. 

Only acyclic computational structures are considered. In 
other words, for any subset of dependence vectors, do, ..., dLlc D , 
if there exist ao, ..., E I ,  such that 

then a F  ...= al-,=O. 
<Definition 1> 

The grouping Gd,(Q) of a computation shucture Q along a 
direction d of size r is to partition all vertices in Q into disjoint 
subsets, Po, ..., Pk-l, such that 
(1) IPol= ...= IP t -~  l=r 
(2) For each subset Pi ,  OY Sk-I, there exists an ordering, 

(vO, ..., v,,), for all vertices in Pi such that v b l - v e ,  
0 5 ~ 9 - 2 .  

Each subset Pi is called a group of Gq,(Q). The first ver- 
tex, vo, in the ordering above is called the base vertex of the group. 

Note that a grouping might not divide all vertices in a compu- 
tational structure evenly. In this case, we can add dummy vertices 
at the boundary to make it even, or include those extra vertices into 
boundary groups. A group Pi is dependent on another group P; 
along d if there are vertices VIE Pi and v , ~  P j  such that vrv+. 
<Definition 2> 

The contracted structure, Q', with respect to the grouping 
G ,, (Q ) is a directed graph, where 
(1) Each vertex in Q' corresponds to one group in Ga,(Q ); 
(2) If Pi and PI are the groups in Q corresponding to the vertices 

vl and v, in Q' , respectively, then there is an arc from vl to vj, 
if P, depends on Pi.  
G ,, (Q ) and, thus, Q' (V , D' ) are dependence-preserving if 

Q' is an acyclic computational structure with ID' 15 1 D 1 .  

A dependence-preserving grouping will not introduce extra 
dependencies among the resultant groups. This is particulady 
important in multicomputers with limited connectivity and non- 
negligible communication overhead. The grouping problem con- 
sider in this paper can now be stated as follows: 
<Grouping problem> 

Given a computational structure Q ,  determine the groupings 
of Q which will result in dependence-preserving contracted struc- 
tures. 

(a) @ : Base vertex (b) 

Figure 4. Grouping with two dependence vectors 

PROPERTIES OF GROUPING 

In the following discussion, we will concentrate on computa- 
tional structures in two-dimensional spaces. For higher dimensional 
spaces, the results obtained here can be extended. 

Consider computational structures with one or two depen- 
dence vectors. Them exist dependence-preserving contracted struc- 
tures if the grouping is along the dependence vectors (see Figure 
4(a)). This is because the dependence vectors are independent in 
acyclic computational structures. Thus, the resultant groups will 
not interfere with each other and introduce extra dependencies. 
Nevertheless, if the base vertices are not properly chosen, then 
extra dependencies will still be created (see Figure 4(b)). 

Suppose the grouping is along a direction different from the 
dependence vectors of the computational structure. Then, this situa- 
tion is equivalent to a computational smcture, Q (V, D ), with three 
dependence vectors, D-{do, dl ,  d2) Since Q is an acyclic two- 
dimensional structure, we can assume that 

where a &  a l ,  and a z  are the smallest positive integers to satisfy 
Equation 1. A typical example of such a computational structure is 
shown in Figure 5(a), where D={[1,0], [1,1], [0,1]) and [1,1] = 

[1,01+[0,11. 
Consider the grouping along dz first. In Figure 5(a), a possi- 

ble grouping along d2-[l,l] is depicted in dashed boxes. Figure 
5 0 )  shows the corresponding contracted structure with the group 
ids indicated in the circles. It can be seen that an extra dependence 
vector, [0,-11, is introduced. Thus, the contracted saucture is not 
dependence-preserving. In fact, we have the following theorem: 

D 
(a) (b) 

Figure 5. Grouping which is non-dependencepreserving 



<Theorem I> 
Let Q(V,D) be a computational structure. If there exist three 

dependence vectors, do, d l ,  d 2 e D ,  where &, d l ,  and d2 satisfy 
Equation 1, then the grouping along d2 with size r>a2  is not 
dependence-preserving. 

The proof is given in Ref. 4 and is omitted here. In Figure 5, 
since a2=l, it is impossible to find a dependence-preserving gmup 
ing along [1,1]. 

Theorem 1 states the conditions when a grouping is not 
dependence-preserving. A more constructive way is to study under 
what conditions a dependence-preserving structure will be gen- 
erated. Given an acyclic computational structure Q ( V ,  D )  with 
the dependence set D={&, ..., where m23, we can always 
find (from linear algebra) two vectors, say, & and d l ,  such that 

where a i ,  b i ,  tie 1'. 2Si <m . Define 

The "range of influence" of a vertex v in Q can be defined as 
the vertex set X (v), where 

Then, any vertex uc V which is dependent on v is in X(v). 
<Theorem 2> 

Let Q (V, D )  be a computational structure with m depen- 
dence vectors, where m23, and the dependence vectors satisfy 
Equation 2. Then, the grouping along do with size r + a ,  and 
along d l  with size r is dependence-preserving. 

Again, the proof can be found in Ref. 4. The implications of 
Theorem 2 are: (1) as long as the gmup size is large enough, there 
always exist dependence-pnserving groupings along & and d l ,  and 
(2) the resultant contracted structure is a universal planner array 
(see Figure 6). A universal planner array is the most general sys- 
tolic arrays in two-dimensional spaces (Ref. 6). It follows that, in 
the final implementation, each processor only has to communicate 
with at most three other processors. Note also that & and d l  can 
be any vectors which are not necessary in D as long as Equation 2 
is satisfied. 

CONCLUSION 

We have presented in this paper a systematic procedure for 
designing pipelined data parallel algorithms from shift-invariant 
nested loops. This procedure concentrates on grouping loops in the 
original program so as to reduce the number of communicating 
processors, control the granularity, and increase the degree of pipe- 
lining. 

Results presented in this paper are preliminary. A mathematic 
foundation is needed to abstract the concept of grouping so that 
results presented here can be applied to higher dimensional spaces. 
Also, the relationship between projection and grouping needs to be 
funher probed, which may in turn assist in designing more efficient 
systolic arrays. Ultimately, we could expect results obtain in this 
research will contribute to intelligent compilers for multicomputers, 
which parallelize programs (semi-)automatically. 

REFERENCE 

1. W.L. Athas, C.L. Seitz, "Multicomputers: Message-Passing 
Concurrent Computers," IEEE Computers, Aug. 1988, pp. 9-24. 

2. W.D. Hillis, G.J. Stele, Jr., "Data Parallel Algorithms," Comm. 
ACM, Dec. 1986, pp. 1170- 1183. 

3. C.T. King, "Pipelined Data Parallel Algorithms - Concept, 
Design, and Modeling," Ph.D. Dissertation, Department of 
Computer Science, Michigan State University, 1988. 

4. King, C.T., Chou, W.H.. Ni, L.M., "Pipelined Data Parallel 
Algorithms - Concept and Modeling," Proc. of the I988 ACM 
Int'l Conf. on Supercomputing, July, 1988. 

5. H.T. Kung, C.E. Leiserson, "Systolic Arrays (for VLSI)," 
Sparse Matrix Proc., 1978, pp. 32-63. 

6. W.L. Miranker, A. Winkler, "Spacetime Representations of 
Computational Structures," Computing, 1984, pp. 93-1 14. 

7. D.I. Moldovan, J.A.B. Fortes, "Partitioning and Mapping Algo- 
rithms into Fixed-Size Systolic Array," IEEE Trans. on Com- 
puters, Jan. 1986, pp. 1-12. 

Figure 6. A universal plannar array 



CMS: An Integrated Simulation Environment 

J.  Leslie Walker and Abbas Birjandi 

College of Computer Science, Northeastern University, Boston Massachusetts 

Abstract 

The Connection Machine is a massively parallel archi- 
tecture designed for general computation. This pa- 
per describes a simulation environment which allows 
one to execute programs written for a connection ma- 
chine. The CMS simulation environment provides sev- 
eral tools for empirical analysis of these parallel algo- 
rithms. First, it provides performance statistics on the 
simulated connection machine as it runs different user 
programs. These statistics compiled from the simu- 
lated execution of a set of algorithms provide a measure 
by which one may arrive at the optimal solution from 
that set. Secondly, The behavior of the simulated envi- 
ronment is governed by configuration parameters which 
may be altered to find the optimal connection machine 
configuration in which to run an algorithm. The CMS 
simulation environment runs on the Sun Workstation 
and uses the windowing and mouse interfaces provided 
by the SunViewTM integrated application environment. 
Different windows allow the user to view different parts 
of the simulated connection machine at the same time. 
This paper also includes a discussion of the internals 
of the simulator and the reasoning behind the methods 
used. By examining these details one can learn more 
about the hardware implementation of the connection 
machine. 

Overview 

This paper provides an introduction to CMS, a simu- 
lator for a connection machine [Hillis 861. The goal of 
the simulation is to provide an environment in which to 
run connection machine algorithms and gather detailed 
statistics about their execution. The simulator runs 
in an integrated environment which provides window- 
ing and support for a mouse. The simulator software 
and integrated display simplifies the presentation of the 
connection machine hardware enough to make it under- 

standable to the novice user while keeping it accurate 
enough to represent the connection machine hardware. 

The connection machine is a massively parallel com- 
puter architecture. The granularity of the processors 
which compose a connection machine is very small-one 
bit. The architecture works most efficiently on large, 
uniform problems with very small granularity. Some 
examples are database query searches and kernel con- 
volutions. 

The algorithms that run on a connection machine 
need not be vectorized to run efficiently. In fact, the pro- 
cessors may be considered to be arranged with complete 
adjacency, meaning that every processor is directly ad- 
jacent to every other processor. This means that trees, 
graphs, and other geometries may be implemented on 
the connection machine as well as vectors. 

Connection Machine Architecture 

Interfacing 

The connection machine is not equipped to perform sys- 
tem tasks such as device control and data acquisition. 
For this reason it must interface to a host computer 
which provides these types of services. The host has full 
access to each processor's memory and also provides the 
instruction stream which the individual processors will 
execute. The host usually will provide an initial state 
for the connection machine by depositing the appropri- 
ate data into the memory of each of the processors. The 
host may also retrieve results from the processors' mem- 
ories during execution or afterwards. 

Cells 

Processors in the Connection Machine are referred to 
as processing cel ls .  Each processing cell is able to inde- 
pendently execute the basic building block operations 
of the whole machine. These processing cells are iden- 
tical and each contains it's own memory, registers, and 
ALU. Each of these components as well as all of the 

Abbas Birjandi is Assistant Professor of Computer Science at 
Northeastern University in Boston and Les Walker is an employee 
at Charles River Analytics in Cambridge Massachuasetts. 



corresponding data paths are uniformaly one bit wide. 
The single-bit registers in a cell are referred to as cell 
flags. General Purpose cell flags may be set, cleared, or 
read by the cell without side effects. These are used to 
store a single bit of information. Special cell flags have 
side effects to being set, cleared, or read. These flags 
are the means by which a cell communicates with other 
cells and the routers. 

The connection machine is a SIMD (Single- 
Instruction Multiple-Data) multiple processor architec- 
ture. The instruction is broadcast to each cell via the 
global instruction bus. 

T h e  Network 

Local Areas  The processing cells in the connection 
machine are grouped into uniform sets which we shall 
call local areas. The cells in a local area share several 
communication structures: 

a daisy  chain The output of each cell's ALU is 
linked with a special purpose register on another 
cell in such a way that a circular chain is formed. 
Data may be passed through this chain in serial 
fashion. 

a N E W S  Similarly to the daisy chain, the output 
of each cell's ALU is linked with a special purpose 
register in four other cells so that the cells form a 
square with each cell able to communicate directly 
with cells in four directions. 

a r o u t e r  A special purpose register of each cell in a 
local area is linked with the router for that local 
area. The routers form a network that establishes 
the complete adjacency of the architecture. 

In this simulation cells are refered to in relation to 
thier local area. Each cell has a number in it's local area 
and that local area has a router number. So, each cell 
is refered to as: 

Network Topology It is obvious that with groups of 
cells being served by routers, all cells are not actually 
directly adjacent. Complete adjacency is established in 
the architecture by the fact that each cell can commu- 
nicate indirectly with any other cell in the connection 
machine without cells berng a part of the communrcalton 
procesJ ezcept at the termrnal points. In other words 
cells only see messages that they send or are sent to 
them - a cell will never recieve a message that it must 
pass on. The task of transmitting messages is handled 
by the network. The network is composed of routers 
and data paths. Routers are described below. The data 
paths are k,i-directional links between routers. 

The routers are connected to each other by bi- 
directional data paths which allow routers to transmit 
messages to each other in both directions. The adjacen- 
cies made by these data paths form a boolean n-cube 
in which no router is further than lgn data paths from 
any other router. Messages are addressed to a particu- 
lar cell within the local area of a particular router. The 
cell is addressed by a cell number (cell address), while 
the router is referred to by it's location on the n-cube 
relative to the router that is sending the message (router 
addre~s). The router address contains all the iriforma- 
tion necessary to route the message at any poilit in it's 
transmission. 

Each router has lgn  data paths which establish it's 
adjacency with lg n other routers on the network. These 
data paths may be enumerated so that path z on any 
given router is known as path z to the router on the 
other end. In this way if two routers both transmit 
a message along path i they exchange messages with 
each other. The numbers that are given to the paths 
are called the path's damenston and all tlie routers in 
the network transmit on only one dimension at a time. 
When all of the routers transmit on one dimrnsiori it 
is referred to as a dimenston cycle. The network exe- 
cutes dimension cycles for each dimension consecutivc.ly 
beginning with the first: 

Once the network has executed a dimension cycle for 
all lgn dimensions it starts over again at the first di- 
mension. lg n dimension cycles makc, up onts petz te  cyc l r  
in which dimension cycles are cxecutcd for all of the 
dimensions: 

I 

R o u t e r s  The routers are composed mainly of buffers 
and termination points for data paths. Since the data 
paths are of limited capacity, the router savcs it's mes- 
sages in buffers. Messages have priorities and addresses 
that regulate their transmission. .4ddresses tell which 
data path a message needs to travel on and priorities 
are used to resolve the collision that occurs when more 
than one buffered message needs to travel on a single 
message path at  the same time. 

The Simulator 

UTe have constructed a piece of software that simulates 
the connection machine described above. This software 
simulates the hardware from the host machine inter- 
face down to the level of each bit of the connection ma- 
chine. Cells, routers, and data paills are all visually 
represented. 



The simulator runs as a separate process that re- 
cieves instructions and memory requests from a user 
application. The user application starts the simulator 
and establishes several lines of communication with it. 
These communication lines are analogous to the inter- 
face with the host machine and the user application is 
analogous to the process running on that host machine. 
The communication lines allow instructions to be sent 
to the simulator and allow access to the cell memory one 
byte at  a time. The disk DMA path is not supported. 

The network is composed of 256 routers each having 
16 local processing cells. Each cell has 2k bits of local 
memory. 

Operating Environment 

CMS is implemented under UnixTM using the 
S u ~ V i e w ~ ~  integrated application environment. All 
displays that are called control panels are implemented 
using the SUNViewTM panel objects and SUNViewTM 
canvases. It is sufficient for the user to familiarize them- 
selves with the operation of these objects to use most 
of the mouse commands in the simulator. 

User Interface 

The simulator provides an in- 
terface through SUNViewTM which behaves much like 
a traditional machine level debugger. 

Windows 

The simulator visually represents the components of the 
simulated connection machine through several windows. 
These windows may be overlapped in the SUNViewTM 
environment as shown in Figure 2. There are separate 
windows for: 

Cells 

Routers 

Complete Network 

Global Instruction Bus 

These windows contain control panels which provide 
access to the commands via the mouse. The data in the 
windows is updated in real-time. For example, when a 

Byte Value 00 

N C  D Z 
G G G G G G G G E U R R A P I E  
D D O P D D D D Y L n L P A U D  

Router: 0 Rsrsagss~ 0 
Bui ld ing .  0 Cycle: 0 
Adjacencles: Bulld B l t :  0 
128 64 32 16 8 4 2 1 

status 
m x t b  
. m r  1 - ... . , 

t c d  Address Proc Men Massage 
I n b u f f :  8 0 0 0  0000B000 B 000 B00BeBi30 

Figure 2: A sample CMS screen 

ORIGINAL PAGE 
BUCK AND WHITE PHOTOGRAPH 



memory request comes through from the host to store a 
value in memory and the cell which owns .that memory 
is shown, then the window which shows that cell will be 
updated with the new memory value. 

Commands 

The simulator commands are meant to allow it to fuc- 
tion similarly to a traditional machine language debug- 
ger. There are commands to alter the contents of cell 
memory and cell flags, execute instructions, and even al- 
ter the behavior of the machine. All commands may be 
entered as  text in a command line format, and some are 
accessable via pushbuttons and control panels. There is 
also an indirect command file capability for automated 
execution. 

The area of the windows which displays the data is 
active in the sense that clicking the mouse over certain 
areas of the display will cause commands to be executed. 
Some examples: 

Clicking the mouse over a cell flag will cause the 
flag to change in value to a '0' or '1'. 

Clicking the mouse over one of the adjacencies 
in the router window will cause the window to 
switch from displaying the old router to display 
the router adjacent to it on the dimension that 
was selected. 

Application Interface 
In the actual connection machine hardware, a conven- 
tional computer is required to host the connection ma- 
chine hardware. The host provides a front end for the 
connection machine's specialized computing power. It 
is essential for the simulator to have this design also so 
that the programmer has a feel for the abstraction pro- 
vided by the interface between the connection machine 
and the host. The connection between the host and the 
machine is called the microcontroller. 

The microcoritroller functions as both an interface to 
the connection machine hardware, and a low-level ab- 
straction of the connection machine's functionality. In 
general one macro-znatruction is translated by the mi- 
crocontroller into several connection machine instruc- 
tions called nano-rnstructsons. Because one macro- 
instruction can produce many nano-instructions the 
niicrocontroller must buffer the nano-instructions in a 
FIFO buffer. 

The siinulator provides a microcontroller as well. 
This microcontroller passes nano-instructions which are 
produced by the application through a pipe to the simu- 
lator which will read them in one at a time and execute 
them. The simulator in turn responds through another 
pipe for each instruction, thus providing the necessary 
syncronization. The microcontroller is divided into 2 

Nan~lnetruainns 
and 

controller controller 

Figure 3: Diagram of relationship between microcon- 
trollers. 

modules: the application microcontroller (used by the 
host) and the simulator microcontroller (used by the 
simulator). 

The Application Microcontroller 

The application microcontroller provides access to the 
connection machine from the user application program. 
The goal in it's design was for the application to ap- 
pear to be talking to an actual hardware device whose 
memory was attached to the bus. However, to be 
realistic the microcontroller must also provide macro- 
instructions and translate these into nano-instructions 
for the machine to execute. The decision was made to 
do this on the application side so that the user is able to 
experiment with his own high-level abstractions of the 
connection machine operations. 

The Simulator Microcontroller 

The microcontroller on the simulator is not under the 
same burden of having to appear to be talking to hard- 
ware. It is implemented as a separate module of the 
simulator software. There is no direct communication 
between the programmer and the simulator microcon- 
troller, except via the application microcontroller. 

References 

[Hillis 861 Daniel W. Hillis. The Connection Ma- 
chine. M.I.T. Press, Cambridge, Mass. 

[Sun 861 Sun Microsystems. SxnView Program- 
mers Guide. Sun Microsystems, Inc., 
Mountain View, Ca. 

[Think 86-14] Introduction to Data Level Parallelism, 
Thinking Machines Corp., TechnicaI 
Report Series, TR86-14, April 1986. 

[Think 87-41 Connection Machine Model CM- 
I Technical Summary, Thinking Ma- 
chines Corp., Technical Report Series, 
HA87-4, April 1987. 



ADDITIONAL PAPERS 



SIGNAL PROCESSING WITH NODAL NETWORKS ON A 
SlMD MASSIVELY PARALLEL PROCESSOR 

William I. Lundgren 

GE Aerospace Advanced Technology Laboratories 
ATL Building, Moorestown, NJ 08057 

Abstract 

The goal of the work reported in this paper is to 
develop methods for using a large scale SlMD parallel 
processor such as the Connection Machine for signal 
processing. The primary focus of the work reported in 
this paper is to develop nodal network methodologies 
that can be used to effectively implement algorithms that 
range from signal processing to discrete logic systems. 
One benefit of nodal network methodologies is their 
inherent SlMD nature. As a result their implementations 
are closely related to the architecture of SlMD parallel 
processors like the Connection Machine. Also, the 
homogeneity provided by such systems allows the 
uniform integration of signal processing and discrete 
logic systems. As a first step we have implemented two 
versions of an algorithm to track formants in speech. The 
first . implementation uses data parallel coding 
techniques. The second implementation uses a nodal 
network. The algorithm contains logic that, at every 
frequencyttime point in a spectrogram, chooses between 
several filters to find the filter that best matches linear 
energy structure at that point. The choice of filter at each 
point is determined on the basis of information in 
adjacent points. The nodal network implementation of 
the algorithm uses only two node types, a fuzzy AND 
and a fuzzy OR (henceforth referred to as AND nodes 
and OR nodes respectively). The connections between 
nodes can be either non-inverting or inverting. The 
inverting effectively produces a NOT. The algorithm 
relies on the parameters associated with each node and 
connectivity between the nodes to simulate the original 
algorithm. The result is a nodal network "programmed" 
to identify formants in a spectrogram. The two 
implementations are comparable in performance and 
speed of execution. The conclusion is to continue the 
investigation of this type of nodal network. 

1.0 Introduction 
The long term goal of this work is to develop nodal 

network techniques for large vocabulary speaker 
independent speech recognition. In speech recognition, 
the biggest problems are that small changes in the 
acoustic signal can change the word recognized, and 
conversely,~acoustically different speech signals may be 
recognized as the same word. Systems that use data 
reduction to decrease the size of the input vector smooth 
the signal and remove some distinctive features of the 
speech. Large input vectors are necessary if the input is 
to contain enough information to make fine distinctions 
between acoustic inputs. Further, the classifier must be 
able to selectively focus on small or large amounts of 
acoustic information as required. This provides the 
capability to build a classifier that is a complex mapping 
between the acoustic input and the words recognized. 
Unfortunately these two characteristics, a large input 
vector and flexible use of the acoustic input, make the 
task of training very difficult. 

Nodal networks provide the capacity and flexibility 
required. The network described below was designed to 
provide a means for dealing with large input vectors, 
complex classifiers and, eventually, automatic training. A 
high level diagram of the sought after system with 
training is shown in Figure 1. The system is divided into 

Result 

Processing 

Input A t  ~ . r u t t  
Processing from External Source 

Figure 1. High Level Diagram of Future System. 



a classifier and a trainer. The classifier consists of a 
large network of nodes, an input preprocessor and a 
post processor. The automatic training consists of a 
node configuration module and a knowledge base. Note 
that rather than applying the knowledge during the 
classification process the knowledge is used off line to 
train the network. The heart of the problem is to decide 
how the network configuration module should choose a 
network configuration to address a particular recognition 
task. For even the very simple network topology 
described below using a modest set of nodes (10 levels, 
1000 nodes at each level) leads to a huge set of 
potential solutions. It is easy to establish a lower bound 
of 10 to the power of 60,000. The system described 
below does three things to help the node configuration 
module select a meaningful solution. It uses: 

1) a knowledge base to guide the training of the 
network from the top down. 

2) well established node configurations that can 
be used for specific types of tasks. 

3) consistencies in the acoustic input to drive the 
training from the bottom up. 

The knowledge makes it possible to train the network in 
spite of a small amount of training data compared to the 
size of the solution space. 

This paper focuses on the development of nodal 
network configurations for processing data. After the 
configuration of nodes for various tasks are adequately 
understood, the effort will be shifted to the automatic 
training of the nodal networks. The approach to training 
proposed in this paper differs from that proposed by 
others (Refs. 1, 21. Some basic ideas for the training of 
the nodal network are presented in the appendix of a 
technical report by Dave Graff and the author (Ref 3). 
The methodology discussed there is manual training. 
That methodology was developed with the intent of 
eventually automating the procedure and introducing a 
knowledge base to produce an automatic training 
capability. 

2.0 The Nodal Network 
The nodal network is designed to provide the 

following two features: 
1. Hierarchical processing of the data. The goal is 

to provide layers of information, each slightly more 
abstracted from the data. The hierarchical nature of the 
system provides information at each level on which 
future training can be based. Hence, during the course 
of training an instance of the nodal networks, one would 
have an increasingly complete set of fundamental 
nodes. As the set of nodes becomes more complete the 
training will become easier. 

2. Uniform integration of "symbolic" and numerical 
processing. Each node in the system can be thought of 
as a numerical value and symbol pair. For example, the 
input nodes described below are a Power Spectral 
Density (PSD) of the speech signal. The node can be 
labeled "Spectral Power at Af ' n hz." Af is the frequency 
resolution of the PSD and n is the number of the PSD 

nodes. Higher in the network the node values 
approximate a likelihood. For example, one of the nodes 
described below will be "band of spectral power at Af ' n 
hz and angle k". 

The intent is to develop a knowledge base and a 
set of nodes that are directly related. This will insure that 
the node configuration module will be able to use the 
knowledge base to assist in the configuration of the 
nodal network. Further, the hierarchical nature of the 
network will provide knowledge that is increasingly 
abstracted from the acoustic data and more directly 
related to the words. The homogeneous representation 
of knowledge at every level of the system makes 
feedback between any levels in the system possible. It 
also provides for homogeneous access to all levels of 
information when making a decision. 

2.2 Description of the Nodal Network 
A nodal network can be fully described by 

specifying the node layout, the interconnectivity of the 
nodes and the definition of how the nodes process their 
inputs. An example of the node layout and 
interconnectivity is shown in Figure 2. There are multiple 
levels of nodes (10 or 20 levels is reasonable) and in 
the current system there are two inputs to each node. 
Past implementations by the author have used four or 
five inputs to each node. Any network using two or more 
inputs can be implemented with a networks using only 
two inputs to each node. At this point it is not clear that 
there is any advantage to using a larger number of 
inputs per node. Feedback is a potentially powerful 
device not used in the current network. Figure 2 shows 
one example of feedback. The role of feedback and 
stability of networks with feedback will be the subject of 
future work. 

The nodes are simple in behavior and similar to 
some of the other nodes used in the neural network 
community (Ref s.1, 2). The inputs are each transformed 
with a linear equation. The slope and the intercept used 
are unique for each input of each node in the network. 
The result is then thresholded to maintain the value 

Two 
Inputs to 
each node 

Output 
For example: 
Forinant Risina 

I F  I *  , bPut 
C ~, 

Figure 2. Node Layout and Interconnectivity. 



between 1.0 and 0.0. The inputs can be "inverted", i.e. 
after transformation and thresholding the result can be 
subtracted from 1.0 to produce a NOT of the input. The 
two inputs to a node are either summed and divided by 
2 (to insure the input remains between 1.0 and 0.0) or 
they are multiplied. The summation produces a node 
that behaves like an ORing of the inputs. The 
multiplication produces a node that behaves like an 
ANDing of the inputs. Two examples of nodes are 
shown in Figure 3. 

Figure 3a. AND Node. 

3.0 Approach 
The approach is centered on the use of a relatively 

simple application as a tool to explore programming of 
nodal networks. The application chosen for this study 
was recognition of formant peaks in a 
time-frequency-power representation of a speech signal. 
Two implementations of an algorithm to identify formant 
peaks were coded for comparison. The first used 
standard coding techniques with one processor 
assigned to each element in the time-frequency plane. 
The second implementation used a similar processing 
string, but was coded with a network of fuzzy AND and 
OR nodes. Each node in the network was assigned to a 
processor. 

This approach was chosen because it illustrates: 
1) The feasibility of using a nodal network to perform a 
signal processing task and 2) the design of a basic 
nodal network to perform some functions required by a 
signal processing task. 

4.0 The Application 
4.1 The Input Data 

Formants are bands of energy in the spectral 
representation of speech. They are a result of the shape 
of the vocal tract and the associated resonances at the 
time the sound was produced. for this study, the time 
waveform of speech data was passed through an 
anti-aliasing filter with a cutoff at 4000 hz and was then 
sampled at a 10 kHz sampling rate. The analysis frames 
were hand aligned to the pitch periods in the time 
waveform (see Figure 4). This removed much of the 
temporal variation in the magnitude of the formants. 
(One of the next tasks will be to develop a spectral 
analysis network that automatically centers analysis 
frames on the pitch periods.) The analysis windows 
were hamming windows 128 samples long. The FFT 
produced a spectrum of 64 values ranging from DC to 
4922 hz in 78.1 hz increments. An example of the 
formants used in this study are shown in Figure 5 (next 
page). The spectrogram shown is of an adult male 
speaker. The pitch period for this speaker averages 
about 10 msec. 

The formants extend for a finite duration in the time 
direction and move up or down in frequency over time. 
The objective of the algorithms coded for this effort is to 
track those formants as they start, stop and move 
through time. 

Figure 4. Segement of Speech Data. Each repetition of 
similar data is a pitch period. Figure 3b. OR Node. 



4.2 Processing String - Conventional Algorithm 
1) The first step is to convolve the image with 19 

elongated kernels oriented at angles between -45 
degrees and +45 degrees (0 degrees is aligned with the 
time axis). The idea of using elongated filters at different 
angles was first suggested by Dr. John Meckley (Ref 4). 
At each time-frequency point the kernel most closely 
aligned to the energy structure in that region is selected. 
The kernel is selected by choosing the convolution 
result that changes the most as the kernel is shifted 
along the frequency axis. If two or more results are the 
same size the angle nearest to 0 degrees is chosen. The 
value of that convolution becomes the new value at that 
pixel. The angle of orientation of the largest convolution 
result is also recorded. The result of this matched 
filtering is an enhancement of the formant peak energy 
relative to the other energy in the signal. 

2) The new image is then rescaled at each point 
by thresholding with the average energy in nearby 
locations. 

3) The data is then spread along the angle chosen 
in step one: a) The data is multiplied by 113 and added 
to the data samples which are two data points away 
along the chosen angle (both backward and forward 
along the angle). b) The data is then multiplied by 213 
and added to the data in the adjoining points along the 
chosen angle. 

This process, spreading the likelihood of being a 
peak along the angles selected in step one, would be 
equivalent to low pass filtering if all angles were aligned. 

4) The final step is to again threshold the result of 
step four to produce a binary output image. 

The implementation on the Connection Machine 
was accomplished by assigning one data point to each 
processor and simultaneously working on 128 
spectrums of 64 data points each. 

The rescaled data and the final results are shown 
in Figure 6. 

4.3 Processing String - Nodal Network Algorithm 
The processing steps used in the nodal network 

are similar to those used in the conventional algorithm. 
The primary difference is a change in their sequencing. 

1) The first step is low pass filtering (LPF) of the 
data along the time axis. This smooths out some of the 
irregularity in the spectrum that results from noise added 
to the formant structure. 

2) A local average LPF spectrum is calculated 
based on 8 data points. Again this is along the 
frequency axis. This result is maintained independently 
of the LPF spectrum from step 1. 

3) The LPF spectrum is then set to zero if it is less 
than the average in its area, to one if it is 118 or more 
bigger and otherwise scaled linearly between those two 
values. This rescales the whole spectrum relative to the 
average in the area around it. 

4) The data is then reduced further by determining 
if each point is a peak in the modified energy along a 
given time slice. 

5) The final step is to determine if there is a 
continuity of peaks along each of the possible angles. 

The results at Steps 3, 4 and 5 are shown in 
Figure 7. For completeness, all node definitions are 
given in Table 1. The first three layers of the nodal 
network are diagrammed in Figure 8. 

Figure 6a. Conventional Implementation - Rescaled Data. 

Tlnn * 

Figure 5. Spectrogram of Adult Male. Elongated dark Tim 

areas are formants. Figure 6b. Conventional Implementation - Finale Result. 

666 ORIGINAL PAGE 
BCACK AND W H i i E  P:iqTr)GRdPH 



,:DRIGINA[ PAGE

BEACK A,';D WHilE PHOTOGRAPH

Explanation of table:
Each node Is repeated for every elemenl (64 0f them) in the

spectrum. The first array Index Is the offset along the frequency axIs.
The second index Is the offset along the time axIs. Note that all time

offsets are less than or equal to zero. This is because the "recent"
history o! a node Is kept but future values are unavailable. If the time
offset is 0 the second index is omitted. The name to the left of the

equal sign is the name of lhe code. The two (or one) names to the

right of the equal sign are the names of 1he input nodes. If a pair of
numbers enclosed in braces follows the nods name that Input is
transtormed using the first number as the slope and the second the
intercept. If there Is no pair of numloers the slope is by default 1.0

and the intercept 0.0. If a NOT follows the node name (or the
braces) the input is inverted.

New input data is inserted every time iteration.
input{0] INPUT

Low pass filter (LPF) the input along the frequency axis.
Ipf 110] - input{0] OR inputll]

Ipf 210] - Ipl 1[0] OR Ipl_l[-1]
Ipf 310] = Ipl_2[0] OR Ipf 211 ]
Ipf_4[0] = 11)1_310] OR Ipf_3[-ll

Average the 8 LPF along the frequency version.
Alpf_llO ] = Ipl_4[O] OR 11:)1_411]
Alpf_210] = Alpl_l[0] OR Alpf 112]

Alpf[0) - Alpl_2[0] OR Afpf_2[-4]
Rescale lhe data to remove low amplitude energy.

sclI[0] = Ipf 4[-3] OR Alpt[0] NOT
scl[0] = sdl[0] {16. -8.] SCALE

Iderdity local maximum along the frequency version.

pkl [0] = scl[0] OR scl[-1] NOT
pk2[0] = scl[0] OR scql] NOT

pk[0] - pkl[0]150. -25.) AND pk2[0](50. -25.}
Identity Continuities along lime version of length 2.

C_00[0] -pk[0](2. 0.} OR pk[0](-1]{2. 0.}
C_01[0] = pk[0]{2. 0.) OR pk[1]l-l] [2. 0.}

M_01[0] =pkl0]{2.0.) OR pk[-1]l-l](2,0.)

Form Continuities of lenglh 4 at various angles along time dimension.
C_0000[0] = C_00[0] OR C_00{0] l-2)

C_0001[0] - C_00[0] OR C_0110]1-2]
C_001110] - C_00(0I OR c_oo[1]l-2]
c o1111o] = c o1[ol OR C_00[1]1-2]

C 001210] = C_00[01 OR C_0111]1-2]
C_011210] = C 01[0l OR C_01[11[-2]

C_0122[0] = C_01[0] OR C_0012][-2]
C_0123[0] , C_01[0] OR C_0112][-2]
M 0001(0] = C 00[0] OR M_01[0][-2]

M_001110] = C_00[0] OR C_00[-ll[-2l
M_011110] . M_01[0] OR C_00[-11[-2]

M 0012[0] = C_00[0] OR M 01[-1][-2]
M_011210] = M 01[0] OR M_01[-1][-2]
M_0122[0] = M_0110 ] OR C_00[-2][-2]

M_0123[0] = M 01[0] OR M_01[-2][-2]
Determine if one of the continuities of lenglh 4 is large• Input
threshold, {8. -5.}, requires three oul of the four Inpul peaks be large.

There are actually only 15 conttnollies The input to the first node is
multiplied by 4 (rather than the 8 used in the other nodes) so that its

contribution will be the same as the other 14 nodes. The final scaling
requires that 1 of 16 continuities be large

C_t 11[0] = C_0000[0] {4. -2.5) SCALE
C_t12[0] = C 0001[0] {8. -5.} OR M 000110 ] {8. -5}

C t13[0] = C_001110] {8. -5.} OR M_001110] {8. -5.]
C_t14[0] =C_0111[0]{8. -5.} OR M_0111[0][8. -5,}
C_t15[0] = C_0012[0] {S. -5.} OR M_0012[0] {8. -5l

C_t16[0] = C_0122[0] {8. -5.} OR M_0122[0] {8. -5.}
C_t17[0 ] = C_0123{0] {8. -5.} OR M_0123[0] (8 -5.}

C_t18[0] = C_011210] {8. -5} OR M_0112[0] {8. -5.}
C_t21[0] = C_t 11[0] OR C_t 12[0]
C_t22[0] = C_t1310] OR C t14[0]

C_t23[0] = (::11510] OR C t16[0]
C t24[01 = C t17[01 OR C t17[0]
C_t31[0] = C t21101 OR C 12210]

C t32[0] = CJ23[0] OR C_f24[0]
C_t4t[0] = C_t31[0] OR C_132[0]

final{0] - C_t41[0] {32 -2.} SCALE

Table 1. A Listing of All the Nodes

_o 2,"

..-L

Figure 7a.

_.._=

"rim

Nodal Implementation - Resclaed Data.

5_O0--.

4)000--

==-

1000--

• % ==.=" =.=

Time

Figure 7b. Nodal Implementation - Formants Identified.

Figure 7c.

4000--

O 3OOO-

=-
,,'- 2ooo

10_1.

Time

Nodal Implementation- Continuity at -45°

=m

m m

_m

,-,..

=•

d,

_....
..--m.__.------

m m/m •

Time

Figure 7d. Nodal Implementation - Final Result

667



LPF'~ Spectrum ---+ 0 

Figure 8c. Nodes to Enhance Spectral Peaks 

The nodes shown in Figure 8a are low pass filter 
(LPF) the inputs. The connections shown by the heavy 
lines indicate the paths that lead to a single output node. 
Notice that the input nodes contribute through multiple 
paths to the output nodes. The numbers at the bottom 
indicate the relative contribution of each of the nodes. 
Notice that the scaling of inputs is consistant because at 
every level all values are divided by 2. 

The nodes in Figure 8b calculate the average of 
the LPF. The three levels together produce outputs that 
are the sum of 8 LPF nodes. Notice that the input nodes 
contribute only through a single path to the output 
nodes. The division by two at each of the three levels 
accumlates to a division by 8. The result is an exact 
average of the 8 input connected by the heavy lines. 

The nodes in Figure 8c perform a rescaling by 
summing the LPF value (Ipf) and the inverted average 
(Alpf). The intermediate result (scll) is: 

sell = (Ipf + (1 - Alpf)) 1 2 (1 

or reducing 

The next node multiplies this result by 8 and then 
subtracts 4 to give the output z. Inserting and reducing 
gives: 

z = 4 ' (lpf - Alpf) (3) 

Figure 8b. Nodes to Average LPPd Data 

dl connactlo~ have 
slop of I .O and 
Intercept of 0.0 

input nodes 

1 4 6 4 1 
v 

relative mlghtlng of nodes 

Figure 8a. Nodes to Low Pass Filter Spectrum 

Notice that the result is 0 if Alpf is greater than Ipf. It is 
equal to one if Ipf is greater than Alpf by more than 114. 

The implementation of this algorithm on the 
Connection Machine is accomplished by assigning one 
processor to each data point in the network. The 
spectrums, each with 64 data points, are pipelined 
through the system. In affect the system is being used in 
a "compute level" parallelism fashion. 

5.0 Results 
The figures in the previous section illustrate that 

the algorithms do work for the example given. Note that 
the single spectrogram evaluation is very insufficient but. 
the goal of this effort was to illustrate the use of nodal 
networks not to produce a "fieldable" algorithm. Both 
algorithms perform similarly on this spectrogram. 

The speed of execution of the two implementations 
indicates that there is not a strong difference in the 
efficiency of the two algorithms. The ratio of execution 
time is approximately 4 : l  (nodal network to 
conventional). It must be pointed out that performance 
was not a focus of this work. The conventional 
implementation was mildly massaged to improve the 
performance. No such massaging was done for the 
nodal network algorithm. Further, the nodal network 
algorithm was implemented in floating point and the 
conventional algorithm in 8-bit integer. The nodal 



network implementation can be easily implemented in 
fixed point and the data communications can be 
dramatically improved without much effort. It is very likely 
that the execution time of the two systems would then be 
comparable. 

6.0 Conclusions 
The first conclusion suggest the continuation of 

this work. Nodal networks can provide a method for 
parallel processing one dimensional signal data in a 
massively parallel SIMD processor i f  the processor has 
a reasonably efficient system for random interprocessor 
communications. There are certainly a lot of questions 
left unanswered about the long term system. Still the 
experience is encouraging. The software that supports 
"programming" of the nodal network is improving and, in 
turn, making the exploration of these systems much 
easier. 

7.0 Acknowledgements 
I want to thank my wife Amy and my children 

Jeremy and Autumn for their support during the work 
leading up to this paper and during its preparation. 

8.0 References 
1. Minsky, M. and Papert, S. (1969). Perceptrons. An 

Introduction to Comwt iona l  Geometry. MIT Press, 
Cambridge, Mass. 

2. Fukushima, K. and Miyake, S. (1982). 
Neocognitrom: A New Algorithm for Pattern 
Recognition Tolerant of Deformations and Shifts in 
Positions. Pattern Pecognition, Vol. 15, No. 6, pp 
455-469. 

3. Graff, D. and Lundgren, W. (1987). 
Speaker-Independent Connected Speech. RADC 
Tech. Rep. RADC-TR-87-58. 

4. Meckley, J. GE Areospace Advanced Technology 
Laboratories. Personal communication. 



PRECEDING PAGE BLANK NOT FILMED 

USEFULNESS OF THE MASSIVELY PARALLEL PROCESSOR FOR STUDY OF ELECTRONIC 
PROPERTIES OF ATOMIC A N D  CONDENSED MATTER SYSTEMS 

N .  S a h o o  T. P .  D a s  
D e p a r t m e n t  o f  P h y s i c s  

S t a t e  U n i v e r s i t y  o f  New Y o r k  a t  A l b a n y  
A l b a n y ,  New Y o r k ,  1 2 2 2 2  

S. N .  Ray 
S o f t w a r e  C o r p o r a t i o n  o f  A m e r i c a  

6 7 0 3  S p e n a r d  R o a d ,  B o w i e ,  M a r y l a n d ,  2 0 7 1 5  

ABSTRACT s y s t e m s  a c c u r a t e l y  i n  t h e  o n e - e l e c t r o n  a p -  
p r o x i m a t i o n .  The  t h i r d  p r o c e d u r e  we h a v e  

We h a v e  b e e n  i n v e s t i  a t i n  b e e n  e x a m i n i n g  f o r  a d a p t a t i o n  t o  t h e  MPP 
o f  i n c r e a s e  p o s s i b l e  i n  t R e  ef?iEkEn:;tz;t i s  t h e  many-body  p e r t u r - b a t i o n  t h e o r y  
c o m p u t a t i o n s  o f  e l e c t r o n i c  s t r u c t u r e s  a n d  ( R e f .  3 )  w h i c h  h a s  b e e n  e m p l o y e d  w i t h i n  
p r o p e r  t i e s  o f  a t o m i c ,  m o l e c u l a r  a n d  c o n d e -  t h e  f r a m e w o r k  o f  b o t h  n o n - r e l a  t i v i s t i c  a n d  
n s e d  m a t t e r  s y s t e m s  when o n e  u s e s  t h e  r e l a t i v i s t i c  t h e o r i e s  f o r  e l e c t r o n i c  s t r u -  
M a s s i v e l y  P a r a l l e l  P r o c e s s o r  (MPP).  The  c t u r e s  a n d  h y p e r f i n e  p r o p e r t i e s  o f  a  l a r g e  
u s e f u l n e s s  o f  MPP i n  i m p r o v i n g  t h e  s p e e d  n u m b e r  o f  a t o m s .  I t  i s  e x p e c t e d  t h a t  t h e  
o f  e v a l u a t i o n  o f  t w o - c e n t e r  e l e c t r o n i c  a n a l y s i s  o f  t h e s e  t h r e e  p r o c e d u r e s  w i  11 
i n t e g r a l s  a n d  f o r m a t i o n  o f  F o c k  m a t r i x  p r o v i d e  a  b r o a d - b a s e d  t e s t  o f  t h e  p o t e n t i -  
e l e m e n t s  n e c e s s a r y  i n  e l e c t r o n i c  s t r u c t u r e  a l  a d v a n t a g e s  o f  t h e  MPP ( R e f .  4 )  f o r  
i n v e s t i g a t i o n s  o f  m o l e c u l a r  a n d  s o l i d  e l e c t r o n i c  s t r u c t u r e  i n v e s t i g a t i o n s .  
s t a t e  s y s t e m s  i s  a n a l y z e d .  The  W h i l e  o u r  i n v e s t i g a t i o n s  a r e  c u r r e n t l y  i n  
p o s s i b i l i t y  o f  r e d u c t i o n  i n  t h e  t h e i r  e a r l y  s t a g e s ,  we b e l i e v e  t h a t  t h e  
c o m p u t a t i o n a l  t i m e  f o r  c a l c u l a t i o n  o f  t h e  r e s u l t s  o f  o u r  e f f o r t s  s o  f a r  may be  
l a r g e  n u m b e r s  o f  m a t r i x  e l e m e n t s  f o r  u s e f u l  t o  o t h e r  i n v e s t i g a t o r s  i n t e r e s t e d  
e l e c t r o n - e l e c t r o n  i n t e r a c t i o n s  n e e d e d  i n  i n  u s i n g  MPP f o r  s i m i l a r  c a l c u l a t i o n s .  
many-body  p e r t u r b a t i o n  t h e o r y  f o r  a t o m i c  S e c t i o n  I1 w i l l  p r e s e n t  o u r  w o r k  o n  
s y s t e m s  by u s i n g  a  p a r a l l e l  a l g o r i t h m  f o r  t h e  H a r t r e e - F o c k  G a u s s i a n  p r o c e d u r e  f o r  
n u m e r i c a l  i n t e g r a t i o n s  i s  a l s o  d i s c u s s e d .  m o l e c u l a r  a n d  s o l i d  s t a t e  s y s t e m s  a n d  

S e c t i o n  111 o n  t h e  many-body  p e r t u r b a t i o n  
t h e o r y  f o r  a t o m i c  s y s t e m s .  S p a c e  d o e s  n o t  

K e y w o r d s :  E l e c t r o n i c  S t r u c  t u r e ,  H a r t r e e -  p e r m i t  u s  t o  d e s c r i b e  o u r  p r o j e c t  c o n c e r n -  
F o c k  T h e o r y ,  Many-Body T h e o r y ,  A t o m s ,  Mol- e d  w i t h  t h e  a d a p t a t i o n  o f  t h e  SCCEH 
e c u l e s  a n d  S o l i d s ,  P a r a l l e l  C o m p u t a t i o n .  p r o c e d u r e  t o  t h e  MPP. I t  w i l l  b e  

p r e s e n t e d  i n  a  f u t u r e  p u b l i c a t i o n .  
S e c t i o n  I V  s u m m a r i z e s  o u r  c o n c l u s i o n s .  

SECTION I. INTRODUCTION 

We h a v e  b e e n  e n g a g e d  i n  a n  e x a m i n a t i -  
i o n  o f  t h e  p o s s i b i l i t y  o f  e n h a n c i n g  t h e  
s p e e d  a n d  s c o p e  o f  e l e c t r o n i c  s t r u c t u r e  
i n v e s t i g a t i o n s  i n  a t o m s ,  m o l e c u l e s  a n d  
c o n d e n s e d  m a t t e r  s y s t e m s  t h r o u g h  t h e  u s e  
o f  t h e  M a s s i v e l y  P a r a l l e l  P r o c e s s o r  (MPP) 
a t  t h e  NASA-Goddard S p a c e  F l i g h t  C e n t e r  i n  
G r e e n b e l t ,  M a r y l a n d .  I n  t h i s  c o n n e c t i o n ,  
we h a v e  b e e n  i n v e s t i g a t i o n g  t h r e e  d i f f e r e -  
n t  p r o c e d u r e s  f o r  c a l c u l a t i o n  o f  e l e c t r o n -  
i c  s t r u c t u r e s  a n d  p r o p e r t i e s .  The f i r s t  
p r o c e d u r e  t h a t  we h a v e  b e e n  t r y i n g  t o  
a d a p t  t o  t h e  MPP i s  t h e  s e m i - e m p i r i c a l  
p r o c e d u r e  r e f e r r e d  t o  i n  t h e  l i t e r a t u r e  a s  
S e l f - C o n s i s t e n t  C h a r g e  E x t e n d e d  ~ G c k e l  
(SCCEH) p r o c e d u r e  ( R e f .  1 )  w h i c h  h a s  b e e n  
a p p l i e d  e x t e n s i v e l y  i n  t h e  l i t e r a t u r e  f o r  
t h e  s t u d y  o f  t h e  p r o p e r t i e s  o f  l a r g e  
m o l e c u l a r  s y s t e m s ,  i n c l u d i n g  h e m o g l o b i n  
d e r i v a t i v e s ,  u s i n g  s e r i a l  c o m p u t e r s .  The 
s e c o n d  p r o c e d u r e  u s e s  t h e  f i r s  t - p r i n c i p l e s  
H a r t r e e - F o c k  a p p r o a c h  ( R e f .  2 )  u s i n g  
G a u s s i a n  b a s i s  s e t s  t o  s t u d y  t h e  e l e c t r o n -  
i c  s t r u c t u r e s  o f  m o l e c u l a r  a n d  s o l i d  s t a t e  

SECTION 11. ADAPTATION OF THE HARTREE-FOCK 
PROCEDURE INVOLVING GAUSSIAN BASIS TO MPP 

The  H a r  t r e e - F o c k  m e t h o d  ( R e f .  2 )  
i n v o l v e s  a  f i r s t - p r i n c i p l e s  a p p r o a c h  f o r  
e v a l u a t i o n  o f  e l e c t r o n i c  e n e r g y  l e v e l s  a n d  
w a v e - f u n c t i o n s  i n  t h e  o n e - e l e c t r o n  a p p r o x -  
i m a t i o n .  The  H a m i l t o n i a n  o f  a  m o l e c u l e  o r  
a  c l u s t e r  o f  a t o m s  u s e d  t o  s i m u l a t e  a  s o l -  
i d  s t a t e  s y s t e m  ( R e f .  5 1 ,  w h i c h  c o n t a i n s  n  
e l e c t r o n s  a n d  N n u c l e i  i s  g i v e n  by  

w h e r e  a t o m i c  u n i t s  h a v e  b e e n  u s e d ,  t h e  Z I  
r e f e r r i n g  t o  t h e  c h a r g e s  o n  t h e  n u c l e i  a t  
p o s i t i o n s  T I ,  Fi b e i n g  t h e  p o s i t i o n  v e c t o r  
o f  t h e  i t h  e l e c t r o n .  The  p r o b l e m  o f  
d e t e r m i n i n g  t h e  e l e c t r o n i c  s t r u c t u r e  
r e d u c e s  t o  s o l v i n g  t h e  m a n y - e l e c t r o n  
S c h r o d i n g e r  e q u a t i o n  x % = E ~  , w h e r e  i n  t h e  
H a r t r e e - F o c k  a p p r o x i m a t i o n  q i s  a  
d e t e r m i n a n t a l  f u n c t i o n  b u i l t  o u t  o f  LCAO- 
MO ( L i n e a r  C o m b i n a t i o n  o f  A t o m i c  O r b i t a l s -  

CH2649-2/89/0000/067 1 $01.00 O 1988 l EEE 



M o l e c u l a r  O r b i t a l s  w a v e - f u n c t i o n s  o f  t h e  
f o r m  + - I  %, wi, i e i n g  a t o m i c  b a s i s  
functif:sr'Yin t h e  G a u s s i a n  b a s i s  s e t  
a p p r o a c h  t h e  %L h a v e  t h e  f o r m :  

w h e r e  t h e  s y m b o l  I r e f e r s  t o  t h e  n u c l e u s  
o n  w h i c h  t h e  o r b i t a l F i  i s  b a s e d ,  3: r e f -  
e r r i n g  t o  t h e  p o s i t i o n  v e c t o r  o f  t h e  i t h  
e l e c t r o n  w i t h  r e s p e c t  t o  t h e  n u c l e u s  I .  
The  s o l u t i o n  o f  t h e  m a n y - e l e c t r o n  S c h r o d -  
i n g e r  e q u a t i o n  by a  v a r i a t i o n a l  p r o c e d u r e  
e n t a i l s  s o l u t i o n  o f  t h e  l i n e a r  e q u a t i o n s :  

Hf 
w h e r e  S i j  a n d  h i j  a r e  t h e  e l e m e n t s  o f  t h e  
o v e r l a p  a n d  F o c k  m a t r i c e s  a n d  a r e  g i v e n  
f o r  t h e  c h o i c e  o f  r e a l  o r b i t a l s  by 

The  n o n z t r i v i a l  s o l u t i o n s  o f  t h e  E q u a t i o n s  
3 a r e  o b t a i n e d  a s  u s u a l  by  s o l v i n g  t h e  
s e c u l a r  e q u a t i o n  -t ~ ~ Y : - E ~ S ~ J  = o  
t o  d e t e r m i n e  t h e  MO e n e r g y  l e v e l s  q ,  
t h e s e  b e i - n g  u s e d  i n  E q u a t i o n s  3 t o g e t h e r  
w i t h  t h e  n o r m a l i z a  t i o n  c o n d i t i o n s  o n  t h e  
M O ,  $ t o  d e t e r m i n e  t h e  c o r r e s p o n d i n g  C r i .  
An i t e r a t i v e  p r o c e d u r e  i n v o l v i n g  
s u c c e s s i v e  e v a l u a t i o n  t h e  u s i n g  t h e  C p i  
o b t a i n e d  f r o m  E q u a t i o n s  3 i s  n e c e s s a r y  t o  
o b t a i n  a  s e l f - c o n s i s t e n t  s o l u t i o n .  

An a n a l y s i s  o f  t h e  c o m p u t a t i o n a l  
s t e p s  i n v o l v e d  i n  t h e  H a r t r e e - F o c k  
p r o c e d u r e  l e a d s  o n e  t o  e x p e c t  t h a t  i t  c a n  
b e  e f f e c t i v e l y  i m p l e m e n t e d  o n  t h e  MPP w i t h  
s i g n i f i c a n t  e n h a n c e m e n t  i n  s p e e d  by u s i n g  
s u i t a b l e  a l g o r i t h m s  f o r  p a r a l l e l i z a t i o n  o f  
t h e  f o l l o w i n g  s t e p s :  

( a )  E v a l u a t i o n  o f  t h e  m u l t i - c e n t e r  
o n e - e l e c  t r o n  a n d  t w o - e l e c  t r o n  i n t e g r a l s  i n  
E q u a t i o n  5 a n d  t h e  o v e r l a p  i n t e g r a l s  S i j  
i n  E q u a t i o n  4 .  H F ( b )  F o r m a t i o n  o f  t h e  F o c k  m a t r i x  h i j  
u s i n g  t h e  c a l c u l a t e d  o n e  a n d  t w o - e l e c t r o n  
i n t e g r a l s  a n d  t h e  C p i  f r o m  t h e  p r e c e d i n g  
s t e p  i n  t h e  i t e r a t i o n .  

( c )  S o l u t i o n  o f  t h e  E q u a t i o n s  3 .  
C o n s i d e r i n g  t h e  s t e p  ( a ) ,  i t  i s  c l e a r  

t h a t  t h e  i n t e g r a l s  i n v o l v e d  i n  E q u a t i o n s  4 
a n d  5 a r e  i n d e p e n d e n t  o f  e a c h  o t h e r ,  m a k i -  
ng  them g o o d  c a n d i d a t e s  f o r  p a r a l l e l i z a t i -  
o n .  H o w e v e r  o n e  h a s  t o  d e v e l o p  s u i t a b l e  
a l g o r - i t h m s  t o  map t h e  c o m p u t a t i o n a l  p r o b -  
l e m  t o  t h e  a r c h i t e c t u r e  o f  t h e  MPP. A s  a  
f i r s t  s t e p  i n  t h i s  d i r c t i o n  we h a v e  u t i l i -  
z e d  t h e  MPP t o  e v a l u a t e  t h e  o v e r l a p  m a t r i x  
S  a n d  b e n c h m a r k e d  t h e  s p e e d  w i t h  r e s p e c t  
t o  t h e  s e r i a l  c o m p u t e r  UNIVAC 1 1 0 0 1 9 1 .  

An i m p o r t a n t  c o n s i d e r a t i o n  i n  t h e  
p a r a l l e l i z a t i o n  o f  t h e  p r o c z d u r e  t o  e v a l u -  
a t e  t h e  o v e r l a p  m a t r i x  S  i s  t h a t  t h e  o v e r -  

l a p  i n t e g r a l s  b e t w e e n  two  G a u s s i a n  o r b i t a -  
l s  o f  a n y  a n g u l a r  momentum ( s u c h  a s  s , p , d )  
o n  d i f f e r e n t  c e n t e r s  c a n  a l l  be  e x p r e s s e d  
i n  t e r m s  o f  o v e r l a p  i n t e g r a l s  b e t w e e n  Gau-  
s s i a n  s o r b i t a l s  ( w i t h  a i = o = b i = c  ) i n  Equ-  
a t i o n  2  o n  t h e s e  c e n t e r s ,  t h e a e  i n t e g r a l s  
b e i n g  e x p r e s s i b l e  i n  t h e  f o r m  ( R e f .  2 ) :  

. . 

- i ~ ~ ' J ~ ~ f i J ' " ' ' a n d  ( 7 ) w h e r e  K=C 

-* 2 
a n d  i s  t h e  s q u a r e  o f  t h e  d i s t a n c e  
b e t w e e n  n u c l e i  A a n d  B. T y p i c a l  o v e r l a p  
i n t e g r a l s  < z A l  s B >  a n d  < z A l  z B > ,  w h e r e  z A  
a n d  z g  r e p r e s e n t  G a u s s i a n  p, o r b i t a l s  o n  A 
a n d  B  w i t h  a i = O ,  bi=O a n d  c i  = 1  i n  
E q u a t i o n  2 ,  a r e  g i v e n  by  ( R e f .  2 ) :  

a n d  <zAlZB>= IAB (hh,- +.$.\CR)~I~ @ A ~ ~ ~  ( 8  ) 

T h u s  t h e  o n l y  o v e r l a p  i n t e g r a l s  t h a t  n e e d  
t o  b e  c a l c u l a t e d  a r e -  t h e  < sAl  s B >  be t w e e n  
v a r i o u s  c e n t e r s  i n  t h e  m o l e c u l e  o r  c l u s t e r  
u n d e r  s t u d y .  I t  s h o u l d  b e  n o t e d  t h a t  some 
o f  t h e  o v e r l a p  i n t e g r a l s  i n  E q u a t i o n s  6 
a n d  8  c a n  b e  o n e  c e n t e r  i n t e g r a l s  w i t h  K 
-1 f o r  t h e  < a  ( s B >  t e r m s  s i n c e  v a n i -  
s h e s .  F o r  o r k i t a l s  o f  d i f f e r e n t  s y m m e t r y  
s u c h  a s  s  a n d  p,, E q u a t i o n s  8  show t h a t  
t h e  o n e - c e n t e r  i n t e g r a l s  v a n i s h .  The 
e v a l u a t i o n  o f  t h e  < a A (  s  > i n t e g r a l s  u s i n g  
t h e  MPP i n v o l v e s  t h e  f o l l o w i n g  s t e p s .  
( a )  D e t e r m i n  t i o n  o f  t h e  d i s t a n c e  m t r i x  3 c o m p o n e n t s  (A ) 

X , Y , Z  
f r o m  w h i c h  , (f i  c a n  

be  c a l c u l a t e d .  
( b )  D e t e r m i n a t i o n  o f  t h e  Y ~ r ~  m a t r i x .  
( c )  D e t e r m i n a t i o n  o f  t h e  YAB m a t r i x  
( E q u a t i o n  7 ) .  
( d )  D e t e r m i n a t i o n  o f  t h e  N N B  m a t r i x  
i n v o l v i n g  t h e  p r o d u c t s  o f  t i e  
n o r m a l i z a t i o n  f a c t o r s  o c c u r i n g  i n  t h e  
o r b i t a l  e x p r e s s i o n s  ( E q u a t i o n  2 ) .  
( e )  D e t e r m i n a t i o n  o f  t h e  K m a t r i x  
( E q u a t i o n  7 ) .  
S i n c e  t h e  MPP c a n  d o  a r i t h m e t i c  o p e r a t i o n s  
i n v o l v i n g  1 2 8 x 1 2 8  p a r a l l e l  a r r a y s  ( R e f .  
4), t h e  G a u s s i a n  f u n c t i o n s  a r e  d i v i d e d  
i n t o  b l o c k s  o f  1 2 8  G a u s s i a n s  a n d  a l l  t h e  
p a r a l l e l  a r r a y s  o r  m a t r i c e s  i n v o l v e d  i n  
t h e  s t e p s  (a)-(e) h a v e  d i m e n s i o n  1 2 8 x 1 2 8 .  As 
a n  e x a m p l e ,  w e  w i l l  d e s c r i b e  t h e  a l g o r i t h m  
f o r  t h e  e v a l u a t i o n  o f  t h e  d i s t a n c e  m a t r i x  
f o r  1 2 8  p o i n t s .  F o r  t h i s  p u r p o s e ,  o n e  
f i r s t  c o n s t r u c t s  t h r e e  1 2 8 x 1 2 8  p a r a l l e l  
a r r a y s  w i t h  e a c h  c o l u m n  c o n t a i n i n g  t h e  x , y  
o r  z  c o o r d i n a t e  o f  a  s i n g l e  p o i n t ,  e . g .  

f o r  n = l  t o  1 2 8  a n d  111 t o  1 2 8 .  F o r  
i n s t a n c e :  

LC]= [I.: F.. : :::: J 
xi x,. - .  . x I Z *  



w i t h  128 r o w s  a n d  128 c o l u m n s .  One t h e n  
c a l c u l a t e s  t h e  t r a n s p o s e  o f  m a t r i c e s  [ C ] ,  
[Dl a n d  [ E l  f r o m  w h i c h  

a r e  o b t a i n e d .  One c a n  e a s i l y  s e e  t h a t  

T h e r e f o r e  t h e  d i s t a n c e  m a t r i x  f o r  
d i f f e r e n t  c e n t e r s  c a n  be o b t a i n e d  f r o m  

I n  c o n t r a s t  t o  s e r i a l  c o m p u t a t i o n  where  
t h e  a r i t h m e t i c  o p e r a t i o n s  a r e  c a r r i e d  o v e r  
one  d a t a  i t e m ,  l i k e  x i - x i ,  h e r e  we a r e  e v -  
a l u a t f  ng t h e  d l  f  f e r e n c e  e  t w e e n  x - c o o r d i n -  
a t e s  o f  a l l  t h e  128  c e n t e r s  s i m u l t a n e o u s l y  
T h i s  c a n  l e a d  t o  c o n s i d e r a b l e  s a v i n g  i n  
c o m p u t a t i o n a l  t i m e .  A s i m i l a r  p r o c e d u r e  
i s  f o l l o w e d  i n  c a r r y i n g  o u t  t h e  s t e p s  ( b )  
t o  ( d ) .  Once t h e  m a t r i c e s  i n  ( a ) ,  ( b )  a n d  
( c )  h a v e  b e e n  e v a l u a t e d ,  t h e  m a t r i x  ( e )  
c a n  be o b t a i n e d  d i r e c t l y  u s i n g  E q u a t i o n  7 .  
The p a r a l l e l  p a s c a l  p r o g r a m s  f o r  t h e s e  
s t e p s  h a v e  b e e n  w r i t t e n  a n d  t e s t e d  o n  t h e  
MPP.  I t  i s  s t r a i g h t f o r w a r d  t o  c a l c u l a t e  
t h e  o v e r l a p  i n t e g r a l s  <sAlq  u s i n g  E q u a t i o n  
6 .  I f  o v e r l a p  i n t e g r a l s  i n v o l v i n g  o t h e r  
o r b i t a l s  b e s i d e s  s  a r e  n e e d e d ,  one  makes 
u s e  o f  r e l a t i o n s  l i k e  t h o s e  i n  E q u a t i o n  8 ,  
t h e  q u a n t i t i e s  i n v o l v e d  i n  t h e s e  r e l a t i o n s  
b e i n g  a l r e a d y  a v a i l a b l e  o n  t h e  p r o c e s s o r s  
of  t h e  M P P .  

I n  a c t u a l  m o l e c u l a r  c a l c u l a t i o n s ,  t h e  
a t o m i c  b a s i s  s e t s  on  d i f f e r e n t  c e n t e r s  a r e  
e x p r e s s e d  a s  l i n e a r  c o m b i n a t i o n s  o f  
G a u s s i a n  f u n c t i o n s  G~~ ( same f o r m  a s  i n  
E q u a t i o n  2 )  i n  t h e  f g r m s :  

The o v e r l a p  i n t e g r i l  b e t w e e n  $ and  r B  
c a n  t h e n  be w r i t t e n  a s  a 

A B <x,1ra >= $f+i%d$i 15;~) ( 1 5 )  

E q u a t i o n  1 5  c a n  a l s o  be e v a l u a t e d  o n  t h e  
MPP by c o m p u t i n g  < ~ ' ~ 1  G~ >, t h e  o v e r l a p  
i n t e g r a l s  b e t w e e n  tRe p g l m i t i v e s ,  a n d  t h e n  
m u l t i p l y i n g  i t  w i t h  t h e  d  d  m a t r i c e s  
a n d  p e r f o r m i n g  t h e  sum i n 8 f c 8 i e d  i n  
E q u a t i o n  1 5 .  

Our b e n c h m a r k i n g  p r o c e d u r e  u s i n g  128 
a t o m i c  b a s i s  f u n c t i o n s  o f  t h e  t y p e  %+ i n  
E q u a t i o n  1 4 ,  w i t h  e a c h  b a s i s  f u n c t i o n  c o n -  
s i s t i n g  o f  a  c o m b i n a t i o n  o f  t h r e e  G a u s s i a -  
n s ,  h a s  shown t h a t  t h e s e  o n e  e l e c t r o n - t w o  
c e n t e r  i n t e g r a l s  c a n  be c o m p u t e d  1 5  t i m e s  
f a s t e r  i n  MPP c o m p a r e d  t o  U N I V A C  1 1 0 0 / 9 1 .  

The m a i n  f e a t u r e s  o f  t h e  a l g o r i t h m s  
d e v e l o p e d  f o r  t h e  o v e r l a p  m a t r i x  e l e m e n t s  
c a n  be d i r e c t l y  a p p l i e d  t o  e v a l u a t e  t h e  
o n e - e l e c t r o n  i n t e g r a l s  ( r e f e r r e d  t o  a s  k i -  
n e t i c  e n e r g y  i n t e g r a l s )  i n  t h e  f i r s t  t e r m  
i n  t h e  Fock-ma t r i x  e l e m e n t  e x p r e s s i o n  i n  

E u a t i o n  5 .  T h i s  f a m i l y  o f  i n t e g r a l s  i n v -  
o q v e s  no more t h a n  two c e n t e r s  a s  i n  t h e  
c a s e  o f  t h e  o v e r l a p  i n t e g r a l s  a n d  s i m i l a r  
e x p r e s s i o n s  a r e  a v a i l a b l e  ( R e f .  2 )  f o r  
them. The n u c l e a r  a t t r a c t i o n  i n t e g r a l s  i n  
t h e  s e c o n d  t e r m s  o f  t h e  F o c k - m a t r i x  ( E q u a -  
t i o n  5 )  i n v o l v e  t h r e e - c e n t e r  i n t e g r a l s  i n  
a d d i t i o n  t o  one  a n d  two c e n t e r s  w h i c h  o c c -  
u r r e d  f o r  t h e  o v e r l a p  m a t r i x .  The e l e c t r -  
o n e l e c t r o n  Coulomb a n d  e x c h a n g e  i n t e r a c t -  
i o n  i n t e g r a l s  r e p r e s e n t e d  by t h e  t h i r d  a n d  
f o u r t h  t e r m s  o f  t h e  Fock-ma t r i x  e x p r e s s i o n  
 quati ti on 5 )  c a n  i n v o l v e  b o t h  t h r e e  a n d  
f  o u r - c e n t e r  i n t e g r a l s .  T h e s e  i n t e g r a l s  
a r e  much more n u m e r o u s  t h a n  t h e  o v e r l a p  
a n d  k i n e  t i c  e n e r g y  i n t e g r a l s .  However ,  a n -  
a l y t i c  e x p r e s s i o n s  a n a l o g u e  t o  t h o s e  f o r  
t h e  o v e r l a p  i n t e g r a l s ,  b u t  somewhat  more 
c o m p l i c a t e d ,  a r e  a v a i l a b l e  f o r  them.  I n  
p r i n c i p l e  t h e n ,  t h e  n u c l e a r  a t t r a c t i o n  a n d  
e l e c t r o n - e l e c t r o n  c o u l o m b  a n d  e x c h a n g e  i n -  
t e g r a l s  c a n  be a d a p t e d  t o  t h e  MPP by p r o c -  
e d u r e s  s i m i l a r  t o  t h o s e  u s e d  f o r  t h e  o v e r -  
l a p  i n t e g r a l s .  We a r e  c u r r e n t l y  i n v e s t i g -  
a t i n g  s u i t a b l e  a l g o r i t h m s  f o r  c o m p u t i n g  
t h e s e  i n t e g r a l s  on t h e  MPP.  

Once t h e  one-  a n d  t w o - e l e c t r o n  i n t e g -  
r a l s  i n  t h e  Fock m a t r i x  e x p r e s s i o n  i n  Equ- 
a t i o n  5  a r e  o b t a i n e d ,  t h e  F o c k - m a t r i x  e l e -  
m e n t s  hTF c a n  be e v a l u a t e d .  As f a r  a s  t h e  
o n e - e l e c l r o n  c o n t r i b u t i o n s  r e p r e s e n t i n g  
t h e  f i r s t  a n d  s e c o n d  t e r m s  i n  h  a r e  c o n -  
c e r n e d ,  n o t h i n g  more i s  n e e d e d .  i j ~ o r  t h e  
t w o - e l e c  t r o n  t e r m s  h o w e v e r ,  E q u a t i o n  5  
shows  t h a t  m a t r i x  m u l t i p l i c a t i o n s  h a v e  t o  
be c a r r i e d  o u t  b e t w e e n  t h e  d e n s i t y  m a t r i x  
( w i t h  e l e m e n t s  + R C ~  ) a n d  t h e  e l e c t r o n -  
e l e c t r o n  i n t e r a c t i o n  m a t r i x  ( i n v o l v i n g  
e l e m e n t s  < i  j l k l >  f o r  c o u l o m b  and  < i k ]  j l >  
f o r  e x c h a n g e  i n t e r a c t i o n s ,  k l  b e i n g  r u n n -  
i n g  i n d i c e s  f o r  f i x e d  i a n d  j d e p e n d i n g  on 
t h e  F o c k - m a t r i x  e l e m e n t  b e i n g  e v a l u a t e d ,  
f o l l o w e d  by a  s u m m a t i o n  o v e r  t h e  o c c u p i e d  
s t a t e s  p .  We have  d e v e l o p e d  a l g o r i t h m s  f o r  
c a r r y i n g  o u t  t h e s e  o p e r a t i o n s  on  t h e  MPP 
w h i c h  i n v o l v e  t e r m s  l i k e  SUM [ [ < i j  k l > ]  
* (  (COLBOARD Cp ) I *  [ (COLBOARD C , u  ) I T )  w h e r e  
SUM ( ~ e f .  4 )  r e p r e s e n t s  t h e  s u m m a t i o n  of  
a l l  t h e  e l e m e n t s  i n  t h e  p a r a l l e l  a r r a y  r e -  
s u l t i n g  f r o m  t h e  o p e r a t i o n s  w i t h i n  t h e  cu-  
r l y  b r a c k e t s .  The C O L B O A R D  o p e r a t i o n  (Ref  
4 )  i n v o l v e s  p r o p o g a t i n g  a  c o l u m n  v e c t o r  CF( 
o v e r  a l l  t h e  c o l u m n s  o f  t h e  MPP p r o d u c i n g  
a  m a t r i x  w i t h  i d e n t i c a l  c o l u m n s .  Each  p r -  
o c e s s o r  i n  t h e  N P P  i s  a s s i g n e d  a n  e l e m e n t  
o f  t h e  m a t r i x  [ < i j  k l > ]  c o r r e s p o n d i n g  t o  a  
p a r t i c u l a r  c h o i c e  of  k l .  The p r o d u c t s  
b e t w e e n  t h e  m a t r i c e s  marked  by a s t e r i s k s  
i n  t h e  c u r l y  b r a c k e t s  a r e  e l e m e n t  by 
e l e m e n t  p r o d u c t s  a n d  n o t  m a t r i x  p r o d u c t s .  
The e n t i r e  p r o c e d u r e  h a s  t o  be  r e p e a t e d  
f o r  a l l  t h e  o c c u p i e d  s t a t e s  a n d  a  summ- 
a t i o n  o f  t h e  c o n t r i b u t i o n s  f o r  d i f f e r e n t p  
h a s  t o  be  c a r r i e d  o u t  t o  g e t  e a c h  Fock 
m a t r i x  e l e m e n t  hl;. I n  p r i n c i p l e ,  f o r  a  
p r o b l e m  i n v o l v i n g  u p t o  1 2 8  b a s i s  f u n c  t i o -  
n s ,  t h i s  p r o c e d u r e  c a n  l e a d  t o  a  r e d u c t i o n  
i n  t h e  number of  f l o a t i n g  q o i n t  o p e r a t i o n s  
by a  f a c t o r  of  a b o u t  ( 1 2 8 )  . From o u r  e x -  



p e r i e n c e  w i t h  t h e  e v a l u a t i o n  of ove r l ap  i n t e g r a l s ,  
t h e  saving i n  terms of computat ional  t ime i s  ex- 
pected t o  be  s i g n i f i c a n t l y  smal l e r  than  t h e  (128) 

2 

f a c t o r  because of v a r i o u s  machine-related f a c t o r s  
l i k e  t h e  1 / 0  o p e r a t i o n s  between t h e  MPP and i t s  
hos t  and t h e  r e l a t i v e l y  lower speed of f l o a t i n g  
po in t  o p e r a t i o n s  on i n d i v i d u a l  p rocessor s  of t h e  
MPP. The a l g o  i thms  f o r  c o n s t r u c t i o n  of m a t r i x  
e lements  of h rE  a r e  expected t o  be a l s o  a p p l i c a b l e  
t o  t h e  e v a l u a t  4 on of e x p e c t a t i o n  v a l u e s  over mole- 
c u l a r  o r b i t a l s  of o p e r a t o r s  a s s o c i a t e d  w i t h  spe- 
c i f i c  e l e c t r o n i c  p r o p e r t i e s ,  f o r  i n s t a n c e  hyper- 
f i n e  p r o p e r t i e s  of most i n t e r e s t  t o  u s  (Ref. 5 ) .  

A f t e r  t h e  format ion of t h e  Fock-matrix and 
over l ap  m a t r i x  S, t h e  nex t  p r o c e s s  i s  t o  s o l v e  
t h e  l i n e a r  equa t ions  i n  Equation 3 .  Th i s  can a l s o  
i n  p r i n c i p l e  be c a r r i e d  o u t  on t h e  MPP and we a r e  
exp lo r ing  a v a i l a b l e  a lgor i thms  f o r  t h i s  purpose 
(Ref. 6) t o  use  f o r  both Hartree-Fock and semiem- 
p i r i c a l  SCCEH procedures .  

SECTION 111. ADAPTATION OF THE MANY -BODY PERTUR- 
BATION PROCEDURE FOR ATOMIC SYSTEMS TO MPP. 

We have a l s o  been exp lo r ing  t h e  c a p a b i l i t y  
of t h e  MPP f o r  enhancing t h e  scope and speed of 
a c c u r a t e  many-body p e r t u r b a t i o n  t h e o r e t i c  inves-  
t i g a t i o n s  (Ref. 3) of e l e c t r o n i c  p r o p e r t i e s  of 
atomic systems. The most time-consuming a s p e c t  
of t h e s e  i n v e s t i g a t i o n s  i s  t h a t  of computing e l ec -  
t r o n - e l e c t r o n  i n t e r a c t i o n  i n t e g r a l s  of t h e  form: 

invo lv ing  f o u r  e x c i t e d  s t a t e  wave-f u n t i o n s  qm,,"t$& 
and q w o f  t h e  system which a r e  unoccupied. S i n c e  
one has o f t e n  t o  d e a l  wi th  a s  many a s  twenty-f ive  
e x c i t e d  s t a t e s  of d i f f e r e n t  symmetry, t e number 
of such i n t e g r a l s  i s  a m u l t i p l e  of (25)' i n  many 
i n s t a n c e s  about  t e n  t imes  t h i s  number and i t  i s  
o f t e n  i m p r a c t i c a b l e  t o  c a r r y  t h e  accuracy of t h e  
theory  t o  a l e v e l  where a l l  t h e s e  i n t e g r a l s  a r e  
needed. These i n t e g r a l s  have so f a r  been c a r r i e d  
o u t  on s e r i a l  computers us ing  s t andard  numerical  
i n t e g r a t i o n  procedures  because t h e  wave-functions 
qk used a r e  i n  numerical  form. The i n t e g r a t i o n  
procedure  most commonly employed i s  t h e  Guass- 
Laguerre  method (Ref. 7 ) ,  where an  i n t e g r a l  of 
t h e  form: 

i s  expressed a s  

t h e  x i  being p o s i t i o n s  of t h e  z e r o s  of Laguerre  
polynomials and wi being weight f a c t o r s .  This  
summation form was found amenable f o r  a d a p t a t i o n  
t o  MPP and we have developed an  a lgor i thm f o r  
c a l c u l a t i n g  128 such i n t e g r a l s  I s imul taneously  
on t h e  MFP. I n  t h i s  a lgor i thm,  one c o n s t r u c t s  
t h r e e  p a r a l l e l  a r r a y s  (Ref. 4) invo lv ing  x i ,  wi 
and g(xi) .  For N-128 i n  Equation 18 ,  t h r e e  
m u l t i p l i c a t i o n s  and seven a d d i t i o n  of f l o a t i n g  
p o i n t  numbers a r e  r e q u i r e d  t o  e v a l u a t e  t h e  128 
i n t e g r a l s  I. These r e p l a c e  t h e  49,152 m u l t i p l i -  
c a t i o n s  and 16,384 a d d i t i o n s  t h a t  would be r e -  
qu i red  f o r  s e r i a l  computations.  With t h i s  l a r g e  

r educ t ion  i n  number of f l o a t i n g  p o i n t  o p e r a t i o n s ,  
t h e  e v a l u a t i o n  of t h e  l a r g e  numbers of i n t e g r a l s  of 
t h e  form i n  Equat ion 16 is  expected t o  become more 
p r a c t i c a b l e .  D e t a i l s  of our a lgor i thm and app l i ca -  
t i o n  t o  s p e c i f i c  problems w i l l  be given i n  a f u t u r e  
p u b l i c a t i o n .  

SECTION I V .  CONCLUSION 

The p o s s i b i l i t y  of adap t ing  a number of c u r -  
r e n t  computat ional  procedures  i n  t h e  i n v e s t i g a t i o n  
of e l e c t r o n i c  s t r u c t u r e s  of a tomic,  molecular  and 
condensed m a t t e r  systems h a s  been examined. We 
have developed a number of a lgor i t lnns  f o r  c a r r y i n g  
o u t  t h e  computat ional  s t e p s  involved i n  t h e s e  pro- 
cedures ,  which a r e  r a t h e r  time-consuming when one 
u s e s  s e r i a l  p rocessor s .  These a lgor i thms  show 
t h a t  us ing  t h e  massive  p a r a l l e l i s m  of t h e  MPP, it 
is p o s s i b l e  t o  reduce t h e  numbers of s e r i a l  a r i t h -  
m e t i c  o p e r a t i o n s  by v e r y  s u b s t a n t i a l  f a c t o r s .  How- 
eve r ,  our  b e n c h a r k i n g  i n  a few c a s e s  t h a t  we have 
been a b l e  t o  complete ly  s tudy  so  f a r  i n d i c a t e  t h a t  
on ly  a f r a c t i o n  of t h e  expected saving i n  c m p u t a -  
t i o n a l  t ime i s  being a t t a i n e d .  While t h i s  i s  a l -  
ready q u i t e  u s e f u l ,  f u t u r e  improvements i n  t h e  
speeds  of t h e  i n d i v i d u a l  p rocessor s  of t h e  MPP and 
i n  t h e  d a t a  t r a n s f e r  t o  and from i t ,  should make 
t h i s  kind of machine a v e r y  v a l u a b l e  t o o l  i n  e l e c -  
t r o n i c  s t r u c t u r e  i n v e s t i g a t i o n s .  

We a r e  g r a t e f u l  t o  M r .  E. S e l l e r ,  D r .  M. Halem 
and M r .  J.R. F i sche r  f o r  v a l u a b l e  help .  Th i s  r e -  
sea rch  was p a r t i a l l y  supported by NASA Grant  
%NAG 5836 and O f f i c e  of Vice P r e s i d e n t  f o r  Research, 
SUNY Albany. 

REFERENCES 

1. P.S. Han, M.F. R e t t i g  and T.P. Das, Theo. Chim. 
Acta. 5, 1 (1970). 

2.  R. Daudel e t  a l ,  "Quantum Chemistry", (John 
Wiley, New York, 1983) .  

3 .  Mina Vajed-Samii e t  a l ,  Phys. Rev. e, 1787 
(1979). 

4.  "MPP User ' s  Guide", and"MP~ Pasca l  P r o g r a m e r ' s  
Guide': (NASA Goddard Space F l i g h t  Center ,  
Greenbel t ,  Maryland). 

5. N .  Sahoo, K.C .  Mishra,  and T.P.  Das, Phys. Rev. 
L e t t .  5, 1506 (1985).  

6.  J.J. Modi e t  a l ,  i n  " P a r a l l e l  Computing '8311, 
ed.M. Fe i lme i r  e t  a l ,  (North Hol land,  Amsterdam, 
1984) ,  page 191. 

7 .  "Handbook of Mathematical Functions",  Ed. by M. 
Abramowitz and I . A .  Stegun, (Dover, New York, 
1970). page 923. 



Tools for Managing Massively Parallel Systems 

K.M. Nichols 
Systems Technologies Department 

Apple Computer, Inc. 
Cupertino, CA 95014 
nichols@apple.com 

ABSTRACT 

Tools for managing massively parallel systems are discussed 
in the context of existing tools and models for concurrent systems. 
Based on a survey of existing tools for parallel systems, creation of 
a "consensus tool", integrating the best features of these with addi- 
tional functionality for behavioral study and performance evalua- 
tion, is proposed. Flow graph models for concurrent systems are 
shown to be in widespread use and flexible enough to be used as a 
basis for creating models for this tool. 

PARET (Parallel Architecture Research and Evaluation 
Tool), an environment that uses interacting, multiple flow graphs 
to form a system model, is discussed in some depth as an existing 
tool with many of the desirable features of the target consensus 
tool. PARET, which has been used for medium-size systems, has 
features for use in modeling larger scale systems. The modeling of 
a Linda machine and its implementation using PARET is shown as 
an example of system modeling using a progression of interacting 
flow graphs. 

Keywords: Multiprocessor Tools, Performance Evaluation, Mul- 
tiprocessor Models, Visualization Tools, Discrete-Event Simulation 

INTRODUCTION 

Now that large-scale parallel machines are in use, the time is 
past due for tools to assist system architects in performance and 
behavioral evaluation of such systems. Creating tools involves 
anticipating the questions of interest about massively parallel sys- 
tems. The fact that we are still discovering the nature of the 
significant questions that will need to be answered complicates this 
process. This work partially focuses on the constmction of tools 
and partially focuses on the discovery process, particularly for 
larger systems. Ultimately, some experimentation with tools will 
be required, and some wrong paths will be taken. The goal of this 
work is to synthesize the best aspects of previous approaches to 
tools for medium-size parallel systems with new ideas for handling 
more complex systems into a tool for the future. 

Performance evaluation programs for parallel computers of 
any size are still in infancy, although a number of efforts are 
appearing. One of the striking things about these is the frequent 
emphasis on a visual component. These include Poker [ I ,  21, PIE 
[3], tools for the B-HIVE project [4], PROFILE [ 5 ] ,  the Software 
Oscilloscope [ 6 ] ,  and PARET[7]. The wide variety of approaches 
taken is indicative of the diversity of data available in a parallel 
machine and the range of requirements of architects of different 
parts of the system. It is time to move toward a "consensus tool", 
that is, one which represents the intersection of the previous major 
efforts and provides a platform for enhancements. The major les- 
son of these tools and of research work on parallel performance 
evaluation [8,9, 101, is that performance cannot be represented 
solely by a number in the parallel computing world. 

The ubiquitousness of certain features and the growing reali- 
zation that performance characterization is a complex and 
application-dependent task points to the possibility of creating a 
consensus tool containing a toolbox of frequently used perfor- 
mance measurement functions. The consensus tool must also be 
customizable, so it can grow with the body of applications. A good 
starting point for such a tool is to use discrete-event simulation of 
models, followed by partial or full use of post-mortem machine 
trace information to drive simulations. A longer range possibility 
is to use the tool as a front-end to actual machine control and 
observation. 

Parallel systems can be viewed at several layers of abstraction 
including: the user program(s) running, the operating system coor- 
dinating the running user program(s), and the topology of the phy- 
sical interconnect. These real systems must be modeled in a way 
that expresses only the requisite degree of complexity, hiding and 
grouping details that are not of immediate interest. A model 
represents a real system in the tool's environment, facilitating user 
observation and interaction with as many or a few of these 
abstract representations as desired. Nonessential layers should be 
either idealized (e.g. zero communications time) or observed only 
by their effects on other layers (e.g. communications delays affect 
user programs). Furthermore, the environment should permit a 
model to evolve from a first pass of gross detail to a more sophisti- 
cated version of finer detail. 

The principle advantages of PARET in the context of this 
paper is that the underlying model on which it is based is extensi- 
ble to parallel systems of arbitrary size and complexity. and that 
the model used in PARET is intuitive and is similar to many other 
modeling approaches. Modeling approaches will be discussed in 
the next section. In the third section, the major questions that 
should be answered are examined, i.e. what should be the func- 
tionality of an effective tool? The fourth section shows an exam- 
ple of evolving a system model, and is followed by Conclusions. 

MODELING LARGE, CONCURRENT SYSTEMS 

A model represents the actual system in the tool's environ- 
ment in a way that is easily comprehensible to the user. An 
abstract method of modeling parallel systems is clearly required to 
represent massively parallel systems. Preferably, the modeling 
methodology should be continuously extensible from smaller to 
larger parallel systems. Further, a modeling environment should 
have the same general characteristics regardless of which subsys- 
tem is under consideration or  the level of detail represented. As 
stated in the Introduction, a model must be flexible enough to 
represent all aspects of a parallel system at varying levels of detail. 
Thus, a system may be modeled at a crude level of detail early in 
the research and design processes, with progressive refinements 
permissible. 

In order to characterize successful models, previous work in 
the field is reviewed. This work is roughly divided into four areas: 
user software representations, control and operating system 



models, topology of the physical interconnection, and communica- 
tion structures and other architectural issues. Flow graphs are 
shown to appear as a persistent theme in these models, providing 
an intuitive, widely used method of modeling parallel systems and 
a prime candidate for a modeling the basic components of a sys- 
tem. What remains is the problem of tying the flow graph com- 
ponents together into a system model and creating a tool environ- 
ment that adequately presents the model to the user. 

There are two distinct approaches to creating parallel user 
programs. The 6rst (transparent) hides the parallelism from the 
user and the second (explicit) gives the user total control over 
parallelism. Transparent parallelism occurs when sequential pro- 
grams are transformed by intelligent compilers into parallel pro- 
grams (e.g., Alliant FXIFortran). In explicit parallelism, program- 
mers designate which parts of the program may be executed con- 
currently and when and how to exchange data between processes 
(e.g. Cosmic Cube C). Various intermediate approaches allow 
users to annotate where parallelism should occur, as in Poker [2]. 
Explicit control usually results in optimized program execution 
times, while transparent parallelism reduces programmer develop- 
ment time. For medium-sized systems, transparent approaches 
can produce efficient code. This has been shown by various 
approaches to "dusty deck" transformation, and by the Apply sys- 
tem that has been used at Carnegie Mellon [ I  11. Both explicit and 
transparent approaches frequently make use of directed flow graphs 
(sometimes in the form of directed acyclic graphs. DAGs, as a 
special :ase) to represent the program. Explicit approaches often 
allow the user to enter or view a program as a flow graph of con- 
nected software components. Parallelism-extracting compilers 
transparently form these graphs and use them to make automatic 
program improvements. Some of the more explicit approaches, 
such as Poker [2] and large-grain dataflow (LGDF) 112, 131, have 
users enter programs graphically, at least in part. PARET [ 7 ]  uses 
a general flow graph model that may be used to represent any 
graph. Typically, each node of the graph represents a portion of 
user code, from a few lines to an entire process. 

Representation of operating systems and control structures is 
less prevalent in the literature than work with user programs. An 
operating system is itself composed of programs, with the major 
difference that the programs are more frequently responding to 
and creating events external to their own program code, so the 
user program representation methodologies should be applicable. 
In addition, Srini and Shriver show how extended daraf7ow graphs 
[14] (EDFGs) can be used to model the control structures of 
reconiigurable, concurrent systems. Work that has been more 
strongly identified with control structure analysis has been done by 
using variations on Petri Nets to develop performance-oriented 
models that represent the control structure of concurrent systems 
[IS, 161. Petri Nets may be thought of as flow graphs with a more 
restrictive set of formal rules. 

Interconnection networks have been traditionally represented 
by directed Bow graphs, with Poker, PARET, and the B-HIVE pro- 
ject toois[41, all examples of tools that incorporate such models. 
Unfortunately, interconnection graphs with a only a moderately 
large number of nodes and arcs, for example a 6-cube, are not 
easy to observe in a two-dimensional view. To represent large- 
scale or massively parallel interconnects, additional visual tech- 
niques are clearly required to present the graph in a coherent 
fashion, but hierarchical modeling techniques that provide users 
with a conceptual framework for focusing on portions of the inter- 
connect are also needed. This approach was taken in a recent work 
on generalizing families of architectures for massively parallel 
computers [I71 shows. The interconnection topologies of these 
architectures rely on the concept of hierarchically structured, 
interacting directed graphs. Interacting flow graphs have been suc- 
cessfully implemented in PARET, along with some hierarchical 
features that will be discussed later. 

A number of other architectural features of varying levels of 
abstraction have been successfully modeled with flow graph tech- 
niques. The previously-mentioned EDFGs have been used to 
model the architecture of a Cray computer. The Poker environ- 
ment uses visual programming of message passing to eliminate 
writing explicit message-passing code and so that communication 
structures are represented by Bow graphs, a method that has pro- 
ven easier to use than explicit port designation [2]. Among the 
more abstract concepts represented by flow graphs is the mapping 
of processes to an architecture [41. 

The above survey of previous work shows that, as a model- 
ing environment, flow graphs are: intuitive, evidenced by their 
ubiquitousness; extensible, by decreasing the complexity of the 
component represented by each node; and flexible, when an arbi- 
trary number of flow graphs can be made to interact. The strength 
of basing a tool for massively parallel systems on flow graph 
models is that it inherits these advantages and can build on previ- 
ous work if the methodologies cited above can be implemented 
under the new environment in a fairly straightforward fashion. 

Although a tool that allows for general flow graph representa- 
tions can apply previously used modeling techniques, a consensus 
tool should also unite all these disparate modeling techniques. In 
this paper, the consensus tool is presented as a prismoid, with a 
number of facets. Each facet can represent one level of abstrac- 
tion, one subsystem, or one modeling technique for the target 
parallel system. It is possible to look into any individual facet, to 
rotate the prismoid, observing one facet at a time, or even to view 
a number of facets at a time. The model chosen to represent a 
parallel system must support a multifaceted view of the system and 
a way to integrate all the facets. To  form a multifaceted view, flow 
graphs must be made to interact, preferably in a hierarchical 
fashion. 

PARET is an example of a tool that is based on interacting 
flow graphs whose complexity and functionality is left to the user. 
This makes it a good point of departure for design of a consensus 
tool. A PARET model consists of one or more directed flow 
graphs, that interact during simulation either via explicit connec- 
tions (ethers), and according to rules specided by the modeler, or 
by sharing resources. The model comprises objects: graphs are 
composed of nodes interconnected by arcs, either of which may 
contain buffers storing tokens, the PARET unit of data and control. 
(See Figure 1.) Nodes are executed by elements operating con- 
currently, and nodes from different graphs can execute on the 
same element. Buffers from different Bow graphs can be con- 
nected by ethers that provide a path for tokens to follow between 
graphs. All subsystems are modeled under this general paradigm, 
but the descriptions and functionality of the objects differ. By per- 
mitting interaction of an arbitrary number of flow graphs to form a 
model, models can be developed in a hierarchical fashion. 

In a PARET model, a user program may be represented by 
one flow graph (perhaps compiler output), and the interprocessor 
communications topology by another. These flow graphs are 
viewed one at a time during a PARET session, implementing a 
separation of system abstractions. By decreasing the functionality 
represented by each node of a graph and increasing the complexity 
of the graph, a model can be made progressively more complex. 
Thus, PARET permits abstract layers to be represented with a 
unified model within a uniform user environment where models 
may have a wide range of complexity. 

The features of PARET, both advantages and shortcomings, 
will be examined and discussed as a basis for the consensus tool. 
In the next section, the visual features of PARET will be 
presented. An example of modeling a proposed architecture with 
increasing refinement will be shown in Section 4, illustrating the 
power and feasibility of this approach. Additional features that are 
lacking in PARET and appear to be necessary for the study of 
massively parallel systems will also be discussed. 



ANSWERING T H E  QUESTIONS 

A tool for massively parallel systems will have to provide 
means for answering the important questions about architectures, 
applications, and their interaction. In this section, performance 
studies and existing tools are surveyed for the questions they have 
asked, and for the approaches that have been taken to provide 
these anwswers. The approach taken by PARET is described in 
some depth, so that the example of the following section can be 
followed. 

Parallel programmers have long been concerned with the 
effect of changing the number of processors assigned to a target 
program. More recent work has revealed the importance of the 
effect of changing the number of processors on how one thinks 
about the problem or how much larger a problem can be 
accommodated as an architecture is scaled upwards [ la] .  A tool 
should provide the means for comparing the execution of a given 
application running on different numbers of processing elements. 
In addition, for a scalable algorithm, it should be possible to fix 
the number of processors and increase the problem size, until it is 
no longer possible to execute the problem. 

Comparative studies of interconnection networks normally 
focus on the latency of message communications, and graph 
metrics like network diameter. For scalable architectures, impor- 
tant measures include the increase in latencies and the change in 
traffic levels on the network links or through communications pro- 
cessors with increasing network size. 

From the architectural point of view, studies comparing a 
number of architectures executing the same program or a suite of 
programs [8] show the most promise for providing evaluations. 
Another important function is to observe the effects of incremen- 
tal architectural changes on system performance [9, 141. 

In general, supplying execution times, or estimated execution 
times, is not sufficient. The amount of processor idle time and the 
amcunt of time spent on overhead functions provide useful meas- 
ures of how well the operating system matches the architecture 
and application [6, 101. 

The above work requires many approaches. Comparative 
architecture studies clearly benefit from an environment where 
program models and architectural models are easily interchanged 
and incrementally alterable. Some of the statistics required are 
simple values, like execution time, average idle time, or the 
number of times a resource was used over a fixed time. In some 
cases, the questions require observation of a statistic over time, 
e.g. to detect "hot spots" for some resource. Information can con- 
cern usage levels, presence or absence of activity, state of a com- 
ponent or number of times a component has been in a certain 
state. The state of a certain process or of a single processor, or of 
a region of the software or architecture that may be considered to 
be a cluster of atomic actions, may be examined. Surveying 
current tools reveals a number of methods used to make this data 
available to the user. 

Some tools show the flow of data and control in an architec- 
ture, while others are geared toward observation of resource usage. 
The former is usually accomplished by animation of a flow graph 
model, and the latter has been accomplished by providing graphical 
monitoring devices of resources or model components. To  
differentiate these two approaches, depictior of a portion of a 
model provides a view of the system and is referred to as a facet, 
to maintain the prismoid analogy introduced in the previous sec- 
tion. A data collection and presentation method will be referred to 
as a monitor. These generally appear as either graphical meters or 
simple state information provided in response to a query. A few 
examples are cited below. 

In his aptly-named Software Oscilloscope, Katseff [61 pro- 
vides time-changing data for each processor on the amount of time 
spent on user, system, and idle, or waiting, time. This data has 
proven useful for determining load balancing information about 

particular parallel programs. The Software Oscilloscope provides 
dynamic performance-oriented information about each processor 
and is clearly in the monitor class, but does not provide data on 
the interconnection network or the structure of interprocess com- 
munications. 

In Poker, a number of useful views of a program running on 
a particular architecture are provided to the user, although anima- 
tion and performance feedback appear to be minimal. Thus. Poker 
provides a number of facets, but the only monitors are the indica- 
tions of current state contained in each node. This environment 
has to be laboriously customized in order to handle a new architec- 
ture[l9] and cannot be used as an exploratory tool. 

In PARET, a number of facets are possible for a system, one 
for each flow graph in the model, and these flow graphs are 
animated and alterable during simulation. Simple monitors allow 
the user to select the components of the facet being observed to 
get the current state information. A limited selection of dynamic 
monitors (meters) are provided that present resource use as a 
function of time for a sliding time window. In addition, summary 
statistics of a simulation are collected. 

A typical PARET window is divided into four parts: a display 
area where a single flow graph at a time can be observed, a meter 
area where a set of user-selected meters is displayed, a local control 
panel that is specific to the flow graph presently in the display 
where the simulation is controlled, and a global control p n e l  where 
universal aspects of the model and its simulation are controlled. 
PARET also contains some visual features for representing com- 
plex graphs. These additions were intended to allow the applica- 
tion of the PARET visuals to large systems: expansion of selected 
portions of a displayed flow graph (selected magnification), and 
grouping of nodes into supernodes (hierarchical structure). Nei- 
ther of these requires any changes in the underlying graph model. 
The first has been implemented by displaying a flow graph in a set 
of viewpons each of which are controlled by separate movable, 
resizable reticles on the full flow graph (the display area shown in 
Figure 2). In the second method, although we visually represent a 
group of primitive nodes by a single node, the back end (simulator 
or machine) continues to treat the primitive nodes individually and 
has no notion of the supernode. 

To adequately support massively parallel environments, 
PARET needs an improved suite of selectable and customizable 
performance meters, a variety of permissible methods for connect- 
ing the various flow graph views of a system, and the ability to 
replay trace information gained from real machines. Although all 
of these extensions are possible, it may be preferable to develop a 
new tool based loosely on PARET and incorporating facets and 
monitors from other tools. 

AN EXAMPLE MODEL 

In this section, a model is presented for a Linda machine 
[20], an architecture that supports the Linda parallel programming 
language by emulating a type of shared memory particular to 
Linda, called tuple space. In the Linda language, all processes may 
access objects (tuples) in the shared space (see Figure 3). One 
characterization of architectural performance is the total number of 
data tuples that can be handled by the implementation over some 
period of time, as well as the average amount of time for the 
shared tuple space to respond to requests for particular tuples. 
This will be presented as an example of creating a rough model 
and beginning to refine it. In addition, this example will show 
methods of representing shared memory within the present con- 
straints of PARET and will propose additions to the model. 

The Linda machine has N horizontal buses, called tuple 
beams, and N vertical buses called inverse beams, as shown in Fig- 
ure 4. At the NZ intersections of these beams are Linda Nodes, 
each of which interfaces to a CPU. At each Linda Node, there is 



an In Processor, an Out Processor, and a Tuple Memory as shown in 
Figure 5. We begin by depicting these elements of each Linda 
Node by three PARET nodes as shown in Figure 6. This ignores 
some of the details of the actual Linda Node, but maintains the 
features of interest for our performance study. We place buffers 
inside each of the nodes; in the In and Out Processors, they hold 
data (PARET tokens) waiting to be sent on the inverse beam or 
tuple beam, respectively. For the Tuple Memory, the buffer 
represents the physical memory with PARET tokens representing 
tuples. 

Since PARET does not have a construct for representing a 
bus structure, the h a m s  are represented by PARET nodes. 
Further, rather than using a model of a Linda program to drive the 
~chi tec ture ,  a simpler model, generating tuples of randomly 
selected sizes at random intervals, is used to get initial perfor- 
mance da ta  For this purpose, a random token generaor node is 
used to create tuples for the Out Processor, and another random 
token generator node creates requests for the In Processor. These 
two additions are shown as dashed nodes in Figure 6. The random 
tuple intervals are centered around a mean value referred to as the 
grain sue of the computation. The undashed nodes in Figure 6 
form a Linda Node, or in PARET, a cluster. An initialization 
function was written which builds a system model given the 
number of buses desired. Thus, the number of processors in the 
model is easily scaled by making a change in the input model 
description file. 

Although creating a model of arbitrary size is easy, scaling 
the visual information is more problematic. The flow graph 
becomes inaeasingly more difficult to observe and interpret as N 
grows large. One approach to reducing the visual complexity is to 
encapsulate the PARET nodes of a single Linda Node into a super- 
node, a PARET feature allowing a set of nodes to be visually gath- 
ered into a single representation, but the number of these super- 
nodes still grows as the square of N. In addition, we can use the 
reticle and viewport system to isolate sections of the graph. 

To  introduce another facet to the model, a second graph is 
added (shown in Figure 7), showing a programmer's conceptual 
view of the Linda machine. Here the entire tuple space is 
modeled as a shared memory node attached to N~ user processes. 
These process nodes contain the generator nodes from the original 
graph, and PARET ethers [21] are used to pass tokens between 
graphs. A more sophisticated model can be created if the process 
nodes represent actual user program graphs instead of the genera- 
tor nodes. These graphs can be connected to the process node by 
ethers, o r  the process node can be a "grouped" representation of 
that portion of the user graph that makes up the process. 

The average response time can be compiled as a function of 
the number of processors in the architecture and the grain size, or 
the average time between tuple and request generation. A set of 
these values is currently being compiled. 

CONCLUSIONS 

Tools for massively parallel systems require a very basic and 
flexible underlying model. Flow graphs have proven efficacious in 
many concurrent modeling methodologies. Since effective tools 
will require a "consensus approach", a marriage of the various 
current approaches to representing parallel systems and monitoring 
their performance, techniques for permitting the interaction of a 
number of flow graph models in a flexible tool environment are 
required. PARET was shown to be a tool which lays important 
groundwork for such a tool and an example implementation of a 
scalable architecture model in PARET was shown to illustrate its 
use. 

Acknowledgements 

Thanks are due to Venkatesh Krishnaswamy for suggestions 

on the Linda machine model and to John Edmark for the display 
layout of the Linda machine model. 

References 

1. Lawrence Snyder, "Parallel Programming and the Poker Pro- 
gramming Environment," Computer, vol. 17, no. 7, pp. 27- 
36, July, 1984. 

2. Kevin Gates and David Socha, "Programming NCUBEs with 
a Graphical Parallel Programming Environment versus and 
Extended Sequential Language," Proceedings of the Second 
Conference on Hypercube Multiprocessors, pp. 17-27, Knox- 
ville, TN, September 29, 1986. 

3. Zary Segall and Larry Rudolph, "PIE: A Programming and 
Instrumentation Environment for Parallel Processing," IEEE 
Software, pp. 22-37, November, 1985. 

Dharma P. Agrawal, Virendra K. Janakiram, and Grish C. 
Pathak, "Evaluating the Performance of Multicomputer 
Configurations," Computer, vol. 19, no. 5, pp. 23-37, May 
1986. 

ParaSoft Corporation, "Profile: A Profiling System for Paral- 
lel Computers," in external communimtion, ParaSoft Corpora- 
tion, Mission Viejo, CA, 1988. 

Howard P. Katseff, "The Software Oscilloscope: A Real-Time 
Execution Monitor for Multiprocessor Applications," 
Proceedings of the ACM SIGPLAN and SlGOPS Workshop on 
Parallel and Distributed Debugging. pp. 316-318, Madison, WI, 
May 5-6, 1988. 

Kathleen M. Nichols and John T. Edmark, "Modeling Multi- 
computer Systems with PARET," IEEE Computer, vol. 21, 
no. 5, pp. 39-48, May, 1988. 

Steven P. Levitan, "Evaluation Criteria for Communication 
Structures in Parallel Architectures," I985 International 
Conference on Parallel Processing, pp. 147- 154, 1985. 

Susan J. Eggers and Randy H. Katz, "A Characterization of 
Sharing in Parallel Programs and Its Application to 
Coherency Protocol Evaluation," Proceedings of the 15th 
Annual International Symposium on Computer Architecture, pp. 
373-382, Honolulu, HI, May 30 - J u n e  2, 1988. 

Steven E. Lucco and Kathleen M. Nichols, "A Performance 
Analysis of Two Parallel Programming Methodologies in the 
Context of MOS Timing Simulation," Proceeding of the Spring 
1987 Compcon, February, 1987. 

H.T. Kung, "When will the widespread use of parallel com- 
puters become a reality?," Architenure P l e ~ r y ,  IEEE Com- 
puter Society and IEEE Circuits and Systems Society, Rye 
Brook, New York, October 3, 1988. 

Robert G.  Babb 11, "Parallel Processing with Large-Grain 
Data Flow Techniques," Computer, vol. 17, no. 7, pp. 55-61, 
July, 1984. 

David C. DiNucci and Robert G. Babb, "Practical support for 
Parallel Programming," in Proceedings of the Twenty-First 
Annual Hawaii Conference on System Sciences, vol. 2,  pp. 
109-1 18, IEEE Computer Society Press, 1988. 

V.P. Srini and B.D. Shriver, "A Methodology for Designing 
and Modeling Reconfigurable Systems," International Journal 
of computer and Information Sciences, vol. 13. no. 5, pp. 339- 
394, 1984. 

C.V. Ramamoorthy and Gary S. Ho, "Performance Evalua- 
tion of Asynchronous Concurrent Systems Using Petri 
Nets," IEEE Transactions on Software Engineering, vol. SE-6, 
no. 5, pp. 440-449, September, 1980. 
Tadao Murata, "Synthesis of Decision-Free Concurrent Sys- 
tems for Prescribed Resources and Performance," IEEE 



Transac!ions on Sofhvare Engineering, vol. SE-6, no. 6, pp. 
525-530, November, 1980. 

17. K. Hwang and J. Ghosh, "Hypernet: A Communication- 
Efficient Architecture for Constructing Massively Parallel 
Computers," IEEE Transactions on Computers, vol. C-36, no. 
12, pp. 1450-1466, December, 1987. 

18. John L. Gustafson and Gary R. Montry, "Programming and 
Performance on a Cube-Connected Architecture," Digest of 
Papers: Spring Compcon, pp. 97-100, San Francisco, CA, 
February 29,1988. 

19. Lawrence Snyder and David Socha, "Poker on the Cosmic 
Cube: The First Retargetable Parallel Programming Language 

and Environment," Proceedings of the Internatio~l  Conference . 
on Parallel Processing, pp. 628-635, August, 1986. 

20. S. Ahuja, N.J. Carriero, D.H. Gelernter, and V. Krish- 
naswamy, "Matching Language and Hardware for Parallel 
Computation in the Linda Machine," IEEE Transactwits on 
Computers, vol. 37, no. 8, pp. 921-929, August, 1988. 

21. Kathleen M. Nichols and John T. Edmark, "PARET: An 
Integrated, Visual Tool for the Study of Parallel Systems," 
Proceedings of the ICCD, IEEE Computer Society and IEEE 
Circuits and Systems Society, Rye Brook, New York, October 
3, 1988. 

Figure 1. Components of a Model 

L, - - , - - - - - , - - , - - - - - - - - - - - - - - - -J  

Figure 2. Reticle and Viewport Display 

ORIGINAL PAGE 
BLACK AND WHITE PHOTOGRAPH 



N tuple 
beams 

Figure 3. Linda Paradigm - Virtual Shared Memory 

N crosspoints, 
each with a 

e e *  
processor node 

I 
N inverse beams 

Figure 4. Linda Machine Architecture 

Requests and Responses 

Tuples I 
Processor 

Tuples 

Tupk Beam 

Figure 5 .  Linda Node 

680 
OWlN'AC PAGE 

AND WHI.TE PV0TOY;RAPH 



ORIGINAL PAGE 
Out Processor BLACK AND WHITE PHOTOGRAPH 

Generators 

r - - - - - \  
I * - - - - - - - - - -  .) 
I d 

L - - - - , d  

In Processor 

Figure 6 .  PARET Model o f  a Linda Node 

Figure 7 .  A More Complex System Model 



PROGRAMMING CONSIDERATIONS IN THE DESIGN 
AND USE OF A SIMD IMAGE COMPUTER 

Allan L. Fisher Peter Highnam 
Computer Science Department Schlumberger Doll Research 

Carnegie Mellon University Old Quarry Road 
Pittsburgh, PA 15213 Ridgefield, CT 06877 

ABSTRACT INTRODUCTION 

The CMU Scan Line Array Processor (SLAP) is a 
SIMD architecture designed for image computation 
and similar applications. A SLAP includes a se- 
rial control processor and a long vector of word- 
parallel processing elements. Such an architecture 
is compact, intrinsically capable of high clock rates, 
and scales very well with improvements in chip tech- 
nology. In this paper we demonstrate that with 
a modicum of compilation complexity a SLAP be- 
comes a versatile tool, efficiently supporting a number 
of useful programming models: position-independent 
(low-level image processing operations), scan-line 
(intermediate-level image processing and graphics), 
and systolic.  We discuss the impact of programming 
issues on overall system architecture, specifically with 
respect to hierarchical control structures, the han- 
dling of concurrent I/O streams, and the importance 
of considering whole applications. Such considera 
tions are critical to the success of highly parallel sys- 
tems, particularly those designed for imbedded appli- 
cations, yet often are treated as afterthoughts. The 
high level SLAP programming language SLANG is 
introduced. A prototype hardware and software sys- 
tem are under construction. 

Keywords:  compilation, conditionals, directionals, 
image-processing, linear array, programming models, 
real-time, SIMD. 

This research was sponsored by the Defense Advanced Re- 
search Project Agency (DOD), ARPA Order No. 4976, mon- 
itored by the Air Force Avionics Laboratory under Contract 
F33615-84-K-1520. 

The views and conclusions contained in this document are 
those of the authors and should not be interpreted as rep 
resenting the official policies, either expressed or implied, of 
the Defense Advanced Research Projects Agency or the US 
Government. 

There have been a large number of image comput- 
ers, their architectures running the gamut of archi- 
tectural diversity. The most common form of proces- 
sor control found in such systems is SIMD. In general 
SIMD systems have had essentially a grid topology, 
from Unger's early work (Ref. 14) through more re- 
cent machines such as the DAP (Ref. g), CLIP4 (Ref. 
3), and the MPP (Ref. 11). More recent SIMD sys- 
tems have either provided a much richer connection 
structure (the Connection Machine (Ref. 2)) or have 
elected to  provide an even simpler topology, the linear 
array (AIS-5000 (Ref. 12), CLIP7A (Ref. lo),  SLAP 
(Ref. 7)). All image computers have to deal with high 
bandwidth 110 requirements and the unusual pro- 
gramming models that their native mode presents. In 
this paper we examine both issues within the context 
of the CMU Scan Line Array Processor. 

A Scan Line Array Processor (Refs. 6, 7) (SLAP) 
is a SIMD machine comprising a long linear array of 
word-parallel processing elements (PEs), whose in- 
struction stream is organised and sequenced by a 
flexible conventional processor (the controller). The 
SIMD model and the point-t-point connectivity of 
the vector guarantee that communication between 
PEs is both synchronous and fast. The nearest- 
neighbor connectivity of the vector permits easy ad- 
vantage to be taken of increased on-chip gate counts. 
Input, output and computation are pipelined, per- 
mitting high data bandwidth with almost zero cost in 
terms of lost processing cycles. The SLAP is intended 
to be a support processor for computer perception ap- 
plications that require flexible, high throughput pro- 
cessing. Generally, the input is in the form of a con- 
tinuous image stream. Images from optical sensors 
are currently typically 512 x 512 with 8 bit pixels, re- 
ceived scanline by scanline a t  a rate of 30 images per 
second. The prototype under construction includes 
custom 2p CMOS processor chips. Each chip holds 

PRECEDING PAGE BLANK NOT FILMED 
683 

CH2649-2/89/0000/0683$01.00 @ 1988 lEEE @&PA ran.r~lrw~ 



four processors. The prototype can deliver up to  500 fits greatly from local address computations and 
sixteen bit integer operations per pixel while main- local context control. 
taining video-rate throughput. The prototype's peak 
(internal) aggregate bandwidth is approximately 16 
Gbyte s-', with an execution peak of over 4 billion 
sixteen bit integer operations s-'. 

We describe the hardware and software architec- 
tures of a SLAP emphasising programming consider- 
ations. The common theme is the appropriate alloca- 
tion of responsibility within the system. One result 
of this approach is that, in contrast to the major- 
ity of SIMD image computers, the SLAP has a two- 
level controller. The next Section contains a brief 
review of the system goals and premises. In Section 

we examine the hardware structure. Section in- 
cludes an overview of the software architecture. A 
high-level language, SLANG, an augmented imperrt- 
tive language, has been developed for use with the 
SLAP. We conclude with a status review of the s y s  
tem that is now being built. 

GOALS A N D  PREMISES 

A SLAP is an image computation accelerator for a 
general-purpose Host. As such the general purpose 
facilities it must provide are limited. Rather, a SLAP 
must be able to  conveniently offload computations 
and return results with minimal interference to inde- 
pendent Host computation. We expect Host - SLAP 
interactions to be on the order of one video frame 
(about 30111s). This is a significant amount of time 
on a current workstation. The Host is probably ill- 
equipped to handle video rate I/O and definitely un- 
able to provide the computation bandwidth required. 

Certain characteristics of image computations have 
been set up as goals. 

Data and computation rates. Video rate 
throughput and video synchronisation is neces- 
sary. Concurrently there must be high enough 
instruction rate counts to perform interesting 
computations online. 

Communication of results and parameters. 
There must be a convenient mechanism for mov- 
ing low bandwidth information between the Host 
and the SLAP. 

Image storage and access. Vision systems fre- 
quently need to be able to hold an image for sev- 
eral operations. Such facilities must be provided 
in an appropriate manner. A number of compu- 
tations can achieve significant performance in- 
creases by the provision of transposed versions 
of an image. Speed gains can also be realised 
using region of interest selection. Numerous al- 
gorithms require access to several images simul- 
taneously. 

Feedback. Iterative operations require that there 
be a mechanism summarising an aspect of corn- 
putation state. 

There are a number of successful image processing 
libraries (eg., SPIDER (Ref. 13)). The functionality 
of the routines in such a library meet the needs of 
a large number of applications, A successful system 
should also provide a library together with the appro- 
priate "glue*. Furthermore, particularly in a research 
environment, it must be easy to  create efficient solu- 
tions that can be added to such a library. By this 
we mean that a high level language should be avail- 
able, together with a compiler that can generate good 
quality code. 

Unusual machines do not obviously provide famil- 
iar programming models. The SLAP has a t  its core 
a very long vector of SIMD processors. One of our 
goals in the SLANG language is to support program- 
ming models encouched in a fairly familiar high level 
imperative language and to make implicit the task 
of synchronisation with the concurrent I/O streams. 
Compilation for a parallel machine is not trivial. 
The SLANG language includes some novel concepts 
that appear t o  provide a compiler with a significant 
amount of information for easily realised optimisa- 
tions. 

In applications such as mobile robotics where the 
computation engine must be an integral component it 
is very important that the system be both physically 
compact and power-efficient. These are implicit in 
our focus on a VLSI implementation of a linear array. 

SYSTEM COMPONENTS 

Pizel-level processing abilities. There is no need We describe the SLAP hardware architecture in terms 
to provide floating point operations for the vast of the requirements imposed on the system, how they 
majority of image computations. Integers are ap- can be dealt with by certain types of subsystem, and 
propriate. Provision of features to ameliorate the the control mechanisms needed a t  runtime. There are 
inflexibility of SIMD can significantly increase three major subsystems, the controller, the sequencer 
the machine's power. For example, sorting bene- and the PE vector. The Host communicates directly 



Reyonme Line - --- t t  
Figure 1. A SLAP System 

only with the controller over a VME bus. Code and 
data memories (and a number of control registers) 
are mapped into the Host address space. Interaction 
a t  this level is coordinated on the controller by pro- 
grams written in C. In our prototype system (Ref. 8) 
the controller is a Motorola 68030. A SLAP system 
sketch is shown in Figure 1. 

The controller is not fast enough to  provide the 
vector instruction sequencing which in the prototype 
is about 8 MHz. This task is performed by the se- 
quencer. The sequencer also contains a 16 bit ALU 
constructed from bit-slice devices (IDT chip set). The 
sequencer is thus able to perform substantial runtime 
computation. The primary function of the sequencer 
requires that it operate in lockstep with the vector. 
Thus, the sequencer and the vector can (as in the 
ILLIAC IV (Ref. 1)) compute simultaneously, com- 
municating data without any synchronisation over- 
head. In fact, by mimicking the operation set of a 
PE in the sequencer we have a very convenient mech- 
anism for off-loading global runtime computations to  
the sequencer for concurrent execution with the vec- 
tor. Data is broadcast to the vector by insertion into 
the instruction stream. There is also a bidirectional 
data link between the sequencer and the vector a t  the 
latter's extremes. 

In the remainder of this section we will briefly de- 
scribe the 1 / 0  subsystem, the image storage mecha- 
nisms, and the abilities of the Processing Elements. 

by the common clock of the SIMD system and the 
short point-to-point connections of the vector. Syn- 
chronisation at the row and frame level are handled 
by the sequencer. The appropriate video conditions 
are made available to  the sequencer branch unit. 

Communication with the Host is low bandwidth. 
The Host provides starting addresses and parameters, 
the SLAP returns low volume results. Host communi- 
cation requires being able to communicate with what- 
ever protocol the Host assumes. This is handled by 
the controller, programmed in the C language with 
the corresponding selection of libraries to  draw upon. 

IMAGE STORAGE 

Within the SLAP images are held in two different 
ways. There are video buffers under the direct control 
of the sequencer and there is a significant amount of 
memory within the vector itself. Commercial video 
buffers typically require separate boards and must be 
controlled via the Host bus. The cost of endowing 
the controller with the ability to directly control such 
buffers was held to be too high. The alternative way 
to control such buffers is to  pass requests to the Host 
to perform the operations. This is unwieldy. The 
SLAP controller includes a number of custom video 
buffers. Each is able to  hold one standard image ( 512 
x 512 x 8 bits ), supports region of interest operations 
directly, and can be accessed transpoeed. Each buffer 
is physically compact and is under the direct control 
of the sequencer. The prototype SLAP includes four 
such buffers. Video rate 1/0 can be directed to  and 
from the buffers. 

Access to buffer images is fast, but there are opera  
tions that are able to proceed much faster than video 
rate. Thus, restricting image inputs and outputs to  
the buffers is an unnecessary impedance. There are 
a number of PEs per processor chip. Each such chip 
has an associated static RAM that is used to pro- 
vide a secondary storage level for the resident PEs. 
In the prototype each PE has 8 KBytes of storage 
(permitting 16 images to be held within the vector). 
Access to this storage is achieved by csopting the 
video and neighbor pathways of the vector, under se- 
quencer control. This mechanism permits the PEs 
to  operate on (and generate) images a t  a much finer 
operation grain than is efficiently permitted by the 
buffers. 

As explained elsewhere (Ref. 6) a SLAP can efficiently PROCESSING ELEMENT 
handle video-rate 1 /0  within the PE vector. (Briefly, 
there is a distinct video route along the vector that The PEs perform the bulk of the computation. Pixel 
can operate independently of instruction exection.) data arrives and leaves the PE via the video path 
The pixel level synchronisation problem is avoided across the vector. The shared instruction stream is 



broadcast to  the PE chips by the sequencer. In the 
prototype the instructions are 27 bits wide. A single 
on-chip decoder expands the instruction to provide 
the control signals for the coresident PEs. All PEs 
operate using the same instruction clock as the se- 
quencer, in the prototype this is 125 ns. 

In contrast to  the majority of modern SIMD sys- 
tems a P E  has a multi-bit word (16 bits in the p r e  
toype). This design decision lets the basic operation 
unit of a PE be a reasonable match to common pre- 
cision needs. There are also a number of P E  abilities 
that are reasonable to give a bit-parallel processor but 
not a bit-serial design. These include local address- 
ing abilities, significant hardware assistance for multi- 
plicative operations, and rotatelshift abilities. From 
the programming perspective these features provide a 
PE with significant operational flexibility and power. 

A P E  has a local register file (32 words in the pro- 
totype) that can use local or broadcast addresses. 
This addressing ability is also extended to the of- 
fchip image storage mentioned earlier. In the SIMD 
model the PEs are unable to branch independently. 
The bit-serial P E  solution is to maintain a stack of 
condition bits whose top bit is used to determine 
whether or not a state change can take place. The 
stack values are manipulated by condition operators. 
Smaller SIMD machines (in PE count) such as the IL- 
LIAC IV are able to  centralise a similar facility. The 
SLAP P E  supports structured conditionals using a 
sleep counter. A counter value of zero permits state 
changes within the PE's register file and offchip stor- 
age. An instruction field is dedicated to support this 
facility. This form of state control is efficient in both 
hardware and computation time, the conditional ma- 
nipulation takes place concurrently with operations 
and has a resolution of a single instruction. 

The P E  has a rotate/shift unit (RSU) which can 
take both amount and direction of operation from the 
PE. This permits easy access to locally determined 
fields. The P E  ALU performs full word additive and 
logical operations in a single instruction cycle. The 
ALU operation set includes variants on the arithmetic 
operations to support multi-precision operations with 
minimal overhead. Multiplicative operations are sup- 
ported in the ALU by Booth-type logic. A 2 bit Booth 
step is used to perform a 16 x 16 multiply in about 
8 cycles (generating a 32 bit result), for example. A 
division or modulos operation takes approximately 16 
cycles. The multiplicative operations are actually se- 
quenced by the on-chip decoder. The operation field 
of an instruction starts an operation by changing de- 
coder state, the decoder then issues the appropriate 
control bits each cycle to the coresident ALUs until 
told to  stop. During such an operation the instruction 

stream arriving at the chip can include operations for 
other PE components. Utilisation of this ability is 
expected to require no more compiler sophistication 
than a simple form of delayed branch analysis. 

Neighbor communication is provided by a third 
functional unit in the PE datapath. The operations 
it supports transfer (and receive) a single word of 
data in one cycle. Additionally, longer sequences of 
neighbor communication steps can be performed us- 
ing a dedicated instruction field. A feedback path is 
supported for the sequencer to sample global state. 
There is a single bit wired-OR line that appears 
within the PE as a single register. Writing a value 
to that register can change the value examined by 
the controller within a couple of cycles. 

A single prototype P E  is sketched in Figure 2. 
There are two 16 bit buses (A and B) and a dual- 
ported (read and write) register file. The three func- 
tional units read operands from A and B, placing 
the result word onto B. The functional units have 
operation sets that are symmetric in their use of the 
operand buses. The units are the integer ALU, RSU, 
and the communication unit. An instruction has 
three phases: place a value on A;  compute a result 
value onto B; store from B. Each phase takes one 
cycle, three instructions can be executing (different 
stages) concurrently. 

PROGRAMMING 

A Host process invocation of a SLAP operation em- 
ploys a construct semantically similar to a routine 
call or thread. The Host program can be written in 
any reasonable language. The SLAP is controlled by 
a user-supplied C program, the harness. The harness 
is unable to directly address components of the PE 
vector state. Rather, the harness is responsible for 
invoking sequences of code modules that execute in 
the sequencer and the vector. A high level language, 
SLANG is provided for the modules. The decision to 
use C to link SLANG modules together removes the 
need to make SLANG a completely general purpose 
language that controls the SLAP system for an entire 
application. A module cannot invoke another mod- 
ule directly, this permits a module to have complete 
control of the sequencer and the vector. Data can be 
passed from one module to the next by parameters 
relayed via the harness and by leaving image data in 
the offchip memory and the external image buffers. 

The SLAP is a highly parallel machine. The con- 
structs of SLANG have been chosen to  facilitate 
the expression and optimisation of image computa- 
tions. The SLANG compiler generates code for the 



must be made on a per pixel basis (e.g., threshold 
testing). The SLAP P E  is responsible for these de- 
cisions that must be made several times per scanline 

REGISTER FILE using local data. This latter class of decisions can 
be represented using control flow constructs that (in 
the SLAP PE) are mapped into conditional manipu- 
lations. They can frequently be mapped into arith- 
metic operations instead. 

In SLANG the lower two levels of decision are im- 
plicitly identified by the compiler using information 
about the variables involved in the controlling expres- 
sion. The lockstep synchronisation of the PEs and the 
sequencer greatly facilitate the mapping. 

Figure 2. SLAP Processing Element 

sequencer and the vector. The language is similar to 
C or Pascal with constructs and mechanisms to pro- 
vide appropriate programming models and make par- 
allelism and video synchronisation implicit. In this 
section we begin with a brief discussion of hierarchical 
control in image computation and then outline impor- 
tant aspects of SLANG and the compilation process. 

CONTROL 

In applications that involve image computation one 
can reasonably identify a three level hierarchy of con- 
trol. At the highest level are the broad algorithmic 
decisions. For example, whether to  run filter X or 
filter Y. The variety and frequency (frame) of such 
decisions make the use of a general-purpose language 
and processor appropriate. In the SLAP system this 
role is carried out by the controller (a  68030) running 
a harness (in C). 

During an image computation there are decisions 
t o  be made on every row (e.g., video synchronisation) 
or a t  least several times per frame (e.g., adapting a 
filter size near the image vertical limits). This type of 
decision involves significant changes in control flow. 
In the SLAP system this is appropriate for the se- 
quencer. At the lowest level are the decisions that 

COMPUTATION LOCALE 

A SLANG variable is integer and can be scalar or ar- 
ray in the usual senses. A third attribute localiiy is 
also included in each variable declaration. A variable 
defined to be local has an instance in every PE. A 
variable defined to be global exists uniquely within 
the sequencer. This locality information is used by 
the compiler t o  place computations. Thus, if all the 
operands of an operator are global then the opera- 
tion is scheduled to  take place in the sequencer. If 
the operands are all local then the computation will 
be carried out using PE-local data a t  every PE. If the 
operand localities are a mix then the global operands 
will be broadcast to  the PEs where the operation will 
take place. This notion of locality propagates through 
expressions in the obvious way. 

In a SLANG program the locality of the expression 
controlling an if statement determines whether the 
sequencer's general branching mechanism or the PE 
conditional manipulation is used. The programmer 
does cot need explicitly distinguish the two in any 
other way. The iterative SLANG constructs, while, 
repeat and for all require global controlling expres- 
sions. 

The compiler employs locality information in op- 
timisation. Constant propagation is a conventional 
compiler optimisation that permits the computation 
of constant expressions during compilation. By using 
SLANG locality information this technique can be 
carried one step further to  place computations that 
might otherwise have been carried out on the vector 
into the sequencer (which mimics the PE  ALU and 
RSU operation set). The sequencer and the vector 
perform arithmetic computations concurrently and in 
general this code motion is useful because most of the 
execution time is usually spent in the vector. 



COMMUNICATION Of the three image computation models we have 

Communication of data laterally within the vector is 
expressed using a class of unary operators that we 
call directionals. Syntactically they appear as single 
word symbols, left and r ight .  For example, "left 
expcpr" yields the value of the expression expr com- 
puted a t  the PE's left neighbor. There are two other 
directionals ( u p  and down) useable within certain 
contexts as explained below. The set of four direc- 
t iona l~  have been demonstrated (Ref. 4) to  provide a 
compiler for a SIMD machine with significant oppor- 
tunities for optimisation. 

PROGRAMMING MODELS 

The SLANG language provides three distinct mod- 
els for programming image operations on a SLAP. 
The models differ in the way that video synchroni- 
sation and the specification of the computation are 
related. The first model is, in a sense, the most basic 
for the system. Input and output image(s) are held 
in offchip memory and the vector is able to  perform 
random access to  the data (i.e., the video pathway is 
not connected to external devices). 

Access to the image buffers held within the con- 
troller and to  "live" video sources and sinks requires 
significant sequencer assistance. There are two pro- 
gramming models that can achieve this in a parsimo- 
nious manner. The first model is a variant of the sim- 
ple first scheme. The programmer writes code that is 
to be executed once per scanline. This code is then 
imbedded within a scanl ine pass statement. The 
interpretation of the resulting construct is that the 
scanlines of the input and output image(s) specified 
with the statement are to  be transported to and from 
the appropriate PEs as required. In a sense this is the 
native mode for the SLAP system, capable of making 
good use of the pipelining of the video shift register 
in the vector. 

A very large number of the low-level image- 
processing operations can be cast as "position- 
independent'' programs. In this scheme a program- 
mer writes code that executes a t  one pixel position. 
Within this code values that are computed a t  other 
positions can be specified using relative offsets. A 
single value generated by the code is the result value 
for the position. An interpreter is required to per- 
form the correct mapping. The Apply language (Ref. 
15), is of this type. The third SLANG programming 
model is a generalisation of this simple form, permit- 
ting the programmer to use the results of arbitrary 
computations at other grid positions (not just input 
pixel values). In the SLANG language, position inde- 
pendent programming is achieved using a grid pass. 

found that all three have their place. Some compu- 
tations simply cannot be phrased well as gr id pro- 
grams, but are easily written as scanl ine code (e.g., 
histograrnrning and the Hough Transform (Ref. 5)). 
The ability to write SLANG code that does not re- 
quire even the implicit video synchronisation permits 
the programmer to  realise the power of the vector un- 
encumbered, as a systolic array with programmable 
cells. From the implementation viewpoint, a differ- 
ence between the models is that the scanline model 
uses variables that are retained between real image 
scanlines, in the grid model each set of variables is 
implicitly declared anew for each pixel position. Use 
of a pass construct provides the compiler with a good 
deal of information about the structure of the com- 
putation defined. 

COMPILATION 

We have already alluded to  significant optimisation 
opportunities exploiting directional and pass infor- 
mation. Here we briefly examine the target machine 
for the SLANG compiler. Each SLANG module is in- 
voked to run on a machine that generally retains very 
little state between modules. The code words gener- 
ated include sequencer and PE instruction fields. The 
vector and the PE vector run in lockstep, making 
static allocation of tightly cooperative computations 
across the two subsystems straightforward. 

The image memory in the vector is allocated (and 
deallocated) by software on the controller to provide 
image storage. Applications create images by invok- 
ing the controller routine which, returns an address. 
This address is then passed to modules, identifying 
images. SLANG symbolic variables have to be allo- 
cated within the register files and memories in both 
the sequencer and the PEs. No special techniques are 
required. 

The mapping of pass code to something amenable 
to code generation on the vector is straightforward 
for the scanline model but a little more complicated 
for the grid. The latter code is basically remapped 
so that all references to data that has not yet arrived 
are removed. The resulting code is then implemented 
using circular buffers. 

EXAMPLES 

Two examples are shown below, keywords are shown 
capitalised. The first is a very simple SLANG module 
that thresholds an image "on-the-fly". As we men- 
tioned above, this would be actually a very inefficient 
use of the SLAP, because the majority of the available 



computation cycles a t  the video rate are not being 
used. 

SLANG simple-threshold ( t ) 
B E G I N  

VAR t : GLOBAL ; 
P A S S  ( S C A N L I N E  , I N  ( a EXTERN ) , 

OUT ( b E X T E R I  ) ) 
b := a >= t 

E N D .  

The second example is more interesting, demon- 
strating fragments of the code for a 2D FFT-like com- 
putation, the Walsh-Hadamard computation. A har- 
ness component might be 

allocate-image( & start ) ; 
column-transform( start ) ; 
allocate-image( & t-start ) ; 
vector-transpose( start , t-start ) ; 
column-transform( t-start ) ; 

The vector-transpose module transposes an image in 
place in the vector. That operation takes about one 
frame time. The SLANG column-transform module 
is sketched below. SLANG does not currently have 
routines, columnshuffle and butterfly are macros. 

SLANG column-transform ( start ) 
B E G I N  

column-shuffle( start ) ; 
FOR level := 0 TO 8 DO 

FOR i := 0 TO 266 DO 
butterfly( start , level , i ) 

E N D .  

STATUS 
The prototype's 2p CMOS chips, each of which con- 
tain four PEs have been fabricated and are now being 
tested. The boards, sequencer, and controller have 
been designed. A first version of the SLANG com- 
piler has been built. It does not yet perform the grid 
pass mapping or perform substantial optirnisations 
(a  number of which have been tested independently). 
A compiler for Apply to  SLANG mapping is close to 
completion. 

SUMMARY 
We have briefly described a SIMD image manipula- 
tion machine and the fundamentals of a high level 
language for it. The system includes a computational 
component, called here the sequencer, that is not usu- 
ally found in SIMD architectures. We have indicated 

how it is well exploited. The language appears to 
be able to support convenient programming models 
with very efficient mappings to  the hardware. The 
Processing Elements are designed with novel features 
to add flexibility t o  an SIMD system. 

REFERENCES 

1. G .  H. Barnes, R. M. Brown, M. Kato, D. J .  Kuck, 
D. L. Slotnick, and R. A. Stokes. The ILLIAC IV 
Computer. IEEE 5Tansactions on Computers, C- 
17(8):746-757, August 1968. 

2. Thinking Machines Corporation. Connection 
Machine Model CM-2 Technical Summary. Tech- 
nical Report HA87-4, April 1987. 

3. M. J .  B. Duff. CLIP 4: a large scale integrated 
circuit array parallel processor. In 3rd Interna- 
tional Joint Conference on Pattern Recognition, 
pages 728-733, 1976. 

4. A. L. Fisher and P. T.  Highnam. Communica- 
tion and code optimization in SIMD programs. 
In International Conference on Parallel Process- 
ing, August 1988. 

5. A. L. Fisher and P. T .  Highnam. Computing 
the Hough Transform on a Scan Line Array Pro- 
cessor. In IEEE Computer Society Workshop on 
Computer Architectures for Pallern Analysis and 
Machine Intelligence, October 1987. 

6. A. L. Fisher and P. T .  Highnam. Real-Time Im- 
age Processing on Scan Line Array Processors. 
In IEEE Computer Society Workshop on Corn- 
puler Architectures for Pattern Analysis and Im- 
age Database Management, November 1985. 

7. A. L. Fisher, P. T. Highnam, and T .  E. Rock- 
off. Scan Line Array Processors : Work in 
Progress. In DARPA Image Understanding 
Workshop, April 1988. 

8. A. L. Fisher and J. A. Zsarnay. System sup- 
port for a VLSI SIMD image computer. In IEEE 
Workshop on VLSI Signal Processing, November 
1988. 

9. P. M. Flanders, D. J .  Hunt, S. F. Reddaway, 
and D. Parkinson. Efficient high speed comput- 
ing with the Distributed Array Processor. In 
High speed computer and algorithm organization, 
pages 113-127, Academic Press, 1977. 



10. T. J. Fountain, K. N. Matthews, and M. J. B. 
Duff. The CLIP7A Image Processor. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 10(3):310-319, May 1988. 

11. J .  L. Potter, editor. The Massively Parallel Pro- 
cessor. The MIT Press, 1985. 

12. L. A. Schrnitt and S. S. Wilson. The AIS- 
5000 Parallel Processor. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 
10(3):320-330, May 1988. 

13. H. Tamura, S.  Sakane, F. Tomita, and N. 
Yokoya. Design and implementation of SPIDER 
- a transportable image processing software pack- 
age. Computer Vision, Graphics and Image Pro- 
cessing, 23(3):273-294, 1983. 

14. S. H.  Unger. A computer oriented towards spatial 
problems. Proceedings of the IRE, 46:1744-1750, 
1958. 

15. R. S. Wallace, J .  A. Webb, and I. C. Wu. 
Machine-independent image processing: perfor- 
mance of Apply on diverse architectures. In 
3rd International Conference on Supercomputing, 
May 1988. 



ILLUSTRATIONS 



O
flIG

IN
A

L PAG
E 

CO
LO

R P
H

O
TQ

G
R

M
H

 



ORIGINAL PAGE 
CCUk PhOTOcWH 

Plate 11. Scan Line Graphics Generation on the Massively Parallel Processor 

694 



Figure 5. Color contour plot of electric potential during a beam plasma 
instability. 

Plate 111. A Parallel Particle-In-Cell Model for the Massively Parallel Processor 



O
R

IG
1M

AL PAG
E 

C
O

LO
R

 P
H

O
TO

G
R

A
P

H
 



O
RIG

IN
A

L PAGE 
CO

LO
R PH

O
TO

G
R

A
PH

 



698 
Q

R
lp

A
L

 PA
G

E 
C

y
 

PM
O

TO
G

R
A

PH
 



Figure 1. (a) Original TM image. (b) Segmented TM image. (c) Difference 
between (a) and (b) plus a bias (to create a positive image). 

Figure 2. Pseudo-colored class label maps with "water/marshn shown as  blue, "forestn shown 
as orange, "residential" shown as green. (a) Bayes classification of the original TM image. 

(b) Ground truth map. (c) Bayes classification of segmented TM image. 

Plate VII. Image Segmentation by Iterative Parallel Region Growing 
With Applications to Data Compression and Image Analysis 



GAPP Cell 

Plate VIII. The Geometric Arithmetic Parallel Processor I 

OREiNAL PAGE 
700 COLOR PHOTOGRAPH - 



~ ~ G I N A L  PAGE 
COLOR PHOTOGRAPH 

Martian Terrain 

h 

Plate M. The Ge rqetric Arithmetic Parallel Processor I1 4Y 



ATTENDEES 

PRECEDING PAGE BLANK NOT FILMED 



FRONTIERS '88 ATTENDEES LIST 

M. Abdelguerfi 
University of Detroit 
Engineering Dept. 
4001 West McNichols 
Detroit, MI 48221 

Maurice Aburdene 
Bucknell University 
Electrical Engineering Dept. 
Lewisburg, PA 17837 

Raj Acharya 
SUNY a t  Buffalo 
Electrical & Computer Engineering 
Buffalo, NY 

Gus S. Adhar 
University of Maryland 
Baltimore, MD 21228 

Merigot Alain 
Un. Paris Sud 
I.E.F. - Bat 220 
Orsay 91405 
France 

Ted Albert 
U.S. Geological Survey 
806 National Center 
Reston, VA 22092 

Bruce Alper 
Active Memory Technology, Inc. 
16802 Aston St., Suite 103 
Irvine, CA 92714 

Ned Anderson 
Digital Equipment Corp. 
75 Reed Rd. 
Hudson, MA 01749 

Paul B. Anderson 
Planning Research Corp. 
3521 Launcelot Way 
Annandale. VA 22003 

Gary Anthes 
Federal Computer Week 
3 110 Fairview Park Drive 
Falls Church, VA 22046 

Mark Antonelli 
DEC 
77 Reed Rd. 
Hudson, MA 
(508) 568-5607 

pREC€D\NG PAGE BLANK NOT FILMED 

R.A. Athale 
BDM 
7915 Jones Branch Dr. 
McLean, VA 22102 

James Lee Bagby 
George Mason University 
1805 Post Oak Terrace 
Reston, VA 22091 

Chuck Baldwin 
University of South Carolina 
CPSA, Computer Services 
Columbia, SC 29208 

Alex L. Bangs 
Institute for Defense Analyses 
1801 N. Beauregard St. 
Alexandria, VA 22311 

Suzanne Banqhart 
Dept. of Defense 
9800 Savage Rd. 
Ft. George G. Meade, MD 20755-6000 

Herb S. Barad 
Tulane University 
Department of Electrical Engineering 
News Orleans, LA 70118 

Juan Bargagna 
George Mason University 
3965 Fairfax Sq. 
Fairfax, VA 2203 1 

John A. Barnden 
Computing Research Lab 
New Mexico State University 
Box 30001 
Las Cruces, NM 88003 

Stan Barouch 
Fed. Comp. Week 
3110 Fairview Park Dr. 
Falls Chuch, VA 22046 

Bill Bass 
Hughes Aircraft Co. 
1768 Business Center Dr. 
4th Floor 
Reston, VA 22090 

Don Becker 
Harris Corporation 
P.O. BOX 37, MS 3A-1912 
Melbourne, FL 32902 



Robert W. Bee 
Automation Research Systems 
4480 King St., Suite 500 
Alexandria, VA 22302 

Carol Bee-Latty 
Thinking Machines Corporation 
4705 Langdrum Ln. 
Chevy Chase, MD 20815 

Don Blevins 
MCNC 
3021 Cornwallis Rd. 
Research Triangle Park, NC 27709 

Judith 0. Berkey 
George Mason University 
9123 Peabody St. 
Manassas, VA 22110 

Semyon Berkovich 
Allied-Signal Aerospace Tech. Center 
9140 Old Annapolis Road 
MD 108 
Columbia, MD 21045-1998 

Philip J. Bernhard 
Clemson University 
405 College of Nursing Building 
Clemson, S.C. 29634 

H. Scott Berryman 
Yale University 
51 Prospect 
New Haven, CT 06158 

Steve Bershader 
MRJ Inc. 
10455 White Granite Dr. 
Oakton. VA 22124 

Hugo F. Bezdek 
N O N A O M L  
4301 Rickenbacker Causeway 
Miami, FL 33149 

Lloyd I. Biscomb 
Vitro Corp. 
4452 Burlington PI,. NW 
Washington, D.C. 20016 

John Blakemore 
Texas Instruments, NPDD 
P.O. Box 660246, MS 8605 
Dallas, Texas 75266 

T. William Blank 
Masspar, Inc. 
2840 San Tomas, Suite 140 
Santa Clara, CA 95051 

Guy E. Blelloch 
MIT Artificial Int. Lab. 
Cambridge, MA 02139 

John Blinka 
The Goodyear Tire & Rubber Co. 
P.O. Box 3531 
Akron, OH 44309-3531 

James Blue 
National Institute of Standards & Technology 
Gaithersburg, MD 20899 

Bruce Blundell 
US Army Engineer Topographic Lab. 
ATTN: Sl-TE 
Bldg. 2592 
Fort Belvoir, VA 22060-5546 

Eugene C. Boman 
United Technologies Research Center 
MS 129-47 Silver Lane 
East Hartford, CT 06118 

Dr. Haran Boral 
MCC 
3500 West Balcones Center Drive 
Ausin, TX 78759 

Kevin W. Bowyer 
University of South Florida 
Dept. of Computer Science 
Tampa, FL 33620 

Stephen W. Boyack 
Dept. of Defense 
9741-202 Clocktower Lane 
Columbia, MD 

Lance Boyd 
Mercury Computer Systems 
7855 Guilford Rd. 
Suite 120 
Columbia, MD 21046 

Lany  Boyer 
Naval Research Lab 
Code 4691 
Washington, DC 20375 

Jane Brandenburg 
George Mason University 
8015 Orange Plank 
Springfield, VA 22153 

Moshe Braner 
Cornell University 
Theory Center 
265 Olin Hall 
Ithaca, NY 14853 



Alfred B. Brenner 
Supercomputing Research Center 
4380 Forbes Boulevard 
Lanham, MD 20706 

A.R. Briggs 
208 Farmgate Lane 
Silver Spring, MD 20904 

David Britton 
Trident Systems, Inc. 
3554 Chain Bridge Rd., Ste. 200 
Fairfax, VA 22030 

Alan Broder 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102 

Richard N. Brooke 
E-Systems - Melpar Division 
11225 Waples Mill Rd. 
Fairfax, VA 22030 

Joe R. Brown 
Martin Marietta Electronic Systems 
P.O. Box 628007 
Orlando, FL 32862 

Daniel Broyles 
George Mason University 
5614 Rathbone PI. 
Springfield, VA 22 15 1 

Lisa A Burgess 
U.S. Geological Survey 
804 National Center 
12201 Sunrise Valley Dr. 
Reston, VA 22092 

Tim Busse 
Computer Sciences Corporation 
3160 Fairview Park Drive 
Falls Church, VA 22042 

Lowell Campbell 
University of Idaho 
Electrical Engineering 
BEL 213 
Moscow. Idaho 83843 

Tim Cannon 
George Mason University 
5060 Queenswood Dr. 
Burke, VA 22015-1529 

Mark Carlotto 
TASC 
55 Walkers Brook Dr. 
Reading, MA 01867 

David A Carlson 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Jay W. Chalmers 
Los Alamos National Laboratory 
M.S. B267 
Los Alamos, NM 87545 

Robert Chamberlain 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Mark E. Chambers 
DOD 
10558 Faulkner Ridge Circle 
Columbia, MD 21044 

Art Charlesworth 
University of Richmond 
Richmond, VA 23173 

Chi-Yuan Chin 
General Electric Company 
Corp. Research Dev. 
P.O. BOX 8, KWC-528 
Schenectady, NY 12301 

G.E. Christensen 
Dept. of Elec. Eng. 
Washington University 
St. Louis, Missouri 63130 

Cecilia Chu 
NORDA 
Code 115, SSC, MS 
Stennis Space Center, MS 39529 

Nhi Anh Chu 
The MITRE Corporation 
7525 Colshire Drive 
McLean, Virginia 22102-3481 

Joseph Claman 
U.S. Geological Survey 
804 National Center 
12201 Sunrise Valley Dr 
Reston, VA 22092 

Raymond E. Cline 
Sandia National Laboratories 
P.O. Box 969 
Livermore, CA 94551-0969 

Eugene L. Cloud 
Martin Marietta Electronic Systems 
MP 1304 
Orlando, FL 32862 



David M. Cohen 
Dept. of Computer Sciences 
101 MacLean Hall 
University of Iowa 
Iowa City, Iowa 52245 

Jacques Cohen 
Brandeis University 
Comp. Science Dept. 
South St. 
Waltham, MA 02254 

Ron Cook 
Eastman Kodak 
B82A Rm 342 Research Labs 
Rochester, NY 14650-2163 

Ronald Coleman 
Polytechnic University 
333 Jay Street 
Brooklyn, NY 11201 

John B. Corliss 
NASNGS FC 
Code 635 
Greenbelt, MD 

Rob Creecy 
U.S. Census Bureau 
SRD 3215-4 
Washington, DC 20233 

Daniel H. Cress 
Waterways Experiment Station 
Box 631 
Vicksburg, MS 39180 

Charles Croft 
Geodynamics 
P.O. Box 5267 
Springfield, VA 22150 

Clifford Cummings 
J e t  Propulsion Laboratory, M/S 3823 
1500 Planning Research Drive 
McLean, VA 22102 

Thomas Curtis 
CDSI 
5443 Taussig Rd. 
Bladensburg, MD 20710 

Ernest Daddio 
STX 
4400 Forbes Blvd. 
Lanham, MD 20706 

Charles A. Dallas 
Martin Marietta Astronautics 
P.O. Box 179, M.S H4372 
Denver, CO 80201 

Edward W. Davis 
North Carolina State University 
Dept. of Computer Science 
Box 8206 
Raleigh, N.C. 27695 

Marvin Denicoff 
Thinking Machines Corporation 
245 First Street 
Cambridge, MA 02142 

Etienne Deprit 
Naval Research Lab, Code 8242 
4555 Overlook Ave. 
Washington, D.C. 20375 

Victor V. Derefinko 
Eastman Kodak Com 
1447 St. Paul St. 
Rochester, NY 14653-7205 

Judith Devaney 
sm 
4400 Forbes Blvd. 
Lanham, MD 20706 

John DiFrancesco 
SAIC 
26679 West Agoura Rd., Suite 200 
Calabasas, CA 91302 

Susan R. Dickey 
New York University 
Courant Institute 
251 Mercer St. 
New York, NY 10012 

Carl F. Diegert 
Sandia National Laboratories 
P.O. Box 5800 
Albuquerque, NM 87185 

Kevin Doherty 
E-Systems Melpar Division 
7700 Arlington Blvd. 
Falls Church, VA 22046 

Dr. Jack Dongarra 
Argonne National Laboratory 
Argonne, IL 

John E. Dorband 
NASAIGoddard 
Code 635 
Greenbelt, MD 20771 



Richard N. Draper 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Therese A. Dumoulin 
Naval Surface Warfare Center 
Code G45 
Silver Spring, MD 20903-5000 

Dr. James A Earl 
University of Maryland 
Dept. of Physics & Astronomy 
College Park, MD 20742 

Mark Edwards 
GTE Gov't. Systems 
1700 Research Blvd 
Rockville, MD 20850 

P.J. Edwardson 
Condensed Matter Physics Branch 
Naval Research Lab. 
Washington, DC 20375 

Kemal Efe 
Univ. of Southwestern Louisiana 
CACS, USL, 2-Rex Street 
P.O. Box 44330 
Lafayette, LA 70504-4330 

Robert Ehrlich 
George Mason University 
Physics Dept. 
Fairfax, VA 22030 

Mohamed El-Sharkawy 
Bucknell University 
Dana Building 
Lewisburg, PA 17837 

Stephen Engel 
DEC 
75 Reed Rd. 
Hudson, Mass. 

Paul M. Engelhart 
Rome Air Development Center 
COEE 
Griffiss AFB, NY 13441 

Frederick H. Esch 
US Army Engineer Topographic Lab. 
ATTN: SL-T 
Bldg. 2592 
Fort Belvoir, VA 22060-5546 

Ronald Estes 
STX 
4400 Forbes Blvd. 
Lanham, MD 20706 

David Evans 
Visionary Systems Inc. 
25 Science Park 
New Haven, CT 06511 

Ai Chun Fang 
NASA HQ, Code EI 
600 Independence Ave., SW 
Washington, DC 

Donald W. Fausett 
Florida Institute of Technology 
316 George St., S.W. 
Vienna, VA 22180 

James W. Feeney 
IBM 
1701 N. St.. D e ~ t .  V71 

R.B. Ferguson 
E.I. DuPont 
600 Eagle Run Rd. 
Newark, DE 19707 

Carmelo Ferrigno 
U.S. Geological Survey 
804 National Center 
12201 Sunrise Valley Dr. 
Reston, VA 22092 

Charles M. Fiduccia 
General Electric R & D Center 
Schenectady, NY 12309 

Michael Lee Finney 
FAX Group 
Rt. 11, N. 
Troutville, VA 24175 

G.R. Fischer 
University of Florida 
CIS Dept. 
Gainesville, FL 3261 1 

James R. Fischer 
NASAIGSFC 
Mail Code 635 
Greenbelt, MD 20771 

Allan L. Fisher 
Dept. of Comp. Science 
Carnegie Mellon Univesity 
Pittsburgh, PA 15213 

Jeff Fleischer 
CIA 
Washington, DC 20505 



Judith L. Flippen-Anderson 
Naval Research Laboratory 
Code 6030 - Naval Res. Lab. 
Washington, DC 20375-5000 

Mark D. Forest 
U.S. Government 
Rome Air Development Center 
Rome,NY 13441 

Jose Fortes 
Purdue University 
School of Electrical Engineering 
W. Lafayette, IN 47907 

Dick Foster 
Mynas Research Corporation 
900 Park Plaza 
1061 1-98 Ave 
Edmonton AB TSK-2P9, 
CANADA 

Scott Fouse 
Technowledge Federal Systems, Inc. 
501 Marin St., Suite 214 
Thousand Oaks, CA 91360 

Jeff Frank 
Amber Engineering, Inc. 
5756 Thornwood Drive 
Goleta, CA 93117 

Robert G. k a n t z  
TRW 
M5-1027,l Space Park 
Redondo Beach, CA 90278 

R. Don Freeman 
AT&T Bell Labs 
Room 2B-302 
600 Mountain Ave. 
Murray Hill, NJ  07974 

Richard F. Freund 
Naval Ocean Systems Center 
271 Catalina Blvd. 
San Diego, CA 92064 

Jeff Fried 
Laboratory for Computer Science 
MIT 
Cambridge, MA 02139 

Gideon Frieder 
Syracuse University 
School of Computer & Information Science 
Syracuse, NY 13244 

Ophir Frieder 
Bell Comm. Research 
445 South Street 
MRE 2D297 
Mooristown, NJ 07960-1960 

Jerrard B. Gaertner 
Price Waterhouse 
National Auditing Services 
1100, boul. Dorchester ouest 
Montreal, CANADA H3B 2G4 

M.M. Garber 
Martin Marietta Elec. Systems 
P.O. Box 555837, MP 1304 
Orlando, FL 32855-5837 

Steven Geldman 
Time/Life Books 
777 Duke St. 
Alexandria, VA 223 14 

Bill J. Georges 
Newport News Shipbuilding 
4101 Washington Ave. 
Dept. C62, B521-2 
Newport News, VA 23607 

Thomas E. Gerasch 
Sparta Inc. 
7926 Jones Branch Dr. 
McLean, Virginia 22 102 

Jeffrey Gerstenberger 
Eastman Kodak Research Labs 
1999 Lake Avenue 
Rochester, NY 14650-5075 

Joydeep Ghosh 
Univ. of Texas 
ENS 516, U.T. 
Austin, TX 78712-1084 

Helen Gill 
The MITRE Corporation 
MS 2645,7525 Colshire Drive 
McLean, VA 22107 

Walter Gleaton 
U.S. Geological Survey 
509 National Center 
Reston, VA 22092 

Dr. Maya Gokhale 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 



Alwyn E. Goodloe 
UNISYS 
P.O. Box 181 
Quantico, VA 22134 

Jesse M. Gordon 
University of Michigan 
Department of EECS 
The University of Michigan 
Ann Arbor, MI 48109-2122 

T.R. Gowrishankar 
George Mason University 
4400 University Drive 
Fairfax, VA 22030 

T.W. Greenwood 
IBM 
8250 Vernon Dr. 
Manassas. VA 22110 

Robert Grondalski 
Digital Equipment Corp. 
75 Reed Rd. 
Hudson, MA 01749 

Chester Grosch 
Old Dominion University 
1130 Manchester Ave. 
Norfolk, VA 23508 

Peter D. Gross 
Computer Sciences Corporation 
3160B Fairview Park Drive 
Falls Church, VA 22042 

J. Anthony Gualtieri 
NASAJGSFC 
Code 635, Bldg. 28 
Greenbelt, MD 20771 

David Guarino 
SAIC 
5151 E. Broadway, Suite 900 
Tucson, AZ 857 16 

Joseph Guzek 
Hughes Aircraft 
4th Floor 
1768 Business Center Dr. 
Reston, VA 22090 

Dr. Milton Halem 
NASNGSFC 
Code 630 
Greenbelt, MD 20771 

J. Storrs Hall 
Rutgers University 
Dept. of Computer Science 
New Brunswick, NJ 08903 

Russell Hall 
Memll Pickard Anderson & Byre 
2 Palo Alto Sq., Suite 425 
Palo Alto, CA 94306 

Magnus M. Halldorsson 
Rutgers University 
40 Marvin Lane 
Piscataway, NJ 08854 

Lisa Hamet 
NASNGoddard Space Flight Center 
Code 635 
Greenbelt, MD 20771 

John W. Hansen 
MRJ, Inc. 
10145 White Granite Dr.. Suite 200 
Oakton, VA 22 124 

Dr. James Hardy 
Whitney/Demos Productions 
Culver City, CA 

Max Halperin 
Stanford University 
Stanford, CA 94305 

Dr. Joe M. Harris 
Sandia National Laboratories 
P.O. Box 969 
Livermore, CA 94551-0969 

Jonathan Harris 
Digital Equipment Corp. 
75 Reed Rd. 
Hudson, MA 01749 

Wendy Harris 
Northeast Parallel Architectures Center 
Syracuse University 
250 Machinery Hall 
Syracuse, NY 13244-1260 

Harold M. Hastings 
Hofstra University 
Dept. of Mathematics 
Hempstead, NY 11550 

Anton J. Haug 
Martin Marietta Aero & Naval Systems 
103 Chesapeake Pk. Plaza 
MPE 435 
Baltimore, MD 21046 



Robert Heaton 
Microelectronics Center of North Carolina 
Cornwalis Rd. 
P.O. Box 12889 
RTP, NC 27709 

Jean Hecquard 
SUNY a t  Buffalo 
525 Minnesota Avenue 
Buffalo, NY 14215 

Paul J. Hedrick 
Temple University 
1525 Heather Hollow Circle R11 
Silver Spring, MD 20904 

Daniel B. Heifetz 
Supercomputing Research C e n ~ ; ,  
4380 Forbes Blvd. 
Lanham, MD 20706 

Paul Her* 
Naval Research Lab 
Code 4121.5 
Washington, DC 20375 

Joe Hicklin 
20 Main 
Wayland, MA 

Mac Hicks 
MITRE 
6103 Ivy Lane 
Suite 304 
Greenbelt. MD 20770 

Peter Highnam 
Schlumberger Doll Research 
Old Quarry Rd. 
Ridgefield, CT 06877 

Ping Ho 
STX 
4400 Forbes Blvd. 
Lanham, MD 20706 

Stephen W. Hodson 
Los Alamos National Laboratory 
Ms B267 
Los Alamos, NM 87545 

R. Michael Hord 
MRJ, Inc. 
10455 White Granite Dr. 
Oakton, VA 22124 

Regan E. Howard 
Fairchild Space Co. 
20301 Century Blvd., MS A-10 
Germantown, MD 20874 

Geoffrey A Howe 
Rensselaer Polytechnic Institute 
1C Russet Oaks 
Ballston Lake, NY 12019 

W.J. Hsu 
MSU 
A-734 Wells Hall, MSU 
E. Lansing, MI 48824 

Karen Humes 
University of Arizona 
:?ept. of Hydrology and Water Resources 
Tucson, AZ 85721 

Paul Hunt 
Martin Marietta 
6633 St. Martin P1. 
Orlando, FL 32812 

Paul Hunter 
Naval Research Lab 
Code 5305 
Washington, DC 20375-5000 

Bev Huntsberger 
University of South Carolina 
CPSA, Computer Services 
Columbia, SC 29208 

Terrance Huntsberger 
University of South Carolina 
Department of Computer Science 
Columbia, SC 29208 

Jon T. Hurd 
David Sarnoff Research Center 
CN 5300 
Princeton, NJ 08543-5300 

Peter Hyde 
Space Telescope Science Inst. 
Johns Hopkins University 
3700 San Martin Dr. 
Baltimore, MD 21218 

G. Iazeolla 
University of Rome 
Electronic Engineering Dept. 
via 0. Ratmondo 
00173 Roma, 
Italy 

Richard Iliff 
USAF'/SDIO/S/ES 
The Pentagon 
Washington, DC 20301 



Kenneth Iobst 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

David Izraelevitz 
The Analytic Sciences Corporation 
55 Walkers Brook Dr. 
Reading, MA 01867 

Daniel Jablonski 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Laura L. Jackson 
Mississippi State University 
Dept. of Elec. Eng. 
P.O. Drawer EE 
Mississippi State, MS 39762 

Elaine M. Jacobson 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Kenneth P. Jacobson 
Mass Par Inc. 
2840 San Tomas Expwy, #I40 
Santa Clara, CA 95051 

Joseph Jaja 
Univ. of Maryland 
Electrical Eng. 
College Park, MD 20762 

Mark Jankins 
The Aerospace Corp. 
MI-102, P.O. BOX 92957 
Los Angeles, CA 90009 

Anne Jansen 
Washington Technology 
1953 Gallows Rd. 
Suite 130 
Vienna, VA 22180 

Keith Johnson 
Amber Engineering, Inc. 
5756 Thornwood Drive 
Goleta, CA 93117 

Brian L. Jordan 
5414 Charleston Woods Dr. 
Fairfax, VA 22032 

Dr. G.R. Joubert 
Ned. Philips' Bedr. B.V. 
Building HKF-p826 P.O. Box 218 
5600 MD Eindhoven 
The Netherlands 

Moon-Seog J u n  
U.M.B.C. 
912-#C Apt. Hooper Ave. 
Baltimore, MD 21224 

B. Kamgar-Parsi 
University of Maryland 
College Park, MD 20742 

Behrooz Kamgar-Parsi 
George Mason University 
9338 Cherry Hill Rd., #I03 
College Park, MD 20740 

Joel Kaplan 
Morgan Stanley and Co. 
1251 Avenue of the Americas, 19th floor 
New York, NY 10020 

0. Karmin 
Dept. of Elec. Eng. 
Washington University 
St. Louis, Missouri 63130 

Alan Karp 
IBM 
18100 Frederick Pike 
Gaithersburg, MD 20879 

Joel Katzin 
SEDC 
9170 Rumsey Rd. 
Columbia, MD 

James P. Kelley 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102 

Robert G. Kennington 
George Mason University 
1311 St. Paul's Way 
Crownsville, MD 21032-2115 

D. Kim 
Univ. of Southern Calif. 
Dept. of Elec. Eng.-Sys. 
Los Angeles, CA 90089-0781 

Chung-ta King 
New Jersey Inst. of Tech. 
Dept. of CIS 
Newark, N.J. 07102 

W. Worth Kirkman 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481 



Camille S. Klein 
9459 Shouse Dr. 
Vienna, VA 22180 

Todd A mine 
Naval Air Development Center 
Code 5051 
Warminster, PA 18974 

Stanley P. Knight 
David Sarnoff Research Center 
CN 5300 
hinceton, NJ 08543-5300 

Kathy Knobe 
COMPASS 
550 Edgewater Dr. 
Wakefield, MA 01880 

Phil Koopman 
Camegie Mellon Univ. 
5551 Beacon St. 
Pittsburgh, PA 15217 

Marta Kosarchyn 
Hewlett-Packard Company 
5301 Stevens Creek Blvd 
Santa Clara, CA 95052 

Bill Kraynek 
F.I.U. 
Tamiami Traic 
Miami, FL 33173 

Sridhar Krishnamurthy 
University of Maryland 
Systems Research Center 
College Park, MD 20770 

R. Kruger 
SAIC 
5151 East Broadway, Suite 900 
Tucson, AZ 85711 

Bradley C. Kuszmaul 
MIT, Thinking Machines 
8 Florence Rd. 
Waltham, MA 02154 

Chris Kuszmaul 
Masspar, Inc. 
2840 San Tomas 
Suite 140 
Santa Clara, CA 95051 

Christopher Landaver 
The Aerospace Corp. 
P.O. Box 92957 
Los Angeles, CA 90009 

Dr. Faiza Lansing 
Je t  Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, CA 91 109 

Linda M. Lawson 
East Tenne- State University 
Mathematics Dept. 
Box 22309A 
Johnson City, TN 37660 

Jacqueline Le MoignaStewart 
Martin Marietta Laboratories 
14S0 South Rolling Road 
Baltimore, 2 1227-3898 

RM. Lea 
Brunel University 
Kingston Lane 
Uxbridge Middx UB83PH 
UK 

Steven Lederman 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Philip Lem 
81-TE ETL 
Telegraph & Leaf Rds. 
Fort Belvoir, VA 22060-5546 

Dar-Ren Leu 
University of Houston 
Department of Computer Science 
4800 Calhoun Road 
Houston, TX 77004 

Christopher Lewis 
Naval Research Lab 
4555 Overlook Ave. 
Washington, DC 20375 

John W. Lewis 
GE CRCD 
P.O. Box 8, Rm. KWD244 
Schenectady, NY 12309 

Yiging Liang 
George Mason University 
Rm. 103, S&T 
4400 University Drive 
Fairfax, VA 22030 

Dr. Chin S. Lin 
Southwest Reeearch Institute 
6220 Culebra Rd. 
San Antonio, TX 78238 



J.E. Lin 
George Mason University 
Fairfax, VA 22030 

John Lindelow 
SETS, Inc. 
1110 University Ave, 1507 
Honolula, HI 96826 

Helen M Ling 
NADC 
Street Road 
Warminster, PA 18974 

Yue-Sheng Liu 
Mew York University 
2S1 Mercer St. 
New York, NY 10012 

Louis Lome 
US GovernmentlDOD 
4513 N. 11th St. 
Arlington, VA 22201 

Dr. Lyle Long 
Lockheed 
Box 551, Dept. 7011 
Burbank, CA 91520 

G.M. Loseke 
E-Systems, Inc. 
P.O. Box 1056, CBN 132 
Greenville, TX 75401 

T. Michael Louden 
The MITFUZ Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481 

Cheng-Chang Lu 
Kent State University 
Department of Mathematical Sciences 
Kent, OH 44242-0001 

Boris Lubachevsky 
AT & T Bell Laboratories 
600 Mountain Avenue 
2C-121 
Murray Hill, NJ 07974 

Joan D. Lukas 
Compass, Inc. 
650 Edgewater Drive 
Wakefield, MA 01880 

William I. Lundgren 
GE Aerospace 
Bldg. 145, Rte 38 
Moorestown, NJ 08057 

Richard MacDonald 
U.S. Geological Survey 
804 National Center 
12201 Sunrise Valley Dr. 
Reston, VA 22092 

Donald A. Macbnnan 
Hanovia, Division of Canrad, Inc., 
100 Chestnut Street 
Newark, NJ 07105 

& Kumar Mahadevan 
University of Alabama 
P.O. Box #6169 
Dept. of Elec. Eng. 
Tuscaloosa, AL 35486 

Allen D. Malony 
University of Illinois 
305 Talbot Lab, 
104 S. Wright St. 
Urbana, IL 61801 

Xin Mao 
School of Information Technology & Eng. 
George Mason University 
4400 Univ. Dr. 
Fairfax, VA 22030 

Richard Marciano 
218 E. Washington, U3W 
Iowa City, Iowa 52240 

Manohar Mareboyana 
NASAIGSFC 
Code 636 
Greenbelt, MD 20771 

Massimo Maresca 
DIST-Univ. of Geneva 
via Opera Pia 11A 
Genova, Italy, 16145 

Charles Marshall 
Morgan Stanley & Co. 
1251 Avenue of the Americas, 19 floor 
New York, NY 10020 

Douglas R. Martin 
Department of Defense 
1509 Winding Brook Way 
Baltimore, MD 21207 

Dr. Robert Martino 
NIH 
Bldg. 12A, Rm. 2019 
Bethesda, MD 20892 



Dr. Michael Mascagni 
NIH 
Bldg. 31, Rm. 4B-54 
Bethesda, MD 20892 

Richard Masline 
J e t  Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, CA 

Robert A Masumrua 
Naval Research Lab 
Code 6304 
Washington, DC 20375-5000 

Robert Mattheyses 
GE 
P.O. Box 8 
Schenectady, NY 12301 

Isaac Mayergoyz 
University of Maryland 
College Park, MD 22742 

David F. McAllister 
NC State University 
Box 5206 
Raleigh, NC 27695 

Carolyn McCreary 
American University 
4400 Mass. Ave., NW 
Washington, DC 20016 

Russ McFadden 
McDonald Douglas Astronomics 
5301 Bolsa Ave. 
Bldg. 22-2 Dept. W362 
Huntington Beach, CA 92647 

Kathryn S. McKiney 
Student O Rice University 
7000 Greenbriar #32 
Houston, TX 77030 

Edward P. McMahon 
MRI, Inc. 
10455 White Granite Dr. 
Oakton, VA 22124 

D. McPherson 
Atomic Energy of Canada, Ltd. 
Chalk River 
Ontario KOJ 1PO 
CANADA 

Kenneth McVearry 
NPAC - Syracuse University 
250 Machinery Hall 
Syracuse, N.Y. 13244 

Judith McWilliams 
GE 
4041 N. First St. 
San Jose, CA 95134 

J. Mehat 
Institut d'Electronique Fondamentale 
Batiment 220 
Universite Paris Sud 
91405 Orsay Cedex, 
France 

Joseph Melia 
MIT Lincoln Lab 
PO Box 73 
Lexington, MA 

Bernard L. Menezes 
University of Maryland 
College Park, MD 20742 

A. Merigot 
Institut d'Electronique Fondamentale 
Batiment 220 
Universite Paris Sud 
91405 Orsay Cedex, 
France 

James Bret Michael 
George Mason University 
4400 University Drive 
Fairfax, VA 22030 

John Michener 
SIEMENS Corporate Research, Inc. 
775 College Road East 
Princeton, N J  08540 

David Middleton 
ICASE 
MS 132C, NASA LaRC 
Hampton, VA 23665-5225 

Scott F. Midkiff 
VPI 
Dept. of Electrical Engineering 
Blacksburg, Virginia 24061-01 11 

Calvin S. Miles 
Systems Control Technology 
475 School Street S.W., DC 1030 
Washington, DC 20024 

Brad Miller 
DEC 
77 Reed Rd. 
Hudson, MA 01745 



Peter Miller 
DVP, Inc. 
2401 Research Blvd., Suite 101 
Rockville, MD 20850 

Ronnie Mills 
STX 
4400 Forbes Boulevard 
Lanaham, MD 20706 

Barbara Moore 
MIT AI Lab 
NE 43-826 
545 Technology Square 
Cambridge, MA 02139 

Peter G. Moore 
Naval Research Lab 
Code 6321 
Washington, DC 20375 

Osama Morad 
Digital Analysis Corp. 
1889 Preston White Dr. 
Reston VA, 22091 

Robert E. Morley 
Washington University - St. Louis 
#l Brookings Dr., Box 1127 
St. Louis, MO 631 17 

Andrew P. Mullhaupt 
University of New Mexico 
Dept. of Math 
Albuquerque, NM 87131 

Walid Najjar 
USC/ Information Sciences Institute 
4676 Admiralty Way 
Marina del Rey, CA 90242 

Wayne Nation 
Purdue University 
Electrical Engineering Building 
West Lafayette, IN 47907 

Philip M. Neches 
Teradata Corporation 
12945 W. Jefferson Blvd. 
Los Angeles, CA 90066 

David A Nelson 
US Air Force 
AFOISR 
Bolling AFB, DC 20332 

Bill Nestlerode 
University of South Carolina 
CPSA, Computer Services 
Columbia, SC 29208 

Kathleen M. Nichols 
Apple Computer, Inc. 
20525 Mariani Ave. 
Cupertino, CA 95014 

Jay P. Norris 
Naval Research Laboratory 
Code 4121.3 
Washington, DC 20375-5000 

Mark J. Norton 
GE Aerospace, ATL 
Moorestown Corp. Center 
Moorestown, NJ 08057 

John T. O'Donnell 
Indiana University 
Computer Science Dept. 
101 Lindley Hall 
Bloomington, IN 47405 

M. O'Keefe 
Purdue University 
School of Elec. Eng. 
W, Lafayette, IN 47907 

Dr. Mark A Olson 
The BDM Corp. 
7915 Jones Branch Dr. 
McLean, VA 22102 

Yoshie Ono 
Hitachi American, Ltd. 
950 Elm Avenue 
Suite 160 
San Bruno, CA 94066 

Torstein Opsahl 
MRJ, Inc. 
10467 White Granite Drive 
Oakton, VA 22124 

Darryl S. Paden 
Loral Defense Systems 
1210 Massillon Rd. 
Akron, Ohio 44315 

Bland Painter 
FAX Group 
P.O. Box 477 
Troutville, VA 24175 

David R Palmer 
Ofice of the Director NOAAJAOML 
4301 Kickenbacker Cswy. 
Miami, FL 33149 



Connie Pankratz 
ORDfAMRD 
706 Ames 
Washington, DC 20505 

Osborne Parchment 
Morgan/NASA Digital Imaging Project 
PO Box 2178 
Wheaton, MD 20902 

J o  Ann Parikh 
Southern Conn. State Univ. 
501 Crescent St. 
New Haven, CN 06515 

Dennis Parkinson 
Active Memory Technology 
65 Suttons Park Ave. 
Reading, RG6 lAA, England 

R.G. Peck 
NADC 
Code-5051 
Warminster, PA 18974 

Robert L. Peebles 
Digital Equipment Corp. 
40 Old Bolton Rd. 
Stow, MA 01775 

Shietung Peng 
UMBC 
Wilkens Ave. 
Catonsville, MD 21224 

AT. Perlik 
MRJ, Inc. 
10467 White Granite Drive 
Oakton, VA 22124 

Ivars Peterson 
Science News 
1719 N. Street, NW 
Washington, DC 20036 

Tom Phillips 
1911 Wintergreen Ct. 
Reston, VA 22091 

Douglas Photiadis 
David Taylor Research Center 
Code 1965 
Bethesda, MD 20084-5000 

Ryszard Pisarski 
NASA/GSFC 
Code 636 
Greenbelt, MD 2077 1 

Prof. Tomaso Poggio 
Massachusetts Institute of Technology 
Cambridge, MA 

Stephen D. Post 
Emhart PRC 
1500 Planning Research Dr. 
McLean, VA 22102 

Jerry Potter 
Kent State University 
Kent, OH 44242 

Michael W. Powers 
US Army Engineer Topographic Lab. 
ATTN: CEETL-SL-TE 
Bldg. 2592 
Fort Belvoir, VA 22060-5546 

V. Prasanna-Kumar 
University of Southern California 
Sal-344, Dept. of EE-Systems 
Los Angeles, CA 90089-0781 

Karbhari Prasmanti 
New Jersey Inst. of Technology 
143 Chestnut St. 
Bridgewater, N J  08807 

Tammy Preston-Boyd 
Naval Research Lab 
Code 5326.1 
4555 Overlook Ave., SW 
Washington, DC 20375-5000 

Daniel V. Pryor 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

William Pugh 
University of Maryland 
Dept. of Computer Science 
Silver Spring, MD 20742 

Jeanne Pujanauski 
George Mason University 
1323 N. Lynnbrook Dr. 
Arlington, VA 22201 

David M. Race 
E-Systems 
1200 S. Jupiter Rd. 
Garland, Texas 75042 

James D. Radosevich 
NASA HQ 
Code NTD 
Washington, DC 20546 



Iqbal S. Rai 
Goodyear Tire & Rubber Co. 
P.O. Box 3531 
Akron, Ohio 44309-3531 

H.K Ramapriyan 
NASAJGS FC 
Code 636 
Greenbelt, MD 20771 

Stewart F. Reddaway 
Active Memory Technology, Inc. 
65 Suttons Park Ave. 
Reading, RG6 lAA, England 

Anthony Reeves 
Cornell University 
410 Phillips Hall 
Ithaca, NJ 14853 

Prof. John Reif 
Duke University 
3112 Devon Rd. 
Durham, NC 27707 

Michael D. Rice 
Mathematics Dept. 
Wesleyan University 
Middletown, VA 06457 

Teresa Haynes Rice 
East Tennessee State University 
Box 23830A 
Johnson City, TN 37614 

John P. Riganati 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

G.X. Ritter 
University of Florida 
CIS Dept. 
Gainesville, FL 32611 

Louis G. Robinson 
The Spang Robinson Reports 
P.O. Box 1432 
Manchester, MA 01944 

Amos Rohrer 
EG & G WASCI 
1396 Pickard St. 
Rockville, MD 20850 

Azriel Rosenfeld 
University of Maryland 
College Park, MD 20742 

Thomas Roskan 
George Washington Univ. 
Dept. of Management SC 
Washington, DC 20052 

Ray A Rothrock 
Venrock Associates 
30 Rockefeller Plaza, Room 5508 
New York, NY 10112 

Badrinath Roysam 
Washington University 
6251 San Bonita Ave. 
St. Louis, MO 63105 

George Rumney 
NASA Goddard 
Greenbelt, MD 20771 

T. Rus 
University of Iowa 
Dept. of Computer Science 
Iowa City, Iowa 52242 

Tom Ryan 
SAIC 
7014 Alicent Ct. 
McLean, VA 22101 

Narayan Sahoo 
Dept. of Physics 
SUNY a t  Albany 
1400 Washington Avenue 
Albany, NY 12222 

Douglas Sakal 
Computer Sciences Corporation 
3160 Fairview Park Dr. 
Falls Church, VA 22042 

Ken Sallenger 
University of South Carolina 
CPSA, Computer Services 
Columbia, SC 29208 

Nidal Sammur 
Oklahoma State University 
P.O. Box 2376 
Stillwater, OK 74076 

Dr. Jerry L. Sanders 
Parallelogram 
7 1 Collingwood Ave. 
London NIO 3EE 
UK 

Jay Santry 
STX 
G S W  Bldg #28 
Code 6350 
Greenbelt, MD 20771 



Marlvn M. Sany 
DOD' 
Fort Meade, MD 20755 

Shigeru Sasaki 
Carnegie Mellon University 
Computer Science Department 
Pittsburgh, PA 15213 

Dale R Satran 
NASA 
Code NTD 
Washington, DC 20546 

Micahel P. Satyshur 
U.S. Naval Research Lab 
4555 Overlook Ave., SW 
Washington, DC 20375-5000 

S. Sayre 
SAIC 
5151 East Broadway Suite 900 
Tucson, AZ 85711 

David H. Schaefer 
George Mason University 
Fairfax, VA 

Willie Schatz 
Datamation 
4451 Albemarle St. NW 
Washington, D.C. 20016 

Dr. Paul B. Schneck 
Supercomputing Research Center 
4380 Forbes Blvd. 
Lanham, MD 20706 

Howard Schneider 
Cite de la Sante de Lava1 
149 Finchley Rd. 
Montreal, Quebec H3X3A3 
Canada 

Raymond J. Schneider 
George Mason University 
12623 Holkein Dr. 
Herndon, VA 22071 

Daniel S. Seewer 
Dept. of Defense 
10377 College Sq. 
Columbia, MD 21044 

Stephen B. Seidman 
George Mason University 
4400 University Dr. 
Fairfax, Virginia 22030 

Edward Seiler 
STX 
Mail Code 635 
Goddard Space Flight Center 
Greenbelt, MD 20771 

A Sengupta 
Univ. of South Carolina 
Dept. of Computer Science 
Intell. Systems Lab. 
Columbia, SC 29208 

Dr. H. Thomas Sharp 
Lockheed Aeronautical Systems Company 
25115 Avenue Stanford, Box 1 
Valencia, CA 91355 

Thomas J. Sheffler 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481 

Sam Shepard 
Martin Marietta 
6303 Ivy Lane 
Greenbelt, MD 20770 

Gideon Shichman 
1 B m . J .  Watson Research Center 
Dept. 543/Room 38-209 
Yorktown Heights, NY 10598 

Tom Shook 
U.S. Army 
203 Enrikons Rd. 
Sterling, VA 22 170 

Prof. H.J. Siege1 
Purdue University 
E.E. School 
West Lafayette, IN 47907 

Claude Sigel 
DEC 
P.O.Box 80 
Albuquerque, NM 87103 

T.J. Sullivan 
Dept. of Elec. Eng. 
Washington University 
St. Lu i s ,  Missouri 63130 

S.D. Simmes 
SAlC 
5151 E. Broadway 
Suite 900 
Tucson, AZ 857211-3796 



David Simmons 
Martin Marietta 
8926 Curry Ford Place 
Orlando, FL 32825 

Raj Kumar Singh 
UNC - Computer Science 
CB# 3175 Sitterson Hall 
Chapel Hill, NC 27599 

Donald J. Skala 
US Army Engineer Topographic Lab. 
ATTN: CEETL-SL-TE 
Bldg. 2592 
Fort Belvoir, VA 22060-5546 

William Slough 
University of Missouri 
Computer Science Dept. 
Columbia, MO 6521 1 

Bruce T. Smith 
University of NC 
Sitterson Hall 
Chapel Hill, NC 27707 

Capt. P.G. Smith 
MAGTF Warfighting Center 
WF13A, MCCDC 
Quantico, VA 22314-5001 

Kurt R. Smith 
Washington University 
700 S. Euclid 
St. Louis, MO 63110 

Arun Sood 
George Mason University 
4400 University Dr. 
Fairfax, VA 22030 

T. Sos 
SAIC 
5151 East Broadway Suite 900 
Tucson, AZ 85711 

S.J. Spoerry 
George Mason University 
10256 Battlefield Dr. 
Manassas, VA 22110 

Dr. Steven Squires 
DARPA 
Arlington, VA 

Dr. Andrew J. Srokowski 
Lockheed Aeronautical Systems Company 
25115 Avenue Stanford, Box 1 
Valencia, CA 91355 

Dr. Guy Steele 
Thinking Machines Corporation 
245 First St. 
Cambridge, MA 02142 

Laurence Stein 
E-Sy stems 
7700 Arlington Blvd. 
Falls Church, VA 22046 

Mark Stevens 
STX 
4400 Forbes Blvd. 
Lanham, MD 20706 

Brad Stewart 
Inst. for Parallel Computation 
Thornton Hall, 
UVA 
Charlottesville, VA 22901 

Bert Still 
University of South Carolina 
CPSA, Computer Services 
Columbia, SC 29208 

L.R. Owen Storey 
NASA HQ, Code ES 
600 Independence Avenue S.W. 
Washington, DC 20546 

Joe Straub 
Matrik Technology Support 
8355 Alvord St. 
McLean, VA 22102 

Dr. James Strong 
NASAIGSFC 
Greenbelt, Maryland 20770 

Pradipa Subramaniam 
The University of Akron 
Akron, OH 44325 

John Sui 
Dow Jones & Co., Inc. 
Rt. 1 a t  Ridge Road 
South Brunswick, N J  08852 

Andrew H. Sung 
New Mexico Tech 
Computer Science Dept. 
Socorro, NM 87801 

David Sung 
GE 
P.O. Box 8048 
Philadelphia, PA 19101 



Myung H. Sunwoo 
Computer and Vision Research Center 
The University of Texas a t  Austin 
Austin, Texas 78712 

Prof. Daniel Tabak 
Dept. Electr. & Computer Eng. 
George Mason University 
Fairfax, VA 22030 

Doron Tal 
School of Computer Science 
University Park 
Miami, FL 33199 

Thomas F. Tarr 
Naval Surface Warfare Center 
White Oak 
Silver Spring, MD 20903-5000 

Kosmo Tatlias 
Atlantic Aerospace Electronic Corp. 
6404 Ivy Lane, Suite 300 
Greenbelt, MD 20770 

Iraj Tavakoli 
George Mason University 
4400 University Dr. 
Fairfax, VA 22030 

Anthony Terrano 
Rutgers University 
Computer Engineering 
Piscataway, NJ 08855 

Xavier Thibault 
ONERA-CERT 
2, Avenue Edouard Belin 
B.P. 4025 
Toulouse, 31400, France 

James C. Tilton 
NASNGS FC 
Code 636 
Greenbelt, MD 20771 

Suminto To 
Mississippi State University 
P.O. Box 1558 
Mississippi, MS 39762 

Sherry1 Tomboulian 
ICASE 
NASA Langley Research Center 
Hampton, VA 23665 

Russell R. Tuck 
Univ. of North Carolina 
Computer Science Dept. CB 3175 
Chapel Hill, N.C. 27599 

C.J. Turner 
SAIC 
5151 E. Broadway 
Suite 900 
Tucson, AZ 857 11-3796 

Leonard Uhr 
University of Wisconsin 
Computer Science Dept. 
Madison, WI 53706 

James Utt 
MacAulay Brown, Inc. 
3915 Germany Lane 
Dayton, OH 45431 

Jane Van Fossen 
Office of Naval Technology 
Code 227 
800 N. Quincy St., BCT #1 
Arlington, VA 22217-5000 

Stephen Van Trees 
SIMPACT ASSOCIATES 
11306 Gatesborogh Lane 
Reston, Virginia 2209 1-3605 

Neal Vanderkept 
University of Maryland 
11356 Cherry Hill Rd., 6301 
Beltsville, MD 20705 

David Velten 
Digital Equipment Corp. 
75 Reed Rd. 
Hudson, MA 01749 

Steven Venable 
Martin Marietta Elec. Systems 
P.O. Box 555837, MP 1304 
Orlando, FL 32855-5837 

Alan S. Waksman 
Plex Systems, Inc. 
353 Lexington Avenue 
New York City, NY 10016 

J.L. Walker, Jr. 
Northeastern University 
Boston, MA 02115 

J.L. Wallace 
Atlantic Research 
7401 Boston Blvd. 
Springfield, VA 22153 

Donald P. Walsh 
U.S. Patent & Trademark Mice 
P.O. Box 2251 
Arlington, VA 22202 



ChiaJiu Wang 
University of Colorado 
Dept. of Electrical Engineering 
Colorado Springs, CO 80933-7150 

Pearl Wang 
George Mason University 
CS Department 
Fairfax, Virginia 22030 

Robert Wasilausky 
Naval Ocean System Center 
C423 
San Diego, CA 92162 

Scott Weidman 
MRJ, Inc. 
10455 White Granite Dr. 
Oakton, VA 22124 

John Weidner 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481 

Charles R. Weisbin 
Oak Ridge National Laboratory 
P.O. Box 2008 
Oak Ridge, TN 37831-6364 

Kelly Wheeler 
4028 Estabrook Dr. 
Annandale, VA 22003 

John Whelchel 
E Systems Melpar Div. 
7700 Arlington Blvd. 
Falls Church, VA 22046 

Marc Willebeek-LeMair 
Cornell 
412 Hanshaw Rd. 
Ithaca, NY 14850 

Lowell Williams 
MacAulay Brown, Inc. 
3915 Germany Lane 
Dayton, OH 45431 

Joseph N. Wilson 
University of Florida 
CIS Dept. 
Rm. E301 CSE Bldg. 
Gainesville, FL 32611 

KB. Winterbon 
Atomic Energy of Canada, Ltd. 
Chalk River, Ontario 
CANADA KOJ 1JO 

Kel Winters 
Montana State University 
900 Poane Rd. 
Bozeman, MT 

Chwan-Hwa (John) Wu 
Auburn University 
Electrical Engineering Dept. 
Auburn, AL 36849 

Zhiwei Xu 
Rutgers University 
P.O. Box 909 
Piscataway, NJ 08855 

Dan Yahiel 
Gtumman Data Systems 
6862 Elm Street 
McLean, VA 2209 1 

Len Yenchanis 
Yenchanis Consulting Group 
582 Hawthorne Sq. 
N. Massapepna, NY 11758 

Y. Yomdin 
The Institute for Advanced Study 
Princeton, NJ 08540 

Jason Yoon 
Rivac Inc. 
3713 S. George Mason Dr. 
Falls Church, VA 2204 1 

Stanley Young 
Southwest Research Inst. 
6220 Culebra - Div. 5 
San Antonio, TX 78238 

Ernest Zaidman 
Naval Research Lab 
Washington, DC 20375 

Mark Zischke 
TRW 
1633 Westwind Way 
McLean, VA 22102 

L. Winter 
SAIC 
5151 East Broadway Suite 900 
Tucson, AZ 85711 



AUTHOR INDEX 

PRECEDING PAGE BLANK NOT FILMED 



AUTHOR INDEX 

Abdalla. Hassan Z ......................................... 639 
Abdelguerfi. M ............................................ 4 5 1  
Abreu. E ....................................................... 4 1 3  
Abuhamdeh. Zahi .................................. 443. 515 
Aburdene. Maurice ........................................ 143 
Acampora. Art ............................................... 303 
Acharya. Raj .................................................. 475 
Aggarwal. J . K .............................................. 537 
Anderson. Paul B ................................... 199. 643 
Barad. Herb .................................................. 647 
Barnden. John A ........................................... 311 
Bastani. Farokh B ........................................ 609 
Berkey. Judith 0 ......................................... 3 1 7  
Bernhard. P . J ............................................... 115 
Bi jandi. Abbas .............................................. 657 
Blackwell. P ..................................... ... ........... 47 1 
Blelloch. Guy E .......................................... 575 

................................................. Blevins. D . W 399 
Boghosian. B . M ............................................ 257 
Boppana. R . V ................................................ 121 
Boyer. L . L ..................................................... 275 
Bridges. Timothy ......................................... 455 
Britton. D ...................................................... 321 
Brown. Joe R .................................................... 43 

..................................................... Busse. Tim 595 
Camillo. P . J .................................................. 249 

................................................... Campbell. L 459 
Carlotto. Mark J ......................................... 323 
Carlsson. G .................................................... 459 
Carroll. C . C ................................................... 495 
Casavant. Thomas L ..................................... 211 
Chande. Alhad ............................................... 303 
Chang. Shing-Chong ..................................... 125 
Chin. C ........................................................... 463 
Chou. Wen-Hwa ............................................ 653 
Christensen. Gary E ...................................... 419 
Cline. R . E.. J r  ............................................... 257 

........................................... Cloud. Eugene L 373 
Cohen. David Marshall ................................. 241 
Coleman. Ron ........................................ 129. 467 

................................................ Comfort. John 223 
........................................................ Comte. D 437 
. .................................................. Darling. J P 289 

Das. T . P ........................................................ 671 
............................................ . Davis. E W 133. 399 
.................................................... Demos. Gary 15 

............................................. Demuth. Howard 39 
..................................... Devaney. Judy E 31. 249 

Dickey. Susan ................................................ 487 
........................... Dorband. John E 137. 327. 625 

................................................ Earl. James A 237 

. ............................................ Edwardson. P J 275 
............................................................ Efe. K 471 

............................... El.Sharkawy. Mohamed 143 
Emad. F . P ..................................................... 349 

....................... Eshaghian. Mehrnoosh Mary 147 
........................................................ Evans. D 413 
......................................................... Faber. V 459 

Fellows. M ..................................................... 459 
Fiduccia. C . M ............................................... 105 
Fischer. G . R .................................................. 587 
Fisher. Allan L ........................................... 683 

.............................................. Fogaca. Marcelo 49 
Fortes. JosC A . B ........................................... 567 
Fried. Jeff ...................................................... 383 
Frieder. G ...................................................... 282 
Frieder. 0 ...................................................... 282 

.......................................... Garber. Melissa M 43 
Gaudiot. J..L. ................................................ 507 
Gerasch. Thomas E ....................................... 151 

............................................ Gordon. Jesse M 155 
Gowrishankar. T . R ....................................... 331 
Graybill. R ..................................................... 367 
Gualtieri. J . A .................................................. 31 
Guarino. D . R ................................................ 295 
Guha. Ratan K .............................................. 519 

...................... Gurney. R . J ....................... .. 249 
........................................... Hagan. Martin T 353 

Hailperin. Max .............................................. 159 
Hamet. L ........................................................ 625 

PRECEDlNG PAGE BMNX NOT FILMED 



Hastings. Harold M ....................................... 165 
Haug. A ......................................................... 367 
Heaton. R . A ................................................. 399 

.............................................. Hecquard. Jean 475 
Hertz. P .......................................................... 199 

....................................................... Hervin. M 413 
...................................................... Hicklin. Joe 39 

Highnam. Peter ............................................. 683 
Hord. R . Michael ................................... 279. 651 
Horn. A. .......................................................... 265 
Hsu. Wen-Jing ............................................... 169 
Huang. Kuan-Tsae ........................................ 169 

.......................................... Huntsberger. T . L 101 
Hwang. Kai ............................................ 391. 545 
Ida. Nathan ............................................ 1 231 
Izraelevitz. David .......................................... 173 

.......................................... JgJPi. Joseph 125. 177 
Jenkins. D ...................................................... 413 
Johnson. W . Keith ........................................ 407 
Kadar. Ivan .................................................... 165 
Ka16. L . V ....................................................... 207 
Kamgar.Parsi. Behrooz .................................. 31 
Kamgar.Parsi. Behzad .................................... 3 1 
Kamin. Orly ................................................. 419 

............................................... Keohane. John 479 
Khalaf. S ................................................... 4 5 1  

...................................................... Kicklin. Joe 39 
Kim. Dongseung ........................................ 391 
King. Chung-Ta ............................................. 653 
Knobe. Kathleen ........................................ 551 
Koga. J ........................................................... 339 
Koopman. P . J .................................................. 59 
Kraay. T . A ................................................... 651 

................................................... Kramer. Alan 49 
Krikelis. A ..................................................... 483 

............................... Krishnamurthy. Sridhar 177 
Kruger. R . P ................................................... 295 
Kumar. V . K. Prasanna ................................. 147 
Kuszmaul. Bradley C .................................... 383 
Kuszmaul. Christopher Lee .......................... 335 
Langston. M ................................................... 459 
Lea. R . M ........................................................ 483 
Leu. Dar-Ren ................................................. 609 

Li. Hungwen .................................................. 181 
Li. Qiang ........................................................ 521 
Lin. C . S ....................................................... 339 
Lin. W ............................................................ 463 
Lin. Xiaola ..................................................... 169 
Liu. Yue-sheng .............................................. 487 

.................................... Livingston. Marilynn 491 
................................... Lubachevsky. Boris D 187 

Lukas. Joan D ............................................... 551 
Lundgren. William I ..................................... 663 
Mag6. G . A .................................................... 215 
Mahadevan. R . K ........................................ 495 

............................................ Malony. Allen D 499 
................................................... Manohar. M 343 

Marciano. Richard ........................................... 85 
Martinez. Maria ........................................ 223 
Mattheyses. R . M ......................................... 105 
Mayergoyz. I . D ..................................... 289. 349 
McAllister. D . F ....................................... 133 
McMahon. E . P ....................................... 651 
Mbhat. J ......................................................... 423 
Menezes. Bernard L ...................................... 503 
Mbrigot. A ..................................................... 423 
Michael. Bret ................................................. 515 
Middleton. David ........................................... 191 
Midkiff. Scott F ............................................. 639 
Miller. Russ ................................................... 195 
Moore. Barbara ............................................... 49 
Moore. J ......................................................... 459 

.................................... Morley. Robert E.. J r  419 
Mullhaupt. A ................................................ 459 
Nagaraj. V ..................................................... 133 
Najjar. W ....................................................... 507 
Nation. Wayne G ......................................... 69 
Neches. Philip M ........................................... 429 
Nelson. Victor P ............................................ 541 
Nemnich. B .................................................... 257 
Ni. Lionel M ................................................... 653 
Nichols. K. M ................................................. 675 
Norris. J . P .................................................... 199 
Norton. Mark J ............................................. 203 
O'Donnell. John T ......................................... 629 

.................................... Pfeiffer. Joseph J.. J r  511 



Phillips. Tom .................................................. 515 
Post, Michael ..................................... 129, 467 
Potter, J . L ...................................................... 77 
Raghavendra, C . S ....................................... 121 

. ......................................... Ramapriyan, H K 343 
Ramkumar, B ................................................ 207 
Ray, S . N ........................................................ 671 
Reddaway, S . F .............................................. 265 

.......................................... Reeves, Anthony P 93 
Reif, J . H ........................................................ 399 
Rice, M . D .................................................... 601 
Rice, Teresa Haynes ...................................... 519 
Rishe, Naphtali .............................................. 521 
Ritter, G . X .................................................... 587 
Rosenfeld, Azriel .............................................. 21 
Rosenkrantz, D . J .......................................... 115 
Rus, Teodor ...................................................... 85 

............................................... Sabot, Gary W 575 
Sahoo, N ......................................................... 671 

.......................................... Sammur, Nidal M 353 
Sayre, T .......................................................... 295 
Schneider, Howard ........................................ 525 
Schwederski, Thomas ................................... 21 1 
Seidman, S . B ................................................ 601 
Sengupta. A. .................................................. 101 
Sexton, H ....................................................... 459 
Shapiro, Sondra ........................................ 303 
Sheng, Ming-Cheng ....................................... 181 
Shiau, T .......................................................... 471 
Siegel, Howard Jay .................................. 69, 211 

. ................................................ Siewiorek, D P 59 
Singh, R . K .................................................... 215 
Siron, P .......................................................... 437 
Slough, W ....................................................... 47 1 
Smith, B . T .................................................... 215 

. ............................................. Sood. A K 451. 531 
.............................................................. Sos. T 295 

............................................ Srinivasan. K Y 531 
................................ Steams. Richard E 105. 479 

....................................... Steele. Guy L.. Jr 3. 551 
............................ Stout. Quentin F 155. 195. 491 

Strong. J . P ............................................... 3 4 3  
. ................................................. Stytz. M R 2 8 2  

........................................... Subramaniam. P 219 
....................................... Sullivan. Thomas J 419 

............................................ Sung. Andrew H 559 
. ................................................ Sunwoo. M H 537 
.............................................. Tal. Doron 223. 521 

...................................... Terrano. Anthony E 227 
Thibault. X ................................................... 437 

................................................... Thring. A L 339 
............................................. Tilton. James C 357 

Tomboulian. Sherry1 ....................................... 63 
Tuck. Russ ..................................................... 617 

. ................................................... Turner. C J 295 
........................................... Venable. Steven F 43 

Waksman. Alan ..................................... 129. 467 
Walker. J . Leslie ........................................... 657 
Wang. Chia-Jiu ........................................ 541 
Wang. Jian-She ............................................. 231 
Wang. P . Y .................................................... 601 
Weems. Charles C ....................................... 361 

................................. Willebeek-LeMair. Marc 93 
Wilson. A ...................................................... 265 
Wilson. J . N ................................................... 587 
Winter. C . L .................................................. 295 

..................................................... Wood. K S 199 
Wu. C ............................................................. 541 

..................................................... Xu. Zhiwei 545 



TITLE INDEX 

pRECEDING PAGE BLANK NOT FILMED 

4 3 0  pllgmoww RLeC 



TITLE INDEX 

Abstract Data Types for SIMD Hypercube 
Machines ............................................................ 609 

9-Trees: A Class of Dense Regular 
............................... Interconnection Topologies 207 

DARPA Sensor National Testbed: Hardware 
................................ and Software Architecture 295 

Algorithms for Long Fast Fourier Transforms 
.................................. on a Connection Machine 199 

Data Structures for Associative 
................................................... Supercomputers 77 

Almost Linear Speed-Up of Distributed 
.............................. Discrete Event Simulations 187 

Analysis of Disjoint Path Properties in Data 
Manipulator Networks ........................................ 69 

Dense Symmetric Networks From Linear 
Groups ................................................................ 459 

Design Considerations for a Pyramidal Cellular 
.................................................. Logic Processor 511 

Application of Massively Parallel Machines to 
Molecular Dynamics Simulation of Free 
Clusters .............................................................. 275 

Design of a Bit-Serial Coprocessor to Perform 
Multiplication and Division on a Massively 

......................................... Parallel Architecture 419 
Applied Geometric Algorithms on Boolean 
N-Cube Computers ........................................... 169 

Dynamically Allocating Sets of Fine-Grained 
Processors To Running Computations ............. 191 

................................................. APx Accelerator 413 

Architecture for the Implementation of a 
Parallel Marker Propagation System ............... 525 Efficient Algorithms for Massively Parallel 

Computers. I: Design of Stable Computational 
Systems Using Linear Systems Models ........... 165 Artificial Neural Network on a SIMD 

Architecture ......................................................... 43 
Efficient Management of Sensory Data for an  
Autonomous Submersible Utilizing a Parallel 
Processing Architecture .................................... 303 

BLITZEN: A Highly Integrated Massively 
............................................... Parallel Machine 399 

Efficient Method for the Representation and 
Transmission of Message Patterns .................. 115 

Characterizing the Advantages of Massively 
Parallel Computing ........................................... 651 

Eficient Scan Operators for Bit-Serial 
Processor Arrays ......................................... 105 

Characterizing the Error Function of a 
Neural Network ................................................... 49 

CML: An Entegrated Simulation 
Environment ...................................................... 657 

Estimating Water Flow Through a Hillslope 
........... Using the Massively Parallel Processor 249 

Compiling Collection-Oriented Languages 
................ Onto Massively Parallel Computers 575 

Expansion, Analysis, and Mapping of 
Conventional Programs Into Code for Bit 
Level Processor Arrays ..................................... 567 

Computer Architecture for Intelligent, Real- 
Time, Numeric and Symbolic Processing ......... 495 Fast Algorithm for Voronoi Diagram 

......... Calculation Based on Distance Doubling 173 
Controlling and Programming the Sphinx 
Multi-SIMD Pyramid Machine ......................... 423 Fast Fourier Transform as  a Test Case for a 

Systolic Data Flow Machine ............................. 223 

pRECtDING WAY% NOT F:LMED 



Fault Tolerance of Allocation Schemes in Impact of Massively Parallel Computers on 
.......................... Massively Parallel Computers 491 Image Processing ................................................. 21 

Fault Tolerant Message Routing on Large Impact of Rent's Rule on Massive 
........................................................... ................................................ Parallel Systems 155 Parallelism 59 

Fingerprint Identification on a Massively Implementation and Use of an  Image 
......................................... Parallel Architecture 331 Processing Algebra for Programming 

Massively ParalleI Machines ............................ 587 
............. Formal Model for SIMD Computation 601 

Implementation of a 3D Thermal Analysis 
Fractal Graphics and Image Compression Code on the CM-2 Connection Machine 
on a SIMD Processor ........................................ 265 Computer ........................................................... 257 

Function of a Connection Network Between Interconnection Networks for 
Host and Processing Elements in Massively Fifth-Generation Computers ............................ 503 
Parallel Computer Systems .............................. 455 

Languages for Massively Parallel 
GAM I1 Pyramid ................................................ 443 Computers ............................................................ 3 

Generalization of Orthogonal Multiprocessor LN-Tree: A Fault-Tolerant Tree 
for Massively Parallel Computation ................. 391 Architecture ....................................................... 531 

Generating Movie-Quality Animated Graphics Load Balancing for Massively-Parallel 
With Massively Parallel Computers .................. 15 Soft-Real-Time Systems ................................. 159 

Generic Fine-Grained Parallel C ...................... 625 

Geometric Arithmetic Parallel Processor ......... 373 

Gray Scale Adjustment Algorithms on SIMD 
..................................................... Architectures 335 

High Performance Parallel Approach to 
Medical Imaging ............................................. 282 

Homogeneous Computational Model for 
Spatial Inference on Massively-Parallel 
Architectures .................................................... 323 

Martin Marietta Advanced Systolic Array 
Processor ............................................................ 367 

Massively Parallel Computing Applied to the 
.......... One-Dimensional Bin Packing Problem 317 

Massively Parallel Computing System for 
Research and Development Applications ......... 407 

............. Massively Parallel Data Optimization 551 

Massively Parallel Processing System 
............... Based on a Hyper-Crossbar Network 463 

How To Cluster in Parallel With Neural Microcode Generation for the Control of a 
Networks .............................................................. 31 Massively Parallel Computer ........................... 515 

Hypercomputers: Design and Architecture ..... 467 Minimum Spanning Tree on the HMESH 
Architecture ....................................................... 121 

Hypercube Algorithms Suitable for Image 
Understanding in Uncertain Environments .... 101 Model of Task Migration in Partitionable 

Parallel Procesing Systems ............................... 211 
Image Segmentation by Iterative Parallel 
Region Growing With Applications to Data Modeling Neural Networks on the MPP ............ 39 
Compression and Image Analysis .................... 357 



MPP Implementation of Abstract Data 
Parallel Architectures for Declarative 
Programming Languages ............................... 629 

MPP Pascal ........................................................ 595 

Multi-Layered GNetwork for Massively 
Parallel Computation ........................................ 519 

NAP (No ALU Processor) . The Great 
Communicator ................................................... 383 

Neurocomputing With Optical Pipeline 
............................................................ Networks 545 

Object-Oriented Prototypes of Parallel 
Architectures for the Performance 
Evaluation of Algorithms .................................. 647 

Optimal Geometric Algorithms for Digitized 
Pictures on an  Optical Mesh ............................. 147 

... Optimal Mesh Algorithms for VLSI Routing 125 

...... Optimal Tilings for Iterative PDE Solvers 227 

Optimally Portable SIMD Programming 
Language ........................................................... 617 

Overview and Extensions of a System for 
Routing Directed Graphs on SIMD 
Architectures ....................................................... 63 

Overview of Current Connection Machine 
Applications at MRJ .......................................... 279 

Parallel Algorithm for Determining Motion 
Vectors in Ice Floe Images by Matching 
Edge Features .................................................... 343 

Parallel Algorithm for Finite Element 
Computation .................................................. 219 

Parallel Algorithm for the Solution of 
Nonlinear Poisson Equation of Semiconductor 
Device Theory and Its Implementation on 
the MPP ............................................................. 289 

Parallel Algorithms for Direct Solution of 
Large Systems of Equations ............................. 231 

Parallel and Pipelined VLSI Design for the 
Histogramming Operation ................................ 451 

Parallel Frequency Domain Adaptive Line 
Enhancer ............................................................ 143 

Parallel Hashed Key Access on the 
Connection Machine .......................................... 643 
! 

Parallel Implementation Considerations for 
.......... a Class of Signal Processing Algorithms 353 

Parallel Implementations of the Simplex 
Algorithm ............................................................. 85 

Parallel Particle-In-Cell Model for the 
Massively Parallel Processor ............................ 339 

Performance Analysis of Interconnection 
Networks for Massively Parallel 
Multicomputers ................................................. 639 

Performance of the ASP on the DARPA 
Architecture Benchmark ................................... 483 

Performance of the Image Understanding 
Architecture on the DARPA Integrated Image 
Understanding Benchmark .............................. 361 

Portable Parallel Algorithms for Geometric 
Problems ............................................................ 195 

Programming Considerations in the Design 
and Use of a SIMD Image Computer ............... 683 

Provably Good Parallel Algorithms for Channel 
......................... Routing of Multiterminal Nets 177 

PSMH: A Pyramid of Fractional Dimension .... 475 

Reconfigurable Optical Interconnection Network 
....................... for Highly Parallel Architecture 437 

Reduced Diameter Interconnection Network .. 471 

Region Growing on a Highly Parallel 
..................... Mesh-Connected SIMD Computer 93 

Regular Processor Arrays ................................. 499 



Reliability Considerations in Large-Scale 
.......................................... Computing Systems 507 

Routing Linear Permutations Through the 
........................ Omega Network in Two Passes 479 

Scan Line Graphics Generation on the 
Massively Parallel Processor ............................ 327 

Sequenced Hypercube Topology for a 
......... Massively-Parallel Database Computer ,521 

Signal Processing With Nodal Networks on a 
SIMD Massively Parallel Processor ................. 663 

SIMD Parallel E-Approximation Scheme for 
011 Knapsack ..................................................... 151 

Simulating Neural Networks Using C* ........... 203 

Simulation and Analysis of Enhanced Switch 
Architectures for Interconnection Networks 
in Massively Parallel Shared Memory 
Machines ............................................................ 487 

Simulations of Conposit, a Supra-Connectionist 
...... Architecture for Commonsense Reasoning 3 11 

........... Sliding Memory Plane Array Processor 537 

Sort Computation .............................................. 137 

Sparse Matrix Computations on an 
FFP Machine ..................................................... 215 

Sparse Matrix Vector Multiplication on 
Ploymorphic-Torus ............................................ 18 1 

Stochastic Simulation of Charged Particle 
Transport on the Massively Parallel 
Processor ............................................................ 237 

Study of the Generalized Multiple 
Bus-Connected Parallel Computer ................... 541 

Suitability of Simulation of a Population of 
Chemical Polymers on the Massively 
Parallel Processor .............................................. 241 

Surface Modeling Algorithm for Pyramid 
Architectures ..................................................... 321 

Symbolic Solution of Simultaneous Linear 
Algebraic Equations via Parallel Numerical 
Computing ......................................................... 349 

Systematic Approach for Designing Pipelined 
Data Parallel Algorithms .............................. 653 

Testing Shared-Memory Parallel Programs ... .559 

Tools for Managing Massively Parallel 
Systems ............................................................ 675 

Uniform and Reconfigurable hamework for 
the Multidimensional Fourier Transform.. ...... 129 

Usefulness of the Massively Parallel Processor 
for Study of Electronic Properties of Atomic 

....................... and Condensed Matter Systems 671 

Ynet: An Interconnect Structure for a Highly 
Concurrent Data Base Computer System ........ 429 




