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Abstract

An upwind-biased, point-implicit relaxation algorithm for obtaining

the numerical solution to the governing equations for three-dimensional,

viscous, compressible perfect-gas flows is described. The algorithm is

derived by using a finite-volume formulation in which the inviscid com-

ponents of flux across cell walls are described with Roe's averaging

and Harten's entropy fix with second-order corrections based on Yee's
symmetric total variation-diminishing scheme. Viscous terms are dis-

cretized by using central differences. The relaxation strategy is well

suited for computers employing either vector or parallel architectures.

It is also well suited to the numerical solution of the governing equations

on unstructured grids. Because of the point-implicit relaxation strategy,

the algorithm remains stable at large Courant numbers without the ne-

cessity of solving large, block tridiagonal systems. Convergence rates
and grid refinement studies are conducted for Mach 5 flow through an

inlet with a 10° compression ramp and Mach 14 flow over a 15_ ramp.

Predictions for pressure distributions, surface heating, and aerodynamic

coefficients compare well with experimental data for Mach 10 flow over
a blunt body.

1. Introduction

The formulation of an algorithm for obtaining the numerical solution of a system of partial

differential equations may be divided into two tasks. First, the solution domain is discretized

by using a collection of points or cells. Relations between quantities at neighboring cells are

defined such that, in the limit as cell size goes to zero (cell number goes to infinity), the

numerical relations are consistent with the partial differential equations. Second, a relaxation

algorithm must be defined which will drive the residual of the approximation scheme to zero
simultaneously at all the cells in the domain. The two tasks are clearly related, but in the

parlance of computational fluid dynamics, the first task deals primarily with how the physical

approximations are defined on the "right-hand side," and the second task deals with how the

solution variables evolve on the "left-hand side." Right- and left-hand sides refer to the position
of the terms relative to the equal sign in the definition of the complete algorithm.

When considering the governing partial differential equations for compressible viscous flow,

the numerical approximations to the component terms can be conveniently defined as a function
of the physically relevant fluxes and stresses acting on cell walls. This treatment constitutes

a finite-volume formulation of the governing conservation laws. If properly constructed, it

guarantees a conservative formulation in that no extraneous sources of mass, momentum, or

energy will be introduced into the system as a result of numerical imbalances of quantities

passing from one cell to the next. The numerical approximations to fluxes and stresses across

a cell wall completely define the finite-volume formulation of the physics on the right-hand

side. Still, there are an unlimited number of ways to numerically approximate these quantities
on a cell wall. Viscous, dissipative stresses are generally approximated by using second-order-

accurate central differences which numerically reflect the zone of dependence of dissipative

processes due to the random, thermal velocity of molecules. However, inviscid fluxes are defined

by more complex wave interactions. (In fact, the physical zones of dependence of viscous and
inviscid terms are interrelated, but the relationship can be ignored for the purposes of defining

approximation schemes.) Additional physical insight as to how information is propagated in a

flow field can be used to better model the physics of the flow.



Suchinsight is providedby a classof approximationschemesreferredto as "upwind
differencingalgorithms."Thesealgorithmscanbederivedfor theinviscidtermsbyconsidering
the Pdemannproblemdefinedby the endstatesat cell centerson either sideof a cell wall
or by performingan eigenvalueanalysisof the Jacobianof the flux vectorat the cell wall
with respectto the vectorof conservedvariables(refs.1and 2). Theflux at a cellwall can
besplit to accountfor thecontributionsof wavescomingfromthe left andthe right (refs.3
and 4). Suchalgorithmsaremosteasilydefinedwithin the contextof first-order-accurate
approximationschemeswhichareinherentlyverydissipative.Simplesecond-order(or higher)
correctionsto the upwindapproximationsusuallycausesevereoscillationsin the computed
solutionin thevicinity of highgradientregionsin theflow. Oftenthesecorrections contribute

a negative artificial dissipation which overwhelms the natural, positive dissipation of the base
first-order, upwind scheme and leads to catastrophic instabilities. A physical interpretation

of these difficulties notes that higher order correction difference stencils will, at times, cross

discontinuities in the flow or will cross the true zone of dependence of the approximated flux.

Mathematical analyses of this problem have been used to construct high-order corrections to the

scheme that will compare fluxes (or flux differences) in the vicin!ty of cell walls and will choose
a stencil that ensures a stable, nonoscillatory solution. Correction schemes which approach this

task in varied ways are known as flux-corrected transport (FCT) (refs. 5 and 6), total variation

diminishing (TVD) (refs. 7 through 12), and essentially nonoscillatory (ENO) (refs. 13 through

16). Some of these correction schemes may violate the actual upwind zone of dependence but
still function properly (ref. 10).

The selection of a differencing scheme for the right-hand side is generally based on knowledge
of the scheme's performance on similar problems. The scheme used in the present study is based

primarily on the earlier work of Roe (ref. 2), Harten (ref. 7), and Yee (ref. 10). The application
focus of this work is on hypersonic flows over blunt bodies, including the base and near wake,

such as would occur on aeroassisted orbital transfer vehicles (AOTV) (ref. 17). Roe's scheme

appeared to be well suited for capturing the strong bow shock associated with this application
where a typical free-stream Mach number is greater than 30. Also, anticipated modifications

to the basic perfect-gas formulation for the case of real gases and finite-rate chemistry were

considered to be relatively straightforward. Coakley's application of a very similar scheme to
the problem of three-dimensional flow provided additional evidence of the method's capabilities.

(See ref. 18.) The evolution of the scheme to the form described herein, with emphasis on the

blunt body applications, is described in references 19 through 22.
The second task, as mentioned earlier, deals with the formulation of the left-hand side

for defining the evolution of the dependent variables. For problems in which a time-accurate

evolution of the dependent variables is required, the options are restricted with regard to the

kinds of modifications that can be made in the relaxation algorithm for driving the solution to a

steady state (assuming one exists). Both spatial and temporal accuracies must be maintained.

However, if only the steady-state solution is required, one is free to evaluate any element
of the difference stencil at any iteration (pseudo time) level which facilitates the relaxation

process. This approach was utilized by Allen and Cheng (ref. 23) in the way they suppressed

the viscous stability limit in a low Reynolds number flow. Graves (ref. 24) treated variables

at the cell center of interest and its nearest neighbors at the advanced time step (implicitly)

in the "partial implicitization" relaxation technique which greatly enhanced the stability of

his basic algorithm. In problems utilizing structured grids for multidimensional flow, the

factored implicit schemes and line Gauss-Siedel relaxation methods permit compromises in

the way the solution is advanced which significantly reduce the total computational effort while

retaining solution accuracy (ref. 25). The point-implicit relaxation strategy described herein
makes similar compromises which make the algorithm ideally suited for problems involving

unstructured grids and/or executing on massively parallel computer architectures. The essence

of the strategy is to treat the variables at the cell center of interest implicitly at the advanced

f/li3Ji



iteration level and to use the latest available data from neighbor cells in defining the left-

hand-side numerics. The success of this approach is made possible by the robust stability

characteristics of the underlying upwind difference scheme. This strategy was motivated by

some encouraging results obtained by Lombard et al. (ref. 26) using a sweeping strategy for
one dimension in conjunction with another upwind algorithm. 2_he basic algorithm requires

only a single level of storage, and numerical experiments show excellent stability characteristics,

even when working directly with the steady-state equations (i.e., local Courant number much

greater than 1). A time-accurate version of the present method is made possible by saving

at least one extra level of conserved variable data and employing an iterative strategy before
proceeding to the next time level.

2. Finite-Volume Fundamentals

The integral form of the conservation laws applied to a single cell in the computational
domain is written

Oq d_ = w
_/_-_ +//f. _d_ //j d_ (2.1)

In equation (2.1), the first term describes the time rate of change of conserved quantity q in

the control volume, the second term describes convective and dissipative flux through the cell

wails, and the third term accounts for sources or sinks of conserved quantities within the control

volume associated with thermochemical nonequilibrium. The third term is identically zero for
the perfect-gas flows considered here. The vectors q and f are defined as follows for viscous
flow of a perfect gas:

P

pu

q = pv

pw

.pE

(2.2)

pu

puu + p - Txx

puv - rxy

puw - rxz

puH - _lx - ff . _z

1+

pv

pvu - ryz

pvv + p - ryy

pvw - ruz

pvH - ily - ff •

f+

pw

pwu - rzx

pwv -- Tzy

pww + p - rzz

pw H - (lz - ff • "Tz

(2.3)

The finite-volume approximation to equation (2.1) for a rectangularly ordered, structured
grid is written

[_t_]i,J,K+ [fi+ 1 " ni+lO'i+l--_ " ni_ri]j,K

+ [fj+l" _-j+lO'j+l--_ " gjO'jJi, K

+ - =0 (2.4)

where 5q = qn+l _ qn and 5t = t n+l - t n. The dependent variable q is defined at cell centers.

The cell volume gt and cell wall area a are functions of the independent variable _'= xi'+ yf+ zl_

which is defined at cell corners. A shorthand notation for equation (2.4) that will be used

3
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=

throughout this paper is

_t J L l=i,j,k

Note in equations (2.4) and (2.5) that uppercase variables I, J, K, and L denote computational

coordinates at cell centers and lowercase variables i, j, k, and I denote ceil faces or cell corners.

For example, ai,j, K refers to the cell wall corresponding to indices I - I}, J, K, and Xi+l_j+ll k

refers to the cell corner corresponding to indices I + ½, J + ½, K- ½. A schematic of the

indexing system is found in figure 1. In the shorthand notation of equation (2.5), the lowercase

variable l is used as a generic index for i, j, or k. This notation is convenient because most of

the formulations for quantities at cell faces are independent of the coordinate direction. The

geometric quant!ties f_, a, and _ ar e defined in appendix A.

The formulations of the inviscid and viscous contributions to the overall conservation laws

can be considered separately for convenience. Therefore, one can express

t_. a=g+h (2.6)

where g defines the inviscid terms and h defines the viscous terms. The formulation of these
terms follows in sections 3 and 4. = _

3. Formulation of Inviscid Terms

The inviscid flux vector at cell face l is defined as

where

(

= {a_gL,t + b_gL-l,t} -- _ 1gt

t
(3.1)

The first term in braces is a second-order accurate distance-weighted interpolation formula

for gl. The factors a_ and b_ are geometric weighting functions. These functions, defined as

follows, account for the relative position of the cell wall witil respect to the cell centers: :

, DL-I

at = DL + DL-I

DL
b_= DL + DL_I

_L
D L =

ot+l + o-t

(3.2a)

= 1 - a_ (3.2b)

(3.2c)

Geometric weighting improves computed profiles through highly stretche d grid regions. An

earlier version of the algorithm (ref. 21) used volume weighting, in which DL = f_L. Volume

weighting tends !o magnify the contribution of cells near the axis singularity of spherical
cOOrdinate systems ..... ::

The second term in braces provides the upwind-biased numerical dissipation. It is a first-

order dissipation when 0 equals 0 and it is a second-order dissipation when O equals 1. The

variables which define both first- and second-order dissipations are discussed in sections 3.1

and 3.2. ' ........

4
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3.1. First-Order Numerical Dissipation

The vector sI is defined as

Sl = (_X "n)/R/-l(qL-- qL-1) (3.3)

The matrix R_-1 in equation (3.3) and the matrices R t and A l in equation (3.1) are related to

the Jacobian of the inviscid flux vector g with respect to q in the following manner.

A = 0_gg= RAR-' (3.4)
0q

The matrices R and R -I are composed of the right and left eigenvectors, respectively, of
A, and A is a diagonal matrix containing the eigenvaIues of A. These matrices are defined

in appendix B. The matrix IAI is a diagonal matrix containing the absolute values of the

eigenvalues of A with constraints on the minimum-allowed magnitude of an eigenvalue described
in section 6.1.

The (VX " n)l- is defined in appendix A. It is related to the ratio of a cell wall

%

term

area to cell volume and may be thought of as the inverse of the projected distance between

cell centers L and L- 1 on a direction normal to cell face I. The variable _ is a generic
computational coordinate running in the direction of increasing generic index L. Given these

definitions, the vector st may be thought of as an approximation to the gradient of the vector

of characteristic variables (Riemann invariants) in the direction normal to cell face I. Note that

the term .(_X • n)t- in the definition of s t is canceled by the leading factor of the dissipation

term in equation (3.1). This leading factor serves to rescale contributions to the second-order
dissipation and is discussed in more detail in section 3.2.

The upwind-biased nature of the dissipation term may be understood by considering the

following difference relation that derives from equation (3.4):

1

gL,l- gL-l,l _ AI(qL -- qL-1) = (VX ' if)/RIAls/ (3.5)

The elements of A I or its associated factors RI, At, and R_-1 must be determined by
some suitable average of the dependent variables at the adjacent cell centers L and L - 1.
Equation (3.5) is only approximately satisfied for general averaging schemes because of the

nonlinear relation between g and q. However, Roe (ref. 2) has introduced an averaging scheme
which exactly satisfies equation (3.5) for a perfect gas. This scheme is defined in appendix B.

The first-order formulation of gt on an equally spaced grid can now be simplified as follows:

1 [gL,l +gt = _ gL-l,l -- R/[A/[RI 1 (qL -- qL-1)] (First-order, equal spacing) (3.6)

The eigenvalues of A, as defined in appendix B, are equal to U, U + a, and U - a where U is

the normal velocity component through cell face l and a is the sound speed. Consequently, if
the flow through cell face 1 is supersonic and positive (moving from cell center L- 1 to cell cen-

ter L), then all the eigenvalues are positive, [All = At, and equation (3.6) reduces to the
following relation:

1
gl = _ "LgL,t+ gL-l,l -- "._(gL,l-- gL-l,/)].j = gL-l,l (Supersonic, positive) (3.7a)

In like manner, if the flow through cell face l is supersonic and negative (moving from cell cen-

ter L to cell center L - 1) then all the eigenvalues are negative, ]All = -At, and equation (3.6)

5



reduces to the following relation:

1
gl = _ [gL,l + gL-l,l + (gL,l -- gL-l,l)j'_ = gL,l (Supersonic, negative) (3.7b)

Intermediate situations involving subsonic flow split the contributions to the projected Riemann

invariants from the right or left according to the sign of the associated eigenvalue. In the most

general cases, when there are unequal cell sizes, eigenvalues close to zero (to be explained

in section 6), or second-order modifications, the "upwind" approximation to the inviscid flux
vector is not quite so exact. However, the present formulation retains the strong stability

characteristic of upwind schemes over a range of numerical tests that challenge the computation.

3.2. Second-Order Numerical Dissipation

A total variation-diminishing (TVD) scheme is an algorithm which is guaranteed to prevent
the introduction of any new maxima or minima in the evolving distribution of a function or

functions determined by nonlinear scalar hyperbolic conservation laws or constant coefficient

hyperbolic systems. The scheme can be second-order accurate and is oscillation free across

computed discontinuities under these conditions (ref. 10). Although the time-dependent Euler

equations constitute a nonlinear hyperbolic system, TVD formulations for linear hyperbolic
systems generally produce oscillation-free solutions when applied to this more complex equation

set. Conditions for TVD are usually satisfied through the introduction of a limiting procedure

within the algorithm. For example, several classes of limiters - are discussed in references 12
and 27. The limiters used in the present work were introduced by Yee (refs. 10 and 28).

They involve symmetric functions of gradients in the neighborhood of the cell face, and

algorithms based on these limiters are referred to as symmetric total variation-diminishing

(STVD) schemes.
STVD schemes involve little extra programming work over simple first-order algorithms

because most of the quantities required in their implementation are already available, as can

be seen in the subsequent formulations:

s_nin = min mod (s/+ 1, s/) + min mod (S/_I, S/) -- Sl (3.8a)

S_nin _- min mod (Sl+I, Sl, 8/_1) (3.8b)

( 1 )S_nin = minmod 2s1+1,281, 2Sl_I, _ (SI_ 1 -t- Sl+I)
(3.Sc)

where the min mod function returns the argument of smallest absolute magnitude when all

the arguments are of the same sign or returns 0 if the arguments are of opposite sign. (If all

arguments are positive, then a positive result is returned. If all arguments are negative, then a
negative result is returned.) Also note that equations (3.8) are evaluated element by element
of vector g.

The STVD limiter does not yield a strictly upwind bias on the formulation of the flux
vector because the functional form of equation-(3:8) allows for both upstream and downstream

dependencies. Also, the scheme reduces to first order at cell faces where there is a sign change

in the arguments of the min mod function. The present formulation differs from that of

reference 28 in that the differences, R/I(qL - qL-1), have been scaled by (Vx " ff)l. This

scaling, which is eventually removed by the leading factor of the numerical dissipation term

in braces, reduces the effects of grid stretching on the argument returned by the min mod
function. The present treatment has been found to be well suited to the range of numerical

test problems considered herein.

6



The dissipation term is defined by the product of the leading factor 1 (which is a

first-order difference in the distance between adjacent cell centers projected on the normal to

the common cell face) and the difference in square brackets IsI - 0s_ nin] (which is zero order if

or s_nin equals 0 and is first order otherwise). Thus, the dissipation term is proportional to a
difference squared when 0 = 1 except for the isolated points in the flow described earlier.

3.3. Point-Implicit Relaxation of Inviscid Terms

Equation (3.1) can be approximately linearized with respect to _qL in the following manner.
Define

gl,L i _gL'l + a_ - n= gL,1 + blgL-l,l

( 1 }2(_X " _l)lRllAll [(_X " n)/R/1 (q_+l-q_-l)-/9s_ rnin] (3.9)

where superscript n refers to the current value at cell center L, superscript n + 1 refers to
the new value to be computed at cell center L, and superscript * refers to the latest available

value at neighbor cell L - 1. The notation g_,L refers to the inviscid flux through cell face l
evaluated with the latest available data from cell center L- 1 and the predicted data at cell

center L. Elements of the matrices R/, At, and R_-1 are computed by using Roe's averaging of

the current data at cell centers L and L - 1. Elements of the vector (S_) min are also computed

by using current data at cell centers L and L - 1. Substitute g_,/ + AL,I_QL for _n+l and_L,l

q_ + 5qL for _n+l in equation (3.9) to obtainqL

, 1
gl,L = gl + _ (AL,I -tAtl) 6qL (3.10a)

where IAtl = R/[AtIR1-1. In like manner, one can show that

g, I
l+l,L = g/+l + _(AL,/+I + IA/+ll)6qL (3.10b)

The point-implicit discretization of the inviscid part of equation (2.5) can now be expressed by

5 qL _2 L ,
=-- E [g_+l,LO'l+l--gl,L O'l]

l=i,j,k

(3.11)

Use the result of equations (3.10) in equation (3.11) and combine terms to obtain

_t

I+ _L t= , k
[(AL,/+I +

_t
-- E [gl+lal+l -- gl°'l] (3.12)

9IL
l=i,j,k

An application of Stokes' theorem to the summation of AL, l and AL,I+ 1 in equation (3.12)
shows that

7



l=i,j,k l=i,j,k

= E _fL,inv " [nl+l°'/+l -- _ll_tl] = 0
l=i,j,k

(3.13)

Therefore, equation (3.12) simplifies to the following relaxation equation:

5t M 5t
{I + _--£L L,inv} 'qL -- _L /=i_,j, [gt+lat+l -- gtat]

(3.14)

where
•

ML, inv = _ E [tAl+ll°'l+l + IAtlal] (3.15)
l=i,j,k

4. Formulation of the Viscous Terms

4.1. Evaluation of Shear Stresses and Conduction

The viscous stresses on a cell wall with unit normal fi in the orthogonal directions fi, ]', and

rfiare givenby

At (OU OV OW)_n=N _+_+_ +

m (ov ou)_=_ _+_

., ( ow ou )_m=N _+_

2#t OU -(4.1a)
Re On

(4.1b)

(4.1c)

where U, V, and W are velocity components and n, 1, and m are arc lengths in the fi, ]', and r_

directions, respectively. The variables it and ,_ are the viscosity c9efficient s.
The derivative of some quantity f with respect to arc length in the _ direction, for example,

is expressed as

Of _ _f . fi= Of n Of Of n (4.2)
O'---n-- _x x + O---yny+ _z z

Expanding the partial of f with respect to x, y, and z in terms of the natural coordinates (, 71,

and _ yields
Of -, 0 -. Of -,

0f=0n [_--_V_ + _-_V_+ _-(V_] • fi (4.3a)

Similar expressions, presented below, can be derived for the derivatives of f with respect to 1
and m:

[_v_+_ _v_] r

of- _9_+_v,] • _Of = [[-_V_ + Of -.-_m

(4.3b)

(4.3c)

Frliif! 



Expanding the derivatives in equations (4.1) according to the formula in equations (4.3) and

combining like terms yields the following relations for shear stresses:

rnn= (2_+ A)t (OU- 0____ OU- )

At OV + OV _i_ r + (-_V, + OW " -_-_ff) r_] (4.4a)+ G [(_bye,+ or- ow. ow7, o¢ ). +

rnl=_e e _-_Ve+_--_V,+-_-V4 • 5+ _-b-_- +-_,V_+'b-_-V¢ " (4.45)

Tnm= _ee --_ "-ee + _ ' + --_-VC ' ff + -_-Ve + -b--_V_ + 04 ] • r_ (4.4C)

The component of shear stress acting in the s direction (s being a dummy variable for x,

y, or z) acting on a ceil wall with unit norm ff can be expressed

"ms = "rnnns q" Tnlls 4- Vnmms (4.5)

Substitution of equations (4.4) into (4.5), collecting terms, and simplifying according to

the geometric identities provided by equations (A14) and (A15) yield the following relation for
shear stress in the s direction:

(4.6)

where u is a dummy variable for u, v, or w corresponding to s = x, y, or z. Observe that there

is no functional dependence on the choice of tangential directions r and r_ in equation (4.6).

A thin-layer approximation in the X coordinate direction (X = _, r/, or _) simplifies

equation (4.6) by neglecting derivatives in the other two coordinate directions. Consequently,

, #1 IO_X OUO)c_ Al ('Off . Vx) n8 (4.7)

where n refers to the direction normal to a surface X -- Constant, and the superscript

prime refers to the thin-layer approximation• The viscous terms on the other two coordinate

surfaces are also neglected in the thin-layer approximation because their contribution to overall

momentum and energy balance is small. These approximations are valid as long as the boundary

layer is relatively thin and the X direction is approximately normal to the high gradient region.

Equation (4.7) can be further simplified through the use of the _eometric relations defined
by equations (A13) and (A15) and Stokes' relation (ref. 29), A -- -_ to yield

v_= #l(0_Ree +3_XXnsl0U )VX • _ (4•8)

The heat flux through a cell wall is expressed as

l
q. = R-7--p rV(-ye)•

_ + +
Re Pr _, y

• ff (4.9)



The thin-layer approximation to On is expressed as

Re Pr \ X
(4.10)

Let I be the index running in the X direction. Recall that lowercase l refers to cell walls and
uppercase L refers to cell centers. The solution at cell center L requires evaluation of the
viscous terms on cell walls I and l + 1. The viscous part of { • ffl is now written as

h I _ _

0

Tax

Tny

Tnz

UTnx + Vrny + WTnz + qn

(4.11)

In the case of the thin-layer approximation, l_l would be a function of _.I and .Iqn" The viscosity,
#l, is calculated as the average of _L and #L+l. Expressions for the metrics to second-order

accuracy are presented in appendix A.

4.2. Point-Implicit Relaxation of Viscous Terms

Derivatives in the X direction are evaluated to second-order accuracy in space as follows:

OXZI+I,L u;+l = u +l -- =

(4.12a)

(4.12b)

Terms like 0u for X equal to _ are evaluated as follows assuming a rectangular ordering of mesh

points:

(0_) l(u, , , " ) (4.13)
i+l,J,K = -_ I,J+I,K -- uI,J-1,K '_ UI+l,J+l,K -- UI+l,J-1,K

Note that the derivatives in the directions along the face (i.e., those derivatives neglected in

the thin-layer approximation) have no functional dependence on the cell center. Therefore, the

point-implicit treatment of the full Navier-Stokes equations is identical to that of the thin-layer

Navier-Stokes equations.

Now, define h I as a function of differences evaluated with currently available data, for

(0u) h*example Y_ l' and define l,L as a function of differences by using predicted values at cell

center L, for example [ 0u X* These definitions permit the linearization of the viscous terms
_]l,L"

to be expressed as follows:

hl*,L= h I - Bl, L 5qL

hl*+l,L _- hi+ 1 + BI+I,L 5qL

(4.14a)

(4.145)
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where

Ohm,L Oh'*
.... t,___L (4.15a)

BI'L = OqL -- OqL

Oh_+l'L -- Oh[*+l'L (4.15b)
B/+I'L = OqL -- OqL

Further details of the definition of matrix Bl, L and B/+I, L are presented in appendix C.
The point-implicit implementation of the viscous terms follows the example set in equa-

tions (3.11) through (3.15).

5qL _t L
-_ =-- E [h_+l,L(rl+l--h_,L(Tl]

l=i,j,k

(4.16)

Note that in the case of the thin-layer Navier-Stokes equations, the summation would only

include one of the i, j, or k directions, depending on the orientation of the computational

coordinates with the body. Expand equation (4.16) and combine terms to obtain

6t M l 6tI+h- i L,visf6qL = --f_L E [hl+l°'l+l - hl°'l] (4.17)
t=i,j,k

where

ML, vis = E [Bl+l, L°'l+l + Bl, L°'l] (4.18)

l=i,j,k

5. Relaxation Strategies

The governing relaxation equation for both the inviscid and viscous components of the

Navier-Stokes equations is obtained by combining the results of equations (3.14) and (4.17).

Thus,

6t M
{I+_L L}6qL=rL (5.1)

where

ML = ML,inv + ML,vis

1 A
= E [('2[ l+l[+Bl+l, L)

l=i,j,k
al+l + (2[AlI + Bl£) al] (5.2a)

and
6t

rL= aLE [(gl+l+hl+l)al+l--(gl+hl)al]
l:i,j,k

The relaxed value of _n+lqL can now be determined by

(5.2b)

qn+l n [ 6t M ] -1L = qL + I + L] rL (5.3)

Equation (5.3) involves the inversion of a single 5 x 5 matrix for three-dimensional flow of a

perfect gas. In practice, Gauss elimination is used to solve for 6qL directly from equation (5.1).

Note that ML,in v is obtained as the sum of matrices that have all real, positive eigenvalues and

11



that ML,vis is obtained as the sum of matrices that have all real, nonnegative eigenvalues. Such
summations will not generally result in a matrix with real, positive eigenvalues. However, the

Gauss elimination is routinely implemented without pivoting to facilitate code vectorization in
the numerical tests, and no evidence of ill-posed behavior has been observed.

The strategy used to drive the right-hand side of equation (5.1) to zero should take advantage
of the host computer architecture and the physics of the problem. On computers with serial

architecture, the relaxation of equation (5.1) (with one or more local iterations) proceeds from
cell to cell in an ordered fashion. Thus, an updated value of qn+nlocal is obtained at Cell

center (1,1,1) followed by (2,1,1), (3,1,1), .... (1,2,1), ... until the dependent variables at every
cell in the domain have been locally iterated nlocal times using the most recent available data

from neighbor cells. Vectorizable code is far more efficient than scalar code on machines with
vector architecture. In this case, all the cells in a plane of the domain are iterated nlocal times

before proceeding to the next plane. :

Numerical tests indicate tha t sweeps which run from a wall across the boundary layer to
the opposite boundary and then back aga!n are the most efficient for the blunt body problem.

Effects of a pert urbat!pn at a wall are felt at the opposite boundary after one sweep. Effects
of a perturbation at one cell in a plane parallel to the wall require n iterations to be felt by a

cell whose index differs from the source cell by n.

The ordering of the sweeps and the use of local iterations may be used to speed convergence,
but in numerical tests performed to clate,(hey dO not affect the final, converged steady-state

solution. Thus, it should be possible_to solve a large number of cells using a massively parallel
processing computer in which each cell (or small group of cells) is relaxed semi-independently

of its neighbor cells (cell groups) Using its own processor. The expression semi-independently

means that a cell (cell group) will need updated information from its neighbor cells (cell

groups), but neither the order that it receives this information nor the lag time i_ttakes for
this information to arrive is critically important. (There may be some upper limit on-allowable

communication delays on actual parallel syste_m befor e convergence is inhibited. This issue
is beyond the scope of the present paper.) As long as each processor has immediate acceSs

to some level of information from its neighbors (which could be stored locally), the execution

stream could proceed uninterrupted in a parallel, asynchronous mode (ref. 30).

6. Numerical Issues

6.1. Zero Eigenvalnes and Entropy Violations

Harten (ref. 7) has shown that the numerical dissipation for waves associated with eig-en-
values equal to zero is also zero when the inviscid flux is defined as in equation (3.9). Thus,

incorrect nonphysical weak solutions of the governing conservation laws which violate the sec-

ond law of thermodynamics (i.e., expansion shocks) are permitted. In the present algorithm

it has been found that if no provision has been made for zero eigenvalues, the scheme will
either fail to converge or will converge to a nonunique solution (usually on a coarse grid) that

is relaxation path dependent. A simple fix for this problem, suggested by Harten (ref. 7), is to

restrict the minimum value of the eigenvalue magnitude. Therefore,

+ ¢ ([A eq l< 2¢)
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and

IAI =

"_1 0 0 0 0

0 _2 0 0 0

0 0 A3 0 0

0 0 0 _4 0

0 0 0 0 _5

(6.2)

where )tieqn is an eigenvalue of A and is defined in appendix B.
The magnitude of e, which may be viewed as a nondimensional velocity, is problem

dependent. It is also a function of the method used to nondimensionalize the problem.
Numerical tests on the blunt body problems, in which there are large zones of subsonic flow

and stagnation points, indicate that e should be restricted by

0.1 < e < 0.3 (Approximate range for blunt bodies) (6.3a)

Numerical tests on flows that are predominantly supersonic indicate that e should be restricted

by
0.005 < e < 0.05 (Approximate range for slender bodies) (6.3b)

The lower limits on e arise from convergence or uniqueness considerations. The upper limits

arise from concerns regarding excessive numerical dissipation and its effects on predicted surface

heating, adiabatic wall temperatures, and shock thicknesses. Large values of e have also been

observed to slow convergence. In some cases for the blunt body problem, the value of e was

gradually reduced to 0 for cell walls parallel to the body. This treatment improved heat-transfer

predictions and will be discussed further in section 7.
Recently, Yee (ref. 12) has suggested a functional dependence of e on the local values of

sound speed and velocity. This relation has been adapted for use in the present work as follows:

= _o(_t + lull + l_l + Iw_l) (6.4)

where Co is a constant which generally varies from 0.01 to 0.4. The magnitude of this quantity

follows similar guidelines as defined in equation (6.3); however, the resultant magnitude of e,
which is now tied to local velocities, has been found to be generally less dissipative than the

use of equation (6.3).

6.2. Relaxation Factors and Frozen Matrices

Equation (3.14) has been found to be unstable when 0 = 1 (second-order dissipation)

and the Courant number is greater than 1. (The Courant number, which determines the

magnitude of 6t, is defined in appendix D.) Because time accuracy is not an issue in the

present formulation, one is free to adjust ML in any way which improves stability, accelerates

convergence, or decreases computational time per relaxation step. The instability can be

removed by multiplying ML,in v by a relaxation factor _inv as follows.

M !
L,inv = 6PinvML,inv (6.5)

where the recommended bounds on the relaxation factor as determined by numerical tests are

given by
1.5 <: _inv <- 2.0 (6.6)

Examination of equation (3.14) shows that the application of the relaxation factor reduces the

magnitude of _qL for a given value of the right-hand-side residual. Thus, ffPinv may be viewed

13



as an underrelaxation factor. It also serves to better approximate the contribution of the flux

limiter to r L.

No instabilities have been encountered that are associated with the present treatment of

the viscous terms. However, an overrelaxation factor associated with the viscous contributions

to r L can be specified as follows:

M / = (I)visML,vi sL,vis (6.7)

where the recommended bounds on the relaxation factor as determined by numerical tests are

given by

0.5 __ ¢vis (6.8)

Convergence rates as a function of (I)inv and (I)vis are presented in section 7.

Equation (5.2) for ML is now replaced by

M_ ' 'ML,inv + ML,vi s

and equation (5.3) for _n+l is replaced byqL

(6.9)

qn+l n
L = QL -- CLrL (6.10)

where : =

6t Mt ]-1 .......= (6.11)

Note that C L does not need to be recomputed every relaxation step. In fact, an advantage of

this formulation is that it requires no more memory or work to save (freeze) C L at every point

than is required to save M_. This is in contrast to the various classes of implicit methods

which require the solution of large, block tridiagonal systems of equations in which each of the

component blocks (which are as large as M_) may be saved, but it is numerically intractable

to compute and save the inverse matrix. Average computational time per relaxation sweep is

reduced by a factor Of 2t0 3 when C 5 is kept frozen for 10 to 40 sweeps. This reduction occurs

because the work required to recompute M t and M _L,inv L,vis as well as the work required to

perform the inversion specified by equation (6.11) is eliminated from approximately 90 percent

of the relaxation sweeps. The algorithm demands no more work per computational cell than a

purely explicit formulation except for the effort required to muitiply a 5 x 1 vector of residuals

by a 5 × 5 matrix for three-dimensional flow of a perfect gas. The robust stability for any

Courant number is not sacrificed with this treatment of CL.

6.3. Positive-Definite Quantities and Initialization Procedures

Flow-field initialization is usually achieved by imposing uniform flow conditions at every

cell. (The only time this initialization procedure failed was in the near wake at cells adjacent

to the vehicle base in a hypersonic flow. In this case, a linear variation in velocity was

introduced which varied from 0 at the wall to free-stream values in the middle of the domain.)

A stability enhancing procedure which has been found useful in the early, highly nonlinear

solution adjustment period is to force positive-definite quantities (such as density or energy)

to remain positive definite and to quell any explosive growth caused by physically unrealistic

initial conditions. The adjustment to the algorithm can be expressed as follows.

pn+l = _lpn (6.12a)

e n+l = _2e n (6.12b)

14

!

!

!

t

i

m

=-

i

E

E

i

=.
I
i
=

=
|

i

=

|
|

r

II

|



where

6ql
w I = 1 + -- (6.13a)

pn

_e

w2 = 1 + e--ff (6.13b)

= 1 [(u2 + v2 + w2 _ E)_ql - u_q2 - v6q3 - w_q4 + _q5] (6.14)_e
P I. .1

0.5 < 0.5) }
= w (0.5 < < 2.0) (6.15)

2.0 > 2.0)

7. Results and Discussion

The algorithm has been documented in its various stages of development in references 19
through 22. It is referred to as the Langley Aerothermodynamic Upwind Relaxation Algorithm

(LAURA). Boundary conditions are discussed in appendix E. Modifications required for an

unstructured grid are discussed in appendix F. Opportunities for exploiting asynchronous

relaxation strategies on parallel computers are discussed in appendix G. The material on

asynchronous iteration and some of the blunt body results first appeared in reference 21. Some

material on the two-dimensional flow problems appeared first in references 31 and 32.

7.1. Convergence and Grid Refinement Studies

Two-dimensional flow problems are used to illustrate convergence properties and solution
dependence on numerical parameters. The first test case is one studied recently by Rudy

et al. (ref. 31) involving laminar, supersonic flow through an inlet. The upper wall is straight

and parallel to the incoming flow. The lower wall is offset 2 cm from the upper wall. Two

centimeters into the inlet there is a 10° compression followed by a 10° expansion at 4 cm. The

total length of the domain L is 10 cm. An illustration of the geometry and flow physics in the
problem is presented in figure 2. The inflow Mach number is 5.0, and the Reynolds number

based on the length of the domain is 1.14 x i07. Adiabatic, no-slip boundary conditions are

applied at the upper and lower walls. Extrapolation is used at the outflow boundary.

Grid refinement studies were implemented for discretizations involving 50 × 50, 100 x 100,

and 200 x 200 cells. Equation (3.8b) was used to define the limiter, and equation (6.4) was
used to define e with eo = 0.1. Cell Reynolds numbers for this test case were evaluated at the

lower wall in front of the inlet. Values of Nc for the three cases are 120, 60, and 30 for the

three grids, respectively, where

Nc - pa Az (7.1)
#

Here, a is the sound speed and Az is the cell size in the direction normal to the wall. This

definition of cell Reynolds number is used to evaluate the adequacy of grid resolution for the

purpose of resolving thermal gradients. It depends on a thermal velocity (the local sound speed)
and not on the local value of a velocity gradient, which can pass through zero at stagnation or

separation points. Experience with this parameter indicates that it should not exceed a value

of approximately 2.0 for adequate resolution of the thermal layer.

The distributions of pressure (fig. 3) and skin friction (fig. 4) show continually sharper

profiles, particularly in the vicinity of the reflected shock on the upper wall, with increasing

resolution. It is clear that the separation region in front of the reflected shock (Cf < 0) is not
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adequatelyresolvedwith the 50x 50and100× 100celldiscretizations.Thetruncationerrors
causesignificantdifferencesin theextentandmagnitudeof theseparationascomparedwith the
200x200discretization.Thevaluesof Nc exceed the recommended limit for adequate resolution

of dissipative phenomena at the surface. On this basis, the 200 × 200 cell discretization is still
somewhat coarse. The test cases were repeated with a geometry a factor of 10 smaller than the

original test. This reduces the free-stream Reynolds number by a factor of 10 and effectively

reduces the cell Reynolds numbers used above by a factor of 10. (In this case, the finest grid

is marginally acceptable with a value of Nc equal to 3.) These results are presented in figure 5

for pressure and figure 6 for skin friction. Here again, the finer grids give a sharper pressure
rise on the upper wall and an earlier separation in front of the reflected shock. The effects

of truncation error are much less severe (though still observable) for these order 1 values of

Nc (12, 6, and 3, respectively, for the 50 x 50, 100 x 100, and 200 × 200 grids). The small
differences between the two finest grid solutions can be attributed to the relative coarseness

of grid transverse to the oblique, reflected shock. Shocks which are oblique to a cell face are

generally found to be smeared over more cells than in the case of shocks aligned with cell faces.
A second test case was studied to further address the issue of truncation error. The test case

involves laminar, hypersonic flow (M_c = 14.1, Re_ = 2.36 x 105/m) over a 15° ramp. The

free-stream temperature is 88.9 K (160°R) and the wall temperature is 297.22 K (535°R). This
case and related tests involving larger ramp angles are extensively discussed in reference 32.

Four different grids are used in this test: 50 x 50, 100 x 100, 100 × 200, and 200 × 100. The first
index refers to the number of cells along the wall and the second index refers to the number
of cells normal to the wall. Values of Nc for these fourcases, evaluated on the wall in front

of the ramp at x _ 1.35, are approximately 1.2, 0.6, 0.3, and 0.6. Values of Nc near the peak

skin friction point on the ramp (x _ 2.40) are approximately 14.0, 7.0, 3.5, and 7.0. The

surface pressure and skin friction coefficients as computed on all four grids are presented in

figures 7 and 8. The boundary layer is well resolved according to the values of Nc ahead of the
ramp and the solutions for both pressure and skin friction coefficients on all four grids are in

excellent agreement. The solutions on the ramp near the-t)eak pressure and skin friction points
are in good agreement, though observable differences in magnitude on the order of less than

5 percent on the three finest grids are observable. The boundary layer thickens but does not

separate ahead of the ramp. The pressure and skin friction are in excellent agreement among
all four grids in this region. It is clear that boundary-layer resolution is not the only issue in

the prediction of surface quantities. The 100 x 100 and 200 x 100 cell cases have identical grids
in the direction normal to the wall, but differences are observed due to the improved resolution

across the captured shock in the second case. (The computational speed for the 100 x 100 test

case is 32 x 10-6 sec/iteration/grid point on the Cray Y-MP computer using a single processor

with Cray FORTRAN CFT77 3.0.2.2. Approximately 2500 relaxation steps are required for

convergence.)
The enhanced numerical dissipation provided by increasing the lower limit on eigenvalue

magnitude e is shown in the pressure distributions of figure 9 and the skin friction distributions

in figure 10 in the inlet. These tests were conducted on the 50 x 50 grid for the free-stream

Reynolds Number equal to 1.14 × 107. The pressure rise across the reflected shock steepens

with decreasing Co. In this coarse grid solution, there is no separation in front of the reflected
shock; however, the smaller values of eo clearly better resolw the sharp decrease in skin friction

in this area. Computational stability at Courant numbers greater than 5 was compromised
with values of _o less than 0.1. Convergence rates deteriorate and solution profiles become

overly smeared when the eigenvalue limiter is set too large. Nonphysical solutions or a failure

to converge can result from eigenvalue limiters set too small_
The effects of the STVD limiters considered herein on the computed solutions are presented

in figures 11 and 12. The limiters given by equations (3.8a) and (3.8b) differ only where there is
a local maximum or minimum in the value of sl. The solutions given by these two limiters are
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nearly identical. The solution given by the third limiter (eq. (3.8c)) gives sharper pressure jumps
than the first two limiters and lower skin friction predictions. The predictions using this limiter

are, generally, in better agreement with the predictions given by three other relaxation schemes
on the coarsest grid, as documented in reference 31 and shown here in figure 13. (The results

of reference 31 were obtained with a constant eigenvalue limiter equal to 0.005.) Convergence
characteristics of the scheme with this limiter were not as attractive as those obtained with the

other two limiters. Usually, the solution would converge to an L 2 norm and then stall at that

level. Global checks of mass conservation and momentum show gentle oscillations in the fourth

(or greater) decimal place around a constant level in these quantities. The magnitude of these

oscillations does not appear to be abated significantly by lowering the Courant number from
order 106 to order 10-1. It would appear that equation (3.8c) is the least dissipative of the

three limiters based on the sharper profiles in figures 11 and 12 and the oscillatory convergence
characteristics.

Convergence histories for two of the test cases are presented in figures 14 and 15 using the

limiter given by equation (3.8b). The measure of convergence is given by the L2 norm defined

by

1 N

L2---- _N Z rL rL (7.2)
L=l

where CN is the Courant number, N is the total number of cells, and rL is the right-hand side
of equation (5.1). Scaling by CN reduces the Courant number dependency in the calculation.

Note that L2 is not scaled by the total number of cells. Figure 14 shows the rapid convergence

rate for the coarse 50 x 50 grid solution with a Courant number of 5 x 106 and eo = 0.2.

Figure 15 shows the convergence history for the fine 200 x 200 grid solution with a Courant

number of 5.0 and eo = 0.1. The minimum value of CI on the upper wall and the maximum
value ofp/poc on the upper wall are also plotted as a function of iteration number in figure 15.

The minimum value of skin friction is found in the separation region in front of the reflected
shock (fig. 6) and the maximum pressure ratio is found behind the reflected shock (fig. 5). The

pressure is converged after approximately 600 iterations when the L2 norm is less than 3 x 10-3

and the skin friction is converged after approximately 1200 iterations when the L2 norm is less
than 2 x 10 -4 in this case.

An optimum value of (I)inv = 1.5 was found from numerical tests on the 100 x 100 grid
(Nc = 6) as shown in figure 16. All these tests were computed with eo = 0.1 and equation (3.8b)

for the flux limiter. The first curve shows the L2 norm after 700 iterations from a uniform initial

flow with (I)vis = (I)in v and CN = 5.0. The solution diverged for values of (I)inv <: 1.4. The second

curve shows the L 2 norm as a function of _inv with (I)vis = 6.0 and CN = 5.0. Tests on other

problems substantiate the choice of (I)in v _- 1.5 as optimum for reducing the L2 norm. (In some
tests with particularly severe initialization errors, larger values of (I)inv would enhance stability

and convergence during the initial adjustment phase.) The effects of _vis and CN on the L2

norm after 700 iterations are shown in figure 17. The relaxation factor (I)vis has a relatively

weak influence on convergence over the range tested, with an optimum value occurring at

approximately 7.0. The large value for (I)vis is required as a consequence of stability problems,

particularly at large Courant numbers, associated with the abrupt transition from free-stream
conditions at the inflow to no-slip conditions at the wall. The choice of Courant number has

a stronger impact on convergence, with an optimum value of 5.0 in this test. Optimum values

for these parameters are expected to be problem dependent, but experience to date has not

shown significant variation from the values obtained in this test for Courant number or (I)in v-

Optimum values for gPvis in the blunt body problem discussed in section 7.2 (which has no

boundary condition singularity) vary between 0.5 and 1.0.
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7.2. Blunt Body Applications on Aeroassist Flight Experiment (AFE) Configuration

The present algorithm was developed specifically for application to hypersonic flows over

blunt bodies. The excellent capabilities of total variation-diminishing schemes with regard to

shock capturing, resolution of severe expansions, and robust stability characteristics motivated
the development of the present code for these applications.

The Aeroassist Flight Experiment (AFE) configuration is a 60° elliptic cone raked at 73°

on the base to form a circular backplane. The nose is defined by an ellipsoid of eccentricity

equal to 2.0. The shoulder region is defined by circular arcs on planes passing through the

axis of the elliptic nose. More details of the forebody definition are given in reference 33. An
illustration of the vehicle is presented in figure 18. The body size is defined relative to the base

plane diameter. The base plane diameter is equal to 3.9116 m (154 in.) for the flight vehicle.
The base plane diameter for the wind-tunnel test model is 9.3218 cm (3.67 in.). The inviscid

relaxation factor ¢inv was set equal to 1.5. The viscous relaxation factor (I)vis was decreased
from 1.0 to 0.5, the Courant number was decreased from 5.0 to 0.5, and the eigenvalue limi-

ter _o was decreased from 0.4 to 0.1 over the period of convergence. (There was no comprehen-

sive retesting of numerical parameters to achieve optimum efficiency.) Free-stream conditions
are defined by V_ = 1429 m/s, p_c = 60.136 N/m 2, Too = 52.22 K, and Mcc = 9.86. The unit

Reynolds number is 17040./cm (43 282/in.). Wall temperature is 300 K.

Predictions from the LAURA code and the HALIS code (ref. 34) are in excellent agreement

with experimental data for the pitching-moment coefficient in figure 19. The contributions of
viscous forces to the pitching moment are negligible at this test condition.

Calculations and experimental data (ref. 35) for pressure coefficient and heat-transfer

coefficient are presented in figure 20. The data were run at angles of attack of 0 °, 5°, and
-5% The heat-transfer coefficient for the cone flank compares well with the experimental data;

however, as angle of attack is decreased from 5° to -5 ° , the comparison in the stagnation

region gets progressively worse. At an angle of attack of -5 °, where the stagnatio n point
crosses the axis singularity, there is an abrupt overshoot/undershoot in the data crossing the

axis singularity. A grid refinement involving double the number of points across the shock layer
eliminated most of the irregularity in this region and improved the agreement with experimental

data in figure 20(c). A grid restructuring, in which the axis singularity was removed by

redistributing cell faces across the plane of symmetry, also smoothed the prediction curves
for heating in this region. The strong influence of grid structure on computed heating indicates

that the variation of truncation error around the axis, as well as the magnitude of the truncation
error, is responsible for the irregularities in the stagnation region heating. Computed pressure

distributions are insensitive to these effects. The grid refinement shows little change in the

heating on the cone flank, which indicates that truncation error is not a significant factor
elsewhere in the flow field. "

Heat-transfer distributions on the sting in the near wake (ref. 36) compare well with

calculated data in figure 21. A grid refinement in which a solution was generated with double
the number of cells in all four domains in the direction normal to the forebody and sting shows

only a slight change in the computed solution for heat transfer in figure 21(b). The calculation

assumes laminar flow. There is no direct evidence in the experimental data to indicate if the

shear layer flow or the sting boundary-layer flow is laminar, transitional, or turbulent. The

experimental data show no evidence of transition to a turbulent boundary layer on the sting

(over the length that data were taken) as judged by the heat-transfer distribution. The value

of the eigenvalue limiter eo was set to 0.010. The near wake flow field does not require the

larger values of eigenvalue limiters needed for stable computation of the stagnation region of
blunt body flows.

The four-domain grid used for this case is presented in figure 22 on the symmetry plane

and on the surface. Grid 1 is the forebody grid which consists of 39 × 24 × 64 cells. Grid 2

18

1
!
!
i

]
|
i

J
4

1

J

i



extends out from the outflOW boundary of grid 1 and consists of 31 × 24 x 32 cells which

approximately span the region extending from above the free shear layer across the captured
bow shock. Grid 3 fills in the region between the cylindrical upper surface of the afterbody

with 31 × 24 × 19 cells and spans much of the free shear layer. Grid 4 resolves the boundary-

layer flow over the sting and the region behind the afterbody with 26 × 24 x 21 cells. The low

densities in the near wake region simplify the task of constructing grids which satisfy the cell

Reynolds number requirement at the body surface discussed after equation (7.1). The cell walls
on adjoining domain boundaries are aligned to simplify flux calculations. The outflow boundary

condition of the forebody grid system (grid 1) employed second-order accurate extrapolation.

The inflow boundary conditon for grid 2 picked up from the converged solution in grid 1. This

boundary condition precludes feedback of information from the wake to the forebody and was

implemented out of convenience rather than necessity. It is considered reasonable because the

information from grid 2 can only influence the solution in grid 1 through the subsonic portion

of the boundary layer which is very thin in these test cases. Grid 2 was constructed so that

exactly two cell walls of the common boundary in grid 1 formed a single cell wall in grid 2.

Contours of pressure and Mach number in the symmetry plane at angles of attack equal to

0° and -5 ° are shown in figures 23 and 24. Contour lines pass smoothly across grid domain
boundaries. Gaps in the contour lines are an artifact of the data base supplied to the plotting

routine. Information is stored at cell centers. The gaps in the contour lines equal the distance

between cell centers of adjacent domains. The captured shock in the near wake over the sting

is clearly visible in figure 23. The free shear layer extending from the aft corner of the shoulder

is evident in the Mach contours in figure 24.

7.3. Some Observations of the Relaxation Process

The variation of Courant number, eigenvalue limiter, and viscous relaxation factor noted

in section 7.2 was implemented to improve convergence. The solution for the AFE forebody is

initialized assuming that the body materializes in the undisturbed flow at time t = 0. A coarse

grid, first-order accurate solution is developed on a grid which adapts to the position of the

captured shock (ref. 21). When the coarse grid solution is judged sufficiently developed, the

grid is refined and the second-order flux limiters are implemented. A Courant number equal
to 5.0, a viscous relaxation factor Ovis -> 1.0, and an eigenvalue limiter eo _> 0.2 are typically

applied to speed convergence and maintain sufficient dissipation. Grid adaption is turned off

once the L2 norm is observed to be level. Further relaxation can be used to drop the L2 norm

about another order of magnitude, but then convergence stalls. At this point, the computed
surface pressure distribution is generally quite satisfactory, but the computed surface heating

is likely to differ from the fully converged values by 25 percent or more, depending on the

amount of grid stretching across the boundary layer and the magnitude of Co. The L2 norm

can be reduced several more orders of magnitude by reducing the Courant number to 0.5 and the

viscous relaxation factor to 0.5. The eigenvalue limiter is reduced as much as possible, generally
to a value of 0.1, in order to minimize the numerical dissipation on the computed heating. The

eigenvalue limiter can be turned off in the direction crossing the boundary layer in order to

remove any influence of this parameter on the computed heating. The computation remains

stable with this adjustment when the solution is close to convergence and it is recommended
_tl,J K

when there is severe grid stretching (for example, when _ > 1.5 where K is the index
crossing the boundary layer). This adjustment was not used in the present set of calculations.

The convergence rate in the three wake region domains is better than the rate obtained in

the forebody region. Typical convergence histories are presented in figures 25 through 30 for
the forebody and wake regions to illustrate this point. Figure 25 shows the initialization of

the case for a = 5° on the regular grid starting from a converged case for c_ = 0° considering

only the forebody. The Courant number used in this case was equal to 5.0, and Co was equal

19



to 0.25. Thegrid wasallowedto adaptto the movingshockduring the first 500relaxation
stepsandthenwasheldfixedfor theremainderof thetest. Convergencehasobviouslystalled
at an L2 norm of approximately 0.02. The curve in figure 26 picks up from the stalled results
of figure 25 with a larger value of eo which is 0.4. After 1000 relaxation steps, the L2 norm

drops 2 orders of magnitude with the larger value of eo and a Courant number of 5.0. The

convergence then stalls at L2 of approximately 0.0003. A decrease in the Courant number to
0.5 with the same value of eo allows the L2 norm to drop another 5 orders of magnitude during

a subsequent 1500 relaxation steps. This behavior is indicative of a low level limit cycle that
can occur at the larger Courant numbers.

Figure 27 records the drop in the L2 norm for the three base region domains for the case

for a = 0 °. The wake region is initialized by inserting the computed values of the solution
vector from the outflow boundary of the forebody domain into the computational cells in the

three base region domains. The L2 norm decreases by more than 4 orders of magnitude in 2600
r

relaxation steps. Several Courant numbers were used, as indicated in figure 27. There were no

limit cycles apparent in these tests, except at a Courant number of 8 x 106. The eigenvalue

limiter eo during this test was held constant at 0.25. Recall that this value was too small to

achieve acceptable convergence behavior in the forebody tests.
The convergence history for the fine grid solution over the forebody at a -- -5 ° is presented

in figure 28. The initial condition is interpolated from the initial grid solution. The Courant
number in this case was greater than or equal to 5.0. The eigenvalue limiter eo during this

test was held constant at 0.2. Convergence in this case stalled at a value of L2 _ 10 -5 . This

level is still nearly 4 orders of magnitude lower than the level that could be obtained in the

regular grid tests with eo -- 0.25 and illustrates the role that truncation error can play in the

limit cycle behavior. The limit cycle in this case can be even further reduced by reducing the

Courant number to 0.5, as shown in figure 29, which picks up from the solution state of the
previous case.

The convergence history for the fine grid solution in the three base domains at c_ = -5 ° is

presented in figure 30. The initial condition is interpolated from the regular grid solution. The
Courant number in this case was 0.5. The value of the eigenvalue limiter eo is 0.01 which is an

order of magnitude smaller than the value used in the forebody region. Apparently, the greater
influence of viscous dissipation in the wake and the larger region of supersonic flow surrounding

the wake core contribute to the improved stability and convergence of the computation in this

region.

The two-dimensional inlet calculations did not require any of the parameter adjustments
used on the blunt body calculations. In particular, there was no "stalling" of convergence

with large Courant numbers and the required eigenvalue limiter was 2 orders of magnitude
smaller than used for the blunt body computations. Here again, the absence of any extensive

stagnation region and the predominance of supersonic flow are believed to improve the stability

and convergence (fig. 15) of the computation in the inlet relative to the blunt body flow

computations.

Concluding Remarks

An upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution

to the governing equations for three-dimensional, viscous, compressible, perfect-gas flows has

been described. The algorithm is derived by using a finite-volume formulation !n which the
inviscid components of flux across cell walls are described with Roe's averaging and Harte_n's

entropy fix with second-order corrections based on Yee's symmetric total variation-diminishing
scheme. Viscous terms are discretized using central differences. The scheme is second-order

accurate in computational space except at isolated points where the flux limiter restricts a

second-order antidissipative correction which could introduce catastrophic instabilities. The
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scheme is second-order accurate in physical space so long as metric coefficients can be assumed

to vary continuously from cell to cell. Metric coefficients are defined by the ratio of cell areas
to cell volumes within the context of a finite-volume scheme.

The relaxation scheme requires only a single level of storage for the unknowns if time

accuracy is not required. Time-accurate solutions can be constructed by employing additional
storage levels to save the results of previous iterations. Because of the point-implicit relaxation

strategy, the algorithm remains stable at large Courant numbers without the necessity of solving
large block tridiagonal systems. On machines with large memories, the inverse of the Jacobian
for the right-hand-side residual vector with respect to the solution vector can be saved over

large blocks of iterations, causing the algorithm to require very little overhead as compared with

a standard explicit scheme. These features of the relaxation strategy make the algorithm well
suited for computers employing either vector or parallel architectures. It is also well suited to

the numerical solution of the governing equations on unstructured grids, although this option
has not been developed in the present work.

Two-dimensional flow problems are used to illustrate convergence properties and sensitivity

of the solution on numerical parameters. The first test case involves laminar, supersonic flow

through an inlet. The inflow Mach number is 5.0 and two test Reynolds numbers, based on the
length of the domain, of 1.14 x 107 and 1.14 x 106 were used. Convergence of the computed

solution is evaluated through a grid refinement study. A second test case, involving Mach 14 flow
over a 15° ramp, is also used to evaluate convergence through a grid refinement study. The

enhanced numerical dissipation provided by increasing the lower limit on eigenvalue magni-

tude e is demonstrated. Three different symmetric total variation-diminishing (STVD) flux

limiters were evaluated in the first test problem. The solution given by the third limiter gives
sharper pressure jumps and lower skin friction predictions than the first two limiters. The

predictions using this limiter are, generally, in better agreement with the predictions given by
three other relaxation schemes.

The application of separate relaxation factors to the inviscid and viscous contributions

to the Jacobian within the context of point-implicit relaxation has been found to accelerate

convergence. The inviscid relaxation factor must be greater than or equal to 1.5 in order for the

second-order accurate flux-limited schemes to converge. As a converged state is approached, a
value of 1.5 for the inviscid relaxation factor was found to be the optimum in several numerical

tests. The optimum value for the viscous relaxation factor was problem dependent in the present

set of tests, though this behavior may be due to a leading-edge singularity in the boundary
condition of the inlet problem. The optimum value of the viscous relaxation factor in the blunt

body problems varied between 1.0 and 0.5, with 0.5 giving the best convergence rate as the
converged state is approached.

Several numerical tests were conducted on the Aeroassist Flight Experiment (AFE) con-

figuration, including the base flow region of a wind-tunnel model. Comparisons of computed

aerodynamic coefficients and surface pressure with another numerical method and with exper-
imental data show good agreement. Comparisons of computed heat-transfer coefficients with

experimental data at three different angles of attack show good agreement on the cone flank,
but reveal a strong influence of the coordinate singularity at the elliptic nose in the stagnation
region on the computed heating distributions. Grid refinement in the direction normal to the

boundary layer and grid restructuring in the vicinity of the axis can be used to improve the

computed heating distribution in the stagnation region. A four-domain grid was used to dis-
cretize the space surrounding the forebody and sting of the complete AFE wind-tunnel model.

Computed contour lines pass smoothly across domain boundaries. Heating distributions on the

sting are in good agreement with experimental data under the assumption of steady, laminar

flow. A grid refinement for this case shows only slight truncation error effects on the computed
sting heating.
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Appendix A

Cell Geometry

Expressions for cell volume and cell wall area in a cell-centered scheme in which the

dependent variables are at cell centers and the independent variables (x, y, z) are at cell corners

are presented in this appendix. A similar derivation may be found in reference 37.

Let i, j, k be indices of a cell corner at whlch_po]nt the values of the ifiaependent variables

x, y, z are known. Let I, J, K be indices of a cell center at which point the values of the

dependent variable q are to be determined. Note, for example, that the computational planes

represented by I- ½ and i are equivalent !n this indexing system.
Let

d_ = _,,j+_,k+,- _,.,k= [(_. + _) r+

d_4 = ri+l,j,k+l - r'ij,t = [(x¢ + i_) {+

d_6= _,+,j+ls - _,,j,k= [(_ + _,) r+

d_7 = _',+,j+l,k+l - 5,Zk = [(_ + i, +

- (Ala)

. .-*+(_ +Y;)J (z_ +z¢)k]/,J,K (Alb)

(fl; -fl¢); + (_ - _) k ],,j,g (Alc)

(Y¢ + Y_)]'+ (5¢ + _)k ]Z,j,K (Ald)

(9_ - _9_)J'+ (_,_- _,_) ff ],,a,_ (Ale)

(ge + 9,)j'+ (_,_ + zn) ff ],,a,_ (alf)

where -=

The generic differences, _{, au, a i, used in equations (A1) are defined as follows:

(si,j+l, k --8i,j, k --{-8i,j+l,k+ 1 -- si,j,k+l) /2 (A2a)

(si,j,k+ 1 -- 8i,j, k + si,j+l,k+ 1 -- 8i,j+l,k) /2 (A2b)

(Si+l,j, k - 8i,j, k + 8i+l,j,k+ 1 -- 8i,j,k+l) /2 (A2c)

(si,j,k+i -- si,j,_ + Si+l,j,k+_ -- Si+l,j,k) /2 (A2d)

(Si+l,j, k -- Si,j, k -t- Si+l,j+l,k -- 8i,j+l,k) /2 (A2e)

(8i,j+l, k - si,j, k + 8i+l,j+l, k - 8i+l,j,k) /2 (A2f)

[2 (8i+l,j, k - 8i,j, k -t- 8i+l,j+l,k+ 1 -- 8i,j+l,k+l )

+ (8i+l,j+l, k -- 8i,j+l, k -t- 8i+l,j,k+ 1 -- si,j,k+l)] /6 (A2g)

[2 (si,j+l, k -- 8i,j, k -k 8i+l,j+l,k+ 1 -- 8i+l,j,k+l)

+ (si,j+ilk+ 1 = Si,jlk+ 1 _- si+l,j+ll k : si+llj,k) ]/6 (A2h)

[af]l,j, K = [2 (Si,j,k+ 1 --Si,j, k 4-8i+l,j+l,k+ 1 --8i+l,j+l,k ) i

-t- (Si,j+l,k+ 1 -- 8i,j+l,k + Si+l,j,k+l -- Si+l,j,k)] /6 (A2i) :

[srl]i,J,K =

[adi,, K =

[ad,,;,_ =

[_d/,,_ =

[_d_,,k =

[a(]i,j, K =

[_Y] I,J,K =
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where s is a dummy variable representing the independent variables, x, y, z, and _, r/, ( are
computational coordinates in the i, j, k directions, respectively. The cell volume g/and cell wall

directed area _ can now be defined by simple vector relations as follows:

di'l x d_'2 (A3a)
_i,J,K = " 2

d_'3 x d_'4 (Anb)
_I,j,K =" 2

d_'5 x d_'6 (A3c)_ I,J,k = " 2

fl1,J,g = dg7 • (_i,J,g + _I,j,g + _l,J,k) (A4)
3

where the magnitude of _ is the cell wall area, the direction of _ is normal to the cell wall

toward increasing I, J, K, respectively, and f_ is the cell volume.

The transformation metrics, such as (x, (y, (z, can be expressed as ratios of cell wall areas
to cell volumes. We would like these expressions to be second-order accurate with respect to

a face-centered index (i.e., i, J,K) or a cell-centered index (I, J, K). Equation (A4) for cell

volume does not meet this criterion, and use of this expression causes jags in contours running

across an axis singularity. A better formulation utilizes symmetric averages of differences about
the cell center (I, J, K) as follows:

df8 • (_i,3,K + _i+l,d,K + _I,j,K + _I,j+I,K + _I,J,k + _I,d,k+l)

_I,J,K = 6 (A5a)

where

(A5b)

and

['s_]I,J,K = [8_]I,j,K + [s_]I,j+I,K = [8_]I,J,k + [8_]I,J,k+l
2 2

[_,_]I,J,g = [_,7]i,J,_:+ [_,7]i+,,J,K = [_,_]1,J,k+ [_,J]i,z_+_
2 2

[_¢]LJ,K = [_¢]I,j,K + [_¢]r,j+l,K = [_¢]i,J,K + [_¢]i+l,J,K
2 2

(A5c)

(A5d)

(A5e)

Note that the _ differences are second-order accurate with respect to face centers and that the
differences are second-order accurate with respect to cell centers.

The transformation metrics are defined by

_z rlz (z x( Y4 z¢

-1

(A6)
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In the limit ascellvolumegoesto zero,usingequations(A1) through(A6) gives

V_i,J,K = ffi,J,K (ATa)
12l,g,K

V_?I,j,K = _I,j,K (A7b)
f_L J,K

Yl,J,k (hTc)
V Q,J,k = _ I,J,g

A 2 ":-I'Ll : " :

Equations (AT) are only first-order accurate with respect to any point in the I, J, K cell. This is

because the Y terms are functions of _ differences which are second-order accurate with respect

to face centers but first-order accurate with respect to cell centers, and _I,J,K is a function of
differences which are second-order accurate With respect to cell centers but first-order accurate

with respect to face centers. Symmetric averages of cell volumes or cell faces can be used to

achieve second-0rder accura_te m_etrics at either face centers or ceil centers. Several options
were studied in reference 1. The recommended formulations for face-centered metrics, which

are required in the :evaluation of the v!scous dissipation terms across cell faces, are as follows:

_i,g,g ---- _I'g'g(_i-l'J'g + _i,g,g) + _I-1,J,g(_i,J,g + _i+l,J,K) (A8a)
4_ I,J,K[_ I-1,J,K

_I,j,g ---- _I'J'g(_i'J-l'g + _i+l,J-l,g) + _I,J-l,g(_i,g,K + _i+l,g,g) (ASb)
4_I,J,K_I,J_I, g :_ := _ _

V_I,J,k = _l'J'g(_i'J'g-1 + _i+l,J,g-1) + _I,J,g-l(_i,J,K -{- _i+l,J,g) (A8c)
4_I,J,K_I,J,K-1

_Ti,J,K : _I'J'K(_I-I'j'K + _I-I,j+I,K) + _I-I,J,K(YI,j,K -F _I,j+I,K) (A8d)
41"_I,J,K_ I-1,J,K

V_I,j,K "= ftI'J'K(YI'j-I'K + YI,j,K) + ftI,J-1,K(_I,j,K + 515+1,K) (hSe)
4_I,J,K_I,J-1,K

V_?I,J,k -_ _I'J'K(_I'j'K-1 + _I,j+l,g-1) nu _I,J,K-I(_I,j,K + _I,j+l,g) (ASf)
4_I,J,g_I,J,g-1
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_ii,J,g ---- _l'J'g(ffI-l'J'k + _l-l,g,k+l) + _I-l,g,g(_I,g,k + _I,J,k+l) (A8g)
4_I,J,K_I'i,J,K

_l,j,g = _l'J'g(_l'J-l'k + _I,J-l,k+l) + _l,J-l,g(_I,J,k + _I,J,k+l) (A8h)
4_I,J,K_iJ" I,K

_¢I,J,k -_ _I'J'K(_I'J'k-1 + _I,g,k) + _I,J,g-l (_I,J,k + _I,J,k+l) (A8i)
4_I,J,K_I,J,K-1

The unit normal and tangent vectors for the i faces are defined as follows:

_i,J,K (A9a)
ffi,J,K = l_i,J, Ki

dr1 (A9b)
= IdYll

rni,J,K ---- ffi,J,K x _i,g,K (A9c)
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The unit normal vectors for the j and k cell faces are defined similarly. If the cell wall area is

equal to zero, extrapolation of ff from interior cell walls may be used.

In the case of the thin-layer Navier-Stokes equations, only the vectors defined by equa-
tions (ASa), (ABe), and (ASi) are required, depending on the orientation of the coordinate

system. The dot product of these vectors with the corresponding unit normal to the cell face,

as used in equations (4.4) through (4.10), can be approximated as follows:

_i,J,K " _li,J,K _

Vrll,j,K • ffI,j,K "_

_I,J,K(Oi-I,J,K + cri,J,K) "q- _I-1,J,K(O'i,J,K q- (Yi+I,J,K)

4f_I,J, Kf_I-1,J,K

_I,J,K(CrI,j_I,K -t- aI,j,K) q- _I,J_I,K(O'I,j,K "b O'I,j+I,K)

(A10a)

(A10b)
4_ I,J, Kf'l I,J-1,K

V¢I,J,k • ff1,J,k _ 121'J'K(al'J'k-1 + aI'J'k) + 121'J'K-1(aI'J'k + aI'J'k+l) (AlOc)
4_ I,J, Kfl I,J,K-1

where, for example, oi,j, K = I_i,J,KI is the magnitude (area) of ai,J,K.

Another identity that is useful in the programming of the thin-layer Navier-Stokes equations

involves a geometric relation between the unit normal to a cell face and the gradient of the

computational coordinate which defines the cell face. This relation is most easily established
by examining the limiting behavior of equations (A7) and (A9a) as cell volume goes to zero.

Consider, for example, the gradient of the computational coordinate _ across a computational

cell face defined by _ = Constant (i = Constant) given by

_i,J,K cri,J,K

V_i,J,K = _ = _----ni,g,Ka_l,J,K
(All)

Take the dot product of both sides of equation (All) with ff to obtain

(9_ • l_)i,J,K "= °'i'J'K (A12)
_ I,J,K

Substitute equation (A12) back into equation (All) and relate the individual vector components
to show that

(_s ) i,g, K = (V_ " ffns)i,J,K (A13a)

where s is a dummy variable for x, y, or z. Similar relations for the other two coordinate
directions can be derived in like manner to obtain

(_8) I,j,K = (V_ nns)l,j,K

(0_) =(_ " ffns)l,J,k
-_s l,J,k

(A13b)

(A13c)
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Finally, some unit vector relations which do much to simplify the evaluation of viscous

stresses are presented as follows:
TT -] = T-1T = I (A14a)

where

T = lx ly lz (A14b)

mx my mz

nx lx mxl
T-l= ny ly my (A14c)

nz lz mz

T = (A15a)

= 15b)W-1

=
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Appendix B

Definition of Matrices A, R, A, and R -1

The Jacobian of g with respect to q is expressed as

0

a/3nx - Uu

A = afny - Uv

a3nz - Uw

a/3U - UH

nx ny nz

-/3unx + unx + U -lynx + Uny -/3wnx + unz

--fluny + vnx --fvny + vny + U -flwny + vnz

-/3unz +wnx -/3vnz +wny -/3wnz + wnz + U

-fluU + Hnz -/3vU + Hny -flwU + Hnz

0

fnx

/3ny

fln z

3U+U
(B1)

The similarity transformation matrices R -1 and R, composed of the left and right eigenvectors

of A, are defined as

a -1 ___

a2 - a/3 /3u fv /3w -/3

-V lx ly lz 0

-W mx my mz 0

a/3 - Ua anx - flu any - fv anz -/3w /3

.a/3 + Ua -anx - flu -any - /3v -anz - fw /3

(B2)

b
u

R=
w

1

o 0 _a

Ix mx 2_

ly m_ _
2a _

lz mz _
2a z

vwH2 J

Note that RR -1 = R-1R = I. The diagonal matrix of

U 0

0 U

A= 0 0

0 0

0 0

0 0

0 0

U 0

0 U+a

0 0

1

H-aU

eigenvalues of A is defined by

0

0

0

0

U-a

(B3)

(B4)

The matrix definitions presented in equations (B1) through (B4) need to be evaluated at

cell interfaces. Consequently, the unit normal and tangential vector components are defined

with respect to cell walls by using equation (A9). The velocity components in the if, ]', and rfi

directions are defined as

U=ff • ff=unz+vny+wnz (B5a)

V = ff . ]'= ulx + vly + wlz (B5b)

W = ff • rfi = Umx + vmy + Wmz (B5c)
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Other parameters required to complete the definition of equations (B1) through (B4) include

the sound speed a given by

a 2 = 'YP =/3(_/ c_) (B6)
P

and the kinetic energy per unit mass a given by

a = _(u • if) (B7)

The parameter _ is related to the perfect-gas Specific heat ratio 7 by

= '), - 1 (BS)

Roe's averaging is used to define the elements of R, R -1, and A so that Roe's Property U

is maintained. (See ref. 2.) Property U is defined by the relation

RIAIR[-I(qL - qL-l) = gL -- gL-i (Bg)

- ==

where the grid indexing system described in appendix A and averaging in the 1 direction have

been used. Equation (B9) is not generally satisfied exactly by standard schemes for obtaining

average values at the cell interface 1 based on values at adjacent cell centers L and L - 1,

because of the nonlinear relation between g and q. Early numerical tests showed that the

sharpest normal shock captures at hypersonic conditions were obtained using Roe's averaging.

Roe's averaged values at cell wall 1 are defined as follows:

_l = c2(ClUL + I_L-1) (B10)

H l = c2(clH L + HL_I) (Bll)

• ) (B12)

where

= ( PL ,)1/2 (B13a)
cl \P-_-I/

1
c2 = -- (B13b)

1 +Cl

28

llliilli 



Appendix C

Definition of BI,L for Point-Implicit Treatment of Viscous Terms

The point-implicit treatment of the governing equations considers only the functional

dependence of the conservation laws on the cell center which is undergoing a relaxation step.

Consequently, only derivatives across a cell face contribute to the point-implicit treatment

because these are the only terms which depend on the cell center. Furthermore, given a

rectangular ordering of mesh points in which the face normal is directed in the direction of

increasing index, there is a sign change in the definition of B/+I, L as compared with Bl, L

because of the different functional dependence of [ 0u'_ * and [ Ou _ *
_,_-_]l _,_-_]1+1 on the cell center as can

be seen in equations (4.12a) and (4.12b). Following the definitions given in equations (4.8) and

(4.10) through (4.13), one can define BI,L as

Ohm,L Oh t*_ t,L (Cla)
BI'L -- OqL OqL

BI'L = Re PL

where

bl,l_ 5 = 0

bl-4,5 = 0

UL(n )l
b2,1 = --UL 3

UL(ny)l
b3'l = --VL 3

b4,1 = --w L
UL(nz)l

b5,1 = u/b2,1 + v/b3,1 + w/b4,1 - _r(E - 2a)L

(nxnx)/
b2,2 = 1 + ---f---

(nxny)l
b3'2 = b2'3 = 3

nxnz)l
b4,2 = b2,4 = 3

(nynz)l
b4,3 = b3,4 - 3

b3,3 = 1 + ().nyny./
3

(nznz)/
b4,4 = 1 +
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b5,2 = u/b2,2 + vlb3,2 + w/b4,2 Pr

7VL
b5,3 = u/b2,3 + v/b3,3 = wlb4,3 -:_

9'w L

b5,4 = u/b2,4 + v/b3,4 + wlb4,4 - --Pr

,,/
b5,5 = p'-_

and ut, vt, w 1, and ul have been treated as constants for the purpose of evaluating the

Jacobian. The eigenvalues of Bl, L are all nonnegative and equal to U'_e)/P'L)' [0, 1, 1, _, _r] T.

The eigenvalue equal to 0 derives from the fact that there is no physical dissipation in the

continuity equation. This does not present a problem because sufficient numerical dissipation

for stability-is introduced in the continuity equation from the treatment of the inviscid terms.

In like manner, the Jacobian Bl+l, L is defined by

Ohi+l'L (C2a)BI+I,L_ 0h_+l, L _ t,
OqL OqL

#/+!(VX • ff)/+l [birow,jcot] (C2b)
B/+I'L = Re PL

In this case, the expressions for birow,jrow are exactly the same as above except that subscript
l + 1 is substituted for subscript 1.
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Appendix D

Definition of Time Step 6t

The Courant number is defined as the ratio of a computational time step 5t to the real,

physical time required for an arbitrary perturbation in a flow field to traverse a computational

cell. For a given value of St, the Courant number varies from cell to cell and the largest Courant

numbers generally occur at the smallest ceils. Conversely, if the Courant number is held fixed

across the domain, then the solution at every cell is advanced at a different computational

time step. In this case, the temporal evolution of the problem is in error, but the steady-state

solution is usually independent of the path taken to convergence.

For most explicit schemes, a Courant number equal to 1.0 represents the largest time

step which may be used to advance the solution without developing instabilities. Stability

analyses for explicit schemes are used to define this physically limiting time step. The present

formulation for time step is modeled after the formulation used in reference 38. Metric

coefficients in the earlier formulation are replaced by the appropriate ratios of cell volume

to cell wall area as discussed in appendix A. No stability analysis was performed on the explicit

counterpart of the present algorithm (as defined by eq. (6.10) with CL = I). This formulation

serves only as a point of reference for defining a Courant number.

The computational time step at cell L (St)L is given as a function of the Courant number

C N by
1

: (D1)( t)L CN LtR I + In21+ In31+ R4

where

R1 ----I_L " _L

R2 : _.L " _r/L

n3 = •

-k- 21_L • _LI "k-2[_7 L • _L[)

(D2a)

(D2b)

(D2c)

(D2d)

The cell-centered metric coefficients are defined as

=

1 (VYI,j,K + VT//,j+I,K) (D3b)

1 (VQ,J,k + V_l,J,k+l) (D3c)VCL : 5

and the face-centered metrics are defined in equations (A8a), (ABe), and (A8i). The terms R1,

R2, and R3 represent the inverse of the transit time for a convective wave to cross a cell in

the _, _/, and _ directions, respectively. The term R4 represents the inverse of the transit time

for an acoustic wave to cross a characteristic length of the cell. Viscous contributions to the

formulation of the time step have been ignored.

31



=

:±

Y_

Appendix E

Boundary Conditions

Boundary conditions considered in the present work include uniform supersonic inflow,

supersonic outflow with subsonic boundary laser , no-slip wall plane of symmetry, and axis
singularity. Boundary conditions are imposed within the context of acell-centered scheme

which utilizes pseudo cells on the opposite side of t_he boundary. Pseudo cells are not explicitly

defined, except fort-he cell face which lies on the real l_oundary and is shared With the real cell

inside the computational domain. Pseudo cell volumes are extrapolated from interior cells as

follows:
f_2

_ 1 (El)

Values of dependent variables at pseudo cell centers and values of sl behind the boundary

(l -- 0) are required to fully define the problem. When the dependent variables in a pseudo cell

are a function of the interior cells, the most recent available data from the interior are used.

Uniform Supersonic Inflow

Values of dependent variables at the pseudo cell center are fixed at free-stream conditions.

Values of so are set equal to 0.

Supersonic Outflow With Subsonic Boundary Layer

First-order extrapolation is generally used to define dependent variables at pseudo cell

centers and is a more stable boundary condition in the highly nonlinear initialization phase of

the solution process. Second-order extrapolation has been used in some tests, but the results

were not significantly different from those obtained with the first-order methods. Positive

definite quantities are extrapolated to second-order accuracy as in equation (El). First-order

extrapolation is used to define so at the pseudo cell wall behind the boundary so that so -- Sl.

Because of the upwind nature of the approximation scheme and the hyperbolic/parabolic nature

of the outflow boundary, the influence of the pseudo cell specification on the interior points is

very weak.

No-Slip Wall

A zero normal pressure gradient is enforced by imposing the pressure at the boundary cell

onto the reflected pseudo cell. Adiabatic wall boundary conditions are enforced by imposing the

total enthalpy at the boundary cell onto the reflected pseudo cell. Cold wall boundary conditions

and no-slip velocity boundary conditions are enforced in one of two ways. The simplest and

most stable method is to impose the exact wall boundary conditions at the pseudo cell center,

which is in fact half a cell away from the real boundary. In practice, if the grid is fine enough

to adequately resolve boundary-layer gradients, then the offset of the pseudo cell center from

the boundary is small and the influence of this offset is minimal. (Grid resolution is judged

adequate when the cell height Ah at the wall boundary is approximately equal to the local

value of/z/pa.) A numerically more accurate boundary condition is to specify the pseudo cell

velocity and energy such that the interpolated wall boundary value is correct. Thus,

_0 = -_ (E2)

e0 ----2ewal] - el (E3)

Equations (E2) and (E3) are more likely to lead to instabilities in the early initialization phase

of the developing solution. First-order extrapolation is used to define so at the pseudo cell wall
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behind the boundary so that so = Sl. In effect, this specification of so restricts the flux limiter
of equation (3.8) to consider only gradients at the surface and in the interior of the domain.

So long as the min mod function does not return a zero argument, the accuracy of the scheme
is still formally of second order.

Symmetry Plane

Pseudo cells behind the plane of symmetry correspond to actual interior cells. Except
for the reflection of the velocity component normal to the symmetry plane, the pseudo cells

are defined by imposing the dependent variables from the corresponding reflected cells in the
interior. Values of the gradients so are calculated directly from reflected cell center data.

Axis Singularity

An axis singularity occurs when the computational domain is constructed by rotating a
two-dimensional grid around some natural axis of the body or the flow. The flow itself does

not have to be axisymmetric for this construction to exist. Pie-shaped cells with zero cell-wall

area on the axis surround the axis singularity. Pseudo cells behind the axis correspond to

actual interior cells which are reflected across the symmetry plane. Specification of dependent

variables at pseudo cell centers and gradients at cell walls behind the axis proceed similarly to
the symmetry plane boundary. However, if J is the index of the boundary cell and JN is the

number of cells in the semicircle surrounding the axis, then the corresponding pseudo cell is

a reflection of the interior cell with index JN ÷ 1 - J. Pseudo cell specification has no effect
on the first-order accurate algorithm (8 = 0) because the common cell wall has zero area. The

gradient across the axis will influence the outcome of the flux limiter in equation (3.8) for the
far wall (1 = 2) of the boundary cell in the second-order algorithm.
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Appendix F

Unstructured Grids

The formulations contained in this paper are based on a structured grid system (i.e., the

computational cells are rectangularly ordered with indices i, j, and k, and nearest neighbor
cells differ in index by one). Unstructured grids are generally composed of triangular Cells in

two dimensions and tetrahedral cells in three dimensions. In the most general case, they

cannot be ordered as described for structured grids; however, they have an advantage of
being completely adaptable to very complex geometries and flow structures. In light of recent

developments in unstructured grid formulations (ref. 39), some comments are offered with

regard to modifications required in the present analysis for such applications.

The finite-volume approximation to equation (2.1) for a general, unstructured grid is written

[ _t J L Jr • _rnam ----0 (F1)

where _q -- qn+l _ qn and 5t = t n+l - t n. The.summation is over all the faces of cell

L enclosing volume 12. Subscript m indicates a quantity taken on cell face m with surface

area am. The quantity tim is a unit vector normal to cell face m in a direction facing away
from the cell center.

The geometric derivations of metrics in appendix A are based on a rectangularly ordered,
structured grid system. Some modification of these formulations would be required for general,

unstructured grids. One point to consider is that the unit normal to a cell face in the

unstructured grid formulation tim faces away from the cell center, whereas the unit normal

to a cell face in the structured grid formulation fit faces inthe direction of increasing index I.

This convention accounts for the minus signs appearing in equations (2.4) and (2.5).

A first-order accurate formulation of the Euler equations on a structured grid is identical
to the formulation on an unstructured grid. Modifications are required to achieve second-order

accuracy. Clearly, the present formulation requires an ordered grid system to define S_nin. The
construction of an equivalent limiter from neighboring cells in an unstructured grid should

be possible but has not been investigated. In like manner, the formulation of the viscous

terms, which depends on ordered computational directions in the present case, will need to be
reformulated in the unstructured grid case. However, the formulations for obtaining second-

order accuracy with the complete Navier-Stokes equations will only involve modifications to

the right-hand-side residual vector. The point-implicit relaxation procedure that is defined by

the formulation of the left-hand-side matrix is independent of grid structure. Consequently, the

development of point-implicit relaxation will carry over with minimal changes in unstructured

grid formulations.
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Appendix G

Asynchronous Iteration

A two-dimensional scalar version of the present algorithm was modified to test the feasibility

of executing on a computer with a massively parallel, asynchronous processing architecture.
The test is only a simulation in that it was conducted on a serial machine. The environment to

be simulated is one in which each computational cell has associated with it a single processor
which is to be kept busy at all times executing its own copy of the master algorithm. When

the algorithm in a particular cell (processor) requires data from a neighbor cell, it gathers the

latest available data from local shared memory, regardless of the iteration level of the neighbor

or where the neighbor is within its own processing of its copy of the algorithm. As the global
solution develops, individual processors may get out of step. This loss of synchronization
may arise from variations in instructions at boundary cells, different branches of instructions

resulting from conditional branches within the algorithm, and potential hardware differences
in neighboring processors.

This environment is crudely simulated on a single processor, serial machine by using a

random number generator to direct the order that cells are relaxed in the computational
domain. A version of the present algorithm was coded in which a single index L ordered

the relaxation sweeps through a two-dimensional domain. All aspects of a relaxation step were

completed at cell L before proceeding to cell L + 1. Convergence histories were recorded for

the ordered sweeps. The loop over index L was then replaced by a loop over dummy index

LL, and index L was redefined by a random number generator which ranged from 1 to LMAX,
where LMAX is the total number of cells. Convergence histories were then recorded for the

random sweeps, in which case a sweep is defined as one complete pass through the loop. Within

a given sweep, some cells will likely be called more than one time, and other cells will not be

called at all. As sweeps continue, the iteration levels of neighbor cells are not generally equal.

This random offset of iteration levels of neighbor cells executed on a single processor is used to

simulate the asynchronous iteration of cells on a massively parallel processor. This simulation
does not model all the possible ways that processors can get out of synch on a real, parallel

machine. However, it does serve to demonstrate the potential applicability of upwind-biased,

point-implicit relaxation schemes on asynchronous, massively parallel processors.

The tests were conducted on two supersonic flows over cylinders. Both tests used initial
conditions for a body materializing in a uniform, supersonic flow at time t = 0. The first

test involved Mach 3 inviscid flow and used the first-order scheme with variable time steps

based on a Courant number of 2.0. The second test involved Mach 1.9 viscous flow (using
the thin-layer Navier-Stokes approximation) at a Reynolds number of 105 based on cylinder

radius and used the second-order scheme with variable time steps based on a Courant number

of 0.75. The convergence histories of the two tests are presented in figure G1. The random

sweeps take twice as long as ordered sweeps in the inviseid case and 1.25 times as long in the

viscous case. In both cases, the converged solutions were identical to at least four significant

figures, indicating that the order of relaxation contributes to the rate of convergence but not
to the final converged solution.

The converged viscous solution and experimental data (ref. 40) for the pressure coefficient

are presented in figure G2. The comparison in this case is good in the stagnation region but

breaks down near the outflow boundary. A calculation using the full Navier-Stokes equations

with slip-flow boundary conditions would be more appropriate for this case, but this capability
was not included in the serial version of the code.

The success of these tests bodes well for the possibility of using an upwind-biased, point-

implicit relaxation scheme on asynchronous; massively parallel computers. One recognizes that

there are potential obstacles in the design of a computer that could exploit the synergism
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Figure G1. Convergence history for calculations on serial computer using ordered and random sweeps across

domain for two-dimensional supersonic flow over cylinder_-

2.0 I- O Experiment (ref. 40)

/ LAURA, random and ordered
sweeps

1.6

'4 0

0
I I 0

30 60 90

8, deg

Figure G2. Experimental data for pressure coefficient and prediction for Mo¢ = 1.9 case with ordered and

random sweeps. : .............

of algorithm and architecture described here. Problems involving sharing memory among so

many processors may overwhelm any potential benefits: However, the real-world challenges
facing computational fluid dynamicists today, not tomention the c0mputati0nal challenges

faced by other disciplines, call for algorithms which must deal with millions of computational

cells that are patched together in ordered subsets or that are completely unstructured.

Hardware restrictions limit significant speedup of machines with only vector architecture for
these problems. The optimum blend of vector and parallel features is likely to be algorithm

dependent, and benchmarking of tomorrow's supercomputers should not be based strictly on

today's algorithms that were optimized for today's architectures. In anticipation of these

developments, an upwind-biased, point-implicit relaxation scheme should offer the flexibility

required for efficient implementati0n 9n e!ther vector or massively parallel machines (or some
combination thereof) utilizing structured or unstructured grids.
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Figure 2. High-speed inlet model problem. M_c = 5.0; Recc,L = 11.4 x 106.
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Figure 3. Effect of grid refinement on surface pressure for inlet with Re = 1.14 × 10 7 and

eo = 0.1.
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Figure 4. Effect of grid refinement on skin friction for the inlet with Re = 1.14 x 10 7 and

eo =0.1.
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Figure 6. Effect of grid refinement on skin friction for the inlet with Re = 1.14 x 10 6 and
eo =0.1.
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Figurc 9. Effect of eigenvalue limiter on surface pressure for inlet with Re = 1.14 x 107 on
50 x 50 grid.
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Figure 10. Effect of eigenvalue limiter on skin friction for inlet with Re = 1.14 x 107
grid.
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Figure 11. Effect of STVD limiter on surface pressure for inlet with Re = 1.14 x 107 and c = 0.2
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Figure 15. Convergence history for inlet problem using fine (200 x 200) grid with eo = 0.1.
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shock.
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Figure 22. Four-domain grid defining surface and plane of symmetry for AFE test case.
Domains are approximately divided into forebody, outer wake, shear layer behind shoulder,
and inner wake core surrounding sting.
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(a) a = 0 °.

(b) a =-5 °.

Figure 23. Pressure contours in plane of symmetry about AFE at Mach 10.
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Figure 24. Mach number contours in plane of symmetry about AFE at Mach 10.
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64



10o

10-1

10-2

L2

10-3

8 ×106

5 xlO 0

I I I I I I 1
500 1000 1500 2000 2500 3000 3500

Iterations
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Figure 28. Convergence history for a = -5 ° and eo = 0.2 on fine grid in domain 1 with
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