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SUMMARY

The equilibrium equations and the compatibility conditions are fundamental

to the analyses of structures. However, anyone who undertakes even a cursory

generic study of the compatibility conditions can dlscover, with little effort,

that historically thls facet of structural mechanlcs had not been adequately

researched by the professlon. Now the compatibility conditions (CC's) have

been researched and are understood to a great extent. For finite element dis-

cretlzations, the CC's are banded and can be divided into three distinct cate-

gorles: (1) the Interface CC's, (2) the cluster or fleld CC's, and (3) the

external CC's. The generatlon of CC's requlres the separating of a local re-

glon, then writing the deformation dlsplacement relation (ddr) for the reglon,

and finally, the elimlnatlng of the displacements from the ddr. The procedure

to generate all three types of CC's is presented and illustrated through exam-

ples of finite element models. The uniqueness of the CC's thus generated is
shown.

The utilization of CC's has resulted in the novel integrated force method

(IFM). The solution that is obtained by the IFM converges with a significantly
fewer number of elements, compared to the stiffness and the hybrid methods.

INTRODUCTION

In the analyses of structures both the conditions of equilibrlum and of

compatibility come Into play, except for the trlvial statically determinate

case. However the condltlons of equilibrium are the most familiar to struc-

tural analysts, perhaps because of a concern about the internal forces required

for design and the wide acceptance of equilibrium as a universal and natural

concept. In contrast, the concept of compatibility is much less familiar to

structural analysts. The compatibility conditions (CCS's) were not known until
mathematicians formulated them about a century ago (ref. l), long after the

equilibrium equatlons (EE's) had been derlved. Even so, the early forms of the

compatibility conditions were developed mainly for the manual analyses of sim-

ple structures and were based on the concept of redundant structural elements.

The notion of cutting the redundant members, which leads to the conditions of

compatibility that have to be restored (henceforth referred to as classical
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compatibility conditions (CCC's)), was formulated in the precomputer era.
Formulatlng CCC's for large-scale computations proved Inconvenient and Ineffi-
clent, so they have almost disappeared from current structural engineering
practice. The general, and mathematically rlgorous, compatibility conditions
(analogous to St. Venant's strain formulation in elasticity (ref. I)) have been
formulated for finite element analysis. These finite element CC's are referred
to as the global compatibility conditions (GCC's) or simply CC's. The GCC's
are banded, and they are amenable to computer automation. (In stiffness analy-
ses, linkage and continuity of dlsplacements at element interface are popularly
referred to as the compatibility conditions; In a strict sense, such con-
stralnts are continuity conditions.)

The utilization of compatibility condltlons has resulted In the integrated
force method (IFM) (refs. 2 to 16). In the IFM all the internal forces are

treated as the primary unknown, and the system equlIibrlum equations are cou-

pled to the global compatibility conditlons in a fashion paralleling approaches

in continuum mechanics, such as the Beltrami-Michell formulation in elasticity
(ref. 17).

The compatibility conditions, in baslc form, have been introduced and com-

pared wlth the CCC's in references 2 to 4. The purposes of this report are to

(]) describe the physical aspects of the compatibility conditions, includlng

the interface CC's of flnlte element models; (2) demonstrate the generatlon of

GCC's from thelr local counterparts; and (3) Illustrate the benefits that

accrue from the use of the global compatibility conditlons In finite element

analysls.

The subject matter of thls report is presented In the subsequent five sec-
tions. In the second section the governing equatlons of the IFM are presented.
In the third section we demonstrate the procedure to generate the compatibility
condltlons, and these concepts are lllustrated In the fourth section. In the
fifth section, comparlson of results obtalned by the IFM, the stiffness method,
and the hybrid methods are presented, and the conclusions are given in the
sixth section.

EQUATIONS OF THE INTEGRATED FORCE METHOD

In the Integrated force method, a discretlzed structure for the purpose of
analysis is designated as structure (n,m) where (I) structure denotes the types
Of structure (truss,frame, plate, shell discretized by f_h|te elements, their
combinations, etc.) and (2) n and m are force and displacement degrees of
freedom fof and dof, respectively. The structure (n,m) has m equilibrium
equations and r = n - m compatibillty condltions. The m EE's, [B]{F}
- {P}, and the r CC's, [C][G]{F} = {6R}, are coupled to obtain the governing
equatlons of the IFM as follows"

[C][G] I {F} : _ or [S]{F} : {P}* (1)

where

[B] m x n equllibrium matrix

[C] r x n compatibility matrix



[G]

{P}

{6R}

[S]

n x n concatenated flexibility matrix (contalnlng material

properties) and it links deformations {B} to forces {F} as
{B} = [G]{F}

m-component load vector

r-component effective initial deformation vector such that

{6R} : -[C]{BO} where {BO} is the n-component initial deformation
vector

n x n IFM governing matrix

The matrices [B], [C], [G], and [S] are banded, and they have full row ranks of
m, r, n, and n, respectively.

The solution of equation (l) yields the n-forces {F}. The m-dlsplacements
{X} are obtalned from the forces {F} by back substltution (ref. 9) as

{X} = [J]{[G]{F} + {BO}} (2)

where [J] Is the m x n deformatlon coefficient matrix defined as
[J] = m rows of [[S]-l] T.

Equations (1) and (2) represent the two key relations of the IFM for fi-

n|te element analysis that are needed to calculate forces and displacements,

respectively.

GENERATION OF THE COMPATIBILITY CONDITIONS

The compatibility conditions and the associated coefflclent matrix [C] are

obtained from St. Venant's strain formulation In elasticity (ref. l) as an ex-
tension to discrete structural mechanlcs. The strain formulation is 111us-

trated through the plane stress elasticity problem. The strain displacement

relatlons (SDR) of the problem are

au
Cx - ax

av (3a)
_y " By

Bu av

Yxy " _ + @-x

Since in the SDR three strains (cX, _y, Yxy) are expressed as functions of two
displacements (u,v), the SDR contains one compatibility condltion, which can be

obtalned by eliminating the two dlsplacements from the three SDR as

82_x B2Cy B_._x 0

ay2 ax 2 8x By
(3b)

The two steps that are necessary to generate CC's from St. Venant's strain

formulatlon are (1) establlsh the straln displacement relations given by equa-

tlon (3a) and (2) eliminate displacements from the SDR to obtain the compati-
bility condltlon given by equation (3b).



In the mechanicsof discrete structures, the equivalent of SDRare the de-
formation displacement relations (DDR). (Deformations of discrete analysis {B}
are analogous to strains {c} of elasticity.) The DDRcan be assembled directly
or obtained on an energy basis by utilizing the well knownequallty relation of
Internal straln energy and external work, which can be written In the case of a
discrete structure (n,m) as

l
{F}T{B) = 1 {x}T{p} (4a)

Equation (4a) can be rewrltten by ellminating loads {P} in favor of internal
forces {F} by using the EE ([B]{F} : {P}) to obtain

1 1 {F}T{[B]T{x} {B}} 0 (4b){x}T[B]{F} = ½ {F}T{B} or _ - :

Slnce the force vector {F} Is not a null set, we finally obtain the followlng
relation between member deformations and nodal displacements"

{B} - [BIT{x} (5)

The expression given by equation (5) represents the globa] deformation dls-

placement relation applicable to any finite element model whose system equilib-

rium equations can be symbolized as [B]{F} = {P}. In the DDR, n-deformations

{B} are expressed in terms of m-dlsplacements {X}; thus, there are r = n - m

constraints on deformations, which represent the r compatibility conditions

of the structure (n,m). The r CC's, In terms of total deformatlons, can be

obtained by the ellmlnatlon of m-dlsplacements from the n DDR, and In matrix
notation the CC's can be written as

[C]{_} : {0} (6a)

The CC's, In terms of elastic deformations {B}e that are given by equation
(6b), are obtained from equatlon (6a) and from the deflnit|on of the total de-

formatlon {B}, which is composed of the Initial deformations {B}O and the

elastic deformations {B}e as {B} = {B}e + {B}O' Thus

[C]{B} e = {6R} (6b)

where

{6R} = -[C]{BO}
[C] r x n global compatibility matrix

The efficlent generation of the CC matrix [C] Is the subject matter of thls

report. The matrix [C] Is rectangular and banded, and It has full row rank r.

The CC's are klnematic relationships that are independent of sizing design

parameters (such as area of bars, moments of inertla of beams, etc.), material

propertles, and external loads. The compatlbillty conditions depend on the

Inltla] deformatlon In the structure. For numerical efficlency, directly

eliminating displacements from the DDR to obtaln CC's Is not recommended for

large-scale computations. Instead, the global compatibility matrix [C] Is

efficiently generated by utlllzlng such physlca] features of the compatibility
condltlons of finite element models as bandwldths, the determlnacy of the grid

points, and so on.



PROCEDURETOGENERATEGLOBALCOMPATIBILITYCONDITIONS

To generate the CC's, (I) separate a local region from the structural
model on the basis of interface, cluster, or external bandwidth considerations
as explained later in this section; (2) establish the local deformation dis-
placement relations (ddr) for the local region, and eliminate the displacements
from the ddr to obtain the CC's for the region under consideration; and (3) re-
peat steps (l) and (2) until all r CC's of the structure (n,m) are generated.
These steps are elaborated in the section lllustratlve Examples. The order of
generation of the CC's Is immaterial; however, we recommendgenerating the in-
terface CC's first, since these are most numerous, followed by the cluster
CC's, and finally, the external CC's.

Bandwldths of the Compatibility Conditlons

The CC's of dlscretlzed structures are banded. On the basis of bandwidth
considerations, the CC's are divided into three distinct categories: (1) in-
terface compatibility conditions, (2) cluster or field compatibility condl-
tions, and (3) external compatibility conditions. By assuming the example of
a finite element model as shown In figure l, the three types of compatibility
conditions can be illustrated as in figure 2.

Interface Compatibility Conditions

Numerousinterfaces internal to the structure are created In the dlscre-
tizatlon processes. The interface is the commonboundary shared by two or
more elements. In the model shown In figure l, the commonboundary along
nodes ] and 7 is the Interface between elements I and 2, the boundary connect-
Ing nodes 12 and 17 is the Interface between elements 13 and 14, and so on.
The interface betweenelements l and 2 Is shownin figure 2(a). The deforma-
tions of elements l and 2 must be compatible along the commonboundary defined
by nodes I and 7, which gives rlse to interface compatlbility conditions. The
numberof CC's at the interface dependson the element types (such as membrane,
flexure or solid tetrahedron, etc.) and element numbers. The maximumbandwidth
of the interface compatibility condition can be calculated as

JT

MBNicc - _ (f°fej)
j--l

(7a)

where

MBWIc c maximum bandwidth of the interface compatlbillty conditlons

JT total number of elements present at the interface

fofej force degrees of freedom of the element J present at the Interface

The bandwidth MBNIc c represents the maxlmum bandwidths of the interface

compatlbillty conditions written either in terms of forces {F}, as In

[C][G]{F} : {0} (here we are referring to the bandwidth of the product matrix
[C][G], or in terms of deformatlons {B}, as in ZC]{B} : {0} (here the

bandwidth Is that of the compatibility matrix [C]). The actual bandwidth of

the compatibility matrix [C] Is smaller than Its maximum bandwidth. The

interface compatibility condltions of discrete analysis are analogous to the
boundary compatiblllty condltlons in elasticity (ref. 8). The interface CC's
are the most numerous

5



in any finite element model. These are generated by writing the deformation
displacement relation for the local region (such as shown In fig. 2(a) for the
interface defined by nodes l and 7) and then eliminating the displacements from
the local ddr as explained In the section Illustrative Examples. For the in-
terface shown in figure 2(a), there are two elements (i.e., JT = 2). Let us
assume that both are membrane elements; the fof of the triangular element

for t Is 3 and that of the quadrilateral element, fofq Is 5. Then the MBWIc c
calculated from equatlon (7a) is 8.

Cluster Compatlbility Conditions

Consider any element in the model shown in figure I, such as 19. Ele-
ment 19 along with its eight neighborlng elements are shown In flgure 2(b).
The deformations of element 19 must be compatible wlth its neighboring elements
(14 to 16 and 18 to 23). The CC's of the cluster of elements are referred to
as the cluster compatibility conditions, which essentially represent the field
CC's of St. Venant's strain formulatlon. The maximum bandwidth of the cluster
CC's can be calculated as

,ITC

MBWccc : _ (f°fej)

J:1

(7b)

where

MBNccc
JTC

maximum bandwidth of the Cluster compatibility conditions
total number of elements present in the cluster

Assuming that quadrllateral elements have fofQ = 5 and triangular ele-
ments have fof t = 3, the MBNcc of the cluster shown in figure 2(b) can be
calculated from equatlon (7b) as 4l.

In a finite element Ideallzatlon, the number of cluster compatlbility
condltlons are fewer than the number of interface CC's. Generating cluster
compatlbillty conditions requires the establishment of the ddr for the local
cluster (such as shown in flg. 2(b) for element 19) and then elimination of
the displacements from the local ddr as explained in the section Illustrative
Examples.

External Compatibility Condltions

Reactions are induced at the nodes where displacements are restrained. If

such restraints are sufflclent only for the klnematic stability of the struc-

ture, then the structure is externally determinate, and it has no external com-

patibility condltlons. If, however, the restraints on the boundary exceed the

number of rigid body motlons of the structure, then the structure is externally

Indeterminate. The degree of external indeterminacy can be calculated as
follows:

Rex t : Nx - Nf (7c)

where



Rext
Nx

Nf

number of external indeterminacy

number of displacement components suppressed on the boundary

number of boundary conditions required only for the kinematic stability
of the structure

Let us assume that the finite element model shown in figure I represents a
membrane structure. Then its external indeterminacy Rex t = 7 - 3 : 4, since
the number of actual boundary restraints Nx Is 7 and the klnematlc stability
requirement Nf is 3.

To calculate the bandwidth of the external compatibility conditions, sepa-

rate the local region connecting any two boundary nodes. Let the number of
elements between the two nodes be represented by JTE, then the bandwidth of the

external CC's is given by

JTE

MBWecc = _(fOfej)

j=l

(7d)

where

MBWecc maximum bandwidth of the external compatibility conditions

Assuming as before that the quadrilateral elements have fofQ - 5 and the
triangular elements have for t = 3, the bandwidth of the external-CC's shown in
f|gure 2(c) can be calculated from equation (7d) as 8.

If the boundary represents a determinate boundary, then no boundary CC's

will be generated. The boundary CC's are obtained by eliminating the displace-

ments from the deformation displacement relations written for the local bound-

ary segment (e.g., for the model shown in fig. l, the segment containing nodes

l and 3 and elements 2 and 3, also shown in flg. 2(c)) by following the proce-

dure explained In Illustrative Examples.

The Interface, cluster, and external CC's represent the local CC's. All

three categories of local CC's are concatenated to form the system or the glo-

bal CC's of the structure (n,m). The sum r = tic C + rcc c + rec C of the num-
ber of Interface CC's, cluster CC's, and external CC's Is equal to r : n - m

of the model. The values of rlc c, rcc c, and rec c can be calculated for
discrete models; however it is not necessary to determine their values before

generating the CC's.

ILLUSTRATIVE EXAMPLES

Examples of a few structures that are idealized by triangular membrane

elements and bar elements are presented to illustrate the generation of global
compatibility conditions from the local conditlons such as interface CC's,

cluster CC's, and external CC's. In the examples, triangular elements given

by Przemieniecki (ref. 18) and standard bar elements, which are adequate to

illustrate the compatibility concepts yet simple enough for closed-form
presentation, are chosen. The elements are shown in flgure 3. The membrane

element has three force unknowns, Fie, F2e, and F3e; its six displacement

degrees of freedom are Xle, X2e, , X6e (fig. 3(a)). The bar element



has one force and four displacement unknowns(flg. 3(b)). For the membrane
element, the 6 x 3 equillbrlum matrix [B] e and |ts symmetrical flexibility
matrix [G]e of dImenslon 3 x 3 are obtained In closed form (ref. 18) as

[B] e -

"-£12 0.0 P'31

-ml2 0.0 m31

£12 -£23 0.0

ml2 -m23 0.0

O.0 £23 -£3l

O.0 m23 -m31

(8a)

where _lJ and mix denote the direction cosines of the direction vector de-
fined by the edge ]J; and

" stne 3

sln e 1 sln e 2

x cos e2cot e 2 - v sln e2

COS e2cot e2 - v sln e 2

cos e2cot e 2 - v sin e2

sln eI

sin e2sin e3

cos e3cot e 3 - v sln e 3

cos elcot e 1 - v sin e 1

cos e3cot e3 - v sln e 3

sln e 2

sln e3sln 01

(8b)

where

Young's modulus
Polsson's ratio

membrane thickness

The angles e i are defined In figure 3(a).

Even though the 6 x 6 elemental stiffness matrix for the membrane can be
generated In closed form, its explicit form Is too complicated for presentation
here.

Example I - The Membrane

Generation of the Interface compatibility condltlons Is illustrated

through the example of a membrane shown in figure 4(a). The membrane is made

of steel, wlth Young's modulus E = 30 ks1 and Poisson's ratio v : 0.3;



dimensions a and b are 100 in. and thickness t = 1 In. The membraneIs
subjected to concentrated loads. The example Is also solved herein by the IFM,

and the stlffness solution In symbolic form is Included for comparison. The

membrane Is Ideallzed by two triangular elements. The discretizatlon has six

force degrees of freedom, whlch are the concatenatlon of the two element force
unknowns such that

{F} T = (F 1 = Fie I, F2 : F2e I, , F6 = F3e2) (9a)

where the subscript leJ Indicates the i th force of element J.

A corresponding deformation component Bk Is associated with each force
component Fk. The six-component deformation vector of the membrane Is

{B}T = (B I = _le1' _2 : B2el' , B6 : B3e2> (9b)

The flve system displacement degrees of freedom shown In figure 4(a) are rep-
resented by {X} as

{X}T = (X1, X2, , X5) (I0)

The membrane Is designated "membrane (6,5)" since It has six force and flve

displacement unknowns. Membrane (6,5) has five EE's and one CC (l.e.,
r = (n - m) = (6-5) = I).

Equilibrium equations of the membrane (6,5). - The five system EE's of
membrane (6,5), In terms of the six forces, are obtained from the elemental

equlIibrlum matrices (refer to eq. (Sa)) by followlng finite element assembly

technique as

"I .0 0.0 0.7071 0.7071 0.0

0.0 0.0 -0.7071 -0.7071 -I .0

0.0 I .0 0.7071 0.7071 0.0

0.0 0.0 0.0 0.0 'I .0

.0.0 0.0 0.0 0.0 0.0

°

0.0 FI F50.O0"

O. 0 F2 |i oo. oo

F3 i 50.O0
0.0 =

O.0 F4 1 50.O0
F5

1.0 LIO0.O0

(11)

Since the system equilibrium matrix [B] has the dimension 5 x 6, the five EE's

(eq. (11)) cannot be solved for the six forces; one CC is required to augment

the five EE's to a solvable set of six equations In six unknowns.

Compatlb111ty condition for membrane (6,5) or the interface compatlbility
condltions. - Membrane (6,5) has one CC; therefore its local CC and global CC
are represented by the same equation. The first step In the generation of the
CC Is to establish the deformatlon dlsplacement relation for the membrane. The
6 x 5 global DDR is obtalned from equations (5) and (II) as



ri3l

B2

F33

B4

135

,..B6

"1.0

0.0

0.707
S

0.707

0.0

0.0

0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

-0.707] 0.707] 0.0 0.0

-0.707] 0.707] 0.0 0.0

-1.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0.

X

X

X

X

X

(12)

Even though the single CC for thls slmple problem can be obtained by

direct ellmlnatlon of the flve dlsplacements from the six ddr given by equa-

tion (12), thls procedure Is not recommended because it can become numerically

expensive for large structures. The concept of node determinacy, which greatly
enhances computational efficiency In the generatlon of CC's, Is presented next.

The Node Determlnacy Condltlon

Node determinacy for general application Is presented first; then it is

specialized for membrane (6,5). Forces in determinate structures can be ob-

talned from EE's alone; such determinate forces do not partlclpate In the CC's,

The concept of determlnate structure is extended to the nodes or grid points

of a finite element model, and to enhance computational efficiency, determinate

nodes or grld polntsare identified and eliminated at intermedlate stages of
the generatlon of CC_s.

Take any node oi= a flnlte element model, for example the node I. Let

Ki represent the number of force components present In the EE's written for

node I. Let LI represent the dlspIacement degrees of freedom of the node I,
which also is the number of EE's that can be written at that node. The inde-

terminacy of node I, designated (NRi), Is defined as

NRI : KI - L i (13)

If NRi - O, then node i is designated determinate. Forces present at a de-
terminate node I, referred to as determinate forces, do not participate in the

compatibility conditions since such forces can be determlned from the nodal

equII1brlum equations alone. Consequently, for determinate node I, Ki forces

along with Li EE's, which correspond to LI : KI dlspIacements, can be

dropped simultaneously from the equilibrium matrix [B] to obtain the reduced
equilibrlum matrix [B] (rl) without affectlng the CC's in any manner. Dropping

of forces and displacements Is also equivalent to the elimination of appro-

prlate columns and rows of the deformation dlsplacement relatlons. The reduced

deformation displacement relation (designated DDRr]) that is obtained after im-

posing the node determinacy condltlon has the following form:

DDRrl _ {B} (rl) [B] (rl)T= {X} (rl) (14)

In equation (14), matrix [B] (rl)T has a dlmenslon of {(n - KI) • (m - Ki)}.

The deformatlon vector {B}(rl) has the dlmenslon n - Ki, and dlsplacements

lO



{X} (rl) are of dlmenslon m - KI. As expected, the number of CC's contalned In
the DDRrl glven by equation (14) is r = n - m or r = {(n - KI) - (m - Ki},
since no CC has yet been generated. The node determinacy conditlon has reduced
the number of deformatlon dlsplacement relatlons from n to n - Ki; however,
the number of compatibility conditlons remalns the same. The motlvation behind
dropplng determinate variables at the Intermedlate stage of the generation of
the CC Is to enhance node determlnacy at as many grid polnts as possible.

For the example of membrane (6,5), observe that the last two of its EE's,
glven by equatlon (II), have two determinate forces, F5 and F6, and that
these correspond to the two displacements X4 and X5 at node 4; therefore
KI = 2 and LI = 2. The node I = 4 Is determinate since NRi = KI - LI : O.
The reduced DDRrl that is obtained by taking into consideration the determlnacy
for node 4 has the following explicit form:

13l

B2

B3

B4

" 1.0 0.0 0.0

0.0 0.0 1.0

O. 707 -0. 707 O. 707

.0. 707 -0. 707 O. 707

(15)

The number of CC's given by the DDRrl (eq. (15)) still remains one (r : m - n
- l), since no CC has yet been generated. The local structure that Is obtained
after the elimination of the determinate node 4 is shown in figure 4(b). Since

node 1 is fixed and node 4 has been dropped, the local ddrrl given by equa-

tlon (15) corresponds to the DDR of nodes 2 and 3, which represents the Inter-
face between elements l and 2. The interface DDR has four deformations (BI,

B2, B3, and B4) expressed in terms of three dlsplacements (X l, X2, and X3).
The elimination of the three displacements from the four DDR given by equa-

tion (15) yields the only CC associated with the Interface of the two membrane

elements l and 2 along their common boundary defined by nodes 2 and 3). It has

the following explicit form:

(B3 - B4 ) = 0 (16)

The CC given by equation (16) represents the deformation balance condition

along the interface of adjoining elements. Such CC's are referred to as the
interface CC's. For the membrane model, each interface has one interface CC.

However the number of CC's at an interface of any dlscrete model will depend

on the type and number of elements that are connected to the interface. For

example, the flexure problem given in the section Benefits Derived from the

Compatibility Condltlons has three CC's at each interface. The interface CC's

represent the majority, though not all of the CC's of a flnlte element ideal-

izatlon. Generating interface CC's requires that the ddr for the local inter-
Face be established and then that the displacements be eliminated from it.

The CC, [C]{B} - {0}, for membrane (6,5), which is given by equation (16),

has to be expressed in forces, [C][G]{F} = {0}, so that it can be coupled to

the EE's (eq. (11)) to obtain the IFM governing equations, [S]{F} : {P}* De-

formations {B} are transformed into forces {F} by the constitutive relatlon

{B} = [G]{F}. Here, the 6 x 6 matrix [G] is the block dlagonal concatenation

II



of element matrlces {Ge} (see eq. (8b)) for elements 1 and 2.
(B3 - B4 = O) In terms of forces has the following form:

r .

F
1

F2

F3
[0.5 0.5 1.0 -I.0 -0.5 -0.5]_ : {0}

LI:
For membrane (6,5) the maximum bandwidth of the CC (MBWic c) Is 6. The actual
bandwidth of the compatlbllity matrix [C] (BWactual C) Is 2. The actual CC
bandwldth of the composite matrix [C][G] (BWactual CG) is 6.

The Interface CC

(17)

The Integrated force method solutlon for membrane (6,5). - For
completeness, the solution of membrane (6,5) by the IFM is presented. The IFM
governlng equation [S]{F} = {P}* Is obtained by coupling the EE's (eq. (11))
to the CC (eq. (17)) as

"l .0 0.0 0.7071 0.7071 0.0 0.0

0.0 0.0 -0.7071 -0.7071 -I .0 0.0

0.0 1.0 0.7071 0.7071 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

.0.5 0.5 1.0 -I .0 -0.5 -0.5.

r41

,F6J

50.O0

100.O0

50. O0
(18)

The solution to equatlon (18) ylelds the slx forces.
are obtalned from the forces by back substitution in equation (2) as

 1111
F2

F6

" 200.001

200.00

-168.60

-43.58

50.00

100.00

and

x11X2

X3

The flve displacements

0.152

I-0.126'

= 0.152

0.0260

0.152

(19)
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Analysis of the membrane by the stlffness method. - For comparlson, the
membrane Is also analyzed by the stiffness method. The stiffness equations are
well known but complicated; therefore, the analysis Is carried out in symbolic
form. To establ_sh the parallelsm between the IFM and the stiffness method, a
slightly different procedure than normal is followed; the purpose wlll become
evident in the process of the solution. For the membrane, a displacement vec-
tor {X c} of dimenslon 12 that represents the concatenatlon of the 2 elemental
displacement degrees of freedom (see fig. 4(c)) Is defined as:

{Xc}T = (Xcl : X1e I, Xc2 - X2e I, , Xcl 2 = X6e 2) (20)

where the subscript lej represents the ith displacement component for the
jth element.

Notice the slmilarities between the displacement vector {X c} of equa-
tion (20) and the force vector {F} given by equation (ga). These vectors rep-
resent the concatenation of the elemental dlsplacements and the elemental force
degrees of freedom, respectlvely. The equilibrium matrix in the stiffness
method, in terms of concatenated dlsplacement vector {Xc}, Is obtained by fol-
lowing assembly techniques as

[K I] • [K2] ]{x c} = {P} (21)

The stiffness matrix [K I] has the dimension 3 x 6. Its three rows represent
contributions to the EE's at node 2 along X I, and at node 3 along X2 and X3
(see flg. 4(a)). Llkewise, the matrix [K 2] has the dlmenslon 5 x 6, which con-
tributes to the equilibrium at node 2 along XI, node 3 along X2 and X3, and
node 4 along X4 and X5. Equation (21), which represents 5 EE's In terms of
12 unknown displacements cannot be solved for the 12 varlables. Seven dis-
placement contlnuity condltlons are requlred to augment the EE's given by
equatlon (21) to arrlve at a solvable 12 x 12 system. The seven displacement
continuity conditions of the membrane are as follows"

Xle I = 0

X2e I = 0

X3e I : X3e 2

X4e I = X4e 2

X5e I = Xle 2

X6e I = 0

X2e 2 : 0

(22a)

The seven displacement contlnulty condltlons can be represented by a single

matrix equation
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[CTY]}X} = {0} (22b)

where the matrix [CTY] is the displacement continuity matrix of the dlmension
7 x 12.

The dlsplacement continuity conditions that are given by equation (22) and
the EE's in terms of displacements that are given by equation (21) are coupled
to obtain the 12 x 12 equation system (eq. (23)) from which the 12 concatenated
dlsplacements Xc can be obtained:

...... {Xc } = (23)

L [CTY]

From the displacements, the internal forces can be calculated by back
substitutions.

From the structures of IFM equations (eqs. (I) and (18)) and from the
equation of the stiffness method (eq. (23)), we observe the following: (l) In
the IFM, the EE's, written in terms of forces, are augmented by the CC's, also
in terms of forces; (2) In the stiffness method the EE's are expressed in terms
of displacements and these EE's are augmented by the displacement contlnuity
conditions; and (3) the IFM equations (eq. (18)) are fewer In number, and also
sparser than the stiffness equations (eq. (23)). Details about equation spar-
slty and the computations required to generate the solution by the IFM and the
stiffness method are glven in reference 14. The IFM satisfies both the EE's
and the CC's simultaneously, whereas the stiffness method is based on the EE's
and displacement continuity conditions.

Example II - The Two-Bay Membrane

The generation of both the interface and the cluster CC's are illustrated
by using the example of a two-bay membrane shown in figure 5. The membrane is
dlscretlzed by eight triangular elements, and it has eight nodes. The model,
designated "membrane (24,15)," has n = 24 force unknowns and m = 15 dis-
placement unknowns. Membrane (24,15) has m = 15 EE's and r = n - m : 9
CC's. Because of the increase in complexity, the algebra for the example is
presented in symbolic form. The system equilibrium matrlx [Bm] of dimension
15 x 24 for membrane (24,15) Is assembled by following standard techniques.
The global deformation displacement relatlons (GDDR) that correspond to the
equlllbrlum matrix [Bm] can be symbolized as

GDDR _ {B} , [Bm]T{x} (24)

The GDDR (given by eq. (24)) contalns 9 CC's, since its 24 deformatlons are
expressed in terms o£ 15 displacements. The model shown in figure 5 has eight
Interelement boundaries, defined by nodes I and 5, and nodes 5 and 8, and so
on. From example I, we know that each interface has one CC; therefore, the
eight interfaces yield eight CC's, which can be generated by following both
parts of step I, explained in the following paragraphs. Steps l(a), l(b), II,
and III, are parts of the general procedure to generate the CC's. For clar-
ity, the steps are explained by using the example of membrane (24,15) as an
illustration.

14



Step l(a) - Local structure and Interface compatibility conditions. - Con-
sider any Interface - for example, the Interface along nodes l and 5 (between

elements l and 2) for membrane (24,15). Separate the Interface and the ele-

ments as shown In figure 6(a). The local structure shown thereln is statically

unstable; therefore impose adequate numbers of restraints to make the local

structure klnematIcally stable. The restralnts do not influence the CC's, and

they can be Imposed at any of the nodes of the local structure. The structure

requires 2 restralnts, whlch are imposed at node 5. The stable local struc-

ture (6,5) has one interface CC, designated as CCII. The deformation dlsplace-

ment relatlon for the local structure, deslgnated ddrL1, is extracted from the

global GDDR. The local ddrLl consists of six deformations (BI, B2, • • , B6)
expressed In terms of five displacements (X I, X4, X5, X6, and X7). The slngTe

compatlblIity condition In ddrLl, Is generated by following the procedure given

for example I, and It turns out to be B3 - B4 = O.

Step l(b) - Update the global deformation displacement relatlons. - The

number of GDDR of the structure in,m) Is reduced after the generatlon of each

CC. The reduced GDDR, which is deslgnated GDDRrl, has mI = m rows and

nI ffin - ncl columns, where ncl represents the number of CC's generated in

step I(a). For the example in step I(a), ncl is l since only one CC was

generated in Step I(a). The row and column dlmenslons of GDDRrl are

nI : (24 - l) = 23 rows and mI = 15 columns. The GDDRrl contains eight CC's

since only one out of r ffi9 CC's of structure (24,15) has been generated.

The GDDRr] is obtained by dropping one deformation displacement relation from

the GDDR. Any deformation that has partlcipated In the CC generated In step

I(a) can be dropped. For the example, deformation B3 or B4 can be dropped.

Step II - Local structure and its interface compatibility conditions. -
The local structure conslstlng of elements 2 and 3 Is separated next, and its

interface CC's along nodes 2 and 6 are generated by following steps I(a) and

I(b). Steps I and II are repeated untll all the interface CC's have been gen-

erated. For thls problem there are elght Interface CC's at the end of whose

generatlon the GDDRr8 wlll have 16 rows and 15 columns containing l CC.

Steps I and II are sufflcient to generate all the Interface CC's, which
are the most numerous CC's In all flnlte element models. Since the Interface

CC depends on the few elements that are common to the Interface, the computa-

tion time required for the generation of such CC's after the equilibrium matrlx

has been established Is Insignificant compared to the total solution time.

Step III - Cluster compatibility conditions. - In a finite element model,
a cluster Is deflned as a series of adjo]nlng elements. The cluster compati-

bility conditions represent constraints on the deformations of the elements

that belong to the cluster. A cluster can be generated for any element. For

membrane (24,15), take element (4). The cluster for this element, shown in

figure 6(b), consists of four elements, 2 to 4 and 8, and six nodes, l to 3,

5, 6, and 9. Let us designate its deformation displacement relation as ddrcL I.
The cluster Is stable, so there is no need to impose any of the restraints in-

dicated In step I(a). If the cluster was unstable, then it would be necessary

to Impose the addltional constralnts indicated in step I(a). The ddrcL l of the

cluster contains nine deformations, B4, B6, _9 to _12, and B22 to _24
(note that BS, B7, and B8 have been eliminated during the generation of the

interface CC), which are expressed in terms of nine dlsplacements, XI to X3,
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X6 to X9, XI4, and XI5. The cluster, which has nine deformations expressed
In nlne displacements Is determinate and contains no additional CC's.

The second cluster that Is defined for element 2 Is shown in figure 6(c).

The ddrcL 2 of the second cluster contalns 7 elements and 14 deformations (since
7 deformatlons have been dropped during the generations of the 7 interface CC's

belonging to the cluster), expressed in terms of 13 displacements. The cluster

conta|ns one CC, which Is obtained by following step I(a):

{0.447(B 6 - B2 + B8 - 820) - 816 - 812 + 0.894(B] - 85 + 817 - 823)} : 0

(25)

Step I(b) should be exercised to reduce the GDDRcI 2. The GDDRcI 2 has 13 de-

formations expressed In terms of 13 displacements, and it contains no CO's,
thereby Indicating that all 9 CC's (8 interface CC's and l cluster CC) have

been generated for membrane (24,15).

Example 3 - The Stlffened Membrane

The generation of external CC's and Interface CC's when different element
types are present In the dlscretizatlon Is Illustrated by taklng the example of
the stiffened membrane shown in figure 7(a). This membrane is dlscretlzed by
8 membrane elements and 16 bar elements. Nodes ] and 3 of the membrane are

fully restrained. The for of the membrane (n = 40) consists of the 24 mem-
brane forces and 16 bar forces. The dof of the membrane Is m : 14. The

membrane is designated "membrane (40,14);" it has 14 EE's and r = (40 - 14)
= 36 CC's. The global deformatlon displacement relatlon for the structure,
desfgnated as GDDRsm and conslstlng of 40 deformations expressed In terms of
14 displacements, Is assembled by following standard technlques.

Interface compatlbilIty conditions of membrane (40,14). - The flrst Inter-
face, which Is deflned by nodes l and 5, and associated membrane elements l

and 2, and bars 9 to 12 and 16, Is considered. One boundary constralnt, the

displacement at node 2, is Imposed for its overall stablIIty as shown In fig-

ure 7(b). Thls local structure has nLl = l] fof consistlng of six membrane

forces and five bar forces, and mLl = 5 dof. The local structure, shown in

figure 7(b), Is deslgnated as SMLLI (ll,5); Its six (rLl : 6) Interface compat-
IbiIIty condltions, which can be generated by fo]lowlng step I, are:

(83 - 84 ) : 0 (26)

B1 - 89 = 0

82 - 816 : 0

83 - BIO = 0

85 - 812 : 0

B6 - 811 : 0

(27)
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The CC given by equation (26) represents the membrane-to-membrane Inter-

face compatlblllty condition, and those given by equatlon (27) represent the
flve membrane-to-bar Interface CC's.

Steps I and II are repeated for interfaces 4 and 5, 4 and 8, 5 and 8,

5 and 9, 5 and 6, 2 and 6, and 2 and 5 to generate, respectively, 3, 3, 3, 3,

2, 3, and ] addltlonal local interface CC's. After the generation of the

24 Interface compatibility conditions, the reduced deformation displacement

relation has 2 CC's and consists of 16 deformations that are expressed In

terms of 14 displacements.

Cluster and external compatibility conditions of membrane (40,14). - Step

III Is evoked and yields two compatibility conditions: one is a cluster CC

identical to the CCC of membrane (24,15) as given by equation (25), and the

other B4 + BlO = O, which represents a constralnt on the deformatlons between
boundary nodes I to 3, Is the external compatibility condition of the membrane.

Generation of the external CC is further explalned wlth the example of a bridge
truss.

External compatibility conditions of a bridge truss. - A bridge truss sup-

ported at two nodes that are far apart (see flg. 8(a)) illustrates the genera-

tlon of external CC's. The bridge truss belng analyzed can be designated as

truss (26,20); It has 20 EE's and 6 CC's, and its global GDDR has 26

deformations expressed In terms of 20 displacements. Skeletal structures such

as trusses and frames do not have any Interface CC's; their CC's can be either
cluster or external ones.

Cluster compatiblllty conditions of the truss (26,20). - The cluster for
element I, conslstlng of six bars, Is shown in figure 8(b). The unstable
cluster Is made stable by Imposlng a constraint at node 3. The cluster, deslg-
nated "bay (6,5)," has one CC, whlch Is obtained by following step I. At thls
tlme any one bar, for example bar I that corresponds to deformation BI, Is
dropped; the resultlng bay (5,5) Is shown In flgure 8(c). Steps I and II are
repeated until all flve cluster CC's are generated and the structure shown in
figure 8(d) Is obtalned.

External compatiblllty conditions. - The reduced structure shown In flg-
ure 8(d) has l CC since Its ddr consists of 21 bar deformations expressed In

terms of 20 displacements. The single CC is obtained by first imposlng a node

determinacy condltlon that reduces the ddr to six deformatlons expressed in

flve dlsplacements and then by ellmlnatlng the displacements. The external CC

(B2 + BlO + Bl5 + B20 + B25 " O) represents a homogeneous constraint on all
the deformatlons between boundary nodes l and 12, as shown In figure 8(e). The
bandwldths of the external CC's for restrained nodes that are far apart, typl-

cally encountered In long span bridges, can be large from physlcal considera-
tions, slnce the deformations between fully constralned node of a truss that

are far apart have to be zero Bj(1) = . The larger bandwldths of few

\i:1
external CC's do not Impose any major problem because In the IFM the solution

process Is carrled out by using sparse matrix techniques. Qulte often such ex-

ternal CC's can be trivially generated by mere inspection.
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Uniqueness of Compatibility Matrix

The compatlb111ty conditions are homogeneousequations; therefore the
CC's can be multlplied by any nonslngular matrix, for example [Ru], to obtaln
the feasible compatlbillty matrix [Cu] given by equation (28). The feasible
matrix [Cu] is a linear combination of the rows of matrix [C]:

[Ru][C]{B) - {0} or [Cu]{B}: {0} (28)

The procedure presented in this paper generates the matrix [C] and not [Cu].
This can be proved by observation. Take the example of the two membrane Inter-

face CC's (CC l and CC2) deflned as:

CC l _ Bkl - BK2 = 0 (29a)

CC 2 _ Bk3 - Bk4 = 0 (29b)

A linear combination of CCI and CC2 yields a feasible compatibillty condition

CC 3 as

CC3 _ Bkl - Bk2 + Bk3 - Bk4 = 0 (29c)

Notice that In equation (29c), deformations of CCl such as Bkl and Bk2
and deformations of CC2 such as Bk3 and Bk4 are present. However, after

the generation of CCI, one of the two deformations Bkl or Bk2 must be

dropped (step I(b)); therefore thelr combination cannot occur in subsequent

CC's. In other words, after CCI has been generated, the feasible compatibility
condition CC3, which Includes CC l cannot be obtained. Dropplng a deformation

that has participated In the CC, Immediately after Its generation, avoids the

possibility of its further participation in any other CC. The process gener-

ates the matrix [C] and not its combinations such as the usable CC matrix [Cu].
Therefore the unique [C] matrix is generated.

Product of Compatibillty and Equilibrium Matrices - a Null Matrix

The product of the CC matrix [C] and [EEl matrix [B] Is a null matrix

([C][B] T = [0]). This can be verified by direct substitution of the DDR In the
CC's as

[C]{B} - {0} (30a)

and

{B} = [BiT{x} (30b)

Next, ellmlnate deformations in favor of dlsp]acements between equatlons (30a)
and (30b) to obtain

[B]T[c] = [c]T[B] _ [0] (30c)

The null product property of the two fundamental EE and CC operators implles

that errors in equilibrium equations can propagate to the compatiblllty con-
dltlons and vice versa.
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BENEFITSDERIVEDFROMCOMPATIBILITYCONDITIONS

The accuracy of solutions obtalned by the Integrated force method, the
stiffness method, or the hybrid method is of paramount Importance, since all

are approximate formulations. All methods attempt to satisfy the equilibrium

equations written In terms of forces or displacements. However, explicit com-

patlbillty conditlons, in a strict sense, are Imposed only In the Integrated
force method. Any Improved solution accuracy, of the Integrated force method

over the other formulations should be a consequence of the explicit presence

of the global compatlblllty conditions in the IFM. Based on the theory of the

Integrated force method, a Generalized Integrated Force Technique (GIFT) com-

puter code has been developed. To illustrate the soIutlon accuracy in finite

element calculations, a plate bending problem Is solved by the GIFT code and

other standard analyzers such as MSC/NASTRAN (ref. 19), ASKA stiffness codes

(ref. 20), a mixed formulation MHOST (ref. 21), and Chang's hybrid method
(ref. 22).

The plate parameters considered (see flg. 9) are the following: slze of

the plate; a - b = 40 In. (I01.6 cm); aspect ratio a/b, varied between l and 2;

thickness of plate, h = 0.2 in. (5.08 mm); Young's modulus, E = 30 000 ks1

(21 091.81 kg/mmL); Polsson's ratio, v = 0.3; and magnitude of concentrated

load at the center, P = 500 lb (226.795 kg). Both simply supported and clamped
boundary conditions are consldered.

To compare solution accuracy, the problem Is solved by using two types of

elements: a four-node rectangular element and a three-node triangular element.

The IFM elements assume three forces (such as a shear force and two bendlng

moments) and three displacements (a transverse displacement and two slopes) per

node, as depicted in figure 9. A cubic polynomial with 12 constants Is used to
approximate the transverse displacement in the element field. Normal moments

MX and My are assumed to have linear dlstributlons, and the twisting moment

Mxy Is constant in the element domain (ref. 14).

The elements of the general purpose programs NASTRAN, ASKA, and MHOST are

specialized to generate only the flexure solution. The elements used are the

foilowlng: (1) QUAD4 (both ASKA and MSC/NASTRAN have QUAD4 elements),

(2) TRIB3 (triangular element of ASKA program), (3) TRIA3 (triangular element

of MSC/NASTRAN), and (4) TUBA3 of ASKA code (a higher order triangular element
wlth six dof per grid point). For the first three elements, which are well

known In the literature and popular in practice, the bending response of the
elements represents three dof per node.

The hybrid elements have more unknowns, for example, for flexural re-
sponse. Chang's program has the equivalent of seven unknowns at the nodes,

whereas the mixed formulation MHOST has more unknowns per grid point. The IFM

elements and the stiffness elements (such as QUAD4 of MSC/NASTRAN, QUAD4 of

ASKA, TRIB3 of ASKA, and TRIA3 of MSC/NASTRAN) are equivalent with respect to

their nodal degrees of freedom. The hybrld and TUBA3 elements are higher order
elements than those of the IFM.

In the stiffness method, nodal stress parameters that are calculated from

displacements by back substitution are dlscontinuous and ambiguous at grid

points (ref. 23); therefore calculation of forces at the nodes are routlnely
avoided in the stiffness method. In thls situation the noncontroversial nodal
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dlsplacement is used In the comparison. Rememberhowever that in the IFM,
forces are the primary variables from which the secondary dlsplacement un-
knowns are obtained by back substitution, The central deflection of the plate
wC, given by Timoshenko (ref. 24), is 0.2036 in. (5.715 mm).

MacNeal (ref. 25) introduced a grading scheme for the evaluation of flnlte
elements as follows:

A

B

C

D

F

<2-percent error

2- to 10-percent error

10- to 20-percent error

20- to 50-percent error

>50-percent error

The results obtained by all four formulatlons were graded by uslng MacNea1's

scheme and are presented In tables I to Ill. Results obtained by the IFM and

the stiffness formulatlons are also presented graphlcally in figures I0 and 11.

The IFM results for simply supported and clamped boundary conditions for dif-
ferent aspect ratios are presented in table IV. From the numerical results of

the plate flexure problem presented in tables I to IV and figures lO and II, we
observe the followlng:

(I) For the IFM rectangular element, convergence occurs for the first

model, which consists of four elements. If symmetry is taken into consldera-

tlon, then convergence occurs for a slngle-element idealization. Both stiff-

ness (MSC/NASTRAN and ASKA) and hybrid methods (MHOST and Chang's) converge

slowly. To achieve an A grade, MSC/NASTRAN QUAD4 element idealization requires

36 elements, whereas ASKA QUAD4 secures only a B grade, even for lO0 elements.
The hybrid method of Chang secures an A grade for 64 elements, whereas MHOST

secures a B grade for the same level of discretlzation.

(2) For the IFM triangular elements (see flg. 11), the result is dis-
cernible from an analytical solutlon for the first model, which has four ele-

ments, but even so, the result displays englgeerlng accuracy. The next model,
with eight elements, converges to the analytical solution and also achleves an

A grade. None of the stiffness elements, such as TRIA3 of MSC/NASTRAN and

TRIB3 and TUBA3 of ASKA, could secure a grade of A, even for models with fine
dlscretization.

(3) The IFM result for a slmply supported boundary follows the pattern of

a clamped boundary; namely, it secures a grade of A for the first model, which

has four elements. The IFM element retains an A grade for aspect ratios up to

1.6, but for the ratio 2.0, a total of eight elements, which corresponds to a

2 x 4 mesh, is required to secure an A grade. Other examples more or less fol-

low the pattern depicted In tables I to IV. Overall the IFM convergence rate

is very fast whereas both the stiffness and hybrid methods converge slowly or
struggle to do so.

CONCLUSIONS

I. The structural mechanlcs profession recognizes that both equillbrlum

equations (EE's) and compatibility conditlons (CC's) are essential for stress

analysis. However, the compatibility conditions in typical finite element cal-

culations were promoted via such concepts as cutting and closing the gaps, or
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displacement matching at nodes (deflection or slope should have unique values)
and so on. Although such concepts are somewhat related to the CC's of finite
element models, they do not represent the true CC's that are analogous to the
strain formulation of St. Venant. The true compatibllity conditions of flnlte
element analysis have been understood to a great extent, though we do not claim
that the understanding is total. Attempts should be made by the profession to
understand the CC's in totality, rather than to avoid them because they are
mathematically formidable or analytically more difficult than the familiar
equilibrium equations.

2. In finite element analysis, the system equilibrium equations in terms

of forces or displacements can be assembled from element matrices. The ques-

tlon is, can such an assembly technique be developed for the compatibility con-

dltions also? The generation of compatibility conditions is not equivalent to

the direct-assembly technique of the finite element analysis, even though there

is a close resemblance in that the global compatibility conditions are assem-

bled from their local counterparts such as interface CC's, cluster CC's, and

external CC's. Ne do not yet know a direct assembly scheme, but such a possl-

bility has not altogether been ruled out. We do, however, believe that the

compatibility generation scheme given in this paper is rather elegant, since
element characterlstics, connectivlties, and such, which are already contalned

in the equilibrium equatlons (and consequently in the deformation dlsplacement

relation because it is the raw Ingredlent of CC's) are referred to only once.

3. The compatibility conditlons are unique. The computation time required

to generate the CC's Is a small fraction of the total solution time.

4. The quality of the solutlon In approximate methods Is dependent on the
extent to whlch equilibrlum equations and compatibility conditions are saris-
fled. Since the integrated force method (IFM) satisfies both the EE's and the
CC's simultaneously, the solution via the IFM is accurate, as expected. The
stress parameters obtained by the stiffness and hybrid methods do not satisfy
the EE's even at the cardinal grld polnts; therefore solutlon quality by such
methods Is prone to be poor in comparison to IFM results.

5. Since all the finite element formulatlons are approximate In nature,
we recommend generating solutlons via the integrated force method, and by the
stiffness method and then comparing them, rather than qualiflng the results
obtained by any one formulation by successlve mesh reflnements.
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APPENDIX - SYMBOLS

dimensions of rectangular element

equilibrium matrlx of dimension m x n

element of equlllbrlum matrix

system equlllbrium matrlx

compatibility matrix of dimension r x n

compatibility condition

classical compatibility condition

displacement continuity matrix

local deformation displacement relatlon

displacement degrees of freedom

Young's modulus

equllibrlum equations

force vector of dimenslon n

force degrees of freedom

flexibility matrix of dimension n x n

element flexib11Ity matrlx

global compatibllity condltlons

global deformation displacement relations

Integrated force method

deformation coefficient matrix of dimenslon m x n

total number of elements at interface

total number of elements In cluster

total number of elements between two boundary nodes

stiffness matrix of dimension m x m

direction coslnes along edge lJ

maximum bandwidth

plate bending moments
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m

NRI

n

r

[S]

SDR

t

B,V

W c

{x}

{Xc}

_k

Yxy,_x,Cy

v

Subscripts:

CCC

eJ

ecc,ext

icc

q

t

0

number of dlsplacement variables

Indetermlnancy of node i

number of force variables

load vector of dimension m

number of compatibility condition;

IFM governlng matrix of dlmenslon

straln displacement relatlons

membrane thickness

membrane displacement components

central deflectlon of plate

displacement vector of dimension

concatenated dlsplacement vector

deformatlon vector of dimension n

kth deformatlon component

strain components

Polsson's ratio

cluster compatibility condltlons

element j

external compatibility condltlons

interface compatlbiIity conditions

quadrilateral

triangular

initial

Superscripts"

r

rl

T

number of

reduced

transpose

compatibility conditions
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TABLE I. - REPORT CARD FOR RECTANGULAR ELEMENT

WITH CLAMPED BOUNDARY CONDITION

Number of elements
for full plate (mesh)

IFM MSCINASTRAN
QUAD4

4 (2x2) A F
16 (4x4) A B

36 (6x6) A A

64 (8x8) - A

I00 (lOxlO) - -

ASKA
QUAD 4
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TABLE II. - REPORT CARD FOR INTEGRATED FORCE

METHOD WITH RECTANGULAR ELEMENT

Number of elements

for full plate (mesh)

4 (2x2)
16 (4x4)
4 (2x2)
4 (2x2)
4 (2x2)
4 (2x2)
4 (2x2)
8 (2x4)

Aspect
ratlo

Clamped
boundary

1.00

1.O0

].20
I.40

1.60

1.80

2.00

2.00

A
A
A
A
A
B
B
A

Simply
supported

boundary

TABLE III. - REPORT CARD FOR RECTANGULAR ELEMENT

Number of elements

for full plact (mesh)

4 (2x2) A
16 (4x4) A
64 (8x8) A

IFM Mixed Hybrld
method method

MHOST Chang
(ref. 22)

F F
C C
B A

TABLE IV. - REPORT CARD FOR TRIANGULAR ELEMENT

Number of elements
for full plate

IFM MSC/NASTRAN
TRIA3

4 B F

8 A D

16 A C

32 - B
128 - -

ASKA
TRIB3

F

C
B

ASKA
TUBA3

F
F

w

D
B
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® 10

Figure 1. - Finite element model.

©

5

©
(a) Interface CC. (b) Cluster or field CC's.

(c) External CC's.

Figure 2. - Bandwidth of compatibility conditions (CC's).
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Y

X4_ / F1

1(6

_ Xf
F2

(a) Membrane element; FI, F2, and F3 are force degrees of freedom (for) and X1, X2 ..... X6
are displacement degrees of freedom (dot').

Y

X4

(b) Bar element; F1 is for and X1, X2, X3, and X4 are dof.

Figure 3. - Membrane and bar elements.
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P2

(a)Membrane.

_X5' P5,_ t_X3

4 X4, P4

Xl' P1

(b) Interface nodes 2 and 3.

Figure 4. - Analysis of membrane.

xz

X4el

j X4e2

x_\\ x_.,

Xlel

E
XSe2

Xle2

(c) Conatenated model.

11 13 15

- ® b.

I

®

3

Figure 5. - Two-bay membrane.
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(a) Inlerface CO. (b) Determinate duster.

6 4

8

(c) Indeterminate cluster.

Figure 6. - Compatibility conditions for two-bay membrane.

3

MEMBRANE._. =
ELEMENTS :__

©

®

© 2

(a) Model with 8 membrane elements and 16 bar elements.

, ----G

® ©

(b) Interface CC.

®

Figure 7. - Composite (membrane and bar) structure.
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(a) Bridge truss.

12

2

1

(b) Indeterminate cluster, (c) Determinate cluster.

1

3

f
4

5

//'
8

7 9 11

/
10

(d) Reduced truss structure.

4 6 8 10

(e) External CC's.

Figure 8. - Compatibility cor_tions of a bridge truss.
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(a) Model with 16 elements.

S 4 $7

tr,, Ct

(b) Elemental forces.

X 1

X 6

X4

X 2

(c) Elemental displacements,

Figure 9. - Rectangular plate in flexture.
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Figure 10. - Rate of convergence for rectangular elements.
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Figure 11. - Rate of convergence for triangular elements.
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