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ABSTRACT

GSrtler vortices are thought to be the cause of transition in many fluid flows of practical

importance. In this paper a review of the different stages of vortex growth is given. In the

linear regime nonparallel effects completely govern this growth and parallel flow theories do

not capture the essential features of the development of the vortices. A detailed comparison

between the parallel and nonparallel theories is given and it is shown that at small vortex

wavelengths the parallel flow theories have some validity; otherwise nonparallel effects are

dominant. New results for the receptivity problem for GSrtler vortices are given; in particular

vortices induced by free-stream perturbations impinging on the leading edge of the wall are

considered. It is found that the most dangerous mode of this type can be isolated and it's

neutral curve is determined. This curve agrees very closely with the available experimental

data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again

it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant.

Some new results for nonlinear vortices of O(1) wavelengths are given and compared to

experimental observations. The agreement between theory and experiment is shown to be

excellent up to the point where unsteady effects become important. For small wavelength

vortices the nonlinear regime is of particular interest since there a strongly nonlinear theory

can be developed. Here the vortices can be large enough to drive the mean state which

then adjusts itself to make all modes neutral. The breakdown of this nonlinear state into a

three-dimensional time dependent flow is also discussed.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton,VA 23665.





1 Introduction

It is now somefifty yearssinceH. GSrtler published his 1940paper on the centrifugal

instability of a boundary layer on a concavewall. The mechanismdiscussedby GSrtler

is essentially the sameas that investigated some twenty yearsearlier by G.I. Taylor, who

was concernedwith the instabilty of flows betweenconcentric cylinders. In order to be

consistent with standard practice we refer to the vortex instabilities discussedby these

authors as GSrtler and Taylor vortices respectively. However, there should be no misun-

derstanding about the relationship betweenthe instabilities; they are causedby precisely

the samecentrifugal mechanismbut, sincethe basicstate in which GSrtler vorticesdevelop

is spatially varying, it turns out that both the linear and nonlinear developmentsof the

two types of vortices are quite distinct.

Whilst considerableeffort has been made to understand the different stagesin the

developmentof Taylor vortices there has, in comparison,beenlittle work done on GSrtler

vortices. In fact the GSrtler mechanism is of significantly greater relevance to practical

flow situations than is the Taylor mechanism. Thus in flows as diverse as those over turbine

blades and in the human aorta, the curvature of the flow streamlines is sufficient to induce

GSrtler vortices. Another situation where GSrtler vortices are thought to be the cause of

transition to turbulence is the aerodynamic one. Thus the flow over the concave section of

a Laminar Flow Wing or that in a jet engine inlet can support the mechanism. In Figure

1.1 we reproduce a picture of GSrtler vortices in the concave section of a Laminar Flow

Wing developed at NASA Langley; the picture was kindly supplied to the author by Dr.

S. Mangalam. The vortices shown in the picture have been made visible by sublimating



chemicalsand occur in the concavesection of the wing. Furthermore, recent researchon

the later stagesof transition in flat plate boundary layers hasshownthat interacting wave

systemscan play the role of streamline curvature and induce what are essentially GSrtler

vortex structures,see Hall and Smith(1988,1989a,b). Apart from the situations discussed

above where GSrtler vortices are known to be important there are other, less obvious,

situations where they occur. Thus for example in the 1980 blast at Mount St. Helens

longtitudinal vortices set up in the flowing lava generated erosional furrows, Kieffer and

Sturtevant(1988).

In the Taylor vortex problem remarkable progress has been made towards an under-

standing of the sequence of bifurcations which takes place when the speed of the inner

cylinder is increased. There are two obvious reasons why little progress has been made

in comparison with the GSrtler problem. Firstly, the spatial development of the bound-

ary layer in which the vortices grow means that a self-consistent asymptotic description

of even the linear stages of the vortex development is difficult to obtain. Secondly, it is

much easier to do careful experiments on the Taylor problem so that the theory has been

to a great extent driven by the experiments. In comparison a GSrtler vortex experiment

is much more difficult to perform because of the inherent difficulties associated with flow

quality control in an open system.

In fact the apparent similarities between GSrtler and Taylor vortices are quite mis-

leading, indeed little understanding of the growth of GSrtler vortices can be obtained by

studying the Taylor problem. Where appropriate in the remainder of this paper we shall

highlight the major structural differences between the two vortex modes. Almost all of our



discussionwill concerntwo-dimensional boundary layer flows but a restricted discussion

of weakly three-dimensionalboundary layer flowswill be included. In the latter situation

there is the possibility of yet another stationary vortex mode;we refer here to the so-called

crossflowvortex instability whosestructure was elucidated so clearly by Gregory, Stuart

and Walker (1955). This mode is a Rayleigh instability of an effective velocity profile

which has an inflection point at the critical layer and is thought to be the most likely

cause of transition in flows over swept wings. In fact there is yet another stationary vortex

instability possible in a three-dimensional boundary layer and this was described by Hall

(1986). This disturbance is a Tollmien-Schlichting wave with an effective velocity profile

having zero shear stress at the wall. We shall see later that the GSrtler mechanism is de-

stroyed by an asymptotically small spanwise mean flow so it appears likely that stationary

vortex structures in three-dimensional boundary layers are associated with either Rayleigh

or Tollmien-Schlichting waves.

At this stage it is appropriate for us to discuss the many experimental investiga-

tions of GSrtler vortices that followed GSrtlers original theoretical work. Perhaps the

first researchers to observe GSrtler vortices were Gregory and Walker (1956) who used

the china-clay technique to visualize the vortices induced by protruberances in bound-

ary layers. Earlier, Lieppmann(1943,1945) had investigated the instability of boundary

layers on curved walls and concluded that transition can be caused by GSrtler vortices.

Subsequently Aihara(1962) used dye to demonstrate the existence of vortices whilst Tani

and Sakagami(1962) used smoke to visualize the disturbances. Wortmann (1964a,b) car-

ried out more detailed flow visualization studies of GSrtler vortices using the tellurium
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method. Wortmann was able to show that in certain circumstances leaning vortices could

be induced. The most detailed early observations of GSrtler vortices were reported by

Bippes(1972) and Bippes and GSrtler(1972) who used the hydrogen bubble method to

visualize vortices in water tunnels. These authors were also able to measure the eigenfunc-

tions associated with the vortices since their experiments were performed on a relatively

sharply curved wall.

More recently there have been several experiments designed to determine whether the

GSrtler mechanism is significant on the curved part of modern laminar flow wings , see for

example Pfenninger et al (1980),Harvey and Pride (1982), Allison and Dagenhart(1987). In

particular much work has been done at NASA Langley on a wing with a significant region

of concave curvature on the underside of the wing just beyond the leading edge. In Figure

1.1 the longtitudinal vortices in the concave region are clearly seen. Figure 1.2 shows a

sketch of the flow pattern associated with the vortex flow. The Langley experiments were

performed using sublimating chemicals to visualize the vortices and laser velocimetry to

measure the disturbance velocity field. For more details of the NASA Langley experiments

on G5rtler vortices in boundary layers on laminar airfoils the reader is referred to Mangalam

et al (1985,1987).

A question of some importance is that of how the upstream conditions in a GSrtler

vortex experiment influence the nature of the induced vortex system. This matter was ad-

dressed in the paper by Swearingen and Blackwelder(1983) who performed GSrtler vortex

experiments in a lowspeed wind tunnel with the aim of finding the mechanism which fixes

the vortex wavelength. Earlier, Tani(1962) and Tani and Sakagami(1962) , along with
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Bippes (1972) , had concludedfrom their experiments that the induced vortex wavenum-

bet is independent of the free-streamspeed, the spanwisedimension of the test section ,

and the streamwiselocation of the onset of vortex actrivity. Bippes found that the vor-

tex wavenumberwashoweverdependenton the nature of the incoming disturbance field.

Swearingenand Blackwelder found that the observedwavelength of the vortices in their

experimentscould be altered by the introduction of strips of tape at the wall or by placing

cylinders in the incoming flow. Bippes &: Swearingenand Blackwelder attempted to find

a mechanismwhich would causethe most amplified linear modepredicted by parallel flow

theory to beobserved.This they achievedby suitably positioning the screensaheadof the

test sectionin their experiments. In fact there is nosuch thing asthe most amplified linear

mode since we shall seein the next section that nonparallel effectsmake the concept of

a unique growth rate not tenable for the GSrtler problem; this should not be interpreted

as critism of the latter experiments. Indeed, in view of the results discussed in the next

section, we believe that the fact that these authors were able to induce a particular vortex

wavelength shows conclusively that it is the upstream conditions which crucially select the

wavelength and neutral position of the induced vortex. Moreover, Kottke(1986) , who was

interested in determining the effects of GSrtler vortices on heat transfer , found that in

his experiment GSrtler vortices could not even be observed unless a grid was placed in

front of his test section. We note in passing here that the effect on heat transfer of GSrtler

vortices needs to be understood if efficient turbine blades are to be designed , see Finnis

and Brown(1986).



The experimental papersdiscussedabovewereprimarily concernedwith demonstrat-

ing that GSrtler vortices predicted by linear stability theory can be set up experimentally

On the basis of what is known about Taylor vortices one might expect that nonlinear

effectswill inhibit the growth predicted by linear theory and lead to finite amplitude equi-

libration. This was confirmed by the aboveexperimentssinceit was found that after the

onset of instability the vortex activity increasedslowly in the streamwisedirection. The

absenceof any kind of threshold amplitude responseby a boundary layer to longtitudinal

vortices also suggeststhat nonlinear effectsare indeed stabilizing in the GSrtler problem.

However in the Taylor problem it is well-known that, when the Taylor number is

increasedsufficiently, the finite amplitude axisymmetric vortex sysytem set up when the

linear critical Taylor number is exceededbecomesunstable to a time-dependent three

dimensional mode often referred to as a wavy vortex mode. After the onsetof this insta-

bility the vortex boundarieshave a wavesuperimposedon them and this wavetravels in

the azimuthal direction. In fact this secondary instabilty is merely a non-axisymmetric

Taylor vortex destabilized by the initial finite amplitude state. A convincing theoretical

description of the breakdown processleading to the wavy vortex state wasgivenby Davey

, DiPrima and Stuart(1969). Thus it would be surprising if such a processwas not op-

erational in the GSrtler problem when the vortices develop downstream. We note that

moving downstream in the GSrtler problem roughly corresponds to increasing the Taylor

number in the concentric cylinder problem.

At this stage it should be remembered out that Tollmien-Schlichting waves are another

possible source of instability in a boundary layer whereas in Couette flow only centrifugal



modesarepossible. It appearsfrom the availableexperiments that the breakdown route for

GSrtler vortices is fixed by the size of the wall curvature . Not surprisingly for relatively

large wall curvatures the Reynolds number is not large enough for Tollmien-Schlichting

waves to be unstable and the wavy vortex mode is operational; see Bippes(1972), Ai-

hara(1961) and Peerhossaini and \Vesfreid(1988). In fact the wavy mode is apparently

the cause of breakdown for the laminar flow wing case, Kohama(1987). Furthermore Ko-

hama and Peerhossaini &: Wesfreid identified two possible types of wavy vortex mode. The

two modes respectively lead to oscillations of the cell boundaries at the top and botom

of the region of vortex activity. The characteristic frequency of the oscilation of the top

boundary was found to be greatest but still not as large as a typical ToUmien-Schlichting

frequency. We shall give a theoretical explanation for the existence of these distinct modes

when we discuss theoretical work on nonlinear effects. At smaller values of the wall curva-

ture Tollmieli-Schlichting waves are involved in the secondary instability of the stationary

vortex and the transition process has many similarities with flat plate transition. Some

aspects of this interaction problem arc now understood and a brief description of that work

will be given in the conclusion to this paper.

Consider then the instability of the boundary layer flow

= = u0( (x, he- y), 0), (1.1)

to a spanwise periodic perturbation of wavelength comparable with the boundary layer

thickness. Here x and y represent nondimensional distance along and normal to a wall

of variable curvature IX(x) and x,y have been scaled on L and Re- _L where L is a

typical steamwise length and Re is the Reynolds number based on the length L and the
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L
free stream speed U0. We restrict our attention to walls of small curvature so the X << 1;

r, ,.., O(Re- _ ) andmore precisely we note that the Ghrtler instability occurs first for X

therefore consider the limit Re _ co with

,L

G = 2Re; A (1.2)

held fixed. The Ghrtler number G defined by (1.2) is, apart from a constant factor,

the square of the Ghrtler number used by Ghrtler. The relative scales for the velocity

components of a Ghrtler vortex follow from the discussion given by Davey (1962) for

narrow gap Taylor vortices so we therefore perturb (1.1) by writing

u = _ + Uo[U(x, y), Re- _V(x, y), Re- _W(x, y)lexpiaz. (1.a)

Here a is the vortex wavenumber and the spanwise variable z has been scaled on the

boundary layer thickness. Thus the normal and spanwise velocity components of the

vortex are of size Re- _ smaller than the downstream component. We have assumed above

that the perturbation is steady; such an assumption is valid only for the initial hnear stages

of the vortex development and is consistent with experimental observations. Recent work

by Park and Huerre (1988) on a model problem of some possible relevance to the Ghrtler

problem suggests that the Ghrtler mechanism is a convective one rather than an absolute

instability so that (1.3) is the appropriate form for the vortex in the linear regime. The

perturbation is assumed small enough for linearization to be a valid procedure so that
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substitution of (1.3) into the Navier-Stokesequationsyields:

{_o. + _G }u + u_-. + v G : vu

{_-o, + _G }v + uG + vG + G_V : -G + VV,
(1.4a, b.c)

{_o, + _G }w : -i_P + wv,

U= + Y_ + iaW = O,

where V =_ 0_2 - a 2. Here P is the pressure perturbation associated with the vortex and

a crucial feature of this pressure is that it is absent from the x momentum equation so

that (1.4) is parabolic in x. However the main feature of (1.4) is that the perturbation

is controlled by partial differential equations in x and y; there is no obvious reason why

solutions of (1.4) obtained by replacing x-derivatives acting on perturbation quantities by

a constant will have any connection with solutions of the original system. It is the latter

assumption which was made by GSrtler (1940) and many subsequent authors. It should

be remembered that at the time GSrtler was performing his calculations it would not

have been possible to numerically integrate the partial differential equations. Indeed even

the reduced ordinary differential system solved by GSrtler was a significant calculation

fifty years ago and GSrtler obtained approximate solutions by a using a Green function

technique to reduce the stabilty equations to an integral equation, furthermore GSrtler

approximated the basic flow by a piecewise linear profile. Later it was found that GSrtler

had made an error in his calculations and this was corrected by H_mmerlin (1955).

We refer to any solution of the linear or nonlinear perturbation equations for GSrtler

vortices which replaces an x-derivative of a perturbation quantitiy by a constant as a

parallel flow solution; otherwise we refer to it as a nonparallel solution. This terminology
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is not ideal becauseit might be argued that a solution of (1.4) which replacesx-derivatives

acting on U, V and W by constants but retains the terms dependent on _- does capture

some nonparallel properties of the disturbance. However, since such solutions are clearly

not valid, and there are many such approximations, it seems pointless to try and attribute

them with some validity by describing them in some way which reflects their degree of

'nonparallelism'.

The disturbance equations (1.4) have been known for some time; perhaps the first

derivation of these equations is due to Smith (1955) though the equations are to be found

also in Gregory, Stuart and Walker (1955). It appears that Floryan and Saric (1979) were

the first to state the equations in the form (1.4) without the retention of formally smaller

terms. Even though the correct form for the perturbation equations has been known for

some time, it is only in the last decade that solutions of (1.4) which correctly take care of

the streamwise structure have been found. In the next section we will describe the results

obtained by GSrtler (1940) and subsequent authors who solved the disturbance equations

without taking care of the x dependence of the disturbance velocity field in a self-consistent

manner.

In Section 3 we derive nonparallel solutions of the disturbance equations for a > > 1

and discuss numerical solutions of the full system. The numerical solutions of the full

system do not lead to a unique neutral curve because of the influence of initial conditions.

Thus it is somewhat ironic that the forty year long search for the neutral curve for GSrtler

vortices was necessarily doomed to fail because the concept of a unique neutral curve is

not tenable for the GSrtler problem. However we note that the different neutral curves
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predicted by the parallel flow curvesdisagreebecauseof the inconsistent retention of some

nonparallel effectsand higherorder curvature effects whereas the nonuniqueness associated

with the full system is associated with its parabolic nature. In that section we also present

some results of what is apparently the first investigation of the receptivity problem for

GSrtler vortices. Here we find that in, some sense, a unique neutral curve for GSrtler

voritices can be found for a quite general class of incoming disturbances.

In Section 4 we shall discuss nonlinear aspects of the GSrtler problem. It is at this stage

that a major difference between the GSrtler instability and other instabilities develop. In

particular we find that, for small vortex wavelengths, perhaps uniquely in fluid dynamics,

the onset of nonlinear effects close to the position of neutral stability is not governed by

a Stuart-Watson amplitude expansion. It turns out that when GSrtler vortices become

nonlinear there is a mean field interaction between the fundamental mode and the mean

flow correction; there is not a cascade of energy into the higher harmonics. Thus the onset

of nonlinear effects in the GSrtler problem leads to a pair of coupled nonlinear partial

differential equations rather than an an ordinary differential equation for the disturbance

amplitude. These evolution equations are valid sufficiently close to the position where

instability first occurs; however, they point to the existence of a remarkably simple fully

nonlinear state further downstream. This fully nonlinear state has close connections with

the so-called marginal theory of turbulence proposed in a different context by Malkus

(1956). In particular the mean (independent of z) part of the flow in the nonlinear state

turns out to satisfy an equation which enables the fundamental and all higher harmonics

of the vortex to remain neutrally stable. Thus, where vortices exist, the mean state no
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longer satisfies the boundary layer equations. It turns out that the vortices decayto zero

in shearlayers away from the centre of vortex activity and beyond theseshear layers the

mean state satisfies the boundary layer equations. Even further downstream it is possible

to describe the three-dimensional time dependentbreakdown of thesevortices as a wavy

vortex mode becomesunstable in either of the shearlayers. It is somewhatsurprising that

the GSrtler problem can be described asymptotically in a strongly nonlinear regime way

beyond what is possiblefor apparently much simpler instabilities suchas Taylor vortices

or B_nard convection.

Finally in Section 5 we shall draw someconclusionsand briefly discusssomerecent

results on vortex-wave interaction theory.

2. Parallel flow theories of GSrtler vortex growth.

In 1923 G.I. Taylor had shown conclusively that centrifugal instabilities between ro-

tating concentric cylinders could be accurately described in the linear regime by a stability

theory which took viscous effects into account. On the basis ofinviscid theory it was known

from Rayleigh (1916) that flows with curved streamlines are locally inviscidly unstable if

the circulation decreases in a direction away from the local centre of curvature. The latter

result suggests that a Blasius boundary layer is centrifugally unstable if the wall is concave

and stable otherwise. Other boundary layer flows such as the wall jet can be unstable on

both convex and concave walls. The instability, when it occurs, takes the form of counter-

rotating streamwise vortices known as Taylor or GSrtler vortices depending on whether or

not the basic state is fully developed.
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In 1940GSrtler formulated the linear stability problem for a two-dimensional bound-

ary layer on a curved wall. He ignored the spatial development of the boundary layer and

the normal velocity component associated with that flow. If U0 is the free-stream speed,

L, the viscosity of the fluid, 6 the boundary layer thickness and A the radius of curvature,

then following G5rtler we define a GSrtler number by

Go- Uo6 (6)} (2.1)
/] d-I

which, apart from a constant, is the square root of the GSrtler number defined by (1.2).

The approximations made by GSrtler therefore led him to consider the eigenvalue problem

4 d2 d}v :-24co v

subject to U = V = V_ = 0, y = 0. Here ao and _ are the spanwise wavenumbers and

temporal growth rate of the vortex whilst _(Y) is the local approximation to the streamwise

boundary layer velocity. GSrtler obtained a solution by using Greens functions to transform

the eigenvalue problem into an integral equation which he then solved numerically. Later

Meksyn(1950) used a WKB approximation procedure to solve GSrtlers equations and the

neutral curves found by Meksyn and GSrtler were similar to those for Taylor vortices and

Benard convection. Their results suggested that, on the assumption that boundary layer

growth is not important, instabilty occurs first at a finite value of the vortex wavenumber

at some critical GSrtler number. Subsequently it was found that there was an error in

GSrtler's calculations which was corrected by HS_mmerlin (1955) who resoved GSrtler's

equations. The neutral curves, _r = 0, obtained by GSrtler (1940) and HS_mmerlin (1955)
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are shown in Figure 2.1. We see that the correct solution of the simplified equations

predicts that instability occurs first at zerowavenumber,in which casethe vorticesextend

beyond the edgeof the boundary layer. That result contradicts the assumption that the

vortices are confined to the boundary layer so it wasarguedby various authors that finite

curvature or nonparallel effectsmight beusedto remedy this deficiencyin the theory. Thus

there followed in the next twenty yearsa seriesof papers motivated primarily to correct

the zerowavenumberdegeneracyof GSrtler's theory.

Perhaps the most significant of thesecalculations was the work of Smith (1955) who

deviseda modified form for the eigenvalueproblem and choseto look at spatial instability

rather than temporal instability. The equations derived by Smith took someaccount of

streamline curvature and retained the terms associatedwith the nonzeronormal velocity

component in the boundary layer. The equations solved by Smith produced a critical

GSrtler number at a finite wavenumber. It wassignificant that Smith clearly recognized

that, if the non-neutral theory was to haveany relevancefor transition prediction, a spatial

stability calculation was required.

Meanwile H£mmerlin (1956)attempted to remedy the deficiencyat low wavenumbers

by retaining some formally negligible curvature effects. A related calculation was then

carried out by Witting (1958) who confirmed H_.mmerlin's result that small curvature

effectscan shift the critical wavenumberto a finite value. The neutral curvesobtained by

thesedifferent approacheswereconsistent only at high wavenumbers;at low wavenumbers

the curveswerein marked disagreement.Moreover,sinceno formal asymptotic justification

14



could be made for the somewhatarbitrary retention of the apparently small higher order

effects, it wasnot clear which, if any, of these calculations was correct.

The above calculations can be classified as parallel flow calculations because they

did not account for every term in the disturbance equations arising from the non-parallel

nature of the basic state. Interestingly enough it is worth pointing out that a Stokes

layer on a curved surface is susceptible to GSrtler vortices and Seminara and Hall (1975)

showed that for this parallel boundary layer there is a well defined neutral curve with a left

hand branch asymptoting to, rather than crossing, the zero wavenumber axis. That result

suggests that the essential difficulty present in the GSrtler problem at small wavenumber

is a direct consequence of boundary layer growth. We shall see in the next section that

if boundary layer growth is taken care of in a self-consistent way the small wavenumber

degeneracy is resolved but its resolution causes philosophical problems for the transition

prediction fraternity.

A review of many of the early parallel flow theories was given by Herbert (1976).

Other aspects of the GSrtler problem were investigated by, for example, Kahawita and

Meroney (1977), (effect of wall heating), Tobak (1964), (effect of curvature distribution).

More recently Floryan and Saric (1979) reformulated the GSrtler problems using

streamline co-ordinates in order to overcome the problems associated with the zero wavenuml

bet limit. Even though Floryan and Saric and other previous workers recognized that

partial derivatives of the disturbance in the streamwise direction are formally comparable

to the terms retained by GSrtler, the solution procedure used by them replaced G-= by a

constant. Despite Floryan and Saric's claim that this can be justified by the method of
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multiple scales,this approximation is not valid becausethe scaleson which the vortex and

mean flow develop in the streamwisedirection are identical. Thus the solution procedure

of Floryan and Saric was incorrect for exactly the samereasonsas were previous parallel

flow calculations.

Thus in summary weconcludethat the parallel flow approachesto the GSrtler problem

gave inconsistent results at order unity wavenumbersand physically unacceptable results

at small wavenumbers. In Figure 2.1 we show a selection of the neutral curves found by

different authors. We note that the results appear to be consistent at high wavenumbers;

we shall see in the next section that it is an understanding of this regime which enables a

self-consistent asymptotic description of GSrtler vortices to be carried out.

3. Nonparallel linear theory and the receptivity problem.

We shall now discuss how (1.4) can be solved in a manner which takes account of

nonparallel effects in a justifiable manner. At this stage we shall make the assumption

that the unperturbed state is a Blasius boundary layer. The ideas we discuss are easily

applied with some minor modifications to more general boundary layers but for definiteness

here we restrict our attention to the zero pressure gradient case. For a discussion of the

derivation and solution of the GSrtler vortex equations for interactive boundary layers

see Hall and Bennett (1986) where, as an illustrative example, the instability of internal

boundary layers is discussed.

Next we suppose that we are interested in the spatial evolution of a constant wave-

length longitudinal vortex introduced into tile flow at, say, x = _. Experimentally it is

well known that a vortex conserves its physical wavelength as it develops downstream
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1

so that the non-dimensional wavelength 27ra_ _ based on the local boundary layer thick-

ness decreases like x-_. The effective local GSrtler number, G,, for the flow grows like

X(x)x_, so that in a Blasius boundary layer a constant wavelength vortex develops such

that G, _ a_)c(a2). In convective and centrifugal instability theories it is known that

the right hand branch of the neutral curve, if one exists, has G _ a 4. It follows that if

X(x) << x_ for large x then the vortex must ultimately enters a stable regime. In par-

ticular it follows that a Blasius boundary layer over a wall of constant curvature a vortex

can and must be unstable for a finite range of values of x. Moreover, we note that in any

growing boundary layer the local wavenumber for a fixed wavelength vortex must grow like

the boundary layer thickness. Therefore any initial longitudinal vortex ultimately enters

a regime where its effective nondimensional waveimmber is large. We now show how we

can exploit this largeness of the local vortex wavenumber to develop a formal asymptotic

expansion of (1.4) valid for a > > 1.

As one might expect, it is found that at large wavenumbers the vortex feels only

the local boundary layer structure and chooses to locate itself where it maximises its

downstream growth. Hall (1982a) investigated the solution of (1.4) in the limit a ---* oo

and expanded G in the form

G = goa 4+g2 a3+g2a _ +"" (3.1)

where {g_ } are to be found in terms of x if the growth rate and a are specified. Alternatively,

if we are given {g_}, then the corresponding growth rate is to be found. A WKB analysis

of (1.4) shows that the most unstable longitudinal vortex structures are those which have
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a secondorder turning point behaviour in their vertical structure. This means that the

vortices are confined in a layer of depth a- _ centred on some location y = y* (x).

In the neighbourhood of y* the basic flow and disturbance are expanded in powers of

a- _ so that for example U in (1.3) becomes

where

_ O0U = exp{a 2 [flO(x)+a-_fll(X)+...]dx}__, a-_Uj(x,_),

d=0
(3.2)

= a_(y--y'). (3.3)

In (3.2) the functions {fl_} determine the spatial growth of the vortex and, after a little

work, we find that for example fl0 satisfies

( 'flo + 1)2 =  o 'Gx, (3.4)

[(a'Zo + 1)2], = go[aa ];x, (3.5)

and if go is given (3.4), (3.5) can be thought of as equations to determine fl0 and y*. In

that sense (3.5) can be interpreted as the condition which enables the vortex to maximise

it's spatial growth.

The neutral stability point in the boundary layer can be defined in terms of the zero

growth of a particular flow quantity measured at a particular location in the boundary

layer. Any such flow quantity has its neutral stability point approximated at zeroth order

by fl = 0 so that (3.5) shows that, where a vortex is neutrally stable, it locates itself at the

position where it effectively 'most violates' Rayleighs criterion. The expansion procedure
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outlined above can be continued to higher order taking care of nonparallel effects in a

systematic manner. The vertical structure of the disturbance turns out to be described

by parabohc cylinder functions and the only possiblebreakdown of (3.2) occursat a point

where X(X) changes sign. At such a point fl0 is a double eigenvalue and merges into a

continuous spectrum, the difficulties associated with connecting (3.2) to an appropriate

structure for X < 0 have not been resolved, but see Jallade (1989) for some discussion of

that problem.

In the neutral case Hall (1982a) showed that for a Blasius boundary layer (3.1) becomes

GX = 5.91x_a 4 + .96a 3 + g2a_ + • .., (3.s)

where g2 depends on what flow property is used to monitor the growth of the disturbance.

This means that the first two terms in (3.6) are given correctly by the various parallel

flow theory approximations to (1.4). Thus in the high wavenumber limit the various

parallel flow theories become valid but, since this is their only range of validity and the

asymptotic approach is at least as accurate and requires no computing whatsoever, this

merely demonstrates the futility of solving the parallel flow equations.

For compressible boundary layers the approach of Hall (1982a) can again be used in

the high wavenumber limit and Hall and Malik (1989) have presented results similar to

those of the incompressible theory. Surprisingly it has been recently found that in the

hypersonic limit a Sutherland or Chapman Law fluid has a simplified G5rtler structure.

Thus Hall and Fu (1989a,b) have shown that in the most dangerous wavenumber regime

nonparallel effects are unimportant at zeroth order and that the vortices are trapped in the

transition layer where tile basic flow temperature field rapidly adjusts to its free stream
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value. The results of Hall and Fu weresubsequentlyconfirmed by Spall and Malik (1989)

who integrated numerically the full partial differential stability equations at finite but

large Mach numbers. Earlier work on the compressible GSrtler vortex stability problem

by Kobayashi and Kohama (1977), E1 Hady and Verma (1981) had used a parallel flow

approximation at finite Mach numbers. Hence these calculations only have any validity in

the high wavenumber regime where they are consistent with the Hall and Malik theory.

Now let us turn to the 0(1) wavenumber regime and note that, if iV and P are

eliminated from (1.4) we obtain the following coupled partial differential system for U and

V:

V{fi._ + a 4 + a2_} + 9, U,, + {fi**_ -t- a2O. + xa2Gfi}U

+ {_,, - _oy2+ a2_}v. + 2{_., + r,.o,}u.

+ v,,,, - _v,,, - {_, + 2a2}V,, + {_., + a%}v, = o,

which must be solved subject to the conditions

OV

u, y, --d_-y= o, y = o,oo, (3.8)

and, if the vortex is induced by an initial perturbation at x = ,_

u = _7(y), v = ¢(y), z = _. (3.9)

The functions U, V and the position _ where the disturbance is introduced are all at

our disposal constrained only by the conditions 0"(0) = 0, U'"(0) = a2U'(0),17"""(0) =

2a2V"(0), which ensure that U and V do not have a singularity at (x,y) = (y:,0) In order
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to monitor the growth or decay of the vortices Hall (1983) defined the local growth rate

_r(x) by

f0 f_°

1 d (u 2+ v 2+ W2)dy}. (3.10)
_r - 2dx

The position of neutral stability was defined by cr -= 0 and the local wavenumber calculated

at that location. If the initial wavenumber of the imposed disturbance is varied a neutral

curve appropriate to a particular initial disturbance can be found. Figure 3.1 shows the

dependence of _(x) on _ for the case a = .069, G = .025 and U, V given by

_7 = y6e-_/2_, 12 = 0. (3.11)

We observe that the position of neutral stability is indeed a function of • whilst for large

x the growth rates merge because the effective wavenumber is large and the asymptotic

theory of Hall (1982a) applies. In Figure 3.2 we show the neutral curves corresponding

to different initial conditions (3.11) imposed at _ = 50. Also shown in that Figure are

some experimental results due to Tani (1962) and Winoto and Crane (1980) together with

some parallel flow stability calculations. We see that the nonparallel neutral curves are

closer to the experimental results. Figure 3.2 also shows the two-term large wavenumber

approximation to the neutral curve, it can be seen that the different approaches merge in

that limit. Thus in the only situation where parallel flow theories are valid the asymptotic

approach is at least as accurate and trivial to use. We conclude that the concept of a unique

neutral curve or growth rate is not tenable for the GSrtler problem since the local behaviour

of the vortex depends on its upstream form. Whilst such a result is exactly what a theorist

would expect, given the parabolic nature of the stability equations, it causes a problem for
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designengineerswho needa unique growth rate at eachx to feed into their version of the

e '_ method for transition prediction. The response to this difficulty has been to criticize

the form of the initial conditions chosen by Hall (1983) since the initial velocity field does

not look like a parallel flow theory GSrtler vortex velocity field, see for example Kalburgi

et al (1987,1988), Spall and Malik(1989). It was argued by these authors that the 'correct'

choice of the initial condition is made by solving the parallel flow stability equations. It

has never been clear to the author on what grounds this can be justified; however, it

does provide a use for the solutions of the parallel flow eigenfunctions. The criticisms

about the choice of initial conditions are unfounded; the point is, of course, that once it is

found that G6rtler vortices are governed by parabolic partial differential equations, then

the downstream behaviour of a vortex is fixed by the upstream structure. Moreover, the

appropriate initial conditions are not fixed by the stability equations or a reduced form

of these equations. Interestingly it has been found by Swearingen and Blackwelder (1987)

that the disturbance velocity field calculated from the partial differential equations is very

close to that measured experimentally in the unstable regime.

Suppose next that rather than impose an initial disturbance at a finite value of x we

allow the vortex to be generated by a free stream longitudinal vortex structure impinging

on the leading edge of the curved wall. Thus we now address the receptivity problem for

GSrtler vortices and assume that at the leading edge the x velocity component of the flow

is given by

U = 1 + Ae'_ZU "(y), (3.12)
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where we have assumeda dependenceof the impinging vortex structure on the boundary

layer lengthscalethough later we shall seethat the 'most dangerous'vortex has U ° inde-

pendent of y. We shall now solve the vortex equations in the region x << 1 such that

(3.12) is satisfied; the initial forms for the y and z velocity components are then implied

by that calculation.

We assume that the initial disturbance is bounded at infinity so that it is suffiuciently

general for us to consider the case U* (y) = cos{by -t- ¢} where b and ¢ are constants so

that the disturbance at the leading edge is periodic in the y and z directions. In fact this

would be the appropriate form for an initial disturbance induced by a grid upstream of

the test section in an experiment. At the leading edge of the plate the wavelengths in the

spanwise and normal directions are large compared with x_, the scale of the boundary

layers there. Thus , as one would expect, it is necessary for us to discuss two regions there

, namely the boundary layer y ,-- x_, and an outer layer with y _ 0(1). We shall see that

in the boundary layer y ,-_ x _ with x < < 1 the flow responds in a quasiparallel manner to

the modulated free stream.

Suppose that we allow y/v/"x _ oo in the disturbance equations (3.Ta,b); after some

manipulation we obtain

}u = 0,- a2 - oo

/3 a2/3{O2--a 2 --o9_ O,}{02--a2}V : a2xGU -t- (2x)3/2U_, d- (2x)3/2

Here t3 is the Blasius constant defined by

mU.

(3.13a, b)

/3 = lim {rlf' - f}.
r/---+ oo
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Since the incoming disturbance is periodic in the y direction with period 2rr/b we seek

a solution of (3.13a) which maintains that structure. The particular solution of (3.13a)

which in the limit x --_ 0 is consistent with (3.11), (3.12) is

u = u, = _-_b_+o,_,cos{by+ ¢ - vZv_x} (3.14)

and the periodic solution of (3.13b) is then

e- _b+_}_ b_v/__x }{ (b__2za- )22 f_v, - b2+ a2 cos{by+ _- a2a xd_}. (3.15)

In fact the V equation has an eigensolution V = Q(x)e -_ for arbitrary Q(x) and we

shall see that matching with the boundary layer solution cannot be achieved without this

eigensolution. Thus the boundary layer causes the periodic structure of V to occur only

for ay >> 1 and the appropriate solution of (3.13b) is therefore

V = Vp+ O(x)e -_. (3.16)

If we are in tile regime where x = 0(1) then ay >> 1 at the edge of the boundary layer

and so the (U, V) disturbance equations must be solved subject to

(b 2 A- a 2, t _/2-; - xdx])

(u,v) _ _-_'+°'_ eos{_ + ¢ - b;_v_} (b2+ a2) (3.1_)

However near the leading edge (3.14), (3.16) apply for y = 0(1) with x << 1 and Q(x)

must be found by matching with the boundary layer solution. Here U and V are most

easily obtained in the form of expansions in powers of x_ front the primitive equations
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-- __L_ In fact U and V are obtained by perturbing(1.4) expressed in terms of z and _ - 42;"

the Blasius solution by letting the free stream speed very slightly from unity. We obtain

U = cos 0{ff + rff2f"} + ...,

cos ¢ 21_V- _ [ 07f' - f)

When 7? --_ co in (3.18) we obtain

+ ,72/2f ''} +..-.

U -', cost +-",

COS (_

V-+ _-_x-x,_ + • • • •

(3.18)

(3.10)

Hence if (3.14), (3.16) are to match with the boundary layer solution for 7/>> 1 we must

a2G f _ xdx}

In principle we can continue the above

choose

cos[¢ - bgv l { (b2 - a 2)
O + b2 + a 2 _,_

3 cos ¢
---_ _ -_- ..-.

This equations for Q is correct to order x-_.

procedure to any order in x_ and obtain the higher order terms in the expansion of Q, for

our purposes here it is not necessary to pursue that calculation further.

t

The small x solutions for y _ xr,y ,-_ 0(1) can then be used to form a composite

expansion to give asymptotic forms for U and V to begin the numerical solution of (1.4)

from some small but finite value of x = x2. We restrict our discussion to the case when

¢ = 0 which corresponds to the most physically relevant case when U ° (0) _ 0 (Note that

since U* = cos by cos ¢ - sin by sin ¢ and the problem for U, V is a linear one the only two

distinct cases are ¢ = 0, ¢ = 7r/2).

For the receptivity problem formulated above the disturbance energy is infinite since

it is not confined to the boundary layer, therefore we cannot monitor the growth of a
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disturbance using the approach of Hall (1983). Since the normal and spanwisevelocity

componentsare0(Re- _) smaller than the streamwisecomponentit is appropriate to define

a local growth rate in terms of U alone. Thus we use a, defined by

=

to monitor tile growth of the disturbance. We note that if or, was used in the calculations

of Hall (1983) the results would be virtually identical.

Now let us discuss some results for the GSrtler receptivity problem formulated above.

The disturbance equations were marched downstream from x -- x2 using the code discussed

in Ha11(1983). After some experimentation we found that a suitable step length in the

streamwise direction was 0.00001 if a normal step length of .0333 was used. All the

calculations reported on here correspond to these step lengths and 1000 points were used

in the vertical direction. The surprisingly small x-step length was necessary because of the

singular behaviour of V for small x.

In Figure 3.3 we show cL for the case X = 1.,b = 0.,G = 70. and several different

values of the vortex wavenumber a. For small values of x the development of the vortex is

independent of it's wavenumber and the growth rates are indistinguishable. As the vortex

develops dowstream the growth rates diverge and become positive at different downstream

locations. If the local GSrtler number and wavenumber are calculated at the different

locations where the growth rate vanishes a neutral curve in the (a, - G,) plane can be

calculated. Figure 3.4 shows the result of several such calculations for different values of

b. A crucial result illustrated by this calculation is that instability occurs first for the case

b = 0., so we conclude that the most dangerous incoming disturbance for the receptivity
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problem has U ° ,,_ cosaz at the leading edge of the wall. Our only explanation of why this

should be the case is to point out that , if the disturbance was evolving in anything like a

quasi-parallel manner , incoming disturbances with the higher values of b would stimulate

the more stable higher G brtler modes.

In Figure 3.5 we show two neutral curves corrsponding to b = 0 but with different wall

curvatures. This Figure demonstrates that the most dangerous mode is weakly dependent

on the wall curvature distribution, this result has implications for the question of how the

curvature should be distributed on an aerofoil in order to inhibit GSrtler vortex growth.

In Figure 3.6 we have compared our results with the experimental observations of

Tani(1962), Bippes and Gbrtler(1972),

Blackwelder (1987). The curves (a),

Winoto and Crane(1980) ,and Swearingen and

(c) correspond to a typical neutral curve from

Ha11(1983) and Floryan and Saric(1979) respectively. The curve (b) comes from the re-

ceptivity calculation with b = 0., X = 1.; we stress that this is the most dangerous mode

predicted by the receptivity calculation. Apart from the one experimental point below this

curve we see that the receptivity calculation is the most consistent with the experiments.

The development of the disturbance velocity components as the vortex develops down-

stream is shown in Figures 3.7a,b. We note that the edge velocity for the streamwise

velocity component decreases monotonically with x whilst the normal velocity component

at the edge of the boundary layer initially decreases but then increases with x. The initial

decrease occurs because V ,-_ x _-for small enough x whilst for larger (but not too large)

x the term proportional to G causes V to grow. In fact at even larger x the edge velocity

begins to decrease with x because of the exponential factor in (3.17). It is interesting to
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note that whilst the initial streamwisevelocity componentof the disturbance looks similar

to a parallel flow eigenfunction the normal velocity component does not. Indeed in the

initial stagesof its development this componenthas sign opposite to that in the unstable

regime.

4. The nonlinear stages of GSrtler vortex growth

It is in the nonlinear regime that significant differences between GSrtler vortices and

other hydrodynamic instabilities occur. We recall that for most fluid flows the onset of

nonlinearity can be described by the Stuart-Watson method. This method shows that in

the nonlinear state energy cascades down from the fllndamental into the higher harmonics

and the mean flow. At small disturbance amplitudes A it is found that A satisfies an

equation of the form

diAl2 = #[A[ 2 =k [AI 4, (4.1)
dt

where p is a prescribed real constant, t a slow time variable and the + or - sign is to be

taken dependent on whether nonlinear effects are stabilizing or destabilizing. The constant

# is positive or negative dependent on whether the basic state is linearly unstable or stable.

In the Taylor vortex problem nonlinear effects are stabilizing so that (4.1) has the stable

finite amplitude equilibrium solution

[A[2= /z. (4.2)

Thus in this situation the small but finite amplitude disturbance is determined by an in-

teraction involving the fundamental, mean flow correction and the first harmonic. The
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secondaryinstability of the Taylor vortex state (4.2) to wavy vortex instabilities wasdis-

cussedin the paper by Davey,Di Prima and Stuart (1968). The wavy vortex mode arises

from the linear instability of a steady axisymmetric vortex flow to a time-periodic non-

axisymmetric mode disturbance and can be described by a generalization of (4.1) to two

coupled amplitude equations. Experimentally it hasbeenobservedby, for exampleAihara

and Kohama (1981), that GSrtler vorticesundergoa similar breakdownat finite amplitude.

The similarity betweenthe GSrtler and Taylor problemssuggeststhat the procedure used

so successfullyby Davey,Di Prima and Stuart (1968)should, subject to somenonparallel

modifications, be able to describethe breakdownof GSrtler vortices.

The first nonlinear calculation of Gbrtler vortices known to tile author is that due

to Aihara (1976). That calculation ignored nonparallel effectsand attempted to simulate

nonlinear effectsby an approximate averagingtechnique. The procedure hassomesimilar-

ity with the Stuart-Watson method but no formal amplitude equation wasderived. Aihara

claims that his analysisgives predictions consistentwith his experimental results.

\Ve have seenalready that in the linear regime nonparallel effectscannot be ignored

at 0(1) vortex wavenumbers.This must also be the casewhen nonlinear effectsare taken

into account and Hall (1988) integrated the nonlinear version of (1.4) for a variety of

different disturbance amplitudes. The method used wasbasedon that of Hall (1983) but

with an iteration procedure to take care of the nonlinear terms. At sufficiently small

disturbance amplitudes the calculation reproducedthe linear results of Hall (1983) whilst

at larger initial amplitudes finite amplitude states werecalculated. In Figure 4.1 we show

some results from Hall (1988) for a wall with curvature distribution X ,,- x with G =
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.0288,a = .1.The energy in the fundamental and the mean flow correction due to the vortex

is shown for different values of the vortex amplitude A. We note that the calculations were

for an initial disturbance such that A represents the maximum value of the streamwise

disturbance velocity component divided by the free stream speed. In any given calculation

it was found that, sufficiently far downstream, the only energy present in the disturbance

velocity field was associated with the fundamental or the mean flow correction. The total

downstream velocity component at different spanwise locations is shown in Figure 4.2

for /k = .1 . Here we see that, at the spanwise location where upwelling occurs, highly

inflectional velocity profiles are set up as the vortex develops in x. These profiles are locally

unstable to inviscid Rayleigh waves (see Horseman (1990)) so that in some experiental

situations we expect that the onset of time-dependence in the GSrtler problem will occur

as an inviscid secondary instability of a finite amplitude stationary vortex.

The nonlinear calculations of Hall (1988) suggest that any initial spanwise vortex

distribution ultimately develops into a finite amplitude state in which the only energy

interchange is between the fundamental and the mean flow. We now describe strongly

nonlinear stability calculations, due to Hall and Lakin (1988), which explains the latter

type of interaction. Earlier Hall (1982b) had investigated the weakly nonlinear regime

corresponding to small wavelength GSrtler vortices. It was found that, within an a -1

neighbourhood of the linear neutral location the initial development of the vortex is gov-

erned by the system

02 1 2 0 VCg_
{o 2

02fi 08 O

0( 2- 02 -- 8_ (V2)"

(4.3a, b)
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Here k is a a constant, a- 1V cos az is the normal velocity component of the vortex whilst

a-lfi is the mean flow correction. The variable _ is defined by

• = a(x-xN)

where xlv is the neutral location and ( is as defined by (3.3). The higher harmonics

generated are negligible in the interaction so that the initial nonlinear evolution of a vortex

of small wavelength certainly occurs as a mean field interaction. The positive or negative

sign in (4.3a) is to be taken dependent on whether the curvature of the wall increases

more or less quickly than x_. On a concave wall of constant curvature the negative sign

is appropriate and then (4.3) describes the finite amplitude decay of a vortex.

In Figure 4.3 we show some numerical solutions of (4.3) subject to the conditions

v o, I 1 oo,

so that the effect of tile vortex is confined to the ( = 0(1) layer. Figure 4.3 suggests that

for large x the functions g,V develop an asymptotic structure with V trapped in a layer

of depth _ whilst _ decays to zero over a lengthscale 0(_}). In this large _ region V

and _ are respectively symmetric and axisymmetric about ( = 0. Hall(1982b) shows that

the vortex activity decays to zero as the solution of a nonlinear Airy equation in layers

of depth _ situated symmetrically at distance 0(_) away from _ = 0. The mean flow

correction in these layers does not develop a structure and is therefore reduced to zero in

a thicker layer of depth 2_.

A result of some significance is that for large • the mean flow correction is of size

2_ and since fi was initially scaled with _-_ it follows that when _ = 0(a), i.e. when
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x = x,_ = 0(1), the mean flow correction will be comparable with the original basic state.

In nonlinear stability problems governed by the Stuart-Watson method a related stage is

encountered but all the harmonics of the fundamental then become equally important so

that no asymptotic description of this strongly nonlinear regime is available. In the GSrtler

problem this is not the case and surprisingly it was shown by Hall and Lakin (1988) that,

even in the strongly nonlinear regime, where the basic state is totally restructured by the

vortex, an asymptotic description of the interaction is available. The structure found by

Hall and Lakin can be written down as the limiting form of the weakly nonlinear solution

of Hall (1982b) which produces an 0(1) correction to the linear fow. For conenience we

now let e denote a- 1 The different regions found in that limit are illustrated in Figure 4.4.

In region I a finite amplitude vortex exists which is large enough to generate a transfer of

energy into the mean state thereby deternfining that state. In the thin shear layers IIa,b the

vortex activity is reduced to zero again through the solution of a nonlinear Airy equation.

In regions IIIa,b there is no vortex activity and the mean flow satisfies the boundary layer

equations. However, the solutions of the boundary layer equations in IIIa,b must satisfy

certain conditions at yl(x), y2(x), the unknown positions of the shear layers IIa,b.

In region I the total x and y velocity components expand as

u = so+ _ +... + [{_EU_+ _2E_ +.--},

+ e2E2U 2 + ...] + c.c

(4.4a, b)

v = _o+ _1 +... + [{_-lEvo_+ E_o_+'},

+ z_v_ + l + c.c

where E = exp(iaz).
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The GSrtler number expandsas

G = Go a4 + ... (4.5)

If the above expansions are substituted into the Navier-Stokes equations and the dominant

terms are equated we obtain

+ iW 1 = O,
Oy

u_+ Vo_°_°_ o,
Oy

Vo_+ao_V_o= o,
(4.6a, b, c, d)

solution if

(4.6b,c) do not determine the former functions.

Off0
ax_o - 1, (4.7)

0y

which determines the mean state which can support the imposed vortex structure. Indeed

(4.7) can then be interpreted as the equation which determines a basic state which makes

the vortex with wavenumber a and all its harmonics neutrally stable. This behaviour is

exactly that postulated by Malkus (1956) who argued that in a turbulent flow the mean

state was that which made all modes present neutrally stable. In other words what Hall

and Lakin found was that, when nonlinear stability theory is pushed way beyond the

weakly nonlinear state, the mean state where vortices exist subtley arranges itself so that

small wavelength vortices are neutrally stable. The solution of (4.7) is then given by

,,/a(x) + 2v
_o = _ , (4.s)
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_ ipo_= %_.
If UO1 and V 1 are known then equations (4.6a,d) determine IV01 and P01 respectively but



where a(x) is an unknown function of x.

The y component of the mean state is then determined by tile continuity equation to

give

3 !

a'x/a + 2y (a + 2y_X
+ b(x). (4.9)s0 - 234-07£ s_x

Here b(x) is another unknown function of x. Thus the mean state in I is determined by

insisting that the equation satisfied by the vortex in the core should have a consistent

solution.

Meanwhile the x-momentum equation yields the following equation when the domi-

nant terms independent of the spanwise variable are retained:

O_o O_o 32_o = 2a{_o_1Vo_12}._0--b-7-z + So ay Oy 2
(4.10)

At this stage _o and V0 are already known so that (4.10) determines IVoll 2. If (4.10) is

integrated with respect to y we obtain

_0_0 bv/7+2y 1 (a+2y)2x ' 1

B(x)- 2-O---y-.y]Voll 2 _ + + (4.11)a4-O_ 12 a ox2 4a + 2_ av_-_'

where B(x) is another function of x to be determined along with a(x) and b(x). The

phase of 111 is determined from the spanwise momentum equation but is not needed in

the present discussion. Since IV01] cannot be negative (4.11} can be used to determine

yl(x), y2(x) the locations where the vortex activity decays to zero. Thus (4.11) is satisfied

at Yl, Y2 with Vo1 = 0and if B(x) is then eliminated we obtain an equation of the form

F(a,b, yl, y2, X, Go) = 0. (4.13)

In fact (4.13) above is not sufficient to determine Yl and Y2 since a and b are also unknown.
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An anlysis of the shearlayers IIa,b show that the vortex activity which is decaying

algebraically on entering the layers is reduced to zeroexponentially as the solution of the

Painlev5 equation
d2_b

dy 2 y_b = _b3, (4.14)

y --, -00.

The mean flow functions do not acquire any structure in the transition layer scale at leading

order so that _0, _0v and T0 remain constant in IIa,b.

Finally in IIIa,b there is no vortex motion so that the mean flow u, v at leading order

satisfies

which must be solved subject to

aa aft 02fi

e_x x + Say Oy 2'

O_ aT

Ox + -_y 0

(4.15)

fi=_=0, y=O,

fi_l, y+00.

(4.16)

However (4.15) is valid only in (0, Yl), (Y2, 00) so the problem is completed by the conditions

_/a+ 2yj a'v/a + 2yi (a + 2yj)_X'

fi - _ , G o_ _ , X = 1, S = 2 GVz____ + 6 _ X - b ,

y= y_ for j= 1,2.

Furthermore the 'jump' condition (4.13) must also be satisfied so that the mean flow is

determined as the solution of the boundary layer equations subject to conditions at two

unknown interfaces Yl and Y2. This numerical problem can be reduced to the solution of

an ordinary differential system in the special case X ~ x _ since _ and V then depend on x

and tile similarly variable yx- _. In general the partial differential system must be solved

and this was done by mapping (O, x2) into (0,1) and (Y2,00) into (1, oo) and solving the
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boundary layer equations in (0, cx)) subject to jump conditions at J = y/yj = 1. The

y-derivatives were approximated using finite differences and the calculations were started

by evaluating the weakly nonlinear form of the solution as x --* x_.

Figure 4.5 shows Yl and Y2 obtained from the above scheme for the case Go = ½, X =

V/-2-x. Also shown in this Figure are the results obtained from the similarity solution.

Figure 4.6 shows Yl and Y2 for the case X = 2x, Go = 4.176. In that Figure we have

also shown asymptotic solutions for Yl and Y2 which can be readily obtained in the limits

x --_ x_,x _ cx_. In Figure 4.7 the mean velocity component is shown at x = 1 as a

function of y for X = 2x, Go = 4.176. These results demonstrate that for large x the region

of vortex activity spreads throughout the boundary layer; more precisely Hall and Lakin

(1988) show that if X "_ xM with __,/ > 21-then tile free boundary problem for Yl and Y2

yields

Yl "_ x2- 3M X M, y2,-o , x----*oo.

Thus the presence of large amplitude vortices causes the mean state to be altered ahnost

everywhere from it's unperturbed form. Indeed the boundary layer now grows like x M

rather than x_ so that it is thickened by the presence of the vortices. We further note

that if M > } the lower transition layer approaches the lower waU and then the mean

downstream velocity is a simple linear shear flow from y = 0 to Yl. \Ve note that at

some stage the layer IIa becomes of comparable depth to IIIa when x --_ oo so that

a modified Painlev_ problem must be solved there, Blennerhassett and Bassom, private

communication.
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Thus, perhaps uniquely in hydrodynamic stability theory, we see that small wavelength

GSrtler vortices can be described asymptotically all the way from the linear regime to a

nonlinear state where the mean flow is driven almost everywhere by the vortices. For some

flows the GSrtler vortex mechanism is operational only for a finite range of values of x; for

a Blasius boundary layer this is the case if the wall curvature does not increase as quickly

as x _. In that situation the free boundary problem specified above will terminate at some

x = xT where Yl and Y2 coalesce. Beyond x = XT there is no vortex activity and the flow

is obtained by solving the boundary layer equations throughout (0, oo). However, even

though the vortex activity has ceased, the mean state will not be the same as that which

is set up in the absence of upstream vortices.

The main result then of the Hall-Lakin analysis is that where large amplitude vortices

exist they drive the mean state which must satisfy (4.7). In fact (4.7) also applies to curved

channel flows. A modified form of (4.7) , namely

(d 0)2
VOXftO d--y _ = 1, (4.17)

was shown by Bassom and Hall (1988) to determine the mean state in curved channel

flows driven by the interaction of vortices and Tollmien-Schlichting waves. Interestingly,

it was found that in curved channel flows there can be no large amplitude vortex state

in the absence of curvature since (4.17) with GO = 0 has no acceptable solutions. This

result suggests that GSrtler and Witting's(1958) suggestion that GSrtler vortices occur as

secondary instabilities of Tollmien-Schlichting waves is not correct. Finally, before going
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on to discussthe breakdownof the nonlinear state of Hall and Lakin (1988) we point out

that a further generalization of (4.7), namely

R0-_yy = -1,

where R0 is a scaled Rayleigh number and T a mean temperature is appropriate to B_nard

convection problems where the instability is initially localized in the vertical direction.

Now let us turn to the instability of the vortex states found by Hall and Lakin (1988).

Experimentally it has been known since the work of Bippes (1972) that finite amplitude

vortices can be unstable to a wavy vortex disturbance propagating in the streamwise

direction. Hall and Seddougui (1989) have recently investigated this possibility and show

that if this type of secondary instability is present in the strongly nonlinear regime of Hall

and Lakin then it must be concentrated in either of the shear layers IIa,b.

The disturbance imposed on the flow in regions IIa,b by Hall and Seddougui is zr/2

radians out of phase with the primary vortex and is proportional to

expia2{/_K(x)dx - ata2}.

Here _t is the fixed (real) frequency of the wavy mode whilst K(x) is a complex wavenumber

which will evolve in x as it develops in the streamwise direction. In fact K(x) is found to

expand as

Ii = Ko(x) + a- _IQ(x) +...

and Ko turns out to be purely real and such that the wave propagates downstream with

the mean velocity field in IIa or IIb. The next term Kz(x) is complex in general but at

particular locations and frequencies is real. Hall and Seddougui indentified a number of
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suchneutral states and showedthat in general the upper shearlayer will break down first;

note that since the wavy mode is trapped in IIa or IIb there is no reasonwhy the latter

layers should simultaneouslybecomeunstable to the wavy mode. The results of Hall and

Seddouguiwere entirely consistentwith the experimental observationsof Peerhossainiand

Wesfreid (1988) who identified low and high frequencysecondaryinstability breakdownsof

the flow belowand abovethe regionof vortex activity. The type of flow pattern predicted

by the Hall-Seddougui calculation after the secondaryinstabilty is shown in Figure 4. 8.

An alternative description of nonlinear GSrtler vortices has recently been given by

Sabryand Liu (1987). The latter authors madea parallel flow approximation and modelled

the spatial growth of a boundary layer by letting it evolve in time. This procedureis often

used in Computational Fluid Dynamics when the instability of a spatially varying flow

is simulated numerically. The basic state used in such calculations is a solution of the

Navier-Stokesequations only if some ficticious body force is applied. Somejustification

for this approach is often made by appealing to Gaster's (1962) discussionof spatial and

temporal growth rates and their relationship. In situations wheretransition is dominated

by Tollmien-Schlichting wavesit appears that numerical situations carried out using this

approach are remarkably successfulin reproducing experimental results, so that, even

though no formal justification for the technique can be given, this type of parallel flow

temporal simulation capturesthe essentialphysicsof transitional flat plate boundary layer.

Howeverfor Tollmien-Schlichting wavesit is knownthat instability occursat relatively high

Reynolds numbers; in this casethe parallel flow approximation can be formally justified
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and therefore it is not unreasonableto assumethat the essentialphysicsof the problem is

obtained within the framework of this approximation.

As we haveseenin Section3 and this section,a crucial property of GSrtler vortices is

that at 0(1) wavenumberstheir evolution is completely controlled by nonparallel effects.

This suggeststhat temporal parallel flow simulations of nonlinear GSrtler vortices might

well be of little relevanceto the real problem.

Sabry and Liu comparedthe resultsof their calculationsto the experimentsof Swearin-

gen and Blackwelder (1987). As an initial disturbance they introduced a parallel flow

eigenfunction of amplitude appropriaate to the experiments. The parallel flow equations

werethen marchedforward in time and related to the spatial case by a convenient choice of

the convection velocity. This velocity was choosen in order to optimize the agreement with

theory and experiment. Note that in ttl_s type of simulation the boundary layer thickness

is a function of time so the instantaneous effective wavenumber also varies in time. The

Sabry-Liu calculations were begun at a position where the experimentally observed vor-

tices were certainly nonlinear. Figures 4.9 and 4.10 compare the displacement thickness

and wall shear at the peak-valley locations as predicted by Sabry and Liu and measured by

Swearingen and Blackwelder. Figure 4.9 also shows the wall shear for Blasius flow whilst

the Blasius wall shear and the shear for a turbulent boundary layer are shown in Figure

4.10. The agreement between the calculations and the experiments is exceptionally good

;a few words of caution though are perhaps appropriate.

Firstly, it should be pointed out that the Sabry-Liu calculation does not allow for

any streamwisc dependence of the disturbance , thus necessarily they cannot capture the
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secondary instability of the initial vortex state. Almost certainly the turning points in

the experimental data occur when the initial vortex state hasbroken down; it is therefore

surprising that this effect is captured by Sabry and Liu. Secondly it is not clear from

the Sabry-Liu calculation how the agreement between theory and experiment depends on

the two parameters at their disposal ,ie the convection velocity and the initial shape and

location of the disturbance.

Also shown in Figures 4.9,4.10 are the results obtained using the code of Hall (1988) to

simulate the experiments. The calculations were started at a position where the measured

vortex was small, we see that tile spatial calculations correctly predict the right trends

in shear and displacement thickness up to tile point where the corresponding quantities

measured experimentally develop turning points. We believe that this is to be expected

since at that stage the vortices have become unstable to time-depoendent perturbations;

interestingly the velocity profiles just before this happens are highly inflectional and so

inviscid instabilities would possibly cause a secondary instabilty to occur. "_Ve note that

the spatial calculation suggests that the wall shear at the peak locations is about to change

sign when the calculations were stopped; this was done because at this stage our results

began to develop a grid-size dependence which was presumably caused by tile local sign

change of the downstream velocity component. We further note that the spatial code

started from different initial staions gave quantitatively similar results to those reported

above. Thus our spatial calculations suggest that The Sabry-Liu calculations should be

treated with some caution. A much more detailed comparison between temporal and

spatial nonlinear simulations of Gdrtler vortices has been made by Malik(1989), private
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communication. Malik used the spatial code of Hall (1988) and a temporal code derived

from Malik, Zang, and Hussaini(1985). Malik was unable to reproduce the results of

Sabry and Liu from his temporal simulations; indeed Malik's temporal simulations were

qualitatively similar to those from the spatial approach.

5 Conclusions

We have seen that the linear evolution of GSrtler vortices in growing boundary layers is

dominated by nonparallel effects except in the small wavelength limit. In the latter regime

a simple asymptotic description of the vortices is available whilst at bigger wavelengths the

linear partial differential equations governing the linear growth of vortices must be solved

numerically. The early work in this field ignored the nonparallel effects possibly because

quasi-parallel stability theory had been so successful in explaining the growth of Tollmien-

Schlichting waves in boundary layers. Tile reason why parallel flow theory captures the

esssential details of Tollmien-Schlichting wave growth is that this instability occurs at rel-

atively large Reynolds numbers at a wavelength small compared to a typical distance over

which the boundary layer itself evolves. Thus the early parallel flow stability calculations

of Tollmien-Schlichting waves appear as the first approximation of the procedures devised

by Bouthier(1973) and Gaster(1974). Similarly, in the more formal asymptotic description

of Tollmien-Schlichting waves by Smitli(1979), nonparallel effects do not appear at leading

order. For the vortex instability mode of a boundary layer it is only at high wavenumbers

that tile spatial evolution of the instability occurs on a shorter lengthscale than that over

which the mean flow develops.
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Another significant differencebetweenthe GSrtler and Tollmien-Schlichting modesis

that they are respectively governedby elliptic and parabolic differntial equations. This

meansthat the position of neutral stability of a vortex dependson its upstream behaviour.

This latter property was the main result found by Ha11(1983);later researchersattempted

to avoid the troublesome non-uniquenessimplied by that property by arguing that the

parallel flow eigensolutionsshould be used as 'the initial conditions' for the disturbance

equations. In this paper we have shownthat if, the instability arisesfrom a longtitudinal

vortex structure impinging on the leading edgeof the curved wall, then a most dangerous

modecanbe isolatedand it's neutral curvecalculated. The curvewehavefound is certainly

much more in line with experimental observationsthan those found previously. However,

in some experiments the vortices could be tripped by disturbances introduced at the wall,

and in that case we would expect a different neutral curve to exist. Thus, as a summary

of our receptivity results, we can say that if a GSrtler experiment is performed in a faciilty

which allows the instability to be triggered by free stream disturbances which include all

possible spanwise wavelengths, then the experimental results should correlate with the

lowest neutral curve from the receptivity calculations. It should be noted that the neutral

curves found in the receptivity calculations depend on the rate of change of the GSrtler

number so that the neutral curve of the most dangerous mode needs to be calculated for

any particular curvature distribution. Also it needs to be pointed out that the receptivity

calculation we trove carried out can be extended to any two-dimensional boundary layer

but the initial form of the instability is a function of the boundary layer.
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All the results discussed in this paper are for two-dimensional boundary layers. The

only work on GSrtler instabilities in three-dimensional boundary layers known to the au-

thors is that due to Ha11(1985). That paper investigated the instabilty of weakly three-

dimensional boundary layers on infinite swept walls where the spanwise velocity compo-

nent was comparable to the normal velocity component in the boundary layer. It was

found that, as the spanwise velocity component is increased, small wavelength vortices are

stabilized and become time-dependent. The results suggest that, in a three-dimensional

boundary layer, the GSrtler mechanism might not even be operational. However a word of

caution is in order because the order one wavenumber problem is yet to be tackled. In fact

there is some limited experimental evidence, Baskaran and Bradshaw(1988), for turbulent

three-dimensional boundary layers which suggests that a crossflow can destroy the GSrtler

mechanism.

Finally, in our discussion of results for linear theory, we point out that some work

has been done on boundary layer flows other than tile Blasius one. Thus for example

the wall-jet has been studied by number of authors. This boundary layer is of practical

interest and can be unstable on both concave and convex walls, Drazin and Reid(1979)

and Floryan (1986).

The reader is refered to the latter paper for a discussion of parallel flow theory applied

to the wall-jet problem and to Wadey(1990) for the nonparallel and nonlinear situations.

Here we merely report that nonparallel efffects again dominate the linear growth of the

vortices for wall jets and that in the nonlinear regime the approach of Hall and Lakin(1988)

can be used.
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It is in the nonlinear regimewherethe GSrtler mechanismdevelopsa remarablestruc-

ture. In particular small wavelengthvorticescanbe describedin a strongly nonlinear state

where they actually drive the mean flow. The breakdown of these vortices causedby a

wavy vortex secondaryinstability can also be decribed asymptotically and the results ob-

tained agreeewell with experimental observations. At order one vortex wavelengths the

nonlinear nonparallel evolution of the vortices can only be described numerically. In this

paper we have describeda comparison of the results obtained using the spatial nonlinear

approach of Ha11(1988) and a temporal parallel flow simulation of Sabry and Liu(1988).

The differences between the results which we have found suggest that temporal simulations

do not qualitatively reproduce important features of the nonlinear stages of vortex growth.

Finally we close by making a few remarks about some recent work on vortex-wave

interactions in boundary layer flows and channel flows. The point which we wish to make

is that in parallel flows the interaction of oblique Tollmien-Schlichting waves can cause

the generation of longtitudinal vortex structures which have scales appropriate to GSrtler

vortices. The work of Hall and Smith (1988) shows that the linear vortex equations (1.4)

have sufficient structure to describe oblique Tollmien-Schlichting waves so that an inter-

action between these waves and longtitudinal vortex structures can be explained within

the framework of the GSrtler vortex equations. The interaction equations found by Hall

and Smith have singular solutions of large amplitudes and these solutions can exist in the

absence of wall curavature. Thus there can be a self-sustained interaction between longti-

tudinal vortices and oblique waves. These results were developed further by Hall and

Smith (1989a,b) who show that, in a flat plate boundary layer, small amplitude oblique
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Tollmien-Schlichting wavesoccur as secondary bifurcations from two-dimensional waves.

Subsequently these oblique waves drive a large amplitude vortex field of the type which is

known to occur in some forms of boundary layer transition.

The author would like to acknowledge the generosity of Dr. S. Mangalam who supplied

Figure 1.1 and some helpful discussions with Dr. S. Cowley concerning the receptivity
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and the US Air Force without whose support much of the work discussed here would not
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FIGURE 1.2 The flow pattern associated with GSrtler vortices.
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