
,,ll ='at _/,_.,

NASA Technical Memorandum 101668

I

SOFTWARE VERIFICATION PLAN FOR GCS

LESLIE A. DENT
ANITA M. SHAGNEA

KELLY J. HAYHURST

JANUARY 1990

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-TH-10166_) Sr)FT_ARE VERIFICATI,rIN PLAN

Ft'!R GCS (NASA) 112 p CSCL 098

G3/38

N90-18057

UncIas

0201071

m

i

i

Preface

Tile Software Verification Plan for G CS is document # 11 in a series of

fifteen documents which fulfill the Radio Technical Commission for Aero-

nautics RTCA/DO-178A guidelines, "Software Considerations in Airborne

Systems and Equipment Certification [1]." The documents are numbered

as specified in the DO-178A guidelines. The documents in the series are

used to demonstrate compliance with the DO-178A guidelines by describing

the application of the procedures and techniques used during the develop-

ment of flight software. These documents were prepared under contract

with NASA-Langley Research Center as a part of their long term research

program addressing the fundamentals of the software failure process.

This project consists of two complementary goals: first, to develop soft-

ware for use by the Research Triangle Institute (RTI) in the software error

studies research program sponsored by NASA-Langley Research Center [2];

second, to use and assess the RTCA/DO-178A guidelines for the Federal

Aviation Administration (FAA). The two goals are complementary in that

the use of the structured DO-178A guidelines in the development of the

software will ensure that the test specimens of software have been devel-

oped according to the industry standards for flight critical software. The

error studies research analyses will then be conducted using high quality

software specimens.

The implementations will be subjected to two different software test-

ing environments: verification of each implementation according to the

RTCA/DO-178A guidelines and replicated random testing in a configura-

tion which runs more than one test specimen at a time. The term im-

plementations refers to bodies of code written by different programmers,

while a version is a piece of code at a particular state (i.e., version 2.0 is

the result of code review). This research effort involves the gathering of

product and process data from every phase of software development for

later analysis. More information on the goals of the Guidance and Control

Software (GCS) project are available in the GCS Plan .for Software Aspects

o] Certification.

The series consists of the following documents:

-i-

GCS Configuration Indez Document no. 1

GCS Development Specification Document no. 2

GCS Design Description,q One for each software implementation.
Document no. 3

GCS Programmer's Manttal Document no. 4, includes Software De-

sign Standards, docum_]__ _ °

GCS Configuration Mana.qement Plan Document no. 5A

Software Quality Assurance Plan for GCS Document no. 5B

GCS Source Listing One for each software implementation. Docu-

ment no. 6

GCS Source Code One for each software implementation. Document

no. 7

GCS Bzecutable Object Code One for each sot'tware implementation.

Not available on hardcopy. Document no. 8

- GCS Support/Development System Configuration Descripiion Doc-
ument no. 9

GGS Simulator (GCS_SIM) Certification Plan Document no. 13A

GCS Plan for Software A._pects of Certification Document no. i4

GCS Accomplishment Summary Do eu__ment no. 10
=

Software Veri_cation Plan for= GCS fioeument no. ii _

--_== _ = zz Li ' _ : zz: : : : _ -

GCS Development Specification Review Description Document no.

llA , _

GCS Simulator (GCS_SIM_ System DeseHption Document no. 13 =

-ii-

g

::] E

i=

}iZ
I Y

Contents

Preface

1 Introduction

2 Software Description

3

3.1

3.2

3.3

General Strategy

Participation of SQA

Static Testing Techniques

Dynamic Testing Techniques

3.3.1 Black-box Testing Techniques

3.3.1.1 Equivalence Partitioning

3.3.1.2

3.3.1.3

3.3.1.4

3.3.1.5

Boundary-value analysis

Stress

Error Guessing

Random

3.3.2 White-box Testing Techniques

3.4 Module Testing

3.5 Stopping Rules

3.6 Test Case Design

3.6.1 GCS Black-box Test Case Design

3.6.2 GCS White-box Test Case Design

3.7 Verification Technique Summary

4 Tools

i-

3

5

5

5

6

7

7

9

9

10

10

10

11

11

12

12

14

14

17

4.1 GCS Requirements Traceability Matrix 17

4.2 Checklists 18

4.3 GCS Problem Report Form 18

4.4 DEC Code Management System 18

4.5 GCS Module Test Log 19

4.6 Analysis of Complexity Tool 19

4.7 Coverage Information Tool 20

4.8 DEC/Test Manager 20

4.9 GCS_SIM 22

-iii-

5 Development Phases 25

5.1 Design Phase 27

5.1.1 Overview 27

5.1.2 Design Review Description 31

5.2 Code Phase 37

5.2.1 Overview 37

5.2.2 Code Review Description 41

5.3 Module Testing 45

5.3.1 Overview 45

5.3.2 Module Testing Description 49

5.4 Sub-Frame Testing • • • • 53

5.4.1 White-Box Testing 55

5.4.1.1 • Overview 55

5.4.1.2 White-Box Sub-Frame Testing Description 59

5.4.2 Black-Box Testing . . :::-.. • • • • • 63

5.4.2.1 Overview 63

5.4.2.2 Black'B0x Sub-Frame Tes{|ng Description. 67

5.4.3 Regression Testing, 71

5.5 Frame Testing 73

5.5.1 Overview _ . , . • • • • 73
• ==_

5.5.2 Frame Testing Description 77

5.6 System Testing . . . , 81

5.6.1 Overview 81

5.6.2 System Testing Description 85

6 Summary 89

A Equivalence Partitioning and Boundary-Value Analysis Ex-

ample for GCS 91

A.1 Introduction 91

A.2 Input Equivalence Classes _..=._....=._... 91

A.3 Boundaries for Input _ 92

A.4 Pseudo-Boundary Conditions , . 93

A.5 Equivalence Classes for Output , . . . , 94
A.6 Test Cases _=... 95

-iV-

t

'i
E

= =

B GCS Forms 97

B.1 GCS Requirements Traceability Matrix 97

B.2 GCS Problem Report Form 101

B.3 GCS Design Review Checklist 105

B.4 GCS Code Review Checklist 109

B.5 GCS Module Test Log 115

C McCabe's Structured Test Technique 119

C.1 Introduction 119

C.2 Procedures , 119

--V--

-Vi-

1 { _

_z

1

List of Figures

1

2

3

4

5

6

7

8

9

10

11

Overview of Development Ph_es and Reviews 2

Equivalence Class Hierarchy 8

Design Review Procedure 29

Code Review Procedure 39

Module Testing Procedure 47

Relationship between White-Box and Black-Box Sub-Frame

Testing 54

White-Box Sub-Frame Testing Procedure 57

Black-Box Sub-Frame Testing Procedure 65

Frame Testing Procedure 75

System Testing Procedure 83

White-Box Sub-Frame Test Case Creation 121

:i

pRF.CF.DING pAGE BLANK NOT "_',..M_.

-vii-

P,_EV I _ INTENTION_L¥ BLANK

7_ u_

E

i :

! ,

J

z

z

-viii-

.... _,_ _ --_

_,, Ji _

_Xm

List of Tables

1

2

3

Guidance Phases

Black-box and White-box Testing by Testing Phase

Dynamic Testing Summary

4

6

15

PRECEDING PAGE BLANK NOT FILMED

-iX-

1 Introduction

i-

According to the Radio Technical Commission for Aeronautics RTCA/DO-

178A guidelines, "Software Considerations in Airborne Systems and Equip-

ment Certification"Ill, the software verification plan is written to provide

instruction to the testers and to explain the verification which will be per-

formed at each stage of the development cycle. The plan should include

descriptions of the testing methods to be used and their purposes, dis-

cussion of tools used, descriptions of the actual tests, and testing results.

Since this release of the plan precedes the actual testing of the software,

no test cases or results are presented; they will be added in a later release.

This plan is organized by the development phases since each phase has

an associated verification activity. The details of the strategy and general

procedures for each phase of the verification are described. See Figure 1

for an overview of the development phases and reviews. The schedule for

verification activities can be found in the GCS Plan for Software Aspects

ost Certification.

A brief description of the software is provided to facilitate understand-

ing of the various phases of the verification process. Following the software

description, an overview of the general verification procedures and a de-

scription of the tools used during the verification process are given. Next,

a detailed description of each phase of verification is presented. The phases

which are addressed here are Design, Code, Module Testing, Sub-Fi'arne

Testing, Dame Testing, and System Testing. Module Testing and Sub-

Frame testing are equivalent to "Module Testing" in the DO-178A guide-

lines. Dame Testing is equivalent to "Module Integration Testing" in the

DO-178A guidelines. System Testing is equivalent to "System Validation

Testing" in the DO-178A guidelines. The DO-178A guidelines "HW/SW

Integration Testing" are not necessary since no specific target hardware

is presently associated with GCS. Since the GCS Development Specifica-

tion existed prior to the incorporation of the DO-178A guidelines into the

experiment, the verification plan does not address verifying either the soft-

ware or system requirements. The GCS Development Specification Review

Description addresses the verification of the software and system require-

ments. As with other DO-178A documents, an attempt has been made to

reduce redundancy by referring to other documents when appropriate.

_j

ao

0 °"_

f_

E_
Q_

0

L_

0

i
I

2 Software Description

The Guidance and Control Software(GCS) implementations are being de-

veloped according to the Guidance and Control Software Development Spec-

ification. This software is to provide guidance and engine control for the

terminal descent phase of a planetary lander onto a surface and to trans-

mit sensory information about the vehicle and its descent, to a recording

device. The vehicle should descend along a predetermined velocity altitude

contour that was chosen to conserve fuel and to effect a safe t at, titude and

velocity upon landing.

The GCS Development Specification calls for the software to be divided

into three separate processing parts called sub-frames. These sub-frames

perform the following functions: Sensor Processing, Guidance Processing,

and Engine Control Law Processing. The three sub-frames constitute a

frame, and the frame must execute in one time step. For the vehicle to

complete a trajectory from the start of descent to landing, a large number

of frames must be executed. A trajectory is considered successful if the

correct commands are given to the engines to bring the vehicle in alignment

with the velocity altitude contour. The velocity altitude contour is defined

before the trajectory is started and is designed to bring the vehicle down

in the safest and most fuel efficient manner. The starting conditions for

the vehicle are called run parameters and include starting velocity, altitude,

attitude, and rotation rate of the vehicle.

For the purposes of this project, GCS will run in conjunction with a

simulator which is known as GCS_SIM. GCS accesses the run parameters

from regions of memory which are common with GCS_SIM. GCS_SIM pro-

vides sensor values of current acceleration, altitude, rotation rate, temper-

ature, touchdown position, and velocity. These readings are also stored in

the common regions of memory. All data which is passed between GCS

and GCS_SIM occurs during the execution of the rendezvous routine. The

rendezvous routine is called by GCS after every sub-frame. The GCS con-

trois three opposed pairs of roll engines, three axial thrust engines, and

a parachute release actuator during the terminal descent. The descent is

I A safe landing is defined as one in which the lander touches down with velocity < 6.2

meters/second normal to the surface, velocity < 3.1 meters/second parallel to the surface,

and an angle between the x-axis of the vehicle and the gravity vector <: some delta.

-3-

Table 1: GuidancePhases

, :: :: __.772: :: : z±:2 2._ . :2 _ _ _: 7_: _ :7 ._ .22_._ ..

t'_ 1 STATE EVENT II NEXT pHASE I NEXT STATE

1 Chute ett,ched - Altitude for turnlng 2

Engines off

Touch down not len6ed

Chute _t t,ched

En|inee on

Touch down nol 0ented

_ute relewed

Axial En|ines 11ot

Touch down not sensed

"'" Chule releised

Aelal Engines Hot

Touch down not 0ensed

Chute relealed

Enginem off

Touch down not sen*ed

engines on le tensed

A,ill on|enos become hot

and the chute is telewed

Altitude fur tutn]n S

engines off' it tensed

Touch down is seneed

Touch down iJ lensed

¢

_nd OCS

End _

Chute 8tracheal

£nl_ine. on

Touch down not lensed

Chute Released

AXiLI Engines Rot

Touch down not sensed

Chute Relessed

EngJnel off

Touch down not lensed

Chute Releued

Enl_ines off

Touch down sensed

Chute Role±sod

Entries off"

Touch down leneed

divided into four phases as illustrated in Table 1.

TheGCSD_veloement Specification does not requ!re _y error handling.

Any error handling which is present in an individual implementation must

allow for GCS_SI-M tO override it' For more information on this subject See

the implementation notes in the GCS Development Specification.

Since the functions o_" GCS impact the safe landing of the plariet_y

landing vehicle, the software is classified by DO-178A standards as critical-

ity level 1 software.

J

i

-4-
f

i •

3 General Strategy

This software verification plan governs the formal review and testing of

three implementations of GCS currently being developed at RTI. The three

implementations are being developed independently of each other with no

communication about the project among the three programmers. All three

implementations will undergo the testing procedures described in this plan.

A unique tester is assigned to each implementation and is instructed not to

discuss the implementation with any of the other testers or programmers.

A review team, consisting of the programmer, the tester, a Software Quality

Assurance (SQA) representative, and a person familiar with the GCS De-

velopment Specifications (user/analyst) will attend all verification reviews

and testing reviews. The same SQA representative and user]analyst will

participate in the reviews for all three implementations. The GCS Plan for

Software Aspects of Certification gives more information about the interac-

tion of project personnel.

3.1 Participation of SQA

Participation of the SQA representative is an important aspect of the ver-

ification process. The purpose of the SQA function is to promote product

quality by ensuring that all development, verification, and configuration

management activities and products adhere to published policies, proce-

dures, and standards. The Software Quality Assurance Plan for GCo e de-

scribes the SQA activities associated with the software verification. The

SQA representative works closely with the testers and ensures that they

follow the procedures which are outlined here. The SQA representative

determines when the programmer and/or tester are ready to advance to

the next development phase. The 5QA Plan for GC8 also gives a descrip-

tion of the Test Completion/Readiness Reviews which are held between the

different phases of testing.

3.2 Static Testing Techniques

Both static and dynamic verification techniques will be used for testing the

implementations of GCS. Static analysis is "the process of evaluating a pro-

-5-

Table 2: Black-box and White-box Testing by Testing Phase
L _

Testing Phase 2 Black-box Testing White-box Testing

Sub-frame x

Frame x

System x
==2

X

gram without executing the program." [3] Dynamic analysis is "the process

of evaluating a program based on execution of the program."[3] The static

verification techniques which will be utilized are the design walk-through

and the code walk-through. A walk-through is defined as "a review process

in which a designer or programmer leads one or.......more other members of

the development team through a segment of d=es_gn-or code that he or she

has written, while the other members ask questions and make comments

about technique, style, and possible errors, violation of development stan-

dards, and other problems."[3] The walk-through is not meant to impose

the style of the rest of the development team on the product nor to provide

solutions to problems. Errors are identified during the walk-through and

are resolved by the progr_ammer after the review. The walk-through is dis-

tinguished from the inspection by having the authoi" present and from the

formal review by not having the customer present. For the purposes of this

verification plan, the design walk-through will be referred to as the design

review and the code walk-through as the code review.

3.3 Dynamic Testing Techniques

The DO-178A guidelines call for two different types of testing: requirements-

based (black-box) and software structure-based (white-box). Both types of

testing will be used for GCS as illustrated in Table 2. The Art of Software

Testing, by Glenford Myers[4], has been relied on heavily in this plan for

descriptions of testing techniques.

_Module test cases are designed by the programmer and are discussed separately.

-6-

, ! !

I

!

3.3.1 Black-box Testing Techniques

Black-box testing may also be called data-driven o1" input/output-driven

testing.J4, page 8] The tester designs test cases by looking at the GCS

Development Specification and considering only the input and output of the

given segment of code without regard to the internal content of the code.

The given segment of the code may be a module, a group of modules, or a

whole program depending on the level of testing which is being performed.

For GCS, black-box testing will be performed at the sub-frame, frame,

and system level. Since the GCS Development Specification will be used

in creating test cases, the testers will be able to develop sufficient test

cases to address all of the requirements contained in the GCS Development

Specification, thus achieving 100% requirements coverage.

There are systematic methods as well as ad-hoc methods for determining

the input for black-box test cases. Myers[4] uses the following classifica-

tions.

Systematic Methods

Equivalence Partitioning

Boundary-value Analysis

Stress

Canse-effect Graphing

Ad-hoc Methods

Error Guessing

Random

The methods of boundary-value analysis, error guessing, and random

will be used along with stress testing which is a variation of boundary-

value analysis. A discussion of equivalence partitioning is included here

since boundary-value analysis utilizes equivalence classes.

3.3.1.1 Equivalence Partitioning The purpose of equivalence parti-

tioning is to develop a minimal set of test cases that invoke as many different

input conditions as possible. This is achieved by partitioning the input do-

main into equivalence classes (see Figure 2). The definition of equivalence

class implies that any one input value from the class is as likely to detect a

particular error as any other input value in that class. Therefore, a test case

using one member of the class, makes testing the other members unneces-

sary. To identify equivalence classes, the test case designer examines each

input to the program and divides it into multiple classes, depending on how

-7-

Program

input a
valid classes

1

n

invalid classes

input b

input n

Figure 2: Equivalence Class Hierarchy

the input is handled. Input values which would be treated the same way

belong in one class. Two types of equi_erlceclasses can be used: valid

and invalid, where invalid classes consist of unexpected or invalid condi-

tions. Each input will probably have more than two equivalence classes.

There are no formal rules to follow when identifying equivalence classes

but the tester should err on the side of caution and identify more equiv-

alence classes when there is a question about input values being treated

in the same m_ner.=lfSh0Uld Mso be no ted_'_at eq_valence classes for

testing are not as formal as those defined in mathematics because they can

overiap.[4, page 45]

After the equivalence classes for all inputs are identified, the test case

designer iden_ifiesthe test cases by using the following procedure. For

each test case input, only one value is chosen. Therefore if an input has

multiple classes identified with it, there must be at least onetest case for

each different d_ass.

1. Write a testcase to cover as many valid classes for different)nputs as
possible. _ _:_ :_7_

2. Repeat until all valid classes are covered;

-8-

i i

¢ ! -

I

; i

3. Write a test case to cover one invalid class.

4. Repeat until all invalid classes are covered.

An example of the equivalence partitioning for a GCS process can be

found in Appendix A.

The strength of equivalence partitioning is that it yields a set of test

cases which avoids repetition and covers error conditions. Its weakness is

that it does not combine specific inputs which can often hide errors or take

advantage of boundary conditions.

3.3.1.2 Boundary-value analysls Boundary-value analysis utilizes the

high payoff boundary conditions which often detect more errors. To design

boundary-value test cases, the equivalence classes for input are identified

in the same manner as for equivalence partitioning. In addition, a set of

equivalence classes of the output is identified. The necessary input values

to achieve that class of output values are then recorded. The test case

designer is also required to create equivalence classes for pseudo boundary

conditions, i.e. conditions which may make a difference based on knowledge

of the application. For GCS, an example of a pseudo boundary condition

is: the small size of the data element AR_COUNTER causes an incorrectly

calculated altitude when both the altimeter radar frequency and the rela-

tive altitude are high. When the boundary-value test cases are designed,

the boundary values of the equivalence classes are selected to be in the

test cases. The example in Appendix A shows the equivalence classes for

one of the processes of GCS and includes the pseudo boundary conditions

plus equivalence classes for the output. Boundary-value analysis produces

high-yield[4] test cases. It requires practice and knowledge of the software

application. It does not have a met_hod for combining inputs , except where
consideration of particular output values causes inputs to be combined. For

GCS, the method of error guessing will be used to help detect errors which

can be hidden by a combination of inputs.

3.3.1.3 Stress Stress condition test cases are usually meant to over-

load the system[5, page 108]. For GCS, sensor values are examples of stress

conditions. The stress test cases carry the notion of invalid equivalence

--9"-

classes (from boundary-value analysis) farther by combining selected in-

valid inputs. Since error handling is not required by the GCS Development

Specification, stress testing may correctly cause the planetary: lander to

crash.

3.3.1.4 Error Guessing Error guessing is an ad-hoc type of test case

design which utilizes the tester's experience and intuition to design test

cases. It requires a small amount of effort and yields a high-payoff. When

performing error guessing test case design, the tester constructs test cases

by selecting any set of inputs which might produce errors. Often the tester

is subconsciously using other methods of test case design such as boundary-

value analysis. Error guessing does require the skills of an experienced

tester.
: ±

3.3.1.5 Random Random testing use s randomly generated input for

test cases. Random testing has the potential for a high-payoff because

conditions which no one might have considered are generated; it can be

especially useful-during system-level stress testing.[6, page 68] However,

random testing is not systematic, there can be repetitiveness in the test

cases, making it a less efficient method for most levels of testing, GCS will

use random testing for system-level test cases. Some random test g_eneration

schemes use a statistical basis for picking the input values for a test case.

For GCS, the randomly generated inputs will be picked based on the usage

--dist,ribUtion aeross_he_-n_ace:

3.3.2 White-box Testing Techniques

White-box testing can also be considered Iogic-driven testing[4, page 9]

because it requires the t_ter to examine the structure of the code w_le

designing and executing the test cases. White-box testing can be performed

at any level but is typically performed at the lowest level of testing so that

the amount of code being examined is manageable. For GCS, white-box

testing will be performed only at the sub-frame level.

SThe GCS input space is described in Usage Distribution for the Guidance and Confrol

Software by B. Ed Withers, to be published.

-10-

i

i

!

!

. J i

An important aspect of white-box testing is determining what comprises

adequate code coverage. There are many different criteria for adequate code

coverage. The criteria range from simple statement coverage, where every

statement in the program is executed at least once, to complete path cov-

erage, where every possible combination of statements is executed. See [4,

pages 37-44] for an excellent description of the different criteria of adequate

coverage. The criteria used for GC$ will be multiple-condition coverage,

which requires all combinations of input at each decision statement to be

exercised. A decision statement can be a single branch such as a simple

if-then statement or a branch which has more than one possible condition,

such as a compound if-then, a nested if-then, or a switch statement. All en-

try points to the code are also required to be exercised. The development of

white-box test eases might be considered part of static testing since errors

can be discovered while'formulating the test cases. For instance, it might

be determined tha_:p_t of the code is unreachable. Most errors, however,

will be discovered during the execution Of the code; therefore, white-box

testing will be considered a dynamic testing technique for this project.

Since each implementation of code will be unique for GCS, the white-

box test cases will be specific for each implementation and constructed by
the individual testers.

3.4 Module Testing

The test cases for the module testing will be generated by the individual

programmers and thus will vary with each implementation of code. The

GCS Development Specification does not constrain the size of a software

module within the separate sub-frames, so the size of a module is deter-

mined by the programmer. The programmer conducts his own module

testing and is only responsible for conducting a minimum set of test cases

using any technique desired.

3.5 Stopping Rules

A stopping rule is a guideline which determines when a testing phase

is done. For dynamic test techniques, there are actually two stopping

rules. The first stopping rule determines when test case creation is fin-

-11-

ished. The secondstopping ru!e determin_eswhen test case execution is

finished. Many test techniques have stopping rules built in, For exam-

pie, multiple-condition coverage implies a stopping rule by requiring 100%

multiple-condition coverage for test case creation and test case execution.

Other stopping rules are less obviouS. The Stopping rules for eXeCuting

black-box sub-frame and frame testing are that all test cases must execute

correctly. Executing correctly means the expected results are achieved.

Thus, the burden of thorough testing is focused 0nthe test creation S_op-

ping rule. For GCS, the test creation stopping rule decrees there should

be 100% requirements coverage. The stress cgndition testlng for system

testing will also follow the test execution stopping rule that all _est cases

must execute correctly. The t_st_r_atign :stopping :rule °decrees .that fifty

stress test cases must be developed_: _ T_h_e random testing part of system

testing will use an adapted form of a mean time between failure (MTBF)

rule for test execution. Fifty consecutive random test cases must execute

correctly. If one test case fails, the fault is corrected and the count to fifty

is restarted while new test cases are executed. Module testing will use test

creation and test execution stopp!ng rules that simply require at least three

test cases per module for a total of at least twenty test cases per sub-frame.

3.6 Test Case Design

3.6.1 GCS Black-box Test Case Design

All black-box test cases will be designed by the three testers as a group

before sub-frame testing is started fo r any implementation, For ease of test

case design and efficiency, the black-box test cases will be designed in the

reverse order from that in which they will be executed

Test Case Design Test Case Execution

system sub-fr_e

frame frame

sub-frame system
- =" :

= =

The system test cases will be designed first because they consist of trajec-

tories whose input is run patterers. The expected results for these test

cases will consist of a determination of whether the vehicle should be able

-12-

i
I :

i ,

k i

I :

to land safely 4 with the given initial conditions and an expected point of

crossing the velocity altitude contour. The system test cases will be val-

idated using two prototype implementations which were developed as an

earlier part of the GCS project. The frame test cases will be derived by

using some of the intermediate results after the system test cases are exe-

cuted on the prototypes as input for the frame. The intermediate results

will also help to determine the output for the frame. In the same manner,

the sub-frame test cases will be derived.

GCS black-box test cases at the sub-frame and frame level will be

designed using a combination of the boundary-value analysis and error-

guessing methods. The testers will construct a chart of all the equivalence

classes for the input and output of each sub-frame and frame. No dis-

tinction will be made between invalid and valid equivalence classes, since

GCS_SIM prevents impossible conditions and error handling is not required.

Those classes will be combined to make test c_es, utilizing the intermediate

results from the system testing, as described above. Full requirements cov-

erage will be achieved by a combination of determining pseudo boundary

conditions, determining expected results, and determining the necessary

input to achieve a specific output. The GGS Development Specification

is divided into different processes. The processes make up the sub-frame.

Each requirement is tied to a specific process, except those related to pro-

cess control, timing, and memory. If there is any doubt that all require-

ments are covered, additional test cases will be created by the testers. The

testers may also use error guessing at their discretion to create additional

test cases.

GCS black-box test cases at the system level will be divided between

stress condition test cases and randomly generated test cases. Some of the

randomly generated test cases may include stress conditions. All of the

input to these test cases will consist of run parameters and the expected
results will be as described above. Some intermediate results may also be

examined for stress cases. Those intermediate results will be described in

the individual test case.

4See footnote 1.

-13-

A DTM s benchmark file will be created for each test case. More

specific proceduresforblack-box test case design will be added to a later

release of this doizu-mi_n[.

3.6.2 GCS Whlte-box Test Case Design _

The GCS white-box test cases will be designed during the sub-frame testing

phase of the development cycle by the individual tester for each implemen-

tation. The general procedures for test case development are described in

the Sub-Frame Testing section of this document.

3.7 Verification Technique Summary

The static technique of a walk-through will be used for reviewing the design

and code. Table 3 shows a summary of the dynamic test techniques which

will be used for verifying each implementation of GCS.

5= i =

SSee the Tools section for a description of the DEC/Test Manager(DTM).

=

-14-

U

G_

O _

0
oi,,J Q3

I,J

O"
oJ=1

u

E_

J

L_

c_

-K-
•.--,4 ,--,-I i,--,.I

_ _ _ _)

_ _ ° o__ _c_
_ _o_ oo

o

_ _ _ I-"1 _ T_I ,,.,._4

A,I t-.. t--.

o_ _ _
o_,=_

o _ _

I-o _ i,-=4

>

0

°p,,v

_ o

cr_

r_

_o

_3

,.cl q)

-_ _)

_ 0

0

-15-

ot

- i

i
i
i

i

I

T

=

I

r

-16-

4 Tools

Several tools will be used throughout the verification process. Some of

these tools are software packages and some are paper forms which help en-

sure verification is performed in an organized and standard manner. The

tools are presented in the order in which they will be used on the project.

Where appropriate, validation of the t001 is discussed. See the GCS Sup-

port/Development System Configuration Description for information about

the specific versions of the tools to be used.

4.1 GCS Requirements Traceability Matrix

A matrix will be used to demonstrate requirements traceability. The GCS

Requirements Traceability Matrix will provide verification continuity through

all phases of development. This matrix consists of a row for each require-

ment found in the GCS Development Specification and a column for each

development phase. 6 During the review associated with each phase of de-

velopment, the material under review will be checked through this matrix

to ensure that all requirements are accounted for. Violations will be marked

_by inserting the appropriate GCS problem report number. A violation oc-

curs when the requirement is not covered or is covered inadequately or

incorrectly: C0mpii_ce_wl]ibe marked by iriSerting the appropriate iden-

tifier for the design section, code section, or test case. There will be one

copy of the matrix for each implementation of code; and that copy will

be used during the design review, all code reviews, and all test readiness

and completion reviews. If any requirements change, the matrix must be

changed to reflect them. Since the GCS Requirements Traceability Ma-

trix will be under configurat, lon control as part of this verification plan,

any changes made to it will have to be approved as described in the GCS

Configuration Management Plan. A copy of the matrix can be found on

page 97 in Appendix B.

SThere is not a column in the matrix for Module Testing since those test cases are not
necessarily linked to requirements. The column for sub-frame testing only applies to the

black-box testing, since white-box test cases do not involve the requirements.

PRECEDING PAGE BLANK NOT FILMED

-17-

|NTENTIOJLA

4.2 Checklists

Checklists are used as tools to help the design review and code review

process. The checklists contain-questions whichwere=chosen to bring out

potential problems in the designor= code_being reQew-e_i The first answer

column of the checklist contains the desirable answer to the question. If

the answer to th-e question iies in th_ second-colpmn tfienthe reviewers

must consider whether there is a problem in the design or code. As the

questions are just guidelines, an answer in the second column does not

necessarily signify that an error has occurred:-c0pies of ihe GCS Design

Review Checklist and the GCS Code Review Checklist can be found on

pages 105 and 109 in Appendix B =

4.3 GCS Problem Report Form

The GCS Problem:Report (PR) Form is the tool used for error data col-

lection. All errors detected during the development of an implementation

will be recorded on a PR form: A sample form is included on page i01

in Appendix B. All errors detected in the specification, the des!gn,the

code, or any formal test case 7 are tracked. Instructions for filling out the

form can be found in Programmer Instruction #8 - Completing the GCS

Problem Report Form. (See the GC,q Programmer's Manual.) The SQA

Plan for GCS, and the GCS Config_uration Management Plan also address

the use of the GCgProblem Report Form.

4.4 DEC Code Management System=

The Code Management System (CMS) by Digital Equipment Corporation

(DEC) will be used to control the Versions Of the design _d code for_each

implementation. A new version of the design and code will be created af-

_ter every verifi-ca_on-mil_t-one-_ weil _when Changes are made: tomb.

The configuration management procedure as described in the 5"CS Con-
figuration Management Plan calls for the programmer to submit the item

7Formal test cases are tho6e executed by the tester. The module test cases which the

programmer writes and executes are not considered formal; therefore a change to those
test cases does not require a PR form to be filed. : :-_ _:: : =

-18-

i

iv

l

t l
f

:!

to be configured to the configuration manager or SQA representative. The

programmer must also check out a configured item before changes can be

made to it. During Module Testing, the programmer will have his own

CMS library and will be able to check code in and out himself.

4.5 GCS Module Test Log

The GCS Module Test Log will be used to keep track of the testing per-

formed during module testing. One log will be used for each module. The

inputs and outputs of the module will be recorded on the first page of the

log. The input and expected results of each test case will be recorded before

the testing is performed. After the test case has been executed, the actual

results will be recorded on the test log. The number of any GCS Problem

Report Forms filled out during module testing will also be recorded with

the appropriate test case. A copy of the test log can be found on page 115

in Appendix B. Programmer Instruction #9 - Using the GCS Module Test

Log, which is part of the GCS Programmer's Manual, explains how to fill

out the test log.

4.6 Analysis of Complexity Tool

The McCabe & Associates' Analysis of Complexity Tool (ACT) will be

used to help the testers construct white-box test cases. ACT will generate

an annotated control flow graph of each module of code and show the

code complexity V(G). The code complexity is equivalent to the minimum

number of paths necessary to achieve 100% multiple-condition coverage.

ACT will determine a set of minimum test paths by applying McCabe's

method. See Appendix C for a discussion of code complexity and McCabe's

method. ACT will produce a list of the decisions and the conditions which

should be satisfied to achieve each path. The tester still has to create

the test cases by determining the inputs necessary to achieve the desired

conditions.

The use of ACT cannot adversely affect the reliability of the code since

it does not interfere with the execution of the code. The only risk involved

in using ACT is that an error in ACT may prevent an accurate testing

-i9-

coveragemeasurement. The specified coveragecriteria is 100% nmltiple-
condition coverage.

The GCS project hason file a statement for Tom McCabe & Associates
about the developmentand testingof ACT. In addition, the GCS testers

will do a sample test of ACT as part of a training session on performing

white-box testing. ACT will be used on three modules from the simulator,

one of which has low complexity (less than 5), one of which has medium

complexity (between 5 and 15), and one of which has high complexity

(greater than 15). All different FORTRAN decision constructs wl_lTqberep-

resented in the selected code. Together t_e testers wi_I m_y calculate

the code complexity and determine the test paths according to the MeCabe

method. If the complexity and test paths do not match the results given

by ACT, any errors W;II bere-p-0rted -to McCa_e _z _,ssb_ates, and further

testing will be done. If the complexity and test paths do match, ACT will

be considered reliable for generating test paths. -

Since ACT doesnot provide any coverage measurement during test exe-

cution, another coverage tool will he--to ensure that alIof the identified

paths in the code Were really traversed. The tester will check to ma_ke sure

that all appropriate statements, given the input and test path specified by

ACT, were executed. If the coverage measurement disagrees with what

ACT predicted, the tester will walk through the code, executing it manu-

ally to determine if there is a problem with the code or with ACT. This

procedure will s e_r_veas a second va!i_dation ehec_k of ACT.

4.7 Coverage Information Tool

A coverage information -tool will be_identifiedbel'ore sub-frame testing be-

gins. It will be Used-tocoli-ect coverage information during all formal s test

execution.

4.8 DEC/Test Manager

The DEC/Test Manager (DTM) will be used for organization and con-

of test DTM is afiguration control -the cases, software development and

maintenance _oi that organizes so--0-ftwi_e regression tests an-d test results.

SFormal test cases are executed by the tester.

-20-

i

DTM provides an efficient, automated way to run, review, and store tests.[7]

Several different kinds of files are associated with DTM. Template files are

user-specified command files that DTM invokes to start the test. Typically

they contain operating system commands which set up the test environ-

ment and a call to the test driver or the actual program being tested.

Results files contain the output after DTM has run the test. They are

time stamped. Benchmark files are the standard files to which the re-

Sults files are compared. To run a test with DTM the following general

procedure is followed.

i: A test description is created by naming the test, specifying an

associated template file, and entering a comment to briefly explain

what the test does.

2. Several related test descriptions are combined into a test collec-

tion.

3. The test collection is run interactively or in batch mode.

4. The results files (one for each test description) are reviewed in

DTM:

5. When a satisfactory run of the test is completed, a benchmark file

is created for each test description _'rom the corresponding results

file.

6. The next time a test is run, DTM automatically compares the current

results file for each test description to its benchmark file and

shows any differences.

7. If a change needs to be made to atest, the old test collection must be

recreated after the change is made to the template file for the appro-

priate test descriptlon. The operator enters a comment describing

the reason for the change when recreating the test collection.

On this project, one benchmark file will be created for each test descrip-

tion, and the results files of all three implementations will be compared

to the same benchmark file. DTM will serve as the test log for all phases

of testing which are conducted by the testers. Validation of this tool is not

-21-

necessarybecauseit is only a test managementtool and doesnot affect the
outcome of the tests.

-- _ -- - z

4.9 GCS_SIM

Each implementation of software will be tested using the simulator, known

as GCS_SIM. A GCS implementa6on _nteracts with GCS_SIM when it calls

the rendezvous routine after every" sub-frame:_The rendezvous routine pro-

vides synchronization to ensure that all data in the common regions of

memory is stable when accessed by a GCS hnplementation by allowing

only one program to have access to the data at any given time. When

the rendezvous routine is called by a GCS implementation, it turns con-

trol over to GCS_SIM. When GCS_SIM is finished, the rendezvous routine

returns control to the GCS implementation. The rendezvous routine is

also called at the beginning of the trajectory to initialize the run param-

eters. GCS_SIM utilizes several data files, iNITIAL_CONSTANTS.DAT

provides the run par aJneters, which the testers will chat_ge for different test

cases. TABULAR_DATA.DAT provides variables in tabular form which

are needed by GCS_SIM but are not utilized by the GCS implementation.

USAGE_DISTRIBUTION.DAT is a file which contains information on the

input space distribution and will be used by the testers to help select the

random test cases for system testing. GCS_SiM itself displays little infor-

mation. It only displays frame numbers and error messages when variables

go out of range. All other information is written to GCS_TRACK.DAT.

The operator can use the trajectory plotter program or the display pro-

gram to examine the data in GCS_TRACK.DAT. The trajectory plotter

takes parameters for the starting frame number, the ending_-arne number,

the number of frames to skip, and the delay between frames. The plotter

program can run from start to finish or can use a stepping function so that

the operator signifies when she is ready to continue. The plotter program

shows the desirable velocity altitude contour and shows the descent of the

vehicle on the same graph. The display program shows the position of the

vehicle relative to the-planet's X,y__and Z axes. A description-of GCS_SIM

and its validation can be found in the GCS Support/Development System

Configuration Description. A series of test drivers will also be written

by the project management personnel to aid in testing at the sub-frame

-22--

1

,i
{

w

i

and frame level. These test drivers will interact with the sinmlator. The

next release of this document will contain more information about the test

drivers.

-23-

. l
i

!
!
!

I

I

i

-24-

5 Development Phases

The sub-section for each development phase contains a brief prose descrip-

tion of the activities which occur during the phase, an overview flowchart

of the phase, and an itemized description of the verification activities con-

ducted during the phase. The itemized description of the phase is separated

into the following parts.

• Purpose - A one sentence description of the main purpose of this

set of verification activities.

• Method - The name of the verification technique which is being

used.

• Test Creation Stopping Rule - The rule that determines when

enough test cases have been created.

• Test Execution Stopping Rule - The rule that determines when

the described verification activities end.

• Roles- Describes what activities the programmer, tester, user/analyst,

and SQA representative perform during the phase.

Input - Lists the input to the procedures which are conducted during

this phase. As described earlier, many of the black-box test cases

are written before testing begins. Those black-box test cases are

considered input. White-box test cases and module test cases whose

development is considered part of the procedures are not considered

input.

• Output - Lists the output from the procedures which are conducted

during the phase.

Test Readiness Review - The Test Readiness Review is considered

part of the verification procedure but is listed separately because it

is conducted by the SQA representative. A brief description of the

checks conducted is included.

PRECEDING PAGE BLANK NOT FILMED

-25-

• Test Completion Review -- The Test Completion Review is consid-

ered part of the verification procedure but is listed separately because

i(is conducted by the SQA representative. A brief description of the

checks conducted _sjncluded.

• General Procedures - An enumerated listing of the general verifi-

cation procedures. _ _

• Tools - Lists the tools used during the phase to help the verification

process.

-26-

i

t

t

! ,

5.1 Design Phase

5.1.1 Overview

During the design phase, the static analysis technique of a design walk-

through or review will be employed. The purposes of the Design Review

are to verify that the requirements have been correctly translated into the

design, no additional functionality has been added, the interfaces are fully

and correctly specified, and the design standards have been followed. Only

one Design Review will be held per implementation, instead of a sepa-

rate Preliminary Design Review and Critical Design Review. The size of

the project makes it feasible to conduct the entire Design Review in three

hours. To aid in the Design Review process, a GCS Design Review Check-

list has been defined. 9 A copy of the GCS Design Review Checklist can be

found on page 105 in Appendix B. The checklist together with the GCS

Requirements Traceability Matrix will guide the review.

There is a classification for design elements called derived requirements.

As interpreted by the FAA, a derived requirement is an element of a lower

order of decomposition that does not trace to the next higher level but is re-

quired for proper operation of the system. Derived requirements should be

justified because adding unnecessary functionality to a design contributes

to unreliability. When derived requirements are introduced they should

be noted so that they can be traced through the later stages of the de-

velopment cycle. The GCS Development Specification is very detailed and

already imposes many constraints on the designer, reducing the likelihood

that there will be any derived requirements. The constraints imposed are

caused by developing multiple implementations which must look identical

on the sub-frame level and by the well-defined interface with GCS..SIM. It

is the review team's responsib_ty to determine if any derived requirements

exist. If the review team determines that there are derived requirements

then they should be added to GCS Requirements Traceability Matrix for

9The GCS Design Review Checklist was compiled using examp]e checklists obtained
from the Software Product Assurance Group at Jet Propulsion Laboratory, The Art of

Software Testinf[4], and The Complete Guide to Software Testing[8]. The authors of
this verification plan chose items for the checklist based on their experiences at Research
Triangle Institute and elsewhere. To make the checklist items more useful, they were made

specific for this project.

-27=

that implementation and be tracked in the same manner as the other re-

quirements. -

The attendees to the review are the programmer, tester, user/analyst,

and SQA representative. While all attendees have different specialty ar-

eas, they will all participate in the review process and are encouraged to

comment outside their specialtyarea: Figure 3 shows the Design Review

Procedure. The specifics of the Design Review are described following the

figure. Any additional SQA procedures are described in the SQA Plan for

GCS. --

=.

:>

-28-

i.,_..+h

t_* *_1, rl.m*.l

Irl.s..* Aid**.

1

Fi&,r,, 3: l)r._i_ll R,'vi,,w Pr+,_P<l.r+,
-2.9-

-30-

5.1.2 Design Review Description

• Purpose

- Verify that the requirements have been correctly translated into

the design, no additional fimctionality has been added, the inter-

faces are fully and correctly specified, and the design standards

have been followed.

• Method

- Design Walk-through

• Test Creation Stopping Rule

- N/A

• Test Execution Stopping Rule

All GCS Design Review Checklist questions have been answered.

All Requirements from the Traceability Matrix are accounted for

in the design and no extra fimctionality is present.

• Roles

- Programmer: Only the design is under review, not the program-

mer. The programmer is present to interpret the design and

answer any questions about it.

- Tester: The tester's responsibility is to ensure that the purpose

of the review is fulfilled. The tester also fills out any necessary

problem reports noting only the problem, not the solution.

- User/Analyst: The user/analyst is the specification expert and

answers any questions about the requirements which arise.

- SQA Representative: The SQA representative ensures that the

tester follows the procedures documented in this plan and acts as

moderator to determine the order of the review. The SQA rep-

resentative also is in charge of the GCS Design Review Checklist

and the GCS Requirements Traceability Matrix. Please see the

$QA Plan .for GCS for any additional responsibilities.

-31-

PRECEDING PAGE BLANK NOT FILMED P_G_. 30 ItiT£al'tOill/_L_

• Input

1. GCS Development Specification including Modifications

2. Programmer Instruction #5 - Use of Error Handlers (See GCS

Programmer's Manual.)

3. Programmer Instruction #6 - Design Document Outline (See

GCS Programmer's Manual.)

4. Programmer Instruction #7 - Design Standards (See GCS Pro-

grammer's Manual.)

5. GCS Design - includes Programmer's GGS Desion Description

and teamwork m Design Diagrams

6. GCS Design Review Checklist (See Appendix B page 10/5.)

7. GCS Requirements Traceability Matrix (See Appendix B page 97.)

• Output

1. Completed GCS Design Review Checklist

2. Partially Completed GCS Requirements Traceability Matrix

3. Completed GCS Problem Report Forms (See Appendix B page 101.)

4. GCS Design under Configuration Control

• General Procedures

1. The programmer and tester decide when the design is ready for

review.

2. The tester arranges the date, time, and place for the review.

3. The programmer makes one copy of the design document and

teamwork design diagrams. The copy and original 11 are circu-

lated to the review team 48 hours before the review.

1°Teamwork is a registered trademark of Cadre Technologies Inc. Teamwork is a com-

puter aided software engineering tool which allows the user to analyze or design a system
using data flow diagrams or structure charts, according to the Hathy[9] method. The
GCS Plan for Aspects of Software Certification also describes the use of teamwork on this

project.
1lEach attendee does not receive his own copy, because the document will average about

50 pageJ.

-32-

4. The tester brings blank copies of problem report forms to the

review.

5_ The SQA _representative= brings a blank copy0f the GCS Design

Review cl_ecki]st and a= blank copy of the GCS Requirements

Traceability Matrix.

6. The SQA representative declares the general order in which the

design will be checked. It is not necessary for the review to

strictly follow the specified order but the SQA representative

should act as moderator to keep the review flowing as efficiently

as possible.

7. The programmer starts the review by giving a brief overview of

the design.

8. The programmer leads the review team through the design by

explaining each teamwork design diagram..

9. All input for each process described in the GCS Development

Specification will be checked by comparing the input table list

to the input of the appropriated teamwork design element spec-

ification(s). All input to a process specification must appear as

input to the teamwork design element and in the body of the

design element specification. The type declaration of each in-

put will be checked against the data element description from

the GCS Development Specification. If unused global input is

shown, it will be written on a problem report form. All local

variables should be specified in lowercase.

10. All output for each process described in the GCS Development

Specification will be checked by comparing the output table list

to the output of the appropriated teamwork design element spec-

ification(s). All output from a process specification must appear

as output from the teamwork design element and in the body of

the design element specification. The type declaration of each

output will be checked against the data element description from

the GCS Development Specification. If unmodified global output

is shown, it will be written on a problem report form.

11. The SQA representative completes the design column of the GCS

-33-

Requirements Traceability Matrix by filling in the teamwork
identification number for the design element which meets the
requirement. All requirements must be accountedfor in the de-
sign. If a requirement is not met, a problem report must be filled
out by the tester, with the problem report number recordedon
the GCS Requirements Traceability Matrix by the SQA repre-
sentative. The SQA representative alsorecordsderived require-
ments, if any, on the GCS Requirements Traceability Matrix.
Derived requirements should be justified. If there is extra func-
tionality which is not traceable to any requirement; a problem
report should be written.

12. The SQA representativecircles the appropriate responseto each
question on the GCS DesignReview Checklist. If any checklist
guideline is not followed, a problem report must be filled out
by the tester, with the problem report number recordedon the
GCS DesignReview Checklist by the SQA representative,or the
SQA representativemust initial the guideline to show that the
violation was acceptable.

13. After the entire designhas beentraversed and the GCS Design
Review Checklist and GCS Requirements Traceability Matrix
have been completed, the SQA representativewill determine if
a follow-up review is necessary. If one is necessary,the SQA
representativewill inform the programmerof what changesneed

to be made to the design for the foUow-upreview.

14. After the review(s) is finished, all problem reports must be com-

pleted. The programmer is responsible for completing those

problem reports whose problems originated in the design, af-

ter he has fixed the design. The user/analyst is responsible for

completing those problem reports whose problems originated in

the specification, after he has made the necessary specification

modifications and generated a problem report form for the de-

sign, if necessary.

15. The SQA representative is responsible for ensuring that all prob-

lem reports are satisfactorily completed.

-34-

16. After all design changes are made, the design will be placed

under configuration control.

• Tools

- GCS Requirements Traceability Matrix

- GCS Design Review Checklist

- GCS Problem Report Form

- DEC Code Management System (CMS)

-35-

ii

-36-

5.2 Code Phase

5.2.1 Overview

During the code phase, the static analysis technique of a code walkthrough

or review will be employed. The purposes of the Code Review are to verify

that the design, which includes the interface, hierarchy, and pseudo-code,

has been correctly implemented and the coding standards have been fol-

lowed. A series of code reviews will be held after all of the code has been

written and compiled without error. 12 All code modules will be subjected

to this Code Review. In addition, any module which has more than 20

lines 13 of executable code added or modified due to a single change any

time during the verification process will be reviewed. The programmer will

choose the modules to be reviewed at each gathering with the following

constraints:

• the review should last no more than two hours, and

• all modules for one sub-frame will be reviewed before the next sub-

frame is started.

To aid in the Code Review process, a GCS Code Review Checklist has

been defined. TM The checklist is specific to FORTRAN, the language in

t2Some development cycles might call for a Code Review to be held as soon as the
first module of code is ready so that the programmer would be able to apply what was
learned at the review to subsequent modules. Due to the experimental nature of this
project, it was decided that no Code Review should be held until all the code for that
implementation is written. One of the goals of the project, as discussed in the GCS Plan
for Software Aspects of Certification, is to compare repetitive run testing to the procedures
documented in this plan. Vervions of the code before and after the Code Review will be put

in the repetitive run harness. It was felt that the constraint to have all of the code written
before the first review was not an unreasonable one since the programmer is free to make
changes to previously reviewed code modules based on techniques learned in subsequent
Code Reviews.

13More than twenty lines of code'were chosen as the boundary, because 20 lines repre-
sents a screenful of text.

14The GCS Code Review checklist was compiled using example checklists obtained
from the Software Product Assurance Group at JPL, The Complete Guide to Software

Testing[8], The Art o] Software Testing[4] and a previous RTI testing experiment. (See
Software Reliability Measurement/Test Integration Techniqees: Instructions for Testers
prepared by RTI for SAIC and submitted to Rome Air Development Center. The authors

-37-

PRECEDING PAGE BLANK NOT FILMED 8bG_._IN1[,_TIOJIAbL? 8L,V_

which all three implementations at RTI will be coded. A copy of the GCS

Code Review Checklist can be found on page 109 in Appendix B. The

checklist together with the GCS Requirements Traceability Matrix will help

to guide the review. The design will be the main guiding force of the review.

It should be remembered that the pseudo-code of the design is merely a

way to express the intentions of the designer and the actual code does not

have to strictly adhere to the pseudo-code, it just needs to satisfy the same

purpose. However if the designer's intentions change, the design must be

changed to match the actual code.

Attendees to the Code Review are the same as those for the design

review: the programmer, tester, user/analyst, and SQA representative.

While all attendees have different specialty areas, they will all participate

in the review process and are encouraged to comment outside their specialty

area. The specifics of the Code Review process are described following the

figure. Any additional SQA procedures are described in the SQA Plan for

GCS.

of this verification plan chose items for the checklist based on their experiences at Research

Triangle Institute and elsewhere. To make the checklist items more useful, they were made

specific for this project.

38

• m

r.++

,,:,:

l ,q,,l

+'_,,5 <'++,

AlI'+.q I+,+II-

Fi_,,t+" 4: (_.,lr ll++virwPr*_,'+'+h.r

-39-

-40-

5.2.2 Code Review Description

• Purpose

- Verify that the design has been correctly implemented and the

coding standards have been followed.

• Method

• Test

Code Walk-through

Creation Stopping Rule

• Test

N/A

Execution Stopping Rule

- All elements of the design which are applicable to the portion of

the code being reviewed have been accounted for in the code.

- All applicable requirements from the GCS Requirements Trace-

ability Matrix have been accounted for in the code.

- All GCS Code Review Checklist questions have been answered.

• Roles

- Programmer: Only the code is under review, not the program-

mer. The programmer is present to interpret the code and an-

swer any questions about it.

- Tester: The tester's responsibility is to ensure that the purpose

of the review is fulfilled. The tester also fills out any necessary

problem reports noting only the problem, not the solution.

- User/Analyst: The user/analyst is the specification expert and

answers any questions about the requirements which arise.

- SQA Representative: The SQA representative ensures that the

tester follows the procedures documented in this plan and acts

as moderator to determine the order of the review. The SQA

representative also is in charge of the GCS Code Review Check-

list and the GCS Requirements Traceability Matrix. Please see

the SQA Plan for GCS for any additional responsibilities.

PRECEDING PAGE BLAF_K NOT FILMED

-41-

• Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer's GGS Design Description

and teamwork Design Diagrams

3. Programmer Instruction #3 - Coding Standards for GCS Ap-

plications (See GGS Programmerb Manual.)

4. Programmer Instruction #5 - Use of Error Handling (See GCS

Programmer's Manual.)

5. Cleanly Compiled GCS Code Module(s)

6. GCS Code Review Checklist (See Appendix B page 109.)

7. GCS Requirements Traceability Matrix - the same one used for

the Design Review and previous Code Reviews (See Appendix B

page 97.)

• Output

1. Completed GCS Code Review Checklist

2. Partially Completed GCS Requirements Traceability Matrix

3. Completed GCS Problem Report Forms (See Appendix B page 101.)

4. GCS Code Modules under Configuration Control

• General Procedures

1. The programmer and tester decide when the code is ready for a

review.

2. Before the first Code Review, the programmer submits a copy

of all of the code to configuration control.

3. The tester arranges the date, time, and place for the review.

4. The programmer gives a copy of the selected modules to each

attendee at least 24 hours before the Code Review.

5. The tester brings blank copies of problem report forms to the

review.

".r F _

-42-

6. The SQA representative brings a blank copy of the GCS Code

Review Checklist and the GCS Requirements Traceability Ma-

trix which was used for the Design Review and previous Code

Reviews.

7. The SQA representative declares the general order in which the

design will be checked. It is not necessary for the review to

strictly follow the specified order, but the SQA representative

should act as moderator to keep the review flowing as efficiently

as possible.

8. The programmer starts the review by giving an overview of each

of the code modules. The discussion should include the function

of the module, how it fits in the sub-frame, and its relationship

to the design.

9. The programmer leads the review team through the code by

reading it aloud, line by line. Review team members should

interrupt any time they have a question.

10. The SQA representative completes the appropriate code section

of the GCS Requirements Traceability Matrix by filling in the

name of the code module in which the requirement is satisfied.

At the last Code Review for each sub-frame, the SQA repre-

sentative must check to be sure that all requirements for that

sub-frame have been fulfilled. If a sub-frame requirement is not

met, a problem report form must be filled out by the tester with

the problem report number recorded on the GCS Requirements

: Traceability Matrix by the SQA representative. If a sub-frame

requirement is met more than once, the reviewers should de-

termine if some functionality is being repeated and fill out a

problem report form, following the previous procedure, if the

duplicated functionality is inappropriate.

11. The SQA representative circles the appropriate response to each

question on the GCS Code Review Checklist. If any checklist

guideline is not followed, a problem report must be filled out

by the tester, with the problem report number recorded on the

GCS Code Review Checklist by the SQA representative, or the

-43-

SQA representativemust initial the guideline to show that the
violation wasacceptable.

12. After all of the code has been traversed and the GCS Code
ReviewChecklist15and GCS RequirementsTraceability Matrix
havebeencompleted, the SQA representativewill determine if a
follow-up review is necessary.If one is necessary,the SQA rep-
resentativewill inform the programmerof what changesneedto
be madeto the code for the follow-up review.

13. After all of the Code Reviewsare complete, the SQA represen-
tative will ensure that all necessarychangeshave been made.
The programmer is responsible for completing those problem
reports whose problems originated in the code after fixing the
code. If the problem originated in the design, the programmer
is responsiblefor completing the problem report after fixing the
designand then generating another problem report form for the
code. This secondproblem report is completedby the program-
mer after the necessarycode changeshave been made. The
user/analyst is responsiblefor completing thoseproblem reports
whoseproblems originated in the specification after the neces-
sary specification modifications have beenmade,and then gen-
erating a problem report form for the designor code depending
on which one, if any, reflects the problem first.

14. The SQArepresentativeis responsiblefor ensuring that all prob-
lem reports are satisfactorily completed.

15. After all code changesare made, the code will be placed under
configuration control.

• Tools

- GCS Requirements Traceability Matrix

- GCS Code Review Checklist

- GCS Problem Report Form

- DEC Code Management System (CMS)

ISThere is a separate GCS Code Review Checklist for each session.

-44-

5.3 Module Testing

5.3.1 Overview

Since the programmer is free to use any division of modules for the pro-

cessing which comprises a sub-frame, the programmer will be responsible

for module testing. The programmer is free to usc any testing method on

the code provided a minimum of twenty test cascs are executed per sub-

frame, including three for each module. 16 No Test Readiness Review is

held for Module Testing since there are no specific guidelines for creating

test cases. A Test Completion Review will be held after Module Testing is

complete. During the module testing, the programmer will have a personal

CMS library as described in the GCS Configuration Management Plan. The

programmer will not be required to obtain approval to make any necessary

changes to the code as long as the reason for the change is put in the com-

ment for the CMS library and a problem report form is completed. While

testing, the programmer will be required to keep a testing log, for each

module, which will include information about the test case and its results,

both expected and actual, and a cross reference number to any problem

reports which are generated. A copy of the GCS Module Test Log can be

found on page 115 in Appendix B. Detailed Instructions for completing

the test log can be found in Programmer Instruction #9 - Using the GCS

Module Test Log. (See the GCS Programmer's Manual.) Figure 5 shows

the module testing procedure.

16With at least three test cases, the inputs can be at opposite boundaries. The twenty
case minimum was chosen in the event that there are few modules in the sub-frame. For

such cases, the individual modules would need more testing since they would perform more
functions.

-45-

I
1

1

. .=

i
J
i

_l}do

Fi_.re ,5: Mod,de T,,.qthlgPr_rrd.re

{"r, fh.

._°

_-47-

PRECEDING PAGE BLANK NOT RLMED I_A6I_INIENTIOtAIIL? llLANI

-48-

k

[

i

5.3.2 Module Testing Description

• Purpose

The programmer should be satisfied that the code correctly per-

forms the functions specified in the design.

• Method

- Programmer's Choice

• Test Creation Stopping Rule

- At least three test cases per module have been created for a total

of at least twenty test cases per sub-frame.

Execution Stopping Rule

At least three test cases per module have been correctly executed

for a total of at least twenty test cases per sub-frame have been

correctly executed.

• Roles

• Test

- Programmer: Designs and executes tests for each module.

- Tester: Acts as an advisor to answer any questions about testing.

- User/Analyst: Makes any necessary modifications to the GCS

Development Specification. Provides a set of initial conditions

which are also known as run parameters.

- SQA Representative: Approves any changes which need to be

made to the programmer's design and conducts the Test Com-

pletion Review.

Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer's GCS Design Description

and teamwork Design Diagrams

3. GCS Code Modules under Configuration Control

PRECEDLNG PAGE BLANK NOT FILMED

-49-

aA_L.._.._INTENTIO_ A_LIFBLAI_

4. Programmer Instruction #3 - Coding Standards for GCS Ap-

plications (See GCS Programmer's Manual.)

• Output

1. Completed GCS Module Test Logs (See Appendix B page 115.)

2. Completed GCS Problem Report Forms (See Appendix B page 101.)

3. GCS Code Modules under Configuration Control

• Test Readiness Review

- None

• Test Completion Review checks that

- All test cases are documented in the GCS Module Test Log along

with their expected and actual results.

- All discrepancies between actual and expected test results are

documented in a problem report.

- The expected results were calculated correctly Ir and the calcu-

lations are included in the GCS Module Test Log.

- The problem report number is contained in the GCS Module

Test Log.

- All problems have been corrected and are appropriately marked

in the code as specified in Programmer Instructions #3 - Cod-

ing Standards for GCS Applications. (See GC3 Programmer's

Manual)

- Any changes to test cases (including the addition of new test

cases) are documented in the Notes section of the log.

- The programmer has executed a minimum of three test cases per

module and twenty test cases per sub-frame.

• General Procedures

lrDue to resource constraints at most ten test cases per module and at most a total of

forty per sub-frame will have their expected results checked.

-50-

,i

' i

i ;

1. The user/analyst provides the programmer with one set of run

parameterswhich the programme r can use during testing.

2. The programmer checks the code into the personal CMS library

after all of the Code Review changes have been made.

3. The programmer initiates a test log for each module by writing

down the test cases and expected results.

4. The programmer constructs any necessary test drivers to exercise

the module in a stand-alone fashion. The programmer does not.

have access to GCS_SIM or any of the test drivers which were

discussed in the tools section.

5. The programmer executes the specified test cases and records

the actual results.

6. The programmer fills out a problem report form for each test case

whose actual results did not agree with the expected results. A

reference to the test case number from the log is cited.

7. The programmer makes any necessary changes to the code after

checking it out of the CMS library. The corrected code is checked

back into CMS by the programmer with a comment as to why

the change was made, and then the programmer completes the

problem report form.

8. If there was a problem with the test Case, the programmer cor-

rects the test case, documenting the cori'ection in the Notes sec-

tion of the log. A GCS Problem Report Form does not need to

be filled out by the programmer for a test case change.

9. If a problem is discovered which originated in the design, the

programmer must fill out a problem report form for the design

and get the approval of the SQA representative to make the

change to the design and then complete the problem report form.

The programmer can then fill ou_; the necessary problem report

form for the code and follow step 7 for fixing the code.

10. The programmer must re-execute all test cases for a module

if any changes were made to the code of that module. If any

actual results do not agree with the expected results, the cycle

-51-

of recording and fixing problems is repeated. Problems which

were previously identified and not correctly fixed do not need a

new problem report Form but additional information about the

test case run should be added to the existing problem report
form.

11. The Test Completion Review is held.

, Tools

- GCS Problem Report Form

- DEC Code Management System (CMS)

- GCS Module Test Log

-52-

5.4 Sub-Frame Testing

Sub-frame testing is the lowest level of testing which the testers will per-

form. Since the programmers are free to divide up the processing in a

sub-frame into any division of modules, the sub-frame is the lowest com-

mon denominator between implementations. Both white-box and black-box

testing will be performed on the sub-frame level by the testers. The Test

Readiness Review before this phase will be held after the tester has devised

the white-box test cases. The black-box test cases will already be designed.

The white-box testing will be performed first. After white-box testing is

completed, the black-box testing will be performed on the same version

which the white-box testing was started on; i.e., without the corrections

which were made during white-box testing) 8 The Test Completion Review

after this phase will result in one version of code. The fixes for all faults

discovered by both testing methods will be combined and put into the code.

See the SQA Plan .for GCS for more detail about how this will be done.

Figure 6 shows how the black-box and white-box sub-frame testing relate

to each other. As the illustration shows, code version 19 3.0 is the input

for both white-box and black-box testing. After those sets of testing are

complete, the versions are combined to create version 4.0 of the code. Both

sets of test cases (white-box and black-box) will be re-run on the resulting

version of code as a regression test to ensure that all problems were fixed

and no new 0nes were introduced.

lSThis procedure will allow the effectiveness of white-box and black-box testing to be
compared. It also requires that the programmer not make additional changes when fixing
faults in the code.

19See the GCS Plan for Configuration Management for an explanation of version
numbers.

code
version
W3.x

I codeversion3.0

es"_...__ . _ test caseswhite-box test cases _ black-box

[-Test Readiness

Review

white-box
test cases

DecisionCoverage
Sub-Frame

Testing

code version

W3.x

black-box

test cases

code version 3.0

addl tlonai black-box
test cases

i
Functional
Sub-Frame

Testing

code

version

B3.y

code version

B3.y

Test Completion
Review (_with

Regression Testing)

I code version 4.0

Figure 6: Relationship between White-Box and Black-Box Sub-Frame Test-

ing

-54-

5.4.1 White-Box Testing

5.4.1.1 Overview The white-box test cases will be designed using Mc-

Cabe's method of decision analysis. Please see Appendix C for a discussion

of the method and the procedures which will be used to implement it on

this project. The tester may structure the test case inputs to execute the

test for the entire sub-frame or may structure the test cases to execute each

module individually. 2° If changes to the code during white-box testing cause

the structure to be altered, new white-box test cases will be constructed.

The test cases will be incorporated into a later release of this document

to comply with the DO-178A guidelines. Figure 7 shows the white-box

sub-frame testing procedure.

2°It must be remembered that the sub-frame is the lowest common denominator be-

tween the implementations, so each tester is testing the same sub-frame but the individual
modules may be different. With a coverage technique, it makes sense for the tester to be
allowed to test each module individually.

-55-

-56-

Whlte-box]

Test

Conduct Te,t

Re_sd_neM

Review

Gcs] I
Problem

DTM: L
Execute

Test Cues r

DTM: 1
Review Results

File

Cohstnlct

Necesssry

Test CMes

GCS
Test CMe Implement
Execute Problem Code

Correctly Report
C-'hanSes

Conduct]

Test Completion]

R,vl. ,, J

! 1

Figure 7: White-Box Sub-Frame Testing Procedure

PRECEDING PAGE BLANK NOT FILMED
INIENTIONAid,.Y94,A_

-58-

5.4.1.2 White-Box Sub-Frame Testing Description

, Purpose

- Test the sub-frame code from a structural perspective in order

to check that every statement executes correctly.

• Method

- White-Box: Multiple-Condition Coverage with McCabe's Method

to determine test paths

• Test Creation Stopping Rule

- Enough test cases have been created to achieve one hundred

percent multiple-condltion coverage.

• Test Execution Stopping Rule

- All test cases have been correctly executed.

• Roles

- Programmer: Fixes any problems found after a complete test

run.

- Tester: Designs and executes test cases.

- User/Analyst: Assists tester in designing test cases by answering

questions about the GCS Development Specification and simula-

tor. Makes a_'aynecessary modifications to the GCS Development

Specification.

- SQA Representative: Approves any changes which need to be

made to the programmer's design or code or the test cases and

conducts the Test Readiness and test Completion Reviews.

• Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer's GCS Design Description

and teamwork Design Diagrams

I:_,_,J3EDING PAG_ BLANK NOT FILMED

-59-

. INT_TK)_IAk,L'IBLAN_

3. GCS Module Code under Configuration Control

4. Programmer Instructions #3 - Coding Standards for GCS Ap-

plications (See GCS Programmer'._ Manual.)

• Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)

2. GCS Sub-Frame Code under Configuration Control

3. Coverage Analyzer Output (See Section refcovertool.)

4. White-Box Test Cases and Results under Configuration Control

in DTM

• Test Readiness Review checks that

- All test cases are fully documented including all inputs and ex-

pected results.

- The test cases appear to achieve 100% multiple-condition cover-

age.

• Test Completion Review checks that

- The test results are documented.

- All discrepancies between actual and expected test results are

documented in a problem report.

- All problems are corrected and are appropriately marked in the

code as specified in Programmer Instruction #3 - Coding Stan-

dards.for GCS Applications. (See GC_,S Programmer's Manual.)

- All test case errors are corrected and documented in a problem

report.

- All new test cases, necessitated by changes to the structure of

the code, are fully documented including all inputs and outputs.

- At least 100% statement coverage was achieved.

- All problem report forms are completed and approved by SQA.

• General Procedures, repeated for each sub-frame

-60-

1. The tester uses the programmer's code to determine the basis
path for each module using the McCabe methodology. The re-
maining paths are also determined. SeeAppendix C for the
proceduresto find the paths.

2. The paths for the modules are combined to create sub-frame
paths at the tester's discretion.

3. The tester usesthe GCS Development Specification to determine

the input and expected output for each sub-frame test path.

4. A DTM benchmark file is created for each white-box test case.

5. The Test Readiness Review 21 is held.

6. The tester executes all test cases in DTM using the test case

driver which interacts with GCS_SIM and the coverage tool. The

test case results files are compared to the existing benchmark

files for that test case. The test case driver only acts for the

sub-frame; if the tester wishes to stay on the module level, she

may need to do additional development on the driver.

7. A problem report is filled out for each test case whose actual

results did not agree with the expected results.

8. The programmer fixes all problems which were discovered and

completes the accompanying GCS Problem Report Form. If a

problem is traced back to the design, an additional GCS Problem

Report Form must be filled out for the design.

9. Changes which are not related to observed failures cannot be

made during .sub-frame testing.

10. After all fixes are made, the programmer submits the new code

for configuration control. The SQA representative determines if

the code fixes are acceptable and re-enters the code into config-

uration control.

11. At the discretion of the SQA representative, significantly modi-

fied code should go through another Code Review as described

_IActually one Test Readiness Review will be held for all sub-frame testing. All white-
box sub-frame test cases will be reviewed as well as all black-box sub-frame test cases.

-61-

in Section 5.2. If more than 20 lines of code have been added or

modified, due to a single change, the code must be re-reviewed.

12. If the structure of the code has changed, new test cases must be

constructed.

13. When the tester gets the new copy of code, all test cases are

re-executed in DTM. If any actual results do not agree with the

expected results, the cycle of reporting and fixing problems is

repeated. Problems which were previously identified and not

fixed do not need a new problem report form, but additional

information about the test case run will be added to the existing

problem report form.

14. The Test Completion Review _2 is held.

• Tools

- GCS Problem Report Form (See Appendix B page 101.)

- DEC Code Management System (CMS)

- McCabe Analysis of Complexity Tool (ACT)

- Coverage Information Tool (See Section 4.7.)

- DEC/Test Manager (DTM)

- GCS_SIM

- Sub-Frame Test Case Driver

22Actually only one Test Completion Review is held for all sub-frame testing. Both
whlte-box and black-box testing results will be reviewed

5.4.2 Black-Box Testing

5.4.2.1 Overview The sub-frame test cases based on the requirements

will be designed by the three testers as a team. 23 Every requirement will

be covered by at least one test case. The test case will include the input

and expected results. The tests will be executed on each implementation

separately by the appropriate tester. Each implementation must correctly

execute all test cases. Coverage information will be gathered on each test

case. A version of code will be configured triter all test cases run correctly.

If more than six serious or critical errors are found during the testing of

a single sub-frame, the tester has the option to write additional test cases

and execute them. The constraint is placed on the tester that the amount

of effort may not cause the schedule to slip. A copy of the schedule can be

found in the GCS Plan for Software Aspect_ of Certification. The test cases

will be incorporated into a later release of this document to comply with

the DO-178A guidelines. Figure 8 shows the black-box sub-frame testing

procedure.

23The system and frame test cases will have been designed first. It is easier for the

testers to start writing test cases at the highest level and then use existing prototypes of

GCS to help determine intermediate values (which are frame outputs) that would make
sense for sub-frame test cases.

-63-

P

-64_

• • F

Con,l.¢t 'l'e*t
Re._diness

R,'virw

{'o1_¢| rile!

Necr_saty

'l'est ("a._t,,_

l
IYI'M:
R,,_irw

['{eslJlts
File

_.ol i
(;(:S J [Trnl,lrm..nt J

i Completinn |

I R"i-' J

1

Figure 8: Black-B.x Sub-l_run," "]'cst.lng Procedure

PRECEDING PAGE BLANK NOT FILMED

-65-

-66-

5.4.2.2 Black-Box Sub-Frame Testing Description

• Purpose

- Check that all functions of tile sub-frame execute correctly.

• Method

- Black-Box: Boundary-Value Analysis and Error Guessing

• Test Creation Stopping Rule

- Enough test cases have been created to achieve one hundred

percent requirements coverage.

• Test Execution Stopping Rule

- All test cases execute correctly.

- Additional testing does not cause a schedule impact.

• Roles

- Programmer: Fixes any problems found after a complete test

run.

- Tester: Designs and executes test cases.

- User/Analyst: Assists tester in designing test cases by answering

questions about the GCS Development Specification and simula-

tor. Makes any necessary modifications to the GCS Development

Specification.

- SQA Representative: Approves any changes which need to be

made to the programmer's design or code or the test cases and

conducts the Test Readiness and Completion Reviews.

• Input

1. GCS Development Specification including Modifications

2. GCS Design - Programmer's GCS Design Description and teamwork

Design Diagrams

PRECEDING PAGE BLANK I_OT FILMED

-67-

3. GCS Module Code under Configuration Control

4. Black-Box Sub-Frame Test Cases 24

5. Programmer Instruction #3 - Coding Standards for GCS Ap-

plications (See GCS Programmer's Manual.)

• Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)

2. GCS Sub-Frame Code under Configuration Control

3. Black-Box Sub-Frame Test Cases and Results under Configura-

tion Control in DTM

• Test Readiness Review checks that

- All Requirements are covered by one or more test cases.

- The test cases are fully documented including all inputs and

expected results.

• Test Completion Review checks that

- The test results are documented.

- All discrepancies between actual and expected test results are

documented in a problem report.

- All problems are corrected and are appropriately marked in the

code as specified in Programmer Instructions #3 - Coding Stan-

dards for GCS Applications. (See GCS Programmer's Manual.)

- All test case errors are corrected and documented in a problem

report.

- All problem report forms are completed and approved by SQA.

• General Procedures, repeated for each sub-frame

1. The Test Readiness Review 2s is held.

24The test cases are considered input because they were designed before this phase

began.
2SActuaily one Test Readiness Review will be held for all sub-frame testing. All black-

box sub-frame test cases will be reviewed as well as all white-box sub-frame test cases.

-68-

10.

2eActually only one Test Completion Review is held for all sub-frame testing.

black-box and white-box testing results will be reviewed

2. The tester executes all test cases in DTM using the test case

driver which interacts with GCS_SIM and the coverage infor-

mation tool. The test case results files are compared to the

existing benchmark files for that test case.

3. A problem report is filled out for each test ease whose actual

results did not agree with the expected results.

4. The programmer fixes all problems which were discovered and

completes the accompanying GCS Problem Report Form. If a

problem is traced back to the design, an additional GCS Problem

Report Form must be filled out for the design.

5. Changes which are not related to observed failures cannot be

made during sub-frame testing.

6. After all fixes are made, the programmer submits the new copy

of code for configuration control. The SQA representative must

approve the fixes before the code is actually configured.

7. At the discretion of the SQA representative, significantly modi-

fied code should go through another Code Review as described

in Section 5.2. If more than 20 lines of code have been added or

modified, due to a single change, the code must be re-reviewed.

8. When the tester gets the new copy of code, all test eases are

re-executed in DTM. If any actual results do not agree with the

expected results, the cycle of reporting and fixing problems is

repeated. Problems which were previously identified and not

fixed do not need a new problem report form, but additional

information about the test case run will be added to the existing

problem report form.

9. If more than six serious or critical problems are discovered, the

tester may optionally design additional cases. The same proce-

dure as described above will be followed for executing the addi-

tional test cases, reporting any problems, and re-executing test

cases after problems are fixed.

The Test Completion Review _6 is held.

Both

• Tools

- GCS Requirements Traceability Matrix

- GCS Problem Report Form

- DEC Code Management System (CMS)

- Coverage Information Tool (See Section 4.7.)

- DEC/Test Manager (DTM)

- GCS_SIM

- Sub-Frame Test Driver

-70-

5.4.3 Regression Testing

Regression testing is performed on the one version of code for each sub-

frame which results from the Test Completion Review after sub-frame test-

ing as shown in Figure 6. All white-box 27 and black-box sub-frame test

cases will be used. The regression testing is not performed in a formal

manner like the other testing, but it is necessary to ensure that no errors

have crept into the system. The $QA report for sub-frame testing will in-

elude an error log. (See SQA Plan/or GGS.) The following procedures will

be followed during regression testing.

1. The tester will use DTM to execute all of the white-box and black-box

sub-frame test cases on the new versions of sub-frame code.

o If the actual results of the test case do not agree with the expected

results, the programmer and SQA representative axe called in to fix

the code.

.

,

5.

Although a problem report form does not have to be filled out, the fix

to the code should still be documented as described in Programmer

Instruction #3 - Coding Standards for GCS Applications. (See GCS

Programmer's Manual.) The problem will also be noted by the SQA

representative in his sub-frame testing report. 2s

When a fix is made, all test cases for that sub-frame must be re-run.

When all test cases for all three sub-frames have executed correctly,

the SQA representative will report that sub-frame testing is finished.

27100% multiple-condition coverage may not be assured if the structure of the code has
changed as a result of the combination of the two versions.

2SProblem report forms do not have to be filled out because the error was caused by
the Test Completion Review team not the individual programmer. These errors will not
show up during the repetitive run testing because the version of the code that regression
testing is performed on will never be put in the repetitive run harness. The problem will
still be documented as described in the SQA Plan for GCS.

-72-

5.5 Frame Testing

5.5.1 Overview

Frame Testing is equivalent to DO-178A Module Integration Testing. Since

there are only three sub-fi'ames, they can be integrated simultaneously. The

three testers will design the frame test cases based on the requirements as a

team. The input for each test case will be taken from expected intermediate

results of the system test cases. 2_ Every requirement will be covered by at

least one test case. The tests will be executed on each implementation

separately by the appropriate tester. Each implementation must correctly

execute all test cases. The test cases will be incorporated into a later release

of this document to comply with the DO-178A guidelines. Figure 9 shows

the frame testing procedure.

$_The system test cases were designed before the frame test eases.

-73-

-74-

Fr &m_+ 1

Cnn<hlt+t Tr,_t
llr._+lin+_+t

llevi+'w

_'FS

Exec.te "]'e_t
Ca-_+'s

DTM:

R+,vi<,w
Be+t_Its

File

NO I (;(:S

2
Cond.ct 'l'rst
Cm.pl+'linn

Ilevirw

('Ol's_l lltC|

Ncce._._aty
'l'r._t (',_r_

l.q',l+- m+,_t
(!nJr

Figure 9: Frame, T+'slln_; Pr++c+-<hlrr"

PRECEDING PAGE ELA!_tK NOT FILMED

-75-

m761

5.5.2 Frame Testing Description

• Purpose

- Check that all sub-frames execute together correctly.

• Method

- Black-Box: Boundary-Value Analysis and Error Guessing

• Test Creation Stopping Rule

- Enough test cases have been created to achieve one hundred

percent requirements coverage.

• Test Execution Stopping Rule

All test cases executed correctly.

* Roles

- Programmer:

rtln.

Fixes any problems found after a complete test

Tester: Designs and executes test cases.

- User/Analyst: Assists tester in designing test cases by answering

questlons aboUt the GC3 Development Specification and simula-

tor. Makes any necessary modifications to the GCS Development

Specification.

- SQA Representative: Approves any changes which need to be

made to the programmer's design or code or the test cases and

conducts the Test Readiness and Test Completion Reviews.

• Input

1. GCS Development Specification including Modifications

2. GCS Design - includes Programmer's GCS Design Description

and teamwork Design Diagrams

3. GCS Sub-Frame Code under Configuration Control

-77-

PRECEDING PAGE BLANK NOT FILMED p_G__tt;,I_Iig_'_ l_L,_

4. Black-Box Frame Test Cases s°

• Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)

2. GCS:integrated Code unclerConfiguratlon Control

3. Black-Box Frame Test Cases and Results under Configuration

Control in DTM

• Test Readiness Review checks that

• Test

- All requirements are covered by one or more test cases.

- The test cases are fully documented including all inputs and

expected results.

Completion Review checks that

The test results are documented.

All discrepancies between actual and expected test results are

documented in a problem report.

- All problems are corrected and are appropriately marked in the

code as specified in Programmer Instruction #3 - Coding Stan-

dards for GCS Applications. (See GCS Programmer's Manual.)

- All test case errors are corrected and documented in a problem

report.

- All problem reports forms are completed and approved by SQA.

• General Procedures

1. The Test Readiness Review is held.

2. The tester executes all test cases in DTM using the frame-level

test driver which interacts with the simulator and the coverage

information tool. The test case results files are compared to

the existing benchmark files for that test case.

S°The test eases are considered input because they were designed before this phase

began.

-78-

3. A problem report is filled out for each test casewhose actual
results did not agreewith the expectedresults.

4. The programmer fixes all problems which were discoveredand
completesthe accompanyingGCS Problem Report Form. If a
problem istraced back to the design,anadditional GCS Problem
Report Form must be filled out for the design.

5. After all fixes are made, the programmer must get approval of

the fixes before submitting the new copy of code to be configured.

6. When the tester gets the new copy of code, all test cases are

re-executed in DTM. If any actual results do not agree with the

expected results, the cycle of reporting and fixing problems is

repeated. Problems which were previously identified and not

fixed do not need a new problem report form but additional

information about the test case run will be added to the existing

problem report form.

7. The Test Completion Review is held.

• Tools

- GCS Requirements Traceability Matrix

- GCS Problem Report Form

- DEC Code Management System (CMS)

- Coverage Information Tool (See Section 4.7.)

- DEC/Test Manager (DTM)

- GCS_SIM

- Frame Test Driver

79

-80-

5.6 System Testing

5.6.1 Overview

System testing will consist of executing entire trajectories in GCS_SIM.

Test case input will consist of run parameters. There will be 100 test

cases which will be divided equally bctwecn initial conditions which are

considered stress conditions and random conditions, some of which may be

stress conditions. Some of the stress conditions are likely to correctly cause

the vehicle to crash. The stress test cases will be carefully chosen to exercise

all parts of the software. For the random test cases, initial conditions

will be distributed randomly across the input space. Some intermediate

results will be checked, including where the velocity altitude contour is

crossed. Each test case description will specify which intermediate results

are examined. An emphasis will be placed on checking timing requirements.

The test cases will be designed by the three testers together. 31 The tests

will be executed on each implementation separately by the appropriate

tester. The implementation must correctly execute all 50 stress cases, and

50 consecutive random test cases. The stress test cases will be executed

first. If an error is found by a stress test case, the problem is corrected

immediately, and all previous stress test cases are re-executed in DTM. If an

error is found by a random test case, the problem is corrected immediately,

and that test case is re-executed in DTM. The count of test cases (towards

50) is restarted on new random test cases. The new random test cases will

be chosen by the three testers as a team. A final review will be performed

after this phase of testing. The test cases will be incorporated into a later

release of this document to comply with the DO-178A guidelines. Figure 10

shows the system testing .procedure.

SIThe system test cases will be designed first. Then the frame and sub-frame test cases
will be constructed from them.

-81-

PRECEDING PAGE BLANK NOT F:LDEO
INTENTIONAId,.IF

182_

E_l_i!i!il

I_o. 1

PRECEDING PAGE BLANK NOT FILMED

Fil_Ure iO: System l'e_l;nK l'roeethJte

-83

-84-

r

5.6.2 System Testing Description

System Testing Description

• Purpose

- Check that the code correctly executes trajectories and that a

minimal mean test case to failure criteria is achieved.

• Method

• - Black-Box: Stress and Random within Input Space

• Test Creation Stopping Rule

- Fifty stress test cases have been created.

- At least fifty random test cases have been created.

• Test Execution Stopping Rule

- Fifty stress test cases have been executed correctly.

- Fifty consecutive random test cases have been executed correctly.

• Roles

- Programmer: Fixes any problems found during test run.

- Tester: Designs and executes test cases.

- User/Analyst: Assists tester in designing test cases by answering

questions about the GCS Development Specification and simula-

tor. Makes any necessary modifications to the GCS Development

Specification.

- SQA Representative: Approves any changes which need to be

made to the programmer's design or code or the test cases and

conducts the Test Readiness and Test Completion Reviews.

• Input

1. GCS Development Specification including Modifications

PP,j_CEOING PAGE B_;_'l_ NO'f FILt_I_gl

-85-

S_g___lNr rmA

2. GCS Design - includes Programmer's GCS Design Description

and teamwork Design Diagrams

3. GCS Integrated Code under Configuration Control

4. Black-Box System Test Cases32:50 stress and 50 random

5. Programmer Instructions #3 - Coding Standards for GCS Ap-

plications (See GCS Programmer's Manual.)

• Output

1. Completed GCS Problem Report Forms (See Appendix B page 101.)

2. GCS System Code under Configuration Control

3. System Test Cases and Results under Configuration Control in

DTM

• Test Readiness Review checks that

• Test

S2The test

began.

- There are 50 stress test cases and 50 random test cases.

- The test cases are fully documented including all inputs and

expected results.

Completion Review checks that

The test results are documented.

All discrepancies between actual and expected test results are

documented in a problem report.

- All problems are corrected and are appropriately marked in the

code as specified in Programmer Instruction #3 - Coding Stan-

dards for GCS Applications (See GCS Programmer's Manual.)

- All test case errors are corrected and documented in a problem

report.

- All problem reports forms are completed and approved by SQA.

- All additional necessary random test cases are fully documented

including all inputs and expected results.

eases are considered input because they were designed before this phase

-86-

- Fifty random test cases did execute without error.

• General Procedures

,

1. The Test Readiness Review is held.

2. The tester executes each stress test case using DTM in GCS_SIM

with the coverage information t0ol. The test case results files

are compared to the existing benchmark files for that test case.

3. A problem report is filled out for each stress test case whose

actual results did not agree with the expected results.

The programmer fixes any errors immediately and completes

the accompanying GCS Problem Report Form. If a problem is

traced back to the design, an additional GCS Problem Report

Form must be filled out for the design.

5. After the fix is made, the programmer submits the new code

for configuration control. The SQA representative must approve

the change before the code is actually configured.

6. At the discretion of the SQA representative, significantly modi-

fied codeshouidg0 through another Code i_eview as described

in Section 5.2. If more than 20 lines of code have been added or

modified, due to a single change, the code must be re-reviewed.

7. When the tester gets the new copy of code, the test case which

detected the error is re-executed in DTM. All previously exe-

cuted stress test cases are also re-executed in DTM. If the actual

results still do not agree with the expected results, the cycle of

reporting and fixing the problem is repeated. Problems which

were previously identified and not fixed do not need a new prob-

lem report form, but additional information about the test case

run will be added to the existing problem report form.

8. When all 50 stress test cases are correctly executed, the tester

executes each random test case using DTM in GCS_SIM with

the coverage information tool. The test case results files are

compared to the existing benchmark files for that test case.

9. A problem report is filled out for each random test case whose

actual results did not agree with the expected results.

-87-

10. The programmer fixes any errors immediately and completes
the accompanyingGCS Problem Report Form. If a problem is
traced back to the design, an additional GCS Problem Report
Form must be filled out for the design.

11. After the fix is made, the programmer submits the new code
for configuration control. The SQA representativemust approve
the changebefore the code is actually configured.

12. At the discretion of the SQA representative,significantly modi-
fied codeshould go through another Code Review as described
in Section5.2. If more than 20 linesof codehave beenaddedor
modified, due to a singlechange,the code must be re-reviewed.

13. When the tester gets the new copy of code, the test casewhich
detected the error is re-executedin DTM. If the actual results
still do not agreewith the expectedresults, the cycle of report-
ing and fixing the problem is repeated. Problems which were
previously identified and not fixed do not need a new problem
report form, but additional information about the test caserun
will be added to the existing problem report form.

14. New test cases are then executed with the count towards 50

random test cases restarted.

15. The Test Completion Review is held.

• Tools

- GCS Requirements Traceability Matrix

- GCS Problem Report Form

- DEC Code Management System (CMS)

- Coverage Information Tool (See Section 4.7.)

- DEC/Test Manager (DTM)

- GCS_SIM

88

6 Summary

The extensive verification plan documentation required by tile DO-178A

guidelines helps ensure that the verification procedures are fully specified.

An effort has been made to make the review and testing procedures as

similar to those found in industry as possible, within the constraints of the

experimental environment. A description of the constraints imposed by

the experimental environment are discussed in the GCS Plan for Software

Aspects of Certification. The constraints of financial resources and schedule

resources are present on all projects, whether in industry or research. Test

methodologies were selected with regards to efficiency and thoroughness.

Since any verification procedure is only as good as the competence of those

who administer it, the verification team for GCS was carefully chosen and

consists of people who have experience in testing software for industry,

government, and research. These factors contribute to a realistic software

testing environment and enhance the integrity of the GCS project.

-89-

-90-

A Equivalence Partitioning and Boundary-

Value Analysis =Example for GCS

A.1 Introduction

This example will use the specifcation description for Altimeter Radar

Sensor Processing (ARSP) from the GCS Development Specification version

2.0. The input to ARSP and their corresponding ranges from the Data

Element Descriptions

input data type range

array (0... 4) of reM'*8AR_ALTITUDE

AR_COUNTER

AR_FREQUENCY

AR_STATUS

integer*2

real*8

array (0... 4) of logical*l

[o,2ooo]
[0, 2 a° - 1]

[],1o']
[healthy or failed]

The inputs AR.ALTITUDE and AR_STATUS are five element arrays.

The tables which show their equivalence classes and boundary values only

have one entry for the array. When the actual test cases are identified,

values for all elements of the array must be specified.

A.2 Input Equivalence Classes

After the inputs are identified, the equivalence classes for each input are

identified. The equivalence classes for ARSP are shown below.

- 91-

PRECEDING PAGE BLANK NOT FILMF.D P,,G_._'D ._|#ItNIlOllt_Clf BU_

input

Ah=:ALTITUDE

AR_COUNTER

AR_FREQUENCY

equivalence classes

0 <_ AR_ALTITUDE <_ 2000

AR_ALTITUDE < 0

AR_ALTITUDE > 2000

0 < AR_COUNTER < 2 '0 - 1

AR_COUNTER < 0

AR_COUNTER > 21°- 1

1_. AR_FREQUE_IcY < 10 _

AR_FREQUENCY < 1

AR_FREQUENCY > 109

AR_STATUS healthy

failed

Notice that for the ranges where the input is expected to be between

two values, there is one class for inside the range, one class for below the

range, and one class for above the range. For the inputs that can be one of

a set of discrete values, there is an equivalence class for each set of values

which is treated differently.

A.3 Boundaries for Input

The boundary-value analysis technique uses the boundary values of the

equivalence classes to pick input. The table below shows the the input and

equivalence classes again. The last column of the table shows the actual

value which would be picked when making a test case.

- 92-

input equivalence class chosen input value

AR_ALTITUDE

AR_COUNTER

AR_FREQUENCY

0 <_ AR-ALTITUDE < 2000

AR_ALTITUDE < 0

AR_ALTITUDE > 2000

0 < AR_COUNTER < 2 '0 - 1

AR_COUNTER < 0

AR_COUNTER > 21°- 1

1 < AR-FREQUENCY <_ 109

AR_FREQUENCY < 1

AR_FREQUENCY > 109

healthy

(a) O"
(b) 2000

(c) -o.oooolo'
(d) 2000.000010

(e) 0
(f) 2t°- I
(g) -1
(h) 2 '0

(i) 1

(j) 10 9

(k) 0t

(1) 109+ 1

AR_STATUS (m) healthy

failed n) failed

A.4 Pseudo-Boundary Conditions

A set of boundary conditions known as pseudo-boundary conditions can also

be identified. They require a knowledge of the specification of the system.

Pseudo-boundary conditions are not included in the regular range but repre-

sent a boundary which causes a different output. Setting AR..FREQUENCY

to 0 would be a pseudo-boundary condition because AR_FREQUENCY is

a divisor and normally dividing by 0 would cause an error. A high value

for AR_ALTITUDE when AR..FREQUENCY is high may cause the new

AR_ALTITUDE to be calculated incorrectly because AR_COUNTER is

limited to 10 bits. Another pseudo-boundary condition is that AR_COUNTER

is set to all ones (2 '5 - 1 = -1) when no echo is received. The pseudo-

boundary conditions for ARSP are summarized in the table below.

'All values which do not show decimal places are assumed to be exact.
Walues which show decimal places are calculated with an accuracy of I significant digit

less than is required in the specification.
tNo accuracy was specified for AR_FREQUENCY because it is a run parameter, inte-

ger boundary values will be used.

- 93-

input equivalenceclass choseninput value
AR_FREQUENCY AR_FREQUENCY - 0 o)0

Ah-_F-REQUENCY 0_< AR_FREQUENCY < 7.5, I0'

7.5 • 10T _<AR_FREQUENCY <_ 109 (p)7.5• I0_

AR_COUNTER A R--COUNTER = -1 (q)-I

A.5 Equivalence Classes for Output

The boundary-value analysis technique also calls for the output space to

be examined. The output for ARSP is listed in the following table.

output data type range

-AR_ALTITUDt_ - array (0... 4) of real*8 [0,2000]

AR_STATUS array (0...4) of logical*l [healthy, failed]

K_ALT array (0... 4) of integer*4o_ [0,1]

For the output we want to achieve a value in each equivalence class as

shown in the table below.

output

AR_ALTITUDE

K_ALT

equivalence classes

0 < AR_ALTITUDE < 2000
m

AR_ALTITUDE < O

AR_ALTITUDE > 2000

healthy

failed

0

1

Next we identify the combinations of input required to achieve those

output values. This requires lo0kingat the specification. We have to work

backwards from desired outputs to desired inputs. If values for some of the

input are not specified, that means they are "don't cares."

- 94-

[desiredoutput re.quired input values

0 <_ AR_ALTITUDE < 2000 (r)O _< AR_COUNTER <_ 1000

AR_ALTITUDE < 0 s)AR_FREQUENCY < 0

AR_ALTITUDE > 2000 (t)AR_COUNTER > 1000

AR_STATUS = healthy (u) 0 < AR_COUNTER < 21° - 1

AR_STATUS = failed (v)AR_COUNTER =-1

K_ALT = 0 (w)AR_COUNTER = -1

AR_STATUS[n] = failed

K_ALT = 1 (x)AR_COUNTER = -1

AR_STATUS[0... 4] = healthy

K_ALT = 1 (y)0 _< AR_COUNTER <_ 2 l° - 1

A.6 Test Cases

Finally we identify the actual test cases by combining as many equivalence

classes as possible until all of them are used. All equivalence classes from

the input, pseudo-boundary conditions, and all of the required inputs for

the output equivalence classes are used, as shown in the second column.

- 95"

.-I_ ,.cl ,-_1

• II

>_ o_, ,--,,
rO
Z

CF

.<

!

°

q

.Q 11 ._.

_ II II II _ II

i 0

* Vl Vl
r--,I

t---- Vl Vt
0 o

VI_
Vl

Vl Vl
o Vl

Vl o
O

!,,_o OO O O

O O O O _ OO CN_ cq ¢q

II II Vl Vl Vl

,i _1 0l • i •

II _ o o o o__.

.o. VI:VI:VI
C_ 0:0

>

,_ iz_ ID 1'-.. 00

- 96-

B

B.1

GCS Forms

GCS Requirements Traceability Matrix

- 97-

GCS REQUI]LEMENTS TRACEABILITY MATRIX

Process Requirement
ARSP

ASP

CP

GSP

TDLRSP

Use correct data elements

Read $_nsor

Determine altitude
Set altimeter radar status to healthy

Use correct data elements

Re_ ac.celerometcr
Remove characteristic bias

Correct for misalignment
Determine accelerations and accelerometer status

Use correctdata elements

Construct packet
Send packet
Set communicator status to healthy

Use correct data elements

Rotate array values
Adjust Gain
Convert G_COUNTER

Set gyroscope status to healthy

Use correct data elements
Rotate values
Determine radarbeam states
Determine beam velocities

Average beam velocitiea and convert to

body velocities
Set TDLR_STATUS to healthy

Sub-Frame

D_ign Code Test

Frarne

Test

I of 3

- 98-

GCSREQUIrLEMEINTS TRACEABILITY MATI_IX

Proce_ Requl rement
TDSP I Use correct data elemeots

Determine if touch-dowa has been sensed

TSP

CP

GI>

AECLP

Use correct data elements

Conversion of solid state temperature

Conversion of thermocouple pair temperature
Select m_t accurate estimate

Set status to healthy

Use correct data elements

Construct packet
Send p_cket
Set communicatorstatustoheaJthy

Use correct data elements

Set up the GP.ROTATION matrix
Calculate new values of velocity, altitude, and attitude

Determine if engines should be on or off"
Determine VELOCITY.ERROR

Determine if contour has been crossed

Determine guidance phase

Use correct data elements

Determine if'axial engines are switched on

Determine engine temperature
Compute limiting errors

Compute pitch, yaw, and thrust error_
Compute axial engine valve settings
Set Lxial engine status to healthy

Sub-Frame Fra.,ne System
Design Code Test Test Test

2of3

- 99-

GCSREQUIREMENTS TRACEABILITY MATRIX

Process Requirement
CP

CRCP

RECLP

GENERAL

Use correct data elements

Construct packet
Send packet
Set communicator status to healthy

Use corTect data elements
Determine CHUTE_RELEASED value

Use conect data elements

Determlne'if en_nes are on
Determine pulse intestity and direction
Determine roll engine command

Command engines

Set roll engine status to healthy

Processexecuted in manner compatible with
ttble 4.1
Rendezvous routine called first
Rendezvous routine called between all sub-fraxnes

Timing requirements in Table 6.1 ire met
Memory space requirements in Table 6.2 are met

! Sub-Frame Frame $'ystem

Design Code Test Test Test

!
!

I
!

3 of 3

- 100-

B.2 GCS Problem Report Form

- 101-

GCS PROBLEM REPORT FORM p a,_;e 1 of

PR No.:

'IPlanet: IDiscovery Date & Time:

Activity at Fault/Error Detection Time:

[7 Reading Specification Document

[-] Reading Code

[-] Design Review

[Problem Discovered By:

!--] Module Testing

[7 Sub-frame Testing

["] Frame Testing

[] White Box
[] Black Box

E] Code Review [-'] System Testing

E] Test Readiness/Completion Review

Explanation of Fault/Error Detection:

[7 Multiple Version Comparisons
- ,i

(Cite test case number, input, expected output, and

actual output where appropriate)

Tester Approval:]

General Version Number:

I Effort Hours for Fix: 1 Fix Date & Time:

Description of Problem and Fix: (First state module affected and CMS Generation Number)

- 102-

GCS PROBLEM REPORT FORM pa_e_ of

Error Type

[-] Computational Error

[-7 Control Flow Error

[-7 Data Error

[--] Interface Error

['-] Operation Error

E] Inconsistency

[-] Other

Error Severity

Critical [7 Serious

Was this error related to a previous change?

[7 Yes (PR No.)

When did the error enter the system?

[--] Specification [-] Design

[-] Can't Tell [-] Not Applicable

[--] Nonessential

[-] No

["-] Coding and Testing

[---]Not Applicable

[-7 Can't Tell

[-] Other

[SQA Approval:

- 103-

GCS PROBLEM REPORT FORM p.a_:e _ of

Continuation of Section:

- 104-

B.3 GCS Design Review Checklist

- 105-

planet:
date:

start time: finish time:

GCS DESIGN REVIEW CHECKLIST

A. DESIGN DOCUMENT

1. Does the format of the Design Document match that described

in Programmer Instruction #6?

9. Does the top level description in the Design Document conflict

with anything in the specification?

3. Do any subroutine names start with GCS_?

4. Is the chosen method(s) of integration described?

5. Were teamwork and the Hatley method used as described in

Programmer Instruction #7?

B. STRUCTURE

1. Did the teamwork model pass the balancing check?

2. Are any processes for separate sub-frames grouped together?

3. Are all the processes which are described in the specification

traceable to the design?

4. Is the purpose of each module stated clearly?

5. Are the inputs and outputs for each module stated clearly? Do

they have their own flow and use the correct units?

6. Are the inputs and outputs for the processes described in the

specification traceable to the module inputs and outputs?

7. Does each module have high cohesion, i.e. strong functional
association?

8. Do the modules have low coupling between them, i.e. little de-

pendance on each other?

9. Are any processes performed which were not described in the

specification?

10. Is any teamwork process specification longer than two pages?

_/eJ nO

no yes

no _les

yes no

lie3 no

_]eJ no

ye3 no

_/e3 nO

- 106-

C. PROCESSING SEQUENCE

1. Is the rendezvous routine called before any processing takes

place?

2. Is the rendezvous routine called between sub-frames?

3. Are the processes performed in a manner compatible with table

4.1 in the specification?

4. Are all local variables, which depend on data stores, recalculated

after the rendezvous routine is called?

5. Are all guidance phases handled as described in table 5.9 of the

specification?

6. Are the position and velocity of the vehicle relative to the alti-

tude contour checked every frame?

D. DETAIL

1. Can each teamwork process specification be easily coded into a

module?

2. Do the teamwork process specifications use pseudo code which

resembles the level of detail for program code?

3. Does the pseudo code need or use comments to explain it?

4. Are all of the specified local variables necessary and are they

only used locally?

5. Does it appear that the designer intends for any VMS Run-Time

Library Routines to be used?

6. Does it appear that the designer intends for any VMS System

Services to be used?

7. Are all data stores used as specified in the Data Dictionary?

E. OTHER

1. Are all algorithms understandable? If a reviewer cannot under-

stand a part of the design without repeated explanation, then

the design should be redone to make it more clear.

2. Are all assumptions documented?

_le_q nO

ye$ nO

yeJ BO

yes nO

no yes

no yes

yes nO

no yes

no yes

yes no

- 107-

3. Is the decision logic clear and does it handle all conditions prop-

erly?

4. If error handlers are called for, are they used wisely.'?

approwl:.

-10s- C-_,

B.4 GCS Code Review Checklist

- 109-

planet:

modules reviewed:

date:

start time: finish time:

GCS CODE REVIEW CHECKLIST

A. FUNCTIONALITY

1. Do the code modules map to a well-defined section in the design?

2. Do the code modules account for all requirements specified in

the above well-defined section in the design?

3. Does each unit have a single purpose?

B. FORMAT

1. Has the programmer used available template files for the modules
and headers?

2. Are comments explanatory and correctly done? I.e., block code

comments, section code comments, and declarations section com-
ments.

8. Are all assumptions documented in comments?

4. Is the formatting of the code correct?

(a) Are labels in column 17

(b) Are continuation markers in column 6?

(c) Does code begin in column 8 or 167

(d) Are all indentations 4 spaces?

5. Are there more than one hundred lines (or two pages) of code in

a module? If yes, what is the justification for this?

6. Is there only one argument per line in an OPEN statement?

7. Are there blanks around equal ("=") signs in OPEN statements?

_/e8 _0

lie3 nO

lie3 no

_/es no

lies no

lies no

lies no

lies no

lies no

no yes

Ires no

lies no

- 110-

8. Is all code in lower case, with references to program constants

and external modules in upper case?

9. Has the programmer used:

(a) one file per module?

(b) bundled modules for only one application? If so, are module

headers and page breaks used appropriately?

10. Does the file name match the module name?
.o

11. Is all code written only in FORTRAN?

12. Are any VMS Run Time Libraries or System services7

13. Are any data hidden? (see restrictions on P. 110 of the specifi-

cations)

C. DATA USAGE

a. Declarations

1. Is all storage declared?

2. Is IMPLICIT NONE the only use of the IMPLICIT state-

ment?

3. Do declarations show both type and size? (i.e., integer*4)

4. Do declarations match the specifications?

5. Are arrays explicitly dimensioned?

b. Common/Equlvalence

1. Are there local variables which are misspellings of a COM-

MON dement?

2. Are the elements in the COMMON in the right sequence?

3. Are COMMON blocks used in multiple units defined by a

common INCLUDE file?

4. Do EQUIVALENCE statements force any unintended shared

data storage?

5. Is each EQUIVALENCE commented?

c. Variables

1. Are the variables initialized in DATA statements, BLOCK

DATA, or previously defined by assignments or COMMON

usage?

_/e$ nO

lies no

_C3 110

yes no

yes no

no VeJ

no yes

lie.3 nO

no lie3

lieJ no

yes no

yes no

lie,_ no

lieJ no

- 111-

2. If variablesare initialized in DATA statements,should they
insteadhavebeeninitialized by an assignment statement7

3. Are variables used for one purpose?

4. Are variables which a-re-CL_ giobals initiMized in the pro-

gram?

D. ERROR HANDLING Error handling is not required, but if im-

plemented, it needs to follow certain standards.

1. If there is no error handling, are IOSTAT and ERR used?

2. Are errors only handled in a preventative manner? (Error han-

dlers should not intercept system fatal errors.)

E. LINKAGE

1. Do all arguments in a subroutine call or function reference agree

in number, order, dimension, data type and passed limits with

the dummy arguments in the subroutine or function?

2. Does the function return data of the correct type?

3. Does the calling module deal with any modifications to global

data areas, errors on open I/O units, or completion of I/O to

certain units which occur in the subprogram? .

4. Does a subroutine modify any input parameter? If so, is this

fact clearly stated?

5. Does a FUNCTION routine have only one output data item and

no side effects?

F. LOGIC

a. Loops

I. Do the initial, terminal, and increment values appear cor-

rect?

2. Is the correct condition tested?

3. In REAL-valued conditions, does testing include testing for

a narrow range around the desired value and does it use

.GE. and .LE. rather than .GT. and .LT., especially if the

test is used for iteration control?

no yes

_leS no

no yes

no yes

_J nO

_e.$ nO

_£S nO

- 112-

4. For REAL-valued index DO loops, is the loop variable sub-

ject to floating point errors which can impact other code?

5. Are there changes to the index value within a DO loop?

6. Is the index variable only used within the DO loop?

7. Are there any loops used for delay or timing purposes?

8. Is the use of early returns absolutely necessary?

9. Are there branches into the body of a loop or out of the

body of the loop (other than to the close of the loop or to

the statement following the loop)?

10. Do targets exist for all branches?

11. For compound conditions in DO WHILE loops, are paren-

theses used correctly?

12. Is loop nesting in the correct order?

b. Branches

1. Does the use of unconditional GOTOs follow the standard

on p.ll?

2. Is the correct condition tested?

3. In REAL-valued IF statements, does testing for single-ended

tests include testing for a narrow range around the desired
value and does it use .GE. and .LE. rather than .GT. and

.LT., especially if the test is used for iteration control?

4. Are the correct variables used in the test?

,5. For compound IF statements, are the parentheses used to

control ordering and precedence coded correctly.'?

6. Is the nesting of IF-THEN-ELSE constructs correct?

7. Can the code exercise all branches of IF statements?

8. Is there a default branch for all IF statements?

9. Do the target branches exist?

c. Lexleal Rules

1. Do integer comparisons account for truncation?

2. Are parentheses used correctly for precedence and ordering?

no l/es

no yes

lies no

no lies

lies no

no lies

lies no

li_J 710

lies no

lies no

lies no

lies no

lie3 nO

lie,_ no

- 113-

3. Are potential floating-point problems considered in the choice

of numerical operations?

4. Are array subscript references within the bounds of the ar-

ray?

_/_J nO

yes no

approval.

- 114-

B.5 GCS Module Test Log

- 115-

o

I
C_

,.
_o

0

0

r_
U

o,

0

o

,'-"4

"¢5
0

- 116-

U

o

q_

o
z

0

f.fl

0

t

U

n_
o

t_

o

1.2

- 117-

- 118-

C McCabe's Structured Test Technique

C.1 Introduction

McCabe's testing technique will be used in white-box sub-frame testing

for GCS. The method satisfies the multiple-decislon coverage criteria for

white-box testing. The technique is applied at the code level. It can be

partially automated and provides consistent and objective results.

The technique relies on McCabe's complexity metric, which is based

on the cyclomatic number, V(G), from graph theory. After graphing the

code in an appropriate form (control flow graph), the complexity metric

is determined from the graph. The metric essentially counts the number

of decisions in the graph, giving the minimum number of independent test

paths necessary for 100% multiple-decisi0n coverage for the code. McCabe

then uses a baseline method to find the test paths.

Each test path consists of a set of decisions from the graph. The baseline

method involves choosing a baseline path through the graph for the first

test path. Successive test paths are found by deviating from the baseline

path in a prescribed fashion. The size of the set of test paths will be

equivalent to the complexity metric, and the set will in fact be a basis set

of test paths. That is, any path through the graph can be found from a

linear combination of the test paths in the basis set. Finally, input sets

need to be created to satisfy each test path.

C.2 Procedures

These procedures are a basic listing of the steps involved in using McCabe's

method. For a more detailed explanation, see [14].

1. On a printout of the code, mark the branches (if-then, case, and loop

statements) in the code.

2. Create a control flow graph from the code.

(a) Nodes in the graph consist of blocks of sequential logic. Any

branches in the code (if-then or loop statements) will be noted

either as separate nodes or at th¢ end of a block of sequential

logic.

- 119-

PRECEDING PAGE BLANK NOT FILMED

(b) Arcs are transfers of control.

3. Determine cyclomatic complexity. This measure will be the number

of test paths necessary to achieve 100% muitipie:declslon coverage.

Use any of the following three formulas.

(a) Number of decisions in flow graph + 1

(b) Edges - nodes + 2

(c) Number of enclosed regions in flow graph (where an enclosed

region is a visual region on a graph which is enclosed by edges)

4. Find the baseline path. Any path through the graph will work, but it

is recommended that the baseline path be the longest path through

the graph without loops.

5. Write out the baseline path by listing the nodes.

6. Find the next tcst path.

(a) Follow the baseline path until the first branch is reached.

(b) Choose another branch than the one the baseline path took.

(c) As soon as possible, return to the baseline path.

7. Find the remaining test paths. The total number of test paths should

equal the cyclomatlc complexity (see above).

(a) Follow the baseline path until the next branch is reached.

(b) Choose another branch than the ones previously chosen.

(c) As soon as possible, return to the baseline path.

8. Each test path is a set of decisions. At this point the tester can write

out the set of decisions for each test path.

9. For each test path, determine input sets such that the decisions given

in the test path are invoked.

10. For each input set, determine the expected results.

- 120-

Create Cont,,o!

Flow Graph ((3)

1
O_t.,_ni._Cxdom.ti_

Complex;ty V(C)

p_____ --

Find D_din¢ Path

J

I vas

i Detetmlne Test Cases

NO

Figure 11: White-Box Sub-Prame Test Case Creation

- 121-

References

[1] RTCA Special Committee 152. Software Considerations in Airborne

Systems and Equipment Certification. Technical Report RTCA/DO-

178A, Radio Technical Commission for Aeronautics, March 1985.

[2] George B. Finelli. Results of software error-data experiments. In

AIAA/AHS/ASEE Aircraft Design, System_ and Operations Confer-

ence, Atlanta, CA, September 1988.

[3]Software Engineering Technical Committee. IEEE Standard Glos.,ary

of Software Engineering Terminology. Technical Report IEEE Std 729-

1983, The Institute of Electrical and Electronic Engineers, New York,

New York, February 1983.

[4] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons,

New York, New York, 1979.

[5] Michael S. Deutsch. Software Verfication and Validation. Prentice-

Hall Inc., Englewood Cliffs, N J, 1982.

[6] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold

Company, New York, New York, 1983.

[7] Guide to VAX DEC/Test Manager. Digital Equipment Corporation,

Maynard, Massachusetts, October 1986.

[8] William Hetzel. The Complete Guide to Software Testing. QED In-

formation Sciences, Inc., Wellesley, Massachusetts, 1984.

19]Derek J. Hatley and Imtiaz A. Pirbhal. Strategies for Real-Time Sys-

tem Specification. Dorset House Publishing Company, New York, New

York, 1987.

[10]Thomas J. McCabe. Structured Testing: A Software Te._ting Method-

ology Using the Cyclomatic Complexity Metric. NBS Special Publica-

tion 500-99, National Bureau of Standards, December 1982.

-122-

Report Documentation Page

1. Report No.

NASA TM-I01668

2. Government Accession Nor

4. Title and Subtitle

Software Verification Plan for GCS

7, Author(s)

Leslie A. Dent

Anita M. Shagnea

Kelly J. Hayhurst

9. Pedorming Organization Name and Address

Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3, Recipient's Catalog No

5. Report Date

January 1990

6 Performing Organization Code

8. Performing Organization Report No.

10. Work Unil No.

505-66-21-03

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Leslie A. Dent, Research Triangle Institute, Research Triangle Park, NC

Anita M. Shagnea, Research Triangle Institute, Research Triangle Park, NC

Kelly J. Hayhurst, Langley Research Center, Hampton, VA

16. Abstract

This verification plan is written as part of an experiment designed to study

the fundamental characteristics of the software failure process. The experiment

will be conducted using several implementations of software that have been

produced according to industry-standard guidelines, namely the Radio Technical

Commission for Aeronautics RTCA/DO-178A guidelines "Software Considerations in

Airborne Systems and Equipment Certification," for the development of flight

software. This plan fulfills the DO-178A requirements for providing instructions

on the testing of each implementation of software. The plan details the

verification activities to be performed at each phase in the development process,

contains a step by step description of the testing procedures, and discusses all

of the tools used throughout the verification process.

17, Key Words (Suggested by Author(s})

Software Reliability
Verification Plan

GCS--Guidance and Control Software

Black-box Testing

White-box Testing
19. SecuriW Cla_if. (of this report)

Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category 38

20. Securi_ Cla_if. (of this page) 21. No. of pa_s

Unclassified [33

22. Price

A07

w

NASA FORM 1626 OCT 86

