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Summary

A novel formulation termed the "integrated force method"

(IFM) has been developed in recent years for analyzing
structures. In this method all the internal forces are taken as

independent variables, and the system equilibrium equations

(EE'S) are integrated with the global compatibility conditions

(cc's) to form the governing set of equations. In IFM the cc's
are obtained from the strain formulation of St. Venant, and

no choices of redundant load systems have to be made, in

contrast to the standard force method (SFM). This property of

IFM allows the generation of the governing equation to be

automated straightforwardly, as it is in the popular stiffness

method (sM). In this report I_ and su are compared relative

to the structure of their respective equations, their conditioning,

required solution methods, overaI1 computational require-

ments, and convergence properties as these factors influence

the accuracy of the results. Overall this new version of the
force method produces more accurate results than the stiffness

method for comparable computational cost.

Introduction

Solutions of structural mechanics problems must satisfy the

appropriate equilibrium equations (dE'S) and compatibility

conditions (cc's) in addition to the constitutive relations (cg's)

describing material behavior. In what order, and to what

extent, these three requirements are satisfied defines the

method of analysis and the quality of the solution. This report
concentrates on the relative roles of EE'S and cc's in structural

analysis. The constitutive relations, combinations of proper

mathematical models and experimental results, here are

presumed to be available in valid forms, even though that is

not always the case.
This report compares the two most fundamental approaches

to analyzing finite element models of structures: the force

method and the displacement method. The details of these two

methods, and their relative characteristics, were discussed

intensively three decades ago during the early evolution of

computer-automated structural analysis. As is well known, the

displacement method won out for computer automation in the

form of the stiffness method (SM). As briefly discussed herein,
the force method available at that time was based on the

concept of redundant selections. It was the result of approaches

developed for hand calculation in the precomputer era and

proved inconvenient to automate and computationally more

costly than the displacement method.
A new version of the force method, described herein and

compared with the displacement method, was introduced in

references 1 and 2 and termed "the integrated force method"

(WM). It is shown in a comparison with the early force methods

(ref. 1) that the IFM makes automation as convenient as it is

with the displacement method and yet retains the known

potential for superior stress-field accuracy of finite element
models that is associated with force method solution

techniques. Furthermore IFM provides a convenient way to
enforce an additional constraint on a finite element model of

a continuum, namely strain compatibility at the interelement

boundaries. This constraint, usually not satisfied, appears to

result in significant improvement in accuracy.

The IFM integrates the system EE'S and the global cc's in

a fashion paralleling approaches in continuum mechanics (e.g.,

the Beltrami-Micheli formulation of elasticity (ref. 3)). The

iFra is a natural way of integrating the use of EE'S and cc's.

In contrast, the classical force method (refs. 4 and 5) (referred

to in this report as "the standard force method" (s_)),

satisfies the cc's through the somewhat ad hoc and artificial

concept of selected redundant internal forces. Consequently,

IFM provides a strong motivation to reexamine the relative

merits of the force and displacement methods within the
context of the finite element idealization. A project was begun

for that purpose, and its results are presented in this report.

The primary conclusions of the comparison are as follows:

(1) The i_,i inherits from the SFM the ability to operate

directly on stress parameters and thus to provide potentially

more accurate stress results than does the displacement
method.

(2) The IFM equations for finite element discrete analysis

form a well-conditioned system.

(3) Discrete analysis solutions (stresses and displacements)

obtained by IFM tend to converge to correct solutions more

rapidly, in terms of the number of elements, than the same

solution generated by the stiffness method.

(4) Examples indicate that certain problems can be solved

by IFM in less computation time than by SM.
(5) Initial deformation problems are more elegantly treated

by ivra than by SM.

This research indicated that with further development the IFM

can become a robust and versatile analysis formulation and

a viable alternative to the popular displacement method. The

nature of its equations makes the IFrd an attractive candidate



fortheinclusionofinitialdeformationsfromvarioussources
(e.g.,manufacturingtolerancesorsignificantthermaleffects
andmaterialnonlinearities).

Historical Background

It is of some interest to briefly revisit the historical evolution

of the various formulations for solving structural mechanics

problems, and specifically that of the displacement and force
methods.

The concepts of equilibrium of forces and compatibility of

deformations are fundamental to analysis methods for solving

problems in structural mechanics. There was a certain degree

of asymmetry in the developmen t and utilization of these two
concepts, as described here.

Early on, when hand calculations were used, the force
method was favored because it resulted in a much smaller set

of simultaneous equations, usually related to the redundant

forces in a roof or bridge truss, than did the displacement
method. With the appearance of computers that consideration

lost its importance in favor of ease of automation and low

computational cost.

Equilibrium can be viewed as a more fundamental concept

than compatibility. Engineers have a feel for it, perhaps

because it was practiced consciously or subconsciously by the

first builders of primitive human habitats in the dim past of

human evolution, by the architects of magnificent edifices of

biblical empires, and then by the builders of cathedrals, who
faced the intricate equilibrium problems of Roman and Gothic

arches and domes. If equilibrium was violated, or was

precarious, the construction responded by tumbling down.

Recall that the mere blast of horns is supposed to have caused

certain wails in Jericho to collapse in a much simpler era of

structural analysis and construction practices.

The point is that equilibrium is such a natural concept that
good engineers have alwayshad a feel for it, and it was the

guidance for most early achievements. In contrast, the more

sophisticated and basically mathematical concept of compati-

bility certainly was not central to the worries of these early
builders and architects; it was n0t even known until math-

ematicians defined it only a century ago.

Rational principles to define the equilibrium conditions of

mechanical forces had an early start with the work of

Archimedes (287-212 B.C.) on levers and pulleys. A couple

of millennia passed before the upsurge of rational scientific

thought during the Renaissance brought about further

significant theoretical developments. With the efforts of many

scientists during the centuries that followed, the concepts of

equilibrium and compatibility were finally developed in forms

that eventually became useful for design calculations. Because

it helps to understand how the current computer-automated

analysis practices evolved, the history of this development is

briefly reviewed.
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Renaissance geniuses like Leonardo da Vinci (1452-1519)

and Gallileo (1564-1642) used the concept of equilibrium in

their work, but even Gallileo, a professor of mathematics, did

not possess the proper mathematical language to express the

fundamental laws governing equilibrium in a continuum. That

had to wait until the introduction of that language (i.e.,

calculus) by Newton (1642-1726) and Leibnitz (1636-1716).

This new mathematical toot attracted many of the great

minds of the Age of Enlightenment, who finally were in the

possession of mathematical language to formulate correct laws
of physics. Elasticity was introduced as a branch of

mathematics, rich in the possible applications of the exciting
new tool of calculus. The Bernoulli brothers and Euler were

enthusiastic early proponents of the use of calculus in

mechanics. Following in their footsteps many great scientists
contributed to the early developments in eiasticity_ A

fundamental contribution was made by Cauchy (1789-1857),

who formulated the equilibrium equations both in the field and

on the boundary for deformable bodies (refs. 3 and 6).

The underlying principle behind the EE'S is force balance,

which can be easily visualized. Equilibrium equations in

general are not sufficient to solve a structural analysis problem;

they have to be augmented by the compatibility conditions.
In other words, EE'S are indeterminate in nature, and

determinancy for a continuum is achieved by adding the

compatibility conditions to them.

The compatibility conditions in the field (which are the
counterpart of Cauchy's field equilibrium equations) were

formulated in terms of strains for deformable solids by St.

Venant (ref. 3) in 1864, decades after Cauchy's equilibrium

formulation. Again it took about three decades for the field

cc's of St. Venant to be expressed in terms of stresses by
Beltrami and Michell in 1900 (ref. 6).

The cc's on the boundary, which are the counterpart of

Cauchy's stress boundary conditions and are henceforth referred
to as "the boundary compatibility conditions" (ncc's), eluded

analysts until their recent formulation in 1986 (ref. 7). In

contemporary elasticity, boundary indeterminancy is alleviated

by using additional displacement boundary conditions (imposed

on a kinematically stable structure) instead of the legitimate
Bc-c's_-For discrete structures the cc's were formulated in a

way that would not be equivalent to the elasticity theory for

a continuum (the strain formulation of St. Venant).

The development of analysis methods for discrete structures

was also accelerating during the nineteenth century for

practical reasons. The upsurge in scientific discoveries during

the previous centuries was closely followed by their
exploitation for inventions and large-scale industrialization.

The need to qualitatively predict the behavior of various

machinery and constructions became a driving force for the
development of analytical methods.

One of the central problems was to analyze trusses and

frames employed in bridges and buildings. Wooden trusses

had been used since ancient times, and wooden bridges reached

L



spans of over 300 ft by the end of the nineteenth century. The

first book on the analysis of bridge trusses was published in

1847 by Whipple (ref. 8), who had impressive wooden bridges

to his credit. When iron became available in sufficient quantity

to construct iron bridges of various designs, accurate methods

of calculating forces were needed in order to size structural
members.

The concepts of statically determinate and indeterminate

structures were introduced. Equilibrium equations written at

joints in terms of forces are sufficient only to calculate or

graphically obtain member forces for statically determinate

trusses. Two theoretical approaches (the force method and the

displacement method) were developed for indeterminate

structures in the second half of the nineteenth century. These

are the foundations of the analytical methods used today.
For an indeterminate truss there are more force unknowns

than equations, thus the indeterminancy. Clebsch (1833-1872)

noticed that, if EE'S are written in terms of nodal displace-

ments, the number of equations and displacement unknowns

is identical. With that observation the displacement method

was born, but it was not useful because there was no practical

way to solve the potentially large number of simultaneous

equations by hand, except perhaps by relaxation methods, such

as moment distribution introduced by Hardy Cross in the
t930's.

A more useful method was introduced by Maxwell

(1831-1879), who proposed cutting redundant members and

introducing unknown redundant forces at the cuts. The

remaining determinate structure is solved for both applied and
redundant loads in order to obtain the internal forces and the

relative displacements at the cuts for all the load systems.

Because the EE'S for determinate trusses essentially represent

a triangular system of equations, their solution is easily

obtained even by hand calculations (refer to appendix A). Next,

in order to reestablish discretized compatibility, the analyst

sets up simultaneous equations that express the conditions at

which the relative displacements due to the external loads are
closed by the redundant loads. The solution of these equations

yields the redundant forces, and superposition of the two sets

of internal loads gives the final solution. This cumbersome
method is known as the force method and referred to as "the

standard force method" (SFM) in this report. This method

became the analysis method of choice for generations of

engineers because in conventional trusses and rigid frames the
number of redundant forces, and therefore the number of

simultaneous equations, was usually small--an overriding
consideration before the dawn of the computer age.

One can make the observation at this point that both the force

and displacement methods centered around EE'S. Global

compatibility was not dealt with at a similar conscious level

because it is automatically satisfied in the displacement method

and used only as an ad hoc device to augment the number of

EE'S in the preceding formulation of the force method.

Otherwise no parallel approach was developed that would

satisfy the system EE'S and global cc's simultaneously without

recourse to the concept of redundant selection.

General Description of Integrated
Force Method

All numerical solutions are approximate depending on the

degree to which the EE'S and cc's are satisfied or violated.
It is a common observation that stress fields obtained by the

heavily equilibrium-based finite element stiffness method (SM)

in general satisfy neither the EE'S nor the cc's in regions of
stress concentrations or on the interelement boundaries

(ref. 9). Of course SM provides solutions of acceptable

accuracy to many complex problems that could hardly be

analyzed only a couple of decades ago, the accuracy being

dependent mostly on the choice of the finite element model.
As will be shown, this accuracy and the efficiency of

computation can be greatly improved by a more direct
satisfaction of EE'S and cc's. Recent research on cc's led to

the establishment of the novel formulation termed "the

integrated force method of analysis" (refs. 1, 2, 7, and 10
to 16). The _FM explicitly constrains the primary variables

(which are the forces for discrete systems and the stress

resultants for continua) to satisfy both EE'S and cc's within

an element and at nodes and, in addition, the cc's on the

interelement boundaries. The IFMthereby ensures the improved

accuracy of the stress fields. Interelement equilibrium

conditions, in general, are the only conditions not explicitly

imposed by the IFM. The IFM has now been established for
static, stability, and dynamic analyses of discrete systems and

continua. The basic theory of IFM has been completed with
the formulation of the variational functional for lr_i (ref. 7).

The stationary condition of the IFM variational functional yields

all the known equations of structural mechanics along with

the novel conditions identified as the boundary compatibility
conditions.

The IFM for discrete analysis, similar to SM, is independent

of the concept of redundants and the basis determinate structure
selection of the classical force method, referred to earlier as

"the standard force method" (SFM) (ref. 1). The I_ for

continuum analysis is based on EE'S and cc's in the field and

on the boundary. Contemporary analytical methods (continua

or their discrete counterparts) irrespective of analysis

methodology (SVMor SM) totally exclude the consideration of

the boundary compatibility requirements because the acc's

were not known. The IFMutilizes the acc's in analysis (refs. 7,

15, and 16). Reference I compares the IFM to the SFM (ref. 1)

and shows that the SFM developed for hand computation is a

special version of the integrated force method. The SFM Can
be considered as a subset of the IFM, limited to static stress

analysis.

In this report the integrated force method is compared with
the stiffness method. The methods are compared analytically



andnumericallyfor finiteelementsystemstakinginto
considerationthefollowingfivecriteria:

(1)Computerautomation
(2)Solutionaccuracy
(3)Stabilityof equationsystems
(4)Computationalefforts
(5)Versatilityof methods

AstheWM is of recent origin and only research-level software

implementation exists, the comparison is restricted mostly to

basic principles of the formulations. Simple numerical

illustrations are included to clarify issues and to show relative

performances LThe basic difference between the IFM and SFM

solution techniques is illustrated in appendix A for simple

examples.

The solution of equation (1) yields the n forces [F]. The m

displacements fX_t J are obtained from the forces IFI by

backsubstitution (ref. 1):

IX] = [J] _[G] [F_ + [fl}0] (2a)

where [J] is the (m ×n) deformation coefficient matrix defined as

[J] = m rows of [[S]-Ilr (2b)

Equations (1) and (2) represent the two key IFM relations for

finite element analysis. The key equation of the stiffness

method, expressing nodal equilibrium in terms of nodal

displacement, has the following form:

[K] IX] = IP] + iPI' (3)

Equations of Integrated Force Method

Generation of IFM Equations

The basic WM equations introduced earlier (refs. 1 and 2)

are presented here for completeness and for comparison with

the SM equations.* A discrete or discretized structure for

analysis can be designated as structure (n,m) where "structure"

denotes type of structure (truss, frame, plate, shell, or their

combination discretized by finite elements) and n,m are force

and displacement degrees of freedoms (fof, do/"), respectively.

The structure (n,m) has m equilibrium equations and r = (n-m)

compatibility conditions. The m equilibrium equations

[BI [F] = _P_f_

and the r compatibility conditions

[CI[G] _F] = _6R]

are coupled to obtain the governing equations of the WM as

[CI[GI _-_ or [SI[FI = [PI ° (1)

where [B] is the (mx n) equilibrium matrix, [C] is the (r x n)

compatibility matrix, [G] is the (n × n) concatenated flexibility

matrix, [P] is the m-component load vector, [6R_ is the r-

component effective initial deformation vector,

[tSR_ = - [C] _31o

where I3]0 is the n-component initial deformation vector, and

[S] is the (n × n)WM governing matrix. The matrices

[B] , [C] , [G], and [S] are handed and they have full-row ranks

of m, r, n, and n, respectively.

*All symbols are defined in appendix B.

where [K] is the (m x m) stiffness matrix and [P]' represents

equivalent loads caused by initial imperfections.

From the IFM equations (eqs. (1) and (2)) and the stiffness

method equation (eq. (3)) the following observations can be
made:

(1) In |FM the internal forces tF_¢_are Calculated directly from

the applied loads IPl'. In SM one has to caiculate

displacements first from loads (by using the load-displacement
relation [K] __X_ -- IP], noting that loads and displacements

have different dimensions and magnitudes) irrespective of the

analysis requirements and then determine internal forces from
displacements by backsubstitution, coordinate transformations,

and differentiation or its equivalent.

(2) The right-side vector [P]" of dimension n in !FM

equation (1) is constructed from the m-component mechanical

loads [P] and the r-component effective initial deformations

I3RI. The right-side vector of dimension m in SM includes both

mechanical load vector t_P_Jof dimension m and m-component
equivalent load vector IP] i. The IFM load vector IP]" is

independent of the material characteristics and design

parameters of the structure. The total SM load vector is a

function of the material properties and design variables of the
structure. The SM equivalent loads ;D_ are nonzero even for

compatible initial deformations that do not induce stresses in

the structure. In other words the problem of initial

deformations in the stiffness method is handled by the concept
of equivalent loads that are n0nzei-o even for a frivial s[tuati0n

of compatible initial deformation distribution when [6R] = I0].

(3) The IFM equation (eq. (1)) contains both EE'S and

cc's. The stiffness equation (eql (3)) can be obtained from

equation (1) by transforming variables and backsubstituting.

Since equation (3) does not explicitly include the cc's, these

equations cannot be manipulated to Obtain 1FM equations.

The steps required to obtain the stiffness equation (eq. (3))

from the IFM equation (eq. (1)) are as follows (the derivation

is for mechanical loads only):

(l) Displacements are changed to deformations by using

deformation displacement relations (DDR'S):



[/31 = [B] fiX ] (4)

(2) Deformations are then transformed to forces by using
the deformation force relation

{/31= [GIIFJ (5)

(3) Force displacement relafonsare obtained fromequafions
(4) and (5) as

IF] = [G]-_03]rlXl (6)

(4) The upper portion of the EE of the _FMgoverning equation

(eq. (1), [B] IF} = [P]) is rewritten in displacements to obtain

the stiffness equation

[1131[G]- _[B]r] IX] = IPI (7)

or [K] IXI = [P], where [K] = [B] [G] - _[B] 7-. As mentioned

earlier the integrated force method cannot be obtained from

the stiffness formulation owing to the explicit absence of cc's
in that formulation.

1FM Solution Procedure

The IVMsolution procedure is illustrated in appendix A for

the example of a bar subjected to both mechanical and thermal

loads. The prinicipal steps are as follows:

Step 1: Assembly of the system equilibrium matrix [B].

The system EE matrix 03] is assembled from elemental

equilibrium matrices by standard finite dement techniques.
The procedure to generate the elemental equilibrium matrix

is presented in the section "Equilibrium Equations" of this

report.

Step 2: Generation of the global compatibility matrix [C].

The generation of the global compatibility matrix is

presented in the section "Compatibility Conditions." Since
the deformation displacement relation (eq. (4)) utilizes the EE

matrix 03] and the cc's are obtained from the DDR'S, accuracies

or errors in the equilibrium matrix are likely to be reflected
in the compatibility matrix [C].

Step 3: Generation of the concatenated flexibility matrix [G].

The block diagonal flexibility matrix [G] is obtained as the

diagonal concatenation of elemental flexibility matrices. The

elemental flexibility matrices are obtained by discretizing

complementary strain energy functionals according to standard
flexibility techniques.

Step 4: Construction of load vector Ipl ".

The IFM load vector/P]' is assembled from mechanical loads

IPI and initial deformations I_/10 as defined in equation (1).

Step 5: Solution of IFM equation.

The matrix equation (1) is constructed from matrices [13], [CI,

and [G] and load [PI ", and its solution yields the forces. Dis-

placements are obtained by backsubstituting from equations (2).

Equilibrium Equations

The equilibrium equations, written in term of forces at the

grid points of a finite element model, represent the vectorial

summation of n internal forces IFI and m external loads [PI.
The nodal EE in matrix notation gives rise to the (m × n)

(n >m)-banded rectangular equilibrium matrix ['B], which is

independent of the material properties and design parameters

of the indeterminate structure (n,m). For finite element analysis

this matrix is assembled from elemental equilibrium matrices.

The elemental equilibrium matrices 03] for bar and beam
elements can be obtained from the direct force balance

principle (ref. 4). For continuous structures, such as plates

or shells, very few equilibrium matrices are reported in the

literature (refs. 17 and 18). Equilibrium matrices for the plate

flexure problem are given by Przemieniecki (ref. 17) and

Robinson (ref. 18). Przemieniecki generates the matrix for a

rectangular element in flexure from direct application of the
force balance principle at the nodes. Robinson utilizes the

concept of virtual work to derive the matrix for a rectangular-
plate element in flexure. The procedures of Przemieniecki and

Robinson are documented in their books (refs. 17 and 18) and
are not repeated here.

Energy-equivalent equilibrium matrices for finite dement

analysis can be obtained from the tVM variational functional

(ref. 7). The procedure to be followed to generate an elemental

equilibrium matrix from the IFM variational functional is

illustrated next for the example of a rectangular-plate element

in flexure. The portion of the IFM functional (ref. 7) that yields

the equilibrium matrix 03] for a plate bending element has the

following well-known form:

ffM. w M
Up = _D( xOx2 "[- My_y2 + _YOxOYJdx dy (8)

where Mx, My, and Mxy are the plate bending moments and

02W 02W 02W

_X 2 ' 3y 2' OxOy

represent the curvatures. The plate domain is D and the

coordinates are (x,y).

By appropriate choice of force and displacement functions

the energy scalar Up can be discretized to obtain the elemental
equilibrium matrix 03].

Up = IX] r[BI[F/ (9)



wheretheelementaldisplacementdegreesof freedom are

symbolized by Ixl and the elemental force degrees of freedom

by IF].

The force fields have to satisfy two mandatory requirements:

(1) The force fields must satisfy the homogeneous equilibrium
equations (here the plate bending equations in the domain).

(2) The force components Fk (k = 1,2 ..... 9) must be

independent of one another. This condition ensures the

kinematic stability of the element. For the rectangular plate
the force field is chosen in terms of nine independent forces:

as

(F) =<F1, F2..... F9)

Mx = Ft + F2x + F3y + F4xy

My = F 5 + F6x + FTy + Fsxy

M_=F9
t (10)

The variation of the normal moments in the field is linear,

but the twisting moment is constant. The assumed moments

satisfy the mandatory requirements.

The displacement field that should satisfy the continuity
condition (ref. 19) is chosen in terms of 12 variables to match

the three dof (transverse nodal displacement w i and two

rotations Oxiand Oyi per node i for the four nodes) and can be
written in terms of Hermite polynomials as

w(x,y) = HOl (x)Hol (y)X l + Hot (x)Hll (y)X2

+ Htl(X)Hol(y)X3 + HoI(X)Ho2(y)X4

+ H01 (x)H12(y)Xs + Hi1 (x)H_(y)X6

+ Ho2(x)Ho2(y)X7 + Ho2(x)Ht2(y)Xs

+ H12 (x)Hoz (y)X9 + H02 (x)Hot (y)Xto

+ Ho2(x)Hll(y)Xll + H12(x)Ho1(y)X12

(lla)

In equation (1 la) the Hermite polynomials are defined as

Hol(X) =
x 3 _ 3a2x + 2a 3

4a 3

x 3 _ 3a2x - 2a 3
Ho2(X) = -

4a 3

X 3_aX 2 _a2x+ a 3
HH (x) =

4a 2

x 3 + ax 2 _ a2x - a 3
H1", (X) --

- 4a 2

(l lb)

where X 1, X2 ..... X12 are the 12 dof and a and b are the

dimensions of the plate along the x and y directions,

respectively. The Hermite polynomials for the y coordinate

direction can be obtained by changing x and a to y and b,

respectively, in equation (1 lb). The displacement field (eq.
(1 la)) gives rise to linear force distribution (eq. (10)) for the

plate bending problem.

The equilibrium matrix is obtained by substituting moments

from equations (10) and displacements from equations (11)

into the energy scalar given by equation (8) and integration.

The equilibrium matrix thus obtained is presented in table I.

The generation of the equilibrium matrix [B] from the IVM

functional is a general procedure applicable to any other type
of element. The matrix obtained from the functional is

henceforth referred to as the consistent equilibrium matrix
[B]_.

The two equilibrium matrices of Przemieniecki and

Robinson, depicted in tables II and III, are compared with the

IFM consistent matrix for response accuracy. In this study the

analysis was carried out by WM following the five steps given
in the section "IFM Solution Procedure."

TABLE I.--IFM CONSISTENT EQUILIBRIUM MATRIX [B]s FOR
RECTANGULAR-PLATE ENDING ELEMENT

0 b 0 - 2b-" 0 0 a - 2a2 - 2
5 5

0 b2 0 - b3 2a---_2 ab - 2a2b 0
3 15 -a 5 5

b - ab - 2b2 2ab2 - a2 a3
5 5 0 0 3 15 0

0 b 0 2b2 0 0 - a 2a---_'_
5 5

0 - b2 0 - b3 - 2a2 -- 2aZba ab
3 15 5 5

- b - ab 2b2 - 2ab2 0 0 a_22 - a3
5 5 3 15 0

0 -b

b z
0 --

3

-b -ab

0 -b

0 -b2
3

b -ab

0 -2b2 0 0 -a -2a2 -2
5 5

0 b3 2a2 2a2b 0
1"5 a _- ab 5

-2b2 -2ab2 0 0 -a2 --a3 0
5 5 3 15

0 2b----_2 0 0 a 2a_ 2
5 5

0 b3 - 2a2 2a2b-- -a ab -- 0
15 5 5

2b-"_'2 2ab2 0 0 a--_2 a-.-_3 0
5 5 3 15

=

6



TABLEII.--PREZEMIENIECKI'SEQUILIBRIUM MATRIX TABLE III.--ROBINSON'S EQUILIBRIUM MATRIX _]R FOR

[B]p FOR RECTANGULAR-PLATE BENDING ELEMENT RETANGULAR-PLATE BENDING ELEMENT

[Dimension of element, (a,b).]

0 2 0 0 0 0 0 -__22 -1
b a

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 1 0

-2 2
0 -- 0 - 0 0 0 0 1

b a

-l 1 0 0 0 0 0 0 0

0 0 -I -1 0 0 0 0 0

0 0 0 -_.22 0 2 0 0 -1
a b

0 0 0 0 -1 -1 0 0 0

0 0 l -1 0 0 0 0 0

o o o o o -___22 o 2 i
b a

0 0 0 0 1 -I 0 0 0

0 0 0 0 0 0 1 1 0

IFM Consistent Matrix Versus Przemieniecki's Matrix

The elemental discretizations by the IVMand Przemieniecki

approaches are identical in force and displacement degrees of
freedoms, with fof = 9 and dof = 12 for both. This gives rise

to identical dimensions of 12 × 9 for both matrices [B] s and

[B]p. In the IFM approach the moment variables are in units

of moment per unit length (such as kip-inch per inch or

kilogram-meter per meter). Przemieniecki concentrates the

moments at the nodes, and this accounts for the dimension

change between the elemental matrices [B]_ and [B]e. The
number of nonzero entries in the Przemieniecki matrix is 28.

In contrast, there are 68 entries in the IFM matrix [B]_. The

Przemieniecki matrix can be viewed as a lumped version,

whereas the IFM matrix is consistent. The quality of the

response was ascertained by using both the matrices IBis and

[B]p to solve a finite element model of a clamped square plate

in flexure (plate material, steel; size, 40 in. (I01.6 cm); and
thickness, 0.2 in. (5.08 ram)) with a concentrated load at its

center (P = 1000 lb (453.59 kg)). Other analysis features in

[Dimension of element, (a,b).]

0 - b 0 2__ 0 0 - a 2b2 2
5 5

0 3 0 i-5 a -ab 0

0 0 a2
3 15 0

0 b 0 -2b2 0 0 -a -2a2 -2
5 5

0 ----- 0 -- a -ab 0
3 15

b ab 0 0 3 15 0

o b o 2b2 0 0 a 2a__2 2
5 5

0 -b2 0 -a -ab 0
3 15

o 0 3 15 0

-2a20 -b 0 _ 0 0 a -2
5 5

1"-5 -a -ab 0

-b ab ["--_ _'_--] 0 0 -aZ a,._3
3 15 0L_Z_A _L_2__]

aBoxedelementshad coefficienl ch,_ged from I/3 in Robinson's maa'ixm 2/5 in IFMconsistentmatrix.

the IFM procedure, such as the flexibility matrix and

compatibility generation scheme, were kept identical for both

cases. The deflection at the plate center was chosen as the

parameter for comparison. This parameter was obtained in IFM

by first calculating forces from equation (1) and then

substituting IFI in equation (2). The displacement for this

problem as given by Timoshenko (ref. 20) had the following

value for the plate depicted in figure 1:

wc = 0.4072 in. (10.343 mm) (12)

The central displacements obtained with the two matrices

([B]_ and [B]p) for the two finite element models are

presented in table IV. Table IV shows that the central

deflection obtained with the Ir_i matrix [B]s converged to
Timoshenko's series solution for the first model with four

elements. Przemieniecki's equilibrium matrix [13]e not only

yielded a higher value for the central displacement wc for the
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Figure 1 .--Clamped plate. Along clamped edges w = Ow/Ox = Ow/Oy = O.

TABLE W.--IFM ANALYSIS RESULTS--RESPONSE BY

PREZEM!ENIECKI MATRIX [B]p VERSUS IFM

CONSISTENT MATRIX [B]s

lTimoshenko's solution, w c = 0.4072 in. (10.343 mm).]

Number of

elements

4

16

Przemieniecki matrix

Central Error,

displacement, percent

in. mm

0.5054 12.8372 24.11

.5509 13.9929 35.29

IFM matrix

Central

displacement,

W c

in. mm

0.4083 10.3708

.4069 10.3353

Error,

percent

0.20

.07

four-element model, but also did not show the tendency of

monotonic convergence for the refined model consisting of
16 elements.

IFM Consistent Matrix Versus Robinson's Matrix

The IFM matrix bears a remarkable resemblance to

Robinson's matrix except for the following;

(1) There is a change in sign between the two matrices, The

reason is that the IFM sign convention is opposite to that of
Robinson's notations.

(2) Some of the elements with coefficient 1/3 in Robinson's

matrix [B]R were changed to 2/5 in the IFM consistent matrix.
This difference occurred for the 16 elements noted in table lII.

For the test example of a clamped plate, however, the

discrepancy had a negligible effect on the solution for moments

and displacements as shown in table V.
..... = 7 •

When element geometry becomes complicated, it is rather

difficult to generate the equilibrium matrix by vectorial

summation of forces (ref. 17) or by repeated use of virtual

influence coefficients fief. 18). Therefore it is recommended

that the elemental equilibrium matrices should be generated

by following the In consistent approach (ref. 7).

The equilibrium matrix [B]_ corresponds to three displace-

ment variables per node (displacement w and two rotations

0_ and Oy), giving rise to 12 variables per node. This ideal-
ization requires a displacement polynomial with 12 unknowns.

Only 12-term Hermite polynomials are used to satisfy this

requirement. The 12-term Hermite polynomial is known to

cause convergency difficulties in the stiffness method. The

effect of the 12-term Hermite polynomial on solution accuracy

in the integrated force method was examined by using a
displacement function given by equation (13) to obtain another

equilibrium matrix, designated as [13]a. This displacement

function has the following form:

w(x,y) = oq + ot2x + o_3y + or4x2 + o_sxy + ot6y 2

+ OLTX3 + Otsx2y + otgxy 2 + o/loY 3

+ _llX3y + Otl_'y 3 (13)

The constants of the polynomial were related to nodal dof by

following standard finite element techniques, and the 12 x 9

equilibrium matrix [B] a was obtained from equations (8),

(10), and (13). Few coefficients of the matrices [B]_ and [B]a
are different.

In order to examine the effect on the solution accuracy, the

clamped plate was analysed by using both equilibrium matrices
[B], and [B]a along with the appropriate flexibility and

compatibility matrices as described in the subsection "IFM

Solution Procedure." The plate properties are defined in the

main section "Solution Accuracy." The central displacements

obtained for three idealizations (model 1 has 4 elements,

model 2 has 16, and model 3 has 36) by using the two matrices
were as follows:

(1) For EE matrix [B] s. The central displacements wc for
the three idealizations were 0.2041, 0.2035, and 0.2035 in.

(5.181, 5.169, and 5.169 mm), respectively.

TABLE V.--IFM ANALYSIS RESULTS--RESPONSE BY ROBINSON'S MATRIX [B]R VERSUS

RESPONSE BY IFM CONSISTENT MATRIX lB]s

Number of' Robinson's matrix IFM matrix

elements

4

16

Central

displacement,

wc

in. mm

0.4083 10.3708

.4069 10.3353

Moment at plate

center,

M_=uy

(kip in.)lin. (kg m)/m

0.193 87.544

.241 109.317

Central

displacement,

W c

in. mm

0.4083 10.3708

.4069 10.3353

Moment at plate

center,

(kip in.)lin. (kg m/m)

-0.193 -87,544

-.241 -109.317



(2) For EE matrix [B]a. The central displacements wc for
the three idealizations were 0.2041, 0.2035, and 0.2035 in.

(5.181, 5.169 and 5.169 mm), respectively.

For the problem both matrices gave identical values for the

central displacement. Moments obtained for both cases were
also identical.

In the stiffness method it is a known fact that the solution

is sensitive to the choice of displacement fields (refer to eqs.

(1 l) and (13)). In the IFM displacement fields do not have a

significant effect on solution accuracy. For the plate problem

the two different displacement fields given by equations (1 l)
and (13) yielded identical results. This feature of WM is further
elaborated in the subsection "Element Level Effect."

Compatibility Conditions

The compatibility conditions are constraints on strains, and

for finite element models they are also constraints on member

deformations [/31. The n-component deformation vector is
defined as

I/3} = [G] [F t + I/3}o (14)

where I/3] is the total deformation, [G] is the flexibility matrix,

IF1 represents the member forces, and [/31o is the initial

deformation. When expressed in terms of force variables the

cc's involve two matrices, the flexibility matrix [G] and the

compatibility matrix [C], and can be written as

[C][G] [F] = {6R] (15)

This equation augments the EE'S in the IFM as given in

equation (I). The flexibility matrix [G] is obtained from the

discretization of the complementary strain energy by following

standard techniques. For the plate element example the

flexibility matrix [G]e can be symbolically represented as

1

U c = _ [F] T[Gle{F ]

(16)

where D 1 = (Eh3/12), E is Young's modulus, u is Poisson's

ratio, and h is the plate thickness.

Substituting into equation (16) the moments Mx, My, and

Mxy in terms of forces F1, F 2 ..... F9 as given by equation
(10) and integrating yield the (9 x 9) flexibility matrix [G]e

for the rectangular-plate flexure element. The generation of
the flexibility matrix [G] is reported in the literature (refs. 4,

17, and 18) and will not be repeated here. The system

flexibility matrix [G] for the structure is a block diagonal

matrix. It is obtained as the diagonal concatenation of element

flexibility matrices.

Generation of Compatibility Matrix [C]

The compatibility matrix [C] is obtained by extending

St. Venant's theory of elasticity strain formulation to discrete

structural mechanics (refs. 11 and 12). The procedure is

illustrated by taking the plane stress elasticity problem as an

example. The strain displacement relations (SDR'S) of the

problem are

Ou
f-x _ -- |

Ox

t

Ov

ey Oy

Ou Ov

"Yxy= yO--+ Ox

(17a)

In the SDR'S three strains (ex, %., and 3%) are expressed as
functions of two displacements (u and v). The compatibility

constraint on strains is obtained by eliminating the two

displacements from the three SDR'S, resulting in the single

compatibility condition

°32e_x + 02e2 -- 32TaY = 0

Oy2 Ox2 OxOy
(17b)

The two steps of St. Venant's procedure to generate cc's are
as follows:

(1) Establish the SDR'S.

(2) Eliminate displacements from the SOR'S to obtain
the cc's.

The equivalents of SDR'S in the mechanics of discrete structures

are the deformation displacement relations (DDR'S);

deformations I/3] of the discrete analysis are analogous to

strains [e] of the elasticity analysis. The DDR'S can be assembled

directly or obtained on an energy basis.

The well-known equality relating internal strain energy and

external work can be written for a discrete structure (n,m) in

the following form:

[F} r[/3} = 2 [X] r[p] (18a)

where IX] are the nodal displacements. Equation (18a) can

be rewritten by eliminating loads IPI in favor of forces IF]

and using the EE (Ill IF] = [PI) to obtain the following

relationship:



1 1
IX]r[B][FI = _ IFl rl/3t (18b)

or

_1[FIr([B] r[Xl _ [/3]) = 0 (18c)
2

Since the force vector IF] is not a null set, we finally obtain

the following relation between member deformations and nodal

displacements:

[/31 = [B] r IX] (19)

The expression given by equation (19) is the general DDR
applicable to finite element models whose EE'S can be

symbolized as [B] IF1 = [PI- In the DDR n deformations are

expressed in m displacements; thus there are r = (n-m)

constraints on deformations that represent the cc's of the

structure (n,m). The cc's are used to augment the EE'S,

completing them to an n x n set. The r = (n -m) co's, which

are obtained by eliminating m displacements from n DDR, can

be symbolized in matrix notation as

[C] [/3] = [01 (20)

In equation (20), [C] is the (r x n) compatibility matrix. It
is a kinematic relationship and as such it is independent of

design parameters, material properties, and external loads. The

matrix is rectangular and banded. The maximum bandwidth of

cc matrix [C] of an element in a finite element model depends

on the force degrees of freedom (for) of its neighboring

elements. The maximum bandwidths of the compatibility

conditions for the plate in flexure with fof = 9 shown in
figure 2 are as follows: the maximum bandwidths (MAW) of

compatibility conditions for the plate can be obtained as a
function of the element location in the finite element model as

Interior element Maw = 81 Zone 1

Boundary element Maw = 54 Zone 2
Corner element Maw = 36 Zone 3

Th e generation.of banded comPat!bility., cond!tions - is
amenable to computer automation (refs. 11 and 12). The

compatibility conditions of finite element analysis are

illustrated by taking the example of a stiffened membrane
(fig. 3). The finite element model of the structure consists of

9 triangular membrane elements and 23 bars. Each membrane
element has three fof; the bar has one fof. The total number

of force variables is n = 50, consisting of 9 × 3 = 27
membrane forces and 23 bar forces. The structure has 11

nodes, each free node has two dof. Node 1 is fully restrained;
node 11 is partially restrained. The number of displacement

degrees of freedom m=(lI ×2-2-1)= 19. It has
r = (n-m) = 31 compatibility conditions. The cc's in terms

CBW - BANDWIDTH OF COMPATIBILITY CONDITIONS

EBW - BANDWIDTH OF EQUILIBRIUM EQUATIONS

FEM FINITE ELEMENT DISPLACEMENT METHOD (12 DEGREES OF FREEDOM)

IFM = INTEGRATED FORCE METHOD <NINE DEGREES OF FREEDOM)

P
I r
t

: I

ZONE 3

i

r

_ --%- i
ZONE I i

CBW = 9x9 = 81

EBW = 4x12 = t18 :

o , o o

o p

i
I

i

CBW _ qx9 = 36
EBW hx12 = 48

 11.....

[
r

0

: 2

o

• CBW = 6x9 = 54 (IFM)

EBW = qx12 = h8 (FEM)

EBW 4x9 _ 36 (IFM)

F

I

L

=

Figure 2.--Bandwidth of compatibility conditions and equilibrium equations

for clamped plate.

of member deformations as obtained from St. Venant's strain

formulation for finite element analysis of the stiffened
membrane are as follows:

/34 + /326 = 0 (21 - 1)

/31 + _24 = 0 (21-2)

/_5 + /325 = 0 (21-3)

/32 + /327 = 0 (21-4)

/36 +/328 = 0 (21-5)

-- /326 + /329 = 0 (21-6)

/36 +/330 = 0 (21-7) =
=

/310 +/331 = 0 (21-8)

/38 -'1- _32 = 0 (21-9)

/37 + /_33 = 0 (21-10)

P]I +/334 = 0 (21-II)

-- /_32 -'l- /335 = 0 (21-12) _

/311 + t336 = 0 (21-13)

l0
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(a)

6

11

7 $

(b)

(a) Bar elements.

(b) Membrane elemems.

Figure 3.--Idealized stiffened membrane structure.

/315 ''[" /337 = 0 (21-14)

/313 + /33S = 0 (21-15)

812 + 839 = 0 (21-16)

/3t6 + /34O= 0 (21-17)

/313 -k-/341 = 0 (21-18)

1317+ 1345= 0 (21-19)

816 + 842 _---0 (21-20)

/32o+/343 = 0 (21-21)

844 + /347= 0 (21-22)

/_Zl + 1346= 0 (21-23)

/32l -Jr-/348 "_"0 (21--24)

/323 + 849 = 0 (2 1--25)

818 q"/347 = 0 (21--26)

/322 + 850 = 0 (21-27)

-0.1041/31 - 0.7449/32 +/33 - 0.831085

-- 0.7185/36 - 0.1319/326 = 0

-0.7223/36 - 0.8049/37 + 89 - 0.7869/310

- 0.8199/311 - 0.1205/332 = 0

-0.7186811 - 0.7092/312 + 0,1104/313 +/314

- 0.6954/315 - 0.8577/316 = 0

0.5466/316 -- O. 1068/319 + 0.8018820

+ 0.8069/321 - 0.7848/36 +/347 = 0

(21-28)

(21-29)

(21-30)

(21-31)

The maximum bandwidths predicted from compatibility
conditions and their actual values are shown in table VI. The

average number of entries in cc's is much smaller than the

predictions from maximum bandwidth considerations. For the

example of the stiffened membrane there are 31 cc's, 27 of

these cc's have two entries each and the remaining 4 c¢'s have

six nonzero elements. Typically the compatibility matrix is
much sparser than most other matrices of structural analysis.

I1



TABLE VI.--BANDWIDTH OF COMPATIBILITY CONDITIONS

Prediction from bandwidth Actuals

consideration

Maximum Minimum Maximum Average Minimum
T

52 [ 18 6 a3 2
3-

aRounded to next higher number,

Physical Interpretation of Compatibility Conditions

A finite element model has numerous interelement

boundaries. From the viewpoint of continuum analysis the

boundary compatibility conditions along these interelement

boundaries also have to be satisfied. The conditions along the

element interface can be symbolized as

_RI + 6RII = 0 (22a)

where (6m,6m0 represent the residue in the Bcc's of the two

neighboring elements I and II, respectively. For the membrane

problem the residue 6R can be represented in the following
form (ref. 7):

0 (Ny -- vNx)n x + (N x - vNy)nyTx

- (1 + _,) (Nxy)ny+ _ (N.)nx (22b)

where Nx, Ny, and N_ are the membrane stress resultants and

nx and lqy represent the direction cosines of the outward
normal for the element interface.

The equality constraint given by equation (22a) ensures

interelement boundary compatibility. The correct stress fields
should satisfy the interelement BCC'S given by equation (22a).

Element interphase boundaries could be of complicated

geometry; in consequence it is rather difficult to explicitly

satisfy the interelement BBC'S given by equation (22a) apriori

by choosing appropriate displacement or stress fields, or both.

The satisfaction of interelement strain compatibility, and not

just displacement continuity, is a neglected condition in the

popular stiffness method formulation. In general, stresses

obtained by displacement formulation along the element

interface boundary satisfy neither equilibrium nor compatibility
conditions. (Because of this limitation in the stiffness-based

finite element method, stress computation is typically avoided

at the cardinal node points or along element interphases.)

In the integrated force method interelement BBC'S are
automatically enforced via the cc's

f[C] Ifll = [C] [G] IF_ = t_R_

The cc's between elements at interfaces are satisfied by the
constraints given by equations (21-I) to (21-27). Take

equation (21-12) for example. This constraint enforces

interelement deformation continuity or BCC'S between

membrane elements 26 and 27 along the interelement boundary
defined by nodes 3 to 6 as depicted in figure 4(a). Such

interelement cc's are designated by the symbol (MM),

membrane-to-membrane compatibility, in figure 4(a). Take

the next cc given by equation (21-13). This constraint enforces
deformation balance conditions between membrane 27 and

bar 11 along the interface defined by nodes 5 and 6. These

types of cc's are symbolized by BM, bar-to-membrane

compatibility, in figure 4(a). The total number of interphase

cc's (both MM and BM) is 27 as shown in figure 4(a). Besides

these cc's there are four bay cc's; these enforce deformation

balance conditions of six adjoining bars as shown in
figure 4Co).

In the integrated force method the equilibrium conditions

are satisfied at the nodes [B] iFi = iP], the same as attempted

by the stiffness method. In addition, the following cc's are
satisfied only in the IFM:

(I) Membrane-to-membrane compatibility

(2) Membrane-to-bar compatibility

(3) Compatibility between a group of bars

For this example the EE'S number 19 and the cc's number 31.

The IFM satisfies all 50 equations. In contrast, the stiffness
method is based on the 19 EE'S expressed in displacements;

the 31 cc's are more or less ignored. Since it is mandatory
for the stress fields to satisfy the cc's, their exclusion in the

stiffness method reflects on the accuracy of the stress fields.

Computer Automation of Formulations

Modern structures, because of their complexity, have to be

analyzed by digital computers. Computer automation is

therefore an essential requirement of analysis formulation

despite its other merits and limitations. The integrated force

method satisfies this requirement, since all three matrices

(equilibrium matrix [B], compatibility matrix [C], and

flexibility matrix [G]) are amenable to automatic generation

on a digital computer. Since the stiffness method is known

to be amenable to computer automation, both the IFM and the

SM satisfy this requirement.

Solution Accuracy

E

The accuracy of solutions obtained either by IFM or SM is

of paramount importance in the choice of analysis formulation.

During the formative period of finite element analysis Argyris

(refs. 21 and 22) solved several problems both by theclassical

force method (SFM) and the stiffness method. Scrutiny of thisTake the example of the stiffened membrane shown in figure 3.

m
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INTERFACE COMPATIBILITIES

(_ MEMBRANE TO MEMBRANE

(_ BAR TO MEMBRANE

6

I 3

(a)

6 6

9

I 3 3

(b)

(a) Interface.

(b) Bay.

Figure 4.--Compatibilities of stiffened membrane structure.

study indicates that the SFM predicted more accurate stress

solutions for almost all examples, including plates and

cylinders, whereas inaccuracies can be noticed in the stiffness
computations. The Irr,_ retains all the favorable features of the

classical force method (s_) as far as solution accuracy is

concerned. Consequently Jr'M predictions have to be as accurate
as Argyris's SFM results.

To check the accuracy of solutions between the integrated
force method and the stiffness method in the context of finite

element analysis, we developed two plate bending elements
for the IFM:

(1) A rectangular element with four nodes

(2) A triangular element with three nodes

The quality of solutions obtained by the Ir-_ and the SM was

compared for both types of elements by taking the example

of clamped plate bending under a concentrated load. The plate
parameters were as follows:

Size of plate, a = b, in. (cm) ...................... 40 (101.6)

Thickness of plate, h, in. (mm) .................... 0.2 (5.08)

Young's modulus, E, ksi (kg/mm 2) .... 30 000 (21 091.81)

Poisson's ratio, v ............................................... 0.3

Magnitude of concentrated load at

center, P, lb (kg) ............................... 500 (226.795)

In the stiffness method nodal stress parameters calculated by

backsubstituting from grid point displacements are discon-

tinuous and ambiguous (ref. 9). Calculating forces at the nodes

is routinely avoided in the stiffness method. Because of that

the noncontroversial nodal displacement was used in the

comparison. It should, however, be remembered that in the

IVMforces are the primary variables from which displacements

are obtained by backsubstitution.

The central deflection of the plate given by Timoshenko

(ref. 20) is

wc = 0.2036 in. (5.715 mm)

For the stiffness analysis two well-known analysis codes, ASKA

(ref. 23) and MSC/NASTRAN (ref. 24), were used. The types

of plate bending elements used were
(1) QUAD-4: Rectangular element with 12 degrees of

freedom. Both ASICAand MSC/NASTRANhave QUAD--4 elements.

(2) TaIB-3: Triangular element of the ASKAprogram with

nine degrees of freedom.

(3) TUBA-3: Higher order triangular element of the ASKA

program with 18 degrees of freedom.

(4) TRIA-3: Triangular element of MSC/NASTRAN with nine

degrees of freedom.

13



The first three elements are well known in the literature and

are popular in practice. The QUAD--4, a quadrilateral element

with six dof per node was used here as a rectangular fiat-plate

element with three dof at grid points with appropriate

specialization. Likewise fiat-plate elements were obtained from

the triangular elements of the general-purpose program.

Analysis by ASKA Code

QUAD-4 is a rectangular element, it has three dof per node,

consisting of transverse displacement w and two rotations (0x

and 0), and its in-plane rotation is restrained. The element

displacement field corresponds to a cubic displacement
function with 12 constants. TRIB-3 and TUBA-3 of the ASKA

code are triangular elements. TUBA-3 is a higher order element

with 18 degrees of freedom. It has six degrees of freedom per

node consisting of one displacement, two slopes, and three

curvatures. TRIB-3 is a plate element with 9 degrees of

freedom. It has three degrees of freedom per node consisting

of one displacement w and two rotations (0_ and Oy).
The results obtained for the central displacement wc by

using ASKAQUAD-4, TRIB-3, and TUBA-3 elements are presented
in table VII for several finite element idealizations, shown in

figure 5. The central displacement obtained by using the ASKA

QUAD-4 element tended to converge to Timoshenko's solution
for the finite element model with 64 and 100 elements at a

residual error of about 2 percent. As table VII shows, there was

no substantial difference in the convergence rate for the two

triangular elements. As before, the stiffness method required a

very fine mesh of about 128 elements to show some convergency
to the closed-form solution. For the 128-element model the

residual error was about 10 percent for TUBA-3 and 6 percent
for TmB-3.

MSC/NASTRAN Verification

The example of a clamped plate under a central concentrated

load as shown in figure 1 was again solved, this time by using

3t 13 14 15 16

9 10 11 12
~.

5 6 7 8

1 I 2 3 4

4 ELEMENTS 16 ELEMENTS

(a)

q ELEMENTS

(b)

8 ELEMENTS 32 ELEMENTS

(a) Rectangular elements.

(b) Triangular elements.

Figure 5.--Discretization of plate by using rectangular and triangular finite
elements•

the QUAD-4 element of the NASA structural analysis code
MSC/NASTRAN. The QUAD-4 elements of the MSC/NASTRANand

ASKA codes are identical with respect to the two fundamental

element characteristics, such as the number of nodes and the grid
point displacement degrees of freedom. Results obtained for three

models with 4, 16, and 36 elements, respectively, are presented
in table VIII.

As tables VII and VIII show, the agreement in the results

obtained by the two codes (MSC/NASTrAN and ASK-a) forthe

problem was good. For 4 and 16 elements the ASKA results

were marginally better than the MSC/NASTaAN solution.

However, MSC/NASTRANshowed monotonic convergence with

a residual error of 0.29 percent for the 36-element model,

Number of

elements

4

8

16

32

64

103

128

.... TABLE VII.--ASKA CODE ANALYSIS RESULTS

ITimoshenko's solution, w e = 0.2036 in. (5•715 mm).]

QUAD--4 rectangular element

Central Error,

displacement, percent

in. mm

0.0409 1.0388 80.03

.1995 5.0673 2.04

.2092 5.3137 2.75

.2092 5•3137

2•75

TRIB-3 triangular element

Central Error,

displacement, percent

wc

in. mm

0.0860 2.1844 57.76

.0650 1•6510 68.07

• 1547 3.9294 24.01

.1837 4.6660 9.82

TUBA-3 triangular element

Central Error,

displacement, percent

Wc

in. mm

0.0771 1.9583 62.13

.0641 1•628 68.51

.1607 4.0818 21.07

.1910 4.8514 6.18

t
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TABLEVIII.--MSC/NASTRANANDIFM ANALYSIS RESULTS

[Timoshenko's solution, we = 0.2036 in. (5.1715 mm).]

Number of

elements

4

16

36

NASTRAN QUAD-4

Central Error,

displacement, percent

wc

in. mill

0.027 0.686 86.75

.1914 4.862 6.02

.2042 5.187 .29

IFM rectangular element

Central Error,

displacement, percent

i%

in. mm

0.2041 5.1842 0.20

.2035 5.1689 .05

.2035 5.1689 .05

whereas the ASKA code exhibited a residual error of about

2 percent for a 100-element model.

Analysis by Integrated Force Method

The WM rectangular element assumes cubic distribution for

displacements (eq. (11) or (13)) and linear distribution for forces

(eq. (I0)). This element corresponds to the QUAD-4 element,

which also has three displacement degrees of freedom per node,

consisting of displacement w and two slopes (Ox and 0y) for its
four nodes. As far as displacement and force degrees of freedom

and number of nodes are concerned, all three elements 0FM,

ASKA, and MSC/NASTRAN) are equivalent. The results obtained

by WM for three different finite element models are given in table
VII/. Remember that in IFM the forces are calculated first and

then the desired displacements are obtained from the forces by

backsubstitution. For the purpose of comparison, however, only

displacement is presented, since only this variable is directly
calculated in the stiffness method as mentioned before.

Table VIII shows that convergence occurred for the first

model, consisting of four elements. If symmetry is taken into

consideration, convergence will occur for a single element. The

residual error for the four-element model was 0.2 percent, and

it was reduced to 0.05 percent for the second model, which had

16 elements. Results obtained for the rectangular element by

using WM and the two well-known displacement-based finite
element programs (ASKA and MSC/NASTRAN) are presented

graphically in figure 6. The rFM results are barely discernible

from Timoshenko's solution, whereas the ASKAand MSC/NASTRAN

results converge slowly.

MacNeal and Harder (ref. 25) introduced a grading scheme

for the evaluation of finite elements, as follows:

A = less than 2 percent error

B = 2 to 10 percent error

C = 10 to 20 percent error

D = 20 to 50 percent error

F = greater than 50 percent error

The comparative merits of WM, ASKA, and MSC/NASTRAN
results on the basis of residual error are given in table IX,

which is based on MacNeal's grading scheme. The WM element
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Figure 6.--Convergence analysis of clarntxxl plate with concentrated load

by using rectangular or quadrilateral finite elements.

scored an "A" grade for the first model, consisting of four

elements only. MSC/NASTRANQUAD--4required 36 elements to

reach "A", and ASKAQUAD--4Was unable to achieve an "A"
even with 100 elements.

Results for Triangular Elements

The convergency for the problem using triangular elements

of the IVM and stiffness codes (ASKA and MSC/NASTRAN) is

presented in figure 7. The grades secured by the elements are

given in table IX. The WM result was discernible from the

TABLE IX.--MacNEAL'S GRADE CARD

(a) Rectangular element "report card"

Number of IFM MSC/NASTRAN

elements rectangular QUAD-4

4

16

36

64

100

A

A

A

F

B

A

A

ASKA

QUAD-4

F

B

B

B

(b)Triangular element "relx)rt card"

Number of

elements

4 B

8 A

16

32 ---

128 ---

MSC/NASTRAN

TRIA-3

IFM

rectangular

F

D

C

B

ASKA

TRIB-3 TUBA-3

--- F

F F

C D

B B
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Figure 7•--Convergence analysis of clamped plate with concentrated load

by using triangular finite dements.

analytical solution for the first model, with four elements, but

even so it displayed engineering accuracy. The next model, with

eight elements, converged to the analytical solution and also

achieved grade "A."

Displacement-based triangular plate bending dements are

known to be overly stiff and exhibit slow convergence, as can

be seen from figure 7. Neither MSC/NASTRAN nor ASKA dements

could achieve grade "A." The MSC/NASTRAN and ASKA analyses

required 32 and128 elements, respectively, to reach a "B"

grade.

From solutions presented in this report and from Argyris's

examples it is clear that the IF_ yields results that are superior

to those obtained by the stiffness method. The reason is that the

IFM satisfies both the EE'S and the cc's explicitly and

simultaneously (eq. (1)) whereas the stiffness method attempts

to satisfy equilibrium equations via displacements (eq. (3)). In

approximate methods (such as IFr_ and SM) one cannot expect

accurate response prediction when some analysis equations are

neglected, as is the case with the stiffness method.

Element Level Effect

To examine the effect of different types of elements on overall

response accuracy, we obtained the central deflection of the

clamped plate by using the following rectangular element types.

(1) Stiffness-based plate bending elements

(a) ASKA QUArt-4 element

(b) MSC/NASTRAN QUAD-4 element

(2) r_-based plate bending elements

(a) Przemieniecki's element

(b) Ir'M consistent element I (displacement field defined

by eq. (1 I))

(c) rFM consistent element II (displacement field defined

by eq. (13))

The elements are equivalent with respect to displacement and

force field assumptions, being cubic and linear, respectively,

which gives rise to 12 degrees of freedom at the four nodes

of the element. The elements differ with respect to assumed

polynomials, such as defined by equations (11) and (13) for

the wr, l. The results obtained for the five types of elements

are presented in table X. As table X shows

(1) In the stiffness method the nature of the polynomials

used influenced the overall response to a limited extent such

as 86 percent versus 80 percent, 6 percent versus 2 percent,

etc., between MSC/NASTRAN and ASKA elements.

(2) In the IFM the nature of the polynomials (eqs. (11) and

(13)) had a negligible effect on the results as can be seen for

IFM elements I and II.

(3) Przemieniecki's element, which was obtained by direct

application of the law of equilibrium, can be backcalculated

to correspond to a rather poor displacement distribution. This

least-sophisticated element, developed three decades ago, still

yielded acceptable response for the difficult test problem. The

point here is that the driver for overall solution accuracy in

the n:u is satisfaction of the system equilibrium and global

cc's; the element quality or the type of interpolation poly-

nomial used play a rather less significant role•

TABLE X.--ELEMENT LEVEL EFFECT

Number of

elements

4

16

36

64

100

Stiffness method

MSC/NASTRAN ASKA

QUAD-4

Integrated force method

Consistent Consistent Lumped IB]e

IB]_ [13L CPrzemieniecki)

Rectangular .%menl

Error in central displacement, percent

86.75 80.00 0.20 0.20 24.11

6.02 2.04 .05 .05 35.29

.29 .05 .05

2.75

2.75

r

±
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Conditioning of Equations of
IFM Versus SM

Finite element analysis requires the solution of a large

number of simultaneous equations. Hence the stability of the

equation is a primary criterion in the choice of analysis

formulation. The Ir_ matrix [S] is not symmetric, whereas

the sM stiffness matrix [K] is symmetric. The matrix [S] is

of higher dimension than the stiffness matrix [K]. The norms
of the i_a upper equilibrium matrix [B] and lower cc matrix

[G] in equation (1) differ substantially. It may therefore be

suspected that the IFM equation that contains both EE'S and cc's
is an ill-conditioned system. In order to examine the issue,

we analyzed several problems (1) by scaling the cc's and (2)

without any scaling at all. Scaling had no effect on the solution:

the IV-Mlost only one or two precision points in 14-digit

arithmetic for almost all problems solved.

We further compared IFMand SM equations numerically for

a few different types of structures. The equation stability of

sra is governed by the parameter z, defined as

_rflax

z - (23a)
_min

where _max and _kmi n are the maximum and minimum

eigenvalues, respectively, of the symmetric stiffness matrix

[K]. The equation stability of IFM matrix IS] is governed by

the parameter y defined as

Smax

y = -- (23b)
Smin

where Sr_x and S_n are the maximum and minimum singular

values, respectively, of the nonsymmetric matrix [S]. We
evaluated z and y for several structure types and some results

are presented in table XI. For the examples solved, the

eigenspace of matrix [S] was much less distorted than that of
the stiffness matrix [K]; that is,

£
e=->> 1 or z>>y (24)

Y

Since z is greater than y, the imcl equations were more stable

than the sM equations. One need not be influenced by the

simple fact that the SM stiffness matrix [K], being symmetric,

should possess better conditioning than the wM matrix [S]. The

reason is that the symmetric stiffness matrix [K] is a product
of three matrices, [K] = [B] [G]-I[B] r, and successive

matrix multiplications and inversions deteriorate its stability.

The im,_ matrix [S] is well conditioned. The integrated force

method thus gave rise to a superior set of equations than did
the stiffness method.

TABLE XI.--STABILITY OF EQUATIONS--STIFFNESS

METHOD VERSUS INTEGRATED FORCE METHOD

Type of Stiffness method, Integrated force method

structure z = _max/_kmin Y = Smax/Smin

Truss (6,4)

Truss (16,13)

Truss (26,21)

Truss (36,29)

Frame (9,6)

Frame (18,12)

Frame (27,18)

!Frame (36,24)

Plate (9,6)

Plate (18,12)

Plate (27,18)

Plate (36,24)

16.47

218.50

1 598.10

3 378.37

1 335.96

7 840.99

21 573.55

34 533.71

4 790.65

23 759.55

51 089.50

75 191.74

2.96

3.17

7.31

45.89

3.65

6.96

10.20

7.48

18.75

29.89

56.11

64.56

Sparsities of [B], [C], [S], and [K] Matrices

Comparison of Sparsities

Matrix sparsity and bandwidth are important parameters in

the finite element analysis. These parameters of the compati-

bility matrix [C] were compared with the same parameters of

the equilibrium matrix [B] for three types of structures

designated according to the notation introduced earlier as truss

(101,81), frame (99,66), and plate (99,66). The structures are

shown in figure 8. The properties of the associated symmetric
stiffness matrix [K] were included for baseline reference. The

parameters of the matrices are tabulated in table XII. As can

be seen, the sparsities of the EE matrix IB] and the cc matrix

[C] were comparable but smaller than those of the stiffness

matrix [K]. The bandwidths of the matrices [B], [C], and [K]
were more or less comparable. Within the bands the matrices

[13] and [C] were sparser than the stiffness matrix [K]. The

flexibility matrix [G] is a concatenated matrix, and its maxi-

mum bandwidth, which depends on the number of force vari-
ables of the elements, was much smaller than dimension n of

matrix [S]. The internal sparsity of the flexibility matrix

enhanced the zero population of the system matrix. The

sparsities of the matrices [S], [C], and [B] for three other
structures are shown in table XII.

From table XII and several other examples solved, it was

a common observation that the governing IFM matrix [S] was

much sparser than the equilibrium matrix [B] or the stiffness

matrix [K]. As already noted, the compatibility matrix [C]

appeared to be the sparsest among the structural analysis
matrices ([B], [S], and [K]).

Sparsity Growth During Factorization of Matrix [S]

The WM equation system has population along two diagonals

as depicted in figure 9(a): EE population along the top diagonal
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(a)

®

(b)

(c)

(a) Twenty-bay truss.
Co) Eleven-sto_ frame.

(c) Eleven-element cantilevered plate.

Figure 8.--Three structures used.

and cc population along the bottom diagonal. This

unconventional feature of the [S] matrix was avoided by

generating adequate numbers of EE'S followed by cc's based

on cc bandwidth information. The process was repeated and

a banded [S] matrix was obtained as depicted in figure 9(b).

Sparse matrix algebra along with a nonsymmetric matrix solver

(LA05 (ref. 26)) is used for IFM analyses. In order to avoid

the deterioration of sparsity during solution, the symmetric

stiffness matrix is typically factored ([K] = [L] [U]), where

the [L] and [U] are upper and lower triangular matrices. The

population inside the band for the symmetri c stiffness matrix
[K] is equal to the sum of its factors ([L] + [U]). The question

is, What is the sparsity increase during the factoring of the
IS] matrix? This issue (IS] = ILl[U]) was examined

numerically for a few examples, as given in table XIII. The

factoring was carried out by the Harwell library sparse solver

LA05. In the examples solved, the actual nonzero population
of the sum of the triangular matrices (ILl + [U]) was somewhat

less than the sparsity of the [S] matrix. The program LA05,

however, printed a minor growth in sparsity ratio. This

deviation was not a deficiency of the structure of the [S] matrix

but was attributed to the storage scheme used and to the degree

of compaction in the algorithm at the time of printing.

Comparison of Computation Time

The IFM matrix [S] is unsymmetrical and its dimension is

(n x n). The SM matrix [K] is symmetrical and its dimension
is (mx m), where n >_ m. From this information alone, for
identical idealization of a structure with the same number of

elements it can be argued that s0]ution by IFM should be

numerically more expensive than solution by SM. To examine

this issue, we solved three examples (a truss, a frame, and

a plate, each with approximately 100 degrees of freedom) for

TABLE XII.--SPARSITY OF MATRICES [B], [C], AND [K]

Type of

structure

Truss (101,81)

Frame (99,66)

Plate (99,66)

....!Bl l
Sparsity,
percent

IK]

4.82 5.94 14.5

6.85 6.52 17.34

4.53 4.44 25.91

Matrix

Bandwidth

Average Maximum

8 6 10.91 8 6 12

11.45 12.45 10.91 12 14 12

17.18 8.82 17.10 18 16 18

=-_

Ig

'1[

Type of Sparsity ratio

structure

[s] IBI [c]

Truss (176,141) 0.022 0.020 0.034

Plate (144,27) .075 .126 .039

Plate (36,3) .144 .450 .036
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EEl

EE2

cc

(a)

CC3

(a) EE and cc matrices separated.

(b) EE and cc matrices intermingled.

Figure 9.--Population distribution in matrix [S].

forces and displacements by the IFM, SM, and SFM methods

on the same computer hardware and with the same software
techniques. The number of elements and the finite element

model remained the same for all three analytical methods. The

discrete dement model utilized the standard flexibility and

stiffness matrices for bar and beam elements. For the plate

a rectangular element with three degrees of freedom per node
was used. These were two moments and a shear force in ]FM

and two rotations and one transverse displacement in SM.

Computation times recorded for the three examples are given
in table XIV. Table XIV also shows the solution time by SFM

(refs. 1, 4, and 27 to 33) based on the "turn back LU"

procedure of Tapsu (ref. 29) and on the LP (linear

programming) code (ref. 12). For these examples the IFM

required less computation time than the SM. This can be
attributed to the following factors:

TABLE XIII.--SPARSITY GROWTH IN LOWER AND UPPER

TRIANGULAR FACTORS OF MATRIX [S]

Structure Matrix [S] Triangular factors

Lower, Upper,

ILl lU]

Number of nonzeros in matrices,

P/A a

Sparcity ratio,

(ILl + [u])/IS],
P/A a

Robinson's rectangular-plate bending element

I Plate (36,3) 280/230 126/15 299/152

Plate (144,27) 2056/1553 12631160 129011063

1.045/0.661

1.20210.789

IFM consistent element

Plate (36,3) 300/260 140/10 166/130 1.02/0.538

Plate (144,27) 2212/1852 1359/78 1248/1104 1.179/0.638

ap = ntanber of nortrexes as printed out by Harwd] subroutine LA05;

A = actthal number of norgeros as counted,

TABLE XW.--COMPUTATION TIME--INTEGRATED

FORCE METHOD VERSUS STIFFNESS METHOD

AND STANDARD FORCE METHOD

Type of Integrated Stiffness Standard
structure force method method force method

LUa ] LPb

Central processing unit time, sec

Truss (101,81) 0.72 2.5 2.14 3.14

Frame (99,66) 1.52 2.59 2.28 2.09

Plate (99,66) 1.26 3.1 4.06 3.27

aLU: turn back LU Oowea" and upper _angular factors of a matrix) procedure fief, 28).

bLp: linear programming (ref. 11).

(1) The SM requires a series of transformations and
backsubstitutions (from local to global system to generate

displacements and then from global to local system to calculate
forces). In the IFMmost of the transformations are not required.

(2) The IFM element matrices [B] and [G] can be generated
in closed form.

(3) For continuum analysis, operations equivalent to

differentiation are required to obtain stresses in the SM that
are avoided in the IFM.

(4) Equilibrium equations represent a very sparse system

of equations in the lFM; but for only r = (n-m) forces, EE'S

essentially represent a triangular system. As such a comparison

of m SM equations to n IFM equations is not truly accurate,

one should compare r = (n-m) of IFM to m of SM. This is
the traditional comparison between the classical force method

(SFM) and SM, and it holds true for IFM in a slightly different

scale (refer to appendix A). Thus for a truss (101,81) the IFM

solution time should be more or less proportional to r = 20

and the SMsolution time to 81. As the steps (1) to (4) are less

favorable for the stiffness method, the total computation

required was less for the IFM than for the SM. In the SFM the
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time requirement was on the higher side because generation

of a self-stress matrix and redundant segregation involve
considerable computation (ref. 12).

Buckling and Dynamic Response Analyses

Stability and vibration response analyses are routinely
required in industry. The standard force method cannot be

formulated to handle such response analyses directly because
in the SFM redundants are treated separately as loads instead

of as part of the original structure (ref. 1). The IFM has no

such limitations and it has been extended for eigenresponse
analysis of both discrete systems and of continua (refs. 1, 10,

and 13). To complete the comparison and illustration of the

IFM versus the SM, we give the stability and vibration response
analyses of the simple three-bar truss shown in figure 10. For

these response analyses "force mode shape" was taken as the

primary unknown. The inertia and damping parameters were
thus written in terms of forces as
Inertia force:

[MI[X 1 = [M]IJ][GI[F 1 (25)

Damping force:

[D] IX] = [D] [J] [G] [1_} (26)

where [M] and [D] are the mass and damping matrices,
respectively.

With the typical assumption that forces and displacements
are harmonic in time, we can write

IF] = [F)meiot (27)

IX) = [X]mei°t (28)

where w is radian frequency, IF],, and [X]m are the force and

displacement mode shapes, respectively, and i is the imaginary
unit.

The im_ dynamic equation can be symbolized as

L [0] j [-_ _rlm (29a)

or

[S][FIm + i0_[D]/{FIm + o2[M]f[Flm = [0] (29b)

Here, [D]/and [M]f are the damping and mass matrices,
respectively, of the IFM.

Frequency analysis by the IF_ is illustrated here for a three-

bar truss with a mass m o as depicted in figure 10. Damping

(a)

' "1
Ca:

(b)

(a) Frequency analysis.
(b) Stability analysis.

Figure 10.--Response analysis of three-bar truss.

and mass of bars were neglected. The matrices [D]f, [S], and
[M]f for a truss are as follows:

[D]f = 0 (30)

[S] =

-1 1

0
1 : 1

1 --1 1

Al A2 A3

(31)

v_L(A3 + _-A2)

--'_LA 3

0.0

L(A 3 - Ai)

-L(A 3 + A I)

0.0

-V_(,4_ + v_42)

-_L(A0

0.0

(32)

m

F
1

L

E
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whereAe = (AlA2 + A2A3 + V_AIA3) and Al, A2, and A 3 are

the areas of members 1, 2, and 3, respectively. For m0 = 0.68
slug (1 kgm); A), A2, and A 3 = 1.0, 1.0, and 2.0 in. 2

(645.163,645.163, and 1290.326 mm2); and E = 30 000 ksi

(21 091.81 kg/mm 2) the frequencies of the structure obtained

by solving equation (29a) were

fl = 102.93 Hz and j_ = 155.89 Hz (33)

The mode shapes IF]I and IF]2 for frequencies 3'] and 3_,
respectively, were

I -0.996 1
IF]I = -0.466

1.000

(34)

- 0.259 t
[F]2 = J 0.759

/

__ 1.00o

(35)

Displacement modes were obtained from force modes by

backsubstituting in equation (2). The displacement modes were

1.000 tIx}, = -0.318
(36)

(37)

Vibration analysis of the structure by using the ASKAcode was
also performed, and identical results were obtained. Solutions

of eigenvalue and dynamic excitation problems are reported
in references 10 and 13.

Stability Analysis

The IFM has been extended to stability analysis of structures

(ref. 1). The stability analysis equations were obtained by

following the usual perturbation theory. The key equation for

stability analysis by the IFM is

[SiIF} = X[K]s[JI[G]IF] (38a)

or

[[s] - X[S]bI[FI= [01 (38b)

where lK]g is the geometric stiffness matrix and X is the
stability parameter. The matrix [S]b is referred to as "the IFM

stability matrix."

The stability analysis was illustrated once again by using
the example of a three-bar truss. The stability equation for

the three-bar truss (refs. 2 and 3) for equal bar areas of I in. 2
(645.163 mm 2) has the following form:

0.707 + 0.793 (_) 0 0.707 - 0.793 (_)

1 -1 1

IFll 1

IF}2]=O
[F}3J

(39)

Solution of the stability equation yielded the following results:

(1) Buckling loads

Pl,c_t = 0.891E, P2.c,7 = 8.248E (40)

(2) Force mode shapes

[Fit =
f 1"000 t

0.000

- 1.000

(41)

{F]2 =
f 0.500 t

- 1.000

0.500

(42)

(3) Displacement mode shapes

-1.000 t
[X]_ = (43)

0.000

(oo Ix)2 = (44)
1.000

The stability problem was also solved with the ASKAcode and

identical solutions were obtained for the simple problem.

Both the integrated force method and the stiffness method

can handle gross response analysis; however, the classical

force method cannot be extended to dynamic and stability

analyses of structures.
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Versatility of Integrated Force Method

The integrated force method is applicable to static, dynamic,

and stability analyses of structures idealized as

(1) Continua (here the analysis utilizes the novel boundary

compatibility conditions)

(2) Discrete structures such as finite element models

The wra has its own variational functional from which the

analysis equations for continua and the appropriate internal

energy equivalent matrices of finite element analysis can be

obtained. The IFM variational functional yields all known
equations of structural mechanics along with the additional

Bee's. The IVM functional can be specialized to obtain the

potential energy and complementary energy functionals. Like

the stiffness method, which is known to be a versatile method,

the lVM is also a versatile analysis formulation.

Concluding Remarks

The features common to the integrated force (IFM) and

stiffness (SM) methods are as follows:

1. Both the iFra and the sra are amenable to computer
automation.

2. Both formulations can handle static, dynamic, and

stability analyses of continua and finite element discrete
structures.

3. Both methods have their own variational functionals.

In IFra all internal forces are obtained from loads in a single

step (IS] IF} = [PI'). Displacements are computed from

forces by backsubstitution. In the sr,i displacements are

obtained from loads first ([K] IX] = [PI); then forces are

computed from displacements by backsubstitution.

The IFM bestows appropriate emphasis on equilibrium

equations and compatibility conditions. The SMemphasizes the

equilibrium equations. In finite element analysis the IF_

ensures the satisfaction of element interface compatibility

conditions. In contrast, this condition is neglected in the SM
and is expected to be satisfied by way of mesh refinements.

Test examples show that the IFM yields accurate responses

for both stresses and displacements even for very coarse finite
element models. The SM requires a much finer mesh to match

IFM accuracy.

The IFM equations are better conditioned than the equations
of the stiffness formulation. The IF_t governing matrix [S] is

much sparser than the stiffness matrix [K]. The IFM requires

fewer computations than the SM tO generate an accurate
solution.

The integrated force method is the true force method. It is

free from the concepts of redundants and basic determinate
structure, which deterred automation of the classical force

method,

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, April 7, 1989

t

_E_
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Appendix A

Analysis by Integrated Force Method

This appendix is offered here as an elementary introduction

to the basic concepts of the integrated force method (w_). As

will be shown, the _-_ augments the equilibrium equations
for indeterminate structures with constraints on element

deformations. These constraints express the requirement that

the structural elements fit together after deformations due to
external loads. These constraints in the 1_f are written in terms

of member forces and represent the discretized version of the

well-known compatibility conditions of the elasticity theory.
This is in contrast to the standard force method (SVM), where

the additional conditions imposed are obtained by ad hoc

selection of redundants and cuts and then requirements are

formulated to close the gaps at the selected cuts.

The essential difference is that the IFM uses global

compatibility conditions, whereas the SFr_ uses selected local

conditions of deformation continuity. The s_ was developed

in the precomputer era; therefore its goal was to generate and
solve a small set of simultaneous equations. When it was

interpreted for computer application, three difficulties

emerged. One was how to automate the arbitrary selections

of the cuts, the second was that the process was more computer

intensive than the competing displacement method, and the

third was the higher level of difficulty in developing a library

of finite elements than in the case of the competing

displacement method. The in overcomes all these difficulties

for the price of an unsymmetrical set of equations, which are,

however, computationally less intentive than the symmetrical

equations of the displacement method.

First a very simple, perhaps overly simple problem, a fixed

bar shown in figure 11, is considered. For this problem the

global compatibility conditions simply state that the sum of

element deformations vanishes after loading. This constraint

on member deformations can be asserted by observation for
this problem. The compatibility condition, however, is

developed systematically. As a more general illustration a

simple truss example follows.

Example 1--Fixed Bar

The ivM analysis process is illustrated by taking the example

of a fixed bar subjected to thermomechanical loads. The bar,

along with its end conditions and analysis parameters, is

depicted in figure 11. The total length of the bar is 3e. It is

idealized by three finite elements consisting of a central
element and two boundary elements of equal length e. The

cross-sectional areas of the boundary elements At are equal;

the area of the central element is A 2. The bar is made of steel;

its Young's modulus is E; and its coefficient of thermal

expansion is el. The bar is subjected to mechanical loads Pl

and P2 at one-third and two-thirds of its length. The

0 NODE

[] ELEMENT

P1

T2

(a)

FI I'__ F2 I_-,'- F3

"n2 (i) [] (i) []

(a) Fixed bar.

(b) Discretized bar (3,2).

Figure 11 .--Analysis of bar by integrated force method.

temperature distribution of the central element is 7"2. The

temperatures of the boundary elements are equal to /'1.

The problem is to determine the forces and the displacements

in the bar by the IvM. The structure is discretized by using

three elements as shown in figure 11. The force and

displacement degrees of freedom of the structure shown in

figure 11 are as follows:

(1) Force degrees of freedom: Each element is idealized
by one internal force. The bar has three force degrees of

freedom (fof = n = 3; Fl, F2, F3).

(2) Displacement degrees of freedom: The bar has two

displacement degrees of freedom, one at each of its two free

nodes. Its dof = m = 2; X l, X2. The bar for the purpose of

analysis by the iv_ is designated a{ "bar (3,2)" It has m = 2

equilibrium equations and r = (n-m) = 1 compatibility
condition.

Equilibrium equations.--The two-system equilibrium

equations of the bar are assembled from the three elemental

equilibrium equations:

Element 1 ( refer to fig. 11)

0[,][B](0 = (AI)
l I

Element 2

,1-1][13](7) = (A2)
2 1
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Element 3

03] (3) = (A3)
0 1

The 2 x 3 system equilibrium matrix [_] is obtained by
following the standard finite element assembly technique.

1 -1 0 1
03] = (A4a)

0 1 -1

The two equilibrium equations can be written as

I't lo 1 -1 P2
F3

(A4b)

Compatibility conditions.--The first step in obtaining the

compatibility conditions is to establish the deformation
displacement relations 1/31= [B] r IXI, refer to eq. (19) of the

main text). The deformation vector 1/31of dimension 3 × 1

corresponds to the three elemental expansions due to forces
El, F2, and F3, respectively. The deformation displacement

relation has the following form:

_3

1 0

-1 1

0 -1

(A5)

The two displacements are eliminated from the three DDR'S

by simple algebra to obtain one (r = n - m = 3 - 2 = 1)

compatibility condition. The cc in terms of deformations
([C] IBI = I01) has the following explicit form:

[ 1 1 1 ] /32 =[01 (A6)

#3

The cc constrains the total elongation of the bars to zero
(/31 +/32 +/33 = 0), the same as could have been asserted

also by observation in this case.

From equation (A6) the compatibility matrix [C] is obtained as

[c] = [ I 1 1 ] (A7)

In order to express the cc given by equation (A7) in terms

of forces (refer to eq. (5) of the main text), the flexibility matrix
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is required. The concatenated flexibility matrix [G] for the

structure has the following standard form:

_L

AlE e
[G] =

A2E e

AlE

(A8)

Effective initial deformations.--The right side of equation

(A6) is zero for the case of mechanical loads. If there are

additional prescribed deformations due to some effect (e.g.,

thermal expansion), they are accommodated in the effective

initial deformation vector I_SR] (refer to eq. (1) of the main
text). The effective initial deformation vector is obtained from

initial deformations IBl0 and the compatibility matrix [C]. The

initial deformation vector has the following form:

/320 _ = _ T2

_30_) /'1

(A9)

The effective initial deformation vector [_SR1 is obtained from

the formula ISR] = - [C] 1/310as

I6R] = -c_(2Tl + T2) (AI0)

Take as an example the temperature distributions Tl = To�2

and 7"2= - To. For this temperature profile the effective

initial deformation vector [6R1 = 0. Since I6R] is zero, such

compatible initial deformations do not induce forces in the

structure. This fact was known before the IFM analysis was

begun.

From the definition of matrices [B], [C], and [G] the final

governing IV"Mequation (IS] IFI = IPI') is assembled as

[1101f lt f'l0 1 - 1 F2 = P2

1 At/A 2 1 F 3 fiR*

(A11)

Solution of equation (All) yields the forces from which

displacements are calculated by backsubstitution (from eq. (2)

of the main text).

Numerical results.--The parameters of the example are as
follows:

(1) Lengths of the elements: el = e2 = g3= 10 in.
(2) Cross-sectional areas: A_ = A3= 1 in.2; A2 = 2 in. 2

(3) Modulus of elasticity: E = 30 000 ksi

(4) Poisson's ratio: v = 0.3



Case 1, mechanical loads only.--The pressures are

PI = 1000 kips and P2 = 2000 kips. The internal forces are

F I = 1400 kips, F2 = 400 kips, and F3 = - 1600 kips. The
nodal displacements are Xl = 0.4667 in. and X2 = 0.5333 in.

Case 2, mechanical and thermal loads.--The mechanical

loads are as given for case 1. The thermal loads correspond to

the following temperature distribution: 7'1 = 0, T2 = 2000 *C,

and T3 = 0. The internal forces are Fl =--40 kips,

F2=-1040 kips, and F 3=-3040 kips. The nodal

displacements are Xj = - 0.0133 in. and X2 = 1.0133 in.

Case 3, uniform temperature.--In this case
Tl = /'2 = 7"3= 2000 *C. The internal forces are

F1 = F2 = F3 =- 3600 kips. There is no displacement
(x_ = x_ = o).

Example 2--Five-Bar Truss

Matrix characteristics.--The characteristics of the

governing matrices of the IFM and the SM (IFM matrix versus

stiffness matrix [K]) are numerically illustrated by taking the

example of the five-bar truss shown in figure 12. The design

parameters of the bars of the truss shown in figure 12 are as
follows: The cross-sectional areas of the five bars are

AI = A 3 = A 4 = A 0 and A 2 = As = Ao _/2. The lengths of the

five bars are Ll = I-,3 = L4 = a and I-,2 = L5 = a _-. The

Young's moduli of the five bars are E1 =E2--
E3 = E4 = E5 = E. The member forces of the five bars are

(FI, F2, F3, F4, Fs). The member deformations of the five

bars are 03_,/32, B3, B4, Bs). The displacements of the two

free nodes (fig. 12) are (Xl, Xz, X3, X4). The prescribed load

components are (PI, P2, P3, P4). For clarity the matrix
characteristics were examined for both determinate and

indeterminate problems.

Determinate problem.--A four-bar determinate structure

was generated from the indeterminate truss by eliminating the

fifth bar. For determinate structures the equilibrium equations
represent both necessary and sufficient conditions for stress

analysis. There are no compatibility conditions for determinate

structures. The IFM governing equations become

[S] [FI= [B] [FI = IPI

The IVMequations are obtained from the nodal force balance

condition between the member forces IF1and the external loads
IPI (refer to fig. 12).

1 l/v_ 0

0 l/x/2

0 0

0 0

Olf.lII't1 0 F2 P2
= (AI2)

0 1 F 3 P3

--1 0 F 4 P4

In the displacement method the system equations are assembled

from the elemental equations by following standard finite

element assembly techniques. The assembled stiffness equation

([K] Ixl = IPl) for the problem has the following form:

P2,X2

a

l Pq, Xq P3"X3

®

(a)

l P2"X2

Pq,Xq

(b>

(a) Indeterminate truss (5,4).

(b) Determinate truss (4,4).

Figure 12 .--Analysis of truss by integrated force method.

PI,X1

: P3"X3
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AE + AE AE

2 2 3

0.0 0.0

0.0 0.0

0.0 -(_)

oo
4

0.0

Ix]I]
(A13)

From the wM matrix [S] (eq. (A 12)) and the stiffness matrix

[K] (eq. (AI3)) we made the following observations:
(1) Both are square matrices of dimension 4 × 4.

(2) The matrix [S] for the determinate truss is a triangular

matrix. For general determinate structures irrespective of their

complexity, the governing matrix [S] after some rearrangement

of rows and columns can be represented as a triangular matrix.

The stiffness matrix _] is not a triangular matrix for determin-

ate systems as can be seen even for this trivial example. The

triangular system of equations requires insignificant computa-

tion, and it can be solved even manually irrespective of the

size or complexity of the problem. This feature of the force

method made it the popular analytical method in the
precomputer era. The classical force method utilizes this

property of the governing matrix even for indeterminate

structures and reduces the number of simultaneous equations
to the order of only the redundants.

(3) The coefficients of matrix IS] tend to be of the same

order of magnitude, and they are dimensionless numbers.

These two features of the matrix ensure that matrix [S] is

numerically stable.
The coefficients of the stiffness matrix have the dimensions

of force per unit length. Since the coefficients depend on

material properties and design parameters, an ill-conditioned

stiffness matrix can be easily obtained by changing those
properties.

For this simple example or any other complex determinate

system the force method should be followed in analyses for
the following reasons:

(1) The most important variables, namely forces, required
by design engineers are obtained directly in the force method.

(2) The force method requires_ttle computation; unlike for

the displacement method there are no simultaneous equations
to solve.

(3) Its equations are well conditioned.

From forces [F] the required number of displacements can he

obtained in a small fraction of the total analysis time. It is

inefficient to use the stiffness method or any other formulation

for the stress analysis of determinate problems.
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Compatibility conditions for determinate structures.-

Determinate structures do not have any compatibility

conditions (co's). This fact is numerically illustrated by the

example of the determinate truss. Generation of cc's for a

determinate system can be attempted by following the two-

step procedure given in the text in the section "Generation

of Compatibility Matrix [C]." In the first step the DDR'S are

established. In the second step the cc's are generated from

the DDR'S by eliminating the displacements.

The DDR'S of the determinate structure can be obtained by

using the equilibrium matrix [/3] as [/3] = [B] r _X]. The DDR'S

for the determinate truss have the following form:

f ]/32

33 =

/34

1 0 0 0

l/x/2 1/_- 0 0

0 1 0 -1

0 0 1 0

(Al4)

In equation (A14) the bar deformations (elongations or

contractions) are represented by (31,132,/33, and/34). The four

deformations can be uniquely determined in terms of the four

displacements as a solution to equation (A 14). In other words
there is no constraint on deformations, and as a result deter-

minate structures do not have any compatibility conditions.

Indeterminate problem.--The IFM equilibrium equations
(EE's) for the five-bar indeterminate truss can be written as

1 IA/2 0 0 0

0 1/'_- 1 1 0

0 0 0 0 1/v"2

0 0 -1 -1 -1/v_-

(AI5)

The EE'S of the indeterminate problem given by equation (A15)

still contain a triangular factor (as was the case for determinate

structures). However, there are fewer EE'S than unknowns,

since there are four simultaneous equations and five unknown

forces. Equation (A15) cannot be solved for the five unknown

forces, hence the indeterminancy. An additional equation is

required to augment the system to five equations in five
unknowns, which can be solved for the five member forces.

This additional equation is the compatibility condition.

The cc to augment the 4 × 5 EE for the truss is obtained

in two steps. In the first step the cc in deformations is generated
from the DOS. In the next step the cc in deformations is written

in forces by using the constitutive relations.

.11

m

=

,E



The DDR for the five-bar truss has the following form:

" 81]
I

82 I
I

83 }'----

84

,__sJ

1 0 0

l/x/2- 1/x/-2 0

0 1 0

0 0 1

0 0 1/_/2

0 ] x,

0{tx-1

X3
0

X4
- 1/_/2

(A16)

In equation (A16) five deformations are expressed in terms

of four displacements: thus there is a single (n-m =

5 - 4 = 1) constraint on deformations that represent the cc.

The cc is obtained by eliminating the four displacements (X l,

X 2, X 3, and X4) from the five DDR'S given by equation (A16).

The cc has the following explicit form:

- 8,]

& I

[1 -v_- 1 1 -x/-2] . 8_ _'=[0] (A17)

84 I

_ _sJ

The cc (eq. (A17)) of deformations is expressed in terms

of forces by using the force deformation relations of the truss.

These relations (I8] -- [G] IF]) can be written in matrix notation
as

i

• _3 =

_4

(L/AE) 1 0.0 0.0 0.0 0.0

0.0 (L/AE)2 0.0 0.0 0.0

0.0 0.0 (L/AE) 3 0.0 0.0

0.0 0.0 0.0 (L/AE) 4 0.0

0.0 0.0 0.0 0.0 (L/AE)5

"FI"

F2

F3 •

F,

_ F5

(A18)

Equations (A 17) and (A18) normalized with respect to the

flexibility parameter L/AE yield the cc of the integrated force

method expressed in terms of force variables as

[1 -x/2 1 1 -x/_ = [01 (A19)

r- 747372_'1t

rsA

The cc given by equation (A19) is added to the EE given _j

equation (A15) to obtain the governing lrM equation
([S] {El = [PI') as

1 1/V_- 0 0 0

0 l/x/2 1 0 0

0 0 0 1 1/_-

0 0 -1 0 -l/x/2

1 -x/2- 1 1 -x/) -

- FI - P1-1
i

F2 P2

F3 = P3

I

Fs. OJ

(A20)

Solution of equation (A20) of dimension 5 x 5 yields the
five member forces El, F2, F3, F4, and F5.

The governing equation of the stiffness method ([K]

IX] = IPI) for the five-bar truss has the following form:

xT/, 2-, _-_ o.o o.o

+ 0.0 -, --

2 \L/2 3 _ 3

0.0 0.0 + I - -

4 5 $

0.0 .... +

3 \L/_ 3

-x,]r",l

X'l/"1
X,J LP,J

(A21)

The solution of equation (A21) yields the nodal displacements.
The three conclusions for determinate structures stated

earlier hold true even for indeterminate structures with the

following exceptions:

(1) The IFM yields n × n (here 5 x 5) equations where the

dimension of the stiffness equation is m × m (here 4 × 4).

(2) The triangular factor of matrix [S] is disturbed because

of the compatibility conditions.
It is common observation that

(1) In the stiffness method compatibility is presumed to be

satisfied apriori by appropriate choice of displacement fields,

and the equilibrium equations (IK] IX] = [P]) are the governing
equations.

(2) In the classical force method (Airy's stress function

formulation being the typical example) the equilibrium is

satisfied apriori (by suitable assumptions on stresses) and the

cc's are the governing equations.
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Thequestionis, amongEEandcc whichoneisassumed
andwhichoneisenforcedintheintegratedforcemethod?In
theanalysisofindeterminatestructures(refertoIFMgoverning
equation[S] IF] = [PI' (eq. (A20) for the indeterminate truss)

both the EE'S and the cc's are simultaneously and explicitly

enforced by the integrated force method. It can be verified

that among the five availabIe methods of structural analysis,

(1) the classical Airy force method, (2) the stiffness method,

(3) the mixed method, (4) the total formulation, and (5) the

integrated force method, only the integrated force method

enforces both EE'S and cc's simultaneously.

The primary IFMvariables are the forces, not a combination

of forces, displacements, and deformations. Therefore the
integrated force method is a direct formulation, and it should

not be confused with the mixed method (in which forces and

displacements are considered as m + n simultaneous primary

unknowns) or with the total formulation (in which forces,

deformations, and displacements are treated as the m + 2n

primary unknowns).

qE

.=
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Appendix B

Symbols

AI,A2,A3

a,b

03]
03]P

[B]R

031,,[B],

[C]

[D]

[O]f

E

e

F

IF]
IF] m

f
[o]
[G]e

h

i

[J]

[KI

[K]g

L,e

Lt...L5

_x,My,1%
[M]

[Mlf

m

tn o

U_,Uy,Nxy
n

n_,ny

IPt

cross-sectional areas of three truss bars

dimension of rectangular element

equilibrium matrix

Prezemieniecki's equilibrium matrix

Robinson's equilibrium matrix

IX equilibrium matrices

compatibility matrix

damping matrix

I_'M damping matrix

Young's modulus

eigen ratio

internal force

force vector of dimension n

force mode shape of dimension n

frequency

flexibility matrix of dimension (n × n)

element flexibility matrix

Hermite polynomials (i,j = 0, 1, 2)

plate thickness

imaginary unity

deformation coefficient matrix of dimension

(m ×m)

stiffness matrix of dimension (m × m)

geometric stiffness matrix of dimension
(m X n)

length parameters

lengths of five bars

plate bending moments

mass matrix of dimension (m x m)

lr_ mass matrix

displacement degrees of freedom

lumped mass

membrane stress resultants

force degrees of freedom

direction cosines

mechanical load vector of dimension m

[P]i

Ivl"
r

[s]

[Slb
t

uc

up
/./,V

W

We

XI, X2 ..... XI2

Ix]
Ixlm

x,y,z

ol

f3_:

,r

[_RI
_R

Ox,Oy

o)

Subscripts:

crt

max, min

Superscript:

T

equivalent loads due to initial imperfections

wM load vector of dimension n

number of compatibility conditions,
r=n-m

JFM governing matrix of dimension (n × n)

lF_,l stability matrix

time parameter

complementary strain energy

strain energy

membrane displacement components

transverse displacement

transverse displacement at center

displacement variables

displacement vector of dimension m

displacement mode shape of dimension m

Cartesian coordinates

coefficient of thermal expansion

deformation vector of dimension n

K th deformation component

initial deformation vector

shear strain

effective initial deformation vector

residue in BCC

strain components

rotation about x and y axes

eigenvalue

Poisson's ratio

radian frequency

critical load

maximum or minimum values

transpose of matrix or vector
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conditioning, required solution methods, overall computational requirements, and convergence properties as these

factors influence the accuracy of the results. Overall, this new version of the force method produces more
accurate results than the stiffness method for comparable computational cost.
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