

ERRATA

NASA Reference Publication 1228

Fastener Design Manual

Richard T. Barrett

March 1990

The manual describes various platings that may be used for corrosion control including cadmium and zinc plating. It does not mention outgassing problems caused by the relatively high vapor pressure of these metals. The fastener manual was intended primarily for aeronautical applications, where outgassing is typically not a concern.

Issued June 17, 2008

Contents

	Page
Summary	1
Introduction	1

General Design Information

Fastener Materials	1
Platings and Coatings	1
Thread Lubricants	4
Corrosion	5
Locking Methods	6
Washers	9
Inserts	10
Threads	12
Fatigue-Resistant Bolts	13
Fastener Torque	15
Design Criteria	17
Rivets and Lockbolts	
Rivets	26
Lockbolts	30
General Guidelines for Selecting Rivets and Lockbolts	34
References	35
Appendixes	
A-Bolthead Marking and Design Data	36
B-Bolt Ultimate Shear and Tensile Strengths	90
C-Blind Rivet Requirements	94

Summary

This manual was written for design engineers to enable them to choose appropriate fasteners for their designs. Subject matter includes fastener material selection, platings, lubricants, corrosion, locking methods, washers, inserts, thread types and classes, fatigue loading, and fastener torque. A section on design criteria covers the derivation of torque formulas, loads on a fastener group, combining simultaneous shear and tension loads, pullout load for tapped holes, grip length, head styles, and fastener strengths. The second half of this manual presents general guidelines and selection criteria for rivets and lockbolts.

Introduction

To the casual observer the selection of bolts, nuts, and rivets for a design should be a simple task. In reality it is a difficult task, requiring careful consideration of temperature, corrosion, vibration, fatigue, initial preload, and many other factors.

The intent of this manual is to present enough data on bolt and rivet materials, finishes, torques, and thread lubricants to enable a designer to make a sensible selection for a particular design. Locknuts, washers, locking methods, inserts, rivets, and tapped holes are also covered.

General Design Information

Fastener Materials

Bolts can be made from many materials, but most bolts are made of carbon steel, alloy steel, or stainless steel. Stainless steels include both iron- and nickel-based chromium alloys. Titanium and aluminum bolts have limited usage, primarily in the aerospace industry.

Carbon steel is the cheapest and most common bolt material. Most hardware stores sell carbon steel bolts, which are usually zinc plated to resist corrosion. The typical ultimate strength of this bolt material is 55 ksi.

An alloy steel is a high-strength carbon steel that can be heat treated up to 300 ksi. However, it is not corrosion resistant and must therefore have some type of coating to protect it from corrosion. Aerospace alloy steel fasteners are usually cadmium plated for corrosion protection.

Bolts of stainless steel (CRES) are available in a variety of alloys with ultimate strengths from 70 to 220 ksi. The major advantage of using CRES is that it normally requires no protective coating and has a wider service temperature range than plain carbon or alloy steels.

A partial listing of bolt materials is given in table I. The following precautions are to be noted:

(1) The bolt plating material is usually the limiting factor on maximum service temperature.

(2) Carbon steel and alloy steel are unsatisfactory (become brittle) at temperatures below -65 °F.

(3) Hydrogen embrittlement is a problem with most common methods of plating, unless special procedures are used. (This subject is covered more fully in the corrosion section.)

(4) Series 400 CRES contains only 12 percent chromium and thus will corrode in some environments.

(5) The contact of dissimilar materials can create galvanic corrosion, which can become a major problem. (Galvanic corrosion is covered in a subsequent section of this manual.)

Platings and Coatings

Most plating processes are electrolytic and generate hydrogen. Thus, most plating processes require baking after plating at a temperature well below the decomposition temperature of the plating material to prevent hydrogen embrittlement. However, heating the plating to its decomposition temperature can generate free hydrogen again. Thus, exceeding the safe operating temperature of the plating can cause premature fastener failure due to hydrogen embrittlement as well as loss of corrosion protection. (A summary of platings and coatings is given in table II.)

Cadmium Plating

The most common aerospace fastener plating material is cadmium. Plating is done by electrodeposition and is easy to accomplish. However, cadmium-plated parts must be baked at 375 °F for 23 hours, within 2 hours after plating, to prevent hydrogen embrittlement. Since cadmium melts at 600 °F, its useful service temperature limit is 450 °F.

Material	Surface treatment	Useful design temperature limit, °F	Ultimate tensile strength at room temperature, ksi	Comments
Carbon steel	Zinc plate	-65 to 250	55 and up	
Alloy steels	Cadmium plate, nickel plate, zinc plate, or chromium plate	-65 to limiting temperature of plating	Up to 300	Some can be used at 900 °F
A-286 stainless	Passivated per MIL-S-5002	-423 to 1200	Up to 220	
17-4PH stainless	None	-300 to 600	Up to 220	
17–7PH stainless	Passivated	-200 to 600	Up to 220	
300 series stainless	Furnace oxidized	-423 to 800	70 to 140	Oxidation reduces galling
410, 416, and 430 stainless	Passivated	-250 to 1200	Up to 180	47 ksi at 1200 °F; will corrode slightly
U-212 stainless	Cleaned and passivated per MIL-S-5002	1200	185	140 ksi at 1200 °F
Inconel 718 stainless	Passivated per QQ-P-35 or cadmium plated	-423 to 900 or cadmium plate limit	Up to 220	
Inconel X-750 stainless	None	-320 to 1200	Up to 180	136 ksi at 1200 °F
Waspalloy stainless	None	-423 to 1600	150	
Titanium	None	-350 to 500	Up to 160	

TABLE I.-SUMMARY OF FASTENER MATERIALS

Zinc Plating

Zinc is also a common type of plating. The hot-dip method of zinc plating is known commercially as galvanizing. Zinc can also be electrodeposited. Because zinc plating has a dull finish, it is less pleasing in appearance than cadmium. However, zinc is a sacrificial material. It will migrate to uncoated areas that have had their plating scratched off, thus continuing to provide corrosion resistance. Zinc may also be applied cold as a zinc-rich paint. Zinc melts at 785 °F but has a useful service temperature limit of 250 °F. (Its corrosion-inhibiting qualities degrade above 140 °F.)

Phosphate Coatings

Steel or iron is phosphate coated by treating the material surface with a diluted solution of phosphoric acid, usually by submerging the part in a proprietary bath. The chemical reaction forms a mildly protective layer of crystalline phosphate. The three principal types of phosphate coatings are zinc, iron, and manganese. Phosphate-coated parts can be readily painted, or they can be dipped in oil or wax to improve their corrosion resistance. Fasteners are usually phosphated with either zinc or manganese. Hydrogen embrittlement seldom is present in phosphated parts. Phosphate coatings start deteriorating at 225 $^{\circ}$ F (for heavy zinc) to 400 $^{\circ}$ F (for iron phosphate).

Nickel Plating

Nickel plating, with or without a copper strike (thin plating), is one of the oldest methods of preventing corrosion and improving the appearance of steel and brass. Nickel plating will tarnish unless it is followed by chromium plating. Nickel plating is a more expensive process than cadmium or zinc plating and also must be baked the same as cadmium after plating to prevent hydrogen embrittlement. Nickel plating is good to an operating temperature of 1100 °F, but is still not frequently used for plating fasteners because of its cost.

Type of coating	Useful design temperature limit, °F	Remarks
Cadmium	450	Most common for aerospace fasteners
Zinc	140 to 250	Self-healing and cheaper than cadmium
Phosphates:		
Manganese	225	Mildly corrosion resistant
Zinc	225 to 375	but main use is for surface
Iron	400	treatment prior to painting. Another use is with oil or wax for deterring corrosion.
Chromium	800 to 1200	Too expensive for most applications other than decorative
Silver	1600	Most expensive coating
Black oxide (and oil)	a300	Ineffective in corrosion prevention
Preoxidation (CRES) fasteners only	1200	Prevents freeze-up of CRES threads due to oxidation after installation
Nickel	1100	More expensive than cadmium or zinc
SermaGard and Sermatel W	450 to 1000	Dispersed aluminum particles with chromates in a water- based ceramic base coat
Stalgard	475	Proprietary organic and/or organic-inorganic compound used for corrosion resistance and lubrication (in some cases)
Diffused nickel- cadmium	900	Expensive and requires close control to avoid hydrogen damage

^aOil boiling point.

Ion-Vapor-Deposited Aluminum Plating

Ion-vapor-deposited aluminum plating was developed by McDonnell-Douglas for coating aircraft parts. It has some advantages over cadmium plating:

(1) It creates no hydrogen embrittlement.

(2) It insulates against galvanic corrosion of dissimilar materials.

(3) The coating is acceptable up to 925 °F.

(4) It can also be used for coating titanium and aluminums.

(5) No toxic byproducts are formed by the process. It also has some disadvantages:

(1) Because the process must be done in a specially designed vacuum chamber, it is quite expensive.

(2) Cadmium will outperform ion-vapor-deposited aluminum in a salt-spray test.

Chromium Plating

Chromium plating is commonly used for automotive and appliance decorative applications, but it is not common for fasteners. Chromium-plated fasteners cost approximately as much as stainless steel fasteners. Good chromium plating requires both copper and nickel plating prior to chromium plating. Chromium plating also has hydrogen embrittlement problems. However, it is acceptable for maximum operating temperatures of 800 to 1200 °F.

Sermatel W and SermaGard

Sermatel W and SermaGard are proprietary coatings¹ consisting of aluminum particles in an inorganic binder with chromates added to inhibit corrosion. The coating material is covered by AMS3126A, and the procedure for applying it by AMS2506. The coating is sprayed or dipped on the part and cured at 650 °F. (sps Technologies² has tested Sermatel Wcoated fasteners at 900 °F without degradation.) This coating process prevents both hydrogen embrittlement and stress corrosion, since the fastener is completely coated. Sermatel is about as effective as cadmium plating in resisting corrosion but costs about 15 percent more than cadmium. Fasteners are not presently available "off the shelf" with Sermatel W or SermaGard coating, but the company will do small orders for fasteners or mechanical parts. These coatings will take up to 15 disassemblies in a threaded area without serious coating degradation.

Stalgard

Stalgard is a proprietary coating³ process consisting of organic coatings, inorganic-organic coatings, or both for corrosion resistance. According to Stalgard test data their coatings are superior to either cadmium or zinc plating in salt-spray and weathering tests. Stalgard coatings also provide galvanic corrosion protection. However, the maximum operating temperature of these organic coatings is 475 °F.

Diffused Nickel-Cadmium Plating

This process was developed by the aerospace companies for a higher temperature cadmium coating. A 0.0004-in.-thick nickel coating is plated on the substrate, followed by a 0.0002-in.-thick. cadmium plate (per AMS2416). The part is then baked for 1 hour at 645 °F. The resulting coating can withstand 1000 °F. However, the nickel plate must completely cover the part at all times to avoid cadmium damage to the part. This process is expensive and requires close control.

¹Sermatech International, Inc., Limerick, Pennsylvania.

²Jenkintown, Pennsylvania.

³Elco Industries, Rockford, Illinois.

Silver Plating

Silver plating is cost prohibitive for most fastener applications. The big exception is in the aerospace industry, where silver-plated nuts are used on stainless steel bolts. The silver serves both as a corrosion deterrent and a dry lubricant. Silver plating can be used to 1600 °F, and thus it is a good hightemperature lubricant. Since silver tarnishes from normal atmospheric exposure, the silver-plated nuts are commonly coated with clear wax to prevent tarnishing. Wax is a good room-temperature lubricant. Therefore, the normal "dry torque" values of the torque tables should be reduced by 50 percent to allow for this lubricant.

Passivation and Preoxidation

Stainless steel fasteners will create galvanic corrosion or oxidation in a joint unless they are passivated or preoxidized prior to assembly (ref. 1). Passivation is the formation of a protective oxide coating on the steel by treating it briefly with an acid. The oxide coating is almost inert. Preoxidization is the formation of an oxide coating by exposing the fasteners to approximately 1300 °F temperature in an air furnace. The surface formed is inert enough to prevent galling due to galvanic corrosion.

Black Oxide Coating

Black oxide coating, combined with an oil film, does little more than enhance the appearance of carbon steel fasteners. The oil film is the only part of the coating that prevents corrosion.

Thread Lubricants

Although there are many thread lubricants from which to choose, only a few common ones are covered here. The most common are oil, grease or wax, graphite, and molybdenum disulfide. There are also several proprietary lubricants such as Never-Seez and Synergistic Coatings. Some thread-locking compounds such as Loctite can also be used as lubricants for a bolted assembly, particularly the compounds that allow the bolts to be removed. A summary of thread lubricants is given in table III.

Oil and Grease

Although oil and grease are the most common types of thread lubricants, they are limited to an operating temperature not much greater than 250 °F. (Above this temperature the oil or grease will melt or boil off.) In addition, oil cannot be used in a vacuum environment. However, oil and grease are good for both lubrication and corrosion prevention as long as these precautions are observed.

TABLE III.-SUMMARY OF THREAD LUBRICANTS

Type of lubricant	Useful design temperature limit, °F	Remarks
Oil or grease	250	Most common; cannot be used in vacuum
Graphite	^a 212 to 250	Cannot be used in vacuum
Molybdenum disulfide	750	Can be used in vacuum
Synergistic Coatings	500	Can be used in vacuum
Neverseez	2200	Because oil boils off, must be applied after each high- temperature application
Silver Goop	1500	Do not use on aluminum or magnesium parts; extremely expensive
Thread-locking compounds	275	"Removable fastener" compounds only

^aCarrier boiloff temperature.

Graphite

"Dry" graphite is really not dry. It is fine carbon powder that needs moisture (usually oil or water) to become a lubricant. Therefore, its maximum operating temperature is limited to the boiling point of the oil or water. It also cannot be used in a vacuum environment without losing its moisture. Because dry graphite is an abrasive, its use is detrimental to the bolted joint if the preceding limitations are exceeded.

Molybdenum Disulfide

Molybdenum disulfide is one of the most popular dry lubricants. It can be used in a vacuum environment but turns to molybdenum trisulfide at approximately 750 °F. Molybdenum trisulfide is an abrasive rather than a lubricant.

Synergistic Coatings

These proprietary coatings⁴ are a type of fluorocarbon injected and baked into a porous metal-matrix coating to give both corrosion prevention and lubrication. However, the maximum operating temperature given in their sales literature is 500 °F. Synergistic Coatings will also operate in a vacuum environment.

Neverseez

This proprietary compound⁵ is a petroleum-base lubricant and anticorrodent that is satisfactory as a one-time lubricant

⁴General Magnaplate Corporation, Ventura, California. ⁵Bostic Emhart, Broadview, Illinois.

up to 2200 °F, according to the manufacturer. The oil boils off, but the compound leaves nongalling oxides of nickel, copper, and zinc between the threads. This allows the fastener to be removed, but a new application is required each time the fastener is installed. NASA Lewis personnel tested this compound and found it to be satisfactory.

Silver Goop

Silver Goop is a proprietary compound⁶ containing 20 to 30 percent silver. Silver Goop can be used to 1500 °F, but it is not to be used on aluminum or magnesium. It is extremely expensive because of its silver content.

Thread-Locking Compounds

Some of the removable thread-locking compounds (such as Loctite) also serve as antigalling and lubricating substances. However, they are epoxies, which have a maximum operating temperature of approximately 275 °F.

Corrosion

Galvanic Corrosion

Galvanic corrosion is set up when two dissimilar metals are in the presence of an electrolyte, such as moisture. A galvanic cell is created and the most active (anode) of the two materials is eroded and deposited on the least active (cathode). Note that the farther apart two materials are in the following list, the greater the galvanic action between them.

According to reference 2 the galvanic ranking of some common engineering materials is as follows:

(1) Magnesium (most active)

- (2) Magnesium alloys
- (3) Zinc
- (4) Aluminum 5056
- (5) Aluminum 5052
- (6) Aluminum 1100
- (7) Cadmium
- (8) Aluminum 2024
- (9) Aluminum 7075
- (10) Mild steel
- (11) Cast iron
- (12) Ni-Resist
- (13) Type 410 stainless (active)
- (14) Type 304 stainless (active)
- (15) Type 316 stainless (active)
- (16) Lead
- (17) Tin
- (18) Muntz Metal
- (19) Nickel (active)

- (20) Inconel (active)
- (21) Yellow brass
- (22) Admiralty brass
- (23) Aluminum brass
- (24) Red brass
- (25) Copper
- (26) Silicon bronze
- (27) 70-30 Copper-nickel
- (28) Nickel (passive)
- (29) Inconel (passive)
- (30) Titanium
- (31) Monel
- (32) Type 304 stainless (passive)
- (33) Type 316 stainless (passive)
- (34) Silver
- (35) Graphite
- (36) Gold (least active)

Note the difference between active and passive 304 and 316 stainless steels. The difference here is that passivation of stainless steels is done either by oxidizing in an air furnace or treating the surface with an acid to cause an oxide to form. This oxide surface is quite inert in both cases and deters galvanic activity.

Because the anode is eroded in a galvanic cell, it should be the larger mass in the cell. Therefore, it is poor design practice to use carbon steel fasteners in a stainless steel or copper assembly. Stainless steel fasteners can be used in carbon steel assemblies, since the carbon steel mass is the anode.

Magnesium is frequently used in lightweight designs because of its high strength to weight ratio. However, it must be totally insulated from fasteners by an inert coating such as zinc chromate primer to prevent extreme galvanic corrosion. Cadmium- or zinc-plated fasteners are closest to magnesium in the galvanic series and would be the most compatible if the insulation coating were damaged.

Stress Corrosion

Stress corrosion occurs when a tensile-stressed part is placed in a corrosive environment. An otherwise ductile part will fail at a stress much lower than its yield strength because of surface imperfections (usually pits or cracks) created by the corrosive environment. In general, the higher the heat-treating temperature of the material (and the lower the ductility), the more susceptible it is to stress corrosion cracking.

The fastener material manufacturers have been forced to develop alloys that are less sensitive to stress corrosion. Of the stainless steels, A286 is the best fastener material for aerospace usage. It is not susceptible to stress corrosion but usually is produced only up to 160-ksi strength (220-ksi A286 fasteners are available on special order). The higher strength stainless steel fasteners (180 to 220 ksi) are usually made of 17–7PH or 17–4PH, which are stress corrosion susceptible. Fasteners made of superalloys such as Inconel 718 or MP35N are available if cost and schedule are not restricted.

⁶Swagelok Company, Solon, Ohio.

An alternative is to use a high-strength carbon steel (such as H-11 tool steel with an ultimate tensile strength of 300 ksi) and provide corrosion protection. However, it is preferable to use more fasteners of the ordinary variety and strength, if possible, than to use a few high-strength fasteners. Highstrength fasteners (greater than 180 ksi) bring on problems such as brittleness, critical flaws, forged heads, cold rolling of threads, and the necessity for stringent quality control procedures. Quality control procedures such as x-ray, dye penetrant, magnetic particle, thread radius, and head radius inspections are commonly used for high-strength fasteners.

Hydrogen Embrittlement

Hydrogen embrittlement occurs whenever there is free hydrogen in close association with the metal. Since most plating processes are the electrolytic bath type, free hydrogen is present. There are three types of hydrogen-metal problems:

(1) Hydrogen chemical reaction: Hydrogen reacts with the carbon in steel to form methane gas, which can lead to crack development and strength reduction. Hydrogen can also react with alloying elements such as titanium, niobium, or tantalum to form hydrides. Because the hydrides are not as strong as the parent alloy, they reduce the overall strength of the part.

(2) Internal hydrogen embrittlement: Hydrogen can remain in solution interstitially (between lattices in the grain structure) and can cause delayed failures after proof testing. There is no external indication that the hydrogen is present.

(3) Hydrogen environment embrittlement: This problem is only present in a high-pressure hydrogen environment such as a hydrogen storage tank. Unless a fastener was under stress inside such a pressure vessel, this condition would not be present.

Most plating specifications now state that a plated carbon steel fastener "shall be baked for not less than 23 hours at 375 ± 25 °F within 2 hours after plating to provide hydrogen embrittlement relief" (per MIL-N-25027D). In the past the plating specifications required baking at 375 ± 25 °F for only 3 hours within 4 hours after plating. This treatment was found to be inadequate, and most plating specifications were revised in 1981-82 to reflect the longer baking time. Hydrogen embrittlement problems also increase as the fastener strength increases.

Cadmium Embrittlement

Although hydrogen embrittlement failure of materials is well documented (ref. 3), the effects of cadmium embrittlement are not. In general, hydrogen embrittlement failure of cadmiumplated parts can start as low as 325 °F, but cadmium embrittlement can start around 400 °F. Since both elements are normally present in elevated-temperature failure of cadmium-plated parts, the combined effect of the two can be disastrous. However, the individual effect of each is indeterminate.

Locking Methods

Tapped Holes

In a tapped hole the locking technique is normally on the fastener. One notable exception is the Spiralock⁷ tap shown in figure 1. The Spiralock thread form has a 30° wedge ramp at its root. Under clamp load the crests of the male threads are wedged tightly against the ramp. This makes lateral movement, which causes loosening under vibration, nearly impossible. Independent tests by some of the aerospace companies have indicated that this type of thread is satisfactory for moderate resistance to vibration. The bolt can have a standard thread, since the tapped hole does all the locking.

Locknuts

There are various types of locking elements, with the common principle being to bind (or wedge) the nut thread to the bolt threads. Some of the more common locknuts are covered here.

Split beam.—The split-beam locknut (fig. 2) has slots in the top, and the thread diameter is undersized in the slotted portion. The nut spins freely until the bolt threads get to the slotted area. The split "beam" segments are deflected outward by the bolt, and a friction load results from binding of the mating threads.

Figure 2.-Split-beam locknut.

⁷Distributed by Detroit Tap & Tool Company, Detroit, Michigan, through license from H.D. Holmes.

Deformed thread.—The deformed-thread locknut (fig. 3) is a common locknut, particularly in the aerospace industry. Its advantages are as follows:

(1) The nut can be formed in one operation.

(2) The temperature range is limited only by the parent metal, its plating, or both.

(3) The nut can be reused approximately 10 times before it has to be discarded for loss of locking capability.

Nylok pellet.—The Nylok⁸ pellet (of nylon) is usually installed in the nut threads as shown in figure 4. A pellet or patch projects from the threads. When mating threads engage, compression creates a counterforce that results in locking contact. The main drawback of this pellet is that its maximum operating temperature is approximately 250 °F. The nylon pellet will also be damaged quickly by reassembly.

Locking collar and seal.—A fiber or nylon washer is mounted in the top of the nut as shown in figure 5. The collar has an interference fit such that it binds on the bolt threads. It also provides some sealing action from gas and moisture leakage. Once again the limiting feature of this nut is the approximate 250 °F temperature limit of the locking collar.

A cost-saving method sometimes used instead of a collar or nylon pellet is to bond a nylon patch on the threads of either the nut or the bolt to get some locking action. This method is also used on short thread lengths, where a drilled hole for a locking pellet could cause severe stress concentration.

Castellated nut.—The castellated nut normally has six slots as shown in figure 6(a). The bolt has a single hole through its threaded end. The nut is torqued to its desired torque value. It is then rotated forward or backward (depending on the user's

Figure 5.-Locking collar.

Figure 6.-Castellated nut.

preference) to the nearest slot that aligns with the drilled hole in the bolt. A cotter pin is then installed to lock the nut in place as shown in figure 6(b). This nut works extremely well for low-torque applications such as holding a wheel bearing in place.

Jam nuts.—These nuts are normally "jammed" together as shown in figure 7, although the "experts" cannot agree on which nut should be on the bottom. However, this type of assembly is too unpredictable to be reliable. If the inner nut is torqued tighter than the outer nut, the inner nut will yield before the outer nut can pick up its full load. On the other hand, if the outer nut is tightened more than the inner nut, the inner nut unloads. Then the outer nut will yield before the inner nut can pick up its full load. It would be rare to get the correct amount of torque on each nut. A locknut is a much more practical choice than a regular nut and a jam nut. However, a jam nut can be used on a turnbuckle, where it does not carry any of the tension load.

⁸Nylok Fastener Corporation, Rochester, Michigan.

Figure 7.-Jam nut.

Figure 8.-Durlock nut.

Serrated-face nut (or bolthead).—The serrated face of this nut (shown in fig. 8) digs into the bearing surface during final tightening. This means that it cannot be used with a washer or on surfaces where scratches or corrosion could be a problem.

According to SPS Technologies, their serrated-face bolts (Durlock 180) require 110 percent of tightening torque to loosen them. Their tests on these bolts have shown them to have excellent vibration resistance.

Lockwiring.—Although lockwiring is a laborious method of preventing bolt or nut rotation, it is still used in critical applications, particularly in the aerospace field. The nuts usually have drilled corners, and the bolts either have throughholes in the head or drilled corners to thread the lockwire through. A typical bolthead lockwiring assembly is shown in figure 9(a), and a typical nut lockwiring assembly is shown in figure 9(b).

(a) Multiple fastener application (double-twist method, single hole).(b) Castellated nuts on undrilled studs (double-twist method).

Figure 9.-Lockwiring.

Direct interfering thread.—A direct interfering thread has an oversized root diameter that gives a slight interference fit between the mating threads. It is commonly used on threaded studs for semipermanent installations, rather than on bolts and nuts, since the interference fit does damage the threads.

Tapered thread.—The tapered thread is a variation of the direct interfering thread, but the difference is that the minor diameter is tapered to interfere on the last three or four threads of a nut or bolt as shown in figure 10.

Nutplates.—A nutplate (fig. 11) is normally used as a blind nut. They can be fixed or floating. In addition, they can have

Figure 10.-Tapered thread.

Figure 11.-Nutplate.

most of the locking and sealing features of a regular nut. Nutplates are usually used on materials too thin to tap. They are used primarily by the aerospace companies, since their installation is expensive. At least three drilled holes and two rivets are required for each nutplate installation.

Locking Adhesives

Many manufacturers make locking adhesives (or epoxies) for locking threads. Most major manufacturers make several grades of locking adhesive, so that the frequency of disassembly can be matched to the locking capability of the adhesive. For example, Loctite 242 is for removable fasteners, and Loctite 271^9 is for tamperproof fasteners. Other manufacturers such as Bostik, ND Industries, Nylock, 3M, and Permaloc make similar products.

Most of these adhesives work in one of two ways. They are either a single mixture that hardens when it becomes a thin layer in the absence of air or an epoxy in two layers that does not harden until it is mixed and compressed between the mating threads. Note that the two-layer adhesives are usually put on the fastener as a "ribbon" or ring by the manufacturer. These ribbons or rings do have some shelf life, as long as they are not inadvertently mixed or damaged.

These adhesives are usually effective as thread sealers as well. However, *none of them will take high temperatures*. The best adhesives will function at 450 $^{\circ}$ F; the worst ones will function at only 200 $^{\circ}$ F.

Washers

Belleville Washers

Belleville washers (fig. 12) are conical washers used more for maintaining a uniform tension load on a bolt than for locking. If they are not completely flattened out, they serve as a spring in the bolt joint. However, unless they have serrations on their surfaces, they have no significant locking capability. Of course, the serrations will damage the mating surfaces under them. These washers can be stacked in combinations as shown in figure 13 to either increase the total spring length (figs. 13(a) and (c)) or increase the spring constant (fig. 13(b)).

Lockwashers

The typical helical spring washer shown in figure 14 is made of slightly trapezoidal wire formed into a helix of one coil so that the free height is approximately twice the thickness of the washer cross section. They are usually made of hardened carbon steel, but they are also available in aluminum, silicon, bronze, phosphor-bronze, stainless steel, and K-Monel.

The lockwasher serves as a spring while the bolt is being tightened. However, the washer is normally flat by the time the bolt is fully torqued. At this time it is equivalent to a solid flat washer, and its locking ability is nonexistent. In summary, a lockwasher of this type is useless for locking.

Figure 12.-Types of Belleville washers.

⁹Loctite Corporation, Newington, Connecticut.

Figure 14.-Helical spring washers.

Tooth (or Star) Lockwashers

Tooth lockwashers (fig. 15) are used with screws and nuts for some spring action but mostly for locking action. The teeth are formed in a twisted configuration with sharp edges. One edge bites into the bolthead (or nut) while the other edge bites into the mating surface. Although this washer does provide some locking action, it damages the mating surfaces. These scratches can cause crack formation in highly stressed fasteners, in mating parts, or both, as well as increased corrosion susceptibility.

Self-Aligning Washers

A self-aligning washer is used with a mating nut that has conical faces as shown in figure 16. Because there is both a weight penalty and a severe cost penalty for using this nut, it should be used only as a last resort. Maintaining parallel mating surfaces within acceptable limits (2° per SAE Handbook (ref. 4)) is normally the better alternative.

Figure 16.-Self-aligning nut.

Inserts

An insert is a special type of device that is threaded on its inside diameter and locked with threads or protrusions on its outside diameter in a drilled, molded, or tapped hole. It is used to provide a strong, wear-resistant tapped hole in a soft material such as plastic and nonferrous materials, as well as to repair stripped threads in a tapped hole.

The aerospace industry uses inserts in tapped holes in soft materials in order to utilize small high-strength fasteners to save weight. The bigger external thread of the insert (nominally 1/8 in. bigger in diameter than the internal thread) gives, for example, a 10–32 bolt in an equivalent 5/16-18 nut.

In general, there are two types of inserts: those that are threaded externally, and those that are locked by some method other than threads (knurls, serrations, grooves, or interference fit). Within the threaded inserts there are three types: the wire thread, the self-tapping, and the solid bushing.

Threaded Inserts

Wire thread.—The wire thread type of insert (Heli-coil¹⁰)

¹⁰Emhart Fastening Systems Group, Heli-Coil Division, Danbury, Connecticut.

Figure 17.-Wire thread insert installation.

is a precision coil of diamond-shaped CRES wire that forms both external and internal threads as shown in figure 17. The coil is made slightly oversize so that it will have an interference fit in the tapped hole. In addition, this insert is available with a deformed coil (fig. 18) for additional locking. The tang is broken off at the notch after installation.

The wire thread insert is the most popular type for repair of a tapped hole with stripped threads, since it requires the least amount of hole enlargement. However, the solid bushing insert is preferred if space permits.

Self-tapping.—Most of the self-tapping inserts are the solid bushing type made with a tapered external thread similar to a self-tapping screw (fig. 19). There are several different

Figure 19.-Self-tapping inserts.

locking combinations, such as the Nylok plug (fig. 19(b)) or the thread-forming Speedsert¹¹ deformed thread (fig. 20). An additional advantage of the thread-forming insert is that it generates no cutting chips, since it does not cut the threads. However, it can only be used in softer materials.

Figure 20.-Speedsert.

¹¹Rexnord Specialty Fasteners Division, Torrance, California.

Solid bushing.—Solid bushing inserts have conventional threads both internally and externally. A popular type is the Keensert¹¹ shown in figure 21. The locking keys are driven in after the insert is in place. Another manufacturer uses a two-prong ring for locking. These inserts are also available with distorted external thread or Nylok plugs for locking.

Nonthreaded Inserts

Plastic expandable.—The most familiar of the nonthreaded inserts is the plastic expandable type shown in figure 22. This insert has barbs on the outside and longitudinal slits that allow it to expand outward as the threaded fastener is installed, pushing the barbs into the wall of the drilled hole. (See ref. 5.)

Molded in place.—This type of insert (fig. 23) is knurled or serrated to resist both pullout and rotation. It is commonly used with ceramics, rubber, and plastics, since it can develop higher resistance to both pullout and rotation in these materials than self-tapping or conventionally threaded inserts. (See ref. 5.)

Ultrasonic.—Ultrasonic inserts (fig. 24) have grooves in various directions to give them locking strength. They are installed in a prepared hole by pushing them in while they are being ultrasonically vibrated. The ultrasonic vibration melts the wall of the hole locally so that the insert grooves are "welded" in place. Since the area melted is small, these inserts do not have the holding power of those that are molded in place. Ultrasonic inserts are limited to use in thermoplastics. (See ref. 5.)

Figure 21.-Keensert.

Figure 22.-Plastic expandable insert.

Figure 23.-Molded-in-place insert.

Figure 24.-Ultrasonic inserts.

Threads

Types of Threads

Since complete information on most threads can be found in the ANSI standards (ref. 6), the SAE Handbook (ref. 4), and the National Institute of Standards and Technology (formerly the National Bureau of Standards) Handbook H–28 (ref. 7) no thread standards will be included in this handbook. The goal here is to explain the common thread types, along with their advantages and disadvantages. The common thread types are unified national coarse (UNC), unified national fine (UNF), unified national extra fine (UNEF), UNJC, UNJF, UNR, UNK, and constant-pitch threads.

Unified national coarse.—UNC is the most commonly used thread on general-purpose fasteners. Coarse threads are deeper than fine threads and are easier to assemble without cross threading. The manufacturing tolerances can be larger than for finer threads, allowing for higher plating tolerances. UNC threads are normally easier to remove when corroded, owing to their sloppy fit. However, a UNC fastener can be procured with a class 3 (tighter) fit if needed (classes to be covered later).

Unified national fine.—UNF thread has a larger minor diameter than UNC thread, which gives UNF fasteners slightly higher load-carrying and better torque-locking capabilities than UNC fasteners of the same identical material and outside diameter. The fine threads have tighter manufacturing tolerances than UNC threads, and the smaller lead angle allows for finer tension adjustment. UNF threads are the most widely used threads in the aerospace industry.

Unified national extra fine.—UNEF is a still finer type of thread than UNF and is common to the aerospace field. This thread is particularly advantageous for tapped holes in hard materials and for thin threaded walls, as well as for tapped holes in thin materials. UNJC and UNJF threads.—"J" threads are made in both external and internal forms. The external thread has a much larger root radius than the corresponding UNC, UNR, UNK, or UNF threads. This radius is mandatory and its inspection is required, whereas no root radius is required on UNC, UNF, or UNEF threads. Since the larger root radius increases the minor diameter, a UNJF or UNJC fastener has a larger net tensile area than a corresponding UNF or UNC fastener. This root radius also gives a smaller stress concentration factor in the threaded section. Therefore, high-strength (≥ 180 ksi) bolts usually have "J" threads.

UNR threads.—The UNR external thread is a rolled UN thread in all respects except that the root radius must be rounded. However, the root radius and the minor diameter are *not* checked or toleranced. There is no internal UNR thread.

UNK threads.—The UNK external threads are similar to UNR threads, except that the root radius and the minor diameter are toleranced and inspected. There is no internal UNK thread.

According to a survey of manufacturers conducted by the Industrial Fasteners Institute, nearly all manufacturers of externally threaded fasteners make UNR rolled threads rather than plain UN. The only exception is for ground or cut threads.

Constant-pitch threads.—These threads offer a selection of pitches that can be matched with various diameters to fit a particular design. This is a common practice for bolts of 1-in. diameter and above, with the pitches of 8, 12, or 16 threads per inch being the most common.

A graphical and tabular explanation of UN, UNR, UNK, and UNJ threads is given on page M-6 of reference 8. A copy (fig. 25) is enclosed here for reference.

Classes of Threads

Thread classes are distinguished from each other by the amounts of tolerance and allowance. The designations run from 1A to 3A and 1B to 3B for external and internal threads, respectively. A class 1 is a looser fitting, general-purpose thread; a class 3 is the closer-toleranced aerospace standard thread. (The individual tolerances and sizes for the various classes are given in the SAE Handbook (ref 4).)

Forming of Threads

Threads may be cut, hot rolled, or cold rolled. The most common manufacturing method is to cold form both the head and the threads for bolts up to 1 in. in diameter. For bolts above 1-in. diameter and high-strength smaller bolts, the heads are hot forged. The threads are still cold rolled until the bolt size prohibits the material displacement necessary to form the threads (up to a constant pitch of eight threads per inch). Threads are cut only at assembly with taps and dies or by lathe cutting.

Cold rolling has the additional advantage of increasing the strength of the bolt threads through the high compressive surface stresses, similar to the effects of shot peening. This process makes the threads more resistant to fatigue cracking.

Fatigue-Resistant Bolts

If a bolt is cycled in tension, it will normally break near the end of the threaded portion because this is the area of maximum stress concentration. In order to lessen the stress concentration factor, the bolt shank can be machined down to the root diameter of the threads. Then it will survive tensile cyclic loading much longer than a standard bolt with the shank diameter equal to the thread outside diameter.

Fatigue (Cyclic) Loading of Bolts

The bolted joint in figure 26 (from ref. 9) is preloaded with an initial load F_i , which equals the clamping load F_c , before the external load F_e is applied. The equation (from ref. 11) for this assembly is

$$F_b = F_i + \left(\frac{K_b}{K_b + K_c}\right) F_e$$

where F_b is the total bolt load. In this equation K_b is the spring constant of the bolt and K_c is the spring constant of the clamped faces. To see the effects of the relative spring constants, let $R = K_c/K_b$. Then (from ref. 10)

$$F_b = F_i + \left(\frac{1}{1+R}\right)F_e$$

In a normal clamped joint K_c is much larger than K_b ($R \approx 5.0$ for steel bolt and flanges), so that the bolt load does not increase much as the initial external load F_e is applied. (Note that the bolt load does not increase significantly until F_e exceeds $F_{i.}$)

In order to further clarify the effect of externally applied loads, a series of triangular diagrams (fig. 27, from ref. 11) can be used to illustrate loading conditions.

Triangle OAB is identical in all four diagrams. The slope of OA represents the bolt stiffness; the slope of AB represents the joint stiffness (joint is stiffer than bolt by ratio OC/CB.) In figure 27(a) the externally applied load $F_e(a)$ does not load the bolt to its yield point. In figure 27(b) the bolt is loaded by $F_e(b)$ to its yield point, with the corresponding decrease in clamping load to F_{CL} . In figure 27(c) external load $F_e(c)$ has caused the bolt to take a permanent elongation such that the clamping force will be less than F_i when $F_e(c)$ is removed. In figure 27(d) the joint has completely separated on its way to bolt failure.

Note that the flatter the slope of OA (or the larger the ratio OC/OB becomes), the smaller the effect F_e has on bolt load. Therefore, using more smaller-diameter fasteners rather than a few large-diameter fasteners will give a more fatigue-resistant joint.

Referring to figure 27(a), note that the cyclic (alternating) load is that portion above F_i . This is the alternating load

This page is not a screw thread standard, should not be used as a working sheet, and should only refer the reader to the proper ANSI Standards document wherein the full thread details on working data are contained.

THREAD IDENTIFICATION	UN THREADS	UNR THREADS	UNK THREADS	UNJ THREADS
	Internal and External	External Only	External Only	Internal and External
ANSI ¹ STANDARDS DOCUMENTS	Unified Screw Threads B1.1–1960 (See Page M–7) Metric Translation B1.1a–1968 Gages and Gaging for Unified Screw Threads B1.2–1966	Unified Screw Threads B1.1–1960 See Page M-71 Metric Translation B1.1–1968 (Draft) UNR Addendum to B1.1–1960 (See Page M-19) Gages and Gaging for Unified Screw Threads B1.2–1966	:Drafti 81.14 for Form and Conformance	"Draft: B1: 15 for Form and Conformance : No Radius Required on Internal Thread:
EXTERNAL ROOT	External Thread Root may be Flat or Rounded	External Thread Root Radius Required	External Thread Root Radius Mandatory Check Required	External Thread Root Radius Mandatary Check Required
EXTERNAL MINOR DIAMETER	External Thread Minor Diameter is not Taleranced	External Thread Minor Diameter is not Toleranced	External Thread Minor Diameter is Toieranced	External Thread Minor Diameter is Taleranced
EXTERNAL THREADS	UN Classes I.A. 2A and 3A	UNR Classes 1 A, 2A and 3A	UNK Classes 2A and 3A	UNJ Class 3A Mates only with UNJ Internal Threads
INTERNAL THREADS	UN Classes 1B, 2B and 3B	No Internal Threads Designated UNR UNR Mates with UN Internal Thread	No Internal Threads Designated UNK Mates with UN or UNJ Internal Thread	UNJ Classes 38 and 38G-No Radius Required on Internat Thread:
ANGLE AND LEAD TOLERANCE	Individually Equivalent to 50% of P.D. Tolerance Checked anly when Specified	Individually Equivalent to 50% of P.D. Tolerance Checked anly when Specified	Individually Equivalent to 40% of P.D. Tolerance Mandatory Check Required	Individually Equivalent to 403 of P.D. Talerance Mandatory Check Required

NOTES: 1. Refer to the appropriate Standards, as listed, for complete thread details and conformance data. The ap propriate current Standard is the authoritative document for complete details and data, and takes precedence over this sheet.

2 These Standards may be obtained through ASME.

Figure 25.-Explanation of UN, UNR, UNK, and UNJ threads. (From ref. 8.) Reprinted with permission of Industrial Fasteners Institute.

(a) Bolted flanges with external load.(b) Free body with no external load.(c) Free body with external load.

Figure 26.-Fatigue loading of bolts.

(stress) to be used on a stress-versus-load-cycles diagram of the bolt material to predict the fatigue life of the bolts. Note that an initial preload F_i near the bolt yields minimizes cyclic loading.

Thermal Cyclic Loading of Bolts

If the bolt and joint are of different materials, an operating temperature higher or lower than the installation temperature can cause problems. Differential contraction can cause the joint to unload (or separate); differential expansion can cause overloading of the fasteners. In these cases it is common practice to use conical washers (see washer section of this manual) to give additional adjustments in fastener and joint loading.

Fastener Torque

Determining the proper torque for a fastener is the biggest problem in fastener installation. Some of the many variables causing problems are

- (1) The coefficient of friction between mating threads
- (2) The coefficient of friction between the bolthead (or nut) and its mating surface
- (3) The effect of bolt coatings and lubricants on the friction coefficients
- (4) The percentage of bolt tensile strength to be used for preload
- (5) Once agreement is reached on item 4, how to accurately determine this value
- (6) Relative spring rates of the structure and the bolts

		Static	SI	ding	, in the second s		Static	Sli	ding
Matchais	Dry	Greasy	Dry	Greasy	Matchats	Dry	Greasy	Dry	Greasy
Hard steel on hard steel	0.78(1)	0.11(1,a)	0.42(2)	0.029(5,k)	Tungsten carbide on tungsten carbide	0.2(22)	0.12(22,a)		
		0.23(1,b)		0.081(5,e)	Tungsten carbide on steel	0.5(22)	0.08 (22.a)		
		0.15(1,c)		0.080(5,i)	Tungsten carbide on copper	0.35(23)			
		0.11(1,d)		0.058(5.j)	Tungsten carbide on iron	0.8(23)			
		0.0075(18,p)		0.084(5,d)	Bonded carbide on copper	0.35(23)			
		0.0052(18,h)		0.105(5,k)	Bonded carbide on iron	0.8(23)		•••••	
				0.096(5,1)	Cadmium on mild steel			(0.46(3))	
				0.108(5,m)	Copper on mild steel	0.53(8)		0.36(3)	0.18(17,a)
				0.12(5,a)	Nickel on nickel	1.10(16)		0.53(3)	0.12(3,w)
Mild steel on mild steel	0.74(19)		0.57(3)	0.09(3,a)	Brass on mild steel	0.51(8)		0.44(6)	
				0.19(3,u)	Brass on cast iron			0.30(6)	
Hard steel on graphite	0.21(1)	0.09(1,a)			Zinc on cast iron	0.85(16)		0.21(7)	
Hard steel on babbitt (ASTM No. 1)	0.70(11)	0.23(1,b)	0.33(6)	0.16(1,b)	Magnesium on cast iron			0.25(7)	
		0.15(1,c)		0.06(1,c)	Copper on cast iron	1.05(16)		0.29(7)	
		0.08(1.d)		0.11(1,d)	Tin on cast iron			0.32(7)	
		0.085(1,e)			Lead on cast iron			0.43(7)	
Hard steel on babbitt (ASTM No. 8)	0.42(11)	0.17(1,b)	0.35(11)	0.14(1,b)	Aluminum on aluminum	1.05(16)		1.4(3)	
		0.11(1,c)		0.065(1,c)	Glass on glass	0.94(8)	0.01(10,p)	0.40(3)	0.09(3,a)
		0.09(1,d)		0.07(1,d)			0.005(10,q)		0.116(3.v)
		0.08(1,e)		0.08(11,h)	Carbon on glass			0.18(3)	
Hard steel on babbitt (ASTM No. 10)		0.25(1,b)		0.13(1,b)	Garnet on mild steel			0.39(3)	
		0.12(1,c)		0.06(1,c)	Glass on nickel	0.78(8)		0.56(3)	
		0.10(1.d)		0.055(1,d)	Copper on glass	0.68(8)		0.53(3)	
		0.11(1,c)			Cast iron on cast iron	1.10(16)		0.15(9)	(p.070(9.d)
Mild steel on cadmium silver				0.097(2,f)					0.064(9,n)
Mild steel on phosphor bronze			0.34(3)	0.173(2,f)	Bronze on cast iron			0.22(9)	0.77(9,n)
Mild steel on copper lead				0.145(2,f)	Oak on oak (parallel to grain)	0.62(9)		0.48(9)	0.164(9,r)
Mild steel on cast iron		0.183(15,c)	0.23(6)	0.133(2,1)					0.067(9,s)
Mild steel on lead	0.95(11)	0.5(1,f)	0.95(11)	0.3(11,f)	Oak on oak (perpendicular)	0.54(9)		0.32(9)	0.072(9,s)
Nickel on mild steel			0.64(3)	0.178(3,x)	Leather on oak (parailel)	0.61(9)		0.52(9)	
Aluminum on mild steel	0.61(8)		0.47(3)		Cast iron on oak			0.49(9)	0.075(9,n)
Magnesium on mild steel			0.42(3)		Leather on cast iron			0.56(9)	0.36(9,t)
Magnesium on magnesium	0.6(22)	0.08(22,y)							0.13(9,n)
Teflon on Teflon	0.04(22)			0.04(22,1)	Laminated plastic on steel			0.35(12)	0.05(12,f)
Teflon on steel	0.04(22)			0.04(22,f)	Fluted rubber bearing on steel	*********			0.05(13,1)
T									

TABLE IV.-COEFFICIENTS OF STATIC AND SLIDING FRICTION [From ref. 12.1]

Campbell, *Trans. ASME*, 1939; (2) Clarke, Lincoln, and Sterrett, *Proc. API*, 1935; (3) Beare and Bowden, *Phil. Trans. Roy. Soc.*, 1985; (4) Dokos, *Trans. ASME*, 1946; (5) Boyd and Robertson, *Trans. ASME*, 1945; (6) Sachs, *zeit f. angew. Math. and Mech.*, 1924; (7) Honda and Yamada, *Jour. I of M.*, 1925; (8) Tomlinson, *Phil. Mag.*, 1929; (9) Morin, *Acad. Roy. des Sciences*, 1838; (10) Claypoole, *Trans. ASME*, 1943; (11) Tabor. *Jour. Applied Phys.*, 1945; (12) Eyssen, General Discussion on Lubrication, *ASME*, 1937; (13) Brazier and Holland-Bowyer, General Discussion on Lubrication, *ASME*, 1937; (13) Brazier and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish, M.I.T., 1940; (18) Hardy and Bircumshaw, *Proc. Roy.*

Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Young, Proc. Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, "The Friction and Lubrication of Solids." Oxford; (23) Shooter, Research, 4, 1951.

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor oil; (d) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; (f) medium mineral oil; (g) medium mineral oil plus ½ percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); (j) graphite; (k) turbine oil plus 1 percent graphite; (l) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (m) olive oil; (p) palmitic acid; (q) ricinoleic acid; (t) dry soap; (s) lard; (u) vater; (u) rape oil; (v) 3-in-1 oil; (w) octyl alcohol; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

Reprinted from Baumeister, et al. "Mark's Standard Handbook for Mechanical Engineers," 8th ed., 1978, with permission of McGraw-Hill Book Co., Inc.

16

- (7) Interaction formulas to be used for combining simultaneous shear and tension loads on a bolt (Should friction loads due to bolt clamping action be included in the interaction calculations?)
- (8) Whether "running torque" for a locking device should be added to the normal torque

Development of Torque Tables

The coefficient of friction can vary from 0.04 to 1.10, depending on the materials and the lubricants being used between mating materials. (Table IV from ref. 12 gives a variety of friction coefficients.) Since calculated torque values are a function of the friction coefficients between mating threads and between the bolthead or nut and its mating surface, it is vitally important that the torque table values used are adjusted to reflect any differences in friction coefficients between those used to calculate the table and the user's values. Running torque should be included in the values listed in the tables because any torque puts shear load on the bolt.

The torque values in table V have been calculated as noted in the footnotes, by using formulas from reference 13. (A similar table was published in *Product Engineering* by Arthur Korn around 1944.)

Higher torques (up to theoretical yield) are sometimes used for bolts that cannot be locked to resist vibration. The higher load will increase the vibration resistance of the bolt, but the bolt will yield and unload if its yield point is inadvertently exceeded. Since the exact yield torque cannot be determined without extensive instrumentation, it is not advisable to torque close to the bolt yield point.

Fastener proof load is sometimes listed in the literature. This value is usually 75 percent of theoretical yield, to prevent inadvertent yielding of the fastener through torque measurement inaccuracies.

Alternative Torque Formula

A popular formula for quick bolt torque calculations is T = KFd, where T denotes torque, F denotes axial load, d denotes bolt diameter, and K(torque coefficient) is a calculated value from the formula:

$$K = \left(\frac{d_m}{2d}\right) \frac{\tan \psi + \mu \sec \alpha}{1 - \mu \tan \psi \sec \alpha} + 0.625\mu_c$$

as given in reference 14 (p. 378) where

- d_m thread mean diameter
- ψ thread helix angle
- μ friction coefficient between threads
- α thread angle
- μ_c friction coefficient between bolthead (or nut) and clamping surface

The commonly assumed value for K is 0.2, but this value should not be used blindly. Table VI gives some calculated values of K for various friction coefficients. A more realistic "typical" value for K would be 0.15 for steel on steel. Note that μ and μ_c are not necessarily equal, although equal values were used for the calculated values in table VI.

Torque-Measuring Methods

A number of torque-measuring methods exist, starting with the mechanic's "feel" and ending with installing strain gages on the bolt. The accuracy in determining the applied torque values is cost dependent. Tables VII and VIII are by two different "experts," and their numbers vary. However, they both show the same trends of cost versus torque accuracy.

Design Criteria

Finding Shear Loads on Fastener Group

When the load on a fastener group is eccentric, the first task is to find the centroid of the group. In many cases the pattern will be symmetrical, as shown in figure 28. The next step is to divide the load R by the number of fasteners n to get the direct shear load P_c (fig. 29(a)). Next, find $\sum r_n^2$ for the group of fasteners, where r_n is the radial distance of each fastener from the centroid of the group. Now calculate the moment about the centroid (M = Re from fig. 28). The contributing shear load for a particular fastener due to the moment can be found by the formula

$$P_e = \frac{Mr}{\Sigma r_n^2}$$

where r is the distance (in inches) from the centroid to the fastener in question (usually the outermost one). Note that this is analogous to the torsion formula, f = Tr/J, except that P_e is in pounds instead of stress. The two loads (P_c and P_e) can now be added vectorally as shown in figure 29(c) to get the resultant shear load P (in pounds) on each fastener. Note that the fastener areas are all the same here. If they are unequal, the areas must be weighted for determining the centroid of the pattern.

Further information on this subject may be found in references 16 and 17.

Finding Tension Loads on Fastener Group

This procedure is similar to the shear load determination, except that the centroid of the fastener group may not be the geometric centroid. This method is illustrated by the bolted bracket shown in figure 30.

The pattern of eight fasteners is symmetrical, so that the tension load per fastener from P_1 will be $P_1/8$. The additional

TABLE V.-BOLT TORQUE

[No lubrication on threads. Torque values are based on friction coefficients of 0.12 between threads and 0.14 between nut and washer or head and washer, as manufactured (no special cleaning).]

Size	Root area,	Torque range
	in. ²	(class 8, 150 ksi,
		bolts ^a)
10-24	0.0145	23 to 34 inlb
10-32	.0175	29 to 43 inlb
4-20	.0269	54 to 81 inlb
1/4-4-28	.0326	68 to 102 inlb
⁵ / ₁₆ -18	.0454	117 to 176 inlb
⁵ / ₁₆ -24	.0524	139 to 208 inlb
¾−16	.0678	205 to 308 inlb
3/8-24	.0809	230 to 345 inlb
⁷ / ₁₆ -14	.0903	28 to 42 ft-lb
7/16-20	.1090	33 to 50 ft-lb
1/2-13	.1257	42 to 64 ft-lb
1/2-20	.1486	52 to 77 ft-lb
%16-12	.1620	61 to 91 ft-lb
%16-18	.1888	73 to 109 ft-lb
5%-11	.2018	84 to 126 ft-lb
%−18	.2400	104 to 156 ft-lb
34-10	.3020	^b 117 to 176 ft-lb
34-16	.3513	^b 139 to 208 ft-lb
<i>‰</i> −9	.4193	^b 184 to 276 ft-lb
78-14	.4805	^b 213 to 320 ft-lb
1-8	.5510	^b 276 to 414 ft-lb
1-14	.6464	^b 323 to 485 ft-lb
1 1/8 - 7	.6931	^b 390 to 585 ft-lb
11/8-12	.8118	^b 465 to 698 ft-lb
14-7	.8898	^b 559 to 838 ft-lb
1 1/4 - 12	1.0238	655 to 982 ft-lb

^aThe values given are 50 and 75 percent of theoretical yield strength of a bolt material with a yield of 120 ksi. Corresponding values for materials with different yield strengths can be obtained by multiplying these table values by the ratio of the respective material yield strengths.

^bBolts of 0.75-in. diameter and larger have reduced allowables (75 percent of normal strength) owing to inability to heat treat this large a cross section to an even hardness.

Reprinted from Machine Design, Nov. 19, 1987. Copyright, 1987 by Penton Publishing, Inc., Cleveland, OH.

TABLE VI.—TORQUE	COEFFICIENTS
------------------	--------------

Frictio Between threads, μ	n coefficient Between bolthead (or nut) and clamping surface, μ_c	Torque coefficient, K
0.05	0.05	0.074
.10	.10	.133
.15	.15	.189
.20	.20	.250

TABLE VII.—INDUSTRIAL FASTENERS INSTITUTE'S TORQUE-MEASURING METHOD

[From	ref.	8.]
-------	------	-----

Preload measuring method	Accuracy, percent	Relative cost
Feel (operator's judgment)	± 35	1
Turn of the nut	± 25 ± 15	3
Load-indicating washers Fastener elongation	± 10 $\pm 3 \text{ to } 5$	7 15
Strain gages	±1	20

moment P_2h will also produce a tensile load on some fasteners, but the problem is to determine the "neutral axis" line where the bracket will go from tension to compression. If the plate is thick enough to take the entire moment P_2h in bending at the edge AB, that line could be used as the heeling point, or neutral axis. However, in this case, I have taken the conservative approach that the plate will not take the bending and will heel at the line CD. Now the $\sum r_n^2$ will only include bolts 3 to 8, and the r_n 's (in inches) will be measured from line CD. Bolts 7 and 8 will have the highest tensile loads (in pounds), which will be $P = P_T + P_M$, where $P_T = P_1/8$ and

$$P_m = \frac{Mr}{\Sigma r_n^2} = \frac{P_2 h r_7}{\Sigma r_n^2}$$

An alternative way of stating this relationship is that the bolt load is proportional to its distance from the pivot axis and the moment reacted is proportional to the sum of the squares of the respective fastener distances from the pivot axis.

At this point the applied total tensile load should be compared with the total tensile load due to fastener torque. The torque should be high enough to exceed the maximum applied tensile load in order to avoid joint loosening or leaking. If the bracket geometry is such that its bending capability cannot be readily determined, a finite element analysis of the bracket itself may be required.

Combining Shear and Tensile Fastener Loads

When a fastener is subjected to both tensile and shear loading simultaneously, the combined load must be compared with the total strength of the fastener. Load ratios and interaction curves are used to make this comparison. The load ratios are

$$R_{S}(\text{or } R_{1}) = \frac{\text{Actual shear load}}{\text{Allowable shear load}}$$

$$R_T$$
(or R_2) = $\frac{\text{Actual tensile load}}{\text{Allowable tensile load}}$

TABLE VIII.--MACHINE DESIGN'S TORQUE-MEASURING METHOD

[From ref. 15.]

	····	
Type of tool	Element controlled	Typical accuracy range, percent of full scale
Slug wrench	Turn	1 Flat
Bar torque wrench	Torque	±3 to 15
-	Turn	1/4 Flat
Impact wrench	Torque	± 10 to 30
	Turn	± 10 to 20°
Hydraulic wrench	Torque	± 3 to ± 10
	Turn	±5 to 10°
Gearhead air-	Torque	± 10 to ± 20
powered wrench	Turn	±5 to 10°
Mechanical	Torque	±5 to 20
multiplier	Turn	±2 to 10°
Worm-gear torque	Torque	± 0.25 to 5
wrench	Turn	± 1 to 5°
Digital torque	Torque	$\pm 1/4$ to 1
wrench	Turn	1/4 Flat
Ultrasonically controlled wrench	Bolt elongation	±1 to 10
Hydraulic tensioner	Initial bolt stretch	± 1 to 5
Computer-controlled tensioning	Simultaneous torque and turn	± 0.5 to 2

(a) Typical tool accuracies

(b) Control accuracies

.

Element controlled	Preload accuracy, percent	To maximize accuracy
Torque	± 15 to ± 30	Control bolt, nut, and washer hardness, dimensions, and finish. Have consistent lubricant conditions, quantities, applica- tion, and types.
Turn	± 15 to ± 30	Use consistent snug torque. Control part geometry and finish. Use new sockets and fresh lubes.
Torque and turn	± 10 to ± 25	Plot torque vs turn and compare to pre- viously derived set of curves. Control bolt hardness, finish, and geometry.
Torque past yield	± 3 to ± 10	Use "soft" bolts and tighten well past yield point. Use consistent snugging torque. Control bolt hardness and dimensons.
Bolt stretch	± 1 to ± 8	Use bolts with flat, parallel ends. Leave transducer engaged during tightening operation. Mount transducer on bolt centerline.

Figure 28.—Symmetrical load pattern.

 $\frac{\frac{R}{n} = P_c}{\begin{pmatrix} B_c \\ B_c$

Figure 29.-Combining of shear and moment loading.

The interaction curves of figure 31 are a series of curves with their corresponding empirical equations. The most conservative is $R_1 + R_2 = 1$ and the least conservative is $R_1^3 + R_2^3 = 1$. This series of curves is from an old edition of MIL-HDBK-5. It has been replaced by a single formula, $R_s^3 + R_T^2 = 1$, in the latest edition (ref. 18). However, it is better to use $R_T + R_S = 1$ if the design can be conservative with respect to weight and stress.

Note that the interaction curves do not take into consideration the friction loads from the clamped surfaces in arriving at bolt shear loads. In some cases the friction load could reduce the bolt shear load substantially.

Figure 31.-Interaction curves.

Figure 30.-Bolted bracket.

The margin of safety¹² for a fastener from figure 31 is

$$MS = \frac{1}{R_S^x + R_T^y} - 1$$

depending on which curve is used. However, note that $R_s^x + R_T^y < 1$ is a requirement for a positive margin of safety. This formula also illustrates why high torque should not be applied to a bolt when the dominant load is shear.

The margin of safety is calculated for *both* yield and ultimate material allowables, with the most critical value controlling the design. A material with a low yield will be critical for yield stress, and a material with a high yield will normally be critical for ultimate stress.

Calculating Pullout Load for Threaded Hole

In many cases a bolt of one material may be installed in a tapped hole in a different (and frequently lower strength) material. If the full strength of the bolt is required, the depth of the tapped hole must be determined for the weaker material by using the formula

$$P=\frac{\pi d_m F_s L}{3}$$

where

P pullout load, lb

- d_m mean diameter of threaded hole, in. (\approx pitch diameter of threads)
- F_s material ultimate or yield shear stress

L length of thread engagement, in.

The $\frac{1}{3}$ factor is empirical. If the threads were perfectly mated, this factor would be $\frac{1}{2}$, since the total cylindrical shell area of the hole would be split equally between the bolt threads and the tapped hole threads. The $\frac{1}{3}$ is used to allow for mismatch between threads.

Further information on required tapped hole lengths is given in reference 19.

Calculating Shank Diameter for "Number" Fastener

The shank diameter for a "number" fastener is calculated from

Diameter =
$$0.060 + 0.013 N$$

•

¹²Margin of safety is defined as

Allowable load (Stress) Actual load (Stress) × Safety factor where N is the number (4, 6, 8, 10, 12) of the fastener. For example, the shank diameter of a no. 8 fastener is

Diameter = 0.060 + 0.013(8) = 0.164 in.

Fastener Groups in Bearing (Shear Loading)

Whenever possible, bolts in shear should have a higher shear strength than the bearing yield strength of the materials they go through. Since the bolts have some clearance and position tolerances in their respective holes, the sheet material must yield in bearing to allow the bolt pattern to load all of the bolts equally at a given location in the pattern. Note that the sloppier the hole locations, the more an individual bolt must carry before the load is distributed over the pattern.

Bolts and rivets should not be used together to carry a load, since the rivets are usually installed with an interference fit. Thus, the rivets will carry all of the load until the sheet or the rivets yield enough for the bolts to pick up some load. This policy also applies to bolts and dowel pins (or roll pins) in a pattern, since these pins also have interference fits.

Fastener Edge Distance and Spacing

Common design practice is to use a nominal edge distance $\sim f 2D$ from the fastener hole centerline, where D is the fastener diameter. The minimum edge distance should not be less than 1.5D. The nominal distance between fasteners is 4D, but the thickness of the materials being joined can be a significant factor. For thin materials, buckling between fasteners can be a problem. A wider spacing can be used on thicker sheets, as long as sealing of surfaces between fasteners is not a problem.

Approximate Bearing and Shear Allowables

In the absence of specific shear and bearing allowables for materials, the following approximations may be used:

Alloy and carbon steels: $F_{su} = 0.6 F_{tu}$

Stainless steels: $F_{su} = 0.55 F_{tu}$

where F_{su} is ultimate shear stress and F_{tu} is ultimate tensile stress. Since bearing stress allowables are empirical to begin with, the bearing allowable for any given metallic alloy may be approximated as follows:

$$F_{bu} = 1.5 F_{tu}$$
$$F_{by} = 1.5 F_{ty}$$

where F_{bu} is ultimate bearing stress, F_{by} is yield bearing stress, and F_{ty} is tensile yield stress.

Proper Fastener Geometry

Most military standard (MS) and national aerospace standard (NAS) fasteners have coded callouts that tell the diameter, grip length, drilling of the head or shank, and the material (where the fastener is available in more than one material). Rather than listing a group of definitions, it is easier to use the NAS 1003 to NAS 1020 (fig. 32) as an example to point out the following:

(1) The last two digits give the fastener diameter in sixteenths of an inch.

(2) The first dash number is the grip length in sixteenths of an inch.

(3) The letters given with the dash number indicate the head and/or shank drilling.

In addition, an identifying letter or dash number is added to indicate the fastener material. However, this systematic practice is not rigidly followed in all MS and NAS fastener standards.

Shear Heads and Nuts

In the aerospace industry the general ground rule is to design such that fasteners are primarily in shear rather than tension. As a result, many boltheads and nuts are made about one-half as thick as normal to save weight. These bolts and nuts are referred to as shear bolts and shear nuts, and care must be used in never specifying them for tension applications. The torque table values must also be reduced to one-half for these bolts and nuts.

Use of Proper Grip Length

Standard design practice is to choose a grip length such that the threads are never in bearing (shear). Where an exact grip length is not available, the thickness of the washers used under the nut or bolthead can be varied enough to allow proper grip.

Bolthead and Screwhead Styles

Although the difference between bolts and screws is not clearly defined by industry, at least the head styles are fairly well defined. The only discrepancy found in figure 33 is that the plain head, with a square shoulder, is more commonly called a carriage bolthead. The angle of countersunk heads (flat) can vary from 60° to 120°, but the common values are 82° and 100° .

Counterfeit Fasteners

In the past two years a great deal of concern and publicity about counterfeit fasteners has surfaced. The counterfeit case with the most documentation is the deliberate marking of grade 8.2 boron bolts as grade 8 bolts.

Grade 8.2 bolts are a low-carbon (0.22 percent C) boron alloy steel that can be heat treated to the same roomtemperature hardness as grade 8 medium-carbon (0.37 percent C) steel. However, the room- and elevated-temperature strengths of the grade 8.2 bolts drop drastically if they are exposed to temperatures above 500 °F. Grade 8 bolts can be used to 800 °F with little loss of room-temperature strength.

Other fasteners marked as MS and NAS but not up to the respective MS or NAS specification have shown up; however, documentation is not readily available. Since these fasteners are imported and have no manufacturer's identification mark on them, it is not possible to trace them back to the guilty manufacturer. U.S. Customs inspections have not been effective in intercepting counterfeit fasteners.

Another problem with fasteners has been the substitution of zinc coating for cadmium coating. If a dye is used with the zinc, the only way to detect the difference in coatings is by chemical testing.

Federal legislation to establish control of fastener materials from the material producer to the consumer is being formulated.

Bolthead Identification

Identifying an existing non-Ms, non-NAS, or non-Air Force-Navy bolt is usually a problem. Each manufacturer seems to have a different system. Frank Akstens of Fastener Technology International magazine (ref. 20) has compiled a good listing of several hundred "common" bolts. His entire compilation is enclosed as appendix A of this report. An international guide to bolt manufacturer's identification symbols has also been published by Fastener Technology International magazine.

Fastener Strength

Allowable strengths for many types of fasteners are given in MIL-HDBK-5 (ref. 18). Ultimate shear and tensile strengths of various threaded fasteners are given in appendix B of this report.

Figure 32.-National aerospace standard for proper fastener geometry.

NATIONAL AEROSPACE STANDARD

Figure 32.-Continued.

NATIONAL AEROSPACE STANDARD AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA. INC., 1725 DE SALES STREET N.W. WASHINGTON, D. C. 20036

Figure 33.-Bolthead and screwhead styles.

Rivets and Lockbolts

TABLE IX.-ALUMINUM AND OTHER RIVET MATERIALS

Rivets

Rivets are relatively low-cost, permanently installed fasteners that are lighter weight than bolts. As a result, they are the most widely used fasteners in the aircraft manufacturing industry. They are faster to install than bolts and nuts, since they adapt well to automatic, high-speed installation tools. However, rivets should not be used in thick materials or in tensile applications, as their tensile strengths are quite low relative to their shear strengths. The longer the total grip length (the total thickness of sheets being joined), the more difficult it becomes to lock the rivet.

Riveted joints are neither airtight nor watertight unless special seals or coatings are used. Since rivets are permanently installed, they have to be removed by drilling them out, a laborious task.

General Rivet Types

The general types of rivets are solid, blind, tubular, and metal piercing (including split rivets). From a structural design aspect the most important rivets are the solid and blind rivets.

Solid rivets.—Most solid rivets are made of aluminum so that the shop head can be cold formed by bucking it with a pneumatic hammer. Thus, solid rivets must have cold-forming capability without cracking. A representative listing of solid rivets is given in table IX (ref. 21). Some other solid rivet materials are brass, sAE 1006 to sAE 1035, 1108 and 1109 steels, A286 stainless steel, and titanium.

Note that the rivets in table IX are covered by military standard specifications, which are readily available. Although most of the solid rivets listed in table IX have universal heads, there are other common head types, as shown in figure 34. However, because the "experts" do not necessarily agree on the names, other names have been added to the figure. Note also that the countersunk head angle can vary from 60° to 120° although 82° and 100° are the common angles.

[From re	ef. 21.]	
----------	----------	--

Material	Rivet designation	Rivet heads available	Applications
2117-T4	AD	Universal (MS20470) 100° Flush (MS20426)	General use for most applications
2024-T4	DD	Universal (MS20470) 100° Flush (MS20426)	Use only as an alternative to 7050-T73 where higher strength is required
1100	А	Universal (MS20470) 100° Flush (MS20426)	Nonstructural
5056-H32	В	Universal (MS20470) 100° Flush (MS20426)	Joints containing magnesium
Monel (annealed)	М	Universal (MS20615) 100° Flush (MS20427)	Joining stainless steels, titanium, and Inconel
Copper (annealed)		100° Flush (MS20427)	Nonstructural
7050-T73	E	Universal (MS20470) 100° Flush (MS20426)	Use only where higher strength is required

The sharp edge of the countersunk head is also removed in some cases, as in the Briles¹³ BRFZ "fast" rivet (fig. 35), to increase the shear and fatigue strength while still maintaining a flush fit.

Blind rivets.—Blind rivets get their name from the fact that they can be completely installed from one side. They have the following significant advantages over solid rivets:

(1) Only one operator is required for installation.

(2) The installation tool is portable (comparable to an electric drill in size).

¹³Briles Rivet Corporation, Oceanside, California.

Figure 34.-United States standard rivet heads.

Figure 35.-BRFZ 'fast' rivet.

(3) They can be used where only one side of the workpiece is accessible.

(4) A given-length rivet can be used for a range of material thicknesses.

- (5) Installation time is faster than with solid rivets.
- (6) Clamping force is more uniform than with solid rivets.
- (7) Less training is required for the operator.

Blind rivets are classified according to the methods used to install them:

- (1) Pull mandrel
- (2) Threaded stem
- (3) Drive pin

Specific types (brands) of blind rivets are covered in subsequent sections of this manual.

Pull-mandrel rivets: This rivet is installed with a tool that applies force to the rivet head while pulling a prenotched serrated mandrel through to expand the far side of the tubular rivet. When the proper load is reached, the mandrel breaks at the notch. A generic pull-mandrel rivet is shown in figure 36.

Threaded-stem rivets: The threaded-stem rivet (fig. 37(a)) has a threaded internal mandrel (stem) with the external portion machined flat on two sides for the tool to grip and rotate. The head is normally hexagonal to prevent rotation of the tubular body while the mandrel in being torqued and broken off.

Drive-pin rivets: This rivet has a drive pin that spreads the far side of the rivet to form a head, as shown in figure 38. Although drive-pin rivets can be installed quickly, they are

Figure 36.—Pull-mandrel rivet. (From ref. 5.)

Start setting

usually not used in aerospace applications. They are used primarily for commercial sheet metal applications.

Tubular rivets.—Tubular rivets are partially hollow and come in a variety of configurations. The generic form has a manufactured head on one side and a hollow end that sticks through the pieces being joined. The hollow end is cold formed to a field head.

Since extensive cold forming is required on these rivets, they must be extremely ductile and are consequently made of lowstrength materials. They are normally used for commercial applications rather than in the aerospace industry.

Some specific types of tubular rivets are

- (1) Compression
- (2) Semitubular
- (3) Full tubular

Figure 37.-Threaded-stem rivets.

Figure 38.—Drive-pin rivet. (From ref. 5.)

Figure 39.-Compression tubular rivet. (From ref. 5.)

Compression tubular rivets: A compression tubular rivet (fig. 39) consists of two parts that have an interference fit when driven together. These rivets are used commercially in soft materials and where a good appearance is required on both sides of the part.

Semitubular rivets: The semitubular rivet (fig. 40) has a hole in the field end (hole depth to 1.12 of shank diameter) such that the rivet approaches a solid rivet when the field head is formed.

Full tubular rivets: The full tubular rivet (fig. 41) has a deeper hole than the semitubular rivet. It is a weaker rivet than the semitubular rivet, but it can pierce softer materials such as plastic or fabric.

Metal-piercing rivets.—Metal piercing rivets (fig. 42) are similar to semitubular rivets, except that they have greater column strength. Part of the sandwich material is not drilled, and the rivet pierces all the way or most of the way through while mushrooming out to a locked position.

Figure 40.—Semitubular rivet. (From ref. 5.)

Figure 41.—Full tubular rivet. (From ref. 5.)

Figure 42.-Metal-piercing rivet. (From ref. 5.)

Figure 43.—Split (bifurcated) rivet. (From ref. 5.)

Split rivets.—Split (bifurcated) rivets (fig. 43) are the standard "home repair" rivets. They have sawed or split bodies with sharp ends to make their own holes through leather, fiber, plastic, or soft metals. They are not used in critical applications.

Specific Rivet Types

AD & DD solid rivets.—The most common solid rivets are the AD and DD aluminum rivets, as listed in table IX. These are the preferred rivets for joining aluminums and combinations of aluminum and steel. The "icebox" (DD) rivets can be used in higher-strength applications, but they must be kept around 0 °F until they are installed. The 7050–T73 aluminum rivets are an alternative to "icebox" rivets.

Since solid rivets are expanded to an interference fit, they *should not* be used in composites or fiber materials. They can cause delamination of the hole surfaces, leading to material failure.

Cherry Buck rivets.—The Cherry Buck rivet 14 is a hybrid consisting of a factory head and shank of 95-ksi-shear-strength titanium, with a shop end shank of ductile titanium/niobium, joined together by inertia welding (fig. 44). This combination allows a shop head to be formed by bucking, but the overall shear strength of the rivet approaches 95 ksi. The Cherry Buck rivet can be used to 600 °F.

Monel rivets.-Monel (67 percent nickel and 30 percent

Figure 44.-Cherry Buck rivet.

copper) rivets are used for joining stainless steels, titanium, and Inconel. Monel is ductile enough to form a head without cracking but has higher strength ($F_{su} = 49$ ksi) and comperature capabilities than aluminum.

Titanium/niobium rivets.—These titanium alloy rivets (per MIL-R-5674 and AMS4982) have a shear strength of 50 ksi but are still formable at room temperature. They generally do not need a coating for corrosion protection. The Cherry E-Z Buck is a titanium/niobium rivet.

Cherry rivets.—The generic Cherry rivet is a blind structural rivet with a locking collar for the stem installed as shown in figure 45. (Different head types are available.) Cherry rivets are available in both nominal and oversize diameters in the common (1/8 through 1/4 in.) sizes. The oversize rivets are used for repairs where a nominal-size rivet (solid or blind) has been drilled out or where the initial drilled hole is oversize. These rivets have shear strengths comparable to AD solid aluminum rivets. However, their usage is restricted in aircraft manufacturing by the guidelines of MS33522, which is included as appendix C. A typical list of available Cherry rivet materials is shown in table X.

Huck blind rivets.—Huck blind rivets¹⁵ are similar to Cherry rivets, except that they are available in higher strength material. These rivets are made with and without locking collars and with countersunk or protruding heads. Note also (in fig. 46) that the sleeve on the blind side is deformed differently on the Huck rivet than on the Cherry rivet.

¹⁴Townsend Company, Cherry River Division, Santa Ana, California.

¹⁵Huck Manufacturing Company, Long Beach, California.

(a) Insert CherryMAX rivet into prepared hole. Place pulling head over rivet stem and apply firm, steady pressure to seat head. Actuate tool.
(b) Stem pulls into rivet sleeve and forms large bulbed blind head; seats rivet head and clamps sheets tightly together. Shank expansion begins.

(c) "Safe-lock" locking collar moves into rivet sleeve recess. Formation of blind head is completed. Shear-ring has sheared from cone, thereby accommodating a minimum of $\frac{1}{16}$ in. in structure thickness variation.

(d) Driving anvil forms "safe-lock" collar into head recess, locking stem and sleeve securely together. Continued pulling fractures stem, providing flush, burr-free, inspectable installation.

Figure 45.—Cherry rivet installation.

TABLE X.—CHERRY RIVET MATERIALS

Materi	Materials U		Maximum	
Sleeve	Stem	shear strength, psi	°F	
5055 Aluminum	Alloy steel	50 000	250	
5056 Aluminum	CRES	50 000	250	
Monel	CRES	55 000	900	
Inco 600	Inco X750	75 000	1400	

Pop rivets.—Pop rivets¹⁶ are familiar to most of the public for home repairs. However, they are not recommended for critical structural applications. The stem sometimes falls out of the sleeve after the rivet is installed, and the symmetry of the blind (formed) head leaves much to be desired. Although the pop rivet shown in figure 47 is the most common type, USM makes a closed-end rivet and three different head styles.

Lockbolts

In general, a lockbolt is a nonexpanding, high-strength fastener that has either a swaged collar or a type of threaded collar to lock it in place. It is installed in a standard drilled hole with a snug fit but normally not an interference fit. A lockbolt is similar to an ordinary rivet in that the locking collar or nut is weak in tension loading and is difficult to remove once installed.

Some of the lockbolts are similar to blind rivets and can be completely installed from one side. Others are fed into the workpiece with the manufactured head on the far side. The installation is then completed from the near side with a gun similar to blind rivet guns. Lockbolts are available with either countersunk or protruding heads.

Since it is difficult to determine whether a lockbolt is installed properly, they should be used only where it is not possible to install a bolt and nut of comparable strength. However, they are much faster to install than standard bolts and nuts.

¹⁶USM Corporation, Pop Rivet Division, Shelton, Connecticut.

(a) Protruding head, BP-T (MS90354) or BP-EU (MS21141).
(b) Installed fastener.
Figure 46.—Huck blind rivets.

Figure 47.—Pop rivet installation.

Jo-Bolts

Jo-bolts are similar to blind rivets in appearance and installation. The locking collar (sleeve) is expanded to form a shop head by rotating the threaded stem with a gun. The threaded stem is notched and breaks off when the proper torque is reached. A typical Jo-bolt installation is shown in figure 48.

Hi-Lok

The Hi-Lok¹⁷ lockbolt has a countersunk or protruding manufactured head and threads like a bolt. It is fed through the hole from the far side. The installation gun prevents shank rotation with a hexagonal key while the nut is installed (as shown in fig. 49). The nut (collar) hexagonal end is notched to break off at the desired torque. Hi-Lok lockbolts are available in high-strength carbon steel (to 156-ksi shear), stainless steel (to 132-ksi shear), and titanium (to 95-ksi shear).

(b)

Huckbolts

Huckbolts¹⁵ are similar to Hi-Loks except that the stem is usually serrated rather than threaded. The collar is swaged on the stem. Then the stem is broken at the notch as shown in figure 50. Huckbolts and their collars are available in carbon steel, aluminum, and stainless steel with various strengths, as listed in the Huck catalog.

Taper-Lok

Taper-Lok¹⁸ is a high-strength threaded fastener that is

¹⁷Hi-Shear Corporation, Torrance, California. ¹⁸SPS Technologies, Jenkintown, Pennsylvania.

Figure 48.—Jo-bolt. (From ref. 21.)

installed with an interference fit. Most of the shank is tapered on a 1.19° angle. The lubricated lockbolt is driven into a drilled and reamed hole. The interference fit allows the nut (tension or shear nut) to be installed and torqued to the required value without holding the lockbolt to prevent rotation (see fig. 51). The nuts are locknuts with captive washers. When a tension nut is installed, this fastener can take as much tension load as a bolt of the same size and material. Consequently, Taper-Loks are used in critical applications where cyclic loading is a problem. Taper-Lok lockbolts are available in high-strength alloy steel, H–11 tool steel, and several stainless steels, as well as titanium.

Rivnuts

A Rivnut¹⁹ is a tubular rivet with internal threads that is deformed in place to become a blind nutplate (fig. 52). Rivnuts are available with protruding, countersunk, and fillister heads. They are also available with closed ends, sealed heads, ribbed shanks, hexagonal shanks, and ribbed heads. Since the unthreaded tubular portion of the rivet must deform, the material must be ductile. Consequently, the Rivnut materials are fairly low strength, as shown in table XI.

Remaining portion of Hi-Lok collar after assembly

¹⁹B.F. Goodrich, Engineered Systems Division, Akron, Ohio.

(a) Step 1-Rivnut fastener is threaded onto mandrel of installation tool.

(b) Step 2-Rivnut fastener, on tool mandrel, is inserted into hole drilled for installation.

(c) Step 3—Mandrel retracts and pulls threaded portion of Rivnut fastener shank toward blind side of work, forming bulge in unthreaded shank area.

(d) Step 4—Rivnut fastener is clinched securely in place; mandrel is unthreaded, leaving internal Rivnut threads intact.(e) Blind nutplate—Properly installed Rivnut fastener makes excellent blind nutplate for simple screw attachments; countersunk Rivnut fasteners can be used for smooth surface installation.

Figure 52.-Rivnut installation.

Material	Туре	Standard finish	Minimum ultimate tensile strength, psi
Aluminum	6053-T4	Anodize—Alumilite 205 will meet specifications: MIL-A-8625 (ASG)	28 000
Steel	C-1108 ^a C-1110 ^a	Cadmium plate-0.0002 in. minimum thickness per QQ-P-416b, class 3, type I	45 000
	4037	Cadmium plate-0.0002 in. minimum thickness per QQ-P-416b, class 2, type II	⁵55 000 °85 000
Stainless steel	430	Pickled and passivated per QQ-P-35, type II	67 000
	305 ^d Carpenter 10 ^d	None-bright as machined	80 000
Brass	Alloy 260	None-bright as machined	50 000

TABLE XI.—STANDARD RIVNUT FASTENER MATERIALS AND FINISHES

^aC-1108 and C-1110 steel may be used interchangeably.

^bNo. 4 and No. 6 thread sizes.

^cNo. 8-1/2-in. thread size.

^d305 and Carpenter No. 10 stainless steel may be used interchangeably.

Hi-Shear Rivet

Hi-Shear¹⁷ rivets consist of a high-strength carbon steel, stainless steel, aluminum, or titanium rivet (pin) with a necked-down shop head, as shown in figure 53. The collar (2024 aluminum or Monel) is swaged on to give a finished head that

Figure 53.—Hi-Shear installation.

can be visually inspected for proper form. This rivet should be used for shear applications only, as the collar has negligible tensile strength.

Although this rivet has been partially superseded by various lockbolts, it is still being used in aircraft and aerospace applications.

Lightweight Grooved Proportioned Lockbolt

The lightweight grooved proportioned lockbolt (LGPL)²⁰ is made especially for composite materials. It has both an oversize head and an oversize collar to lessen contact stresses

²⁰Monogram Aerospace Fasteners, Los Angeles, California.

(a) Flanged collar is placed over lightweight pin.

(b) Installation tool grips and pulls pin, drawing sheets tightly together and removing sheet gap.

(c) As pull on pin increases, tool anvil swages flanged collar into locking grooves and forms permanent vibration-resistant lock.

(d) Pull on pin continues until pin fractures at breakneck groove and is then ejected. Tool anvil disengages swaged collar.

Figure 54.—LGPL installation.

on the composite material during both installation and service life. The shank is high-strength (95-ksi shear) titanium and the collar is 2024 aluminum. It is installed with a lockbolt tool as shown in figure 54.

General Guidelines for Selecting Rivets and Lockbolts

A number of standard documents are available for the selection, installation, and drawing callout of rivets and lockbolts as follows:

(1) Rivet installations are covered by MIL-STD-403. This specification covers pilot holes, deburring, countersinking, dimpling, and the application of zinc chromate paint between dissimilar materials. Other specifications for corrosion prevention of drilled or countersunk surfaces are covered in MIL-P-116 and MIL-STD-171.

(2) Design and selection requirements for blind *structural* rivets are given in MS33522 (appendix C).

(3) Design and selection requirements for blind *nonstructural* rivets are given in MS33557.

(4) A wealth of information on allowable rivet strengths in various materials and thicknesses is given in chapter 8 of MIL-HDBK-5 (ref. 18).

(5) Testing of fasteners is covered by MIL-STD-1312.

(6) Lockwiring is done per MS33540.

Note that the nominal rivet spacing for a rivet pattern is an edge distance of 2D and a linear spacing of 4D, where D is the rivet diameter. However, the 4D spacing can be increased if sealing between rivets or interrivet buckling is not a problem.

Solid rivets (expanded during installation) should not be used in composite materials, as they can overstress the hole and cause delamination of the material.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, June 30, 1989

References

- Slincy, H.E.: High Temperature Solid Lubricants-1. Layer Lattice Compounds and Graphite. Mech. Eng., vol. 96, no. 2, Feb. 1974, pp. 18-22.
- Prevention of Material Deterioration: Corrosion Control Course—U.S. Army Logistics Engineering Directorate—Nov. 1970.
- 3. ASM Metals Handbook. 9th ed., Vols. 1, 2, 3, 5, 13, American Society for Metals, Metals Park, OH.
- 4. SAE Handbook. SAE, 1968.
- 1987 Fastening, Joining & Assembly Reference Issue. Mach. Des., vol. 59, no. 27, Nov. 19, 1987.
- Unified Inch Screw Threads (UN and UNR Thread Form). ANSI B1.1-1982, American National Standards Institute, New York, NY, 1982.
- Screw Thread Standards for Federal Services, Part 1—Unified UNJ Unified Miniature Screw Threads. National Bureau of Standards Handbook, NBS-H28-1969-PT-1, 1969.
- Fastener Standards. 5th ed., Industrial Fasteners Institute, Cleveland, OH, 1970.
- Bickford, J.H.: An Introduction to the Design and Behavior of Bolted Joints. Dekker, 1981.

- Juvinall, R.: Engineering Considerations of Stress, Strain, and Strength. McGraw-Hill, 1967.
- 11. Donald, E.P.: A Practical Guide to Bolt Analysis. Mach. Des., vol. 53, Apr. 9, 1981, pp. 225-231.
- 12. Baumeister, et al.: Mark's Standard Handbook for Mechanical Engineers. 8th ed., McGraw-Hill, 1978.
- 13. Seely, F.B.: Resistance of Materials. 3rd ed., Wiley & Sons, 1947.
- Shigley, J.E.; and Mitchell, L.D.: Mechanical Engineering Design. 4th ed., McGraw-Hill, 1983.
- 15. Machine Design, Nov. 19, 1981.
- 16. Peery, D.J.: Aircraft Structures. McGraw-Hill, 1950.
- Grinter, L.: Theory of Modern Steel Structures. Vol. I, Macmillan Co., 1955.
- Metallic Materials and Elements for Aerospace Vehicle Structures. MIL-HDBK-5E, Department of Defense, June 1987.
- Faupel, J.H.; and Fisher, F.E.: Engineering Design, 2nd ed., Wiley & Sons, 1981.
- Fastener Technology International Magazine, Solon, Ohio, Oct. 1985 through Feb. 1987 Editions.
- 21. Design Handbook, Section 16. McDonnell Douglas Astronautics Co., Huntington Beach, CA.
- 22. Bruhn, E.F.: Analysis & Design of Flight Vehicle Structures. Tri-State Offset Co., Cincinnati, 1965.

Appendix A Bolthead Marking and Design Data

[From ref. 20]

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Phitadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

Å	STM				unhai sf	eu Dy	MICK	shecillo		•		
								Mechanical	propert	es		
				ls mfar's	Nominal	Bo	Its, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd	A31, Grade A	Boiler rivets	Carbon steel	No	Thru 1½	I	23,000	45,000	1		ł	
None req'd	A31, Grade B	Boiler rivets	Carbon steel	oN	Thru 1%		29,000	58,000				
None req'd	A65, Grade 1	Track spikes	Carbon steel, copper not specified	Yes	Ì		0.5X tensile strength	55,000	1	1	Ì	Marking on top of head.
cn	A65, Grade 1	Track spikes	Carbon steel, copper specified	Yes		1	0.5X tensile strength	55,000			1	Marking on top of head.
нс	A65, Grade 2	Track spikes	Carbon steel, copper not specified	Yes			0.5X tensile strength	70,000			İ	Marking on top of head.
HC and CU	A65, Grade 2	Track spikes	Carbon steel, copper specified	Yes	, Terrer		0.5X tensile strength	70,000		ŀ		Marking on top of head
None req'd	A66	Screw spikes	Carbon steel	Yes	ł	I	0.5X tensile strength	60,000	.	1	1	Marking on spike head.
None req'd	A183, Grade 1	Track bolts	Low carbon steel, untreated	Yes	% - 1%	1	Į	55,000	1		1	Marking on top of head, raised or depressed.
See ''Remarks''	A183, Grade 2	Track bolts	Carbon steel, heat-freated	Yes	½ - 1%	1	80,000	110,000				Marking on top of head, raised or depressed. A symbol is required to indicate bolt is heat- treated.
None req'd	A183. Grade 1	Track nuts	Low carbon steel	No	X - 1%	1		ł	1	1		-
None req'd	A183, Grade 2	Track nuts	Medium carbon steel	No	3% - 1%	i	1	1				
85	A193	Bolts, screws, and studs for high temperature service	AISI 501	Yes	<u> </u>		80,000	100,000	ļ	1	1	۲
86	A193	Bolts, screws, and studs for high temperature service	AISI 410	Yes	<u> </u>		85,000	110,000		i		A

Grade and material identification markings required by ASTM specifications

Footnotes are grouped on the last page of this Part 1 series.

Footnotes a	re grouped	d on the last page of this P.	art 1 series.									
								Mechanicat	properti	es		
	-			ls mfar's	Nominal	Bol	ts, screws,	studs	Nuts	н	ardness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockweil	Remarks or footnotes
B6X	A193	Bolts, screws, and studs for high temperature service	AISI 41()	Yes	4 - 4 2		70,000	000'06	I	i	C26 max	A
B7	A193	Bolts, screws, and studs for high temperature service	AISI 4140, 4142, 4145, 4140H, 4142H, 4145H	Yes	½ - 2½ Over 2½ - 4 Over		105.000 95.000 75,000	125,000 115,000 100,000				বৰ ব
B7M	A193	Bolls, screws, and studs for high temperature service	AISI 4140, 4142, 4145, 4140H, 4142H, 4145H	Yes	4 7 X 2½	1	80,000	100,000		235 max (B)	B99 max (B)	A
B16	A193	Bolts, screws, and studs for high temperature service	Chromium, molybdenum, and vanadium alloy steel	Yes	1 21/2. Over 21/2 - 4 Over 4 - 7	1 1	105,000 95,000 85,000	125,000 110,000 100,000	1 ! 1			रद द
B 8	A193, A320	Bolts, screws, and studs for high or low temperature service, respectively—Class 1 (C)	AISi 304, carbide solution treated	Yes	1, and larger	ł	30,000	75,000		223 ^D max	B96 ⁿ max	¢
B&C	A193, A320	Bolts, screws, and studs for high or low temperature service, respectively—Class 1 (C)	AISI 347, curbide solution freated	Yes	1, and larger	1	30,000	75,000		223 ^D max	B96 ^D max	¢
B8M	A193, A320	Bolts, screws, and studs for high or low temperature service. respectively—Class 1 (C)	AISI 316, carbide solution treated	Yes	X and larger		30,000	75,000	1	223 ⁰ max	B96 ^b max	A
BBP	A193. A320	Boits, screws, and studs for high or low temperature service, respectively—Class I (C)	AISI 305 (with restricted carbon). carbide solution treated	Yes	X and Iarger		30,000	75,000	i	223 ^D max	B96 ⁰ max	٩
B8T	A193. A320	Bolts, screws, and studs for high or low lemperature service, respectively— Class I (C)	AISI 321, carbide solution treated	Yes	X and larger	1	30,000	75,000	1	223 ^D Max	B96 ^{t/} max	A
B8LN	A193. A320	Bolts, screws, and studs for high or low temperature service, respectively – Class 1 (C)	AISI 304N (with restricted carbon). carbide solution treated	Yes	K and larger		30,000	75,000	i	223 ⁰ max	B96 ⁰ max	A
BBMLN	A193. A320	Bolts, screws, and studs for high or low temperature service, respectively—Class L(C)	AISI 31oN (with restricted carbon). carbide solution treated	Yes	k and larger	ł	30,000	75.000	:	223 ⁰ max	B96 ^{t)} ma∡	4

1 1 0 f thin -2 the . 0 0 4

								Mechanical	properti	es		
				is mtar's	Nominal	Bol	ts, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
BBA	A193. A320	Bolts screws, and studs for high or tow temperdure service respectively – Class 1A (C)	AIST 304 carbide solution treated in finished condition	Yes	', and larger	1	30,000	75 000	i	192 Max	But) max	۰۲
BBCA	A193, A320	Bolts, screws, and studs for high or low temperature service, respectivelyClass 1A (C)	AISI 347, carbide solution treated in finished condition	Yes	√ and larger		30,000	75,000	1	192 max	B90 max	¢
BBMA	A193, A320	Bolts, screws, and studs for high or low temperature service, respectively Class 1A (C)	AISI 316, carbide solution treated in finished condition	Yes	X, and larger	1	30,000	75,000		192 Max	B90 max	A
В8РА	A193, A320	Bolts, screws, and studs for high or low temperature service, respectively Class 1A (C)	AISI 305 (with restricted carbon), carbide solution treated in tinished condition	Yes	X and larger		30,000	75,000	a ven	192 Max	B90 max	A
BBTA	A193, A320	Boits, screws, and studs for high or low temperature service, respectively—Class 1A (C)	AISI 321, carbide solution freated in finished condition	Yes	X and larger		30,000	75,000		192 max	B90 max	A
BBLNA	A193. A320	Bolts, screws, and studs for high or low temperature service, respectively —Class IA (C)	AISI 304N (with restricted carbon), carbide solution treated in trnished condition	Yes	X and larger		30,000	75,000	1	192 Max	B90 max	A
B8MLNA	A193, A320	Bolts, screws, and studs for high or low terriperature service, respectively—Class 1A (C)	AISI 316N (with restricted carbon), carbide solution treated in finished condition	Yes	¼ and Iarger	1	30,000	75,000		192 max	B90 max	۲
B8NA	A193	Bolts, screws, and studs for high temperature service, Class 1A	AISI 304N, carbide solution treated in tinished condition	Yes	1, and larger		30,000	75,000	l	192 Max	B90 max	A
B8MNA	A193	Bolts, screws, and studs for high temperature service, Class 1A	AISI 316N, carbide solution treated in linished condition	Yes	¼ and largei	1	30,000	75,000	ł	192 Max	B90 max	A
B8N	A193	Bolts, screws, and studs for high temperature service, Class 1B	AISI 304N, carbide solution treated	ກ ນ >	¼ and larger	i	35,000	80,000 Footnotes	are grout	223 max (D) ped on th	B90 max (U) e last page of this	A Part 1 series

.

								Mechanica	I propert	ies		
				te mfar's	- Indimol	Bolt	s, screws,	studs	Nuts	Han	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol ID req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockweit	Remarks or footnotes
B8MN	A193	Bolts, screws, and studs for high temperature service, Class 1B	AISI 316N, carbide solution treated	Yes	X and larger	.	35,000	80,000	1	223 max (D)	B96 max (D)	A
B8R	A193	Bolts, screws, and studs for high temperature service, Class 1C	UNS 20910 (XM19), carbide solution treated	Yes	% and larger		55,000	100,000	1	271 max	C28 max	۲
B8RA	A193	Bolts, screws, and sluds tor high temperature service, Class 1C	UNS 20910 (XM19), carbide solution treated in finished condition	Yes	¼ and larger		55,000	100,000	I	271 max	C28 max	¢
BBS	A193	Bolts, screws, and studs for high temperature service, Class 1C	S21800, carbide solution treated	Yes	¼ and larger		50,000	95,000	1	271 max	C28 max	¢
B8SA	A193	Bolts, screws, and studs for high temperature service, Class 1C	S21800, carbide solution treated in finished condition	Yes	<u>X</u> and larger	1	50,000	95,000		271 max	C28 max	∢
<u> 88</u>	A193, A320	Bolts, screws, and studs for high or low	AISI 304, carbide solution treated &	Yes	X - X	 }	100'000	125,000	1	321 max	C35 max	¥ <
		temperature service, respectively—Class 2 (C)	strain hardened		Over % - 1	I	80,000	115,000	ł	321 max	C35 max	4 ،
					Over 1 - 1 ½	ļ	85,00Ú	105,000	I	321 INAX	C35 max	¢
					Over 1½ - 1½	I	50,000	100,000	1	321 max	C35 max	A
BBC	A193,	Bolts, screws, and studs	AISI 347 carbide	Yes	7 7.		100,000	125,000		321 max	C35 max	А
	A320	tor high or low temperature service,	solution ifeated &		Over * 1	I	80,000	115,000	I	321 max	C35 max	A
		respectively-Class 2 (U)			Over	I	65,000	105,000	ł	321	C35 max	٩
				<u></u>	1 - 1% Over 1% - 1%	1	50,000	100,000	I	321 max	C35 max	A
BBP	A193,	Bolts, screws, and studs	AISI 305 (with	Yes	X • X		100,000	125,000		321 mav	C35 max	A
	A320	for high or low temperature service,	restricted carbon), carbide solution		Over v	1	80,000	115,000	ł	321 may	C35 max	A
		respectivelyClass 2 (C)	treated & strain hardened		Over	I	65,000	105,000	1	321 may	C35 max	۲
					1 - 1% Over 1% - 1%	I	50,000	100,001	I	321 max	C35 max	A
<u> 881</u>	A193,	Bolts, screws, and studs	AISI 321, carbide	Yes	1 - 1	1	100,000	125,000		321 may	C35 max	٨
	A320	for high or low temperature service,	solution treated &		Over	ł	000'08	115,000	ł	321	C35 max	۲
		respectivelyClass 2 (C)			A - 1 Over	ł	65,000	105,000	1	321 321	C35 max	A
					0ver 11/2 - 11/2	I	50,000	000'001		321 max	C35 max	4

								Mechanica	I propertie	s		
					1	Bolt	s, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	ls mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psl)	Proof load (psi) hex hex	Brinell	Rockwell	Remarks or footnotes
B8N	A193	Bolts, screws, and studs	AISI 304N, carbide	Yes	% - %	1	100,000	125,000		321	C35 max	A
		for high temperature service, Class 2	solution treated & strain hardened		Over	I	80,000	115,000	1	max 321	C35 max	A
					% - 1 Over	ļ	65,000	105,000	ł	тах 321	C35 max	٨
					1 - 1% Over 1% - 1%	I	50,000	100,000	ar an a	max 321 max	C35 max	A
BBM	A193,	Bolts, screws, and studs	AISI 316, carbide	Yes	½ - ¼		95,000	110,000		321 may	C35 max	A
	A320	for high or low temperature service,	solution treated & strain hardened		Over	ł	80,000	100,000	I	321	C35 max	۲
		respectivelyClass 2 (C)			Vorer	1	65,000	95,000	Ι	321	C35 max	۲
					1 - 1% Over 1% - 1%	ł	50,000	000'06	Ì	a21 321 max	C35 max	٩
B8MN	A193	Bolts, screws, and studs	AISI 316N, carbide	Yes	% - %		95,000	110,000		321	C35 max	4
		for high temperature service, Class 2	solution treated & strain hardened		Over	1	80,000	100,000		321 321	C35 max	٨
					% - 1 Over	1	65,000	95,000	1	тах 321	C35 max	٨
					1 - 1% Over 1% - 1%	1	50,000	90,000		max 321 max	C35 max	A
-	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel	Yes	X and larger			1	130,000 120,000	121 min	B70 min	1
18	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel	Yes	X and larger	1	1	ļ	130,000 120,000	121 min	B70 min	1
5	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel	Yes	X and larger	1			<u>150,000</u> 135,000	159/352	B84 min	
2B	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel	Yes	¼ and larger		ł	1	150,000 135,000	159/352	B84 min	
2H	A194	Hot or cold forged nuts for high temperature service	Carbon steel, heat treated	Yes	% and larger	1	I		175,000 150,000	248/352	C24/C38	ł
2HB	A194	Nuts machined from bars tor high pressure & high temperature service	Carbon steel, heat treated	Yes	½ and larger		j		175,000 150,000	248/352	C24/C38	ш
2HM	A194	Hot or cold forged nuts for high pressure & high temperature service	Carbon steel, heat treated	Yes	X and larger	ł		l	<u>150,000</u> 135,000	159/237	C22 max	ì

							6	Mechanic	al properti	es		
						Bo	Its, screws,	studs	Nuts	Harc	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	ls mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength (min psi)	Proof load (psi) hex hex	Brinell	Rockwell	Remarks or footnotes
2HMB	A194	Nuts machined from bars for high pressure & high temperature service	Carbon steel, heat treated	Yes	% and larger	ł			<u>150.000</u> 135.000	159/237	C22 max	ш
e	A1,94	Hot or cold forged nuts for high pressure & high temperature service	AISI 501, heat treated	Yes	% and larger	1		ŗ	175,000 150,000	248/352	C24/C38	i
38	A194	Nuts machined from bars for high pressure & high temperature service	AISI 501, heat treated	Yes	and larger				175.000 150.000	248/352	C24/C38	ш
4	A194	Hot or cold forged nuts for high temperature service	Carbon, molybdenum, heat treated	Yes	X and larger		a - eren	1	175,000 150,000	248/352	C24/C38	1
4B	A194	Nuts machined from bars for high pressure & high temperature service	Carbon, molybdenum, heat treated	Yes	X and larger	1			175.000 150,000	248/352	C24/C38	ينا
9	A194	Hot or cold torged nuts for high pressure & high temperature service	AISI 410, heat treated	Yes	X and larger				150.000 135.000	228/271	C20/C28	
68	A194	Nuts machined from bars for high pressure & high temperature service	AISI 410, heat freated	Yes	¼ and larger	ļ	· · ·		150.000 135.000	228/271	C20/C28	ш
6F	A194	Hot or cold forged huts for high pressure & high temperature service	AISI 416 with sulfur or 416Se with selenium, heat treated	Yes	1, and larger	1			150.000 135.000	228/271	C20/C28	
6FB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 416 with sulfur or 416Se with selenium. heat treated	Yes	1 and larger	1	1	1	150,000 135,000	228/271	C20/C28	L.L.
7	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 4140/4142/4145, 4140H, 4142H, 4145H, heat treated	Yes	V, and larger		1		175.000 150,000	248/352	C24/C38	
78	A194	Nuts machined from bars for high pressure & high temperature service	AISI 414()/4142/4145, 4140H. 4142H. 4145H. heat treated	Yes	1, and larger			-	<u>1750,000</u> 150,000	248/352	C24/C38	Ŀ
M7	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 4140/4142/4145, 4140H, 4142H, 4145H, heat treated	Yes	½ and larger				150.000 135.000	159/237	C22 max	ar an a
7MB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 4140/4142/4145, 4140H, 4142H, 4145H, heat freated	ХөХ	X and larger				150,000 135.000	159/237	C22 max	
Ð	A194	Hot or cold forged nuts for high pressure & high temperature service	AIST 30-1	Yes	V, and larger			Footnotes	<u>80.000</u> 75.000 are groupe	126/300 ed on the	B60/B105 last page of th	is Part 1 series.

								Mechanic	al properti	sa		
						Bol	ts, screws,	studs	Nuts	Harc	Iness	
Grade	ASTM	L		ls mfgr's ID	Nominal size	Proof	Yield	Tensite	Proof load (psi) hvv hex			Remarks
mark	spec number	description	Material	symbol req'd?	(inch)	(psi)	(min psi)	(min psi)	hex	Brinell	Rockwell	or footnotes
88	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304	Yes	k and larger	i			<u>80,000</u> 75,000	126/300	B60/B105	
8A	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 304, carbide solution treated	Yes	X and larger	1	ļ		80,000 75,000	126/192	B60/B90	1
ဗ္ဗ	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 347	Yes	14 and Iarger	I	-	-	<u>80.000</u> 75,000	126/300	B60/B105	:
BCB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 347	Yes	V, and Iarger	1	1	-	80,000 75,000	126/300	B60/B105	
BCA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 347, carbide solution treated	Yes	¼ and larger			1	<u>80.000</u> 75.000	126/192	B60/B90	İ
8M	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316	Yes	¼ and larger		Ι.		<u>80,000</u> 75,000	126/300	B60/B105	
8MB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 316	Yes	½ and larger	1	deena	ł	<u>80.000</u> 75.000	126/300	B60/B105	
8MA	A194	Hot or cold forged or machined from bars lor high pressure & high temperature service	AISI 316, carbide solution treated	Yes	X, and larger				<u>80,000</u> 75,000	126/192	B60/B90	
81	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 321	Yes	X and larger	l	1	-	80,000 75,000	126/300	B60/B105	1
8TB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 321	Yes	¼ and larger	1			<u>80,000</u> 75,000	126/300	B60/B105	1
8TA	A194	Hol or cold forged or machined from bars for high pressure & high temperature service	AISI 321, carbide solution treated	Yes	X and larger		1		<u>80,000</u> 75,000	126/192	B60/B90	1
βF	A194	Hol or cold forged nuts for high pressure & high temperature service	AISI 303 with sultur or 303Se with selenium	Yes	X and larger	1			<u>80,000</u> 75,000	126/300	B60/B105	i
8FB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 303 with sulfur or 303Se with selenium	Yes	½ and larger		1	Footnotes	80,000 75,000 are groud	126/300 bed on the	B60/B105 e last page of	this Part 1 series.
											- 0 - 1 - 1 - 1	

								Mechanica	propertie	5		
						Bo	ts, screws,	studs	Nuts	Har	dness	r 1
Grade ID	ASTM spec	Fastener		ls mfgr's ID symbol	Nominal size range	Proof load	Yield	Tensile strength	Proof load (psi) hvy hex			Remarks
mark	number	description	Material		(1111)	fied						
BFA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 303 with sulfur or 303Se with selenium, carbide solution treated	Yes	X and larger	ł			75,000	126/1921	B60/B30	1
8P	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 305 (with restricted carbon)	Yes	¼ and larger			ł	80.000 75,000	126/300	B60/B105	
8PB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 305 (with restricted carbon)	Yes	\₄ and larger	1	1	-	80.000 75,000	126/300	B60/B105	
8PA	A194	Hot or cold forged or machined from bars for high pressure & high temporature service	AISI 305 (with restricted carbon), carbide solution treated	Yes), and larger	1			<u>80.000</u> 75,000	126/192	B60/B90	-
8N	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 304N	Yes	¼ and larger		i		<u>80.000</u> 75,000	126/300	B60/B105	
8NB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304N	Yes	¼ and larger				80,000 75,000	126/300	B60/B105	
BNA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 304N, carbide solution treated	Yes	¼ and Iarger	I		-	<u>80,000</u> 75.000	126/192	B60/B90	
8MN	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316N	Yes	and larger	1	1	1	<u>80,000</u> 75,000	126/300	B60/B105	
8MNB	A194	Nuls machined from burs for high pressure & high temperature service	AISI 316N	Yes	1, and larger	i	(1 	<u>80.000</u> 75.000	126/300	B60/B105	
BMNA	A194	Hot or cold torged or machined from bars for high pressure & high temperature service	AISI 316N, carbide solution treated	Yes	t, and larger				<u>80,000</u> 75,000	126/192	B60/B90	
8R	A194	Hot or cold forged nuts for high pressure & high temperature service	XM19	Yes	1, and larger		:		<u>80.000</u> 75,000	183/271	B88/C25	1
8RB	A194	Nuts machined from bars for high pressure & high temperature service	61MX	Yes	¥ and larger	i i			<u>80,000</u> 75,000	183/271	B88/C25	
								Footnotes	are groupe	ed on the	last page or	this Part 1 series.

								Mechanica	I propertie	S		
						Bolt	s. screws,	studs	Nuts	Hard	Iness	
Grade ID mark	ASTM spec number	Fastener description	Material	ls mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi) hvy hex hex	Brinell	Rockweil	Remarks or footnotes
BRA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	XM19, carbide solution treated	Ycs	X and larger	1	-	1	80.000 75.000	183/271	B88/C25	1
8S	A194	Hot or cold forged nuts for high pressure & high temperature service	S21800 (restricted phosphorus)	Yes	¼ and larger	-			80,000 75,000	183/271	B88/C25	
8SB	A194	Nuts machined from bars for high pressure & high temperature service	S21800 (restricted phosphorus)	Yes	X and larger				80.000 75.000	183/271	B88/C25	
BSA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	S21800 (restricted phosphorus), carbide solution treated	Yes	X and larger	1	1		80.000 75,000	183/271	B88/C25	1
8LN	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 304N (with restricted carbon)	Yes	¼ and larger	1	-		<u>80,000</u> 75,000	126/300	B60/B105	
8LNB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 304N (with restricted carbon)	Yes	¼ and larger	I	-		<u>80,000</u> 75,000	126/300	B60/B105	
BLNA	A194	Hot or cold forged or machined from bars for high pressure & high temperature service	AISI 304N (with testricted carbon), carbide solution treated	Yes	¼ and larger			1	80,000 75,000	126/192	B60/B90	
BMLN	A194	Hot or cold forged nuts for high pressure & high temperature service	AISI 316N (with restricted carbon)	Yes	X and larger	!		ţ	<u>80.000</u> 75.000	126/300	B60/B105	
8MLNB	A194	Nuts machined from bars for high pressure & high temperature service	AISI 316N (with restricted carbon	Yes	¼ and larger	ĩ	1	ł	<u>80,000</u> 75,000	126/300	B60/B105	
8MLNA	A194	Hot or cold torged or machined from bars for high pressure & high temperature service	AISI 316N (with restricted carbon). carbide solution treated	Yes	and larger	I			80.000 75,000	126/192	BG0/B90	
8	A194	Nuts machined from bars for high pressure & high	AISE304, strain hardened	Yes	17 - 72 44 - 74	+			125.000 110,000	and the second se		
		temperature service			- 9 - 9	I	l	ļ	115.000 100,000	I	ł	
					18 - 12	1	1	I	105.000 95,000	I		
					14 - 112	i	1		<u>100 000</u> <u>90,000</u>			
								F-ootnote	s are grou	ped on In	le last page or	this Part 1 series.

•

								Mechanica	I propertie	S		
					J	Bolt	s, screws,	studs	Nuts	Har	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	ls mlgr's tD symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yleid strength (min psi)	Tensile strength (mln psl)	Proof load (psi) hex hex	Brinell	Rockwell	Remarks or footnotes
3C	A194	Nuts machined from bars	AISI 347, strain	Yes	Χ - Χ	1	ł	1	125,000 110,000	1	1	I
		tor high pressure & high ternperature service	пагделед		1 - 1	1	I	ł	115,000	1	1	I
					1% - 1%	1	i		105,000	ļ	I	ł
					1% - 1%	I	I]	000'00 90,000		I	1
<u>e</u>	A194	Nuls machined from bars	AISI 321, strain	Yes	χ - χ		1	1	125.000	1		
		ior nign pressure a mign temperature service			1 - 1	I	ļ	ļ	115,000	1	1	1
					11 - 11	I	I		105,000 95,000	I	1	
					1% - 1%	1	Ι	I	100,000 90,000		1	I
<u>8M</u>	A194	Nuts machined from bars	AISI 316. strain	Yes	χ - χ			1	110,000	1	1	1
		ior nigh pressure a nigh temperature service	nardened		1 - 1	l	1	I	000.001	l	I	
					1% - 1%	ł	I	ļ	95.000 85.000	l	1	1
					1% - 1%		1	l	90,000 80,000	l	1	
er H	A194	Nuts machined from bars	AISI 303 with sulfur	Yes	X - X	I			125,000 110,000		1	
		temperature service	selenium. strain bardeved		1 - 1	1	1	1	115,000		1	1
					71 - 71	I	ļ	I	105.000 95,000	1	I	1
					1% - 1%	ł	1	1	000'001	I	ł	
뭑	A194	Nuts machined from bars	AISI 305 (with restricted carbon)	Yes	* - *				125,000	1	1	1
		temperature service	strain hardened		% - 1	ł	l		115,000	1	I	1
					1% - 1%	ł		ł	105,000 95,000	ł	1	
					1% • 1%	1	1	I	000.001	l	1	ł
								Footnot	es are gro	no bequ	the last page of	this Part 1 series.

								Mochanica	I nconertie			
						Bol	Is, screws,	studs	Nuts	Hard	1855	
				ls mfgr's	Nominal				Proof load			
Grade ID mark	ASTM spec number	Fastener description	Material	10 symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	(psi) <u>hex</u> hex	Brinell	Rockweil	Remarks or foolnotes
8N N	A194	Nuts machined from bars	AISI 304N, strain	Yes	X · X	ļ		ł	125,000 110,000	1	1	I
		tor high pressure & high temperature service	nardened		1 - %	ł	ł	ł	115,000	J	I	ļ
					71 - 71	ł	ł	ł	105,000	1	1	I
					1 - 1 %	ļ	١	1	000.000 90.000	1	i	
NMB	A194	Nuts machined from bars	AISI 316N, strain	Yes	χ - χ	1	1		125.000	1		
		lor high pressure & high ternperature service	nalgeneg		1 - 1/	l	•	I	115,000	1	1	ł
					11 11	1	ł	ł	105,000	1	ì	I
					1% - 1%	I	ł	ł	000.001	1	ł	1
euoN P,ber	A307. Grade A	Common bolts	Carbón steel	Yes	χ.4	1	I	60,000	1	121/ 241 ^F	В69/ В100 ^F	Marking on head, raised or depressed.
p,ber	A307, Grade B	Boils for Ilanged joints	Carbon steel	Yes	% - A	1	l	60,000 min 100,000 max	1	121/212	B69/B95	Marking on head, raised or depressed.
11	A320	Bolls, screws, and studs for tow temperature service	AISI 4140, 4142, or 4145 quenched & tempered	Yes	X - 2X	[105,000	125.000	ł	j	ł	A
L7A	A 320	Bolls, screws, and studs for low temperature service	AISI 4037 quenched & tempered	Yes	X - 2X	l	105,000	125,000	l	1	1	۲
L78	A320	Bolls. screws, and sluds for low temperature service	AISI 4137 quenched & lempered	ХөХ	χ2%	l	105,000	125,000	t	1	1	۲
170	A320	Bolls, screws, and studs for low temperature service	AISI 8740 quenched & tempered	Yes	<u> Х</u> - 2 <u></u>	l	105,000	125,000	1	1	-	A
L70	A 320	Bolts, screws, and studs for low temperature service	AISI 4140. 4142. or 4145 quenched & tempered	Yes	Х - 2Х	I I	105.000	125,000		1	i	¥
171	A320	Bolts, screws, and studs for low temperature service	AISI 4037 quenched & tempered	Yes	Х - 2%	1	105.000	125,000	1	1	1	A
L72	A320	Bolts, screws, and studs	AISI 4137 quenched &	Yes	7 - 2%	ł	105,000	125.000		1	1	A
		101 10W ITTILIA I ALUI T	na inditial					Footnot	es are gro	uped on th	ne last pag	e of this Part 1 series.

								Mechanical	properti	85		
				- mlarla	lanimoli	Bolt	6, SCrews,	studs	Nuts	Hardne	95S	
Grade 10 mark	ASTM spec number	Faslener description	Material	s mugue ID symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnoles
F13	A320	Bolts, screws, and studs for tow temperature service	AISI 8740 quenched & tempered	Yes	γ 2γ,	1	105,000	125,000	1]	1	A
L43	A320	Bolts, screws, and studs for low temperature service	AISI 4340 quenched & tempered	Yes	<u> </u>		105,000	125,000	1	I	-	<
L7M	A320	Bolls, screws, and studs for low temperature service	AISI 4140, 4142, or 4145 quenched & tempered	Yes	X - 2X	1	80,000	100,000	1	235 ^G max	B99 ^G max	A
17	A320	Bolts, screws, and studs for low temperature service	Low carbon martensite steet quenched & lempered	Yes	1 - 7	1	105,000	125,000	I	l	1	۲
BBF	A320	Bolls, screws, and sluds for low temperature service, Class 1	AISI 303 with sultur or 303Se with selenium, carbide solution treated	Yes	X and larger	l	30,000	75,000	1	223 ⁰ max	B96 ⁰ max	٢
BBFA	A320	Bolts, screws, and studs for low temperature service, Class 1A	AISI 303 or 303Se carbide solution treated in finished condition	Yes	% and larger	l	30,000	75,000		192 max	B90 max	۷
BOE	A320	Bolts, screws, and studs for low temperature	AISI 303 or 303Se carbide solution	Yes	% - %	1	100,000	125,000	1	321 max	C35 max	×
		service, Class 2	Ireated and Strain		Over Y 1	1	80,000	115,000	l	321 max	C35 max	<
				<u></u>	Över	I	65,000	105,000	Ι	321 11ax	С35 тах	۷
					0ver 11/-12/12		50,000	100,000	1	321 max	С35 тах	¥
A325 or option	A325, Type 1	High strength structural bolts	Medium carbon steel, quenched & tempered	Yes	2 - 1 2 - 1 2 - 1 2	85,000 74,000	92.000 81.000	120,000		248/331 223/293	C24/C35 C19/C31	77
~ ∕ A325	А325. Туре 2	High strength structural bolts	Low carbon martensite steel, quenched & tempered	Yes	X - 1 1X - 1X	85.000 74,000	92,000 81,000	120.000 105.000		248/331 223/293	C24/C35 C19/C31	ГН
<u>A325</u>	A325, Type 3	High strength structural bolts	Weathering steel, quenched & tempered	Yes	1 - 1 1 / - 1 / /	85,000 74,000	92,000 81,000	120.000 105.000	11	248/331 223/293	C24/C35 C19/C31	с., ., ., ., ., ., ., ., ., ., ., ., .,
A325M BS	A325M, Type 1	High strength structural bolts-metric	Medium carbon steet, quenched & tempered	Yes	M16 - M36	600 MPa	660 MPa	830 MPa	ł	Vickers 255/336	C23/C34	К' Г
A325M BS	A325M, Type 2	High strength structural bolts-metric	Low carbon martensile steel, quenched &	Yes	M16 - M36	600 MPa	660 MP a	830 MPa	I	Vickers 255/336	C23/C34	К, L
	:		lempered	-				-ootnotes a	ire group	ed on the	last page of	this Part 1 series.

								lachandan	1110000			
				-		Bolts	. SCrews. S	ntuds	Nuts	Hard	ness	
Grade 1D mark	ASTM spec number	Fastener description	Material	is migra ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yleld strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnotes
A325M 8S3	A325M. Type 3	High strength structural boltsmetric	Weathering steet. quenched & tempered	Yes	M16 - M36	600 MPa	660 MPa	830 MPa	1	Vickers 255/336	C23/C34	J. K. L
BC	A354, Grade BC	Bolts & studs	Alloy steel, quenched & tempered	Yes	Х - 2У Оvөг 2½ - 4	105,000 95,000	109,000 99,000	125,000 115,000	11	255/331 235/311	C26/36 C22/C33	N.H N.H
	A354, Grade BD	Bolts & studs	Alloy' steel, quenched & tempered	Xes	Х - 2% Оver 2% - 4	120,000 105,000	130,000	150,000 140,000	1	311/363 293/363	C33/C39 C31/C39	O N H N H
None req'd (P)	A394	Transmission tower bolts	Galvanized steel	Yes	X, X, X, X, 1	(Single sh threads b 45,000 ps	ear at ased on it.)	60,000	1	121/235	B69/B99	Marking on head, raised or depressed. (H)
848	A437, Grade B4B	Turbine-type bolts, screws, studs, nuts, and washers for high temperature service	Alloy steel, specially heat treated	Yes	All dia	ł	105,000	145,000	1	See remarks	C31/C37 for nuts & washers	331 max for bolls & studs: 293/341 for nuts & washers. (A)
B4C	A437, Grade B4C	Turbine-type bolts, screws, studs, nuts, and washers for high temperature service	Alloy steel, specially heat treated	Yes	All dia	I	B5,000	115,000	1	See remarks	C21/C29 for nuts & washers	277 max for bolls & studs: 229/277 for nuts & washers. (A)
B4D	A437, Grade B4D	Turbine-type bolts, screws, studs, nuts, and washers for high temperature service	Alloy steel, specially heat treated	Yes	Thru 2% Over 2% - 4 Over 4 - 7	FI []	105,000 95,000 85,000	125,000 110,000 100,000	11 1	See remarks See remarks	C27/C33 for nuts and washers	302 max for bolls and sluds, 263/311 for nuts and washers. (A)
-{	A449	Bolls and sluds	Medium carbon steet, quenched & tempered	Yes	<u>%</u> - 1 Оver 1 - 1 <u>%</u> Оver 1 <u>%</u> - 3	85,000 74,000 55,000	92,000 81,000 58,000	120,000 105,000 90,000	111	255/321 223/285 183/235	C25/C34 C19/C30	Marking on head, raised or depressed. (H,O)
660A (R)	A453, Grade 660 Class A	Bolls, screws, studs, nuts, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	X and larger	1	85,000	130,000	1	248/341	l	A.R.
8608 (A)	A453, Grade 660 Class B	Bolts, screws, studs, nuts, and washers tor high temperature service	Special alloy steel, specially heat treated	Yes	% and larger	1	85,000	130,000 Eactories		248/341		A,R Althic Port 1 corise

								Aechanical	propert	85		
				le mfor's	Nominal	Boll	IS, BCTOWS, 5	tuds	Nuts	Hardn	855	
Grade 1D mark	ASTM spec number	Fastener description	Material	1D symbol req'd?	size range (inch)	Proof load (psl)	Yleld strength (min psi)	Tenstle strength (min pst)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
651A (A)	A453. Grade 651 Class A	Bolts, screws, studs, nuts, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	<u>ү</u> - 3 Оver 3 and larger] }	70,000 60,000	100,000 100,000	1	220/280 220/280		A.A. A.A.
651B (R)	A453, Grade 651 Class B	Bolts, screws, studs, nuls, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	¼ - 3 Over 3 and Iarger	11	60,000 50,000	95,000 95,000		210/270 210/270		A,H A,A
662A (H)	A453, Grade 662 Class A	Bolts, screws, studs, nuls, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	X and larger	ł	85,000	130,000	1	255/321	1	A,R
662B (A)	A453, Grade 662 Class B	Bolts, screws, studs, nuts, and washers for high temperature service	Special alloy steel, specially theat treated	Yes	X and larger	1	80,000	125,000	1	248/321	- The second second second second second second second second second second second second second second second	<
665A (A)	A453, Grade 665 Class A	Bolls, screws, studs, nuts, and washers for high lemperature service	Special alloy steet, specially heat treated	Yes	X and larger		120,000	170,000		311/388		٢
665 B (A)	A453, Grade 665 Class B	Bolts, screws, studs, nuts, and washers for high temperature service	Special alloy steel, specially heat treated	Yes	X and larger	1	120,000	155,000	1	311/388	1	<
b'per	A489	Eyebolis	Carbon sleel, quenched and tempered	Yes	Х - 2Х	(S)	30,000	65,000 min, 85,000 rnax	1	1	1	H

ASTM footnotes

A. Grade and manufacturer's identification symbols shall be applied to one and of itudes? '' in diamater and larger. and to the heads of both and screws Y.' in diamater and larger. If the available area is inedecuate, grade symbol may be marked on one end and manufacturer's Mentification symbol marked on the other end.'

B. To meet tensile requirements, Brinell hardness shall be over 201 HB (94 HRB)

C. A193 products are for high lemperature service, A320 products are for kow temperature service.

D. For sizes Y = In dismeter and smaller, maximum hard-ness of 241 HB (100 HRB) is permitted

E. Nuis machined from heat lreated bara rueed not be re-heat treated

F. Except when tested by weakle tension test.

0. To meet tensile requirements. Brinell hardness shall not be less than 200 HB or 93 $\rm HBH$

H. Bolts (screws) less than three drameters in length (and studs less than (our drameters in length) shall have hard-ness avoes not less than the minimum nor more than the maximum hardness limits required, as hardness is their only mechanical requirement.

I. Excluding studs, all markings located on top of head, relead or depressed.

Manufacturer may add other distinguishing marks indu-ceiling hie fastener is almospheric corrosion resmant and of a weathering type

K. All markings shall be located on top of the horse initsed or depressed base of property class symbols. Full be positioned toward the closest peripheny of the $^{-1}$

L. Short length boils need only meet hardness limits, as hardness is their only medicated lequirement. (Huler to Table 4 or ASIM F568 for definition of minimum length of product subject to tensite testing) M. Grade BD boils X" (hrough 1X" drameter shall be marked with six radiat lines 60 degrees spert on top of bolt head. instead of the grade symbol.

N. Marks may be reised or depressed on the top of the head for boils and on one end for studs.

D. Grade BD in strees X^{*} through 1X^{*} is enviroalent to SAE Grade 8. (Note: AISI 1541 does not satisfy chemical requirements for Grade BD)

P. Rolls may be marked on life head by agreement with some obmitying synuxol to indicate synuxol and processing requirements when synitratile

Q. A449 in sizes X° through 1X° is equivalent to SAE Grade 5

R, in addition to identification synthols (grade and class), the type designation 2 shall also appear on all roll. type designation pinaterial so processed. Absence of the type designation number indicates. Type 1 processed ma-terial or machine-cut threads.

S. Heler to ASTM Standard A489 for specific strength tequirements

T. Manufacturer's name or identitication mark strail be forged in raised characters on systoch surface

Grade and material markings—Part II

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

A	STM	Grade and mate	erial identificatio	n marking	gs requir	ed by	ASTM :	specific	ations			
								Mechanical	properti	es		
					Nominel	Bolt	s, screws,	sluds	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol symbol req'd?	size size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinett	Rockwell	Remarks or footnotes
A180	A490, Type 1	High Strength structural bolts	Alloy steel, quenched & terripered	¥ 83	X - 1X	120,000	130,000	150,000 mln 170,000 ritax	Ļ	311/352	С33/С38	Marking on top of head, raised or depressed. (H)
A400	A490, Type 2	High strength structural bolts	Low carbon marlensite steel, quenched & tempered	Yes	<u> %</u> - 1 <u>%</u>	120,000	130,000	150,000 min 170,000 max	1	311/352	C33/C38	Marking on top of head, raised or depressed (H)
A490	A490. Type 3	High strength structural bolts	Weathering steel, quenched & tempered	Yes	X - 1X	120,000	130,000	150,000 min 170,000 max		311/352	C33/C38	Marking on top of head, raised or depressed (H.J)
A480M 105	A490M. Type 1	High strength structural bolts-metric	Alloy steel, quenched & tempered	Yes	M16 - M36 mm	830 МРа	940 MPa	1040 MPa		Vickers 327/382	C33/C39	¥
A490M	A490M, Type 2	High strength structuraf bolts-metric	Low carbon martensite steel, quenched & tempered	Yes	M16 - M36 mm	830 MPa	940 MPa	1040 MPa	ł	Vickers 327/382	C33/C39	×
A490M 1053	A490M. Type 3	High strength structural bolts-metric	Weathering steel, quenched & tempered	Yes	M16 - M36 mm	830 MPa	940 MPa	1040 MPa		Vickers 327/382	C33/C39	J,K
None req'd (U)	A502, Grade 1	Structural rivets	Carbon steel	Yes	%1 - %	ŀ	I	i	t	103/126	B55/B72	Markings on top of rivet head, raised or depressed
2	A502, Grade 2	Structural rivets	Carbon manganese steel	Yes	% - 1%	1	1	1	ł	137/163	B76/B85	Markings on top of rivet head, raised or depressed
e	A502, Grade 3	Structural rivots	Weathering steel	Yes	1 - 12	1	1	1	l	137/197	B76/B93	Markings on top of rivet head, raised or depressed
								Footnotes	are gro	no baquo	the last pa	ige of this Part II series.

								Mechanica	proper	lies		
					Membra	Bol	ts, screws,	studs	Nuts	Hard	Jness	
Grade ID mark	ASTM spec number	Fastener description	Material	is migrs ID symbol req'd?	reminar size renge (inch)	Proof load (pst)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
3 31 31	A540. Grade	Bolts, studs, washers, and nuts for nuclear and other	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Thru 2 Over	11	105,000 100,000	120,000 115,000		241/285 248/302	11	33
	B21, Class 5	special applications			2 - 6 Over 6 - 8	1	100,000	115,000	ļ	255/311		A
3 1 3	A540, Grade B21, Class 4	Bolls, studs, washers, and nuts for nuclear and other special applications	Alloy steel (Cr-Mo-V). quenched & tempered	Yes	Thru 3 Over 3 - 6	1	120,000 120,000	135,000 135,000		269/331 277/352	1	× ×
3 821	A540, Grade B21, Class 3	Bolls, studs, washers, and nuts for nuclear and other special applications	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Тhru 3 Оvөг 3 - б	11	130,000 130,000	145,000 145,000	I I	293/352 302/375		≥ ≥
3 3 1	A540, Grade B21, Class 2	Bolts, studs, washers, and nuts for nuclear and other special applications	Alloy slee! (Or-Mo-V), quenched & tempered	Yes	Thru 4		140,000	155,000	I	311/401		≥
B 21 (V)	A540, Grade B21 Class 1	Bolls, studs, washers, and nuls for nuclear and other special applications	Alloy steel (Cr-Mo-V), quenched & tempered	Yes	Thru 4	I	150,000	165,000	I	321/429		8
3 2 3	A540, Grade B22, Class 5	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4142-11, quenched & lempered	Yes	Thru 2 Over 2 - 4	11	105.000 100,000	120,000	1	248/293 255/302	1	* *
32 8 22	A540, Grade B22 Class 4	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & lempered	Yes	Thru 1 Over 1 - 4	}	120,000 120,000	135,000 135,000	1	269/341 277/363	1	**
B22	A540, Grade B22 Class 3	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & lempered	Yes	Thru 2 Over 2 - 4	1	130,000	145,000 145,000		293/363 302/375		* *
323	A540, Grade B22 Class 2	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & lempered	Yes	Thru 3	1	140,000	155,000	l	311/401	ļ	s
3 8 23	A540, Grade B22, Class 1	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI 4142-H, quenched & tempered	Yes	Thru 1%	1	150,000	165,000		321/401	1	3
B 23 (2)	A540, Grade B23, Class 5	Bolts, studs, washers, and nuts for nuclear and other special applications	AISI E-4340-H, quenched & tempered	Yes	Thru 6 Over 6 - 8 Over 8 - 9%		105,000 100,000 100,000	120,000 115,000 115,000 Ecolocies		248/311 255/321 262/321		W W W Mile Part II cories
									מומלור		n afind leni ni	

		Remarks or tootnotes		33	3	33	3	33	X	* *	×	* *	M	**	z	3	88	*	3 3	33
	Iness	Rockwell		11			I	11	ł	11	ļ	11	Į	11	l	l	[]		11	
lles	Hard	Brineti		269/341 277/352	285/363	293/363 302/375	311/388	311/388 311/401	321/415	321/415 331/429	341/444	248/311 255/321	262/321	269/341 277/352	285/363	293/363	293/363 302/388	311/388	311/401 321/415	321/415 331/429
propert	Nute	Proo(load (psi)		1	I	1		11	1		l	1	I		I	Ì	11	ŀ		
Mechanical	studs	Tensile strength (min psi)		135,000	135,000	145,000 145,000	145,000	155,000 155,000	155,000	165,000 165,000	165,000	120,000	115,000	135,000 135,000	135,000	135,000	145,000 145,000	145,000	155,000 155,000	165.000
	Is acrews.	Yield strength (min psl)		120,000 120,000	120,000	130,000	130,000	140,000 140,000	140,000	150,000	150,000	105,000 100,000	100,000	120,000 120,000	120,000	120,000	130,000 130,000	130,000	140,000	150,000
	Bol	Proof load		11	1		ł		l		1	11	ļ		I	1		ł	11	1
		Nominal size range (inchi		Thru 3 Over	3 - 6 Over 6 - 9 <u>%</u>	Thru 3 Over	3 - б Оver 6 - 9%	Thru 3 Over	3 - 6 Over 6 - 9%	Thru 3 Over	3-6 Оver 6-8	Thru 6 Over	6 - 8 Over 8 - 9%	Thru 3 Over	3.6 Over	0 - 0 Over 8 - 9%	Thru 3 Over	3 - 8 Over 8 - 9%	Тћги 7 Оvвг 7 - 9%	Thru 6
		ls mlgr's ID symbol		Yes		Yes		Yes		Yes		Yes	- <u> </u>	Yes .		<u>, , , , , , , , , , , , , , , , , , , </u>	Yes		Yes	Yes
		Material	IPIIOIDI	AISI E-4340-H, quenched & tempered		AISt E-4340-H, quenched & tempered		AISI E-4340-H, quenched & tempered		AISI E-4340-H, quenched & tempered		AISI 4340 Mod, quenched & tempered		AISI 4340 Mod, quenched & tempered			AISI 4340 Mod. quenched & tempered		AISI 4340 Mud, quenched & tempered	AISt 4340 Mod.
		Fastener	description	Bolts, studs, washers, and nuls for nuclear and other	special applications	Bolts, studs, washers, and nuts for nuclear and other	special applications	Bolts, studs, washers, and nuts for nuclear and other	special applications	Bolts, studs, washers, and nuts for nuclear and other	special applications	Bolts, studs, washers, and nuts for nuclear and other	special applications	Bolts, studs, washers, and nuts for nuclear and other	special applications		Bolts, studs, washers, and nuts for nuclear and other	special applications	Bolls, studs, washers, and nuts for nuclear and other special applications	Bolts, studs, washers, and
		ASTM spec	number	A540, Grade	B23, Class 4	A540, Grade	B23 Class 3	A540, Grade	B23 Class 2	A540, Grade	B23 Class 1	A540, Grade	B24 Class 5	A540, Grade	B24 Class 4		A540, Grade	B24, Class 3	A540, Grade B24	A540,
		Grade 1D	Tarx	B23	•	B23 V)		823 S	2	B 23	2	3 4		3 4			34 3		B24 (V)	B24

• .

								Machanic	al proper	ties		
						Bol	te errawe	etude	Nute	eH	rdness	
Grade ID mark	ASTM spec number	Fastener description	Material	Is mfgr's ID symbol req`d?	Nominai size range (inch)	Prool load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwe	Remarks I or footnotes
B24V (V)	A540, Grade B24V Class 3	Bolls, studs, washers, and nuls for nutuear and other special applications	AISI 4340V Mod. quenched & tempered	Yes	Thru 4 Over 4 - 8 Over B - 11	111	130,000 130,000 130,000	145,000 145,000 145,000	11 1	293/363 302/375 311/388	! • } {	88 8
B24V (V)	A540, Grade B24V Class 2	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340V Mod. quenched & lempered	Yes	Thru 4 Over 4 - 8 Over 8 - 11		140,000 140,000 140,000	155,000 155,000 155,000		311/388 311/401 321/415		333
B24V (V)	A540, Grade B24V Class 1	Bolls, studs, washers, and nuts for nuclear and other special applications	AISI 4340V Mod, quenched & tempered	Yes	Thru 4 Over 4 - 8 Over 8 - 11		150,000 150,000 150,000	165,000 165,000 165,000		321/415 331/429 331/444	111	× × ×
p,ber (X)	A563, Grade 0	Nuts for general structural and mechanical use	Carbon steel	οN	X1 - X				7	103/302	B55/C32	1
p,be, (X)	A563. Grade A	Nuts for general structural and mechanical use	Carbon steel	N	X - 4	J	1		~	116/302	B68/C32	
None (X) (X)	A563, Grade B	Nuts for general structural and mechanical use	Carbon steel	NO	X - 1 X - 1X]	11	1	× ×	121/302 121/302	B69/C32 B69/C32	4
ら	A563, Grade C	Heavy hex nuts for general structural and mechanical use	Carbon steel	Yes	% - 4	1	-	-	44,000	143/352	B78/C38	Grade mark shall be applied to one nut face. (Z.AA)
ভি	A563, Grade C3	Heavy hex nuts for general structural and mechanical use	Weathering steel	Yes	X - 4	1	I	-	44,000	143/352	B78/C38	Grade mark shall be applied to one nut face. (Z.J)
٩	A563, Grade D	Nuts for general structural and mechanical use	Alloy steel	Yөs	X - 4	ł	1	1	~	159/352	B84/C38	Grade mark shall be applied to one nut face. (Z.AA)
НО	A563, Grade DH	Nuts for general structural and mechanical use	Alloy steel. quenched & tempered	Yes	X - 4	1	-		~	248/352	C24/C38	Grade mark shall be applied to one nut face. (2.88)
DH3	A563, Grade DH3	Heavy hex nuts for general structural and mechanical use	Weathering steel, quenched & tempered	Yes	X - 4	1		-	75,000	248/352	C24/C3B	Grade mark shall be applied to one nut face. (J.Z)

Footnotes are grouped on the last page of this Part II series.

Grade ID mark ASTM apec Fastener description Material Material 5 A563M, and mechanical use			MACHBING	ninhairi i	6 S		
Grade ASTM apec Fastener description Materia Materia 5 A563M, and mechanical use Muts for general structural metric Catbon st and mechanical use 9 A563M, and mechanical use Nuts for general structural metric Carbon st and mechanical use 10 A563M, and mechanical use Alloy stee- 10 A563M, class 10 Nuts for general structural and mechanical use Alloy stee-	Nominal	Bolls, screws	studs,	Nuts	Hard	ness	
5 A563M, Nuts for general structural Carbon structural carbon structurarbon structura carbon structural carbon structural carb	size range (mm) to	roof Yield ad strength	Tensile strength	Proof load	Brinell	Rockwell	Remarks or footnotes
Class 5 and mechanical use metric dass 9 and mechanical use class 9 and mechanical use metric netric class 10 A163 Anuls for general structural Alloy stee class 10 and mechanical use quenched	M1.6 -			520	Vickers	B70/C30	aa,z
 A563M. Nuts for general structural Carbon st Class 9 and mechanical use metric A563M. Nuts for general structural Alloy stee A563M. Nuts for general structural Alloy stee Class 10 and mechanical use quenched 	M4 M5 &	1	1	MPa 580 ⁰⁰	130/302 Vickers	B70/C30	Z,DD
 A563M, Nuts for general structural Carbon st Class 9 and mechanical use metric A563M, Nuts for general structural Alloy stee A563M, Nuts for general structural Alloy stee Class 10 and mechanical use quenched 	M6 M8 &		ļ	590 ⁰⁰	Vickers	B70/C30	Z,DD
 A563M. Nuts for general structural Carbon st Class 9 and mechanical use— metric Class 10 and mechanical use— tuenched 	M10 M12 -	l	ł	MPa 610 ⁰⁰	130/302 Vickers	B70/C30	Z,DD
 A563M, Nuts for general structural Carbon st Class 9 and mechanical use metric Class 10 A563M, Nuts for general structural Alloy stee Class 10 and mechanical use quenched 	M16 M20 -	1	I	MPa 630 ^{CC}	130/302 Vickers	B78/C30	2,00
 A563M, Nuts for general structural Carbon st Class 9 and mechanical use metric A563M, Nuts for general structural Alloy stee Class 10 and mechanical use quenched metric 	M36 M42 - M100	I	ł	MPa 630 ⁰⁰ MPa	146/302 Vickers 128/302	B70/C30	Z,DD
Class 9 and mechanical use metric 10 A563M. Nuls for general structural Alloy stee Class 10 and mechanical use quenched	M3 -			900 MPa	Vickers	B85/C30	Z,DD
 A563M, Nuts for general structural Alloy stee Class 10 and mechanical use — quenched metric 	M5 &	1	I	915 110	Vickers	B89/C30	Z,DD
 A563M, Nuls for general structural Alloy stee Class 10 and mechanical use — quenched metric 	M6 M8 &		I	940 940	Vickers	B89/C30	Z,DD
10 A563M, Nuls for general structural Alloy stee Class 10 and mechanical use quenched metric	M10 M12 -	1	1	MPa 950	Vickers	B89/C30	Z,DD
10 A563M. Nuls for general structural Alloy stee Class 10 and mechanical use — quenched metric	M16 M20 - M100	1	ł	MPa 92U MPa	188/302 Vickers 188/302	B89/C30	Z,00
Class 10 and mechanical use quenched metric	M16-			1040	Vickers	C26/C36	Z,DD
	M10 M12-	I	I	MPa 1050	212/353 Vickers	C26/C36	Z'DD
	M16 M20 - M36	-	I	MPa 1060 MPa	272/353 Vickers 272/353	C26/C36	2,00
12 A563M Nuls for general structural Alloy stee	M3 -			115000	Vickers	C26/C36	Z,DD
Class 12 and mechanical use quenched metric	M8 &	ł		1160 ⁰⁰	Vickers	C26/C36	Z.DD
	M12 -	ł	ł	1190°C	Vickers	C26/C36	Z,DD
	M16 M20 - M100	1	ł	MPa 1200 MPa	21/2/353 Vickers 27/2353	C26/C36	Z, DD
BS A563M, Nuts for general structural Carbon st Class 8S and mechanical use— metric	M12 - M36			1075 MPa	Vickers 188/372	B89/C38	Z,DD
853 A563M, Nuls for general structural Weatherin Class and mechanical use	M12 • M36		-	1075 MPa	Vickers 188/372	B69/C38	J.Z,DD
103 A563M, Class Nuls for general structural and mechanical use- toS Alloy stee 105 metric quenched	M12 · M36		!	1245 ⁰⁰ MPa	Vickers 272/372	C26/C38	2,00
105.3 A563M, Nuts for general structural Weatherin Class and mechanical use	M12 - M36	1	Evoluciae	1245 MPa	Vickers 272/372	C26/C38	J.Z.DD M this Part II series

								Machanical	i tronord			
				-tt	le al main	Bol	IS, SCIEWS,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Materisì	is migra ID symbol req'd?	range linch)	Proof load (psl)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinelí	Rockwell	Remarks or foolnoles
None req'd See EE	A574	Socket head cap screws	Alloy steel, quenched & tempered	No (EE)	X and smaller % - 4	140,000 135,000	 Ff 153.000	180,000 170,000	1		C39/C45 C37/C45	I
12.0	A574M	Socket head cap screws, metric	Alloy steel, quenched & tempered	Yes	M1.6 - M48 mm	970 MPa	1100 МРв	1220 MPa	;	Vickers 372/434 DPH	C38/C44	GG
A687	A687	Bolts & studs	Alloy steel, quenched & tempered	No	% - 3	ł	105,000	150,000 max			-	Marking appears on the end of product. HH
See 'Remarka''	A761	Fasteners for pipe, pipe anchors and arches	Galvanized steel	Yes	X only	+		- See Foot	note II -			
none na'd	C646	Drill screws for gypsum board on light-gage steel shanks	Grade 1013 to 1022 carbon steel wite in accordance with ASIM A548.	N	89	1	Ţ	1		1	C45 min case hardness	
none None	C893	Type G screws lor gypsum board to gypsum board	Grade 1013 to 1022 carbon sleel wire in accordance with ASTM A548	No			ŀ	ł	ļ	ł	C45 min case hardness	1
None raq'd	C894	Type W screws for gypsum board to wood framing	Grade 1013 to 1022 carbon steel wire In accordance with ASTM 4548	° N	1	1	1	1	ļ	1	C45 min case hardness	1
GR30	F432, Grade 30	Roof & rock bolts and accessories	Carbon steel	Yes	¥ - 1	I	30,000	60,000	- Se	e ASTM F.	432	r,
GR55	F432, Grade 55	Roof & rock bolts and accessories	Carbon steel	Yes	% -1%	ł	55,000	85,000	- Se	e ASTM F	132	٦٢
GR75	F432, Grade 75	Roof & rock bolts and accessories	Carbon steel	Yes	1 - 1	1	75,000	100,000	₽S ↓	e ASTM F	432	ſſ
GR40	F432, Grade 40	Roof & rock bolts	Carbon steel	Yes	All sizes	I			Se l	e ASIM A	615	3
GR60	F432, Grade 60	Roof & rock bolts— headed deformed bars	Carbon steel	Yes	All sizes	I			Se	e astm a	615	Ĺ
								Footnotes	are grot	t uo padr	he last pag	e of this Part II series.

								Mechanical	properti	88		
				-		Bol	Is, screws,	studs	Nuls	Hard	ness	
Grade ID Mark	ASTM spec number	Fastener description	Material	Is migr's ID symbol req'd?	Nominal size range (inch)	Proof load (psi)	Yield strength (min psl)	Tenslie strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or lootnotes
See ''Remarks''	F436	Hardened washers	Carbon or weathering steel	Yes	۲. ۹ ۵	1	1	ţ		1	See ASIM F436	Type 3 (weathering steel) washers shall be marked with the symbol 3 * KK
z	F436M	Hardened washers	Carbon steel	Yes	M12 - M100mm	1	1		1	1	11	¥
WE	F436M	Hardened washers	Weathering steel	ХөХ	M12 - M100 mm	1	I	1		1	н	Ϋ́
enoN b'aa'd	F467	Nuts for general use	ETP copper UNS C11000	Ŷ	X1 - X	l	1		30,000 min		F65 min	1
None bio	F467	Nuts for general use	Brass UNS 27000	Ŷ	X1-X	1	ł	1	60,000 min		F55 min	ţ
None d'd	F467	Nuts for general use	Naval brass UNS C46200	No	X • 1X	ł		1	50,000 ' тіп	1	865 min	1
enoN b'per	F467	Nuts for general use	Naval brass UNS C46400	No	X - 1X	1		1	50.000 min	1	B55 min	I
None reg'd	F467	Nuts for general use	Phosphor bronze UNS C51000	° Z	% - 1%	1			60,000 min		B60 min	1
None	F467	Nuts for general use	Aluminum bronze UNS C61300	Ŷ	X1 - X	!	ł	1	80,000 min	1	B70 min	1
enoN	F467	Nuts for general use	Aluminum bronze UNS C61400	Ŷ	X - X	1	I	1	75.000 min	1	B70 min	
None rea'd	F467	Nuts for general use	Aluminum bronze UNS C63000	Ň	×1 - 1	1	I	1	100,000 min		B85 min	-
None rea'd	F467	Nuts for general use	Aluminum silicon bronze UNS C64200	Ň	×1 - X	1	I	1	75,000 mìn	1	B75 min	1
None reg'd	F467	Nuts for general use	Silicon bronze UNS C65100	No	X - 1 <u>X</u>	ł	1	1	70.000 nin		B75 min	
None b'aer	F467	Nuts for general use	Silicon bronze UNS C65500	No	×1 • ×	I		1	50,000 rnin		B60 min	
None rea'd	F467	Nuts for general use	Silicon bronze UNS C66100	No	X - 1X	I	1		70,000 min		B75 min	
enoN b'ber	F467	Nuts for general use	Manganese bronze UNS C67500	νo	X - 1X	I	[ļ	55.000 min	1	B60 min	i
2							•	Footnotes	are grou	ped on th	ie last page	of this Part II series.

								Mechanica	I propertie	35		
				le mfor'e	Nominal	Boi	ls, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Materiat	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psl)	Brinell	Rockwell	Remarks or footnotes
None req'd	F467	Nuts for general use	Cupro-nickel UNS C71000	No	χ - 1χ		1	1	45.000 min		(150 min	
None req'd	F467	Nuts for general use	Cupro-nickel UNS C71500	No	X - 1 <u>X</u>	I		Ļ	55,000 min		B60 min	
None req'd	F467	Nuts for general use	Ni-Mo based UNS N10001	No	2 - 15	ł	ţ	1	115.000 min		C20 min	
None req'd	F467	Nuts for general use	Ni-Mo-Cr based UNS N10002	No	1 1%	1	l	I	110,000 min	1	C20 min	
None req'd	F467	Nuts for general use	Ni-Cu Class A UNS N04400	No	% - 1%	ţ			80,000 min	1	875 min	and a second second second second second second second second second second second second second second second
None req'd	F467	Nuts for general use	Ni-Cu Class B UNS N04405	NO	X - 1X		1	1	70,000 nim	1	960 min	and a second second second second second second second second second second second second second second second
b'per	F467	Nuts for general use	Ni-Cu-Al based UNS N05500	No	χ - 1χ		ł	-	130,000 min	t	C24 min	
None req'd	F467	Nuts for general use	Aluminum 2024 UNS A92024	No	X • 1X	1		1	55.000 min	ł	870 nin	I
None req'd	F467	Nuts for general use	Aluminum 6061 UNS A96061	No	X • • X	1	1	ł	40,000 min	ł	B40 min	1
None req'd	F467	Nuts for general use	Aluminum 6262 UNS A96262	No	X - 1X	ł	venera	-	52,000 min	1	B60 min	

ASTM footnotes

H. Boils (screws) less than three diamaters in length (and subscreams) less than three diamaters in length (and ness values) not less than the numerum nor more than the anstarrum handless limits equived. As hardness is their only mechanical requirement.

Excluding situs; all markings located on top of head, raised or depressed

Manulacturer may add other distinguishing marks muli caling the lastener is almospheric corrod/on resistant and of a weathering type

K. All markings shall be localed on inp of the head raised or depressed Base of property class symbols shall be posmoned toward the closest perighery of the head

The numeral 1 may be used at manufacturer's option 2

V. Marking of class identification is not mandatory

W. Grade and manufacture's operating atom synahols shall be developed and manufacture's operative subsidient super till waarkale area is inablepaste, grave synahol may super unaver dis one eval as to the manufacture is infention to consistent one eval as to the order enable of our bolts and strubs to consistent one may as to the order enable of our bolts and strubs to consistent one may as to the order enable of our bolts and strubs.

smaller than χ^* diverseler and for χ^* studs requiring more than a local of three synthols, the marking shall be a matter of agreement between purchaser and manufacturer.

X. When individual grade marking is specified in the in-quiry and order, the mark shall be the grade letter symbol on one nut face

Y. Proof load success vary depending on nul style, size, litead series and in some cases on whether or not nuls are galvanized fieler to ASIM Standard A563 for specific values.

Z. Marks may be raised or depressed. It, however, marks are located on the bearing surface for on one of the wrencthing flats for A563M faasteners) they shall be depressed

AA. Ruts made in accordance with ASIM A194. Grade 2 or 211 and marked with thoir grade symbol are acceptable equivalents for Grades C and D nuts.

BB. Note monte in accordance with ASIM A 194. Grade 211 and marked with its grade symbol are an accordiable equivatent for Grade DH nuts

e-ed nuts CC. Proof load stresses are reduced for new-

Refer to ASTM A563M for specific values

DD. Huls in nominal thread diameters M4 and smaller neet on the market property class designations shall be located on the tipp or bearing surface, on the type rithange or on one of the werefring table of the nut Maximg's lo called on the tipp or bearing surface or on the typ of the thange stable postioned with the base of the numerarys oriented flow that the number with proper diameter than the property flates of nuder the do oriented flow that than the pare the numerary oriented the surface than the property flates of nuder three do oriented the surface have the numeral 9 under three d

E.E. In the USA there is only one grade of socket hoad cap second the commentative available and must manufacturers social their own source marks by knutling patient around the outside of the head

FF. When equipment of sufficient capacity is not reacily available, machined specimens shall meet 153 ksi, mu yield strength

GG. All screws with nominal charneters of 5 mm and larger require marking. Marking may be on side or tup of head

HH. Marking small sizes (customanily less them ↓) may not be practical. Consult producer for minimum size that can be marked.

II. Assembly polls conform to AS1M A449 requirements, outs contourn to Gravie C of AS61 Headwall anchorage Nathing material conforms to A307 and nuts conform to Grade 8 of AS63

JJ. Rolt heads shall be marked with either raised or depression marks at manufactures sophone when applicable manufactures sophone when applicable manufactures sophone when applicable manufactures sophone when applicable manufactures sophone when applicable manufactures sophone when applicable marked tabered bins, lineabled solared bins, entrinsions bevelow assers stable marked when any advectable marked tabered pinys, wedges sphericable wasters software when any advectable tabered pinys are not required to be marked. Therewere, wedges sphericable marked tabered pinys are released when usual tabered pinys are not required to be marked. Therewere, when we assers sphericable marked marked and redemed be anny and header plans spirated marked and the sparse of regulation sphered binks there and tabe so the marked with marked with marked with marked with marked with marked with marked with marked with marked with marked with they are marked time is spirated and leds stre for which they are marked unstrated used to be stre for which they are marked used to be marked with marking the stre is spirated and leds stre for which they are marked with marking their is spirated and leds stre for which they are morked.

910 00 KK, Ali marking symbolis shall be depressed washeritace FL Rive word narraness is C Bist. 35 (non-up) for detected from prived. (125A):45 hop day gateanize: Ac9 A73, carbinized O.51.

Grade and material markings — Part III

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grude and material identification as required.

Ā	STM					(~						
								Mechanica	properti	es		
				le mtor'e	Nominal	Bo	its, screws,	studs	Nuts	Hard	Iness	
Grade 1D mark	ASTM spec number	Fastener description	Material	symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brineli	Rockwell	Remarks or footnotes
None req'd	F467	Nuts for general use	Titanium Gr 1	Na	¥1 - ₩	1	1	I	40,000 min	ļ	Vickers 140 min	1
None req'd	F467	Nuts for general use	Titanium Gr 2	No	X - 1X	1			55,000 min	1	Vickers 150 min	
None req`d	F467	Nuts for general use	Titanium Gr 4	No	% - 1 <i>%</i>		I		85,000 min		Vickers 200 min	-
None req'd	F467	Nuts for general use	Titanium Gr 5	No	%1 - %		1		135,000 min	1	C30 min	1
None req'd	F467	Nuts for general use	Titanium Gr 7	NO	X - 1X	ł	ļ	1	55,000 min	ļ	Vickers 160 min	ŀ
None req'd	F467M	Nuts for general use	ETP copper UNS C11000	No	M6 - M36 mm			-	205 MPa	4	F65 min	
None req'd	F467M	Nuts for general use	Brass UNS C27000	No	M6 - M36 mm	1		Į	415 MPa	l	F55 min	
None req'd	F467M	Nuts for general use	Naval brass UNS C46200	No	M6 - M36 mm	1	1		345 MPa	1	B65 min	
None req'd	F467M	Nuts for general use	Naval brass UNS C46400	°N N	M6 - M36 mm	1	1	-	345 MPa		B55 min	1
None req'd	F467M	Nuts for general use	Phosphor bronze UNS C51000	No	M6 - M36 inm	I		-	415 MPa	1	B60 min	1
None req'd	F467M	Nuts for general use	Aluminum bronze UNS C61400	No	M6 - M36 mm	1	l		520 MPa	ł	B70 min	
None req'd	F467M	Nuts for general use	Aluminum bronze UNS C63000	NO	M6 - M36 mm	ł	I	i	690 MPa	ł	B85 min	Ι

Grade and material identification markings required by ASTM specifications

								Mechanical	1 properti	ies		
				le mfor's	Nominal	Bol	ts, screws,	studs	Nuts	Hard	Iness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol ID req'd?	size range	Proof load	Yield strength (min)	Tensile strength (min)	Proof load	Brinell	Rockwell	Remarks or footnotes
None req'd	F467M	Nuts for general use metric	Atuminum silicon bronze UNS C64200	No	M6 - M36 mm	1		1	520 MPa	i	B75 min	
None req'd	F467M	Nuts for general use metric	Silicon bronze UNS C65100	No	M6 - M36 mm	Ļ			485 MPa		B75 min	
None req'd	F467M	Nuts for general use	Silicon bronze UNS C65500	сN	M6 - M36 mm	1			345 MPa	i.	B60 min	
None req'd	F467M	Nuts for general use	Silicon bronze UNS C66100	No	M6 - M36 mm	ł			485 MPa		B75 min	
None req'd	F467M	Nuts for general use- metric	Manganese bronze UNS C67500	No	M6 - M36 mm	1		1	380 MPa		B60 min	
None req'd	F467M	Nuts for general use	Cupro-nickel UNS C71000	No	M6 - M36 mm	E	I	- 19	310 МРа		B50 min	
None req'd	F467M	Nuts for general use	Cupro-nickel UNS C71500	No	M6 - M36 mm	ł			380 MPa		B60 min	
None req'd	F467M	Nuts for general use	Ni-Mo based UNS N10001	No	M6 - M36 mm	ţ		ł	790 MPa	!	C20 min	
None req'd	F467M	Nuts for general use	Ni-Mo-Cr based UNS N10002	No	M6 - M36 mm				760 MPa		C20 min	
None req'd	F467M	Nuts for general use	Ni-Cu Class A UNS N04400	No	M6 - 36 mm		1		550 MPa	÷	B75 min	1
None req'd	F467M	Nuts for general use metric	Ni-Cu Class B UNS N04405	No	M6 - M36 mm	i	9 9 9 9		485 MPa		B60 min	
None req'd	F467M	Nuts for general use	Ni-Cu-Al based UNS N05500	No	M6 - M36 mm	L		L.	900 MPa		C24 mìn	
None req'd	F467M	Nuts for general use	Aluminum 2024 UNS A92024	No	M6 - M36 mm				380 MPa		B70 nin	
None req'd	F467M	Nuts for general use	Aluminum 6061 UNS A96061	No	M6 - M36 mm				275 MPa		B40 min	
None req'd	F467M	Nuts for general use metric	Akuminum 6262 UNS A96262	οN	M6 - M36 mm	a constantino de la c			360 MPa		860 1110	
None req'd	F467M	Nuts for general use	Titanium Gr 1	No	M6 - M36 mm				275 MPa		Vickers 140 min	
None req'd	F46/M	Nuts for general use	litanium Gr 2	No	M6 - M36 mm	1	:		380 MPa		Vickers 150 min	į

								Mechanical	properti	es		
				le mfor'e	Nominal	Bol	Its, screws,	studs	Nuts	Hard	Iness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength (min psl)	Proof toad (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd	F467M	Nuts for general use	Titanium Gr 4	oN	M6 - M36 mm		1		590 MPa	1	Vickers 200 min	
None req'd	F467M	Nuts for general use	Titanium Gr 5	oN	M6 - M36 mm	I		ļ	930 MPa	I	C30 min	
None req'd	F467M	Nuts for general use	Titanium Gr 7	No	M6 - M36 mm			ŀ	380 MPa	1	Vickers 160 min	
None reqʻd	F468	Bolts, hex cap screws, and studs for general use	ETP copper UNS C11000	o Z	Х - 1Х	1	10,000	30,000 min 50,000 max	Į	1	F65 F90	ł
None req`d	F468	Bolts, hex cap screws, and studs for general use	Brass UNS C27000	°Z	X - 1 <u>X</u>		50,000	60,000 min 90,000 max	;	1	F55 F80	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Naval brass UNS C46200	° Z	X - 1 <u>X</u>	1	25,000	50,000 min 80,000 max	1.1	1	B65 B90	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Naval brass UNS C46400	0 V	X - 1%		15,000	50,000 11/in 80,000 11/ax	:	1	855 1875	
None req'd	F468	Bolls, hex cap screws, and studs for general use	Plusphor bronze UNS 051000	°z.	21 	1	35,000	60,000 min 90,000 max	1 :		B60 1995	1
None req'd	F468	Bolls, liex cap screws, and studs for general use	Aluminum bronze UNS C61300	0 N	25 - 27 27		50,000	80,000 min 110,000 max	İ	1	B95	
						1	45,000	75,000 000 105,000 003	l	!	B/0 1995	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum bronze UNS C61400	0 Z	7 - 17°		35,000	75,000 min 110,000 max	ļ		B70 B95	

•

								Mechanical	properti	es		
				le mfor'e	Nominal	Bolt	s, screws, s	studs	Nuts	Hardr	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol symbol req'd?	size range (inch)	Proof load (psl)	Yield strength (min psi)	Tenslle strength (min psl)	Proof load (psi)	Brinell	Rockweil	Remarks or footnotes
None req'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum branze UNS C63000	0 N	X - 1½	1	50,000	100,000 min 130,000 max	2 2		B85 B100	ŀ
None req'd	F468	Bolts, hex cap screws, and studs for general use	Aluminum silicon bronze UNS C64200	°Z	X - 1X	ł	35,000	75,000 min 110,000 max		1	B75 B95]
None req'd	F468	Bolts, hex cap screws, and studs for general use	Silicon bronze UNS C65100	° Z	X - X	Į	5 5,000	70,000 min 100,000 max			B75- B95	ł
					% - 1%	l	40,000	55,000 min 90,000 max		i	B70 B95	I
None req`d	F468	Bolts, hex cap screws, and studs for general use	Silicon bronze UNS C65500	°z	X-1%	l	20,000	50,000 min 80,000 max		ļ	B60 B80	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Silicon bronze UNS C66100	°Z	X - 18	: :	35,000	70,000 min 100,000 max	:		875 B95	1
None req'd	F468	Bolts, hex cap screws, and studs for general use	Manganese bronze UNS C67500	0 Z	X - 1½		25,000	55,000 Inin 85,000 Inax	4 1 2	1 1	090 090 090	l
None req'd	F468	Bolts, hex cap screws, and studs for general use	Cupro-nicket UNS C71000	o Z	X - 1 <u>X</u>		15,000	45,000 min 75,000 max			B50 B85	
None req'd	F468	Bolts, hex cap screws, and studs for general use	Cupro-nickel UNS C71500	° Z	X - 1½		20.000	55,000 min 85,000 max	i	 	B60 1995	
None raq'd	F468	Bolts, hex cap screws, and studs for general use	Ni-Mo based UNS N10001	No	X - 1%		45,000	115,000 min 145,000 max			C20 C35	1

	T	Remarks or footnotes	1		i				1		
	dness	Rockweil	C30 C31 C31	B75_ C25	B60 C25	B60 B95	B60 C20	C24 C37	C24 C37	B70 B85	84 <u>0</u> B50
lies	Har	Brinell	1	1	1	1		,	ŀ		
l properi	Nuts	Proof load (psl)	ł	1		1		1	1		i
Mechanica	studs	Tensile strength (min psi)	110,000 min 140,000 max	80,000 min 130,000 max	70,000 min 130,000 max	70,000 min 120,000 max	70,000 nin 125,000 niax	130,000 ININ 180,000 Max	130,000 min 180,000 max	55,000 min 70,000 max	37,000 min 52,000
	ts, screws,	Yield strength (min psi)	45,000	40,000	30,000	30,000	30,000	000'06	85,000	36,000	31,000
	Boll	Proof load (psi)	ł		I						
	Mominal	size range (inch)	X - 1X	X - X	% - 1%	X1 - X	Х - 12	% - %	1 - 1%	X1 - X	X - 18
	le mfor'e	symbol req'd?	°,	°Ž	i	° Z	0 Z	°Z		NO	NO
		Material	Ni-Mo-Cr based UNS N10002	Ni-Cu Class A UNS N04400		Ni-Cu Class A UNS N04400 Hot formed product	Ni-Cu Class B UNS N04405	NFCu-AI based UNS N05500		Aluminum 2024 - UNS A92024	Aluminum 6061 UNS A96061
		Fastener description	Bolts, hex cap screws, and studs for general use	Bolts, hex cap screws, and studs for general use		Bolls, hex cap screws, and studs for general use	Bolls, hex cap screws, and studs for general use	Bolts, hex cap screws, and studs for general use		Bolls, hex cap screws, and studs for general use	Bolts, hex cap screws, and studs for general use
		ASTM spec number	F468	F468		F468	F468	F468		F468	F 468
		Grade ID mark	None req'd	None req'd		None req'd	None req'd	None req'd		None req'd	None req'd

.

.

Grade and material markings—Part IV

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A tull range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

4												
								Mechanica	f propert	ies		
				ls mfgr's	Nominal	Bol	Is, screws,	studs	Nuts	Haro	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
None req'd	F468	Bolls, hex cap screws, and studs for general use	Atuminum 7075 UNS A97075	0 N	21 - 1 <u>2</u>		50.000	61,000 niin 76,000 max	1	i	B80 B90	
None req'd	F.468	Botts, hex cap screws, and studs for general use	Titamurn Gr 1	од Х	X - 1%	1	30,000	40,000 min 70,000 max		i	Vickers 140/160	
None req'd	F468	Bolls, hex cap screws, and studs for general use	Titanum Gr 2	°Z	Z = 1 <u>Z</u>		45,000	55,000 min 85,000 max	1		Vickers 160/180	
None req'd	F 468	Bolts, hex cap screws, and studs for general use	Hamun Gr 4	°Z	21 - <u>7</u>		75.000	85,000 min 115,000 max			Vickers 200/220	
None req'd	F 468	Bolls, hex cap screws, and studs for general use	Titanium Gr 5	0 V	21 - A		125,000	135,000 1000 105,000 108x			C30 C36 C36	
None req'd	F468	Bolts, hex cap screws, and studs for general use	Hanton Gr 7	or Z	$\chi \sim 1\%$:	45,000	55,000 mm 85,000 max	÷		Vickers 160/180	
None req'd	F-468M	Bolts, frex carp screws, and strubs for general une metric	L.P. copper URS C11000	°N N	M6 - M36 mm	4	70 MPa	205 min 345 max MPa	1		F65 F90	i

Grade and material identification markings required by ASTM shorifications

						Bol	ts screws	Mechanical	Propert Nuts	Hard	dness	
Grade 1D mark	ASTM spec number	Fastener description	Material	ls migr's ID symbol req'd?	Nominal size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength MPa	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Brass UNS C27000	No	M6 - M36	l	345	410 min 620 max	.	1	F55 F80	1
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Naval brass UNS C46200	N	M6 - M36		170	345 min 550 max		1	1965 - 1890	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Naval brass UNS C46400	No	M6 - M36		105	345 min 550 max	1	1	B75- B75	j
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Phosphor bronze UNS C51000	°Z	M6 - M36	1	240	410 min 620 max			B60- B95	1
None req'd	F468M	Bolts, frex cap screws, and studs for general use metric	Aluminum bronze UNS C61400	ON N	M6 - M36		240	520 min 760 max	-	1	B35	1
None req`d	F468M	Bolts, hex cap screws, and studs for general use metric	Aluminum bronze UNS C63000	o Z	M6 - M36		345	690 min 900 max	1	1	BB5 B100	
None req'd	F468M	Bolts, hex cap screws, and studs for general use —metric	Aluminum sitcon bronze UNS C64200	°Z	M6 - M36	1	240	520 min 760 max		1	B75 B95	1
None req'd	F468M	Bolts, hex cap screws, and studs for general tise metric	Silicon bronze UNS C65100	0 Z	M6 - M20 M24 - M36	i l	380 275	480 min 690 max 380 min 620 max			875 895 870 895	
None req'd	F468M	Bolts, hex cap screws, and studs for general use inetric	Silicon bronze UNS C65500	o N	M6 - M36		140	345 min 550 max			B60 B80	1
None req'd	F468M	Bolts, hex cap screws, and studs for general tise metric	Silicon bronze UNS C66100	oz	M6 - M36	1	240	480 min 690 max	1		B/5 	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Manganese bronze UNS C67500	oN	M6 - M36	ţ	170	380 mm 590 max		1	860- 890	
None req'd	F-168M	Bults, hex cap screws, and studs for general use — metric	Cupro-nickel UNS C71000	QN	M6 - M36	ł	105	310 min 520 mux	1		B50 B85	ŀ

.

								Inchanter	arooarti			
							-					
Grade ID mark	ASTM spec	Fastener description	Material	Is mfgr's ID symbol req'd?	Nominal size range (mm)	Proof load (MPa)	yield strength (min MPa)	Tensile strength MPa	Proof load	Brinell	Rockwell	Remarks or footnotes
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Cupro nickel UNS C71500	° Z	M6 - M36	i	140	380 min 590 max			B60 B95	i
None req'd	F468M	Botts, hex cap screws, and studs for general use metric	Ni-Mo based UNS N10001	οN	M6 - M36		310	790 min 1000 max		1	त्र हुनु	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Ni-Mo-Cr based UNS N10002	oz	M6 - M36	l	310	760 min 970 max	ł	1	C20 C32	
None req'd	F468M	Bolls, hex cap screws, and studs for general use metric	Ni-Cu Class A UNS N04400	o Z	M6 - M20 M21 - M36	1 1	275 205	550 min 900 max 480 min 900 max			B60 C25 C25 C25	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	NI-CU Class A UNS N04400 Hot formed product	°Z	M6 - M36	1	205	480 min 830 max		ļ	1995 1995	- A A A A A A A A A A A A A A A A A A A
None req'd	F468M	Bolls, hex cap screws, and studs for general use metric	NFCu Class B UNS N04405	0N N	M6 - M36		205	480 min 860 max		5	B60 C20	
None req'd	F468M	Bolls, hex cap screws, and studs for general use metric	Ni-Cu-Al based UNS NO5500	oz	M6 - M20 M24 - M36		620 590	900 min 1240 max 900 min 1240 max			C37 C37 C37 C37	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metic	Aluminum 2024 UNS A92024	oz	M6 - M36	1	250	380 min 480 max			B85 B85	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Aluminum 6061 UNS A96061	oz	M6 - M36		215	260 min 360 max	1	1	B40 B50	
None req'd	F468M	Bolts, hex cap screws, and studs for general use metric	Aluminum 7075 UNS A97075	0 N	M6 - M36		345	420 min 520 max	ļ		BH0 H90	I
None req'd	F468M	Bolts, hex head screws, and studs for general use -metric	Titanium Gr 1	No	MG - M36	l	205	280 min 480 max	1	1	Vickers 140/160	ł

								Mechanical	properti	es		
				le mfor'e	Nominal	Bolt	IS, SCIEWS,	studs	Nuts	Hardı	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	indine Symbol	size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength (min MPa)	Proof load	Brinell	Rockwell	Remarks or footnotes
None req'd	F468M	Bolts, hex head screws, and studs for general use metric	Titanium Gr 2	No	M6 - M36	1	310	380 min 590 max	1		Vickers 160/180	
None req'd	F468M	Bolts, hex head screws, and studs for general use metric	Titanium Gr 4	No	M6 - M36		520	590 min 790 max			Vickers 200/220	
None req'd	F468M	Bolts, hex head screws, and studs for general use metric	Titanium Gr 5	No	M6 - M36	1	860	930 min 1140 max		ł	39 39	ļ
None req'd	F468M	Bolts, hex head screws, and studs for general use —metric	Titanium Gr. 7	No	M6 - M36	1	310	380 min 590 max			Vickers 160/180	
4.6	F568	Bolts, screws, studs for general engineering applications- metric	Low or medium carbon steel	Yes	M5 - M100	225	240	400		Vickers 120/220	B67- B95	K,LL,MM,NN
4.8	F568	Bolts, screws, studs for for general engineering applications metric	Low or medium carbon steel, partially or fully annealed as required	Yes	M1.6 - M16	310	340	420		Vickers 130/220	B95 B95	K,LL,MM,NN
5.8	F568	Bolts, screws, studs for general engineering applications—metric	Low or meditum carbon steel, cold worked	Yes	M5 - M24	380	420	520		Vickers 160/220	B82 	K,LL,MM,NN
8.8	F568	Bolts, screws, studs for general engineering applicationsmetric	Medium carbon steel, quenched and tempered	Yes	M16 - M72	600	660	830	r	Vickers 255/336	C23 C34	K,LL,MM,NN
8.8	F568	Bolts, screws, studs for general engineering applications—metric	Low carbon martensite steel, quenched and tempered	Yes	M16 - M36	600	660	8:30	-	Vickers 255/336	C23 C34	K,LL,MM,NN
8.8.3	F568	Bolts, screws, studs for general engineering applicationsmetric	Atmospheric corrosion resistant steel, quenched and tempered	Yes	M16 - M36	600	660	830		Vickers 255/336	C34 C34	J.K.LL,MM,NN
8.6	F568	Bolts, screws (and studs M12 of larger) for general engineering applications—metric	Medium carbon steel, quenched and tempered	Yes	M16 - M16	650	720	006 .	!	Vickers 280/360	C27 C36 C36	K,LL,MM,NN,OO
+ (00)	F568	Studs for general cuptubetting applications - metric	Medium carbon steel, quencteed and tempered	Yes	Less than M12	650	720 For	900 otnotes are	grouped	Vickers 280/360 3 on the 1	C2L C36 ast page of	K.I.L.MM,NN,OO this Part IV series

.

								Mechanical	Dropert	ies		
				lo mlarto	Nominal	Boll	s, scrøws,	studs	Nuts	Hard	ness	
Grade 1D mark	ASTM spec number	Fastener description	Material	symbol symbol req'd?	size size range (mm)	Proof load (MPa)	Yield strength (min MPa)	Tensile strength (min MPa)	Proof toad (MPa)	Brinell	Rockwelt	Remarks or footnotes
₩ô	F568	Studs for general engineering applications metric	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	650	720	900	į	Vickers 280/360	255 55	K,LL,MM,NN,OO
9:6	F568	Rolls, screws (and studs M12 or larger) for general engineering applicationsmetric	Low carbon martensite steel, quenched and tempered	Yes	M1 6 - M16	650	720	006	:	Vickers 280/360	<u>sts</u>	K.LL.MM.NN.OO
10.9	F568	Bolts, screws (and studs M12 or larger) for general ennineering applications	Medium carbon steel, quenched and tempered	Yes	M5 - M20	830	940	1040	2	Vickers 327/382	de Bel	K.LL.MM.NN,00
		- metric	Medium carbon alloy steel, quenched and tempered	Yes	M5 - M100	830	940	1040		Vickers 327/382	<u>E</u>	K.H.,MM,NN,OO
	F 568	Studs for general engineering applications metric	Medium carbon or medium carbon altoy street, quenched and tempetrof	Yes	Less than M12	830	040	1040	i	Vickers 327/382	033 039	K,LL,MM,NN,OO
⊡lĝ	F 5638	Studs for general ungliverting applications —metric	Low carbon martensite steel, quenched and lengeted	Yes	Less than M12	830	940	1040		Vickers 327/382	त्रे ^ह	K.I.L.MM.NM.OO
10.9	F 568	Bolts, screws (and studs M12 or lurger) tor general engineering applications intrio	Low carbon martensite steel, quenched and tempered	Yes	M5 M36	830	940	1040		Vickers 327/382	ટ્રી ^{ટ્ર}	K,LL,MM,NN,OO
10.9.3	F568	Bolts, screws, studs for general engineering applications - metric	Atmosphenc corrosion resistant steel, quenched and temper d	Yes	M16 - M36	830	940	1040		Vickers 327/382	<u>Els</u>	J.LL.MM, NN, OO
12.9	837° 1	Bolls, screws (and studs M12 or larger) for general engineering applications metric	Alloy steel, quenched and tempered	Yes	M16 - M100	026	1100	1220		Vickers 372/434	038 CA1	K.H.,MM,NN,OO
Q00	F 568	Studs for general engineering applications metric	Alloy steel, quenched and tempered	Yes	t ess than M12	970	100	1.50		Vickers 372/434	हीह	K,HL,MM,NN,OO
								oomotes an	te group	ed on the	last page of	this Part IV series

,
								Mechanical	propert	ies		
	_			ls mfar's	Nominal	Bol	ts, screws,	studs	Nuts	Har	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength psi	Proof load (psi)	Brinelt	Rockwell	Remarks or footnotes
1 (PP)	F593	Bolts, hex cap screws and studs	Stainless steel, alloys 303, 303 Se, 304, 305, 384, XM1, XM7	ON NO								
			 Cold worked 		% - %	ł	65,000	100,000	ļ		B95-	ддʻI
					% - 1%	1	45,000	85,000 140,000	1	1	C35 C35	
			 I feaded and rolled from annealed stock and then re-annealed 		X - 12	l	50,000 max (machined specimen)	85,000 тах	1	i	B85 max	
			 Machined from annealed or solution annealed stock 		<i>Х</i> 1 - Х		30,000	<u>75,000</u> 100,000	- - E	I	B65 B95	
			Machined from strain hardened stock		% - %	l	95,000	120,000 160,000	ł		C24 C36	
					۲. ۲.	l	75,000	110,000				
					1% - 1%	Į	60,000	100,000	-		1995 1995 1995	
					1% - 1%	l	45,000	95,000 130,000	ł	Į	B90 C28	
2 (PP)	F 593	Bolts, hex cap screws and studs	Stainless steel, alloy 316	No (PP)								
			 Cold worked 		8 · 7	-	65,000	150,000	i	ł	^{B95} C32	dď l
					20 21 - 72	į	45,000	85.000 140.000	i	ŀ	B80 C32	
			 Headed and rolled from annealed stock and then re-annealed 		27 		50,000 max (machined specimen)	85,000 Max		ł	B85 max	
			 Machined from armeated of solution annealed stock 		× 1 ×		30,000	75,000 100,000	· ·		1965 1945 1945	
			Machned Rom train hadanet strek		8ª - 27	;	95,000	120,000 160,000			<u>6</u> 80	
							75,000	110.000				
					11 - 12	ł	(000'09	100.000		÷	B95	
					11 12		45,000	95,000			BOU	
							Foo	Inotes are	0 oubed	I on the I	ast page of t	his Part IV series

Grade ASTM ID spec mark number descriptio 3 F593 Bolts, hex cap scr (PP) and studs										
GradeASTMFastenerIDspecfastenermarknumberdescriptio3F593Bolts, hex cap scr(PP)and studs		ls mfor's	Nominal	Bolt	s, screws,	studs	Nuts	Hard	Iness	
 F593 Bolts, hex cap scr (PP) and studs 	Material	symbol symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
	ws, Stainless steel alloys 321 and 347	oN NP)								
	 Cold worked 		3 ⁸ -	I	65,000	150,000 150,000	ļ	ł	195 195	l,PP
			25 - 12 25		45,000	85,000 140,000	L	ł	B80 C32	
	Headed and rolled from annealed slock and then re-annealed		81 - X		50,000 max machined specimen)	85,000 max			B85 max	
	Machined from annealed or solution annealed stock		21 - 22		30,000	75,000 100,000	1		B65 B95	
	Machined from		1/ - 5/ /4 - /8	-	95,000	120,000		i	C24 136	
	SITARI HARDENED SLOCK		· · *	-	75,000	110,000	ţ	į.	C20	
			NI - 91		60,000	100.000		-	B95	
			11- 11- 22-		45,000	95,000 130,000	ļ	ł	B90 C28	
4 F593 Bolts, hex cap sort (PP) and studs	 Ws. Stamless steel, alloys 4.30 and 4.30F Machined from annealed or solution annealed stock 	0년 이시	7 - 12 7	ŀ	35,000	70,000 100,000		-	B65 B95	dd'
 F593 Bolts, hex cap scr (PP) and studs 	ws, Stainless steel, alloys 410, 416, and 416 Se	No (PP)								
	 Hardened and tempered at 1050 F min 		28 	l	90,000	110,000		i	050 C30	dd'l
	Hardened and tempered at 525 F min		X - 1%		120,000	<u>160,000</u> 1 <u>90,000</u>	-	ł	C34 C45	
 6 F593 Bolts, hex cap scr (PP) and studs 	ws, Stainless steel, alloy 431	(6년) 이시								
	 Hardened and tempered at 1050 F min 		4 - 12 2	1	100,000	125,000 150,000		r r	625 163 1635	તતાં
	Hardened and tempered at 525 F min			3	140,000 FG	180,000 220,000 220,000	e groupe	ed on the	C40 - C48 last page of	this Part IV series

							Ŵ	echanical	propertie	s		
						Bolts	SCrews. sti	spu	Nuts	Hardne	55	
Grade ID mark	ASTM spec number	Fastener description	Material	ls mfgr's ID symbol req'd?	Nominal size range (inch)	Proof load (psl)	Yield strength (min psi)	Tensile strength psi	Proof load (psl)	Brinelt	Rockwell	Remarks or footnotes
(PP)	F593	Bolts, hex cap screws, and studs	Stainless steel, alloy 630 • Solution annealed and age hardened alter forming	oN (Pq)	×1 - %	1	105,000	135,000		1	C28 C38	ЧЧ.
(PP)	F594	Nuts	Stanless steel, alloys 303, 303 Se, 304, 305, 384, XM1, and XM7 • Annealed after all threading	oN N	2 	1			70,000 min	ł	B85 max	<u>d</u>
			 Machined from armealed or solution annealed stock 		<u>k</u> - 1%				75,000 min		B65 B95	I
			Cold worked		<u>7 %</u> <u>7 1%</u>				100,000 min 85,000		B95 C32 B80	ł
					7. W				UIUI			I
			Machined from strain hardened stock		%-%	ł	-		120,000 min	l	6 28 28 8 28	
					1- % - 1	1	-		min 100,000		B95 C32	
					1% - 1½	i	i]	min 85,000 min	I	629 C28 C28	
۲	+ 55 4 t	Eyebolts	Alloy steet, forged, quenched, and tempered	Yes	т 2% М	Reter to complete F541 spec	70,000 mu a 100,000 max	n 95,000	-	197/248	B101	Markings are forged in raised characters.
	ASTM fo	bothotes studs, all markings located on top of oresed	t head LL.A	Alternatively, for h sted on side of h	ex head products, i ead with the base	markings may of the prope	te L	NN. S need n	nots of nomination	hal thread dian Additionally o	nelefs smaller If Jasses 4 8, 4 8, -	an Ma 8 c bra

Manulacturer may and other distinguishing marks mu-calling the fasterier ts atmisighteric confision resistant and of a confinemtig type.

K. All matkings shall be for alculon top of the head, targed or depressed. Base of property class sprub its shall be prodomed toward the i tracest periphery of the head.

class symbols positioned toward the bearing surface MM. Bolts and screws of manimal thread diameters small er than MS need not be marked Additionally, storted and recessed surveys of nominal thread diameters MS and larger meet not be marked. After: buts and screws shall not be marked with notal line symbols.

struds structurer than M12 need not be marked OO. This is the grade mark symbol for stods of this proper-ty class in area M3 up to har not including M12. PP, create and manufacturer's identific attent symbols are required only when specified on the order.

Grade and material markings—Part V

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Philadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in referencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

								Mechanica	I properti	95		
	•			le mfor'e	Mominel	B ol	ts, screws,	studs	Nuts	Hard	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol symbol req'd?	size range (inch)	Proof load (psi)	Yield strength (min psl)	Tensile strength psi	Proof load (psi)	Brinell	Rockwell	Remarks or footnotes
2 (00)	F594	Nuts	Stainless steel, alloy 316	No Ngaj						[dd 1
			 Annealed after all threading 	2	X - 1 X2	I	3		70,000 rnin	ļ	B85 max	
			 Machined from annealed or solution annealed stock 		X - 1X				75,000 min		B65 B95	
			Cold worked		% - %	I			100,000 min	Without	B95	
					% - 1%	Ι	ļ		85,000 min		B80 C32	
			 Machined from strain hardened stock 		<u>/</u> 4 - <u>%</u>	1	1		120,000 min	I	C24 C36	
					1 - 1/6	1	-		110,000	I	<u>C20</u>	
					1 /4 - 1 /4	1	-		100,000		B95	
					1% - 1%	Ι	1	τ	85,000 min		B90 C28	
3 (PP)	F594	Nuts	Staintess steet, alloys 321, 347	No (PP)		I						dd't
			 Anneated after all threading 		X - 1½	I			70,000 min		B85 max	
			 Machined from annealed or solution annealed stock 		Х - 1Х	ŀ	-		75,000 min	ļ	865 B95	
			 Cold worked 		% - %	1	Martin Cal		100,000 min	ļ	B95	
					3% - 1%	I			85,000	1	B80	
								Footnotes	mn are grou	nt no bed	usz ne last page c	of this Part V series

Grade and material identification markings required by ASTM specifications

		Remarks or footnotes		4 -	dd T		dd T	dd'	OO'WW'I
	dness	Rockwell	28 30 28 28 28 28 28 28 28 28 28 28 28 28 28	<u>865</u> 895	<u>C20</u> C30	C34 C45	C25 C32 C40	C28 C38	181 181 1995 1995 1995
es	Haro	Brinell	1 1 1 1	ł	1				Vickers 155/220 155/220 155/220
l properti	Nuts	Proof load (psi)	120.000 rmin 110,000 min 100,000 min 85,000 min	70,000 nim	110,000 Min	160,000 min	125,000 niin 180,000 min	135,000 min	
Mechanica	studs	Tensile strength (min)		1	I	1			500 MPa 500 MPa
	Its, screws,	Yield strength (min)		1	a tra	a na na na na na na na na na na na na na	1 1		210 MPa
	Bol	Proof load (psi)		1	l				· []
	Nominal	size range (inch)	% - % % - 1 % - 1 % - 1% 1% - 1%	X - 1X	X - 1X	X - 1X	X - 1% X - 1%	X - 1X	M1.6 - M5 mm M6 - M36 mm
	ls mlar's	1D symbol req'd?		oN (PP)	oN (PP)		o (dd)	oN (qq)	Yes
		Material	Machined from strain hardened stock	Stainless steel, alloys 430, 430F • Machined from anneated or solution annealed stock	Stainless steel alloys 410, 416, 416 Se • Hardened and tempered at 1050 F min	 Hardened and tempered at 525 F min 	Stainless steel, alloy 431 • Hardened and tempered at 1050 F min • Hardened and tempered at 525 F min	Stainless steel, alloy 630 • Solution annealed and age hardened after forming	Stainless steel, altoys 303, 303 Se, 304, 305; 384, XM1, XM7 • Headed and rolled from annealed stock and then re-annealed
		Fastener description		Nuis	Nuts		Nuts	Nuts	Bolts, screws, and studs metric
		ASTM spec number		F594	F594		F594	F594	F 738
		Grade 1D mark		4 (PP)	5 (PP)		9	2	A1-50

								Mechanical	propert	les		
				le mínr'e	Nominal	Boli	S, SCIBWS,	studs	Nuts	Harc	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol Symbol CH	size range (mm)	Proof load (MPa)	Yleld strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A1-70	F738	Bolls, screws, and studs metric	Stainless steel, alloys 303, 303 Se, 304, 305, 384, XM1, XM7 • Cold worked	Yes	M1.6 - M5 M6 - M20 Over M20 - M36	111	450	700 700 550		Vickers 220/330 Vickers 220/330 Vickers 160/310	B96 C33 B96 C33 C33 C31 C31	I.MM.OQ
A1-80	F738	Bolts, screws, and studs metric	Stainless steel. alloys 303, 303 Se, 304, 305, 384, XM1, XM7 • Machined from strain hardened stock	ζeν α	M1.6 - M5 M6 - M20 Over M20 - M24 - M24 - M24 - M24 - M24 - M24 - M36		500 300 300	800 800 650 600		Vickers 240/350 Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	C23 C36 C38 C38 C39 C39 C39 C39 C39 C39 C39 C39 C39 C39	1.MM.DQ
A2-50	F738	Bolls, screws, and studs metric	Stainless steel, alloys 321, 347 • Headed and rolled from annealed stock and then re-annealed	Yes	M1.6 - M5 M6 - M36		210	500 500		Vickers 155/220 Vickers 155/220	B81 B95 B81 B95	I,MM,QO
A2-70	F738	Bolls, screws, and studs metric	Stainless steel, alloys 321, 347 • Cold worked	Yes	M1.6 - M5 M6 - M20 Cver M20 - M36		450	700 700 550		Vickers 220/330 Vickers 220/330 Vickers 160/310	B96 C33 B96 C33 B83 C33 C31	OO WW'I
A2.80	F738	Bolts, screws, and studs 	Stainless steel, alloys 321, 347 • Machined from strain hardened stock	Υes	M1.6 M5 M6 - M20 Over M20 - M24 Over M24 - M30 - M30 - M36		600 500 300	800 800 650 600		Vickers 240/350 Vickers 240/350 Vickers 220/330 Vickers 220/310 Vickers 180/245	C23 C23 B8 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	CO.MM,I
A4 -50	F738	Bolts, screws, and studs metric	Stainless steel, alloy 316 • Headed and rolled from anmeated stock and then re-anmeated	Yes	M1 6 - M5 M6 - M36		210	500 500 Footrote	ss are gr	Vickers 155/220 Vickers 155/220 Ouped on	1381 1895 1811 1895 100 last page	I,MM.00 e of this Part V series.

								Mechanical	propert	ies		
				ls mfar's	Nominai	Bol	ts, screws,	studs	Nuts	Hard	dness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A4-70	F738	Bolts, screws, and studs —metric	Staintess steel, alloy 316 • Cold worked	Yes	M1.6 - M5 M6 - M20 Over M20 - M36	!	- 450 300	700 700 550		Vickers 220/330 Vickers 220/330 Vickers 160/310	B96 C33 C33 C33 C33 C31 C31	I.MM.JOO
A4.80	F738	Bolts, screws, and studs metric	Stainless steel, alloy 316 • Machined from strain hardened stock	Yes	M1.6 - M5 M6 - M6 - M20 Over M20 - M20 - M20 - M20 - M30 Over M30 - M36		500 500 300	800 800 650 600	;	Vickers 240/350 Vickers 240/350 Vickers 220/330 Vickers Vickers 180/285	C23 C23 B96 C30 C31 C33 C33 C33 C33 C33 C33 C33 C33 C33	I,MM,DQ
F1-45	F738	Bolts, screws, and studs metric	Stainless steel, alloys 430, 430F • Headed and rolled from annealed stock and then re-annealed	Yes	M1.6 - M5 M6 - M36		250	450 450		Vickers 135/220 Vickers 135/220	B74 B96 B74 B96	I,MM,OQ
F1.60	F738	Bolts, screws, and studs metric	Stainless steel, altoys 430, 430F • Cold worked	Yes	M1.6 - M5 M6 - M36		410	600 600		Vickers 180/285 Vickers 180/285	B89 C28 C28 C28	OO,MM,I
C1-50	F 738	Bolls, screws, and studs metric	Stainless steel, alloy 410 • Machined from annealed or solution annealed stock	Yes	M1.6 - M5 M6 - M36		250	500 500		Vickers 155/220 Vickers 155/220	B81 B96 B96 B96	I,MM,DQ
C1-70	F738	Holls, screws, and studs - metric	Stainless steel, altoy 410 • Hardened and tempered at 565 C min	Yes	M1 6 - M5 M6 - M36		410	700		Vickers 220/330 Vickers 220/330	B96 C34 C34	I,MM,DQ
C1-110	F 738	Bolls, screws, and studs - metric	Stainless steel, alloy 410 • Hardened and tempured at 275 C min	Yes.	M1 6 - M5 M6 - M36			1100 1100 Footnotes 6	are grou	Vickers 350/440 Vickers 350/440 ped on th	C36 C45 C45 C45 C45 C45 C45 e fast page o	I,MM,QQ I,fhis Part V series.

•

								Mechanica	I propert	lies		
				ls mfar's	Nominal	Boll	s, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	symbol req'd?	size range (mm)	Proof load (MPa)	Yleld strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
C3-80	F738	Bolts, screws, and studs - metric	Stainless steel, alloy 431 • Hardened and tempered at 565 C min	Yes	M1.6 - M5 M6 - M36	-	640	800 800	:	Vickers 240/340 Vickers 240/340	C35 C35 C35 C35 C35	1,MM,QQ
C3-120	F738	Bolts, screws, and studs metric	Stantess steel, alloy 431 • Hardened and tempered at 275 C min	Yes	M1.6 - M5 M6 - M36		950	1200		Vickers 380/480 Vickers 380/480	C48 C48 C48 C48	1,MM.00
C4-50	F738	Bolts, screws, and studs —metric	Stainless steel, alloys 416, 416 Se • Machined from annealed or solution annealed stock	Yes	M1.6 - M5 M6 - M36	í I	250	500	i	Vickers 155/220 Vickers 155/220	881 896 896 896	,MM,OQ
C4.70	F738	Bolts, screws, and studs metric	Stainless steel, alloys 416, 416 Se • Hardened and tempered at 565 C min	Yes	M1.6 - M5 M6 - M36		410	700		Vickers 220/330 Vickers 220/330	C34 C34 C34 C34 C34	U,MM,OQ
C4-110	1738	Bolls, screws, and studs —metric	Stainless steel, alloys 416, 416 Se • Hardened and tempered at 275 C min	Yes	M1 6 - M5 M6 - M36		820	1100		Vickers 350/440 Vickers 350/440	C36 C45 C45 C45 C45	QQ,MM,I
P1-90	F738	Bolts, screws, and studs metric	Stainless steel alloy 630 • Solution annealed and age hardened after forming	Yes	M1.6 - M5 M6 - M36		700	006		Vickers 285/370 Vickers 285/370	C38 C38 C38 C38 C38	00'WW'1
None req'd	F835M	Hex socket head cap screws metric	Altoy steel— quenched and tempered	o Z	M3 - M20	l	1100	1040		Vickers 372/434	C3B C44	ЯЯ
A1-50	F836	Nuts — metric	Stainless steel— alkys 303, 303 Se, 304, 305, 384, XM1, XM7 • Machined from anneated or solution anneated stock, or fromted and anneated	۲es	M1.6 M36			Footnotes a	500 are grou	Vickers 155/220 ped on the	1881 1895 Bast page of I	SS birt V series.

								Mechanical	properti	es		
		 • • • • •		is mfor's	Nominal	Bol	Its, screws,	studs	Nuts	Harc	dness	
Grade 1D mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof toad (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
A1-70	F8.36	this mutic	Stantess steel— alloys 303, 303 S03, 503 304, 305, 384, XM1, XM7 • Cold worked	Yes	M1.6 - M20 Over M20 - M36	1 !	1 ;		007 044	Vickers 220/330 Vickers 160/310	B96 C33 B83 C31	g
A1-80	1.8.45	thats metric	Slamess steel, altoys 303, 303 S6, 304, 305, 384, XM1, XM7 • Machined from strain hardened stock	بر د	M1.6 - M20 Over M20 - M24 Over M24 - M30 Over 30 - M36			i i	800 700 650 600	Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	C23 C36 B96 E93 C30 C28 C28 C28	S
A 2-50	F8.35	Muts - metric	Stainless steel. alloys 321, 347 • Mactimed from annealed or solution annealed stock, or formed and annealed	Yes	M1.6 M36	:	i		500	Vickers 155/220	1881 1995	S
A2.70	F 8:36	Hots - metric	Statidess steel, alloy 321, 347 • Cold Worked	Yus	M1.6 - M20 Over M20 - M36				700 550	Vickers 220/330 Vickers 160/310	1966 1976 1977 1979 1979 1979 1979 1979	SS
A2-80	1 8:36	Nuts metho	Stainless steel, alloy 321, 347 • Machined from strain hardened stock	S S S S S S S S S S S S S S S S S S S	M1.6 - M20 Over M20 - M24 Over M24 - M30 Over M30 - M36			· · · · ·	800 700 650 600	Vickers 240/350 Vickers 220/330 Vickers 20/330 Vickers 180/285	Sigs Sigs Sigs Sigs	x
A4-50	F836	Nuts metric	Stamless steel, atloy 316 • Machined from anneated or solution anneated stock, or formed and anneated	Yes	M1.6 - M36				500	Vickers 155/220	B81 B95	SS
ASTM 1 L. Exclude raised or -J. RR. See To short to re-	footnotes g shints, all transmo eare sed her sid AsttA Fram sole test	ts boothed on the off-theod	MM. Boths and screes of normal I at them RV need rother readed. Ac- te: reach screed is of normal three larger meet norther in order them is not be marked with radial nor synd	hread diameters small dationally, stotled and ad diameters. Mb and bots and screws shall bots	PP. (51, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	ide and mar d oidy when offication r chaser	indacture is idea i apectication the narking of studs	diffe akon syndon; 2 order shall he as eadere	a at e d tog	SS. Marki one of the wreaching locations thread dia	rigs shall be on the t wrenching flats. Ma J flats shall be depre may be cateer or c interes. M4 and sm	φ of nut, top of flange, or on whice located on one of the secol Mathings on all other topressed. Nuts in nominal digr need nut be marked

Grade and material markings—Part VI

ASTM markings

The American Society for Testing and Materials, 1916 Race St. Phitadelphia, PA 19103, sponsors development of specifications for fasteners used in general and special engineering applications. These specifications detail chemical and mechanical properties of material strength levels for fasteners and are generally specific in relevencing the actual product covered. A full range of types of products of various styles, thread series, lengths, etc. can be produced to meet ASTM requirements and would be marked for grade and material identification as required.

		Remarks or tootnotes	S	ŝ	Ω Ω
	Iness	Rockwell	C31/3 23/8 23/8 23/9	C33 B96 B96 C33 C33 C33 C34 C33 C34 C34 C34 C34 C34	B/4
es	Hard	Brinell	Vickers 220/330 Vickers 160/310	Vickers 240/350 Vickers 220/330 Vickers 200/310 Vickers 180/285	Vickers 135/220
propert	Nuts	Proof load (MPa)	700 550	800 700 650 600	450
Mechanical	studs	Tensile strength (min MPa)			1
	Its, screws,	Yield strength (Min MPa)	1		:
	Bol	Proof load (MPa)			
	Nominal	size range (mm)	M1.6 - M20 Over M20 - M36	M1.6 - M2.0 Over M20 - M20 - M24 - W24 - W30 - M30 - M36	M1.6 - M36
	Is mlar's	اللا symbol req`d?	хау	Yes	Yes
		Material	Stainless steel, altoy 316 • Cold worked	Stainless steel, alloy 316 • Machined from strain hardened stock	Stainless steel, alkoy 430, 430F • Machined from annealed or solution annealed stock, or formed and annealed
		Fastener description	Nuts – metric	Nutsmetric	Nutsinétric
		ASTM spec number	F 836	F 836	
		Grade ID mark	A4.70	A4-80	F1-45

Footnotes are grouped on the last page of this Part VI series.

Grade and material identification markings required by ASTM specifications MLSA

		Remarks or footnotes	S	SS	SS	S	SS	SS ant VI series
	s	ckwell	53 33/	25 25 25	29 29 29) ⁸⁷	Že	15 1 page of this P
	Hardnes	inell Ro	skers B9 1/330 - 7	ikers C3t	1340 - C23	kers C35 /480 - C	vers 896	ers C36 440 C4 24
properties	Nuts	Proof load (MPa) Bi	700 Vic 221	1100 Vic 350	800 Vic 240	1200 Vic 380	700 Vici 220	100 Vick 350/ grouped i
Mechanical p	studs	Tensile strength (min MPa)	: : !					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	olts, screws,	Yield strength (Min MPa)						
	B	Proof load (MPa)					- 	
	Nominal	size range (mm)	M1.6 - M36	M1.6 - M36	M1.6 - M36	M1.6 - M36	M1.6 - M36	M1 6 - M36 -
	ls mtar's	ID symbol req'd?	Yes	Yes	Yes	Ycs	Yes	Yes
		Material	Stainless steel, alloy 410 • Hardened and tempered at 565 C min	Stainless steet, attoy 410 • Hardenerd and tempered at 275 C min	Staintess steet, altoy 431 • Hardened and tempered at 565 C min	Stainless steel, alloy 431 • Hardened and tempered at 275 C min	Stainless steel, altoy 416, 416 Se • Hardened and tempered at 565 C min	Stamless steel, alloy 416, 416 Se • Hardened and tempered at 275 C min
		Fastener description	Nuts metric	Netsmetric	hadsmetric	Nuts metric	Nuts - metric	Thits - metric
	-	ASTM spec number	F836	F836	1836	1.830	F836	F836
		Grade ID mark	C1-70	C1-110	C3-80	C3-120	C4-70	C4-110

								Mechanical	propert	les		
				ls mfar's	Nominal	Bol	ts, screws,	studs	Nuts	Hard	ness	
Grade ID mark	ASTM spec number	Fastener description	Material	ID symbol req'd?	size range (mm)	Proof load (MPa)	Yield strength (Min MPa)	Tensile strength (min MPa)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnotes
P1-90	F836	Nuts- metric	Standess steel, alloy 630 • Solution armeated and age hardened after forming	Yes	M16 - M36	í	i	:	006	Vickers 285/370	47 17 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ŝ
A1-50	F837M	Socket head cap screws metric	Stainless steel, alloys 303, 304, 305, 384, XM1, XM7 • Anneated	Υes s	M1.6 - M5 M6 - M36			500 500		Vickers 155/220 Vickers 155/220	870 895 870 870	66
A1-70	F837M	Socket head cap screws metric	Stairdess Steel, alloys 303, 304, 305, 384, XM1, XM7 • Cold worked	Yes	M1.6 - M5 M6 - M14 M16 - M36	 [:]	- 400 270	700 700 550		Vickers 220/330 Vickers 220/330 Vickers 160/310	B96 C33 B96 C33 B33 C33 C30 C30	00
C1-110	F837M	Socket head cap screws inetric	Staintess steel, alloy 410 • Heat freated	Yes	M1.6 - M5 M6 - M36	, i	0.68	0011		Vickers 350/440 Vickers 350/440	C45 C45 C45 C45 C45	Gið
None req'd	F 844	Plain (Itat) washers for general use	Steel, unhardened	No	fhru 3"	i						
ASTM F	ootnotes	GG. All screws with noninnal doalnet require marking Marking muy be or heard	ers of 5 mm and larger S. n the subs on top of the var w	S. Markings shall be considered in the constant of the strength of the strengt	arthe hy of but top ats Machings tocat e depressed Marki ed at depressed T	of flange o sd on one of tats in oon tats in oon the tracke	t on Bre Hici Hici F					

This concludes the ASTM grade marking compilation.

>
Part
]s
rkinę
l ma
terial
l ma
and
Grade

SAE and GM markings

Several years ago the Society of Automotive Engineers, 400 Commonwealth Dr, Warrendale, PA 15096, developed a strength grading system for carbon and alloy steel commercial fasteners Today it is the most widely used and copied system in existence in this country. General requirements are presented in the following table. General Motors Corp issues standards which are broadly used outside this one company. For this reason, GM cross references to SAE Grades are included in this listing.

							2	echanical p	oropertie	s	F	
						Bolt	s, screws, s	tuds	Nuts	Hard	ness	
Grade ID mark	Spec number	Fastener description	Material	IS mfgr's ID symbol req'd?	size size range (inch)	Proof toad (psi)	Yield strength (min psi)	Tensile strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnote(s)
None req'd	SAE J429 Grade 1 GM 255-M	Bolts, screws, studs and U-bolts ^A	Low or medium carbon steel	Yes except studs	X1 - X	33,000 ⁸	36,000 ^C	60,000	ł		B70 B100	D Equivalent to ASTM A307, Grade A
None	SAE 3429	Bolts, screws, and studs	Low or medium	Yes	¥í - 1∕í	55,000 ^B	57,000 ^C	74,000		I	B80 B100	D
req'd	GM GM 260-M		carbon sleel	except	Over % - 1½	33,000	36,000 ^C	60,000	i	1	B70 B100	
None req'd	SAE J429 Grade 4	Sluds	Medium carbon cold drawn steel	NO	$\frac{1}{2}$ = 1 $\frac{1}{2}$	65,000	100,000 ⁰	115,000	i		C22 C32	Q
	SAE J429	Bolts, screws, and studs	Medium carbon steel,	Yes	7 - 1	85,000	92,000 ⁰	120,000		I	025 1025	C
\ /	Grade 5 GM 280-M		quenched and tempered	except studs	Over 1 - 1%	74,000	81,000 ⁰	105,000		ł	5 <u>9</u> 69	Equivalent to ASTM A449
_	SAE J429 Grade 5.1 (E)	Sems	Low or medium carbon steel, quenched and	Yes	% - 9 #	85,000	1	120,000			C40 C40	D.F
. 	GM 275-M	Bolts and screws	paradum		#6 - ¾						C39 C39	0
- <u>`</u>	SAF J429 Grade 5.2	Bolls and screws	Low carbon martensite steel, fully	Yes		85,000	92,000 ^{t2}	120,000	1	I	626 C36	c
			kweu, me yran, quenched and tennwred									
				-			Footr	iotes are g	pednout	on the I	ast page of	this Part VII series.

SAE and GM Grade and material identification markings required by SAE and GM specifications

								Aechanical	propertie	S		
				le mforte	Nominal	Bot	ts, screws, s	tuds	Nuts	Harc	Iness	
Grade ID mark	Spec	Fastener description	Material	symbol symbol req°d?	size range (inch)	Proof load (psi)	Yield strength (min psi)	Tensite strength (min psi)	Proof load (psi)	Brinell	Rockwell	Remarks or footnote(s)
-;<	SAE J429 Grade 7 GM 290-M	Boils and screws	Medium carbon alloy steel, quenched and tempered	Yes	X - 1%	105,000	115,000 ⁰	133,000		:	C28 C34 C34	Roll threaded after heat treatment. D,F
쑸	SAE J429 Grade 8 GM 300-M	Bolls, screws, and studs	Medium carbon alloy steel, quenched and tempered	Yes except studs	<u> </u>	120,000	130,000 ^{t2}	150,000	İ	1	C33 C39	D Equivalent to ASTM A354, Grade BD.
None req'd	SAE J429 Grade 8-1	Studs	Elevated temperature drawn steel- medium carbon alloy or SAE 1541- (or 1541H steel)	oz	X - 1X	120,000	130,000 ⁰	150,000				٩
N.	SAE J429 Grade 8 2	Bolts and screws	Low carbon martensite steel, fully killed, fine grain, quenched and tempered	Yes	2 - 1 2	120,000	130,000 ⁰	150,000	i		1	Q
-,	GM 455-M	Bolts and screws	Corrosion resistant steef	Yes	X - 1X	40,000	ļ	55,000	i	143 min	879 mm	C
4.6	SAE J1199 GM 500M (4.6)	Bolls, screws, studs and ⊕bolls≜—metric	Low or medium carbon steel	Yes	M5 - M36 mm	225 MPa	240 MPa ^c	400 MPa			B67 B87 B100 B100	G Approximately equivalent to SAE J429 Grade 1 and ASTM A307 Grade A.
4.8	SAL J1199 GM 500M (4.8)	Bolts, screws, serns and studs metric	Low or medium carbon steel	Yes	. M1.6 - M16 mm	310 MPa	 340 MPa	420 MPa		1	B71 B87 B100 B100	IJ
5.8	SAE JET99 600M (5.8)	Bolts, screws, and studs metric	Low or medium carbon steel (cold worked)	Yes	M5 - M24 mm	380 MPa	420 MPa	520 MPa		, ,	B82 B82 B100 B100	G Approximately equivalent to SAE J429 Grade 2.

Footnotes are grouped on the last page of this Part VII series.

								Indiantania				
				ls mfar's		Bol	s, screws,	studs	Nuts	Haro	dness	
Grade ID mark	Spec number	Fastener description	Material	ID symbol req'd?	Nominal size range	Proof load	Yield strength (min)	Tensile strength (min)	Proof load	Brinell	Rockwell	Remarks or tootnote(s)
8.8	SAE	Bolts, screws, and studs —metric	Medium carbon or medium carbon alloy steel, quenched and tempered					-			C23 C34	,
o (H)	MD MD	Studs—metric	Medium carbon or medium carbon alloy steet, quenched and tempered	Kes	M16 - M36 ուո	600 MPa	660 ⁰ MPa	830 MPa	i	ļ	C24 C34	Approximately equivalent to SAE J429 (àrade 5 and ASTM A449
8.8	(8.8)	Bolts, screws, and studs 	t cw carbon martensite steel, quenched and tempered									
9.8		Bolts, screws, sems and studs	Medium carbon steel, quenched and tempered									
+ Ĵ	SAE	Studs —metric	Medium carbon steel, quenched and tempered	~								
<u>9.8</u>	GM GM 500M	Bolts, screws, sems, and studs —metric	Low carbon martensite steel, quenched and tempered	Yes	M1.6 - M16 mm	650 MPa		900 MPa		l	<u>C36</u>	G Approximately 9% stronger thati SAE J429 Grade 5 and ASTM
+ı <u>(</u>		Sludsmetric	Low carbon manensite steel, quenched and tempered	· · · · · · · · ·			420 MPa					0 7 7 7
<u>816</u> (I)		Same as sems, but no washers metric	Medium carbon steel, quenched and tempered									
12.9												
	SAF J1199	Bolts, screws, and studs metric	Alloy steel, oit quenched and tempered	Yes	M1.6 - 9 M36 mm	70 MPa 1	100 ⁰ MPa	1220 MPa	i		C38 C44	C
							Foot	notes are	groupec	on the I	ast page	of this Part VII series.

								Mechanical _I	properties			
				all all all all all all all all all all	Nonime N	Bolt	s, screws, :	studs	Nuts	Hard	ness	
Grade ID mark	Spec number	Fastener description	Material	is migr s ID symbol req'd?	vommar size range (inch)	Proof load	Yield strength (min)	Tensite strength (min)	Proof load (psi)	Brinell	Rockwell	Remarks or footnote(s)
10.9		Bolts, screws, and studs metric	Medium carbon alloy steel, quenched and tempered					- - - -				
DĨ	SAE J1199	Studs metric	Medium carbon alloy steel, quenched and tempered	Yes	M6 - M36 mm	830 MPa	940 ^с МРа	1040 MPa	I	1	E C	G Approximately equivalent to SAE J429, Grade 8
⊡l≘	GM 500M (10.9)	Studs-metric	Low carbon marlensite steel, quenched and tempered		M5 - M36 mm						00 00	and ASTM A354, Grade BD
10.9		Bolts, screws, and studs metric	Low carbon martensite steel, quenched and tempered						:			
None req'd	SAE J995 Grade 2 GM 284M	Nuts	Low or medium carbon steel	. N	<u> </u>		-	1	<u>90'00</u>		C32 ma C30 ma	* *
					N - 1	:			120,00			
	SAE J995				0ver 1 - 1%		1	i	105,00 94,000	ا آخ	C32 ma	ž
$\left(\right)$	Grade 5	Nuts	Low or medium carbon steel	°Z	N - X	I		1	120,00	! ح.خ		t ,M
(IL,M)	GM 286M			<u></u>	1 - 1	l			115,000 104,000	। केर्क	C30 ma	Ţ
					$1\frac{1}{20} - 1\frac{1}{20}$				<u>105,00</u> 94,000	- ¹ C		
					1/4 + ^{5/} 8/ + 4/8				100'041		25	
C	SAE J995				Over 🖉 -	** **	ł		150,00		299 29 29	
\mathbf{i}	CM 2011	Nuts	Low or medium carbon steel	oz	Over 1 - 1 \{	***			150,000	- (955 955	Υ. Ξ
(IL,M)	INTOC INEX				Srnaller				150,000	:	हुह	
					nan 1. 1 and laroet.	-	And a la		150,000		हैंदि	
					5		Footn	otes are gr	o padno	n the las	t page of	this Part VII series.

								Mechanical	propertie	S		-
				te mfar's	Nominal	Boll	s, screws, s	tuds	Nuts	Hard	Iness	
Grade ID mark	Spec number	Fastener description	Materiat	symbol req`d?	size range (inch)	Proof load	Yield strength (min psi)	Tensile strength (psi)	Proof load (MPa)	Brinell	Rockwell	Remarks or footnote(s)
	GM 510M	Nuts - metric	Non heat treated carbon steel	c Z	1.6 - 4 mm 5.6 mm 8-10 mm 12 - 16 mm 20 - 36 mm			: : !	520 580 530 610 630	878	B70 min C30 max 8 miry C30 ma	Coarse thread Style 1 hex nuts.
	GM 510M (9)	Nuts - metric	Non heat treated carbon steel	°Z	3.4 mm 5.6 mm 8.10 mm 12-16 mm 20.36 mm				900 915 940 950 920	B85	5 mity C30 max B89 min C30 max	Coarse thread Siyle 2 hex nuts.
	(5M 510M (10)	Nuts metric	Heal freated carbon steel	οN	1.6-10.mm 12-16.mm 20-36.mm	! ;	1		1040 1050 1060		<u>C26 min</u> C36 max	Coarse thread Style 1 hex nuts.
None req'd	SAE J430 Grade 0						23,000	<u>40,000- 55,000</u>			B65 max for sizes //e [®] and less.	
	SAE J430 Grade 1	Solid rivets	Garbon steel	0 N	All sizes		28,000	<u>52,000</u> 62,000		ţ	B85 max tor sizes 4,* and less.	
	SAE J-130 Grade 2 SAE J430 Grade 3						29,000 38,000	55,000- 70,000 68,000- 82,000			Not specified specified	
None req'd	SAE J82 Grade 60M	Machine screws	Carbon steel	No	"a - 17#			60,000 860		1	B70 B100	
None req'd	SAE J82 Grade 120M	Machine screws	Carbon steel, quenched and tempered	с N	#4 - %	1		120,000 min	-	:	C25 C38	
SAE & GA	M footnotes Minemover the world "of	ામ અને <mark>કા</mark> પિત્રો (કે જોસ્ટ્રેસ) હોય	 Second and a products v a second products of the second and and and the the second se	arthund Maskiets Eichne moetin 1, wit	tor here tor here field fish	head produc e of treat tids of sizes	сіз, Піс платкніў; M5 and larger sh Маскима strait r	s filosy for deducth add her marked to add her marked to be been on th	od Mi Blen	J. Values apply K. Values apply	y to Utac and BUR by to Utac and BUR	literal series fiteral series

.

B. Herminitation for provid load leasting apply only to stress reheved products

C. Value applies to machine lest spin meds
O. Unskulter lest surves and the head sensi shall be quete model or transcolin addition, build and serves shall be noticed with the menufactured's identification soluble. Each of the related or the forther alloca-sided the united users or that and model and an units be utiled users or that and much large.

F. Dry water new and mark mark mouths mouths without as wells with 4% should have over that meric mouths without a freekeen C. 8 and surface burdings that exceeding freekee and with 4/5.
G. Stotted and transversessed sources of all sures and oth estartions and bulks and stressed sources of all sures and oth the number All utter bulks and stresse of stress Mirk and toge shall be mouthed for actents in the disk and atoper shall be mouthed for actention by other bulk and atoper shall be mouthed for all sources of stress and mounted out-er Mirkans, cuill be a well source of wells, and strong of the and stress and bulks and stresse of stress and fragmentation.

or proving cases matering as much released or the ex-terior end of the stud, and may be cased or op-no-acid for indentence fit thread study, matking-studits to a dot all the roll end H. thus is the optimual property class symbol for clack of this property class in sizes MS through ATT.

L Products made some as some as constructed valuent such each and the administration with an investigating the object of the administration of the set of

L. All grades of hex part, heavy hex part, heavy here aftered here thest, and heavy hex part, here required as even practic marked. An and heavy here indicated a strade markenge for mark internation by outling from here has been consistent of strate 5, and two holt here and content for strate 6, and two holt here als contents and had exact current of strate 5, and two holt here als contents content for strate 6. and two holt here als contents and content for strate 6. and two holt here als contents and content for strate 6. and two holt here als contents.

_
>
-
s-Part
V)
D
Ĕ
<u> </u>
5
÷
σ
φ,
· –
<u></u>
<u>.</u>
Ω
σ
Ē
<i>m</i>
θ
ž
<i>.</i>
<u></u>
C
_

ISO markings

ISO

ISO (the International Organization for Standardization) is a federation of the national standards bodies of the countries of the world. Purpose of developing international standards is to form the basis of a one-world system of engineering practices. It is intended that international decisions being documented as ISO standards will become accepted into the national standards of ISO member countries. Copies of ISO standards are available from American National Standards Institute (ANSI), 1430 Broadway. New York, NY 10018.

							Mec	hanical requir	ements			
						Exterr	ally threaded	fasteners	Rockwe	ell hardne	SS	
Property	lso			ls mfgr's ID	Nominal size	Proof load	Yield	Tensile		Co	e	Remarks
1D mark	standard number ^A	Fastener description	Material	symbol req'd?	range (mm)	stress MPa	strength (min MPa)	strength (min MPa)	Surface (Max)	(Min)	(Max)	or faotnotes
4.6	1/808/1	Botts, screws and studs	Low or medium carbon steel	Yes	M5-M100	225	240	400	ļ	B67	895	B.C
4.8	1SO 898/1	Bolts, screws and studs	Low or medium carbon steel, fully or partially annealed	Yes	M1 6-M16	310	340	420	1	871	B95	B,C
5.8	1SO 898/1	Bolts, screws and studs	Low or medium carbon steel, cold worked	Yes	M5-M24	380	420	520		B82	H95	B,C,D
8.8	150 150	Bolts, screws and studs	Medium carbon steel, quenched and tempered	Yes	M16-M72	600	660	8:30	30N56	C23	C34	B.C
8.8	1SO 898/1	Bolts, screws and studs	Low carbon nartensite steel, quenched and tempered	Yes	M16 M36	600	660	830	30N56	C23	C34	B,C
9.8	1SO 1980	Bolts, screws (and studs M12 or larger)	Medium carbon steel, quenched and tempered	Yes	MI 6 MI6	650	720	006	30N58	C27	C36	B,C

Footnotes are grouped on the last page of this Part VIII series.

Identification markings required by ISO standards for externally threaded fasteners

							Mec	hanical requir	ements			
						Exterr	ally threaded	fasteners	Rockw	ell hardne	ess	
Property	ISO			ls mfgr's ID	Nominal size	Proof load	Yield	Tensite		ပိ	re	Remarks
1D mark	standard number ^A	Fastener description	Material	symbol req'd?	range (mm)	stress MPa	strength (min MPa)	strength (min MPa)	Surface (Max)	(Min)	(Max)	or footnotes
+	1SO 898/1	Stucts of class 9.8	Medium carbon steel, quenched and tempered	Yes	Less than M12	650	720	006	30N58	C27	C36	C,E
9.8	1,808 198/1	Bolts, screws (and studs M12 or larger)	I ow carbon martensite steel, quenched and tempered	Yes	M1.6-M16	650	720	006	30N58	C27	C36	B.C
+!	1SO 898/1	Studs of class 9.8	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	650	720	006	30N58	C27	C36	C.E
10.9	ISO	Bolts, screws	Medium carbon steel, quenched and temosted	Yes	M5-M20	830	940	1040	30N59	C33	C39	B,C
	898/1	(and studs M12 or larger)	Medium carbon alloy steel, quenched and tempered	Yes	M5-M100	830	940	1040	30N59	C33	C39	B,C
	ISO R98/1	Studs of class 10.9	Medium carbon of medium carbon alloy steel, quenched and tempered	Yes	Less than M12	830	940	1040	30N59	C33	C39	C.E
10.9	150 898/1	Bolts, screws (and studs M12 or larger)	Low carbon martensite steel, quenched and tempered	Ycs	M5-M36	830	940	1040	30N59	C33	C39	B,C
□ !	15O 898/1	Studs of class 10.9	Low carbon martensite steel, quenched and tempered	Yes	Less than M12	830	046	1040	30N59	C33	C39	C.E
12.9	1SO 898/1	Bolts, screws (and studs M12 or larger)	Alloy steel, quenched and tumpered	Yes	M1.6-M100	970	1100	1220	30N63	C38	C44	B.C.F
4	1SO 1808/1	Studs of class 12.9	Alloy steel, quenched and tempered	Yes	Less than M12	070	0011	1220	30N63	C38	C44	Э. С.Е.
							Foot	notes are grou	ped on the	last page	of this P	art VIII series.

•

ISO	Identifica		iednien nà					;		
						Месћа	nical requirements	for nuts		
				le m(or'e	Mominal	Proof load st	tress (MPa)	Rockwell	hardness	
Property class ID mark	Property class of nut ^G	Dimensional style of nut	Materiał	symbol symbol req'd?	size range (mm)	Non overtapped nuts	Overtapped nuts	(Min)	(Max)	Remarks or footnotes
None req'd	04	Hex jam	Carbon steel	oN	M5-M36	380	-	B89	C30	
05	05	Hex jam	Carbon steel	Yes	M5-M36	500		C26	C36	т
					M1.6-M4	520				
					M5, M6	580	465			
LC.	c.	Hex Style 1	Carbon steel	Yes	M8, M10	590	470	B70	C30	
	;				M12-M16	610	490			I
					M20-M36	630	500	B78	C30	
		Heavy hex			M42-M100	630	500	B70	C30	
		Hex Style 2			M3-M4	006	1	B85	C30	
					M5 M6	915	1			
6	6	Hex, Styte 2	Carbon steel	Yes	M8, M10	940	ļ			
		and hex			M12-M16	950		B89	C30	НЛ
		ange			M20	920				
		Hex, Style 2			M24-M36	920				
		Heavy hex			M42-M100	920	- to the			****
		Hex. Style 1	Allov steel	Yes	M1.6-M4	1040	l			
		Hex Style 1	duenched		M5-M10	1040				
10	10	and	and tempered		M12-M16	1050		C26	C36	H,H
2	2	hex flange			M20	1060				
		Hex, Styte 1			M24-M36	1060	1			
					M3-M4	1150				
					M5, M6	1150	920			
12	12	Hex, Style 2	Alloy steel	Yes	M8, M10	1160	930			
			quenched		M12-M16	1190	950	C26	C36	-, ¥
					M20-M36	1200	960			
		Heavy hex			M42-M100	1200	960			

markings required by ISO standards for internally threaded fasteners. Identification Footnotes are on next page

ISO footnotes from preceding tables

A. Although ISO 998/1 presents 10 property classes. IF1 has been unable to dentity any commercial or industrial need by North American industry for ISO property classes 36, 56 and 63 boils, screws and studs. B. Marking is required for hex boils and screws with nomiicameters: 25mm where shape of 'tastener' allows narking to be accompished, preferably on the head, allernativery on the side of head by indenting.

C. Marking is required for studs with nominal diameters equal to or greater than 5mm, prelerably on the extreme end of the threaded portion by indenting. For studs with inreliverence iff, the marking shall be at the nut end.

D. Class 5.8 applies only to bolts and screws with lengths 150mm and shorter and to studs of all lengths.

E. This is the grade mark symbol for studs of this property class in sizes M5 up to but not including M12.

F. Caution is advised when considering use of Class 12.9 products. Capability (in the fastener manufacturer, as well as an includes environment, should be carefully considered. Class 12.9 products reduite rigd control of heat repairing operations and careful monitoring of as querched hardness, surface descontinuites, depth of partial decarburation, and freedom from carburation. Siress corrision cracking susceptibility also needs to be addressed.

G. All data was extracted from ASTM A563M and ISO 9982. All vauses are as green in A563M varies for property classes (4, 05, 5, 9, 10 and 12 non-vertapped ruls in sizes M36 and smaller are in both occuments and are defined. Other classes. sizes and overtapped nut values are undue to A563M.

H. Hex nuts of thread diameters > 5mm and property cases equal to n hugher than 8 and or poperty class 05 shall be marked as noted. by notenting on the side or bearing surface, or by embossing on the chamier. Alternative marking system according to clock-lace system is as follows:

.

Appendix B Bolt Ultimate Shear and Tensile Strengths

[From ref. 18]

						UIU	nate single she	ar strength, 10s				
Shcar strengt	ı of fastenc	r, ksi	35	38	75	16	95	108	125	761	156	180
Fastener c	liameter	Basic shank			_							
ln.	٩	area										
0.112	# 4	0.0098520	345	374	739	897	936	1 064	1 232	1 300	1831	5171
0.125	8/1	0.012272	430	466	920	1 117	1 166	1 325	1 534	1 620	1914	2 209
0.138	# 6	0.014957	523	568	1 122	1 361	1421	1615	1 870	1 974	2 333	2 692
0.156	5/32	0.019175	671	729	1 438	1 745	1 822	2 071	2 397	2 531	2 991	3 4 5 2
0.164	# 8	0.021124	739	803	1 584	1 922	2 007	2 281	2 640	2 788	3 295	3 802
						, 	1 6 7 2	1 00 L	1,157	3 645	011 1	070 1
0.188	3/10	0.02/012	906	1 049	1/0 2	0020	5707	204.2				
0.190	#10	0.028353	992	1 077	2 1 2 6	2 580	2 694	2005	3 244	54/ 5	0744	
0.216	#12	0.036644	1 283	1 392	2 748	3 335	3481	3958	4 580	4 840	07/ 5	6 600
0.219	7/32	0.037582	1 315	1 428	2819	3 420	3 570	4 060	4 700	4 960	5 860	6 760
0.250	1/4	0.049087	1 718	1 865	3 682	4 470	4 660	5 300	6 140	6 480	7 660	8 840
0.312	5/16	0.076699	2 684	2 915	5 750	6 980	7 290	8 280	9 590	10 120	11 970	13 810
0.375	3/8	0.11045	3 866	4 200	8 280	10 050	10490	11 930	13 810	14 580	17 230	19 880
0.438	7/16	0.15033	5 260	5 710	11 270	13 680	14 280	16 240	18 790	19840	23 450	27 060
0.500	1/2	0.19635	6 870	7 460	14 730	17 870	18 650	21 210	24 540	25 920	30 630	35 340
0.562	9//6	0.24850	8 700	9 440	18 640	22 610	23 610	26 840	31 060	32 800	38 770	44 700
									0100	10.600		000
0.625	5/8	0.30680	10 740	11 660	23 010	71 920	061 62	04146	066.86	40.000	4 / 900	
0.750	3/4	0.44179	15 460	16 790	33 130	40 200	42 000	47 700	55 200	58 300	68 900	79 500
0.875	7/8	0.60132	21 050	22 850	45 100	54 700	57 100	64 900	75 200	79 400	93 800	108 200
1.000		0.78540	27 490	29 850	58 900	71 500	74 600	84 800	98 200	103 700	122 500	141 400
1.125	1-1/8	0.99402	34 790	37 770	74 600	90 500	94 400	107 400	124 300	131 200	155 100	178 900
1 250	1-1/4	1 2772	43 000	46 600	92 000	111 700	116 600	132 500	153 400	162 000	191 400	220 900
1 375	1-3/8	1.4849	52 000	56400	111 400	135 100	141 100	160 400	185 600	196 000	231 600	267 300
1.500	1-1/2	1.7671	61 800	67 100	132 500	160 800	167 900	190 800	220 900	233 300	275 700	318 100
^a Values with	n the first d	igit <4 are show	vn to 4 signi	ficant figures.	all other are	shown to 3 sig	gnificant figur	cs.				
^b Fractional (equivalent	or screw numbe	r.									

TABLE 8.1.5(a). Ultimate Single Shear Strength of Threaded Steel Fasteners

MIL-HDBK-5E 1 June 1987

									N	/II 1	L≁H Jui	IDB ne 1	K 98	-5E	2						I
	180			916	1 383	2 202	3 253	6 010	9 660	14 830	20 010	27 210	34 540	43 800	64 100	87 700	114 000	147 900	186 200	229 000	276 200
	160			814	1 229	1 957	2 892	5 340	8 590	13 180	17 780	24 190	30 700	38 960	57 000	77 900	101 300	131 500	165 600	203 600	245 500
a.b.c	140		1	713	1 075	1 713	2 530	4 680	7 510	11 540	15 560	21 160	26 870	34 090	49 800	68 200	88 600	115 000	144 900	178 100	214 800
nsile strength, lbs	125		MIL-S-7742	636	960	1 529	2 259	4 170	6 710	10 300	13 890	18 900	23 990	30 440	44 500	006 09	001 62	102 700	129 300	159 000	191 800
Ultimate te	62.5			318	480	765	1 130	2 087	3 354	5 150	6 950	9 450	066 11	15 220	22 250	30 430	39 570	51 400	64 700	79 500	95 900
	62			316	476	758	1,121	2 070	3 327	5 110	6 890	9 370	006 11	15 100	22 080	30 190	39 250	50 900	64 200	78 900	95 100
	55			280	423	673	994	1 837	2 952	4 530	6 110	8 310	10 550	13 390	19 580	26 780	34 820	45 200	56 900	70 000	84 400
		Nomual	minor arca ^e	0.0050896	0,0076821	0.012233	0.018074	0.033394	0.053666	0.082397	0.11115	0.15116	0.19190	0.24349	0.35605	0.48695	0.63307	0.82162	1.0347	1.2724	1.5345
	of fastener, ksi	liameter	q	4-40	6-32	8-32	10-32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	5/8-18	3/4-16	7/8-14	1-12	1-1/8-12	1.1/4-12	1-3/8-12	1-1/2-12
	Tensile strength o	Fastener e	ln.	0.112	0.138	0.164	0.190	0.250	0.312	0.375	0.438	0.500	0.562	0.625	0.750	0.875	1.000	1.125	1.250	1.375	1.500

TABLE 8.1.5(b1). Ultimate Tensile Strength of Threaded Steel Fasteners

*Values shown above heavy line are for 2A threads; all other values are for 3A threads.

^bNuts designed to develop the ultimate tensile strength of the fastener are required to develop the tabulated tension loads. c Values with the first digit <4 are shown to 4 significant figures; all others are shown to 3 significant figures.

d Fractional equivalent or number and threads per inch.

*Area computed using nominal minor diameter as published in Lable 2.2.1 of Handbook H-28.

								M	IL- 1 Ju	H	D	B] 19	K-5 987	E							
	300			1,631	2,447	3,854	5,580	10,270	16,470	25,160	33,970	46,100	58,500	74,100	108,200	148,000	192,500	249,400	313,700	385,300	464,300
hs a.b.c	260			1,414	2,120	3,340	4,840	8,900	14,280	21,810	29,440	39,930	50,700	64,200	93,800	128,300	166,800	216,100	271,900	333,900	402,400
te tensile strength	220	MIL-S-8879	1,196	1,794	2,827	4,090	7,530	12,080	18,450	24,910	33,790	42,900	54,300	79,400	108,500	141,100	182,900	230,000	282,600	340,500	
111time	180			619	1,468	2,313	3,348	6,160	9,880	15,100	20,380	27,640	35,100	44,500	64,900	88,800	115,500	149,600	188,200	231,200	278,600
	160			869	1,305	2,055	2,976	5,480	8,780	13,420	18,120	24,570	31,200	39,520	57,700	78,900	102,600	133,000	167,300	205,500	247,600
			Maximun minor area ^e	0.0054367	0.0081553	0.012848	0.018602	0.034241	0.054905	0.083879	0.11323	0.15358	0.19502	0.24700	0.36082	0.49327	0.64156	0.83129	1.0456	1.2844	1.5477
	er, ksi	diameter	p	4-40	6-32	8-32	10.32	1/4-28	5/16-24	3/8-24	7/16-20	1/2-20	9/16-18	5/8-18	3/4-16	7/8-14	1-12	1-1/8-12	1-1/4-12	1-3/8-12	1-1/2-12
	Tensile strength of fasten	Fastener	ln.	0.112	0.138	0.164	0.190	0.250	0.312	0.375	0.438	0.500	0.562	0.625	0.750	0.875	1.000	1.125	1.250	1.375	1.500

TABLE 8.1.5(b2). Ultimate Tensile Strength of Threaded Steel Fasteners (Continued)

All values are for 3A threads.

bNuta designed to develop the ultimate tensile strength of the fastener are required to develop the tabulated tension loada. «Values with the first digit <4 are shown to 4 significant figures; all others are shown to 3 significant figures. #Fractional equivalent or number and threads per inch. *Area computed using maximum minor diameter as published in Tables II and III of MIL-S-8879.

Appendix C Blind Rivet Requirements

 THE ALVE CASE THE THE OR ALVETTS SHALL BE USED IN COMPLIANCE WITH THE JOINT ALLOWAGE TABLES IN MIL-MERK-S, CHAPTER 8. BLIND RIVETS SHALL GONOPH TO THE FOLLOWING REQUERTENTS: MILHARD SITE TO BE AND MYSTALLOW AND MYSTAL BE WITHIN THE LIMITS SPECIFIED ON THE APPLICABLE SPECIFIED ON SHET, STANDARD ON BANKTON. PHEMPED ASSEME TO THE FOLLOWING SURLI AS WITHIN THE LIMITS SPECIFIED ON THE APPLICABLE SPECIFIED ON SHET, STANDARD ON BANKTON. MILHARD SITE TO BE AND MYSTALLOW AND MALE AS WITHIN THE LIMITS SPECIFIED ON THE APPLICABLE SPECIFIED ON SHET, STANDARD ON BANKTON. MICHAEL SOLED SPHOLE ALLOW AND MYSTA LICENCE THE THE SHETS HAVE BEEN DOWNLO. MICHAEL OR AND REVORE, THE BLIND BUTTS LICENCE IN THE AUGUST DATA AND REVORE THE OWNERS AND HERE AND AND THE AREA FORMARD OF THE DURING. MILHARD MILHAEL AND AND THE BLIND BUTTS LICENCE IN THE AUGUST AND AND REVORE SHALL BE OWNERSTER BUTTS AND AND REVORE ON REVIEW AND AND REVORE AND AND REVORE THE AND AND REVORE THE AND AND REVORE AND AND REVORE THE AND REVORE THE AND REVOLUTION THE AUGUST AND AND REVORE AND AND REVORE AND AND REVORE AND AND REVOLUTION AND REVOLUTI	s approval for var by al Daparimerin. Jameel ei Daienal, Salaction for al new applications and for monthere use thail unner.	"Reverse Information is currient as of the date of the date of the date of the date of the date of the date of the date of the date of the date of the date of the current property of the theorem of the information in the current property."	RENERS FRANCIS: ARNY - USAF - 99 DILA - IS	USRA STREOLE: ARVY - MI
FED. SUP CLASS 5320 5. CHAPTER 8. APPLICABLE MMPLED. AIRCRAFT 5. SHALL BE 15. ING MARD	THIS IS A DESIGN STANDARD, NOT TO BE USED AS A PART NUMBER.	 5. OVERSIZE BLIND RIVETS MAY BE USED FOR REPAIR AND REWORK: 5. OVERSIZE RIVETS ARE FOR USE IN NON-STANDARD HOLE DIAMETERS. NON-STANDARD HOLE ARE THE RESULT OF HOLE RESIZING DURING REWORK OR REPAIR, OR DUE TO MANUFACTURE ERROR IN NEW DESIGM. b. THE GRIP LENGTH OF THE OVERSIZE RIVET, THE BACKSIDE CLEARANCE (INSTALLED AND UNINSTALLED), AND THE PERFORMANCE CHARACTERISTICS SHALL BE EQUAL TO THE STAND RIVET THAT IS BEING REPLACED. 6. E: IN:D RIVETS SHALL NOT BE USED: a. IN FLUID TIGHT AREAS. b. ON AIRCRAFT CONTROL SURFACE HINGES, HINGE BRACKETS, FLIGHT CONTROL ACTUATING SYSTEMS, WING ATTACHMENT FITTINGS, LANDING GEAR FITTINGS, OR OTHER HEAVILY STRESSED LOCATIONS ON THE AIRCRAFT. 7. FRICTION LOCKED BLIND RIVETS (NO LOCKING RING OR COLLAR) SHALL NOT BE USED ON AIRCRAFT IN AIR INTAKE AREAS WHERE RIVET PARTS MAY BE INGESTED BY THE ENGINE. 8. NICKEL-COPPER ALLOY (MOREL) RIVETS WITH CADMIUM PLATING SHALL NOT BE USED WHERE THE AMBIENT TEMPERATURE IS ABOVE 400°F. 9. FLUSH HEAD RIVETS SHALL NOT BE MILLED TO OBTAIN FLUSHNESS WITH THE SURDOWDING SHEET WITHOUT TRUDER WITHOR WRITTEN APPROVAL FROM THE DESIGN ACTIVITY. 10. OVERSIZE BLIND RIVETS SHALL NOT BE MILLED TO OBTAIN FLUSHNESS WITH THE SURD WHERE THE AMBIENT TEMPERATURE IS ABOVE 400°F. 9. FLUSH HEAD RIVETS SHALL NOT BE MILLED TO OBTAIN FLUSHNESS WITH THE SURD WHERE THE AMBIENT TEMPERATURE IS ABOVE 400°F. 10. OVERSIZE BLIND RIVETS SHALL NOT BE MILLED TO BETAIN FLUSHNESS WITH THE SURD WHERE THE AMBIENT TEMPERATURE IS ABOVE 400°F. 11. CHEMICALLY EXPANDED BLIND RIVETS SHALL NOT BE USED. 	 BLIND RIVETS SHALL BE USED IN COMPLIANCE WITH THE JOINT ALLOWABLE TABLES IN MIL-HDBK-BLIND RIVETS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS: 1. THE HOLE SIZE FOR BLIND INSTALLATION SHALL BE WITHIN THE LIMITS SPECIFIED ON THE SPECIFICATION SHEET, STANDARD, OR DRAWING. 2. FOR DIMPLED ASSEMBLY, THE RIVET HOLES SHALL BE SIZED AFTER THE SHEETS HAVE BEEN D 3. MECHANICALLY LOCKED SPINDLE BLIND RIVETS (LOCKING RING OR COLLAR) MAY BE USED ON IN AIR INTAKE AREAS AND IN THE AREA FORWARD OF THE ENGINE. 4. FOR REPAIR AND REWORK, THE BLIND RIVETS USED IN REPLACEMENT OF SOLID SHANK RIVETS OVERSIZE OR ONE STANDARD SIZE LARGER (SEE REQMT 5). 	
D. SUP CLASS 5320		ES IRING NDARD	-5, CHAPTER 8. APPLICABLE DIMPLED. AIRCRAFT TS SHALL BE	FE
				D. SUP CLASS 5320

NAtional Aeronautics and Space Administration	Report Docume	entation Page	tation Page					
1. Report No. NASA RP-1228	2. Government Acces	sion No.	3. Recipient's Catalog	I No.				
4. Title and Subtitle		. <u></u>	5. Report Date					
Fastener Design Manual			March 1990					
			6. Performing Organiz	ration Code				
7. Author(s)			8. Performing Organiz	ation Report No.				
Richard T. Barrett		E-4911						
			10. Work Unit No.					
9. Performing Organization Name and Address	· · · · · · · · · · · · · · · · · · ·		11. Contract of Creat N					
National Aeronautics and Space Adn Lewis Research Center	ninistration		11. Contract or Grant r	NO.				
Cleveland, Ohio 44135-3191			13. Type of Report and	Period Covered				
12. Sponsoring Agency Name and Address			Reference Publi	cation				
National Aeronautics and Space Adm Washington, D.C. 20546–0001	ninistration		14. Sponsoring Agency	Code				
16. Abstract								
This manual was written for design Subject matter includes fastener mate inserts, thread types and classes, fat derivation of torque formulas, loads load for tapped holes, grip length, h general guidelines and selection crite	engineers to enable the erial selection, plating gue loading, and faster on a fastener group, of ead styles, and fastene eria for rivets and lock	em to choose approj s, lubricants, corros ener torque. A sectio combining simultane er strengths. The sec abolts.	priate fasteners for t ion, locking method on on design criteria yous shear and tensic cond half of this ma	heir designs. s, washers, a covers the on loads, pullout nual presents				
17. Key Words (Suggested by Author(s))	·····	18. Distribution Staten	nent					
Fastener design; Washers; Inserts; 7 Rivets; Lockbolts	`orque table;	Unclassified Subject Cate	Unclassified—Unlimited Subject Category 37					
19. Security Classif. (of this report)	20. Security Classif. (c	f this page)	21. No of pages	22. Price*				
Unclassified	Uncl	assified	100	A05				