
N90-19396

1989

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

METHODS FOR TREND ANALYSIS: EXAMPLES WITH

PROBLEM/FAILURE DATA

PYepared by: Curtis K. Church, Ph.D.

Academic Rank: Associate Professor

University and Department: Middle Tennessee State

University, Department of
Mathematics and Statistics

NASA/MSFC:

Directorate:

Office:

Division:

Branch:

Safety, Reliability, Main-

tainability & Quality

Assurance

Systems Safety & Reliability

Reliability & Maintainability

Engineering
Problem Assessment

MSFC Colleagues: Raymond Dodd, Ph.D.
Frank Pizzano

Date:

Contract No:

July 20, 1989

The University of Alabama

in Huntsville

NGT-01-008-021





ABSTRACT

NASA Headquarters is emphasizing that statistics has an
important role in quality control and reliability.
Consequently, 'Trend Analysis Techniques' (NASA-STD-8070.5)

recommended a variety of statistical methodologies that could

be applied to time series data. The major goal of this report

or 'working handbook', using data from the MSFC Problem

Assessment System, is to illustrate some of the techniques in

the NASA standard, some different techniques, and to notice

patterns of data. Techniques for trend estimation used are:

regression (exponential, power, reciprocal, straight line)

and Kendall's rank correlation coefficient. The important

details of a statistical strategy for estimating a trend

co_nponent are covered in the examples. However, careful

analysis and interpretation is necessary because of small

samples and frequent zero problem reports in a given time

period. Further investigations to deal with these issues are

being conducted.
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INTRODUCTION

The purpose of this report or 'working handbook' is to
discuss strategies and methods for statistical evaluation of
trend for problem/failure data. Statistical analysis provides
a tool to add insight and complement engineering judgement.
Much of this work elaborates and clarifies the application of
approaches contained in 'Trend Analysis Techniques' ( NASA-
STD-8070.5 ). Problem trend analysis tracks and categorizes
problems over time. The problems may be for an entire system,
subsystem, or any other appropriate level of aggregation.
Techniques useful for statistically measuring a trend
component will be illustrated in the next section. All
examples contained in this report use data supplied by the
MSFC Problem Assessment System.

There are two basic techniques for trend analysis in
this report. One is regression and the second is a
distribution free rank correlation method. Regression
analysis is a statistical tool that utilizes the relation
between two or more quantitative variables so that one
variable can be predicted from the other, or others. A
regression model is a formal means of expressing the two
essential ingredients of a statistical relation:

I. A tendency of the dependent variable Y to vary with
the independent variable or variables in a systematic
way.

2. A scattering of the observations around the curve of
statistical relationship.

We are interested in using a regression model to perform
a test of hypothesis for trend. This requires that the
experimenter postulate a probability model, commonly the
normal distribution, to be used in the development of the
hypothesis testing procedure. On the other hand, the
distribution free approach eliminates specification of an
underlying probability distribution. The rank correlation
coefficient, known as Kendall's tau (_), is used in the
examples below as the distribution free basis for determining
the existence of trend. For this method there are no
assumptions about the form of the probability distribution
involved and ther are minimal calculations.

METHODSAND EXAMPLES

The mechanics of applying the regression and rank
correlation methods for problem/failure data will be covered

through examples given below. The stategy for the regression
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approach will be as follows: examine a scatter plot of the
data, fit an appropriate model to the observed data, perform
a test of hypothesis for trend, and, if appropriate, generate
a prediction interval for a future observation. In situations
where there appears to be a positive (downward) trend the
most advisable regression models are: exponential model,
power (or multiplicative) model, or a reciprocal model. These
models possess the desirable feature that the predicted
values for the number of (normalized) problems will never be
less than zero. The examples using the reciprocal model also
illustrate the influence of extreme (or outlying)
observations. In the case of an increasing trend a straight
line model is also considered. Finally, Kendall's rank
correlation coefficient will be adapted and discussed as an
alternative means to perform a test of hypothesis for trend.

Fifteen sets of data on the SSMEwere selected from the
problem assessment system. Each data set was normalized to
give the rate of problem reports per i0,000 seconds of engine
test firing time. Some data was at the system level, some at
the subsystem level, and some at the failure mode level.
These data sets are used to illustrate the issues and details
of applying the above mentioned approaches. You will notice a
common pattern in many of the data sets. There is an apparent
adverse (increasing) trend from 1979 through 1982 plus or
minus one year and then a positive trend from that point
through 1988. This pattern appears in roughly 2/3 of the
example data sets. In instances of an adverse trend followed
by a positive trend, a model for the regression approach will
be fit to the portion of the series exhibiting the positive
trend, that is, the most recent six to seven years. In
applying and interpreting the statistics one needs to rely on
good judgement and sound engineering considerations. As you
look through the examples notice similarities and
dissimilarities in the data patterns. Statistical procedures
cannot be applied in a vacuum.

Exponential Model

The exponential model is intrinsically linear. It is
made linear by using a logarithmic transformation. Thus,
applying an exponential model means that we will be
regressing the natural logarithm of Y on time. The
deterministic part of the model is:

I

where: Y is the number of normalized problem reports,
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_and _, are parameters, and
t is a constant denoting the time period.

A positive (downward) trend is indicated if_,< 0. Thus,
if an exponential model is fit to the data, the statistical
justification for claiming a positive trend will be to
perform a test of hypothesis of Ho:_,_ 0 against H_:_I< 0.
This presumes a flat or increasing trend in the null
hypothesis in hopes that we have evidence to reject it in
favor of the alternative hypothesis, which is a positive
(downward) trend.

An important note is that the exponential model, through
the logarithmic transformation, cannot be applied when there
is a zero value in the normalized data. In instances where
the_e are no problem reports in a time period and you wish to
use the exponential model the logarithmic transformation

needs to be modified. Under general conditions it is

reasonable to approximate the number of normalized problem

reports in the transformed data by using .5 as the number of

problems before normalizing and transforming. So, if there

are zero problem reports in a time period it will be replaced

with .5 for the purpose of fitting the exponential model.

This adjustment is relevant only for the logarithmic

transformation. A justification for this modification is

given in the appendix.

On the next several pages appear scatter plots and

analysis summaries. The scatter plots display the number of

normalized problems as asterisks (vertical axis) to the year

(horizontal axis). For these five sets of data we observe the

pattern of an apparent adverse trend for the first three to

four years and then an apparent positive trend. These scatter

plots were generated with the PC software package NWA Quality
Analyst.

For each of these sets of data an exponential model

provided a good fit to the data. The beginning time period

for the fitted model varied from 1981 to 1983 and ended with

the 1988 data. The regression analysis summaries below the

scatter plots indicate the beginning time period. All of the

computational work is performed with the transformed data.

The PC software package Statgraphics generated the given
regression analysis summaries.

Inspection of the coefficient of determination, r a,

value for each data set indicates a strong association

between the normalized problems and year. Further evaluation

of the appropriateness of the fitted model by inspecting a
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graph of the fitted curve together with the observed data or
other means may be easily carried out using Statgraphics or
other software package. The statistical justification for
claiming a positive trend, however, lies in the hypothesis
testing procedure. Fortunately, the Statgraphics regression
summary contains results of all necessary calculations. To
conclude acceptance of _ < 0 focus attention on what the
regression summary labels "prob. value". For regression with
two coefficients, the value of interest appears twice, once
on the row identified by the slope and once in the analysis
of variance table. For our purpose divide this number by two.
This value is the observed significance level of the test,
often called the p-value. It represents the likelihood, based
on the observed data, of claiming a positive trend when there
is actually not a positive trend. Thus, we want the p-value
to be small, say less than .025 or possibly less than .01.
Note that this value is less than .01 for each of the five
data sets. The r z value and (twice) the p-value are circled
on the following summaries.

Following the hypothesis test for trend, we may wish to
forecast (or predict) a new value. We can then compare the
predicted value with the new value when it becomes available
to assess a continuing trend. For example, we may predict the
rate of problems (i.e. the normalized data) for 1989 and
compare with the first quarter rate when it becomes

available. The predicted value comes from the fitted equation

and then prediction limits are constructed. The 95%

prediction limits will roughly be the fitted value plus or

minus two standard deviations of the predicted value. The

standard deviation is given b_:

MsE{,. + I

The value n is the number of data points used in the model

fit, and MSE is the mean square error that appears in the

analysis of variance portion of the printout. Note that the

sample size is incorporated in the prediction limits through
the standard deviation.

For example, the data for the SSME main combustion

system is:

year : 83 84 85 86 87 88

normalized

problems: 112.21 78.64 29.98 47.83 16.44 14.48

The predicted value for t=89 is 8.95. Through March 1989 the

normalized value of problem reports is 11.88. The upper 95%

v
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prediction limit is 25.82 and the upper 68% prediction limit
(roughly one standard deviation) is 15.96. The calculations
were done with the transformed data but expressed in terms of
the original units.

Regardless of the regression model chosen, the strategy
is the same. Consequently, the other regression models that

have been useful, the power model, the reciprocal model, and

the straight line model, will only be briefly discussed and

examples presented. The key statistical elememt is the test

of hypothesis for the 'slope' parameter. This is the

justification for the claim of a measurable association

between problems and year.

The five sets of data that were used as examples of

fitting an exponential model follow on the next several

pages.
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Regression Analysis - Exponential model: Y - exp(a+bX)

Dependent variable: 112.2068 78.64413 29 Independent variable: 83 84 85 86 87 88

Standard T Prob.

Parameter Estimate Error Value Level

Intercept 38.9737 6.88526 5.66046 .00480

Slope -0.413287 0.0805133 -5.13315

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob._

Model 2.989101 1 2.989101 26.34922

Error .4537670 4 .1134418

Total (Corr.) 3.4428682 5

Correlation Coefficient - -0.931773

Stnd. Error of Est. = 0.336811

R-squared s _percent
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fuel preburner injector:contamination
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Regression Analysis - Exponential model: Y - exp(a+bX)

Dependent variable: 3.114 2.2049 1.0454 Independent variable: 81 82 83 84 85 86

Standard T Prob.

Parameter Estimate Error Value Level

Intercept 37.4537 5.74436 6.52008

Slope -0.44566 0.0679556 -6.5581

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model 8.341733 1 8.341733 43.00874

Error 1.1637263 6 .1939544

Total (Corr.) 9.5054592 7

Correlation Coefficient = -0.936789

Stnd. Error of Est. _ 0.440403

R-squared - _percent
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Regression Analysis - Exponential model: Y - exp(a+bX)

Dependent variable: 4.134282 4.53009 1.2 Independent variable: 82 83 84 85 86 87

Standard T Prob.

Parameter Estimate Error Value Level

Intercept 35.464S 9.73999 3.64112 .01489

Slope -0.41411 0.114556 -3.6149

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model 4.801630 1 4.801630 13.06749 _
Error 1.8372425 5 .3674485

Total (Corr.) 6.6388723 6

Correlation Coefficient - -0.850447

Stnd. Error of Est. - 0.606175
R-squared = _percent
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Regression Analysis - Exponential model: Y - exp(a+bX)

Dependent variable: 15.43465 13.2418 ii. Independent variable: 82 83 84 85 86 87

Standard T Prob.

Parameter Estimate Error Value Level

Intercept 42.9973 9.20094 4.67314 .00547

Slope -0.487541 0.i08216 -4.50524

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob._ve_e_l
Model 6.655493 1 6.655493 20.29720 00_

Error 1.6395101 5 .3279020

Total (Corr.) : 8.2950031 6

Correlation Coefficient = -0.89574

Stnd. Error of Est. - 0.572627

R-squared _ _percent
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Regression Analysis - Exponential model: Y = exp(a+bX)

Dependent variable: 18.74208 15.33261 7. Independent variable: 82 83 84 85 86 87

Standard T Prob.

Parameter Estimate Error Value Level

Intercep_ 30.6808 8.45004 3.63085 .01505

Slope -0.33945 0.0993847 -3.41551

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model 3.226328 1 3.226328 11.66572
Error 1.3828243 5 .2765649

Total (Corr.) 4.6091525 6

Correlation Coefficient - -0.83665

Stnd. Error of Est. - 0.525894
R-squared - _percent
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Power Model

This model is also intrinsically linear and uses the

logarithmic transformation just as the exponential model. It

differs in that this model uses the logarithm of both the

independent and dependent variables. The regression will be

for the natural logarithm of Y on the natural logarithm of

time. The deterministic portion of the model is:

As with the exponential model, a positive (downward)

trend is claimed if Z, < 0. Since the logarithmic

transformation is used, the same modification in the presence

of no problem reports in a time period as that used with the

exponential is appropriate.

The mechanics of application are the same as with the

exponential model. In the two examples below, there is some

evidence of an increasing pattern followed by a decreasing

trend. For the example of leakage of the HPFTP lift-off seal

an adverse pattern exists from 1979 to 1983. A power (or

multiplicative) model is then fit from 1982 to 1988. The

coefficient of determination is .48 and, consequently, the

test of hypothesis does not conclude a positive trend. Visual

inspection of the scatter plot causes some concern by

noticing the increase from 1986 to 1988. However, the

normalized values are quite small, so there would be a good

deal of (engineering) judgement in the interpretation. The

second example, the main oxidizer valve subsysytem, shows an

erratic pattern from 1979 to 1983 and then a decreasing

pattern through 1988. There is an excellent fit for the

decreasing portion of the data with strong indication of a

significant downward trend (p-value less than .01).
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HPFTP lift-off seal:leakage
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Regression Analysis - Multiplicative model: Y - aX^b

Dependent variable: 2.2049 .6969 1.2617 _ndependen_ variable: 82 83 84 85 86 87

Standard T Prob.

Parameter Estimate Error Value Level

Intercept* 87.6083 40.941 2.13986 .08533

Slope -19.8174 9.2159 -2.15035 .08421

* NOTE: The _ntercept is equal to Log a.

Analysis of Variance

Seurce Sum of Squares Df Mean Square F-Ratio Prob. Level

Mode[ 1.52_1355 1 1.5231255 4.623994 .08421

Error 1.6469911 5 .3293982

_otai (Corr.) 3.1701266 6

Correlation Coefficient = -0.693156

Stnd. Error of Es_. = 0.573932

R-squared 48.05 percent
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main oxidizer valve subsystem
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Regression Analysis - Multiplicative model: Y - aX'b

Dependent variable: 2.0908 2.1028 1.5114 Independent variable: 83 84 $5 86 87 S8

Standard T Prob.

Parameter Estimate Error Value Level

intercept* 196.247 40.9927 4.78737 .00873

Slope -44.1576 9.21523 -4.79181 .00870

- NOTE: The Intercept is equal to Log a.

Analysis of Variance
......................

source Sum of Squares Df Mean Square

Model 4.670341 1 4.670341

Error .8135986 4 .2033996

F-Ratio Prob. Level

22.96140 .00870

Total (Corr.) 5.4839396

Co.__la_on Coefficient = -0.922843

Stnd. Error of Est. = 0.450999
R-squared = 85.16 percent
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Reciprocal Model

The reciprocal model is another model with the feature

that will not generate a fitted value below zero since the

problem data is non-negative. It can be made linear with a

simple reciprocal transformation. The deterministic portion
of the model is:

I
_= ------------

The application if this model regresses I/Y on t. In

contrast to the above two models, a positive (downward) trend

is indicated if _, > 0. This model is not applicable if there

are zero problem reports in a given time period.

The two examples below employ a reciprocal model. The

data for the SSME combustion chamber subsystem shows again an

adverse pattern followed by a positive one. There is an

increasing trend from 1979 to 1983. A reciprocal model fit to

the data beginning in 1983 gives marginal statistical

evidence of a positive trend. The extreme value in 1986 has

substantial influence on the goodness of the fit. Removing

this observation and fitting again a reciprocal model

beginning in 1983 the coefficient of determination, r 2,

increases from .68 to .87. An extreme observation (or

outlier) can dramatically effect the quality of the fitted
model.

The second example, the nozzle assembly subsystem, has a

pattern that appears decreasing from 1979 to 1988 with two

outlying observations. There is no adverse trend in the early

years. Fitting a reciprocal model beginning in 1979 yields

statistical evidence of a positive (downward) trend. The p-

value is less than .01. Deleting the 1983 and 1984

observations, the coefficient of determination, r _, goes from

.71 to .84 for the reciprocal model. Also given below is a

regression summary of an exponential model fit to the data

beginning in 1983.
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Regression Analysis - Reciprocal model: 1/Y = a+bX

Dependent variable: 18.46883 8.831693 8. Independent variable: 83 84 85 86 87 88

Standard T Prob.

Parameter Estimate Error Value Level

Intercept -9.51288 3.35553 -2.83499 .04711

Slope 0.I14038 0.0392381 2.90631 .04384

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model .2275812 1 .2275812 8.446613 .04384

Error .1077739 4 .0269435

Total (Corr.) .3353551

Correlation Coefficient = 0.823788

Stnd. Error of Est. = 0.154145

R-squared 67.86 percent
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Regression Analysis - Reciprocal model: I/Y = a+bX

Dependent variable: 28.98 28.35 19.62 15 Independent variable: 79 80 81 82 83 84
................................................................................

Standard T Prob.

Parameter Estimate Error Value Level

Intercept -2.92075 0.692515 -4.2176 .00293

Slope 0.0364916 8.28869E-3 4.40258 .00228

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model .109860 1 .109860 19.38268 .00228

Error .0453435 8 .0056679

Total (Corr.) .1552035 9

Correlation Coefficient - 0.841335

Stnd. Error of Est. - 0.0752857

R-squared - 70.78 percent

Regression Analysis - Exponential model: Y - exp(a+bX)

Dependent variable: 46.69478 30.70065 7. Independent variable: 83 84 85 86 87 88

Standard T Prob.

Parameter Estimate Error Value Level

Intercept 54.7792 7.47381 7.32949 .00184

Slope -0.615199 0.0873955 -7.03925 .00215

Analysis of Variance

Sc_rce Sum of Squares Df Mean Square F-Ratio Prob. Level

Model 6.623225 1 6.623225 49.55105 .00215

Error .5346587 4 .1336647

Total (Corr.) 7.1578840 5

Correlation Coefficient - -0.961928

Stnd. Error of Est. - 0.365602

VI-16
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Straight Line Model

The straight line model, even though simple, can be

useful and informative in a couple of situations. In

instances of an increasing trend the straight line model is

effective in providing statistical support. For example, a

straight line model applied to the early years data (1979-

1983) of the heat exchanger subsystem indicates a significant

increasing trend. The scatter plot for intermittent sparking
in the igniters subsysytem also shows a hint of an adverse

pattern for 1979 to 1982. Refer to the scatter plots and

regression summaries below to observe this. Again we see

that curious pattern of increasing measurements through the
first few years.

A second situation arises when the data appear to be
random, but, the level of the data is close to zero. A

straight line fit with both slope and intercept zero could

then be viewed as desirable. The regression summary contains

calculations for the test of hypothesis that the intercept is

zero, as well as doing so for the slope. So, when the data

are close to zero, a random scattering might indicate a

positive situation. A great deal of engineering assessment

and judgement is required.

Referring back to the intermittent sparking in the

igniters subsystem, the regression summary is for a straight

line fit from 1983 to 1988. Note that the r 2 value is very

low, .035, indicating a random pattern. The test of

hypotheses that both the slope and intercept are zero would

be accepted. This is seen with a large p-value for both

tests. The two scatter plots following the igniters subsystem

data summary have the appearance of a random scattering of

the data. The regression summaries for a straight line fit

beginning in 1979 for both the oxidizer preburner erosion

data and the combustion subsystem leakage data had a slope

and intercept that were not measurably different from zero.

A data summary for a broken main fuel valve is also

given. This data set indicates a possible decreasing trend or

at least, if the first one or two observations are deleted, a

f]at line through the remaining data. Note again that the

straight line model for the data from 1981 to 1988 would

conclude no measurable deviation from zero for both the slope

and intercept. An exponential model fit to the full range of

the data points to marginal acceptance of a positive trend,

as seen in the corresponding regression summary.
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Analysis of Variance

................................................................................

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model 2.215077 I 2.215077 12,37455 .03898

Error .5370077 3 .1790025

................................................................................

Total (Corr.) 2.75Z0843 4

Correlation CoeFficient = 0.897147

Stnd. Error of Est = 0.423087

R-squared = 80.49 percent
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Regression Analysis - Linear model: Y - a+bX

................................................................................

Dependent variable: .09 0 .189 0 0 .194 Independent variable: 83 84 85 86 87 88
................................................................................

Standard T Prob.

Parameter Estimate Error Value Level

.................................................................................

Intercept -0.729752 2.10973 -0.345898 .74685

Slope 9.45714E-3 0.0246703 0.383341 .72097

................................................................................

Analysis of Variance

................................................................................

Source Sum of Squares Df Mean Square F-Ratio Prob. Level

Model .0015652 1 .0015652 .146950 .72097

Error .0426037 4 .0106509

................................................................................

Total (Corr.) .0441688 5

Correlation Coefficient - 0.188244 R-squared = 3.54 percent

Stnd. Error of Est. = 0.103203
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main fuel valve subsystem:broken
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Regression Analysis - Linear model: Y = a+bX
................................................................................

Dependent variable: .3114 .2756 .3485 0 Independent variable: 81 82 83 84 85 86
................................................................................

Standard T Prob.

Parameter Estimate Error Value Level

................................................................................

Intercept 1.4636 2.72275 0.537547 .61023

Slope -0.0152345 0.03221 -0.472974 .65295

Analysis of Variance

Source Sum cf Squares Df Mean Square F-Ratio Prob. Level

Mcdel .0097478 1 .0097478 .223705 .65295

Error .2614465 6 .0435744

Total (Corr.) .2711943 7

Correlation Coefficient = -0.189589 R-squared = 3.59 percent

Stnd. Error of Est. - 0.208745

T_tal (Corr.) 7.2307572

Correlation Coefficient = -0.581699

Stnd. Error of Est. = 0.77331

R-squared = 33.84 percent
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Kendall's

Kendall's rank correlation coefficient is a most

efficient distribution free or nonparametric measure to test

for linear trend. In applying Kendall's x we will be testing

a series of data for randomness, the null hypothesis, against

a decreasing trend, the alternative hypothesis. Application

of this procedure involves comparing the values of the time

series in terms of larger or smaller. Whereas a parametric

procedure, like regression, uses the recorded values in

computations, the nonparametric approach only notes greater

than or less than from the observed values and, hence, is not

influenced by extreme values.

Given a series y, ,Y2,. • .,y_,let us count the number of

cases in which yj > YL for j > i. Call this number P. There

are n(n-l)/2 pairs for comparison. The expected number in a

random series is n(n-l)/4. The excess of P over this number,

if significant, suggests a rising trend; a deficiency

suggests a falling trend. The rank correlation coefficient,

known as Kendall's T , is then:

4-----------I
_(_-_)

This coefficient may vary from -I to +I. Its expected value

in a random series is zero, and its variance is given by:

"v.r "_ = ai_,.(__l. ) •

In working with the normalized problem data there can be

one or more values in the series that equal zero. The only

possible occurence of equal values are at zero. The above
results for the calculation of _ and for the variance are

based on no tied values in the data. However, it is

appropriate to use these computations if we regard successive

zero values as a continuing positive trend. There are

adjustments to the variance computation for tied values; but,

with our only possible tied values at zero, we will count

successive zero values in favor of a positive (downward)

trend. So, the value for P will be tabulated as described in

the above paragraph where n is the number of values in the

series. We will not disregard multiple values of zero, but

regard them as desirable.

The distribution of _ tends rapidly to normality. Hence, the

test statistic under the hypothesis of randomness will be a

standard normal variable. If n is less than i0, the

calculation of T will use 4(P+I) instead of 4P. This is a

i

"V"
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continuity correction factor used when testing randomness
versus decreasing trend. The calculated statistic will then
be:

where Z represents a standard normal variable. If this value
is less than -2.33 that will be evidence of a decreasing
trend. This is a significance level of .01.

Let's apply this procedure to the nozzle subsystem data
and to the oxidizer preburner contamination data. The scatter
plots are seen below. For the nozzle subsystem, which was
previeus!y modeled with a reciprocal model, the calculated
value for _ is -.644, and the calculated value for the Z
statistic: is -2.59. This corresponds to our previous analysis
which concluded a significant downward trend. The p-value for
this test is less than .01. The scatter plot for the oxidizer
preburner contamination reveals more of a random scattering
than decreasing pattern. Note that there are five zero
values. Successive zero values are regarded as positive
(downward) in our application of Kendall's _. The calculated
value of _ is -.422 and the calculated Z is -1.70, not
evidence enough of a positive trend. If you cover up the 1984
observation, there is some hint of a trend. Kendall's _ is
one of the, if not the, most efficient distribution free
approaches for detecting trend.
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REMARKS

The foregoing examples are enough to show that trend
fitting and trend estimation are very far from being a purely
mechanical process which can be handed over regardless to an
electronic computer. There is great scope, even a necessity,
for personal judgement. To a scientist it is felt as a
departure from correctness to incorporate subjective elements
into his work. The student of time series cannot be a purist
in that sense. What he can do, of course, is to make
available the data on which he worked and explain
unambiguously how he has treated them.

There are other approaches and considerations, such as
increasing the sample sizes with semiannual or quarterly
problem reports and time to failure patterns, that could be
investigated. It is possible that some experimental design
ideas could be used to identify significant factors in
problem reporting. Further exploration of the data bases for
problem reporting to address these and other issues seems to
be the next step in developing trending approaches.
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APPENDIX

The logarithmic transformation used with the exponential
and power models needs modification because it is undefined
at zero. If R denotes the number of problem reports in a
given time period and m denotes the number of seconds of
engine firing, one plausible way of modifying the
transformation is to define a transform as

We would then choose the constant _ so that the expected
value of the above quantity is as nearly as possible _e_%o4>
where S denotes the true fraction of problems per second.

Write R =Me, _-_ , where

!

E is the expected value operator and Z is of order one in

probability as m--_. Then

m

I

where we have neglected terms of smaller order than i/m in

probability. As @-+o and m--_ in such a way that me remains

constant the above quantity is zero as _ approaches 1/2.

VI-26


