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ABSTRACT

NASA Headquarters is emphasizing that statistics has an
important role in quality control and reliability.
Consequently, 'Trend Analysis Techniques' (NASA-STD-8070.5)
recommended a variety of statistical methodologies that could
be applied to time series data. The major goal of this report
or 'working handbook', using data from the MSFC Problem
Assessment System, is to illustrate some of the techniques in
the NASA standard, some different techniques, and to notice
patterns of data. Techniques for trend estimation used are:
regression (exponential, power, reciprocal, straight line)
and Kendall's rank correlation coefficient. The important
details of a statistical strategy for estimating a trend
coimponant are covered in the examples. However, careful
analysis and interpretation is necessary because of small
samples and frequent zero problem reports in a given time
period. Further investigations to deal with these issues are
being conducted.
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INTRODUCTION

The purpose of this report or 'working handbook' is to
discuss strategies and methods for statistical evaluation of
trend for problem/failure data. Statistical analy51s provides
a tool to add insight and complement engineering judgement.
Much of this work elaborates and clarifies the application of
approaches contained in 'Trend Analysis Techniques' ( NASA-
STD-8070.5 ). Problem trend analysis tracks and categorizes
problems over time. The problems may be for an entire systemn,
subsystem or any other appropriate level of aggregation.

Techniques useful for statlstlcally measuring a trend
component will be illustrated in the next section. All
examples contained in this report use data supplied by the
MSFC Problem Assessment System.

There are two basic techniques for trend analysis in
this report. One is regression and the second is a
distributicn free rank correlation method. Regression
analysis is a statistical tool that utilizes the relation
between two or more quantitative variables so that one
variable can be predlcted from the other, or others. A
regression model is a formal means of expressing the two
essential ingredients of a statistical relation:

1. A tendency of the dependent variable Y to vary with
the independent variable or variables in a systematic
way.

2. A scattering of the observations around the curve of
statistical relationship.

We are interested in using a regression model to perform
a test of hypothesis for trend. This requires that the
experimenter postulate a probability model, commonly the
normal distribution, to be used in the development of the
hypothesis testing procedure. On the other hand, the
distribution free approach eliminates spec1f1catlon of an
underlying probability distribution. The rank correlation
coefficient, known as Kendall's tau (T ), is used in the
examples below as the distribution free basis for determining
the existence of trend. For this method there are no
assumptions about the form of the probability distribution
involved and ther are minimal calculations.

METHODS AND EXAMPLES
The mechanics of applying the regression and rank

correlation methods for problem/failure data will be covered
through examples given below. The stategy for the regrassion
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approach will be as follows: examine a scatter plot of the
data, fit an appropriate model to the observed data, perform
a test of hypothesis for trend, and, if appropriate, generate
a prediction interval for a future observation. In situations
where there appears to be a positive (downward) trend the
most advisable regression models are: exponential model,
power (or multiplicative) model, or a reciprocal model. These
models possess the desirable feature that the predicted
values for the number of (normalized) problems will never be
less than zero. The examples using the reciprocal model also
illustrate the influence of extreme (or outlying)
observations. In the case of an increasing trend a straight
line model is also considered. Finally, Kendall's rank
correlation coefficient will be adapted and discussed as an
alternative means to perform a test of hypothesis for trend.

Fifteen sets of data on the SSME were selected from the
problem assessment system. Each data set was normalized to
give the rate of problem reports per 10,000 seconds of engine
test firing time. Some data was at the system level, some at
the subsystem level, and some at the failure mode level.
These data sets are used to illustrate the issues and details
of applying the above mentioned approaches. You will notice a
common pattern in many of the data sets. There is an apparent
adverse (increasing) trend from 1979 through 1982 plus or
minus one year and then a positive trend from that point
through 1988. This pattern appears in roughly 2/3 of the
example data sets. In instances of an adverse trend followed
by a positive trend, a model for the regression approach will
be fit to the portion of the series exhibiting the positive
trend, that is, the most recent six to seven years. In
applying and interpreting the statistics one needs to rely on
good judgement and sound engineering considerations. As you
look through the examples notice similarities and
dissimilarities in the data patterns. Statistical procedures
cannot be applied in a vacuumn.

Exponential Model

The exponential model is intrinsically linear. It is
made linear by using a logarithmic transformation. Thus,
applying an exponential model means that we will be
regressing the natural logarithm of Y on time. The
deterministic part of the model is:

Y =8, e_?.‘t

where: Y is the number of normalized problem reports,

/
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2,and £ are parameters, and
t is a constant denoting the time period.

A positive (downward) trend is indicated ifp3,< 0. Thus,
if an exponential model is fit to the data, the statistical
justification for claiming a positive trend will be to
perform a test of hypothes1s of H : B, > 0 agalnst H,: B < 0.
This presumes a flat or 1ncrea51ng trend in the null
hypothesis in hopes that we have evidence to reject it in
favor of the alternative hypothesis, which is a positive
(downward) trend.

An important note is that the exponential model, through
the lngarithmic transformation, cannot be applied when there
is a zevro value in the normallzed data. In instances where
there are no problem reports in a time period and you wish to
use the exponential model the logarithmic transformation
needs tc be modified. Under general conditions it is
reasonable to approximate the number of normalized problem
reports in the transformed data by using .5 as the number of
problems before norma1121ng and transforming. So, if there
are zero problem reports in a time period it will be replaced
with .5 for the purpose of fitting the exponential model.

This adjustment is relevant only for the logarithmic
transformation. A justification for this modification is
given in the appendix.

On the next several pages appear scatter plots and
analysis summaries. The scatter plots display the number of
normalized problems as asterisks (vertical axis) to the year
(horizontal axis). For these five sets of data we observe the
pattern of an apparent adverse trend for the first three to
four years and then an apparent positive trend. These scatter
plots were generated with the PC software package NWA Quality
Analyst.

For each of these sets of data an exponential model
provided a good fit to the data. The beginning time period
for the fitted model varied from 1981 to 1983 and ended with
the 1988 data. The regression analysis summaries below the
scatter plots indicate the beginning time period. All of the
computational work is performed with the transformed data.
The PC software package Statgraphlcs generated the given
regression analysis summaries.

Inspection of the coefficient of determination, ra,
value for each data set indicates a strong association
between the normalized problems and year. Further evaluation
of the appropriateness of the fitted model by inspecting a

VI-3



graph of the fitted curve together with the observed data or
other means may be easily carried out using Statgraphics or
other software package. The statistical justification for
claiming a positive trend, however, lies in the hypothesis
testing procedure. Fortunately, the Statgraphics regression
summary contains results of all necessary calculations. To
conclude acceptance of B, < 0 focus attention on what the
regression summary labels "prob. value". For regression with
two coefficients, the value of interest appears twice, once
on the row identified by the slope and once in the analysis
of variance table. For our purpose divide this number by two.
This value is the observed significance level of the test,
often called the p-value. It represents the likelihood, based
on the observed data, of claiming a positive trend when there
is actually not a positive trend. Thus, we want the p-value
to be small, say less than .025 or possibly less than .01.
Note that this value is less than .01 for each of the five
data sets. The r? value and (twice) the p-value are circled
on the following summaries.

Following the hypothesis test for trend, we may wish to
forecast (or predict) a new value. We can then compare the
predicted value with the new value when it becomes available
to assess a continuing trend. For example, we may predict the
rate of problems (i.e. the normalized data) for 1989 and
compare with the first quarter rate when it becomes
available. The predicted value comes from the fitted equation
and then prediction limits are constructed. The 95%
prediction limits will roughly be the fitted value plus or
minus two standard deviations of the predicted value. The
standard deviation is given by:

’ W-I)
\/MSE{H—-& + P {
The value n is the number of data points used in the model
fit, and MSE is the mean square error that appears in the
analysis of variance portion of the printout. Note that the

sample size is incorporated in the prediction limits through
the standard deviation.

For example, the data for the SSME main combustion

system is:
year : 83 84 85 86 87 88

normalized
problems: 112.21 78.64 29.98 47.83 16.44 14.48

The predicted value for t=89 is 8.95. Through March 1989 the
normalized value of problem reports is 11.88. The upper 95%
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prediction limit is 25.82 and the upper 68% prediction limit
(roughly one standard deviation) is 15.96. The calculations
were done with the transformed data but expressed in terms of
the original units.

Regardless of the regression model chosen, the strategy
is the same. Consequently, the other regression models that
have been useful, the power model, the reciprocal model, and
the straight line model, will only be briefly discussed and
examples presented. The key statistical elememt is the test
of hypothesis for the 'slope' parameter. This is the
justification for the claim of a measurable association
between problems and year.

The five sets of data that were used as examples of
fitting an exponential model follow on the next several
pages.
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78 80 82 84 86 88
Regression Analysis - Exponential model: Y = exp(a+bX)
Dependent variable: 112.2068 78.64413 29 Independent variable: 83 84 85 86 87 8s

Standard T Prob.
Parameter Estimate Error Value Level
Intercept 38.9737 6.88526 5.66046 .00480
Slope ~-0.413287 0.0805133 -5.13315 . 00682
Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. lLevel
Model 2.989101 1 2.989101 26.34922 00682
Error .4537670 4 1134418
Total (Corr.) J.4428682 5
Correlation Coefficient = -0.931773 R-squared = (86.82)percent

Stnd. Error of Est. = 0.336811
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fuel preburner injector:contamination
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Regression Analysis - Exponential model:

Y = exp(a+bX)

Standard T Prob
Parameter Estimate Error Value Level
Intercept 37.4537 5.74436 6.52008 : .00062
Slope -0.44566 0.0679556 -6.5581 . 00060

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Medel 8.341733 1 8.341733 43.00874 <§00§§ >
Error 1.1637263 6 .1939544
Total (Corr.) 9.5054592 7

Correlation Coefficient = -0.936789
Stnd. Error of Est. = 0.440403
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fuel preburner injector:dent/crack

Fom——— - Frmmmm——e e Fommmm————-— P m——naa
! |
| * |
[ * * |
+ +
| I
l |
I * |
+ +
| * |
| |
I |
+ +
| * '
| .

i S
! .
fom——————— fm——— e e e L L LR L ————
78 80 82 84 86 88

Dependent variable: 4.134282 4.53009 1.2 Indepandent variable: 82 83 84 85 86 87

Standard T Prob.
Parameter Estimate Exror Value Level
Intercept 35.4645 9.73999 3.64112 ’ .01489
Slope =-0.41411 0.114556 -3.6149

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model 4.801630 1 4.801630 13.06749

Error 1.8372425 5 3674485 )

Total (Corr.) 6.6388723 6

Correlation Coefficient = -0.850447 R-squared = percent

Stnd. Error of Est. = 0.606175
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fuel preburner subsystem
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Regression Analysis - Exponential model: Y = exp(a+bX)

Standard T Prob.
Parameter Estimate Error Value Level
Intercept 42.9973 9.20094 4.67314 .00547
Slope ~0.487541 0.108216 -4.50524

Source Sum of Squares Df Mean Square F-Ratio Prob. egg%\
Mcedel 6.655493 1 6.655493 20.29720 0063
Ervror 1.6395101 5 .3279020 )

Total (Corr.) ' 8.2950031 6

Correlation Coefficient = -0.89574 R-squared = percent

stnd. Error of Est. = 0.572627
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main injector subsystem
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Regression Analysis - Exponential model: Y = exp (a+bX)

- 8 B - -~ > — = - —— > = " = -

-~ — - 8 -

Standard T Prob
Parameter Estimate Error Value Level
Intercept 30.6808 8.45004 3.63085 . .01505
Slope -0.33945 0.0993847 ~3.41551 (01893

e e o o o % o % s 0 it 0 om0 o b o s T Y e " - o " = D . D P h o D D A W e S v e s B b T o

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Mcdel 3.226328 1 3.226328 11.66572
Error 1.3828243 5 .2765649

Total (Corr.) 4.6091528 [

Correlation Coefficient = -0.83665 R-squared = percent

Stnd. Error of Est. = 0.525894
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Power Model

This model is also intrinsically linear and uses the
logarithmic transformation just as the exponential model. I*
differs in that this model uses the logarithm of both the
independent and dependent variables. The regression will be
for the natural logarithm of Y on the natural logarithm of
time. The deterministic portion of the model is:

v=p b

As with the exponential model, a positive (downward)
trend is claimed if 3 < 0. Since the logarithmic
transformation is used, the same modification in the presence
of no proublem reports in a time period as that used with the
exponential is appropriate.

The mechanics of application are the same as with the
exponential model. In the two examples below, there is some
evidence of an increasing pattern followed by a decreasing
trend. For the example of leakage of the HPFTP l1ift-off seal
an adverse pattern exists from 1979 to 1983. A power (or
multiplicative) model is then fit from 1982 to 1988. The
coefficient of determination is .48 and, consequently, the
test of hypothesis does not conclude a positive trend. Visual
inspection of the scatter plot causes some concern by
noticing the increase from 1986 to 1988. However, the
normalized values are quite small, so there would be a good
deal of (engineering) judgement in the interpretation. The
second example, the main oxidizer valve subsysytem, shows an
erratic pattern from 1979 to 1983 and then a decreasing
pattern through 1988. There is an excellent fit for the
decreasing portion of the data with strong indication of a
significant downward trend (p-value less than .01).
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HPFTP lift-off seal:leakage
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Regression Analysis - Multiplicative model: Y = aX~b

- e o i e 2 o e e e

Dependent variable: 2.2049 .6969 1.2617 Independent variable: 82 83 84 85 86 87

._-—....--—--—__—____.__...._-_--_-———--—--———————_-_____-..-__-___-_--—___—-—-—-————.

Standard T Prob
Parameter Estimate Error Value Level
Intercept» 87.6083 40.941 2.13986 .08533
Slaope -19.8174 9.2159 -2.15035 .08421
* NOTZ: The Intercept is equal to Log a.

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Mode ! 1.5231355 1 1.5231385 4.623994 .08421
Errcre 1.6469911 5 .3293982
Totai (Corr.) 3.17012656 6
Correlation Coefficient = -0.693156 R-squared = 48.05 percent

stnd. Error of Est. = 0.573932
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main oxidizer valve subsystem
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Regression Analysis - Multiplicative model: Y = aX"b
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Cependent variable: 2.0908 2.1028 1.5114 Independent variable: 83 84 35 86 87 38

Standard T Prob.
Parameter Estimate Error Value Level
Intercept* 196.247 40.9927 4.78737 .00873
Slope -44.1576 9.21523 -4.79181 .00870
* NOTZ: The Intercept is equal to Log a.

Analysis of Variance

Scurce Sum of Sguares Df Mean Square F-Ratic Prob. Level
Model 4.670341 1 4.670341 22.96140 .Qo870
Error .8135986 4 .2033996
Total (Corr.) 5.4839396 5
Correlation Coefficient = ~0.922843 R-squared = 85.16 percent

Stnd. Error of Est. = 0.4509%99
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Reciprocal Model

The reciprocal model is another model with the feature
that will not generate a fitted value below zero since the
problem data is non-negative. It can be made linear with a
simple reciprocal transformation. The deterministic portion
of the model is:

1
Y pPot Bt

The application if this model regresses 1/Y on t. In
contrast to the above two models, a positive (downward) trend
is indicated if P, > 0. This model is not applicable if there
are zero problem reports in a given time period.

The two examples below employ a reciprocal model. The
data for the SSME combustion chamber subsystem shows again an
adverse pattern followed by a positive one. There is an
increasing trend from 1979 to 1983. A reciprocal model fit to
the data beginning in 1983 gives marginal statistical
evidence of a positive trend. The extreme value in 1986 has
substantial influence on the goodness of the fit. Removing
this observation and fitting again a reciprocal model
beginning in 1983 the coefficient of determination, r?,
increases from .68 to .87. An extreme observation (or
outlier) can dramatically effect the quality of the fitted
model.

The second example, the nozzle assembly subsystem, has a
pattern that appears decreasing from 1979 to 1988 with two
outlying observations. There is no adverse trend in the early
years. Fitting a reciprocal model beginning in 1979 yields
statistical evidence of a positive (downward) trend. The p-
value is less than .01l. Deleting the 1983 and 1984
observations, the coefficient of determination, r?, goes from
.71 to .84 for the reciprocal model. Also given below is a
regression summary of an exponential model fit to the data
beginning in 1983.
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main combustion chamber subsystem
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Regression Analysis -~ Reciprocal model: 1/Y = a+bX

88

Standard T
Parameter Estimate Error Value
Intercept -3.51288 3.35553 -2.83499
Slope 0.114038 0.0392381 2.90631

Analysis of Variance

saurce Sum of Squares Df Mean Square
Mcdel .2275812 1 .2275812
grror .1077739 4 .0269435
Total (Corr.) .3353551 5
correlation Ceoefficient = 0.823788 R-squared

tnd. Error of Est. = 0.164145
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Comment: nozzle assembly subsystem
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Regression Analysis - Reciprocal model: 1/Y = a+bX
Dependent variable: 28.98 28.35 19.62 15 Independent variable: 79 80 81 82 83 84
Standard T Prob
Parameter Estimate Error Value Level
Intercept ~-2.92075 0.692515 -4.2176 . .00293
Slope 0.0364%916 8.28869E-3 4.40258 .00228
Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model .109860 1 .109860 19.38268 .00228
Error .0453435 8 .0056679
Tctal (Corr.) .1552035 9

Correlation Coefficient = 0.841335 R-squared = 70.78 percent

stnd. Error of Est. = 0,0752857

Regression Analysis - Exponential model: Y = exp(a+bX)

T S e A 4 > e P 4% - A S Y - — - > " - > - ———

Standard T Prob
Parameter Estimate Error Value Level
Intercept 54.7792 7.47381 7.32949 .00184
Slope ~-0.61519¢ 0.0873955 =-7.03925 .00215

e o o e e s ot e o i - T - S = > TP = e - —— - Y T 1 = . " 4o = " S 4 = o o o

Scurce Sun of Squares Df Mean Square F-Ratio Prob. Level
Mcdel 6.623225 1 6.623225 49.55105 .00215
Error .5346587 4 .1336647

Total (Corr.) 7.1578840 5

Correlation Coefficient = -0.961928 R~squared = 92.53 percent

Stnd. Error of Est. = (0,365602
VI-16
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Straight Line Model

The straight line model, even though simple, can be
useful and informative in a couple of situations. In
instances of an increasing trend the straight line model is
effective in providing statistical support. For example, a
straight line model applied to the early years data (1979~
1983) of the heat exchanger subsystem indicates a significant
increasing trend. The scatter plot for intermittent sparking
in the igniters subsysytem also shows a hint of an adverse
pattern for 1979 to 1982. Refer to the scatter plots and
regression summaries below to observe this. Again we see
that curious pattern of increasing measurements through the
first few years.

A second situation arises when the data appear to be
random, but, the level of the data is close to zero. A
straight line fit with both slope and intercept zero could
then be viewed as desirable. The regression summary contains
calculations for the test of hypothesis that the intercept is
zero, as well as doing so for the slope. So, when the data
are close to zero, a random scattering might indicate a
positive situation. A great deal of engineering assessment
and judgement is required.

Referring back to the intermittent sparking in the
igniters subsystem, the regression summary is for a straight
line fit from 1983 to 1988. Note that the r?® value is very
low, .035, indicating a random pattern. The test of
hypotheses that both the slope and intercept are zero would
be accepted. This is seen with a large p-value for both
tests. The two scatter plots following the igniters subsystem
data summary have the appearance of a random scattering of
the data. The regression summaries for a straight line fit
beginning in 1979 for both the oxidizer preburner erosion
data and the combustion subsystem leakage data had a slope
and intercept that were not measurably different from zero.

A data summary for a broken main fuel valve is also
given. This data set indicates a possible decreasing trend or
at least, if the first one or two observations are deleted, a
flat line through the remaining data. Note again that the
straight line model for the data from 1981 to 1988 would
conclude no measurable deviation from zero for both the slope
and intercept. An exponential model fit to the full range of
the data points to marginal acceptance of a positive trend,
as seen in the corresponding regression summary.
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heat exchanger subsystem
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Regression Analysis - Linear model: Y = a+bX

Standard T Prob.
Parameter Estimate gError Value Level
Intercept -36.7937 10.8388 -3.39463 .04263
Slope 0.470646 0.133792 3.51775 .03898

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Mode) 2.215077 1 2.215077 12.37455 .03898
Error .5370077 3 .1790026
Total (Corr.) 2.7520843 4
Correlation Coefficient = 0.897147 R-squared = 80.49 percent

Stnd. Error of Est. = 0.423087
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igniters subsystem:intermittent sparking RTV voids
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Reyression Analysis - Linear model: Y = a+bX

Dependent variable: .09 0 .189 0 0 .194 Independent variable: 83 84 85 86 87 88

Standard T Prob.

Parametar Estimate Error Value Level
Intercergt -0.729752 2.10973 -0.345898 .74685
Slope 9.45714E-3 0.6246703 0.383341 .72097

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model .0015652 1 .0015652 .146950 .72097
Error .0426037 4 .0106509
Total (Corr.) .0441688 5
Correlation Coefficient = 0.188244 R~squared = 3.54 percent

Stnd. Error of Est. = 0.103203

OF POOR QUALITY
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oxidizer preburner:erosion
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main combustion chamber subsystem:leakage
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main fuel valve subsystem:brcken

trmm tormm e m - femmm——— - $ommm——- -+
+ +
| * {
+ +
| I
l
+
| *
i *
| * * *
+ x * ¥* * T
R R R bt kel Skt e i R Tl etk o
78 80 82 84 86 88
Regression Analysis - Linear model: Y = a+bX
Dependent variable: .3114 .2756 .3485 0 Independent variable: 81 82 83 84 85 86
Standard T Prob
Parameter Estimate Error Value Level
Intercept 1.4636 2.72275 0.537547 .61023
Slope ~0.0152345 0.03221 ~0.472974 65295
Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Mcdel .0097478 1 .0097478 .223705 .65295
Error .2614465 ] .0435744
Total (Corr.) .2711943 7

Correlation Coefficient = -0.189589
Stnd. Error of Est.

= 0.208745

Regression Analysis - Exponential model: Y = exp (a+bX)

R-squared =

3.59 percent

Slove

2.52 .7 .31 .28 .35 Independent var
Standard T
Estimate Error Value
13.3621 7.11328 1.87847
-0.172212 0.0851386 -2.02272

Source

Sum of Squares Df Mean Square

iable: 75 80 81 82 83 84
Prob.
Level
09713
07773
F-Ratio Prob. Level
4.091409 .07773

Correlation
stnd. Error

Coefficient = ~0.,581699
of Est.

2.4466945 1 2.4466945
4.7840627 8 .5980078
7.2307572 9

R-squared =
= 0.77331

VI-21

33.84 percent

19

ORIGINAL Pans i
OF POOR QUALITY



Kendall's T

Kendall's rank correlation coefficient is a most
efficient distribution free or nonparametric measure to test
for linear trend. In applying Kendall's T we will be testing
a series of data for randomness, the null hypothesis, against
a decreasing trend, the alternative hypothesis. Application
of this procedure involves comparing the values of the time
series in terms of larger or smaller. Whereas a parametric
procedure, like regression, uses the recorded values in
computations, the nonparametric approach only notes greater
than or less than from the observed values and, hence, is not
influenced by extreme values.

Given a series y, ,¥,,. - .,yn,let us count the number of
cases in which y;> y_ for j > i. Call this number P. There
are n(n-1)/2 pairs for comparison. The expected number in a
random series is n(n-1)/4. The excess of P over this number,
if significant, suggests a rising trend; a deficiency
suggests a falling trend. The rank correlation coefficient,
known as Kendall's t , is then:

4-F

n{n-1) ‘
This coefficient may vary from -1 to +1. Its expected value
in a random series is zero, and its variance is given by:

2(2n+5)
Vay T = - .

Ann-1)

In working with the normalized problem data there can be
one or more values in the series that equal zero. The only
possible occurence of equal values are at zero. The above
results for the calculation of T and for the variance are
based on no tied values in the data. However, it is
appropriate to use these computations if we regard successive
zero values as a continuing positive trend. There are
adjustments to the variance computation for tied values; but,
with our only possible tied values at zero, we will count
successive zero values in favor of a positive (downward)
trend. So, the value for P will be tabulated as described in
the above paragraph where n is the number of values in the
series. We will not disregard multiple values of zero, but
regard them as desirable.

The distribution of t tends rapidly to normality. Hence, the
test statistic under the hypothesis of randomness will be a
standard normal variable. If n is less than 10, the
calculation of T will use 4(P+1) instead of 4P. This is a

VIi-22



continuity correction factor used when testing randomness
versus decreasing trend. The calculated statistic will then
be:

T

JVa.r T

where 2 represents a standard normal variable. If this value
is less than -2.33 that will be evidence of a decreasing
trend. This is a significance level of .01.

z =

Let's apply this procedure to the nozzle subsystem data
and to the oxidizer preburner contamination data. The scatter
plots are seen below. For the nozzle subsystem, which was
previcusly modeled with a reciprocal model, the calculated
value for T is -~.644, and the calculated value for the Z
statistic is -2.59. This corresponds to our previous analysis
which concluded a significant downward trend. The p-value for
this test is less than .01. The scatter plot for the oxidizer
preburner contamination reveals more of a random scattering
than decreasing pattern. Note that there are five zero
values. Successive zero values are regarded as positive
(downward) in our application of Kendall's T. The calculated
value of T is -.422 and the calculated Z is -1.70, not
evidence enough of a positive trend. If you cover up the 1984
observation, there is some hint of a trend. Kendall's T 1is
one of the, if not the, most efficient distribution free
approaches for detecting trend.
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REMARKS

The foregoing examples are enough to show that trend
fitting and trend estimation are very far from being a purely
mechanical process which can be handed over regardless to an
electronic computer. There is great scope, even a necessity,
for personal judgement. To a scientist it is felt as a
departure from correctness to incorporate subjective elements
into his work. The student of time series cannot be a purist
in that sense. What he can do, of course, is to make
available the data on which he worked and explain
unampbiguously how he has treated them.

There are other approaches and considerations, such as
increasing the sample sizes with semiannual or quarterly
problem reports and time to failure patterns, that could be
investigated. It is possible that some experimental design
ideas could be used to identify significant factors in
problem reporting. Further exploration of the data bases for
problem reporting to address these and other issues seems to
be the next step in developing trending approaches.
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APPENDIX

The logarithmic transformation used with the exponential
and power models needs modification because it is undefined
at zero. If R denotes the number of problem reports in a
given time period and m denotes the number of seconds of
engine firing, one plausible way of modifying the
transformation is to define a transform as

QK<B—;—O—“— % 1c"‘>

We would then choose the constant a so that the expected
value of the above quantity is as nearly as possible In (& = 10%)
where & denotes the true fraction of problems per seconé.

Write R =me + Zym , where

E(2)=o0 E(z*) = eli-8),

!

E is the expected value operator and Z is of order one in
probability as m — . Then

) ~ D, . z
EE'Q“(E_M?\A *‘O"\){ = An(ox0t) = ,QM{‘ + <%\‘W +t Q> E

2M:’.62
|
B a - 3 Ci-8)
m &

where we have neglected terms of smaller order than 1/m in
probability. As €20 and m-—0% in such a way that m& remains
constant the above quantity is zero as a approaches 1/2.
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