

Satellite Radar Altimetry Over Ice

Volume 2-Users' Guide for
Greenland Elevation Data
From Seasat
H. Jay Zwally, Judith A. Major, Anita C. Brenner, Robert A. Bindschadler, and Thomas V. Martin

NASA
 Reference Publication 1233, Vol. 2

1990

Satellite Radar Altimetry Over Ice

Volume 2-Users' Guide for
Greenland Elevation Data
From Seasat
H. Jay Zwally

Goddard Space Flight Center
Greenbelt, Maryland
Judith A. Major and Anita C. Brenner
ST Systems Corporation
Lanham, Maryland
Robert A. Bindschadler
Goddard Space Flight Center
Greenbelt, Maryland
Thomas V. Martin
Van Martin Consulting, Inc.
Rockuille, Maryland
Page
PREFACE v
1.0 INTRODUCTION 1
2.0 GEO-REFERENCED DATA BASE 5
3.0 POLAR STEREOGRAPHIC ELEVATION GRID 13
4.0 GEOID GRID 17
TABLES 19
APPENDIX 77
REFERENCES 82
\qquad

A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described in this volume. It is intended to be a "user's guide" to accompany the data provided to data centers and other users. The grid points are on a polar stercographic projection with a nominal spacing of 20 km . The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic arcas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape. For more detalls of the data processing procedures and corrections that were derived and applied to the data, see Volume 3 of this series.

SECTION 1.0

INTRODUCTION

This volume is the fourth in a series documenting the data-processing methods and ice data products derived from satellite radar altimeter measurements over the ice sheets of Greenland and Antarctica and surrounding sea ice. A gridded elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described in this volume. It is intended to be a "user's guide" to accompany the data provided to data centers and distributed to various users on a magnetic tape. The gridded elevations are useful for creating large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in speciflc geographic areas. For more details of the data processing procedures and corrections that were derived and applied to the data, see Volume 3 of this series.

The gridded elevations are on a polar stereographic projection with a nominal spacing of 20 km between grid points. The gridded elevation value for each grid point is derived from the geo-referenced data base by a weighted fitting of a biquadratic function (or a bilinear function) to the elevation data that fall within a certain radius of the grid location. The geo-referenced data base contains surface elevations ordered in geographic bins.

The input Seasat radar altimeter data, in the form of Geophysical Data Records (GDR's) and Sensor Data Records (SDR's) produced by NASA's Seasat project at the Jet Propulsion Laboratory, was obtained from the NOAA Environmental Satellite Data and Information Service (EDIS) archive on about 1000 magnetic tapes. Development of the data processing methods, the production of higher-level geophysical data products, and analysis and evaluation of the data have been supported at the Goddard Space Flight Center by funding for research and data analysis, provided primarily by NASA's Ocean Processes Program and by the Climate program. Computer programming and technical assistance has been provided by the EG\&G Washington Analytical Services Center, Inc. through December 1988 and by ST Systems Corporation since January 1989. Numerous other individuals have provided valuable assistance.

Results have been reported in refereed scientific literature (e.g., Brenner et al., 1983; Martin et al., 1983; Zwally et al., 1983; Thomas et al., 1983; and Gundestrup et al., 1986). In addition, elevation data in various forms have been provided to other scientists and placed in the National Snow and Ice Data Center (NSIDC) and the National Space Science Data Center (NSSDC). The purpose of this series of reports is to document technical details and provide guidance to users of the ice data products.

While all reasonable quality-control efforts have been made to eliminate erroneous data, some data of questionable quality is likely to have persisted, particularly in the lower-level data products. Users should apply normal standards of scientific caution in their use of the data.

The current list of reports is:

Satellite Radar Altimetry over Ice, Volume 1: Processing and Corrections of Seasat Data over Greenland, July 1989. NASA Ref. Publ. \qquad —.

Satellite Radar Altimetry over Ice, Volume 2: User's Guide for Greenland Elevation Data from Seasat, July 1989. NASA Ref. Publ. \qquad —.

Satellite Radar Altimetry over Ice, Volume 4: User's Guide for Antarctica Elevation Data from Seasat, July 1989. This volume.

Volume 3 will be the Antarctic equivalent of Volume 1. Additional volumes will include descriptions of the data sets being produced by NASA from the radar altimeter data acquired by the U.S. Navy's GEOSAT, using methods similar to those for the Seasat data.

The Seasat spacecraft (e.g., Lame and Born, 1982 and Lame et al., 1980) was launched in late June 1978, and during its brief, 110-day llfetime, collected 90 days of nearly continuous radar altimeter data from July 9 through October 10 between the latitudes of $72^{\circ} \mathrm{S}$ and $72^{\circ} \mathrm{N}$. Although designed only for measurements over water, the Seasat radar altimeter (MacArthur, 1978; Tapley et al., 1982; and Townsend, 1980), acquired more than 600,000 useful altimeter range measurements over the continental lce sheets of Greenland and Antarctica.

Over sloping and undulating surfaces, such as ice covered land, or surfaces with highly variable reflecting characteristics, such as in regions of sea ice, the range to the surface and the characteristics of the received radar pulse changed faster than the response capability of the altimeter electronics. Consequently, it has been necessary to correct each range value for lags of the altimeter range servo-tracking circuitry by a procedure called retracking (Martin et al., 1983). The retracking correction typically had a mean value of +1.4 m as applied to the surface elevation, a standard deviation of 2.9 m , and maximum and minimum values of $\pm 15 \mathrm{~m}$. In addition, the pulse-limited footprint (1.6 km minimum diameter), which was located near the satellite nadir point over the relatively flat ocean, was in general located anywhere within the beam-limited footprint (22 km in diameter) over sloping surfaces. The resulting slope-induced error, which was nearly 80 m over slopes of 0.8 degree, can be partially corrected using the procedures described in Brenner et al., 1983. Corrections are also made for errors in orbit determination, atmospheric propagation path-length variations, and earth and ocean tides.

Elevation measurements were obtained at $0.1-\mathrm{sec}$ intervals, corresponding to 662 m intervals along the subsatellite ground track. The precision of the corrected range measurements is about 1.6 m overall with a minimum of about 0.25 m in the smoothest regions of the ice sheets (Zwally et al., 1983). The 5 - to $10-\mathrm{cm}$ precision over the ocean is for $1-\mathrm{sec}$ data averages. The absolute accuracy of the elevations is primarily determined by the limitations on the correction methods for the slope-induced errors and by uncertainties in the geoid reference level.

The principal ice data sets produced and retained are:

Level 4: Contour maps and gridded elevations with respect to earth ellipsoid and sea level (e.g., this volume and Volume 4).

Level 3: Geo-referenced data base including all individual elevation measurements (including time, latitude/longitude positions, and slope-correction estimates) accessible by geographic cells (e.g., this volume and Volume 4).

Level 2: Ice Data Records (IDR's). Orbital-format data records including altimeter parameters, corrected elevations, latitude/longitude positions, AGC, applied corrections, retracking beta parameters, and estimates of along-track and cross-track slope corrections. (See Volumes 1 and 3.)

Level 1: Waveform Data Records (WDR's). Orbital-format data records including waveform amplitudes by gate, ranges, AGC, and latitude/longitude positions. (See Volumes 1 and 3.)

Altimeter Sensor Data Records (SDR's)

The magnetic tape with the gridded elevation and geo-referenced data base was generated on an IBM 3081. The data sets are contained on several files of this unlabeled, 6250-bpi tape. The geo-referenced data base is written on the first two flles (see Tables 2 and 3). A FORTRAN program, which can be used to unload and read the data base on files 1 and 2 on the IBM 3081 is written on file 3 in ASCII. A listing of this source may also be found in the Appendix. The elevation grid over the Greenland ice sheet is written on files 4 and 5 (see Tables 4 and 5). It is important to note that the elevations in the data base are relative to the ellipsoid, while the grid elevations are relative to sea level. The Goddard Earth Model 10-B (GEM10-B) geoid grid which
was used to obtain elevations relative to sea level is written on files 6 and 7 (see Tables 6 and 7). File 8 contains detailed information in ASCII concerning the location of various revs and the number of points in the geo-referenced data base in order of geographical area. File 9 contains a narrative description of the tape including the version number, dates of the data and specific information on the sources used to reduce the raw data to surface measurements and grid values (see Table 8). All files except files 3, 8 and 9 have been written in IBM binary integer format. Blocksizes vary for each file and are given in the tables of file descriptions.

The geo-referenced data base contains surface height measurements derived from Seasat altimet.y data, ordered by geographic areas or "bins". The distribution of the Seasat data used in the data base is shown in Figure 1. Figure 2 shows the configuration of the 4,300 bins in the vicinity of Greenland. Bin sizes vary in order to compensate for the higher data density near Seasat's maximum extent in latitude. Each bin is assigned a number starting with 1 in the southwestern-most corner. Bin numbers increment first from west to east and then from south to north. The starting bin numbers for each row are indicated in the left margin of the map in Figure 2, while the number of data points is printed within the appropriate bin. Table 1 is a sample page of the information contained on flle 8 of the tape and summarizes the number of points and the rev numbers found in each bin, along with the geo-referenced coordinates of the southwestern-most corner of the bin. Only bins which contain data are listed on file 8 of the tape. The table is written as fixed block in ASCII with a record length of 132 bytes and blocksize of 19,008 bytes.

The geo-referenced data base is structured such that the data are ordered first by bin number and then by time within each bin. Each data point within each bin contains information relating to the position, rev number, surface height relative to the ellipsoid, slope correction and orbit adjustment. Corrections which have been applied to the surface elevations are indicated by the altimetry data status word in the data base header record found on file 1 of the accompanying tape. A detailed explanation of all the corrections may be found in Reference 5. The orbit adjustment has been applied to the surface elevation when it was available. Records for which the orbit adjustment is unavailable (as indicated by a value of -999999999 in bytes 21-24) have the unadjusted surface elevation in bytes $9-12$. The user should be aware that using all the surface elevation values without checking if the orbit adjustment was valid or not will result in an inconsistent data set. The slope correction values are supplied on each data record but have not been applied to the surface elevation. The orbit adjustment will improve on the radial accuracy of the orbit. The slope correction will compensate for the fact that the original altimeter height is measured to the closest point within the radar beam, which is not necessarily the subsatellite point. When the slope correction is unavailable a value of -999999999 is placed in that field. In order to obtain a slope-corrected surface elevation relative to the ellipsoid the following algorithm would be used:

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{COR}}=\mathrm{H}_{\mathrm{DB}}-\Delta \mathrm{H}_{\mathrm{SLOPE}} \tag{1}
\end{equation*}
$$

Figure 2. Greenland Data Base Conflguration.

ORIGinal page b of POOR QUALITY
where

$\Delta H_{C O R}$	is the surface elevation with the slope correction applied
$H_{D B}$	is the surface elevation in the data base
$\Delta H_{\text {SLOPE }}$	is the slope correction.

To remove the orbit adjustment, the following algorithm should be used:

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{UNADJ}}=\mathrm{H}_{\mathrm{DB}}+\Delta \mathrm{H}_{\mathrm{ORB}} \tag{2}
\end{equation*}
$$

where

$\mathrm{H}_{\mathrm{UNADJ}}$	is the surface elevation without the orbit adjustment
H_{DB}	is the surface elevation in the data base
$\Delta \mathrm{H}_{\mathrm{ORB}}$	is the orbit adjustment.

The data base is designed to be used on a direct-access device, so that data from one or several bins may be accessed without the need to read all the records prior to the location desired. This is achieved by dividing the data base into three sections.

The first section of the data base, a header which may be found on file 1 of the accompanying tape, gives a summary of its conflguration: the locations of the corners of the data base, the number of latitude rows, the width in degrees of each of these rows, and the number of longitude divisions in each row. These pieces of information give the layout of the data base, as depicted in Figure 2. Information pertaining to the size of the data base, the starting record of the bin directory, and the corrections applied to the data are also contained in this header.

Following the header and contained on file 2 of the tape are the altimetry data ordered by bin number and within each bin by time. The altimetry data are subdivided into two subgroups for each bin which contains data. The first subgroup consists of one logical record which indicates the number of data points contained in the bin. The second subgroup consists of the actual altimetry data (position, rev number, surface height, orbit adjustment and slope correction), with each record corresponding to a data point.

The final section, a bin directory also contained on file 2, starts at the logical record indicated in the data base header. The directory contains an entry for each bin, and starting with the first bin, indicates the record number in the data base at which the start of the data from a particular bin may be found. Bins which contain no data have a zero entered in the directory. Tables 2 and 3 summarize the structure of the data base header and data base in greater detail.

The data base may be used to locate data within any desired area. The following example demonstrates how this may be done. The limits of the desired area are used in conjunction with the header information to determine exactly which bin numbers contain the data. Using the southernmost latitude of the desired area along with the width of the latitude rows, establishes the southernmost row which contains the data. Longitude limits of the desired area are then checked in conjunction with the size and location of the longitude divisions in that row. When the longitude limit of the desired area for that latitude group is exceeded, the process starts again with the next latitude row to the north. These steps are repeated until the northernmost boundary limit of the desired area is reached.

Equipped with the bin numbers which contain the data, the directory, which gives the logical record on the direct-access disk at which each bin begins, is read. If the directory value for the bin is non-zero, this logical record is then read to determine the number of records which follow and are contained in the same bin. The subsequent data is then read for each bin.

Software has been developed for use on the IBM 3081 which reads the geo-referenced data base on the first two files. A program which reads and prints out the contents of every bin given the southeastern and northwestern latitude-longitude limits of a desired area is listed in the Appendix and may be found on file 3 of the accompanying tape. The file is in ASCII, is fixedblocked with a record length of 80 bytes, and is blocked at 3,200 bytes. Latitudes should be input in degrees North and longitudes in positive degrees East. The subroutine RANDRD along with its entry point RANDWR read and write one logical record of data, respectively, utilizing a system supplied direct access FORTRAN I/O package which includes DREAD and DWRITE. The entry points BLKRD and BLKWR read and write blocks of data at a time.

A grid was generated using the corrected and adjusted surface elevations in the geo-referenced data base after applying the slope correction. Data for which either the orbit adjustreent or slope correction were unavallable were not used for the grid. Elevations in the grid were obtained by taking data located in the vicinity of each grid point and fitting them to a billnear or blquadratic surface to determine the surface height at the grid point. GEM 10-B geold values were subtracted from the elevations so that they are relative to sea level (see Section 4.0).

The accompanying grid was generated in a tangent polar stereographic projection where the plane of projection is located at the geographic North Pole (the projection latitude) and is normal to the earth's axis. Figure 3a depicts the concept behind this type of projection. A straight line is drawn from the South Pole (pole of projection), through a point of the earth's surface, Q, to the projection plane which is tangential to the North Pole. The projection plane is in turn divided into square grids from the pole to the Equator with the North Pole at the center. Three projection parameters define the size of the plane and the orientation of the plane and grid size:

S - a conversion factor from half-inch grids at the projection latitude to the desired grid size;
ϕ_{P} - the minimum latitude extent of the map perimeter for the projection latitude located at the North Pole; the maximum latitude extent for the projection latitude located at the South Pole;

G - the Greenwich orientation in degrees.

In the case of Greenland, where 20 km grid cells were decided as being optimum for the data distribution, values of $S=1.65, \phi_{\mathrm{P}}=50^{\circ}$, and $\mathrm{G}=45^{\circ}$ were chosen.

These three parameters are sufficient to define a grid of the northern hemisphere, from the North Pole to 50° latitude where the number of grids of desired size from the pole to the Equator may be represented by:

$$
\begin{equation*}
\mathrm{D}=\frac{2 \mathrm{R}}{\mathrm{~S} \times 10^{6}} . \tag{3}
\end{equation*}
$$

where R is the radius of the earth measured in one half-inch grid cells and was chosen to be consistent with polar stereographic projections described in other documents.

The integer number of grids of desired size from the pole to the map perimeter is:

$$
\begin{equation*}
\mathbf{N}=\mathrm{D} \times \tan \frac{90-\left|\phi_{\mathrm{P}}\right|}{2} \tag{4}
\end{equation*}
$$

The grid, defined by I and J axes, with the origin in the upper left corner (see Figure $3 b$), represents the coordinates of the North Pole as:

$$
\begin{align*}
& \mathrm{Ip}=\mathbf{N}+1 \tag{5}\\
& \mathbf{J} \mathbf{p}=\mathbf{N}+1
\end{align*}
$$

Any point with latitude ϕ and longitude λ which is located in the northern hemisphere north of ϕ_{P} is positioned at the following I, J coordinates:
$I=I N T[d \times A \times \cos (X)+I p+0.5]$
$J=I N T[d x \sin (X)+J p+0.5]$
where
d is $D x \tan \frac{90-\left|\phi_{P}\right|}{2}$
X is $\lambda+G$
A is +1 if $\phi_{p} \geq 0$
A is -1 if $\phi_{p}<0$.
The included grid was generated such that smoothed heights relative to the ellipsoid are located at each of the I, J coordinates within Greenland. Grid locations outside Greenland and any undefined points within Greenland are indicated by a -100000000 . Figure 4 depicts a topographic map obtained from this grid contoured at $100-\mathrm{m}$ intervals.

File 4 of the accompanying tape contains a grid header which gives information defining the polar stereographic projection used. File 5 contains the grid points which were obtained using either a biquadratic or bilinear fit. Details concerning the gridding procedure may be found in Reference 5. Data are stored on flle 5 such that the information for ten grid points is contained in one block of data. The order of grid points is first from decreasing to increasing I, then from decreasing to increasing J . Tables 4 and 5 give detailed description of fles 4 and 5.
(a)

(b)

Figure 3. Polar Stereographic Projection of Point Q with Latitude ϕ and Longitude λ.

Figure 4. Seasat Greenland Topographic Map Contoured in 100-Meter Intervals.

In order to obtain ice sheet elevations relative to sea level, the geoid was subtracted from each grid elevation. Geold values were bilinearly interpolated from the 1×1-degree GEM10-B (Goddard Earth Model 10-B) geoid grid. Figure 5 shows a contour of this geoid in the vicinity of Greenland. Files 6 and 7 of the accompanying tape contain the header information and GEM 10-B 1x1-degree grid. Tables 6 and 7 give detailed descriptions of these files. Any values of the geoid not located on the map in Figure 4 are set equal to $-100,000,000$ in the grid.

Figure 5. GEM10-B Geoid in Vicinity of Greenland Contoured in Meters.

TABLES
Table 1. Seasat Greenland Geo-referenced Data Base

	ancm	$\underset{\sim}{A}$	$\underset{\sim}{\mathrm{M}} \underset{\mathrm{~N}}{ }$	\sim	Э	O－	6	$\underset{\sim}{0}$	ก		กิ	กล	Gamo	6	$\underset{\sim}{-}$	\bigcirc	$\underset{\mathcal{N}}{\underset{N}{2}}$
			NべN゙N －OUM $\infty \times \infty$	$\underset{\sim}{\underset{G}{G}}$	$\begin{aligned} & - \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\sim}{\infty}$	$\underset{\infty}{\sim}$	$\begin{aligned} & \text { Ǧo } \\ & \text { NN } \end{aligned}$	$\begin{aligned} & \sim \\ & \text { N } \\ & \infty \end{aligned}$		$\underset{\sim}{\underset{\sim}{G}}$		－ัロ～M NNDO NNN	$\begin{aligned} & \underset{\sim}{0} \\ & \text { n } \end{aligned}$		$\stackrel{\underset{\sim}{n}}{\underset{\sim}{7}}$	$\begin{aligned} & \text { No } \\ & \text { Non } \end{aligned}$
	ลิ	FA	M̄mom	$\underset{\sim}{\mathrm{m}}$	\hat{O}	\widehat{G}	a	GO̧	ヘin		∞_{∞}	ถึตฺก		\cdots	$\xrightarrow{-1}$	G	$\underset{G}{G}$
		$\begin{aligned} & \text { Nom } \\ & \text { స్లM } \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\sim}{\underset{\sim}{n}}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \text { ت} \\ & \underset{n}{n} \end{aligned}$	$\begin{aligned} & \text { LैO }_{\infty} \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \text { NN } \\ & \text { No. } \\ & \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { - } \\ & \overrightarrow{0} \\ & \underset{\sim}{0} \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \text { - } \\ & \underset{\sim}{\sim} \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { Nin } \end{aligned}$
¢	づถึก	$\underset{\sim}{N}$	$\begin{aligned} & \text { MヘAOA } \\ & \text { mōno } \end{aligned}$		m	N	－	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	©n		ニ	ลิニ	OODNONM	$\stackrel{-}{i}$	N	$\underset{\sim}{\text { Gu }}$	¢
				－	$\underset{\infty}{\underset{\sim}{n}}$	$\begin{gathered} \text { ت} \\ \mathbf{N} \end{gathered}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { ño } \\ & \text { iñ } \end{aligned}$	$\begin{aligned} & \text { Wh } \\ & \text {-n } \\ & \text { on } \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \check{\infty} \\ & \infty \\ & \text { m } \\ & \hline \end{aligned}$		ずひろNへ へデ웅 \rightarrow けんが	$\underset{\sim}{N}$	$\begin{aligned} & -\infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	－	－
z	$\underset{\rightarrow N}{\text { Ginco }}$	ñô			ก̧			－n	คัก	mす		ถัペ	NGGOG	－2	$\underset{\sim}{-}$	G6	－${ }_{\text {N}}$
α	$\begin{aligned} & \text { जuñ } \\ & \text { Mün } \\ & \text { onn } \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { ñ } \\ & \text { ñ } \end{aligned}$		N	永号		Nべ		$\begin{aligned} & \text { Non } \\ & \text { ño } \end{aligned}$	－	N		Nべんが NがNO けすべい。		\cdots	$\begin{aligned} & \text { OM } \\ & \text { MN } \\ & \hline 60 \end{aligned}$	$\begin{aligned} & N N \\ & N \end{aligned}$
	ôont	$\underset{\sim}{\text { §os }}$	$\operatorname{Som}_{n}^{2} \underset{\sim}{n}$				${ }_{9}$	$\mathfrak{i n c}$	nin	\because		$\lim 0$	GOOAN	NF	im	N－0	NNT
	$\begin{aligned} & \text { OHN } \\ & N N N \\ & N N \end{aligned}$			－				$\begin{aligned} & \text { UNN } \\ & N A N \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { nini } \end{aligned}$				NNにルN NNNNNin		$\underbrace{\infty}_{\infty}$	$\begin{aligned} & \text { NO } \\ & \text { NN } \end{aligned}$	는 NN
				－													
$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\alpha}{\alpha} \\ & \underset{0}{u} \\ & \text { 子 } \end{aligned}$																	
		응		－	O	응	O	응	O80		O	용ㅇㅇ	응ㅇㅇㅇㅇㅇㅇㅇㅇ		응	ㅇㅇㅇ	응
	寝尘	$\frac{\dot{\sim}}{m}$	muino がヅm゙m	$\stackrel{\dot{m}}{\stackrel{\rightharpoonup}{m}}$	oi	$\stackrel{\dot{0}}{\mathbf{m}}$	$\underset{~ M}{\text { ت }}$	$\operatorname{Nim}_{\min }$	少的	－in	$\stackrel{\infty}{m}$	かono mmm	-iniminy		moi	$\begin{gathered} \text { O- } \\ \text { Mo } \end{gathered}$	Nim
9 \vdots 1 \vdots \vdots	$\begin{aligned} & 0_{0} \\ & \infty \\ & \dot{N} N \\ & \dot{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	 N゙NNN			$\begin{aligned} & \text { N } \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{i}{N} \\ & \text { in } \end{aligned}$	NN	NOM		$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 080 \\ & 000 \\ & \text { Ming } \\ & \text { owo } \end{aligned}$		$\begin{aligned} & 0 \\ & \text { im } \\ & \text { ing } \end{aligned}$		888 ¢ ¢0	808 ¢0 ¢00
$\stackrel{n}{n}$																	
	$\underset{m}{m}$	$\begin{aligned} & \text { N } \\ & \text { M } \end{aligned}$	Nown	안	$\underset{\sim}{N}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$	$\underset{\sim}{N}$	$\begin{gathered} \text { Non } \\ \text { Non } \end{gathered}$		\cdots	\cdots	GGonin		$)^{+\infty}$	No	$\stackrel{\infty}{\sim}$
$\begin{aligned} & \text { 足 } \\ & \sum_{\mathbf{D}}^{\infty} \\ & \underset{\mathbf{z}}{2} \end{aligned}$																	
	NNN	$\underset{\sim}{N}$	4ninin NNNN	$\stackrel{\infty}{N}$	$\begin{aligned} & \text { O} \\ & \underset{N}{2} \end{aligned}$	\vec{N}	$\underset{\sim}{N}$	MN	Novor	－	$\stackrel{\sim}{\circ}$	$\begin{aligned} & \text { Nom } \\ & \text { Nimm } \end{aligned}$	NMMMMin MMMMMM	in	$\begin{aligned} & \text { no } \\ & \text { Nim } \end{aligned}$	$\underset{M N}{N}$	Mn

 NNNNON゚

REV（NUMBER PTS）

 $\rightarrow-$

n	GNA	$\underset{N}{N} \underset{\sim}{n}$
\sim	ver	ーッソソ
4	＋00N	muNN
0	＋$+0 N$	MNowo
N	unN	$\infty \infty$
－		

	NANAN_{N}	ペへ
ーッツーツ	ーッーV	\checkmark
NOHMNN	Oron	0 N
NMOON	NMmN	$\rightarrow \mathrm{N}$
N－inmon	$0 \infty 6$	N
\rightarrow－rs		－1

$716(17)$
$1422(1)$

\cdots	－
\cdots	6
－4	
－	\checkmark
\checkmark	N
\cdots	0
∞	\cdots

$1379(6)$

1250（1）

n	m	\cdots	$\underset{\Delta}{\sim}$
\cdots	\cdots	\checkmark	\sim
0	v	0	－
\cdots	0	N	N
\cdots	－4	M	0
	m	m	\square

	$\underset{\sim}{\operatorname{Gr}}$	$\underset{\sim}{\infty} \underset{\sim}{\circ}$	ตล์					かo心ñ	
	$\begin{aligned} & \text { GO } \\ & \text { Go } \\ & \text { GN } \end{aligned}$	$\begin{array}{cc} \check{O} & -1 \\ N & \sim \\ \infty & \infty \end{array}$						デぢごべの －oooㅜ rnmer	
	べ	$\underset{\sim}{\circ} \underset{\sim}{\circ}$	テ̊om					$\underset{\sim}{\operatorname{mon}} \underset{\sim}{\infty} \infty$	
	$\begin{aligned} & \text { Nơo } \\ & \text { NָN } \\ & \text { NiN } \end{aligned}$	$$						ビN゙べN゙ MNMNO OGMGN	
$\stackrel{\sim}{\circ}$	へลิ						G		
	Mmy －7゙N \qquad	$\begin{aligned} & \text { No } \\ & \text { Nơo } \\ & \text { Non } \\ & \text { Non } \end{aligned}$	N゙ロ゙ざずく ○mmonn				$\begin{gathered} \text { N} \\ \underset{\infty}{\prime} \end{gathered}$		
z 乙 Z					$\stackrel{-}{\square}$	$\underset{\sim}{\sim}$	$\underset{\sim}{m} \rightarrow \underset{\sim}{c}$		$\stackrel{G}{N-} \underset{m}{c}$
\propto			ØMいNNN 		N \sim \sim	\sim \sim \sim \sim	$\begin{aligned} & \text { Cou } \\ & \text { incon } \end{aligned}$		
m	Nōñగิఱ	Cỗñ̂Mn	ลกธิกลกลกํ	$\underset{\sim}{7}$	$\stackrel{\square}{\square}$	$\underset{\sim}{\text { Nonn }}$	ㅇNGM	iヘñスヘ̃	$\underset{\mathrm{mg}}{\infty}$
$\begin{aligned} & \text { in } \\ & 0 \end{aligned}$		ひたちものか NNVncu	かOMnOONO 	$\underset{\substack{\text { N } \\ \text { N }}}{ }$	－	$\begin{aligned} & \text { GNN } \\ & \text { nNMN } \end{aligned}$ 6융모		Nがいがい －－a゙om第	

					$\underset{\sim}{n}$				$\begin{aligned} & \text { ÑO } \\ & \text { NN } \end{aligned}$	$\underset{\sim}{\circ}$				
					$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$				$\begin{aligned} & \text { GN } \\ & \text { GN } \\ & \text { GN } \end{aligned}$	$\begin{aligned} & \text { G N } \\ & \text { GN } \\ & n-1 \\ & n \end{aligned}$				
					MN				$\underset{M N}{M N}$	$\underset{N}{N}$				
					$\begin{aligned} & \text { No } \\ & \text { NN } \\ & M N \\ & \sim \rightarrow-1 \end{aligned}$				$\begin{aligned} & \text { ño } \\ & \text { Mr } \\ & \text { om } \\ & \rightarrow-1 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Mn } \\ & \text { om } \\ & \rightarrow=1 \end{aligned}$				
6	$\underset{\sim}{m}$	$\underset{\sim}{N}$			๑ー				$\operatorname{inm}_{N M N}^{n}$	$\underset{\infty}{\infty} \underset{N}{\infty}$		$\underset{\sim}{N}$		m
a	$\underset{\sim}{\underset{\sim}{4}}$	$\begin{aligned} & \text { N. } \\ & \text { ong } \\ & N+N \end{aligned}$										$\underset{\infty}{\underset{\sim}{\infty}} \underset{\substack{\sim \\ \sim}}{\sim}$		$\begin{gathered} - \\ \underset{N}{N} \\ \underset{\sim}{n} \end{gathered}$
\checkmark	O	$\mathfrak{m m}$		$\underset{\sim}{n}$	$\underset{\sim}{6}$	$\widehat{\sim}$	$\operatorname{nn}_{n} 0$	σ	$\underset{\sim}{\infty} \underset{\sim}{N}$	$\begin{aligned} & \dot{O} \\ & \dot{心} \\ & \hline \end{aligned}$	$\underset{\sim}{-}$	Monñ	0	$\stackrel{\text { O}}{-}$
\propto	$\underset{\sim}{N}$				$\begin{aligned} & \sim \sim \\ & N \sim \\ & \text { No } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \sim N \\ & N M \\ & M O \\ & M=1 \end{aligned}$	$\begin{aligned} & \text { © } \\ & \underset{\infty}{N} \end{aligned}$	$\begin{aligned} & \text { GGM } \\ & \text { GGo } \\ & \text { ning } \end{aligned}$	$\begin{aligned} & \text { GM } \\ & \text { GM } \\ & \text { nN } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}$		$\begin{aligned} & \bullet \\ & \underset{\sim}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & \cdots \\ & \sim-1 \end{aligned}$
	Nin	$\underset{\sim}{8 m}$	\widehat{N}	$M \underset{M}{n}$	60	ล	ベGN		$\operatorname{ing}_{\operatorname{AO}}^{60}$	ino	$\begin{aligned} & \text { ONTM } \\ & \text { ONM } \end{aligned}$	$m_{m} \underset{m}{2}$?乌̛n	Mr
	$\begin{aligned} & \text { ON } \\ & \text { NG } \\ & \text { GUN } \end{aligned}$	$$	$\begin{aligned} & \bullet \\ & \stackrel{\rightharpoonup}{0} \\ & i \end{aligned}$			$\begin{aligned} & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$		－						

 OOOOOOOOOOOOOOOOOOOO

 \cdots

 $\infty \omega 000000 \infty 0$ OMMMM
 Msturtw witrminum

$\stackrel{\curvearrowleft}{a}$
NUMBER

REV (NUMBER PTS)									
418 (7)	10351	1)	11646	23)	12076	18)	12506	19)
13366	15)	1379 (21)	14226	15)	14656	22)		
5012	14)								
4610	2)	5016	39)						
2601	10)	5018	7)	5041	22)				
5041	29)	5446	19)						
5441	38)	788 (8)						
547 (28)	788	31)						
587 (10)	7886	13)						
791 (2)								
8311	$3)$								
$831($	12)								
8341	8)	8741	16)						
6331	12)	6731	7)	8741	12)				
6731	6)	6761	2)	- 8741	5)	8776	8)		
877 (2)	12641	15)						
7168	2)								
271 (1)								
5150	$9)$	7591	2)						
5181	1)	5581	3)						
7776	5)								
5761	5)	7741	5)	7776	17)				
5761	$5)$	7741	4)						
576 (11)								
6190	4)								
616	2)	6620	11)						
6621	$10)$	1035	18)	11646	13)	12078	1)	12501	8)
$418($	15)	6591	10)	10356	7)	1164%	11)	12076	14)
6591	18)								
10326	2)								
5040	37)								
2600	28)	501 (30)	5042	15)				
5016	$31)$	5476	13)						
5478	36)								
547 (8)	7916	29)						
590 (16)	7886	23)						
590 (38)	788(34)						
5900	1)								
8341	$8)$								
8341	3)								
8310	19)	8776	2)						
6300	18)	676 (1)	8776	9)	12216	23)		

응ㅇㅇ

 $\therefore \cdots \cdots \cdots$

足

	REV (NUMBER PTS)										
4321	7)	6731	6)	6761	13)	8741	32)	8770	2)	12210	9)
12641	10)										
4298	17)	4326	7)	6736	20)	8741	28)				
2316	3)	4751	11)	$719($	13)						
2316	20)	4751	6)	$719($							
4726	2)	716 (6)								
515	5)										
2716	3)	7620	6)								
2710	6)										
7776	9)										
7771	8)										
2436	8)										
5768	2)										
286	3)	5301	5)								
286	4)	5301	2)	8200	4)						
2866	1)										
5731	24)										
1746	7)	4181	9)	5731	2)	6621	6)	11646	1)		
1748	5)	418	11)	6161	1)	6621	1)	10350	4)	1164	21)
12076	1)	1250 (11)								
1748	1)	616	6)	10350	11)	12076	4)	12500	1)		
4615	29)	616	12)								
$461($	28)	$659($	12)								
$659($	33)	10320	13)								
2600	21)	504	18)	6591	6)	1032 C	30)				
2608	35)	$1032($	9)								
2601	4)	5470	1)								
5471	37)										
$501($	7)	5478	24)	7911	23)						
257	30)	$501($	35)	590 (5)	7918	37)				
2576	32)	$501($	18)	5901	37)	7918	2)				
5446	11)	590 (19)								
5446	37)	788 C	2)	8346	23)						
5448	14)	6331	7)	788 (33)	8341	7)				
$587($	16)	788 (23)								
5876	32)	$877($	20)								
4328	16)	5878	9)	6768	2)	8318	2)	12216	6)	12640	1)
4326	24)	630 (19)	8311	37)	12216	14)	12646			
4751	4)	6301	34)	7198	10)	8318	23)				
2316	28)	4751	33)	7198	23)	8740	1)				
2316	23)	4751	5)								
4296	5)	5186	1)	6736	2)						
2746	1)	5186	$9)$								
4726	3)	716 (1)								
4721	22)	5618	10)	7161	2)						
8051	4)										
2001	1)	6881	1)								
2436	$8)$										
2436	9)	6198	13)								
1746	2)	2866	8)	4186	2)	5301	4)				
174 (16)	2868	9)	4186	$3)$	10358	6)	11648	6)		
1746	3)	4181	3)	5736	3)	1164	7)	12076	2)	12500	2)
5736	7)										

$68.00 \quad 322.50$

 が,

$\stackrel{n}{a}$
 MNNNNNNOMOOANNM

응ㅇㅇㅇㅇONORNOMORORNRN

MrGGGMN \rightarrow \rightarrow

NoGN

 OUNNANNANANN

\rightarrow


``` -
```

[^0]

 onnonginniniogognoingin

$\stackrel{n}{2}$
 SOQ

 ○○Oのज NNNRNNNNNGVNNNNNNN以

 NNMMGUんに

$\stackrel{\sim}{a}$
 NUMB

BIN NUMBER

응ㅇㅇㅇㅇㅇㅇㅇㅇOOO

									\hat{N}	GON	$\underset{\rightarrow T}{G}$
									$\begin{aligned} & \underset{\sim}{v} \\ & \underset{\sim}{n} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & -\infty \\ & \infty-\infty \\ & -10 \\ & -10-1 \end{aligned}$	$\begin{aligned} & \sim \\ & \infty \end{aligned}$
$\stackrel{\leftrightarrow}{6}$		$\widehat{\sim}$	m					3	$\underset{\mathrm{G}}{ }$	$\infty_{\infty}^{\infty} \underset{\sim}{\infty}$	$\text { Miñ } \underset{\sim}{\sim}$
$\begin{aligned} & \text { a. } \\ & \text { 뜰 } \\ & \text { w } \end{aligned}$		$\underset{\infty}{-}$	$\begin{aligned} & \text { O } \\ & \mathbf{N} \\ & \mathbf{0} \end{aligned}$					$\underset{\substack{w \\ m \\ \infty \\ \hline}}{ }$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { Konco } \\ & \infty \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	
$>$	$\underset{\sim}{\sim}$	$\begin{gathered} \text { MO } \\ \text { NOM } \end{gathered}$	6in	$\underset{\sim}{6}$			$\underset{ }{6}$	\hat{N}	$\underset{\sim}{n}$	GMロNへNM	かべペ゙ N Nom
$\boldsymbol{\alpha}$	$\underset{N}{N}$		$\begin{aligned} & \text { Ⓞ } \\ & \text { NO } \\ & \text { No } \\ & \text {-1 } \end{aligned}$	$\begin{aligned} & \sim \\ & \text { on } \\ & \text { in } \end{aligned}$			$\underset{\sim}{N}$		$\begin{aligned} & \infty \\ & \mathbf{m} \\ & \infty \\ & \hline \end{aligned}$		$\leftrightarrow 44+1$ ずすO゚NO 00000
	$\underset{\sim}{O}$	$\underset{\sim}{6} \underset{\sim}{0}$	Nが	$\underset{N}{N}$	$\underset{-1}{-1}$	G	\widehat{N}	GGO	1	けだーMすNoかもの NHNN－	Monnno
	$\begin{aligned} & \text { ¢ } \\ & \text { MN } \\ & \text { NN } \end{aligned}$	$$		$\begin{aligned} & \sim \\ & \text { on } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \text { nin } \\ & n i n \end{aligned}$	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	$\begin{aligned} & \text { nom } \\ & \text { onmi } \\ & \text { rnon } \end{aligned}$		 心おふんしが	

 NNN

[^1]

[^2]

∞	6	$\stackrel{\sim}{\mathrm{N}}$
\checkmark	\sim	ーー
\cdots	$\stackrel{\infty}{*}$	Ora
－	∞	－

Nom	${\underset{-\infty}{\infty} 96}^{6}$	3	－NHFN	\cdots
ーレー	－	\checkmark	ーソーデース	\checkmark
－on	∞	\bigcirc	のOのvJMo	0
＋	∞	0	－MonNAN	\cdots
$\infty \times$	OS	0		∞

QペGM	NNHNNN	\hat{m}	ヘ̛NOM
		\cdots	ーペー
けyow	MatonNm	\cdots	のaonN
すGOG	＋ 0 MMM	－	－ヵnMmm
v゙out	NGNMいいい	6	$\infty \infty \text { OOO }$

 －

 NNNMMMMMMMMMMMMMMMNMMMMMMM 00000000000000000000000000

oogogangagangogangagagagagogo
 －AOOOONNNNNNMNNVNNNNNNNNOMO FTHMNNNMNMNNNNNNNNNNNNNNNNMO

 0000000000000000000000000

 Nininunuminininumumwinvinininuinto
$1264(8)$ REV (NUMBER PTS)

 -

 00

000

[^3][^4]

| $1034(24)$ | |
| ---: | ---: | ---: |
| $1034($ | $7)$ |
| $776(21)$ | |
| $776(2)$ | |

\hat{N}^{m}								$\underset{\sim}{6}$	$\underset{N}{N}$	$\begin{aligned} & \rightarrow \infty N \\ & N \rightarrow N \end{aligned}$	$\underset{N}{N}$	
								$\begin{aligned} & \mathbf{O} \\ & \mathbf{~} \\ & \mathbf{0} \\ & i \end{aligned}$	$\begin{aligned} & \sim n \\ & \sim n \\ & \sim \infty \\ & n \end{aligned}$	$\begin{aligned} & \text { NNO } \\ & \text { NNH } \\ & \text { NNN } \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	
からへ							T	MNG	aNM	${\underset{N N}{N}}_{\substack{n}}$	$\underset{\sim A O}{\text { anc }}$	$\text { o } \underset{N}{\operatorname{con}}$
$\begin{aligned} & \sim \infty \\ & \infty \end{aligned}$							－ \sim \mathbf{N} \sim	$\begin{gathered} \text { Nov } \\ \text { ann } \\ \infty 0 \text { on } \\ n \end{gathered}$		ールー NNN mmm แึルก	$\begin{aligned} & 500 \\ & 600 \\ & 000 \end{aligned}$	
$\underset{\sim M}{\sim}$		$\underset{\sim}{n}$						NNN	$\widehat{M N O}$	$\underset{\sim M N}{O M}$	$\begin{aligned} & \text { GMMN } \\ & \end{aligned}$	$\begin{gathered} \infty \rightarrow N M \\ N N M \end{gathered}$
		$\underset{\sim}{N}$						ヘッ NNO Mma $\infty \infty$		$4 \rightarrow+$ MMM MNM $\rightarrow \checkmark$	$4-14+14+1$ untoong NMmMm 	Mज5060 かんずす $\infty 0 \infty \infty$ －
HGNG	$\underset{m}{m}$	\widehat{N}	$\underset{\sim}{\leftrightarrows}$	\widehat{N}	$\underset{m}{n}$	0		$\overbrace{n \rightarrow 0}$	$\underset{\sim N O L}{\infty}$	Non	WMNO	$\min _{n} \infty$
ーヒーい NuGO が心㇒。 ばば	$\begin{aligned} & \text { anm } \\ & \text { ñ } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { o } 0 \\ & \text { no } \end{aligned}$	$\begin{aligned} & \because \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \underset{n}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { non } \\ & \text { on } \\ & \text { Ho } \end{aligned}$	$\stackrel{\sim}{\infty} \underset{\infty}{+}$		$\begin{aligned} & \text { Mッツ } \\ & \text { MMM } \\ & 0 \text { o } \end{aligned}$		$\begin{aligned} & \sim \infty \\ & \infty_{\infty}^{\infty} \infty \\ & \infty \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	0 000∞ 	ールーッー NANに思 －ッグいで ずけいい

$\stackrel{n}{2}$ NUMBE BIN NUMBER

[^5]

\[

\left.$$
\begin{array}{r}
\\
1034(\\
875(
\end{array}
$$ \quad 6\right)
\]

ッペース
nnno
へかべか

－	－	のヘののヘ
$\underset{N}{N}$	\cdots	NHNNT
		ジーヅヒ
n	m	Monoun
へ	m	MrNTN
∞	∞	$\infty \infty$

 N NNWツNNNNNNのNNNGNNNNNNHFNNHNNNMNH

anamagaganagagaoo o Hnamnn！naminamnnooven vinioorrroogosoniviviv NNNNNNNNNNNMMMMGOOO
앙ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ nninnninnuninninningovovo

 óo o o ontrrrrnonartron

G4	$\underset{\sim}{\infty} \boldsymbol{\infty} \boldsymbol{\infty}$	HNNN N NHNNHNHNN N NNH HN
	ールソレヒ	
∞		
N		－7ar
N		

$\underset{\sim}{0}$	2－	๑คล
	N°	6NM
\cdots	い	－
ーッ	けM	voo
い	N	N－7\％

里

जnonwornNm

LAT－LONG SW CORNER

$71.70 \quad 321.99$
1.70
1.70
1.70

OOOQOQOOOQOOOOQOOOOQOOQOOOOOOOOOOOOOO

∞
∞
0
\cdots
\cdots
0
∞
\cdots 0
N
\vdots
\cdots
\cdots
\cdots
\cdots
\cdots $09^{\circ} \mathrm{IT} \quad 08 \cdot$ โ 0 がてTE 08 【L

AT－LONG SW CORNER

$71.90 \quad 310.00$ $71.90 \quad 309.60$ $\begin{array}{ll}71.90 & 310.40\end{array}$ $71.90 \quad 310.80$

$$
\begin{array}{ll}
0 & 0 \\
\infty & N \\
\dot{N} & \cdots \\
m & m \\
0 & 0 \\
\therefore & 0 \\
\therefore & \cdots
\end{array}
$$ 0

0
m
m
m
0
n
m 0
0
\vdots
m
0
\vdots
\vdots Oカ＇カTE 06° T 08° サTE $06^{\circ} \mathrm{T} L$ O
n
M
M
O
M
 $\begin{array}{cc}0 & 0 \\ 0 & 0 \\ m & 0 \\ m\end{array}$ $08^{\circ} 9 T E$
$0 ヶ 9 T E$ 0
N
\cdots
\cdots 0
0
\cdots
\cdots

 14

6178	15)	6751	21)
5176	9)	6171	17)
5171	21)	6178	15)
6178	18)	7181	21)
6176	20)	7181	21)
5176	21)	5608	15)
7614	21)		
7616	21)	8041	8)
560 亿	21)	6031	3)
5176	2)	5608	17)
6031	17)		
8046	3)		
646 (1)	8471	3)
847	21)		
8476	20)	890 (17)
890 (21)	10196	18)
588 (21)	6036	.9)
6461	21)	6891	1)
8906	1)	1019(17)
8900			
6891	13)	8906	10)

 LAT-LONG SW CORNER

[^6]

AT-LONG SW CORNER

0	0	0	0
j	∞	N	0
\dot{N}	\dot{N}	n	n
M	M	M	M
0	0	0	0
0	0	0	0
N	N	N	N

0	0	0
0	0	0
0	0	0
m	m	m
0	0	0
0	0	0
n	N	N

08.8TE	$00^{\circ} \mathrm{ZL}$
O\% ${ }^{\circ} \mathrm{LE}$	$00^{\circ} 22$
$00 \cdot 8 T 5$	$00^{\circ 2} 2$
09 ${ }^{\circ}$ LIE	$00^{\circ} 22$
$02^{\circ} \mathrm{LIE}$	$00^{\circ} 22$

0	0	0
N	0	0
0	0	0
M	M	M
0	0	0
0	0	0
N	N	N

N	5	N	0	$\underline{\square}$	\square	\pm	∞	m	以	5	∞	\square	m
M	m	\cdots	∞	σ	0	∞	n	\pm	\checkmark	\pm	\cdots	0	\cdots
\pm	\checkmark	\checkmark	\cdots	m	\cdots	m	m	m	\cdots	\cdots	\cdots	m	M

N	∞	0	\bigcirc	-	N	m	\pm	0	0	\cdots	∞	0	8
m	\cdots	m	5	\pm	\checkmark	\pm	4	+	+	N	$\stackrel{+}{\sim}$	N	\xrightarrow{n}
N	N	N	N	N	N	N	N	N	N	\cdots	N	\pm	\checkmark
\checkmark	v	5	\checkmark	\checkmark	\checkmark	\pm	\pm	\checkmark	G	\checkmark	4	\checkmark	V

Table 1. Seasat Greenland Geo-referenced Data Base (Cont.)

(ऽ) I6\&t

$$
\mathfrak{F}
$$

$$
\begin{aligned}
& \text { BIN NUMBER } \\
& 4289 \\
& 4290 \\
& 4291
\end{aligned}
$$

Table 2. Seasat Geo-referenced Data Base Header Description

FILE 1:	GEO-REFEREN Record Format: Blocksize:	NCED DATA BASE HEADER RECORD One logical record corresponds to one physical record 480 Bytes
Bytes	FORTRAN Variable Type	Description
$1-4$	I* 4	Number of latitude rows in the data base (56)
5-8	I* 4	Northwestern-most latitude of data base in degrees North ($\times 10^{5}$) (7210000)
9-12	I*4	Northwestern-most longitude of data base in degrees East (x 10^{5}) (30000000)
13-16	I* 4	Southeastern-most latitude of data base in degrees North ($\mathrm{x} 10^{5}$) (5990000)
17-20	I* 4	Southeastern-most longitude of data base in degrees East ($\times 10^{5}$) (34000000)
21-244	I*4	Width of each latitude row in degrees ($\times 10^{5}$), starting with the southernmost row. This is dimensioned by the number of latitude rows in the data base.
245-468	I* 4	The number of longitude divisions in each latitude row, starting with the southern-most row. This is dimensioned by the number of latitude rows in the data base.
469-472	I*4	Logical record in data base at which directory starts.
473-476	I*4	Size of the data base, including the directory, in blocks.
477-480	I*4	Status word for altimetry data.
		$\left.\left.\right\|_{0}\right\|_{31}$

Table 2. Seasat Geo-referenced Data Base Header Description (Cont.)

(477-480 cont.)	Bits	$\underline{\text { Value }}$		Description
	$0-23$	0		Unused
	24	1		Slope correction applied
		0		Slope correction not applied
	25	1		Orbit adjustment applied
		0		Orbit adjustment not applied
	26	1		Solid tides removed
		0		Solid tides not removed
	27	1		Retracking correction applied
		0		Retracking correction not applied
	28	1		Center of gravity blas applied
		0		Center of gravity bias not applied
	29	1		Tropospheric correction applied
		0		Tropospheric correction not applied

Table 3. Seasat Geo-referenced Data Base Description

FILE 2: GEO-REFERENCED DATA BASE
Record Format: 595 logical records correspond to one physical record Blocksize: 19040 Bytes

Subgroup 1: One logical record for each bin containing data

Bytes	FORTRAN Variable Type
$1 * 4$	Description
$5-32$	
Indicates the number of logical records which follow which are located in the bin	
Unused	

Subgroup 2: One logical record for each data point in the bin

Bytes	FORTRAN Variable Type	Description
1-4	I* 4	North latitude of datum point in degrees ($\times 10^{6}$)
5-8	I* 4	East longitude of datum point in degrees ($\times 10^{6}$)
9-12	I* 4	Surface height relative to the ellipsoid in cm .
13-16	I* 4	Height sigma, arbitrary value of 1.0 m used ($\times 10^{5}$)
17-18	I*2	Rev number
19-20	I*2	Used for temporary flags when gridding the data
21-24	$\mathrm{I}^{*} 4$	Orbit adjustment in meters (x 105) (-999999999 if unavailable)
25-28	I* 4	RMS of orbit adjustment in meters (X 105) (-999999999 if unavailable)
29-32	I* 4	Slope correction in meters ($\times 10^{5}$) (-999999999 if unavailable)

NOTE: Subgroups 1 and 2 are repeated for as many bins with data.

Table 3. Seasat Geo-referenced Data Base Description (Cont.)

Subgroup 3: Directory

Bytes	FORTRAN Variable Type	Description
1-4	I* 4	Record number at which data for bin 1 starts
5-8	I* 4	Record number at which data for bin 2 starts
9-12	I* 4	Record number at which data for bin 3 starts
13-16	I* 4	Record number at which data for bin 4 starts
17-20	I* 4	Record number at which data for bin 5 starts
21-24	I* 4	Record number at which data for bin 6 starts
25-28	I* 4	Record number at which data for bin 7 starts
29-32	I* 4	Record number at which data for bin 8 starts

NOTE: \quad The directory contains as many 32-byte logical records as necessary to designate the record locations of all bins.

Table 4. Elevation Grid Header Description

FILE 4:	ELEVATION GRID HEADER RECORD
Record Format: One logical record corresponds to one physical record	
	Blocksize: $\quad 80$ Bytes

Bytes	FORTRAN Variable Type	Description
1-4	I*4	Number of latitude increments in the grid for a non-polar stereographic grid (140)
5-8	I* 4	Number of longitude increments in the grid for a non-polar stereographic grid (152)
9-12	I* 4	Starting north latitude of grid in degrees North ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (50000000)
13-16	I* 4	Starting east longltude of grid in degrees East ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (300000000)
17-20	I*4	Ending north latitude of grid in degrees North ($\mathrm{x} 10^{6}$) (this will be approximate for a polar stereographic grid) (73000000)
21-24	I*4	Ending east longitude of grid in degrees East ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (340000000)
25-28	I* 4	Status word for data used to generate grid. A zero in any bit position indicates that the correction is not applied.

Table 4. Elevation Grid Header Description (Cont.)

Bytes	FORTRAN Variable Type	Description
29-32	I*4	Polar stereographic grid size conversion and scaling factor from half-inch grids on projection plane to the desired grid size ($\times 10^{6}$) (1650000)
33-36	I* 4	The number of grids of desired size from the pole to the equator based on the grid size conversion and scaling factor ($\mathrm{x} 10^{6}$) (608754894)
$37-40$	I*4	Latitude of the map perimeter in degrees North ($\times 10^{6}$) (500000000)
41-44	I*4	Greenwich orientation in degrees ($\times 10^{6}$) (450000000)
45-48	I* 4	```Polar stereographic switch (1) =0, grid has constant increment in latitude and longitude =1,grid is in polar stereographic projection```
49-52	I* 4	Number of I-axis divisions to the extent of the map perimeter (445)
53-56	I*4	Number of J -axis divisions to the extent of the map perimeter (445)
57-60	I*4	J coordinate of the projected pole (223)
61-64	I*4	I coordinate of the projected pole (223)
65-68	I* 4	Minimum J index of the grid (166)
69-72	I* 4	Maximum J index of the grid (317)
73-76	I* 4	Minimum I index of the grid (305)
77-80	I* 4	Maximum I index of the grid (444)

Table 5. Elevation Grid Description

NOTE: Ten of the above-mentioned 180-byte logical records make up one block of data.

Table 6. Geoid Grid Header Description

FILE 6:	GEOID GRID HEADER RECORD	
	Record Format: Blocksize:	One logical record corresponds to one physical record 80 Bytes
	FORTRAN Variable Type	Description
1-4	I*4	Number of latitude increments in the grid for a non-polar stereographic grid (24)
5-8	I*4	Number of longitude increments in the grid for a non-polar stereographic grid (41)
9-12	I* 4	Starting north latitude of grid in degrees (x 10^{6}) (this will be approximate for a polar stereographic grid) (50000000)
13-16	I* 4	Starting east longitude of grid in degrees ($\mathrm{x} 10^{6}$) (this will be approximate for a polar stereographic grid) (300000000)
17-20	I* 4	Ending north latitude of grid in degrees North ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (73000000)
21-24	I* 4	Ending east longitude of grid in degrees East ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (340000000)
25-28	I*4	Unused
29-32	I* 4	Polar stereographic grid size conversion and scaling factor from half-inch grids on projection plane to the desired grid size $\left(\times 10^{6}\right)$
33-36	I* 4	The number of grids of desired size from the pole to the equator based on the grid size conversion and scaling factor ($\mathrm{x} 10^{6}$)
37-40	I* 4	Latitude of the map perimeter in degrees North (x 10 ${ }^{6}$) (50000000)
41-44	I*4	Greenwich orientation in degrees East (x 10^{6}) (450000000)
45-48	I*4	```Polar stereographic switch (1) =0,grid has constant increment in latitude and longitude =1, grid is in polar stereographic projection```
49-52	I* 4	Number of I-axis divisions to the extent of the map perimeter (445)

Table 6. Geoid Grid Header Description (Cont.)

Bytes	FORTRAN Variable Type	Description
53-56	I*4	Number of J-axis divisions to the extent of the map perimeter (445)
57-60	I*4	J coordinate of the projected pole (223)
61-64	1*4	I coordinate of the projected pole (223)
65-68	I* 4	Minimum J index of the grid (166)
69-72	I*4	Maximum J index of the grid (317)
73-76	I* 4	Minimum I index of the grid (305)
77-80	I* 4	Maximum I index of the grid (444)

Table 7. Geoid Grid Description

FILE 7:	GEOID GRID RECORD	
	Record Format: Blocksize:	200 logical records correspond to one physical record 2400 Bytes
	FORTRAN Variable	
Bytes	Type	Description
1-4	I* 4	North latitude of grid point in degrees North ($\times 10^{6}$)
5-8	$\mathrm{I}^{*} 4$	East longitude of grid point in degrees East ($\times 10^{6}$)
9-12	I*4	Value of geoid in meters ($\times 10^{5}$)

NOTE: Two hundred of the above-mentioned 12-byte logical records make up one block of data.

Table 8. Narrative Description of Tape

FILE 9:	NARRATIVE DESCRIPTION
	Record Format: One logical record corresponds to one physical record
	Blocksize: $\quad 80$ Bytes

Record 1:

	FORTRAN Variable Type	Description
Bytes	$A^{*} 8$	Satellite name
$1-8$	$A * 3$	Version number of this tape
$9-11$	$A * 6$	Date of release of this data (YYMMDD)
$12-17$	$A * 63$	Differences between this data release and previous versions
$18-80$		

Record 2:

	FORTRAN Variable Bytes	Type
A*80	Description	

Record 3:

	FORTRAN Variable Type	Description
Bytes	A* 10	
1-10	$A^{*} 10$	Orbit used to compute surface elevations
$11-20$	$A^{*} 20$	Geoid used to compute elevations relative to sea level
$21-40$	$A^{*} 20$	Source of ocean tides
$41-60$		Source of troposphere correction
$61-80$		Source of ionosphere correction

Table 8. Narrative Description of Tape (Cont.)

Record 4:

Bytes	FORTRAN Variable \qquad	Description
1-10	$A^{*} 10$	Surface used for orbit adjustment
11-40	A*30	NASA publication number and title for documentation describing data on tape
41-46	A* 6	Beginning day of data (YYMMDD)
47-52	A* 6	End day of data (YYMMDD)
53-80	A*28	Name of mission

APPENDIX

Program to Load Data Base onto Direct Access Device and Read Data for Specific Area.

Program to Load Data Base onto Direct Access Device and Read Data for Specific Area.

```
C DETERMINE BIN NUMBER LOCATED AT SOUTHWEST CORNER OF DESIRED AREA
C AND STORE THE START RECORD OF THAT BIN
        NBIN = 0
        IF(GNWLAT.LE.SELAT .OR. GSELAT.GE.WNLAT .OR. GNWLON.GE.SELON
            .OR. GSELON.LE.WNLON) GO TO 900
    DIFF= GSELAT - SELAT
    ADD = 0.0
    DO 320 IB=1,IG
    ADD = ADD + WIDLAT(IB)
    IBGRP = IB
    IF(DIF.LT. ADD) GO TO 325
320 CONTINUE
    IBGRP = IG
325 CLAT = ADD - WIDLAT(IBGRP)
    CNWLAT = GNWLAT
    IF(GNWLAT .GT. WNLAT) CNWLAT = WNLAT
    CSELON = GSELON
    IF(GSELON .GT. SELON) CSELON = SELON
    CNWLON = GNWLON
    IF(GNWLON .LT. WNLON) CNWLON = WNLON
    DIF = CNWLON - WNLON
330 IBIN = 0
    IF(IBGRP .EQ. 1) GO TO 345
    IFIN = IBGRP - 1
    DO 340 J=1,IFIN
340 IBIN = IBIN + LONDIV(J)
345 IBIN = IBIN + DIF/SIZE(IBGRP) + 1.0
    IF(IBIN.GT. NBINS) GO TO 360
    NBIN = NBIN + 1
    IF(NBIN.GT.NIOO) GO TO 980
    IIBIN(NBIN) =IBIN
    NRECNO(NBIN)=IDIR(IBIN)
C LOCATE ALL BINS WITHIN LATITUDE GROUP WHICH ARE CONTAINED IN DESIRED AREA
    NLON = DIF/SIZE(IBGRP)
    CLON = WNLON + NLON*SIZE(IBGRP)
350 CLON = CLON + SIZE(IBGRP)
    IF(CLON.GT. CSELON) GO TO }36
    IF(CLON. EQ. SELON) GO TO }36
    IBIN = IBIN + I
    IF(IBIN.GT. NBINS) GO TO 360
    NBIN = NBIN + 1
    TF(NBIN.GT. N1OO) GO TO 980
    IIBIN(NBIN) =IBIN
    NRECNO(NBIN)=IDIR(IBIN)
    G0 TO 350-
C PROCEED TO NEXT BIN GROUP AND DETERMINE IF OUTSIDE DESIRED AREA
360 CLAT = CLAT + WIDLAT(IBGRP)
    TOTLAT = SELAT + CLAT + .0001
    IBGRP = IBGRP + 1
    IF(IBGRP..GT. IG) GO TO }39
    IF(TOTLAT .LT. CNWLAT) GO TO 330
390 CONTINUE
    WRITE(IOUT6,30000) NBIN,(IIBIN(J),J=1,NBIN)
C STORE RECORD NUMBER OF BIN TO BE READ; IF ZERO, THEN BIN CONTAINS
C STORE RECORD NUMBER OF BIN TO BE 
    DO }550\mathrm{ I =1,NBIN
    IREC = NRECNO(I)
    IF(IREC.NE. D) GO TO 460
    WRITE(IOUT6,40000) IIBIN(I)
    GO TO 550
C FIRST RECORD OF BIN TELLS HOW MANY RECORDS IN THE BIN
4 6 0 ~ C O N T I N U E ~
    CALL RANDRD
    IEND = LAT
    WRITE(IOUT6,2400) IIBIN(I),NRECNO(I),LAT
    WRITE(IOUT6,2100)
```

Program to Load Data Base onto Direct Access Device and Read Data for Specific Area.

```
C PRINT OUT CONTENTS OF ONE ENTIRE BIN
    DO 500 J=1,IEND
        IREC = IREC + 1
        CALL RANDRD
        ORBIT = IORB*I.E-5
        ORBITR = IORBR*1.E-5
        SLPCOR = ISLCR*1.E-5
        SIGH = ISIG*I.E-5
        XLAT = LAT*I.D-6
        XLON = LON*I.D-6
        WRITE(IOUTG,2200) IREC,XLAT,XLON,IHT,IPASS,ORBIT,ORBITR,SLPCOR,
        SIGH
    CONTINUE
    CONTINUE
    STOP
C
C AREA REQUESTED OUTSIDE OF DATA BASE AREA
900 WRITE(IOUT6,90000)
    STOP
C TOO MANY BINS FOR ARRAY WHICH STORES DIRECTORY
980 WRITE(IOUT6,81000) N100
    STOP
C
    2200 FORMAT(I10,2F10.4,I10,I8,2F10.3,F10.3,F11.3)
    2100 FORMAT(/4X,'IREC',5X,'LAT',9X,'LONG',7X,'HEIGHT',3X,'REV #',
        4X,'ORB ADJ', 2X,'ORB RMS', 2X, 'SLOPE CORR',4X, 'SIGMA')
    2210 FORMAT(///' DIRECTORY FOR DATA BASE (IDIR):'/)
2220 FORMAT(10I10)
2300 FORMAT(///I DIRECTORY STARTS AT LOGICAL RECORD',IIO,
            3X, 'NUMBER OF BUFFERS:',I6//)
    2400 FORMAT(/'FOR BIN NUMBER',I6,2X,' LOGICAL RECORD STARTS AT',IIO,
0. 2X,' (% RECS IN BIN:',IIO)
10000 FORMAT(//' HEADER INFORMATION FROM DATA BASE TAPE'/
    - 2X,'NW LATITUDE & LONGITUDE (WNLAT, WNLON):',2F10.4/
    - 2X,'SE LATITDUE & LONGITUDE (SELAT, SELON):',2F10.4/
    - 2X,'LAT WIDTH OF EACH OF THE',I4,'BIN GROUPS:'/
    - 7(1X,8F9.3/)/2X,'LONGITUDE DIVISIONS IN EACH BIN GROUP',
    - '(LONDIV):'/7(1X,8I6/)/2X,'NUMBER OF BUFFERS:',I6,3X,
    - 'LOGICAL RECORD AT WHICH DIRECTORY STARTS:',IIO%/
        ' ALTIMETRY DATA STATUS WORD',ZIO//)
10001 FORMAT(120A4)
10002 FORMAT(4F10.3)
10003 FORMAT(//' SOUTHEASTERN CORNER OF DESIRED AREA (LAT,LON):',2F10.3
        \prime' NORTHWESTERN CORNER OF DESIRED AREA (LAT,LON): ,2F10.3/)
10004 FORMAT(/' SIZE OF EACH BIN GROUP AS DETERMINED FROM HEADER:'/
    7(1X,8F9.3/)/)
30000 FORMAT&/''THE FOLLOWING ',I6,' BINS CONTAIN DATA IN THE DESIRED'
        ''AREA:'/10(10I10/))
40000 FORMAT(/'BIN ',I6, CONTAINS NO DATA')
81000 FORMAT(//'' ** NUMBER OF BINS CONTAINED IN AREA EXCEEDS',I5,
90000. '' INCREASE SIZE OF NRECNO ARRAY', (PROGRAM TERMINATING')
90000' FORMAT(//'AREA SELECTED IS OUTSIDE DATA BASE AREA'/
        ( PROGRAM TERMINATING')
        END
```

```
CC Program to Load Data Base onto Direct Access Device and Read Data for Specific Area.
CC
            SUBROUTINE RANDRD
C FUNCTION: THIS ROUTINE USES THE DIRECT ACCESS I/O PACKAGE (DAIO)
                AND ENTRY POINTS TO ACHIEVE SEVERAL THINGS:
                        1) RANDRD - READS THE IREC TH LOGICAL RECORD FROM DISK
                        2) RANDWR - WRITES THE IREC TH LOGICAL RECORD TO DISK
                            3) BLKRD - TRANSFERS THE DESIRED PHYSICAL RECORDS
                            OR BLOCKS FROM UNIT NIN TO DISK
                            - TRANSFERS THE DESIRED PHYSICAL RECORDS
                                OR BLOCKS FROM DISK TO UNIT NOUT
    COMMON/FERMSG/IMES(26)
        REAL A, BUF(8,595),TBUF(8,595)
        INTEGER DISK
        COMMON/RANBLK/A(8),IREC
        EQUIVALENCE (TBUF(1,1),BUF(1,1))
        DATA NREC/595/,NWORDS/8/,KBUF/1/,DISK/12/
        LDGICAL WSWTCH
        K=1
        GO TO 10
        ENTRY RANDWR
        WSWTCH=.TRUE.
        K=2
        10 IBUF=(IREC-1)/NREC+1
    IF (IBUF.NE.KBUF) GO TO (50,90),K
    20 JREC=IREC-(IBUF-1)*NREC
    GO TO (30,70),K
    30 DO 40 I=1,NWORDS
    40 A(I)=BUF(I,JREC)
    RETURN
    IF (WSWTCH) CALL DWRITE(DISK,KBUF,BUF)
    KBUF=IBUF
    WSWTCH=.FALSE.
    CALL DREAD(DISK,KBUF,BUF,860)
    GO TO 20
    6 0 ~ P R I N T ~ 1 0 0 0 , I M E S ~
    STOP
    70 DD 80 I =1,NWORDS
    80 BUF(I,JREC)=A(I)
        RETURN
    CALL DWRITE(DISK,KBUF,BUF)
    KBUF=IBUF
    GO TO 20
1000 FORMAT(1H0,Z8,I6,20A4,4(1X,Z8))
    ENTRY BLKRD(NIN,NBUF)
    KBUF=NBUF
    DO 205 J=1,NBUF
    READ(NIN,1200,END=204) TBUF
    205 CALL DWRITE(DISK,J,BUF)
    204 WRITE(6,1100) J
1100 FORMAT(' NUMBER OF BUFFERS READ ',I5)
1200 FORMAT(18(255A4),170A4)
    RETURN
    ENTRY BLKWR(NOUT,NBUF)
    DO 200 J=1,NBUF
    CALL DREAD(DISK,J,BUF,860)
    200 WRITE(NOUT) BUF
    RETURN
    END
```


REFERENCES

1. Bindschadler, R.A., H.J. Zwally, J.A. Major, A.C.Brenner, T.V. Martin, "Surface Topography of the Greenland Ice Sheet from Seasat Radar Altimetry," NASA Special Publication in preparation.
2. Brenner, A.C., R.A. Bindschadler, R.H. Thomas, H.J. Zwally, "Slope-Induced Errors in Radar Altimetry Over Continental Ice Sheets", Journal of Geophysical Research, Vol. 88, 1617-1623, 1983.
3. Gundestrup, N.S., R.A. Bindschadler, H.J. Zwally, "Seasat Measurements Verified on a 3-D Ice Sheet", Annals of Glactology 5, 1986.
4. Lame, D.B., G.H. Born, J.A. Dunne, A.J. Spear, C.A. Yamarone, "Seasat Performance Evaluation: The First Two Steps", IEEE Journal of Oceanic Engineering, Vol. OE-5, No. 2, 72-73, April 1980.
5. Lame, D.B., G.H. Born, "Seasat Measurement System Evaluation: Achievements and Limitations", Journal of Geophysical Research, Vol. 87, No. C5, 3175-3178, April 30, 1982.
6. MacArthur, J.L., "Seasat-A Radar Altimeter Design Description", The Johns Hopkins University Applied Physics Laboratory, Doc. SDO-5232, Nov. 1978.
7. Martin, T.V., H.J. Zwally, A.C. Brenner, R.A. Bindschadler, "Analysis and Retracking of Continental Ice Sheet Radar Altimeter Waveforms", Journal of Geophysical Research, Vol. 88, 1608-1616, 1983.
8. Tapley, B.D., G.H. Born, M.E. Parke, "The Seasat Altimeter Data and Its Accuracy Assessment", Journal of Geophysical Research, Vol. 87, No. C5, 3179-3188, April 30, 1982.
9. Townsend, W.F., "An Initial Assessment of the Performance Achieved by the Seasat-1 Radar Altimeter", IEEE Journal of Oceanic Engineering, Vol. OE-5, No. 2, 80-92, April 1980.
10. Thomas, R.H., T.V. Martin, H.J. Zwally, "Mapping Ice-Sheet Margins from Radar Altimetry Data", Annals of Glaciology 4, 283-288, 1983.
11. Zwally, H.J., R.A. Bindschadler, A.C. Brenner, T.V. Martin, R.H. Thomas, "Surface Elevation Contours of Greenland and Antarctic Ice Sheets," Journal of Geophysical Research, Vol. 88, 1589-1596, 1983.
12. Zwally, H.J., A.C. Brenner, J.A. Major, T.V. Martin, R.A. Bindschadler, "Satellite Altimetry Data Over Ice: Vol. 1: Processing and Corrections of Seasat Data over Greenland," NASA Reference Publication in preparation.

-1

Report Documentation Page		
1. Report No. NASA RP-1233, Vol. 2	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Satellite Radar Altimetry Over Ice Volume 2 - Users' Guide for Greenland Elevation Data From Seasat		5. Report Date January 1990
		6. Performing Organization Code 671.0
7. Author(s) H. Jay Zwally, Judith A. Major, Anita C. Brenner, Robert A. Bindschadler, and Thomas V. Martin		8. Performing Organization Report No. 89B00240
		10. Work Unit No.
9. Performing Organization Name and Address Goddard Space Flight Center Greenbelt, Maryland 20771		11. Contract or Grant No.
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001		Reference Publication
		14. Sponsoring Agency Code
15. Supplementary Notes H. Jay Zwally - Oceans and Ice Branch, NASA-GSFC, Greenbelt, MD; Judith A. Major and Anita C. Brenner - ST Systems Corporation, 4400 Forbes Blvd., Lanham, MD; Robert A. Bindschadler - Oceans and Ice Branch, NASA-GSFC, Greenbelt, MD; and Thomas V. Martin - Van Martin Consulting, Inc., P.O. Box 2203, Rockville, MD.		
16. Abstract A gridded surface elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described in this volume. It is intended to be a "user's guide" to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km . The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape. For more details of the data processing procedures and corrections that were derived and applied to the data, see Volume 1 of this series.		
17. Key Words (Suggested by Author(s)) Radar Altimetry, Ice Sheets, Sea Ice, Data Processing, Retracking Algorithm, Seasat\quad18. Distribution Statement Unclassified - Unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages 92 22. Price A05

NASA FORM 1626 OCT 86

BULK RATE

POSTAGE \& FEES PAID
NASA
Permit No. G-27

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]: -
 -1

[^6]:

