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ABSTRACT

A simple numerical procedure for estimating the
stochastic robustness of a linear, time-invariant system is

described. Monte Carlo evaluation of the system's

eigenvalues allows the probability of instability and the
related stochastic root locus to be estimated. This

definition of robustness is an alternative to existing
deterministic definitions that address both structured

and unstructured parameter variations directly. This

analysis approach treats not only Gaussian parameter

uncertainties but non-Gaussian cases, including uncertain-
but-bounded variations. Trivial extensions of the

procedure admit alternate discriminants to be considered.

Thus, the probabilities that stipulated degrees of

instability will be exceeded or that closed-loop roots will

leave desirable regions also can be estimated. Results

are particularly amenable to graphical presentation.

INTRODUCTION

Control system robustness is defined as the ability to

maintain satisfactory stability or performance

characteristics in the presence of all conceivable system

parameter variations. While assured robustness may be

viewed as an alternative to gain adaptation or scheduling

to accommodate known parameter variations, more often

it is seen as protection against uncertainties in plant

specification. Consequently, a statistical description of

control system robustness is consistent with what may be

known about the structure and parameters of the plant's

dynamic model.

Guaranteeing robustness has long been a design

objective of control system analysis, although in most

instances, insensitivity to parameter variations has been

treated as a deterministic problem (see Ref. I for a

comprehensive presentation of both classical and modern
robust control). Stability (gain and phase) margins are

useful concepts for designing robust single-input/single-

output systems, addressing disturbance rejection and

other performance goals in the process, and they are

amenable to the manual graphical procedures that

preceded the widespread use of computers. With the help

of these computers, singular-value analysis has extended

the frequency-domain approach to multi-input/multi-output

systems (e.g., [2,3]); however, guaranteed-stability-

bound estimates often are unduly conservative, and the

relationship to parameter variations in the physical

system is weak. Structured-singular-value analysis [4]
reduces this conservatism somewhat, and alternate

treatments of structured parameter variations have been

proposed (e.g., [5-7]), though these approaches remain

deterministic. Elements of stochastic stability [8] have

application to robustness but have yet to be presented in
that context.
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The notion of probability of instability, which is

central to the analysis of stochastic robustness, was

introduced in Ref. 9, with application to the robustness of

the Space Shuttle's flight control system, and it is further
described in Ref. 10. This method determines the

stochastic robustness of a linear, time-invariant system by

the probability distributions of closed-loop eigenvalues,

given the statistics of the variable parameters in the

plant's dynamic model. The probability that all of these

eigenvalues lie in the open left-half s plane is the scalar
measure of robustness.

With the advent of fast graphics workstations and

supercomputers, the stochastic robustness of a system is

easily computed by Monte Carlo simulation, and results

can be displayed pictorially, providing insight into

otherwise hidden robustness properties of the system.

The method is computationally simple, requiring only
matrix manipulation and eigenvalue computation, and it is

inherently non-conservative, given a large enough sample

space. Furthermore, the analysis of stochastic

robustness is a logical adjunct to parameter-space control

design methods [11-14]. Details of the approach and

examples are given in the sequel.

PROBABILITY OF INSTABILITY

Consider a linear, time-invariant (LTI) system of the
form,

x(t) = F(p)x(t) + G(p)u(t) (1

y(t) = H(p)x(t) (2

where x(t), u(t), y(t), and p are state, control, output, and
parameter vectors of dimension n, m, q, and r,

respectively, accompanied by conformable dynamic,
control, and output matrices F, G, and H, which may be
arbitrary functions of p. The plant is subject to LTI
control,

u(t) = Uc(t) - CH(p)x(t) (3

Uc(t) is a command input vector, and, for simplicity, the (m

x n) control gain matrix C is assumed to be known without
error. The n eigenvalues, _i = _i + joi, i = 1 to n, of the

matrix [F(p) - G(p)CH(p)] determine closed-loop
stability and can be determined as the roots of the

determinant equation,

Isln - [F(p) - G(p)CH(p)]l = 0 (4

where s is a complex operator and In is the (n x n)

identity matrix. System stability requires that no
eigenvalues have positive real parts. The relationship
between parameters and eigenvalues is complicated.
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Even if F, G, and H are linear functions of p, the

associations between p and the _.i are nonlinear, and

there is the further possibility of products of parameters in

the feedback term. Consequently, while small-parameter-

variation sensitivities of the eigenvalues can be estimated

by linear methods [10], the hopes for generally applicable

analytic expressions are slim.

Putting aside the mathematical intricacies, note that

the probability of stability plus the probability of instabili_
is one:

Pr(stability) + Pr(instability) = 1 (5

Stochastic robustness is achieved when the probability of

stability (instability) is large (small). Since stability

requires all the roots to be in the open-left-half s plane,

while instability results from even a single right-half s

plane root, we may write

Pr(instability) _A_p = 1 - _pr(a)dt_ (6

-co

where t_ is an n-vector of the real parts of the system's

eigenvalues, pr(a) is the joint probability density function
of c, and the integral that defines the probability of

stability is evaluated over the space of individual

components of o.

Estimating the probability of stability of a closed-loop

system from repeated eigenvalue calculation is a

straightforward task. Denoting the probability density

function of p as pr(p), eq. 4 is evaluated J times with each

element of pj, j = 1 to J, specified by a random-number

generator whose individual outputs are shaped by pr(p).

This Monte Carlo evaluation of the probability of stability

becomes increasingly precise as J becomes large. Then,

_p N(amax -<O)r(a)dc-- lim J
-0o J -> _,

(7

N(.) is the number of cases for which all elements of a are

less than or equal to zero, that is, for which amax < 0,

where amax is the maximum real eigenvalue component

in a. An important feature of this definition is that it does

not depend on the eigenvalues and eigenvectors retaining

fixed structures. As parameters change, complex roots

may coalesce to become real roots (or the reverse), and

modes may exchange, relative frequencies. The only

matter for concern is whether or not all real parts of the

eigenvalues remain in the left-half s plane. The stable

space of _ is a hypercube with one comer at the origin and

all other comers at various infinite points.

There is, of course, no limitation on admissible

specifications for the multivariate pr(p): it may be

Gaussian or non-Gaussian, as appropriate. Rayleigh,

correlated, and any other well-posed distributions are

admissible, the principal challenge being to properly shape

(and correlate) the outputs of the random-number

generator. In practice, system parameter uncertainties

are most likely to be bounded, as typical quality control

procedures eliminate out-of-tolerance devices, and there

are physical limitations on component size, weight, shape,

etc. The rectangular (uniform) distribution is particularly

interesting, as it readily models bounded uncertainty, and

it is the default distribution of most algorithms for random-

number generation. Given binary distributions for each

parameter, in which the elements of p take maximum or

minimum values with equal probability, the Monte Carlo

evaluation reduces to 2 r deterministic evaluations, the

result is exact, and the probability associated with each

possible value of p is 1/2 r . Similarly, the distribution for r

parameters, each of which takes w values (i.e., for

quantized rectangular distributions), can be obtained from

w r evaluations; the probability of acquiring each value of p

(for equally probable parameter values) is 1/w r.

Histograms and cumulative distributions for varying

degrees of stability are readily given by the Monte Carlo

estimate of ;pr(a)dt_, where Z represents a maximum
-¢,o

real eigenvalue component, and _,o < Y. < ,o. The

N[(Z - A) < amax <- Z]
histogram is a plot of j vs. Z; A is

an increment in Z, N[.] is the number of cases whose

maximum real eigenvalue components lie in the increment,
and J is the total number of evaluations. The histogram

estimates the stability probability density function, pr(Y.),
which is obtained in the limit for a continuous distribution

of Y. as A -> 0 and J -> 0o. The cumulative probability

distribution of stability, Pr(Z), is similarly estimated and

N(amax < Z)
presented as j vs. Z, the exact distribution

being achieved in the limit as J -> **. Consequently,

P = 1 - Pr(0). (8

The regions of varying stability degree are hypercubes in

t_ space, each with one comer at the n-vector Z = [Z X Z ...

Z] T and all remaining corners at appropriate infinite
locations.

When has stochastic robustness been achieved? The

answer is problem-dependent. In some applications

involving bounded parameters, it will be possible to

choose C such that P = 0, and that is a desirable goal;

however, if admissible parameter variations are

unbounded, if C is constrained, or if the rank of CH is less

than n, the minimum P may be greater than zero. C then

must be chosen to satisfy performance goals and one of

two robustness criteria: minimum P, or P small enough to

meet a reliability specification (e.g., one chance of

instability in some large number of realizations).

STOCHASTIC ROOT LOCUS

While it is not necessary to plot the eigenvalues (or

roots) of eq. 4 to determine or portray stochastic
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robustness, stochastic root loci provide insight regarding

the effects of parameter uncertainty on system stability.

Consider, for example, a classical second-order system

whose roots are solutions to the equation

s 2 + 2_(onS + (On2 = 0 ( 9

Suppose that the damping ratio (_) and natural frequency

((On) are nominally 0.707 and 1, respectively, and that

each may be a Gaussian-distributed random variable with

standard deviation of 0.2. Allowing first _ to vary, then

(On, 100-sample scatter plots of the roots are obtained

(Fig. 1). These root loci are immediately recognized as

following the classical configurations of root locus

construction [15], with the heaviest density of roots in the
vicinities of the nominal values. The density of roots

depicts the likelihood that eigenvalues vary from their

nominal values if either damping ratio or natural frequency
is uncertain. These stochastic root loci include branches

on the real axis and in the right-half s plane for large
enough variations of _ and (On.
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Figure 1. Stochastic root loci of a second-order system with Gaussian
damping ratio or natural frequency. _ -- 0.707, O)no= 1; 100 Monte
Carlo evaluations.

a) Effect of _ variation with 0.2 standard deviation.

b) Effect of (On variation with 0.2 standard deviation.

If both _ and (On are uncertain and uncorrelated (i.e., p'

= [_ (on]T), the scatter plots become "clouds" surrounding

the nominal values; Fig. 2a is one representation of the
resulting stochastic root locus based on the calculation of

4,000 samples. Further understanding can be gained by
plotting the density of roots in a third dimension above the

root locus plot. This is done in two steps. The first step
is to divide the s plane into subspaces (or "bins"), as in

Fig. 2b, and to count the number of roots in each bin as a

sampled estimate of the root density p. The result is a

multivariate histogram, with c and (o serving as

independent variables. Complex root bins are elemental

areas, for which PA is defined in units of roots/unit area.

Real root bins are confined to the real axis; hence, PL

measures roots/unit length.

The second step is to portray the root density

distribution. This can be done by brightening or darkening

the bin outlines (Fig. 2b), graphing contours of equal root

density on the two-dimensional plot, or by plotting an

oblique view of the three-dimensional histogram or root

density surface, as in Fig. 2c. The plotted surfaces would
become smoother as the number of evaluations increased.

Numerical smoothing also can be applied (judiciously) to

account for sampling effects on the plotted surface. For

this paper, the graphical presentations are relatively

crude, but it is apparent that more sophisticated graphical
processing, including the use of false color, hidden-line

removal, surface generation, and shading can be applied to

good effect. Root densities along the real axis present a
special problem for 2-D presentation, in that their

distributions are linear, not areal; oblique 3-D views

provide a satisfactory alternative.
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Figure 2. Stochastic root loci of a second-order system with Gaussian
damping ratio and natural frequency. Co= 0.707, Ono = 1;4,000 Monte
Carlo evaluations.

a) Scatter plot.
b) 2-dimensional binned representation.
c) Oblique 3-dimensional representation.

There is an ostensible relationship between pr(T.) and

p; however, the relationship may be multivalued and
ambiguous. When considering instability, distinction must
be made between the number of cases with right-half-

plane roots and the number of roots in the right-half plane.

For example, a third-order system with a complex pair of
roots and a real root can be unstable with 1, 2, or 3 roots

in the right-half plane, yet N would be incremented by one

in each case. A high-order system with real roots could

be unstable with one or more roots in the same right-half-

plane bin. Again, N would be incremented by one,
although the bin's p depends upon the number of roots it
contains.

A STOCHASTIC ROBUSTNESS EXAMPLE

Reference 16 provides a linear-quadratic-Gaussian

(LQG) design problem with a closed-loop system that is

nominally stable, but whose stability margins become

vanishingly small as control and estimation gains become
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large. That example is used here for a demonstration of
stochastic stability robustness. An unstable second-order

plant,

[x11_i-111rx11[O]uIll] (10:t2J - Lo l_l Lx2J + + w

z=[10] x2 +n (11,

is to be stabilized by an LQG regulator with controller
cost function matrices,

and disturbance and measurement-error spectral density
matrices

[11]W=W 1 , N=N= 1 (14,15

The corresponding LQG control and estimator gains, C
and K, are [ 16]

c = (2 + _) [1 11= [c c] (16

K=(2+ 4_)ll llT=lkklW (17

If the actual control effect matrix is G = [0 It]T rather than

[0 1]T, eq. 4 can be expressed for this problem (with the

state consisting of the original state and its estimate, x T

= [Xl x2 21 _21), as,

(s-l) -1 0 0

0 (s-l) Itc Itc

-k 0 (s-l+k) -1

-k 0 (c+k) (s-l+c)

= s4+c3s3+c2s2+cls+co = 0

(18

Using Routh's criterion, Doyle showed that It remaining in

(a,b) = {(1 + 1/ck), [1 - (k + c - 4)/2ck]} is a necessary

condition for stability to be retained [17].

Consider two cases with different LQG gains. In

Case 1, c = k = 4 (the limiting case as Q and W approach
zero), and in Case 2, c = k = 100. Because

Cl=k+c-4+2(it-1)ck, co =l+(1-t.t)ck (19,20

the characteristic polynomial can be expressed as

s 4 + c3 s3 + c2s 2 + (k+c-4-2ck)s + (l+ck) + Itck(2s-1) = 0

(21

which is a root-locus problem with I.tck taken as the gain.
The nominal roots are found with tl = 1, and they are

Case 1 kl-4 = -1,-I,-1,-1 (22

Case2 _.I-4 = -0.01,-0.01,-98,-98 (23

Three features are immediately evident. The root locus

gain is proportional to ck; hence, la has a greater effect on
the root locus in the latter case. There is a transmission

zero at +1/2 that will draw one root into the right half

plane. The excess of poles over zeros is three, indicating

that additional instability must occur for large magnitudes
of (It - 1). There will be either one or two unstable roots

among those going to infinity, depending on the sign of
(It- 1).

The stochastic root locus plots based on 3,500 Monte

Carlo evaluations with p = It corroborate these

predictions (Fig. 3). It is assumed that It is a Gaussian

random variable with mean equalling (a + b)/2,

representing a bias from the nominal It used to determine

the gains, and standard deviation of (b - a)/2. In both

cases, the root distributions are skewed and/or multi-

modal, and each of the branches has a pronounced peak.
Few roots lie near breakaway points, but rather

accumulate nearer to the transmission zero or infinity.
Figure 3a shows three of the five possible un.stable

branches, while for the higher gain, only two branches

reach instability. Figure 4 indicates that the resulting

Pr(Z) are non-Gaussian. The corresponding probabilities

of instability P are 0.48 and 0.33, indicating that the

resulting distributions are dissimilar, even though the

standard deviations were equally scaled for each case.
(When the Case 1 standard deviation is used with Case

2's gains, P climbs to 0.96.)
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Figure 3. Stochastic root loci for the Doyle LQG counterexample.
Gaussian parameter uncertainty with mean = (a + b)/2 and standard
deviation = (a - b)/2.

a) c=k=4, b)c =k= 100
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Figure 4. Histograms and cumulative probability distributions for the
Doyle LQG counlerexample. Gaussian parameter uncertainty with
mean = (a + b)[2 and standard deviation = (a - b)/2.

a)c=k=4, b)c=k= 100

Now consider two similar cases in which _ is a
random variable with uniform probability in (a,b). For
Case 1, Figures 5 and 6 illustrate how the stochastic root

locus and probability distributions are bounded in

comparison with Fig. 3a and 4a. In this example, the
bounds given by Routh's criterion are not the actual

stability bounds, and the probability of instability is non-

zero. For Cases 1 and 2, the probabilities of instability P
decrease to 0.27"and 0.01, respectively, as some unstable

values associated with the tails of the kt distribution have

been eliminated. Naturally, if t.t had been uniformly
distributed just inside the actual stability boundaries

(0.9243 < _ < 1.0625, for c = 4), ]? would be zero.
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Figure 5. Stochastic root locus for the Doyle LQG counterexample, c =
k = 4. Parameter uniformly distributed in (a,b) = (0.875,1.0625).
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Figure 6. Histogram and cumulative probability distribution for the
Doyle LQG counterexample, c = k = 4. Parameter uniformly
distributed in (a,b) = (0.875, 1.0625)

Using Loop Transfer Recovery (LQG/LTR) [17],

linear-quadratic (LQ) robustness can be fully recovered.

Recovery as a function of design parameter v (W--vWo)

for Case 1 is illustrated in Fig. 7 through both singular-

value analysis and the stochastic root locus. The LQG
return difference function in this case is a scalar, and the

singular value is identically the return difference function:

l+a(s) = I+C[sI-(F-GC-KH)]-IKH[sI-F]-I G (24

The original LQ stability margins are not fully recovered
until v > 10,000 (Fig 7a). Figure 7b illustrates the

mechanism of recovery: increasing v pushes two

eigenvalues to higher frequencies and decreases the

variation in the two roots near the origin. Based upon
3,500 evaluations and a Gaussian I.t variation, the present
analysis estimates P to be zero when v >100.
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Figure 7. LQG/LTR applied to the Doyle counterexample.
a) Unstructured-singular-value analysis.
b) Stochastic root loci

COMPUTATIONAL ISSUES
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The validity of the Monte Carlo analysis is dependent

on the number of eigenvalues computed, the number of

varying parameters, their probability distributions, and
required confidence levels. The number of evaluations

required can be related to the number of varying

parameters by considering uniform probability
distributions. Quantized uniform distributions

approxtmate contmuous uniform distributions, approaching
them in the limit as the numbers of discrete parameter

values go to infinity. Given n Monte Carlo evaluations of

a system with r continuous uniform parameters, the result

is, at best, equivalent to results computed

deterministically for a system with r uniform parameters

quantized in w levels, where w = n l/r. Conversely, the

number of evaluations should be of O(tzwr), where w is an

acceptable level of parameter quantization , and ¢t >> 1.

Note that in a 10-parameter case, direct equivalence to

OF POOR QUALITy
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ten parameter quantization levels requires over 10 billion

evaluations, while 10,000 evaluations yield results that

are equivalent to a quantization level less than three.

Work remains to be done in associating small-sample

evaluations with confidence levels of the histograms and

the resulting probability of instability.

If _max is monotonic in the individual elements of p,

then evaluation results for the binary probability

distribution denoted by (Pmin,Pmax) circumscribe results

obtained for continuous or quantized distributions with the

same limits. In this case, a conservative estimate of P is

provided by the associated 2 r deterministic evaluations

based on binary distributions.

Because each Monte Carlo evaluation can be

calculated independently, determining stochastic

robustness is a task well-suited to parallel computation.

Eigenvalue computation speed is linear in the number of

processors, and results from separate processors need be

consolidated only at the final stage of display.

CONCLUSIONS

Stochastic robustness offers a rigorous yet

straightforward alternative to current metrics for control

system robustness that is simple to compute and is
unfettered by normally difficult problem statements, such

as non-Gaussian statistics, products of parameter

variations, and structured uncertainty. The approach

answers the question, "How likely is the closed-loop

system to fail, given limits of parameter uncertainty?" It

makes good use of modem computational and graphic

tools, and it is easily related to practical design

considerations. The principal difficulty in applying this

method to controlled systems is that it is computationally

intensive; however, requirements are well within the
capabilities of existing computers. The principal

advantage of the approach is that it is easily implemented,

and results have direct bearing on engineering objectives.
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