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NOMENCLATURE

a left endpoint of search interval

a; slope of line segment i

b right endpoint of scarch interval

d projectile diameter (cnm)

h separation between bumper and wall (cn)

N number of line segments

S constraint set

1 bumper thickness (cm)

1 initial value for bumper thickness (¢cm)

f independent variable i for bumper thickness (cm)
t wall thickness (¢cm)

15! initial value for wall thickness (cm)

\% projectile velocity (kmy/s)

W weight objective function

W, linear objective function

W, objective function value at left search point
Wy objective function value at right search point
Xy left search point

Xg right search point

AX line segment interval length (cm)

Subscript O optimal value






TECHNICAL. MEMORANDUM

GLOBAL NONLINEAR OPTIMIZATION OF SPACECRAFT
PROTECTIVE STRUCTURES DESIGN

1. INTRODUCTION

1.1 Problem Background

The space station core module configuration, which includes habitation and laboratory mod-
ules. will be subject to a number of harsh environs, including radiation, thermal, pressure, struc-
tural loadings at launch, and the topic of this study, meteoroid and space debris hypervelocity
impacts [1,2,3]. For the space station, which has un extended orbital lifetime and large surface and
projected areas, the pressure wall thicknesses of the core modules are often driven by these two
environs [4,5]. Because this wall thickness contributes significantly to the structural weight of the
module, it is important to minimize its effect at launch while maintaining adequate protection for
the crew and equipment.

One method currently used in protective systems design to reduce the pressure wall thick-
ness 1s to add a thin bumper spaced outboard from the wall. For many space debris and meteoroid
projectile velocities, this bumper fragments the particle into smaller pieces which disperse behind
the bumper, making their impact with the wall less severe [6,7].

The optimum number, thicknesses, and materials for the bumpers is the subject of ongoing
research at NASA's Marshall Space Flight Center (MSFC). However, analytic predictor equations
and models do exist for the single bumper/single wall design as envisioned for the space station
[4,5.6,7]. These predictors, which vary greatly in form, provide ballistic limit information used to
design the bumper and pressure wall.

For a given predictor. there are many combinations of bumper and pressure wall thicknesses
that satisfy the modcel. In general, the thicker the bumper, the thinner the pressure wall, and vice
versa. However, the optimal combination is that set of thicknesses which minimizes the module
weight. The determination of these thicknesses is a nonlinear optimization process.

1.2 Study Goal

The goal of this study is to determine the uniqueness and existence of the globally optimal
solution to the protective systems design problem formulated with the Nysmith impact predictor and
its constraints. A secondary goal is to discover qualitative features of several nonlinear optimization
techniques to determine their effectiveness in arriving at solutions to problems in this field.



1.3 Study Approach

The problem is first formulated as a nonlinear optimization problem in Section 2. In Section
3, the equivalence and uniqueness of local and global optimal solutions to this problem is proven
using properties of convex sets and functions. Furthermore, an important feasibility condition which
limits the usage of the Nysmith predictor is established. The existence of the optimal solution is
shown in Section 4 using various solution techniques. Additionally, the analytical solution for this
optimum is provided for most of the feasibility region. Section 4 concludes with a qualitative
comparison of the optimization techniques considered. Finally. the sensitivity of the optimal design
to the systemic parameters is presented in Section 5.

2. PROTECTIVE SYSTEMS DESIGN PROBLEM FORMULATION

2.1 Introduction

The formulation of the optimization problem is a key process. the importance of which
cannot be overstated. Many of the assumptions made in this process have profound effects on the
problem solution. The choice of objective function will be made first. followed by the manipulation
of the problem constraints to proper form. Finally. the complete problem formulation is stated,

along with some remarks concerning the degree of difficulty in obtaining optimal solutions.

The Nysmith equation [6] may be written

_ 5 08 V0.278d2.92

L= , |
2 t{).szsh:.sez (D

with inequality constraints

and

_<—1.0 . (3)

Note that this predictor does not include parameters for bumper, wall. or projectile materials. This
is due to the fact that the experimental data used to derive the Nysmith predictor was based on
pyrex glass spheres impacting 2024-T3 aluminum bumpers and walls. Furthermore, note that d. h,



and V are positive-valued parameters with nominal values discussed in Section 4. Finally, con-
straints (2) and (3) represent limitations on bumper and wall thicknesses in terms of projectile
diameter.
2.2 The Choice of Weight Objective Function

Detailed weight functions based on the applicable spacecraft configuration may be derived to
any degree of representation and then minimized to reduce structural launch stresses and payload
weight. However, detailed weight functions tend to limit the generality of the analysis while
obscuring the mathematics. Furthermore, if the structural curvature of the spacecraft is relatively

small, and if the bumper and wall materials are fixed and identical, an appropriate weight function
is given simply by

W=t+1, . (4)
Substituting equation (1) results in

5 .08‘/0.278d2.92

=1+
I?.SZBh 1.39

Throughout this study. equation (5) will represent the spacecraft weight to be minimized with
respect to the independent variable t,.

2.3 Problem Constraints

The problem constraints must now be manipulated to proper form. Constraint (2) may be
rewritten

t‘ .<—_2- ’ (6)

and substituting (1) into (3) and rearranging gives

21 72v0.527d3.636
> .

12
h 2.633
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Equations (6) and (7) represent upper and lower bounds on the bumper thickness in terms of the
systemic parameters V. d. and h. Note that since V. d, and h are positive, so is the bumper
thickness.

2.4 Final Problem Formulation
The optimization problem may now be written:
Minimize: W f{rom equation (5).
Subject to: Conditions (6) and (7), with independent variable, t;. Note that because this is

a constrained nonlinear optimization problem, traditional calculus techniques succeed only when a
local minimum happens to satisfy the constraint set.

3. EQUIVALENCE AND UNIQUENESS OF LOCAL AND GLOBAL OPTIMA

3.1 Introduction

[n optimization problems, it is important to determine whether solutions fall into the
category of local or global optima. Simply put, a global optimal solution is optimal for all points
in the constraint set, while a local optimal solution may be optimal in only a small neighborhood
of itself. In this section, it will be shown that all local optimal solutions to the problem of Section
2.4 are global optimal solutions, and furthermore, that the global optimal solution to this problem
is unique. Existence and computation of the actual solution is deferred to Section 4.

3.2 Condition for a Nonempty Feasibility Set

The first step in this anulysis is to determine when the problem is feasible. This corresponds
to the question: When is the constraint set defined by (6) and (7) nonempty? Clearly, this is the
case if

0.527 ;3.636
d 21.72V°7d ®
2 h2.633
or
0.239k
ds= ©)



Thus, if equation (9) is not satisfied. then there is no feasible solution to this problem. Note that
this feasibility condition places a restriction on the relative values of the systemic parameters
associated with the physics of the problem. Thus, certain realistic physical problems are outside the
realm of situations that may be modeled using the Nysmith predictor. Equation (9) represents an
upper bound on the projectile diameter that may be considered in this analysis. However, this con-
dition may be rewritten to find a lower bound on the separation between bumper and wall as

h>4.1844V"? i (10)

Equation (10) is a more useful form of the teasibility condition. since the structural designer genei-
ally has more control over the bumper/wall separation than over the projectile diameter (or
velocity) that impacts the spacecraft.

3.3 Convexity of the Feasibility Set

When equation (10) holds, the feasibility set defined by (6) and (7) is nonempty. It is also
convex, as shown in the following lemma.

Lemma 1: Consider the set S detined by (6) and (7). Provided (10) holds, S is convex.

Proof: Equation (10) provides the required nonemptiness of S. Recall that nonempty S is
convex if for

nes =12

then

7\’1,“‘(1’7»)‘1,5 S vie [0,1]
Suppose

nes forhi = 1.2
Then

<

192



and

2 1 ‘72Vo.527d3.636

L= h 2.633

tor i = 1.2 by (6) and (7). Suppose

Ae [0,1]

Then

d d)| d
7»{1‘+(1 —)»)I,ZS}\{—Z')*-(I —7\.)(5)—5

Similarly,

Ay + (12, 2

Therefore,

21 '72v0.527d3,636

M,l+(l —).)t,ze S ,

as desired. Thus, S is convex.

3.4 Strict Convexity of the Objective Function

h 2633

Since the objective function W is a function of one independent variable, convexity may be

proven using techniques from the calculus of a single variable.

Lemma 2:
Proof:
W'(t,) =1-

W from equation (5) is strictly convex on S.

2.682V01784292

tll.SZBh 1.39
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since V, d, h, and t; are all positive. Thus, W is strictly convex on S.

3.5 Global Optimization Theorem

Theorem 1:  Suppose cquation (10) 1s satisfied. Then any local optimal solution to the
problem of Section 2.4 is the unique global optimal solution to the problem.

Proof: [ cquation (10) is satistied, then S defined by equations (6) and (7) is nonempty.
Furthermore, S is convex from Lemma 1. Also. W is strictly convex on S from Lemma 2. There-
fore. by Theorem 3.4.2 (part 2) of Reference 8, any local optimal solution to this problem is the
unique global optimal solution.

Note that this theorem says nothing about the existence of an optimal solution to the

problem or how to find it. This wiit be addressed in the next section.

4. EXISTENCE OF OPTIMUM AND COMPARISON OF
OPTIMIZATION TECHNIQUES

4.1 Introduction

The conditions of existence of a local (and thus global) optimal solution to the problem will
now be established.

Theorem 2: If

d<023pV7°* | (13)

then the optimal solution to the problem of Section 2.4 exists and is given by

_ 1‘907vﬂ.182dl.9l

| S h0.9| ’ (14)
0.182 4191
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_ 5.5200182419 (16)
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W,

Proof: Note first that equation (14) satisfies equation (11). Also. substituting equation (14)
into equation (1) results in equation (15). Inserting equations (14) and (15) into (4) gives (16).
Thus, equations (14), (15), and (16) define the local optimal solution for the unconstrained
problem. Note, also, that since inequality (13) is satisfied. then so are inequalities (6) and (7). as
well as feasibility condition (10). Thus, by Theorem 1, equations (I4), (15). and (16) define the
globally optimal solution under condition (13).

Note that the ratio of optimal bumper thickness to total thickness is 0.345. The correspond-
ing ratio for the wall is 0.655. Thus, provided the values of the systemic parameters satisfy equa-
tion (13), these ratios are constant.

Finally. notice that Theorem 2 provides optimality conditions for most of the feasibility

region. In fact. it is now only necessary to determine the existence of optimal solutions in the
interval

0.23hV™** < d <0.24hV? X (17)

This existence will be shown using various optimization methods.
The baseline systemic parameters for these analyses are determined from existing environ-
ment curves and data on mission risk and duration and velocity probability distributions for the

space station core module configuration [2,5]. The dominant environment for this application is the
space debris environment. The corresponding parameters are

V = 10 km/s d = 0.84 cm and h = 10 cm . (18)

Note that these baseline parameters satisfy (13) and thus Theorem 2. Thus, the optimal baseline
solution as given by (14), (15), and (16) is

4,=0256cm 1, =0484cm  W,=0.740cm . (19)

These results will be confirmed with a number of optimization methods to follow. Detailed vari-
ations in the systemic parameters will be discussed in Section 5.



4.2 Problem Graph

Figure | shows the problem graph for the baseline case defined by equation (18). Note that
the maximum total thickness occurs at an interior point of the feasible solution region. Also, note

that the region is convex. and the objective function is strictly convex. as shown in Lemmas | and
2

.

2.5 —

15—

N\ N\

q N
\ q_.:‘gdlz
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0.5
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00& >\\\\\\0\\2 \“%&;\\\\\O\F‘ 0¥5 0!5 >

BUMPER THICKNESS (cm)

Figure 1. Determination of optimal bumper thickness.

4.3 Six-Point Fibonacci Search

The Fibonacci search is a nonlinear. one-dimensional optimization technique which does not
require gradient calculations. This technique successively reduces the length of an initial interval of
uncertainty by logically updating search points located equidistant from the interval endpoints. A
practical discussion of this technique is found in Reference 9, and a more formal description is
found in Reference 8. The success of this technique depends on the objective function being uni-
modal on the interval of interest. Since our objective function, W, is strictly convex on S, this
requirement is satisfied. The Fibonacci search is typically employed as an unconstrained technique.
However, constraints (6) and (7) in our study provide an initial interval of uncertainty from which
to proceed. Substituting conditions (18} into constraints (6) and (7) gives this interval as

0.09cm <1, <0.42cm . (20)



A six-point Fibonacci search uses the sixth and seventh numbers of the Fibonacci sequence
to determine the initial search points. Recall that these numbers are 8 and 13. If the final two
search points are required to be separated by 0.1 c¢m or less. the right search point is given by (see
Reference 6)

42-0.09
=3

s(0.1)

3 +0.09 =0.3008

-1)

Since the left search point must be equidistant from the midpoint of the interval, it is given by
x;, =0.2092

The objective function values are then computed and the less desirable subinterval is discarded.
Table I shows at each iteration the values of the interval endpoints, left and right search points.
and left and right objective tunction values. The approximate solutions are given by

4,~0.2644cm 5,~0.4764cm Wy~0.7408cm.
Thus, a six-point Fibonacci search results in a relative error in bumper thickness of about
3 percent.

Table 2 shows a case where equation (17) holds and Theorem 2 does not apply. Here,

V. = 10 knvs , h =10 cm | and d = 146 cm . (21
Thus, by (6) and (7). we have

0.67cm <1, <0.73cm . (22)

This results in the solution

t, =0.728cm t, =1.401cm W,=2.129¢cm ) (23)
1 2 0

Note that the optimal bumper thickness satisfies (6) and (7). Thus. there do exist solutions in the
region defined by (17). However. there is not a defined analytic form for these solutions.

10



TABLE . SIX-POINT FIBONACCI SEARCH WITH CONDITION (13) SATISFIED

a b xL XR “VL WR

0.0900 0.4200 0.2092 0,3008 0.7483 0,7458
0.2092 0.4200 0.3008 0.3284 0.7458 0.7532
0.2092 0.3284 0.2368 0.3008 0.7417 0.7458

0.2092 0.3008 0.2368 0.2732 0.7417 0.7414

0.2368 0.3008 0.2644 0.2732 0.7408 0.7414

TABLE 2. SIX-POINT FIBONACCI SEARCH WITH CONDITION (13) NOT SATISFIED

Xp
0.6700 0.7300 0.6854 0.7146 2.1320
0.6854 0.7300 0.7008 0.,7146 2.13058

0.7008 0.7300 0.7146 7162 2.1297

o
EEE|s
3

0.7146 0.7300 0.7162 0.7284 2.1296

(s
ot

0.7162 0.7300 0.7178 7284 2.1295




4.4 Linearization

One promising technique for solving nonlinear optimization problems is to approximate the
nonlinear portion of the objective function using line segments |9]. Conventional linear pro-
gramming techniques are then applied to solve the resulting problem. This technique works particu-
larly well for the problem at hand [10].

The relationship between bumper and wall thickness for the Nysmith equation may be
estimated linearly [9] by

L=n+Ilan (24)

1 N
L=+ ¢t .
t 1 1=1°1, (25)

where the «,’s represent the slopes of the N line segments used to approximate the wall thickness
as a function of the bumper thickness. Thus, we may rewrite the formulation in Section 2.4 as

Minimize W=t +5+ % (1+a), (26)

s

with respect to 1

subject to 4, +E?,=lait1, <d (27)
d

B+ r <= (28)
P2

0<1r SAX (29)

Note that the initial values for the bumper and wall are constant and may be removed from the
objective function. Furthermore. by picking the initial wall thickness as the projectile diameter, and
the initial bumper thickness corresponding to that choice of wall thickness. constraint (27) becomes
redundant, since the wall thickness is a monotonically decreasing function of the bumper thickness.
Thus, constraint (3) actually simplifies the linear programming process by providing a set of initial
conditions. Similarly, a check for ending the iteration should be given by constraint (2) which

12



corresponds to constraint (28). However, this constraint may not be removed since, as will be
seen, there 1s no guarantee that the number of intervals between the initial bumper thickness and
d/2 1s an integer. Thus, the final linear programming problem formulation may be written

Minimize W, =3 (1+a), (30)
with respect to 1

: d
subject to IV 1, SE-—!: (3N

0<t <AX , (32)

and based on this, the final solution 1s given by

W=W+1 +1, (33)

L=nL+% a1 n=n+3, . (34)

Note that this problem has N linearly independent variables and N+ | constraints. This linear
programming problem is solved using a revised simplex algorithm as a subroutine in Protective
Systems Design — Linear Program (PSDLP). Note. however, that when the objective function
coefficients become positive (that i1s, when the slopes of the approximating line segments become
greater than —1) there is no longer incentive for selecting nonzero decision variables, since this is a
minimization problem.

Figure 2 depicts a four-segment linearization of the relationship between bumper and wall
thickness for the Nysmith predictor. Note, that in this case, the last line segment extends beyond
the constraint on bumper thickness. Also, the initial values for bumper and wall thicknesses are
given by the wall thickness constraint (3). Recall that the optimal solution is found at an extreme
point of the linearized model. This explains why increasing the number of segments improves the
accuracy of the solution: the probability of finding the optimal solution near an extreme point
increases with decreasing line segment interval length. Figure 3 shows how decreasing interval
length improves the accuracy of the optimal solution. Finally, the absolute error in optimal bumper
thickness as a function of the ratio of optimal bumper thickness to interval length is shown in
Figure 4. Nearly exact correlation between the two methods is found for an interval length of 0.01
cm, which corresponds to a 33 line segment approximation. Since problems with under 100 vari-
ables and constraints are considered “small” in the linear programming sense, the effectiveness of
this method appears to be quite good.

13
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Figure 2. Linearization of the Nysmith predictor using four segments.
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4.5 Geometric Programming

Geometric programming (GP) is a mathematically elegant and powerful optimization tech-
nique. It is based on the arithmetic-geometric inequality, and it transforms any problem which fits
its form into a convex programming problem. Thus, any solution found using this technique is
guaranteed to be the globally optimal solution. This fact means that the convexity analysis of
Section 2 is unnecessary for any problem falling into the GP form. Since not all problems suitable
for this form are convex, this property of GP typically provides increased confidence with less
effort in the optimal solution. The general form that GP accommodates is

ﬂ'» ﬂ‘- ﬂ‘
Minimize — X7_,CX; X ..., " (35)
mi iy %y Gy
subject to 12g, =27 6% X ... X, , (36)
where | = 1.....p, k is the number ol independent variables. n is the number of polynomial terms

in the objective function, ml is the number of polynomial terms in constraint |, p is the number of
constraints, and all coefficients and independent variables are positive.

15



Form (35) has been denoted a polynomial by Zener and Dutfin. two developers of this

method. Note that equations (5). (6). and (7) may be put in this form. where

k=1, n=2_ m =1=m2, p=2
5 O8v0.2’78d2.92
Cl = 1, C2 = :
hl439 ’
a,=1, a,=—-0.528,
2 21.72Vo.527d3.636
€, = d 1, J 2633 >
all — 1’ al _—__1 ""'IIII

2

The general problem is then converted to the dual problem:
8, 5, 8y s,
Ci u m
Maximize  v(8) =TII}_ 1(5] f=1 MT' ﬂ C_N C—N
i Oy O O

with
X da;+ 20 1(2:’2 u 8;1‘19:) =0 =1,2,..k

and

28=1

w=37",8  1=12,.p.

Substituting our problem variables into this form yields

X % 8 .
Maximize v(8)=(8ll) (g_j [_dz_J (012)5,2

16

(37)

(39)

40

(41)

(42)



subject to 8, ~0.5288,+8,, - &, =0 (43)
8,+8,=1 (44)

811 82’ 6'”, 8;2>O . (45)

This is a 2 degree-of-difficulty problem, since there are two equations and four unknowns.
Performing a two-dimensional search over the dual (prime) variables gives

511 = 5;2~O
(46)
5,~O.346 52~O.654
v(6)~0.7413
Furthermore, since
4, =8,v(5) b= v(8) - h, , (47)

we have

1, =0.256cm t,, = 0.485¢cm W,=0.741cm

as found approximately in equation (19).

4.6 Relative Merits of the Techniques

For a one-dimensional problem such as this one, the six-point Fibonacci search is computa-
tionally efficient. However, like the graphic method., it provides no general analytical information
about the solution, as in Theorem 2. This is also true of the linearization method. However. it fits
nicely into standard linear programming packages. On the other hand, GP provides analytical
information about the form of the optimal solution, and gives the same results when condition (13)
(and thus. the Nysmith constraints) is satisfied. However, it too suffers in the case presented
because it transforms an optimization problem with one independent variable into a problem involv-
ing a two-dimensional search for the dual variables. Hence, no single method is unconditionally
superior for this problem. Fortunately, for this particular problem, the results of Theorem 2 suffice
for most feasible sets of the systemic values, V, d, and h.
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5. OPTIMAL DESIGN SENSITIVITY TO SYSTEMIC VARIABLES

5.1 Introduction

The existence and uniqueness of the globally optimal solution to the problem of Section 2.4
has been shown. We now consider the effect of changes in the systemic parameters, V. d, and h,
on this solution. These changes affect solution feasibility [see equation (10)] and optimality (see
Theorem 2).

Figure 5 depicts the feasibility condition (10) in terms of the minimum separation between
bumper and wall versus projectile diameter for various projectile velocities. The region above each
line segment denotes feasibility. This condition must be checked prior to calculating the optimal
solution.

5.2 Projectile Velocity

Figure 6 shows the design sensitivity to projectile velocity for various projectile diameters
and a fixed bumper/wall separation of 10 cm. Note that in the high velocity region (10 to 16
km/s), the optimal design does not vary significantly. Thus, optimal design increases with increas-
ing projectile velocity for the Nysmith predictor.

5.3 Projectile Diameter

Figure 7 shows the sensitivity of optimal design to projectile diameter for various bumper/
wall separations and a fixed projectile velocity of 10 km/s. Optimal design is sensitive to and
increases with projectile diameter. The stopping point on each curve represents the limitation on
projectile diameter given by (9).

5.4 Separation Between Bumper and Wall

Figure 8 shows the sensitivity of optimal design to bumper/wall separation for various
projectile diameters and a fixed projectile velocity of 10 km/s. The shaded region to the left
represents the infeasibility area as determined from equation (10). Note that optimal design
decreases with increasing separation.
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

The protective systems design problem was formulated as a nonlinear, single variable,
optimization problem with two constraints with the goal of minimizing the sum of the bumper and
wall thicknesses. A feasibility condition which defines the limitations on the usage of the Nysmith
predictor was developed in Section 3.2. It was then shown, using set and function convexity attri-
butes. that any local minimum to this problem is the unique global minimum solution. In Section
4, the existence of this minimum was shown (for problems which satisfy the feasibility condition,
of course), and several techniques were used to compare their relative effectiveness in finding the
solution. A theorem was also presented which provides the analytical solution for the global
minimum over most of the feasibility set. Finally, the effect of changes in the systemic parameters
on the optimal design was presented in Section 5.

6.2 Conclusions

The problem defined in Section 2.4 has a unique globally optimal solution, provided the
nonempty feasibility set condition (10) is satisfied. When condition (13) is satisfied, this optimal
solution may be expressed analytically. The six-point Fibonacci search provides the least computa-
tions in achieving the optimal solution, while the GP technique (and Theorem 2 when it applies)
provides the most insight into the general form of the solution. The optimal design increases with
increasing projectile velocity and diameter and decreases with increasing bumper/wall separation for
the Nysmith predictor. The optimal thickness distribution for the Nysmith predictor is approxi-
mately 35 percent bumper and 65 percent wall.

6.3 Recommendations

A logical next step would be to determine the optimal design for a weight objective func-
tion expressed in terms of specific space station core module configuration parameters and compare
the results with this analysis. It is also important to perform design optimization and sensitivity
analyses for other available impact predictors to see how these differ from the Nysmith model.
Furthermore, the results should be correlated with current test data to determine regions of dis-
agreement. Finally, these design optimization methodoologies should be applied to other space sta-
tion components.
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